
Delft Center for Systems and Control

Implementing Symbolic
Controllers into FPGAs

Antonio J. Rueda

M
as

te
ro

fS
cie

nc
e

Th
es

is

Implementing Symbolic
Controllers into FPGAs

Master of Science Thesis

For the degree of Master of Science in Embedded Systems at Delft
University of Technology

Antonio J. Rueda

August 26, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Implementing Symbolic

Controllers into FPGAs
by

Antonio J. Rueda
in partial fulfillment of the requirements for the degree of

Master of Science Embedded Systems

Dated: August 26, 2019

Supervisor(s):
Dr. Manuel Mazo Espinosa

Reader(s):
Dr. Wei Pan

Dr. Manon Kok

Abstract

Embedded control systems are processor-based systems that need to run an application for
an extended amount of time, such as months or years. Typically, they implement a real-
time function to control a system. Embedded systems are implemented using hardware and
software to perform an specific task. This is why they can be optimized to reduce its size and
cost and increase its reliability and performance. In embedded control systems, a discrete
time embedded system is controlling a continuous time plant. In order to deal with this
complex interactions, there are some tools that synthesize symbolic controllers. However,
the size of these controllers is still too large to be widely implemented in embedded systems
for real-time applications. Although it is possible to implement them in CPUs with large
memory, their time-step is limited by a few GHz. On the other hand, FPGAs can run at a
higher frequency (MHz) but they have limited memory. In this project, we propose a tool
that automate the process of compressing, determinizing and generating the necessary files
to flash a symbolic controller into an FPGA. We propose three different ways of transforming
the original controllers and we compare them with another similar tool from the Technische
Universität München. We also simulate in real-time the controlled closed-loop of some of
those symbolic controllers using a simulated plant to validate the entire process.

Master of Science Thesis Antonio J. Rueda

ii

Antonio J. Rueda Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Background . 1
1-2 Goals . 2
1-3 Outline . 3

2 Preliminaries 5
2-1 Symbolic Controllers . 5
2-2 Binary Decision Diagrams . 6
2-3 Hardware . 6

2-3-1 myRIO . 6
2-4 Software . 8

2-4-1 Scots v0.2 . 8
2-4-2 SCOTSv2.0 BDD controllers determinizer 9
2-4-3 SCOTSv2.0 BDD2Blif . 10
2-4-4 ABC: A System for Sequential Synthesis and Verification 11
2-4-5 VHDL Wrapper . 11
2-4-6 LabVIEW . 11
2-4-7 Simulink . 11
2-4-8 BDD2Implement (TUM) . 11

2-5 Approach . 11

3 Working with BDDs 13
3-1 First Approach: Transforming the BDD using Existential Abstractions 13

3-1-1 Intuitive implementation . 13
3-1-2 A more efficient implementation . 16

3-2 Second Approach: Exporting directly the BDD 18

Master of Science Thesis Antonio J. Rueda

iv Table of Contents

4 Flashing the files with LabVIEW FPGA 21
4-1 Example of controller . 21
4-2 Algorithm used to transform from analog to boolean 22

4-2-1 From state to grid point . 22
4-2-2 From grid point to control input . 22
4-2-3 Working with analog inputs and outputs 23

5 Simulation environment 25
5-1 Creating the model . 25
5-2 Calling the model from LabVIEW . 27
5-3 Interconnecting the 2 myRIOs . 27

5-3-1 First Approach: With a transformed BDD 28
5-3-2 Second approach: Running a loop . 28

6 Results 29
6-1 Examples . 29

6-1-1 First Example: DC-DC converter . 29
6-1-2 Second Example: Vehicle in a maze . 30
6-1-3 Third Example: Aircraft . 32

6-2 Comparison . 32

7 Conclusions and Future Work 37
7-1 Conclusions . 37
7-2 Future Work . 37

Bibliography 39

Glossary 41
List of Acronyms . 41

Antonio J. Rueda Master of Science Thesis

List of Figures

2-1 Three step approach to create symbolic controllers 5
2-2 OR Gate represented by a BDD . 6
2-3 myRIO-1900 . 7
2-4 Interconnection of the 2 myRIO boards . 7
2-5 BDD of a simple controller synthesized by Scots 9
2-6 Determinizing a controller . 10

3-1 Domain, reachable set and safe set of a controller for a dcdc boost converter . . 17
3-2 Comparison between the first intuitive implementation and the more efficient one 18
3-3 Running a loop in the FPGA side to obtain the input value 19
3-4 Running a loop in the CPU side to obtain the input value 19

4-1 Example of controller in LabVIEW . 21
4-2 Conversion from the output of the BDD to real value 23

5-1 Example of plant in LabVIEW . 25
5-2 DC-DC converter . 26
5-3 Calling a simulink model from LabVIEW . 27
5-4 Diagram of the interconnection of the 2 myRIOs 28
5-5 New Diagram of the interconnection of the 2 myRIOs 28

6-1 States of the DC-DC boost converter running the real-time simulation 30
6-2 States of the DC-DC boost converter simulated using Scots in Matlab 30
6-3 Vehicle model . 31
6-4 States x1 and x2 of the vehicle running the real-time simulation 31
6-5 States x1 and x2 of the vehicle simulated using Scots in Matlab 32

Master of Science Thesis Antonio J. Rueda

vi List of Figures

Antonio J. Rueda Master of Science Thesis

List of Tables

2-1 OR gate truth table . 6
2-2 Truth tables of a non-deterministic controller and its determinization 10

3-1 Truth table of a determinized controller . 14
3-2 BDDs truth tables after splitting the original controller 14
3-3 Truth table of a determinized controller with an input of 2 bits 15
3-4 BDD truth tables after applying the first set . 15
3-5 BDD truth tables after applying the second set 16
3-6 BDD truth tables ready to be flashed . 17

6-1 Nodes of the BDDs for different examples. 29
6-2 FPGA LUTs utilization for different examples 33
6-3 Timing Comparison . 34
6-4 Synthesis Time for different examples from Vivado 34

Master of Science Thesis Antonio J. Rueda

viii List of Tables

Antonio J. Rueda Master of Science Thesis

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor Dr. Manuel Mazo
Espinosa for giving me the chance of doing the master’s thesis under the control department,
for his advise and for his guidance during this project. I learned a lot during his weekly
meetings with all the other supervised students.

