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Abstract
We give a new proof of the boundedness of bilinear Schur multipliers of second order
divided difference functions, as obtained earlier by Potapov, Skripka and Sukochev
in their proof of Koplienko’s conjecture on the existence of higher order spectral shift
functions. Our proof is based on recentmethods involving bilinear transference and the
Hörmander–Mikhlin–Schur multiplier theorem. Our approach provides a significant
sharpening of the known asymptotic bounds of bilinear Schur multipliers of second
order divided difference functions. Furthermore, we give a new lower bound of these
bilinear Schurmultipliers, giving again a fundamental improvement on the best known
bounds obtained by Coine, Le Merdy, Potapov, Sukochev and Tomskova. More pre-
cisely, we prove that for f ∈ C2(R) and 1 < p, p1, p2 < ∞ with 1

p = 1
p1

+ 1
p2

we
have

‖M f [2] : Sp1 × Sp2 → Sp‖ � ‖ f ′′‖∞D(p, p1, p2),

where the constant D(p, p1, p2) is specified in Theorem 7.1 and D(p, 2p, 2p) ≈
p4 p∗ with p∗ the Hölder conjugate of p. We further show that for f (λ) = λ|λ|,
λ ∈ R, for every 1 < p < ∞ we have

p2 p∗ � ‖M f [2] : S2p × S2p → Sp‖.

Here f [2] is the second order divided difference function of f with M f [2] the associated
Schur multiplier. In particular it follows that our estimate D(p, 2p, 2p) is optimal for
p ↘ 1.
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1 Introduction

In [35], Potapov, Skripka and Sukochev resolved a fundamental open conjecture
by Koplienko [26]. This conjecture asserts the existence of so-called spectral shift
functions ηn,H ,V , for which the expression

Tr

(
f (H + V ) −

n−1∑
k=0

1

k!
dk

dtk
f (H + tV )

∣∣∣
t=0

)
=
∫
R

f (n)(t)ηn,H ,V (t)dt (1.1)

iswell-defined for the traceTr onboundedoperators on aHilbert space, H a self-adjoint
operator, and V in the Schatten class Sn . The existence of the spectral shift function
goes back to the fundamental work of Krein [27, 28] and Lifschitz [31], and has
ample applications in perturbation theory, mathematical physics, and noncommutative
geometry. See [18] for an overview.

The key result in [35] is [35, Remark 5.4], which is a direct consequence of themore
general result proved in [35, Theorem 5.3]. It asserts that multiple operator integrals of
higher order divided difference functions are bounded maps on Schatten classes. The
precise statement of [35, Remark 5.4] in the second order case, up to the boundedness
constant, is recorded below as Theorem A.

In the linear case, i.e. order one, the search for optimal proofs and constants for
operator integrals of divided difference functions has attracted great attention and a
considerable number of the most important problems have been solved. The existence
of first order spectral shift functions was first resolved in [36], and soon after the
proofs were optimised to yield sharp estimates for double operator integrals of divided
difference functions. In particular, the best constants were found in [2], and weak-L1

and BMO end-point estimates have been obtained in [5, 6] respectively. Furthermore,
in the range 0 < p < 1, the boundedness of double operator integrals of divided
difference functions has fully been clarified recently byMcDonald and Sukochev [32].
For p = 1, the best known result goes back to Peller [34]. Finally, a rather general
Hörmander–Mikhlin–Schur multiplier theoremwas established in the groundbreaking
work [12], yielding the main results of [2, 36] as a special case.

When we consider the higher order problem of finding good bounds on multilinear
operator integrals of divided difference functions as in [35], nothing is known about
optimal bounds or end-point estimates except for the case of the generalised absolute
valuemap [7]. Since the key results from [35] were proven, which is over a decade ago,
significant advances have beenmade in the theory of Schur multipliers. This motivates
our re-examination of this result, as we investigate here whether recent proof methods
offer new insights. Let us first state our main result and then comment on the proof
methods.