I would also like to thank Dr. Wei Pan and Dr. Carlas Smith for being able to take part in
the thesis committee.

Thanks to all my family and friends for their unconditional love and support.

Last, I would also like to thank a very special friend for visiting me from Spain every now
and then. Her random visits during this last year made me not lose my mind.

Delft, University of Technology Antonio J. Rueda
August 26, 2019

Master of Science Thesis Antonio J. Rueda

x Acknowledgements

Antonio J. Rueda Master of Science Thesis

“Life is like riding a bicycle. To keep your balance, you must keep moving.”
— Albert Einstein

Chapter 1

Introduction

1-1 Background

Embedded control systems are processor-based systems that need to run an application for
an extended amount of time, such as months or years. Typically, they implement a real-
time function to control a system. Embedded systems are implemented using hardware and
software to perform an specific task. This is why they can be optimized to reduce its size and
cost and increase its reliability and performance. In embedded control systems, a discrete
time embedded system is controlling a continuous time plant. These interactions between
discrete systems and continuous systems are studied in the hybrid systems field[1].

For the design and synthesis of controllers, there are some tools based on symbolic models as
PESSOA, SCOTS, CoSyMA, LTLMoP, TuLiP, see [2], [3], [4], [5], and [6] respectively. They
allow the synthesis of correct-by-design controllers of nonlinear systems. The main issue of
these techniques is the big size of the generated controller. A typical controller generated by
these tools is stored in the so-called Binary Decision Diagram (BDD). BDDs are huge tables
mapping the state space grid with the corresponding valid input space grid.

There exists determinization techniques to reduce the size of the controllers in order to be
able to implement them in embedded systems. In [7], they propose 2 new techniques to deter-
minize controllers: Global Algorithm (GA) and Symbolic Regression (SR), and they compare
these new determinization algorithms to one existing technique called Local Algorithm (LA)
proposed by [8]. We will be making use of this techniques to reduce the size of our controller
and make it optimal.

In this thesis project, we will be using a Field Programmable Gate Array (FPGA) to run a
correct-by-design generated controller. FPGAs are silicon chips with unconnected logic gates.
The functionality of the FPGA can be defined by using software to configure the gates. The
benefits of using an FPGA are:

• Flexibility: Because they are reconfigurable, the controller can be updated at any time.

Master of Science Thesis Antonio J. Rueda

2 Introduction

• Performance: They use hardware parallelism. Their computing power is greater than
in a Digital Signal Processor (DSP).

• Reliability: Since an FPGA is hardware-based, they don’t use operating systems and
they use true parallel execution and deterministic hardware for every task.

• High-speed: Using a top level clock, they can operate at rates such us 40MHz, 80MHz
or 200MHz.

In order to flash any code into an FPGA, we need to follow the next steps:

1. Synthesis: The synthesis takes a design and creates a netlist. A netlist is a textual
description of the gate connections in the FPGA.

2. Place and route: In this process, the elements of the netlist are physically placed and
mapped to the FPGA physical resources.

3. Flashing: Once the synthesis and the place and route are done, we can flash the FPGA.

There are some tools that perform the process of generating code for FPGAs or for real-time
systems taking as input the BDD of a controller. One of them was created by the Technische
Universität München (TUM) [9]. This tool is able to create the following code for symbolic
controllers:

• Hardware: Verilog and VHDL.

• Software: C and C++ boolean-valued functions.

The procedure that this tool follows includes determinization of the controller, conversion of
the multi-output BDD to multi single-output BDDs and generation of the code. However, the
process is not optimal since in order to generate the code, it transforms the complete BDD
to a particular programming language by brute-force. Also, this tool uses a random deter-
minization algorithm which is not optimal. Thus ,we believe this process can be optimized
further, gaining performance and reducing the final size of the controller.

1-2 Goals

The goal of this master’s thesis is to test and validate symbolic controllers using an FPGA:

• Modifying existing symbolic controllers in order to be burnt into an FPGA.

• Simulating a closed-loop controlled plant using 2 real-time systems.

Antonio J. Rueda Master of Science Thesis

1-3 Outline 3

1-3 Outline

In Chapter 1, we introduce an overview of symbolic controllers for embedded control systems
and we take a look at the current tools to implement them. Chapter 2 discusses the basics
and the tools to understand how a symbolic controller can be prepared for an FPGA. In
Chapter 3 we take a deeper look at the tool that transform controllers generated from Scots.
Chapter 4 explains how a controller can be implemented in an FPGA using LabVIEW instead
of VHDL or verilog. In Chapter 5 we describe a procedure to simulate a plant in order to test
and validate the closed-loop. Chapter 6 summarizes the findings and compares our results
with the ones from the TUM tool. Finally, the conclusions and future work are discussed in
Chapter 7.

Master of Science Thesis Antonio J. Rueda

4 Introduction

Antonio J. Rueda Master of Science Thesis

Chapter 2

Preliminaries

This chapter introduces the basics needed to understand the process of the tool. First, we
explain the concepts of symbolic controllers and binary decision diagrams. After that, we
introduce the tools that have been used in the project.

2-1 Symbolic Controllers

In symbolic control, first, physical systems are approximated using finite abstractions and
then, discrete controllers are synthesized for those abstractions [10]. Finally, the controllers
are refined to hybrid ones. This approach tries to deal with complex systems interactions
between continuous and discrete dynamics on embedded controller systems. This three step
approach to create symbolic controllers is represented in the next figure (from [11]):

Figure 2-1: Three step approach to create symbolic controllers

In this thesis project, we will be using a tool (Scots) that creates symbolic controllers via a
feedback refinement relation [12]. Later on, in section 2-4-1 we will describe the possibilities
that this tool offers to synthesize symbolic controllers.

Master of Science Thesis Antonio J. Rueda

6 Preliminaries

2-2 Binary Decision Diagrams

A binary decision diagrams (BDD) is a representation of a boolean function. It consists of:

• Nodes: They represent the variables of the boolean function. Each node has two child
nodes.

• Leaves: They can be represented as dashed lines if the node is evaluated with the value
of 0, or as continuous lines if the node is evaluated with the value of 1.

• Terminal nodes: They can be 0 or 1 and they will be the output of the boolean function.

Figure 2-2 shows an OR gate represented by a BDD:

Figure 2-2: OR Gate
represented by a BDD

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

Table 2-1: OR gate
truth table

2-3 Hardware

2-3-1 myRIO

MyRIO (figure 2-3) is an embedded device from National Instruments with one reconfigurable
I/O device. It includes a dual-core ARM Cortex-A9 processor and a Xilinx FPGA along with
other extra functionality.

Antonio J. Rueda Master of Science Thesis

2-3 Hardware 7

Figure 2-3: myRIO-1900

In this project, we will make use of 2 myRIOs:

1. One myRIO to run the final controller.

2. Another to simulate a plant since we don’t have a physical plant to test the controller.

The next figure (figure 2-4) shows the basic interconnection that we will be using in this
project:

Figure 2-4: Interconnection of the 2 myRIO boards

As we can see, we will implement the BDD of the controller in the FPGA of the left board
and its CPU will be used in particular cases (refer to section 5-3-2 for more details about the

Master of Science Thesis Antonio J. Rueda

8 Preliminaries

use of the CPU). Finally, the right hand side board will only use its CPU to simulate the
plant of the system.

We need to mention that the final controller will run in the FPGA since the clock frequency
is at a much higher rate (up to 80MHz) than the CPU, in which we will simulate the plant
of a system.

2-4 Software

2-4-1 Scots v0.2

Scots [3] is an open source tool used to synthesize symbolic controllers. Scots is similar to
Pessoa [2] and in order to create the controller, they represent the atomic propositions and
the transition relations using boolean functions. Finally, Scots uses the Colorado University
Decision Diagram (CUDD) library [13] to store and work with the boolean functions. [3]
defines a simple system as a triple S = (X,U, F), where the state alphabet X and input
alphabet U are non-empty sets and the transition function F : X × U ⇒ X is a set-valued
map [14]. Then, given a simple system S1 = (X1, U1, F1), let X∞1 = ∪T∈N∪{∞}X

[0;T [
1 .

Scots has the next possibilities when defining the abstract specifications associated with
I1, Z1 ⊆ X1:

• Reachability: Σ1 =
{
x1 ∈ X∞1 |x1(0) ∈ I1 =⇒ ∃t∈[0;T [: x1(t) ∈ Z1

}
Then, trajectories will enter the target set Z in finite time and will remain within Z.

• Invariance: Σ1 =
{
x1 ∈ X [0;∞[

1 |x1(0) ∈ I1 =⇒ ∀t∈[0;∞[: x1(t) ∈ Z1
}

Then, trajectories starting in the target set Z will remain in Z.

Finally, Scots will store the controller in a BDD containing all possible pairs of state-input.
Then, the input of the BDD will be a combination of state-input and the output of the BDD
will be a boolean variable that will tell us if that combination is valid. A valid combination
of state-input means that we are meeting the specifications defined when the controller was
synthesized.

Example

Antonio J. Rueda Master of Science Thesis

2-4 Software 9

Figure 2-5: BDD of a simple controller synthesized by Scots

If we observe the previous figure (figure 2-5), the only possible combinations of state-input
(x1, x2, u) needed to meet the controller specifications will be (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0)
and (1, 1, 1).

2-4-2 SCOTSv2.0 BDD controllers determinizer

The output of Scots will be a non-determinized controller. This means that for every particular
state of a system, there will be more than one possible valid input. We will use the tool
SCOTSv2.0 BDD controllers determinizer [15] to determinize the controller generated by
Scots. Now there will be only one possible valid input. This will also help reducing the size
of the controller.

Figure 2-6a shows a simple non-determinized controller and figure 2-6b is the output controller
using this tool:

Master of Science Thesis Antonio J. Rueda

10 Preliminaries

(a) Non-deterministic controller (b) Deterministic controller

Figure 2-6: Determinizing a controller

x1 x2 u y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1
(a) Non-
deterministic
controller

x1 x2 u y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0
(b) deter-
ministic
controller

Table 2-2: Truth tables of a non-deterministic controller and its determinization

The highlighted values are the only ones that this tool has modified, and as we can observe,
after determinizing the controller, there exists only one valid input for every different state.

2-4-3 SCOTSv2.0 BDD2Blif

Using the CUDD library, we have created a tool to modify the determinized controller and
export it as .blif file. We will take a deep look at this tool in Chapter 3.

Antonio J. Rueda Master of Science Thesis

2-5 Approach 11

2-4-4 ABC: A System for Sequential Synthesis and Verification

ABC [16] is a software used for synthesis and verification of binary sequential logic circuits.
In our case, it will be only used to convert the output of our tool (.blif) to verilog language.

2-4-5 VHDL Wrapper

Once we have the verilog file of the controller, we can synthesize the controller and generate
the netlist using Vivado Design Suite[17]. Vivado is a software tool designed by Xilinx for
syntheis and analysis of Hardware Description Language (HDL) designs. After that, it is
necessary to create a VHDL wrapper that instantiates the component. We have build a
simple text-based tool that makes this process easier. The tutorial [18] shows how to create
this VHDL wrapper manually.

2-4-6 LabVIEW

LabVIEW [19] is a block programming environment for testing, measuring and controlling
applications. One advantage of using LabVIEW is that we can program an FPGA without
having knowledge of hardware programming languages such as VHDL or Verilog.

Once we have the netlist of the controller and the VHDL wrapper, we can import these files
to LabVIEW and implement the controller. Please refer to Chapter 4 for a more detailed
explanation.

2-4-7 Simulink

Simulink [20] is a block programming environment from Mathworks for designing and testing
models. We will be using this tool to create the plant models that will run in one of the
myRIOs CPU.

2-4-8 BDD2Implement (TUM)

We introduced this tool in Chapter 1 and the downsides of this tool are:

• It uses a random determinization algorithm.

• It convert the BDD to hardware or software code by brute force, outputting a large file.

Later on, we will test this tool in order to compare the results with ours.