Upper bounds. We first define the second order divided difference functions. Let
f ∈ C2(R), then the first order divided difference function is defined by the difference
quotient

f [1](λ, μ) := f (λ) − f (μ)

λ − μ
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On the best constants of Schur multipliers…

for λ 
= μ, and by setting f [1](λ, λ) := f ′(λ). The second order divided difference
function is then defined by

f [2](λ0, λ1, λ2) := f [1](λi−1, λi ) − f [1](λi , λi+1)

λi−1 − λi+1

where i is chosen such that λi−1 
= λi+1, with λ3 interpreted as λ0, and otherwise
we set f [2](λ, λ, λ) := f ′′(λ). The function f [2] is well-defined and invariant under
permutation of the variables. Our main result is now stated as follows. The definition
of a Schur multiplier will be recalled in Sect. 2. Throughout the paper we use the
notation p∗ = p

p−1 for the Hölder conjugate of 1 < p < ∞.

Theorem A For every f ∈ C2(R) and for every 1 < p, p1, p2 < ∞ with 1
p = 1

p1
+ 1

p2
we have

‖M f [2] : Sp1 × Sp2 → Sp‖ � D(p, p1, p2)‖ f ′′‖∞,

where

D(p, p1, p2) = C(p, p1, p2)(βp1 + βp2) + βp1βp2(βp + βp1 + βp2),

C(p, p1, p2) = βpβp1βp2 + min(β2
p1βp, β

2
pβp1) + min(β2

p2βp, β
2
pβp2)

+min(β2
p2βp1 , β

2
p1βp2),

and βq = qq∗.

In particular, if we set p1 = p2 = 2p we get the following asymptotic behaviour
for the constant D(p, 2p, 2p). For p → ∞, D(p, 2p, 2p) is of order at most O(p4),
and of order O(p∗) when p ↘ 1. To see the latter limit, just note that (2p)∗ ↗ 2 and
in particular does not blow up. This improves on the constant obtained by the proof
method in [35] by eight orders, see Remark 7.3. Note that in Theorem B below, we
justify that our constants must be quite close to the optimal ones.

Proof methods. We now describe the novel parts of our proof. Essentially, there are
four aspects: avoidance of triangular truncations, bilinear transference, the use of the
Hörmander–Mikhlin–Schur multiplier theorem [12], and finally, in combining the
estimates we use a range of bilinear multipliers that map to S1.

To start with, our proof relies on the following decomposition of the divided
difference function into two-variable terms and three-variable Toeplitz form terms.

f [2](λ0, λ1, λ2) = λ0 − λ1

λ0 − λ2︸ ︷︷ ︸
Three-variable
Toeplitz term

f [2](λ0, λ1, λ1)︸ ︷︷ ︸
Two-variable term

+ λ1 − λ2

λ0 − λ2︸ ︷︷ ︸
Three-variable
Toeplitz term

f [2](λ1, λ1, λ2)︸ ︷︷ ︸
Two-variable term

.

(1.2)

This yields a decomposition of the corresponding Schur multiplier into linear Schur
multipliers and bilinear Toeplitz form Schurmultipliers, whichwe can treat separately.
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Crucially,we refine the decomposition (1.2) such thatwe can avoid the use of triangular
truncations. This alone improves the upper bound on the norm of the Schur multiplier
by three orders in p compared to [35].

The boundedness of a linear Toeplitz formSchurmultiplier is implied by the bound-
edness of an associated Fourier multiplier through the transference method [1, 3, 33].
This transference method was recently extended to multilinear Toeplitz form Schur
multipliers [8, 9]. We apply this to reduce our proof of the boundedness of the bilinear
Toeplitz form Schur multipliers to the boundedness of the associated bilinear Fourier
multiplier.

For this, we use that it is possible to show that this Fourier multiplier is a so-called
Calderón–Zygmund operator. Such operators are known to be well-behaved under
extension to UMD spaces in the linear case, such as for example the Schatten classes
Sp, p ∈ (1,∞), see e.g. the monograph [23]. This result was recently extended to
multilinear Calderón–Zygmund operators [15]. Unfortunately, the proofs in [15] do
not keep track of the constants, though following the proof gives an explicit constant.
We have therefore carefully outlined the proof of [15] in the appendix of our paper, as
the p-dependence of the bound when considering Schatten classes concerns our main
result. A very important observation is that we are dealing in this paper with Calderón–
Zygmund operators that are Fourier multipliers, hence the paraproducts appearing in
the multilinear dyadic representation theorem used in [15] vanish. This also yields an
improvement on the bounds of our Calderón–Zygmund operators.