2-5 Approach

Now that we have all the necessary tools, we can follow the next steps to obtain and run a
controller on a myRio FPGA and simulate the controlled closed-loop:

Master of Science Thesis Antonio J. Rueda

12 Preliminaries

1. Create a controller using Scots.

2. Determinize the controller using SCOTSv2.0 BDD controllers determinizer.

3. Split the controller with our tool SCOTSv2.0 BDD2Blif.

4. Convert the .blif files to verilog using ABC.

5. Generate the VHDL wrapper and synthesize the controller with Vivado.

6. Import the generated files of the controller to LabVIEW and flash it into the FPGA.

7. Simulate the plant in another myRIO.

8. Run the closed loop-simulation.

Antonio J. Rueda Master of Science Thesis

Chapter 3

Working with BDDs

This chapter explain the process behind the SCOTSv2.0 BDD2Blif tool. Since the output
from Scots and also from SCOTSv2.0 BDD controllers determinizer is a BDD containing the
valid combination of states-inputs, we need to transform this BDD to be able to input one
particular state, and obtain as output the corresponding valid input.

3-1 First Approach: Transforming the BDD using Existential Ab-
stractions

3-1-1 Intuitive implementation

We will use the next notation to express that a BDD contains a combination of states and
inputs: BDD(x, u).

Then we can split a BDD of a controller in 2 new BDDs according to the value of the input:

∃u : BDD(x, 0)
∃u : BDD(x, 1)

Example

We will use the next BDD controller as an example:

Master of Science Thesis Antonio J. Rueda

14 Working with BDDs

x1 x2 u y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 3-1: Truth table of a determinized controller

Then, using the CUDD library, we can apply the existential abstractions and we obtain:

x1 x2 y
0 0 0
0 1 0
1 0 1
1 1 0
(a) ∃u :
BDD(x, 0)

x1 x2 y
0 0 1
0 1 1
1 0 0
1 1 1
(b) ∃u :
BDD(x, 1)

Table 3-2: BDDs truth tables after splitting the original controller

Now it would be possible to flash both BDDs into the FPGA, and if the first one (BDD(x, 0))
evaluates to 1 we know that the plant needs 0 as an input or 1 if the second one (BDD(x, 1))
evaluates to 1. Since the original BDD was already determinized, both BDDs will not output
1 for the same state.

But we have considered only the case in which we have an input of only 1 bit. In case of
having an input of more bits, the intuitive way of doing the same will be to existentially
abstract every bit of the input. For example, if we have a controller with an input of 2 bits
(BDD(x, u1, u2)), we will obtain 4 different BDDs:

∃u1 : BDD(x, 0, u2)
∃u1 : BDD(x, 1, u2)
∃u2 : BDD(x, u1, 0)
∃u2 : BDD(x, u1, 1)

And after that, apply another existential abstraction to remove the input bit that we are not
considering:

Antonio J. Rueda Master of Science Thesis

3-1 First Approach: Transforming the BDD using Existential Abstractions 15

∃u1 : BDD(x, 0)
∃u1 : BDD(x, 1)
∃u2 : BDD(x, 0)
∃u2 : BDD(x, 1)

Example

Now we will consider the next example (table 3-3):

x u1 u2 y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 3-3: Truth table of a determinized controller with an input of 2 bits

Applying the first set of existential abstractions we will obtain:

x u2 y
0 0 0
0 1 1
1 0 0
1 1 0
(a)
∃u1 :
BDD(x, 0, u2)

x u2 y
0 0 0
0 1 0
1 0 1
1 1 0
(b)
∃u1 :
BDD(x, 1, u2)

x u1 y
0 0 0
0 1 0
1 0 0
1 1 1
(c)
∃u2 :
BDD(x, u1, 0)

x u1 y
0 0 1
0 1 0
1 0 0
1 1 0
(d)
∃u2 :
BDD(x, u1, 1)

Table 3-4: BDD truth tables after applying the first set

And applying the second set:

Master of Science Thesis Antonio J. Rueda

16 Working with BDDs

x y
0 1
1 0
(a)
∃u1 :
BDD(x, 0)

x y
0 0
1 1
(b)
∃u1 :
BDD(x, 1)

x y
0 0
1 1
(c)
∃u2 :
BDD(x, 0)

x y
0 1
1 0
(d)
∃u2 :
BDD(x, 1)

Table 3-5: BDD truth tables after applying the second set

Now, observing table 3-5, we know the following:

• If table (a) evaluates to 1, u1 will be 0 or if table (b) evaluates to 1, u1 will be 1.

• If table (c) evaluates to 1, u2 will be 0 or if table (d) evaluates to 1, u2 will be 1.

3-1-2 A more efficient implementation

Now we could flash the previous 4 BDDs directly into the FPGA but instead of doing this, a
better implementation was followed. If we look at the BDDs from tables (b) and (d) of table
3-5, we observe the following:

• If the output from (b) or (d) is y = 1, we know that u1 = 1 or u2 = 1 respectively.

• If the output from (b) or (d) is y = 0 we cannot conclude the value of the input. We
need more information to determine this value.

In order to solve this problem, we can obtain a BDD containing the domain of the controller:
BDD(x). This BDD will tell us if for a particular state, there are valid inputs. Figure 3-1
shows the domain, safe set and reachable set of a controller for a dcdc boost converter (This
example will be introduced later in section 5-1).

Antonio J. Rueda Master of Science Thesis

3-1 First Approach: Transforming the BDD using Existential Abstractions 17

Figure 3-1: Domain, reachable set and safe set of a controller for a dcdc boost converter

From the figure we see that if we are inside the grey dotted area we will have BDD(x) = 1
(there are valid control inputs) and BDD(x) = 0 if we are outside.

Then, observing again table 3-5, we have to check:

• Check the BDD of the domain to know if there are valid inputs.

• If the output from (b) or (d) is y = 1, we know that u1 = 1 or u2 = 1 respectively.

• If the output from (b) or (d) is y = 0 and we know that there are valid inputs, the value
of the input will be u1 = 0 or u2 = 0 respectively, since it is not 1 and there are no
more possible values of the input.

Now we see that if we have valid inputs, the BDDs that we have to flash into the FPGA are
(b) and (d), in which we can assume that y = u1 or y = u2:

x u1

0 0
1 1
(a)
BDD(x, 1)

x u2

0 1
1 0
(b)
BDD(x, 1)

Table 3-6: BDD truth tables ready to be flashed

In this approach, instead of having 4 different BDDs, we will have only 3, reducing the size
of the final file. Once this process has been finished, we can export the resulting BDDs into
a .blif file.