For non-Toeplitz form Schur multipliers, the transference method is generally dif-
ficult to apply, if at all possible. However, a recent result on the boundedness of linear
Schurmultipliers, including those of non-Toeplitz form, gives a rather simple sufficient
condition for their boundedness. In [12], it was shown that a Hörmander–Mihlin type
condition implies boundedness of the Schur multipliers Mm, even if the symbol m is
not of Toeplitz form. In fact, a slightly weaker condition is sufficient, as mixed deriva-
tives need not be considered. It turns out that these Hörmander–Mihlin type conditions
can be used to effectively estimate the linear (non-Toeplitz) terms occurring in (1.2).

Finally we need to combine the estimates we get for the three-variable Toeplitz
terms with the ones for the two variable terms. Each of these terms yield a constant
of order O(p∗) for p ↘ 1 and so a naive combination of the estimates would yield
order O((p∗)2). Interestingly, we have found a way to combine the two estimates
so that for the asymptotics for p ↘ 1 only one of the terms is relevant, and we are
able to control the norm of our Schur multiplier with order O(p∗) again. For this we
prove that certain bilinear multipliers that appear in our decomposition actually map
boundedly to S1.

Lower bounds. In the final part of this paperwe establish a lower bound for the bilinear
Schur multiplier appearing in Theorem A. An alternative form of this problem was
already considered in [11], where it was shown that there exists a function f ∈ C2(R)

forwhich M f [2] does notmap S2×S2 to S1 boundedly.Outside of [−1, 1], this function
is given by f (s) = s|s|, and it is C2 inside [−1, 1]. Such functions are generalised
versions of the absolute value map and have played an important role in perturbation
theory ever since the results of Kato [24] and Davies [13] on Lipschitz properties of
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the absolute value map. A weak type estimate for generalised absolute value maps
was obtained in [7].

We use the generalised absolute value function to provide lower bounds of bilinear
Schur multipliers in the following way. Note that since this function is not C2, we
make sense of the second order derivative as a weak derivative.

Theorem B Let f (s) = s|s|, s ∈ R. For every 1 < p < ∞, we have

‖M f [2] : S2p × S2p → Sp‖ � p2 p∗. (1.3)

Our proof method is as follows. For Schur multipliers whose symbol is continuous
on an open subset � ⊆ R

2, restricting the symbol to any discrete subset X × Y ⊆ �

yields a new Schur multiplier whose norm is not larger than the norm of the original
Schur multiplier, see [29, Theorem 1.19] for this restriction theorem. Further, Davies
(see [13, Lemma 10]) showed that one can approximate the triangular truncation
map by restrictions of the divided difference function of the usual absolute value
map to discrete sets. Here we show that also for the second order divided difference
function of the generalised absolute value map, we can find restrictions to discrete sets
that approximate the triangular truncation map. In turn, sharp lower bounds for the
triangular truncation map are known and go back to Krein’s analysis of singular values
of the Volterra operator [19]. By combining these ideas, we are able to find good lower
bounds for our bilinear Schur multipliers of second order divided difference functions.
Remarkably, we obtain a square power p2 for the asymptotics p → ∞ and a linear
term p∗ for p ↘ 1.

TheoremBclosely relates to themain result of [11]; in fact it implies amild variation
of the main theorem of [11]. In Remark 8.5 we conceptually compare our proof to
[11] and argue that it gives a fundamentally better lower bound than what the method
from [11] would give.

Note in particular that for p ↘ 1, Theorems A and B yield that the asymptotics
of the norm of (1.3) for general f are precisely of order O(p∗). The asymptotics
for p → ∞ are narrowed down to an order between O(p2) and O(p4), and both
the lower and upper bounds we find here are fundamentally better than what was
previously known.

Structure of the paper. Section 2 contains preliminaries on Schur multipliers and
Calderón–Zygmund operators. In Sect. 3, we present a decomposition of the Schur
multiplier of second order divided difference functions into linear terms and bilinear
Toeplitz form terms. Their boundedness is shown in Sect. 4 (linear terms) and Sects. 5
and 6 (bilinear terms). In Sect. 7, we prove TheoremA, as well as an additional extrap-
olation result. Theorem B is proven in Sect. 8. In Appendix A we have incorporated
all arguments that are needed to obtain the explicit constants of Theorem 6.5; this
essentially requires a careful analysis of the proofs in [15] and references given there.
We decided to give full details here as this contributes directly to our main result.
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2 Preliminaries

We recall the following preliminaries, for which we refer to [39] for multilinear oper-
ator integrals, to [21] for harmonic analysis, and to [20] for (scalar-valued) multilinear
Calderón–Zygmund theory.