Master of Science Thesis Antonio J. Rueda

18 Working with BDDs

Figure 3-2 shows the number of BDDs needed for the first implementation and for the second
one:

Figure 3-2: Comparison between the first intuitive implementation and the more efficient one

3-2 Second Approach: Exporting directly the BDD

The second approach was to flash the whole BDD of the controller (BDD(x, u)) in the FPGA
and look for the correct input running a loop (from 0 to 2n−1 where n is the total of number
of bits of the input) to evaluate all the possibilities. In this case, no modifications are needed.
Therefore, after knowing in which state is the system, we will need to test all possible input
values until we obtain BDD(x, u) = 1 and pass that value to the plant.

This loop can be run:

• In the FPGA side alongside the controller:

Antonio J. Rueda Master of Science Thesis

3-2 Second Approach: Exporting directly the BDD 19

Figure 3-3: Running a loop in the FPGA side to obtain the input value

• In the CPU, sending every test case to the controller in the FPGA to check if that
control input is valid:

Figure 3-4: Running a loop in the CPU side to obtain the input value

Master of Science Thesis Antonio J. Rueda

20 Working with BDDs

Antonio J. Rueda Master of Science Thesis

Chapter 4

Flashing the files with LabVIEW FPGA

This chapter explains the procedure to flash the previous controller into the FPGA.

4-1 Example of controller

The next figure (figure 4-1) shows a controller implemented in LabVIEW. After reading the
analog values of the states, they need to be transformed to a boolean array in order to be
evaluated by the BDD of the controller.

Figure 4-1: Example of controller in LabVIEW

In the right part of the figure, we see the BDD implemented as a CLIP (Component-Level
Intellectual Property) module. This module allows us to import VHDL code of the controller

Master of Science Thesis Antonio J. Rueda

22 Flashing the files with LabVIEW FPGA

from Vivado to LabVIEW [21]. At the bottom part of the figure, we can also see the outputs
of the BDD:

• po0: This will be the controller input that will be sent to the plant.

• po1: This output will tell us if the read current state is included in the domain of the
controller.

In the controller showed in figure 4-1, the output po1 is only notifying the user, telling him
that the system is inside the domain of the controller or it is not, but we could for example
implement a safety routine to shut-down the system, log the error, etc.

4-2 Algorithm used to transform from analog to boolean

4-2-1 From state to grid point

Scots uses an algorithm to transform the real values of the states to the grid points in which
the domain of the controller is defined. In scots, when the uniform grid is created, we have
the following parameters:

• m_first : It defines the lower left bound of the grid.

• eta : It defines the distance between grid points. So if we have a lower value of eta,
we will have more divisions of the grid. This can change drastically the size of the
controller.

Then if we have an example of a system with 2 states as in the figure 4-1 we will have to
perform in LabVIEW:

BDD_input = x1 −m_first_x1
etax

+
(
x2 −m_first_x2

etax
<< 8

)

Where << is the bitwise left shift operator. The number of shifted positions will depend on
the eta parameter. This value can be obtained taking a look at the .scs file generated by
Scots. In this file, we can see how many bits are dedicated to the states and to the inputs.
Finally, we will have to convert the obtained value to boolean in order to evaluate the BDD.

If we had for example a third state, the real value will have to be shifted 16 positions (8 + 8).
In the previous example, the control input has only 1 bit and it does not need any conversion.

4-2-2 From grid point to control input

In case of having a control input composed of more than 1 bit, we will need to do the following
conversion from the BDD output to the real value:

Antonio J. Rueda Master of Science Thesis

4-2 Algorithm used to transform from analog to boolean 23

Figure 4-2: Conversion from the output of the BDD to real value

In the figure 4-2 we have a controller that will output 2 control inputs of 3 bits each one.
Then we will have to do the following:

u1 = u1,BDD × etau +m_first_u1

u2 = u2,BDD × etau +m_first_u2

(4-1)

Where u1,BDD and u2,BDD are the BDD outputs.

4-2-3 Working with analog inputs and outputs

From figures 4-1 and 4-2 we see that we have 2 more additional parameters:

• Offset

• Scale

These parameters where used to transform the raw data value of a state or control input to
voltage in order to send the value through the outputs or read the value from the inputs of
the myRIO. The formulas to work with analog inputs and outputs can be obtained in the
User guide and specifications of NI-myRIO-1900 [22].

Master of Science Thesis Antonio J. Rueda

24 Flashing the files with LabVIEW FPGA

Antonio J. Rueda Master of Science Thesis

Chapter 5

Simulation environment

In this chapter we will explain how to simulate a plant using LabVIEW since we don’t have
a real system to test and validate the controllers.

5-1 Creating the model

In order to run a real-time simulation, we will create a model of a plant using Simulink and
then we will run that model in one myRIO. Using the MATLAB Function block that includes
the equations of the dynamics of the system in Simulink, we can create the model of the plant
that we are trying to control:

Figure 5-1: Example of plant in LabVIEW

Master of Science Thesis Antonio J. Rueda

26 Simulation environment

The equations of the dynamics of the system are the same equations defined in the Scots
examples when we create the controller in the early stage of the project. For the next example
(figure 5-2), we have a boost DC-DC converter (obtained from [23]). It is an example of a
switched system with two modes and we have:

x(t) =
[
iL(t) vc(t)

]T
• 2 states: Current through the inductor iL(t) and voltage across the capacitor vc(t).

• 1 control input: Closed or open transistor.