2.1 General notation

We let the natural numbersN be all integer numbers greater than or equal to 1.We shall
write A � B for saying that expression A is always smaller than B up to an absolute
constant, and A ≈ B for A � B � A. We write f = O(g) if we have | f (λ)| � g(λ)

as λ approaches some specified limit (usually λ → ∞). For f ∈ Cn(R) we let f (n)

denote the n-th order derivative. We call a function smooth if it is a C∞-function on
its domain. For a continuous function f : D → C, D ⊆ R

d , we define its support
to be the closure of the set {x ∈ D | f (x) 
= 0}. We let Cc(R) denote the continuous
functions on R with compact support. The Fourier transform of a Schwartz function
m is defined as

(Fm)(x) = (2π)−
d
2

∫
Rd

m(ξ)e−iξ ·x dξ. (2.1)

We extend F in the usual way to the space of tempered distributions.
For p ∈ (1,∞)we set p∗ = p/(p−1),which is the Hölder conjugate of p.The set

� ⊆ R
3d is the set of diagonal elements (λ, λ, λ), λ ∈ R

d ; we shall often require this
only for d = 1.Weuse notations like {λ = μ} to denote the set {(λ, μ) ∈ R

2 | λ = μ}.
The Euclidean norm of a vector ξ ∈ R

d is denoted by |ξ | = (
∑d

i= |ξi |2) 1
2 .

We call a function ϕ : R
d\{0} → C homogeneous if it is homogeneous of order 0,

i.e. if for every r > 0, ξ ∈ R
d\{0} we have ϕ(rξ) = ϕ(ξ). Moreover, ϕ is called even

if ϕ(−ξ) = ϕ(ξ) and odd if ϕ(−ξ) = −ϕ(ξ). We may define a function R
d\� → C

to be homogeneous, even, and odd with precisely the same definitions.

2.2 Function spaces

We letCb(R) denote the complex valued continuous bounded functions onR. Further-
more, we let L1

loc(R
d) denote the locally integrable functions R

d → C. The Banach

space of p-integrable functions R
d → C with norm ‖ f ‖p = (

∫
Rd | f (x)|pdx)

1
p is

denoted by L p(Rd).

2.3 Schatten classes

For p ∈ [1,∞), Sp(R
d) denotes the Schatten p-class of B(L2(Rd)), consisting

of all compact operators x ∈ B(L2(Rd)) for which ‖x‖p = Tr(|x |p)1/p is finite.
Furthermore, S∞(Rd) denotes the compact operators in B(L2(Rd)). For p = 2 we
may identify S2(Rd) linearly with L2(Rd ×R

d). This way, a kernel A ∈ L2(Rd ×R
d)
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corresponds to the operator (Aξ)(t) = ∫
Rd A(t, s)ξ(s)ds in S2(Rd). We shall mostly

be concerned with d = 1 and write Sp = Sp(R). Note that for 1 < p < ∞, the dual
space of Sp is Sp∗ , where p∗ is the Hölder conjugate of p.

2.4 Schur multipliers

For m ∈ L∞(R2d), the multiplication map Mm : A 
→ m A acts boundedly on
L2(Rd × R

d) and hence on S2(Rd). Now let us consider d = 1 and introduce multi-
linear Schur multipliers as follows. Let m ∈ L∞(Rn+1). Then by [10, Proposition 5]
there exists a unique bounded linear map

Mm : S2 × . . . × S2 → S2 : (A1, . . . , An) 
→ Mm(A1, . . . , An),

where the kernel of Mm(A1, . . . , An) is given by

Mm(A1, . . . , An)(s0, sn) =
∫
Rn−1

m(s0, . . . , sn)A1(s0, s1) . . . An(sn−1, sn)ds1

. . . dsn−1, s0, sn ∈ R.

Moreover, this map is bounded by ‖m‖∞; this follows from the Cauchy-Schwartz
inequality as observed in [10, Proposition 5]. We recall that in the linear case the
following elementary (in)equalities for 1 < p < ∞ hold

‖Mm : Sp → Sp‖ = ‖Mm : Sp∗ → Sp∗‖,
‖Mm : S2 → S2‖ ≤ ‖Mm : Sp → Sp‖,
‖Mm : S2 → S2‖ = ‖m‖L∞(R2). (2.2)

where the first equality follows from duality, the second from complex interpolation
between p and p∗, and the last from the fact that we identified S2 with L2(R × R) on
which m acts as a multiplication operator.

We may similarly define Schur multipliers on discrete sets as follows. Let X be
any set and let 
2(X) be the Hilbert space of square summable functions on X . For
p ∈ [1,∞), let Sp(


2(X)) be the Schatten Sp-space of B(
2(X)) consisting of all
operators x ∈ B(
2(X)) for which the norm ‖x‖p := Tr(|x |p)1/p is finite. For x ∈ X ,

let px be the orthogonal projection onto the span of δx ∈ 
2(X), where δx (x) = 1
and δx (y) = 0 for y 
= x . Let m ∈ 
∞(X × X × X) and consider the bilinear Schur
multiplier

Mm : S2(

2(X)) × S2(


2(X)) → S2(

2(X))

(x, y) 
→
∑

λ1,λ2,λ3∈X

m(λ1, λ2, λ3)pλ1xpλ2 ypλ3 . (2.3)

As before, this map is bounded by ‖m‖∞, see [10, Proposition 5].
For sets F, G consider the disjoint union X = F ∪ G and let pF and pG

be the orthogonal projections of 
2(X) onto 
2(F) and 
2(G) respectively. Define
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Sp(

2(F), 
2(G)) = pF Sp(


2(X), 
2(X))pG . Then by (2.3) we see that Mm maps
S2(
2(F), 
2(G)) × S2(
2(G), 
2(F)) to S2(
2(F), 
2(F)).

In either the continuous or discrete case, let 1 ≤ p, p1, . . . , pn < ∞ with p−1 =∑n
i=1 p−1

i . We may consider the restriction of Mm where its i-th inputs are restricted
to the space S2∩Spi . If this restriction takes values in Sp and has a boundedmultilinear
extension to Sp1 × . . . × Spn , then this extension, also denoted by Mm, is called an
(p1, . . . , pn)-Schur multiplier. In the discrete case, our terminology is the same but
with Sr replaced by Sr (


2(X)).

2.5 Divided difference functions

Definition 2.1 (Divided difference functions) Let f ∈ Cn(R), n ∈ N0. We define the
n-th order divided difference function f [n] of f inductively as follows. The first order
divided difference function is constructed as f [0](λ0) := f (λ0). Then we set

f [n](λ0, . . . , λn)

:=
⎧⎨
⎩

f [n−1](λ0,...,λ j−1,λ j+1,...,λn )− f [n−1](λ0,...,λi−1,λi+1,...,λn )

λi −λ j
, if λi 
= λ j for some i 
= j,

f (n)(λ0)
n! , λ0 = . . . = λn ,

(2.4)

where λ0, . . . , λn ∈ R. For λ,μ ∈ R, we set

f [n](λ(k), μ(n+1−k)) := f [n](λ, . . . , λ︸ ︷︷ ︸
k times

, μ, . . . , μ︸ ︷︷ ︸
n+1−k
times

).

We shall use repeatedly that divided difference functions are invariant under per-
mutation of the variables, which can be checked by induction from its definition (or
see [14]).

Remark 2.2 For n = 2 and f (λ) = λ|λ| we define f [2] in the same way as in Defi-
nition 2.1, except that we set f [2](λ, λ, λ) = 0. Note that this alternative definition is
required, as f is not a C2-function.

Remark 2.3 We have from e.g. [35, Lemma 5.1] that

‖ f [n]‖∞ ≤ ‖ f (n)‖∞
n! . (2.5)

2.6 Fourier multipliers and Calderón–Zygmund operators

In analogy to the linear definition, we define a bilinear Fourier multiplier with symbol
m ∈ L∞(Rd × R

d) as follows. For Schwartz functions f1, f2 on R
d , we set

Tm( f1, f2)(x) := 1

(2π)d

∫
Rd×Rd

m(ξ1, ξ2)(F f1)(ξ1)(F f2)(ξ2)e
i(ξ1+ξ2)·x dξ.
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Note that as F f1 and F f2 are Schwartz, the integral is over an integrable function
and hence this formula is well-defined.