Figure 5-2: DC-DC converter

The dynamics describing the two modes are of the form ẋ(t) = Apx(t) + b (p = 1, 2) With
the next matrices:

A1 =

−
rl

xl
0

0 − 1
xc

1
r0 + rc

, A2 =

−
rl

xl

(
rl + r0rc

r0 + rc

)
− 1
xl

r0
r0 + rc1

xc

r0
r0 + rc

− 1
xc

1
r0 + rc

, b =

vs

xl
0

Then, they can be implemented in a Matlab script as follows:
1 function [x1dot , x2dot] = Boost_DC_converter (x1 , x2 , u)
2
3 x = [x1 ; x2] ;
4 r0=1.0;
5 vs = 1.0 ;
6 rl = 0.05 ;
7 rc = rl / 10 ;
8 xl = 3.0 ;
9 xc = 70.0 ;

10
11 if (u==1)
12 A = [−rl / xl 0 ; 0 (−1 / xc) ∗ (1 / (r0 + rc))] ;
13 else
14 A = [(−1 / xl) ∗ (rl + ((r0 ∗ rc) / (r0 + rc))) ((−1 / xl) ∗ (r0 /

(r0 + rc))) / 5 ;
15 5 ∗ (r0 / (r0 + rc)) ∗ (1 / xc) (−1 / xc) ∗ (1 / (r0 + rc))] ;

Antonio J. Rueda Master of Science Thesis

5-2 Calling the model from LabVIEW 27

16 end
17 b = [(vs / xl) ; 0] ;
18
19 dxdt= A∗x+b ;
20 x1dot = dxdt (1) ;
21 x2dot = dxdt (2) ;
22 end

After building the model, we will obtain the .so file of the plant.

5-2 Calling the model from LabVIEW

Now that we have the model, we will need to save it into a second myRIO and call it from
LabVIEW. The next figure shows how to call the model from LabVIEW:

Figure 5-3: Calling a simulink model from LabVIEW

From the previous figure, we can observe the following:

• We are calling the .so file of the plant.

• The control input u is passed to the plant.

• The plant will output the states x1 and x2.

5-3 Interconnecting the 2 myRIOs

Now that we know how to create and burn a controller in a myRIO, and how to simulate a
plant in another myRIO, we have the next possibilities:

Master of Science Thesis Antonio J. Rueda

28 Simulation environment

5-3-1 First Approach: With a transformed BDD

If we obtain the BDD of a controller according to section 3-1 we will be only using:

• One FPGA in one myRIO to run the controller.

• One CPU in another myRIO to simulate the plant in real-time.

Figure 5-4: Diagram of the interconnection of the 2 myRIOs

5-3-2 Second approach: Running a loop

If the loop is run in the FPGA, the connection will be similar to the one in figure 5-4. But if
the loop is run in the CPU, we will have the following:

Figure 5-5: New Diagram of the interconnection of the 2 myRIOs

Antonio J. Rueda Master of Science Thesis

Chapter 6

Results

In this chapter, some of the examples provided by Scots have been simulated and tested using
2 myRIOs.

6-1 Examples

We have tested and validated different examples to check the scalability and feasibility of the
project. The next examples are ordered according to the numbers of nodes that the BDD
created from Scots contains:

Example Number of nodes
dcdc 1585

vehicle 7987

aircraft 662173

Table 6-1: Nodes of the BDDs for different examples.

6-1-1 First Example: DC-DC converter

This example was introduced in section 5-1 and we can now simulate in real-time the controlled
closed loop interconnecting 2 myRIOs. The next figure shows how both states are able to go
from an initial state to the reachability region defined by Scots:

Master of Science Thesis Antonio J. Rueda

30 Results

Figure 6-1: States of the DC-DC boost converter running the real-time simulation

Scots provides a Matlab script to simulate the controlled closed-loop. We can observe that
the real trajectories of the states are very similar to the ones simulated in Matlab:

Figure 6-2: States of the DC-DC boost converter simulated using Scots in Matlab

6-1-2 Second Example: Vehicle in a maze

The next example from Scots is a vehicle in a maze path planning problem. This example,
obtained from [12], is an autonomous vehicle whose dynamics are of the form ẋ ∈ f(x, u) with
f : R3 × U −→ R3, U ⊆ R2 and W ⊆ R3.

Antonio J. Rueda Master of Science Thesis

6-1 Examples 31

Figure 6-3: Vehicle model

We have now:

• 3 states: Position in the 2-dimensional plane and orientation.

• 2 control inputs: Velocity and the rate of steering angle δ.

And the dynamics are given by:

f(x, (u1, u2)) =

u1 cos(α+ x3) cos(α)−1

u1 sin(α+ x3) cos(α)−1

u1 tan(u2)

With U = [−1, 1]× [−1, 1] and α = arctan(tan(u2)/2).

The controller now will steer the vehicle through the maze. The goal is to reach the green
box. After simulating in real-time the controlled closed loop, we obtain the next figure:

Figure 6-4: States x1 and x2 of the vehicle running the real-time simulation

And again, we can compare the real results with the simulated using Scots in Matlab:

Master of Science Thesis Antonio J. Rueda

32 Results

Figure 6-5: States x1 and x2 of the vehicle simulated using Scots in Matlab

6-1-3 Third Example: Aircraft

This last example was not simulated because the generated controller exceeded the physical
limits of the FPGA, but we measured the utilization and the timings in order to compare
them with other tools. The results are summarized later in this chapter. Again, this example
description can be found in [12].

6-2 Comparison

In this section, we will call:

• split: to the implementation followed by the first approach (section 3-1-2).

• FPGA: to the implementation followed by the second approach (section 3-2) with the
loop running in the FPGA alongside the controller BDD.

• CPU : to the implementation followed by the second approach (section 3-2) with the
loop running in the CPU.

• TUM : to the implementation followed by the BDD2Implement tool from TUM.

The next table shows the utilization of LookUp Tables (LUTs) needed by the FPGA after
synthesizing the controller with Vivado and after flashing it with LabVIEW into the FPGA:

Antonio J. Rueda Master of Science Thesis

6-2 Comparison 33

Example Vivado Usage LabVIEW Usage
dcdc_split 0.31% 51.50%
dcdc_FPGA 0.54% 52.00%
dcdc_CPU 0.54% 51.70%
dcdc_TUM 1.73% 52.70%

vehicle_split 17.45% 83.10%
vehicle_FPGA 20.49% 84.80%
vehicle_CPU 20.49% 84.70%
vehicle_TUM 65.69% 130.90%

aircraft_split 227.98% not tested
aircraft_FPGA 377.53% not tested
aircraft_CPU 377.53% not tested
aircraft_TUM timeout not tested

Table 6-2: FPGA LUTs utilization for different examples

It is possible to observe from Table 6-2:

• For each example, the percentage of LUTs used over the total is the same if the loop is
run in the FPGA or in the CPU. This is because the synthesized controller is the same
in both cases.

• When coding the controller and flashing it into the FPGA using LabVIEW, it needs
less resources if the loop through the inputs is done in the CPU. This is expected since
part of the code is running in the CPU instead of in the FPGA. Since there is not
a significant difference in FPGA resource utilization, we could run everything in the
FPGA, removing that way the inter-process communication CPU-FPGA, making the
controller more robust.

• The aircraft example was not tested in LabVIEW since the Vivado Usage was already
exceeding the maximum number of resources of the FPGA. Also, Vivado was not able
to synthesize the controller generated by the TUM tool due to the large size of the input
file.

• Comparing our tool with the TUM tool, the split controller yields the best result.

The next table shows the required time for each of the stages of the project:

Master of Science Thesis Antonio J. Rueda

34 Results

Example Determinization to Blif to Verilog Total
dcdc_split 0.653s 0.001s 0.025s 0.679s
dcdc_FPGA/CPU 0.653s 0.001s 0.025s 0.679s
dcdc_TUM 0.245s - 0.004s 0.249s

vehicle_split 0.998s 0.010s 0.044s 1.052s
vehicle_FPGA/CPU 0.998s 0.002s 0.032s 1.032s
vehicle_TUM 0.459s - 0.099s 0.558s

aircraft_split 104.434s 0.159s 0.274s 104.867s
aircraft_FPGA/CPU 104.434s 0.032s 0.245s 104.711s
aircraft_TUM 55.210s - 5.932s 61.142s

Table 6-3: Timing Comparison

From the previous table, we observe the following:

• The time for determinizing the BDD is the same for the FPGA/CPU and split approach
since the controller is the same.

• The tool from TUM is faster determinizing the controller. This can be explained since
that tool is using a random determinization method while the tool from [7] is using a lo-
cal determinization method. In this method, the BDD is compressed and determinized.

• Converting the whole BDD (FPGA/CPU) to blif and to verilog is faster than con-
verting the split BDD.

• With smaller controllers, when generating the Verilog file, the tool from TUM is faster
but the ABC tool yields better results for bigger controllers.

After generating the files, we can also measure the time that Vivado takes in synthesizing the
controllers:

Example Synthesis time (hh:mm:ss)
dcdc_split 00 : 00 : 39
dcdc_FPGA/CPU 00 : 00 : 37
dcdc_TUM 00 : 00 : 50

vehicle_split 00 : 02 : 06
vehicle_FPGA/CPU 00 : 02 : 08
vehicle_TUM 00 : 04 : 48

aircraft_split 02 : 31 : 02
aircraft_FPGA/CPU 01 : 24 : 20
aircraft_TUM timeout

Table 6-4: Synthesis Time for different examples from Vivado

Antonio J. Rueda Master of Science Thesis

6-2 Comparison 35

From table 6-4 we can see that the synthesis of a FPGA/CPU controller is faster than for the
split controller for bigger controllers. We also see that our approaches outperform the one
followed by the TUM tool.

We can conclude that the tool from TUM is faster generating the files and con-
verting the controller in comparison to the tools used in this project. However,
the final utilization in our case and hence the synthesis time is smaller.

Master of Science Thesis Antonio J. Rueda

36 Results

Antonio J. Rueda Master of Science Thesis

Chapter 7

Conclusions and Future Work

In this chapter, the conclusions and recommendations for future work are described.

7-1 Conclusions

In this thesis, we have created a tool that takes any symbolic controller stored in a BDD
generated by Scots and outpust the necessary files to be flashed into an FPGA. In chapter
5 we have described a method to run the output of the tool using an FPGA from National
Instruments: myRIO FPGA. In this method, the inputs and outputs of the FPGA are con-
nected to the BDD of the controller using LabVIEW. In order to extrapolate this method to
a generic FPGA, we will have to configure the inputs and outputs of the generic FPGA and
implement the algorithm used to transform from analog value to boolean in VHDL. This new
process will depend of the FPGA used.

If we compare our tool with the ones that are being currently used, ours takes more time
generating the FPGA files but it is more efficient, it consumes less resources of the FPGA.
This makes possible the use of higher size symbolic controllers, allowing the closed-loop system
to fulfill faster and more accurate the required specifications.

For the testing and simulation of the controlled closed-loop we have used a simulated plant
since we didn’t have a real system to work with. The plant was simulated on a myRIO board,
it was wired to another myRIO running the controller and we have seen that the controller
was able to drive the system to the required specifications. Once we have a physical plant,
we can replace the myRIO board running the simulated system and the behavior should be
the same, but we may want to test this further considering additional effects as noise.

7-2 Future Work

In order to continue with this project, there are some next steps that couldn’t be done due
to time limitations:

Master of Science Thesis Antonio J. Rueda

38 Conclusions and Future Work

• Create larger controllers and test them in a RIO device. Since the board used in this
project (myRIO - 1900) is for educational purposes, the number of resources of its FPGA
is limited. But NI provides a variety of RIO devices with larger capacity [24]. Using
one more powerful board will allow us to test larger controllers. To generate bigger
controller the user can simply play with the eta parameter in Scots.

• Build a Graphical User Interface (GUI) in order to make the process more user-friendly
and more intuitive.

• Integrate the graphs generated by Scots in the GUI. This will allow us to check the
domains of the controller as well as the simulated closed-loop created by Scots.

• Implement in VHDL the algorithm to transform from analog(read states) to boolean(input
of the BDD). This way, the user will only need to configure the I/O interface if another
FPGA is used rather than a myRIO board.

• Test the controller using a real plant instead of simulating it.

Antonio J. Rueda Master of Science Thesis

Bibliography

[1] P. Tabuada. Verification and control of hybrid systems: A symbolic approach. Springer
Publishing Company, Incorporated, 1st ed, 2009.

[2] M. Jr. Mazo, A. Davitian, and P. Tabuada. Pessoa: A tool for embedded controller
synthesis. Computer Aided Verification. Springer, page 566–569, 2010.

[3] M. Rungger and M. Zamani. Scots: A tool for the synthesis of symbolic controllers.
Proceedings of the 19th International Conference on Hybrid Systems: Computation and
Control, HSCC, pages 99–104, 2016.

[4] Sebti Mouelhi, Antoine Girard, and Gregor Gössler. Cosyma: A tool for controller syn-
thesis using multi-scale abstractions. In Proceedings of the 16th International Conference
on Hybrid Systems: Computation and Control, HSCC ’13, pages 83–88. New York, NY,
USA, 2013.

[5] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. Ltlmop: Experimenting
with language, temporal logic and robot control. In IEEE/RSJ Int’l. Conf. on Intelligent
Robots and Systems, pages 1988–1993. Taipei, Taiwan, October 2010.

[6] Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M. Mur-
ray. Tulip: A software toolbox for receding horizon temporal logic planning. In Proceed-
ings of the 14th International Conference on Hybrid Systems: Computation and Control,
HSCC ’11,, pages 313–314. New York, NY, USA, 2011.

[7] Ivan S. Zapreev, Cees Verdier, Manuel Mazo Jr. Optimal symbolic controllers deter-
minization for bdd storage. Center for Systems and Control, Technical University of
Delft, The Netherlands, March 2018.

[8] Antoine Girard. Low-complexity switching controllers for safety using symbolic models.
IFAC Proceedings Volumes, 45(9):82–87, 2012.

[9] Khaled Mahmoud, Technische Universität München. Bdd2implement - a code generation
tool for bdd-based symbolic controllers. https://gitlab.lrz.de/hcs/BDD2Implement,
January 2018.

Master of Science Thesis Antonio J. Rueda

https://gitlab.lrz.de/hcs/BDD2Implement

40 Bibliography

[10] Mahmoud Khaled, Eric S. Kim, Murat Arcak, and Majid Zamani. Synthesis of symbolic
controllers: A parallelized and sparsity-aware approach. In Tomáš Vojnar and Lijun
Zhang, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 265–281, Cham, 2019. Springer International Publishing.

[11] P. Tabuada. On the synthesis of correct-by-design embedded control software, April
2009.

[12] Gunther Reissig, Alexander Weber, and Matthias Rungger. Feedback Refinement Rela-
tions for the Synthesis of Symbolic Controllers. arXiv e-prints, page arXiv:1503.03715,
Mar 2015.

[13] F. Somenzi. Cudd: Cu decision diagram package. University of Colorado at Boulder,
1998.

[14] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. 3rd corr printing 2009.
Springer, 317, 1998.

[15] Dr. Ivan S. Zapreev. Scotsv2.0 bdd controllers determinizer. https://github.com/
ivan-zapreev/SCOTS2C, May 2018.

[16] Berkeley Verification and Synthesis Research Center. Abc: A system for sequential syn-
thesis and verification. https://people.eecs.berkeley.edu/~alanmi/abc/abc.htm,
July 2005.

[17] Xilinx. Vivado design suite. https://www.xilinx.com/products/design-tools/
vivado.html.

[18] National Instruments. Using xilinx vivado design suite to prepare verilog modules for
integration into labview fpga. http://www.ni.com/tutorial/54793/en/, May 2018.

[19] National Instruments. Labview. http://www.ni.com/nl-nl/shop/labview.html.

[20] Mathworks. Simulink. https://www.mathworks.com/products/simulink.html.

[21] National Instruments. Importing external ip into labview fpga. http://www.ni.com/
tutorial/7444/en/, October 2018.

[22] National Instruments. User guide and specifications, ni myrio-1900. http://www.ni.
com/pdf/manuals/376047c.pdf, May 2016.

[23] Antoine Girard, Giordano Pola, and Paulo Tabuada. Approximately bisimilar symbolic
models for incrementally stable switched systems. pages 116–126. IEEE, 2009.

[24] National Instruments. Slices on an fpga chip. http://www.ni.com/
product-documentation/54503/en/, Nov 2018.

Antonio J. Rueda Master of Science Thesis

https://github.com/ivan-zapreev/SCOTS2C
https://github.com/ivan-zapreev/SCOTS2C
https://people.eecs.berkeley.edu/~alanmi/abc/abc.htm
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://www.ni.com/tutorial/54793/en/
http://www.ni.com/nl-nl/shop/labview.html
https://www.mathworks.com/products/simulink.html
http://www.ni.com/tutorial/7444/en/
http://www.ni.com/tutorial/7444/en/
http://www.ni.com/pdf/manuals/376047c.pdf
http://www.ni.com/pdf/manuals/376047c.pdf
http://www.ni.com/product-documentation/54503/en/
http://www.ni.com/product-documentation/54503/en/

Glossary

List of Acronyms

BDD Binary Decision Diagram

GA Global Algorithm

SR Symbolic Regression

LA Local Algorithm

FPGA Field Programmable Gate Array

DSP Digital Signal Processor

TUM Technische Universität München

CUDD Colorado University Decision Diagram

HDL Hardware Description Language

LUTs LookUp Tables

GUI Graphical User Interface

Master of Science Thesis Antonio J. Rueda

42 Glossary

Antonio J. Rueda Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Background
	Goals
	Outline

	Preliminaries
	Symbolic Controllers
	Binary Decision Diagrams
	Hardware
	myRIO

	Software
	Scots v0.2
	SCOTSv2.0 BDD controllers determinizer
	SCOTSv2.0 BDD2Blif
	ABC: A System for Sequential Synthesis and Verification
	VHDL Wrapper
	LabVIEW
	Simulink
	BDD2Implement (TUM)

	Approach

	Working with BDDs
	First Approach: Transforming the BDD using Existential Abstractions
	Intuitive implementation
	A more efficient implementation

	Second Approach: Exporting directly the BDD

	Flashing the files with LabVIEW FPGA
	Example of controller
	Algorithm used to transform from analog to boolean
	From state to grid point
	From grid point to control input
	Working with analog inputs and outputs

	Simulation environment
	Creating the model
	Calling the model from LabVIEW
	Interconnecting the 2 myRIOs
	First Approach: With a transformed BDD
	Second approach: Running a loop

	Results
	Examples
	First Example: DC-DC converter
	Second Example: Vehicle in a maze
	Third Example: Aircraft

	Comparison

	Conclusions and Future Work
	Conclusions
	Future Work

	Back Matter
	Bibliography
	Glossary
	List of Acronyms