We recall the following from [15], which we need only for d = 1. Let T be an bilin-
ear operator defined by an integral kernel, i.e. there exists a function K : R

3d\� → C

such that for compactly supported bounded measurable functions f1, f2 ∈ L∞
c (Rd),

〈T ( f1, f2), f3〉 =
∫
R3d

K (x3, x1, x2)
3∏

j=1

f j (x j )dx

whenever supp fi ∩ supp f j = ∅ for some i 
= j . Such an operator T is called a
Calderón–Zygmund operator if there exists some α ∈ (0, 1] and CK > 0 such that
the following conditions hold:

• (Size condition) for all x = (x1, x2, x3) ∈ R
3d\�,

|K (x)| ≤ CK

(|x1 − x2| + |x1 − x3|)2d
,

• (Smoothness condition) for all j = 1, 2, 3,

|K (x) − K (x ′)| ≤ CK |x j − x ′
j |α

(|x1 − x2| + |x1 − x3|)2d+α

holds whenever x, x ′ ∈ R
3d\� such that xi = x ′

i for i 
= j and

2|x j − x ′
j | ≤ max(|x1 − x2|, |x1 − x3|),

• (Boundedness) for some (equivalently, for all) exponents p1, p2 ∈ (1,∞) and
q3 ∈ (1/2,∞) such that 1/p1 + 1/p2 = 1/q3,

‖T ( f1, f2)‖Lq3 (Rd ) � ‖ f1‖L p1 (Rd )‖ f2‖L p2 (Rd ).

3 Decomposing second order divided difference functions

The aim of this section is to show that the bilinear Schur multiplier of the second order
divided difference function f [2] admits a decomposition as sums of compositions of
bilinear Schur multipliers that are independent of f and of Toeplitz form as well as
linear Schur multipliers. Such decompositions appear already in [35], but we require
a different decomposition that allows us to incorporate the application of triangular
truncations into the bilinear part.

Let ε > 0 be small and fixed. Define the sets
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Fig. 1 The sets �i,ε as defined in (3.1). Note that the sets are partially overlapping

A1,ε = (−2ε, π/2 + 2ε) ∪ (π − 2ε, 3π/2 + 2ε),

A2,ε = (π/2 + ε, 3π/4 + ε) ∪ (3π/2 + ε, 7π/4 + ε),

A3,ε = (3π/4 − ε, π − ε) ∪ (7π/4 − ε, 2π − ε).

For a point ξ = (ξ1, ξ2) ∈ R
2\{0} and A ⊆ R we say arg(ξ1, ξ2) ∈ A in case there

exists θ ∈ A such that ξ = (cos(θ), sin(θ)). We cut R
2\{0} into the following areas:

�1,ε = {(ξ1, ξ2) ∈ R
2\{0} | arg(ξ1, ξ2) ∈ A1,ε},

�2,ε = {(ξ1, ξ2) ∈ R
2\{0} | arg(ξ1, ξ2) ∈ A2,ε},

�3,ε = {(ξ1, ξ2) ∈ R
2\{0} | arg(ξ1, ξ2) ∈ A3,ε}. (3.1)

All these sets are radial in the sense that if ξ ∈ � j,ε then rξ ∈ � j,ε for any r > 0.
All � j,ε are open and satisfy −� j,ε = � j,ε . Further, the sets � j,ε, j = 1, 2, 3 cover
R
2\{0}. See Fig. 1 for an illustration.
Let T ⊆ R

2 be the unit circle. Let θ ′
1, θ

′
2, θ

′
3 : T → [0, 1] be a partition of unity

of the sets � j,ε ∩ T, j = 1, 2, 3. We may assume without loss of generality that the
support of θ ′

j is contained in � j,ε ∩T. Furthermore, we may replace θ ′
j (ξ), ξ ∈ T, by

1
2 (θ

′
j (ξ) + θ ′

j (−ξ)) and may therefore assume without loss of generality that θ ′
j (ξ) =

θ ′
j (−ξ). Set θ j (ξ) := θ ′

j (ξ/|ξ |) for ξ ∈ R
2\{0}. Then θ1, θ2, θ3 : R

2\{0} → [0, 1]
are smooth, even, homogeneous functions such that θ1 + θ2 + θ3 = 1 on R

2\{0} and
such that the support of θ j is contained in � j,ε .

Let

θ̃ j (λ0, λ1, λ2) = θ j (λ1 − λ0, λ2 − λ1), (λ1, λ2, λ3) ∈ R
3\�, (3.2)
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where we recall � = {(λ, λ, λ) | λ ∈ R}. We obtain for (λ0, λ1, λ2) ∈ R
3\� and

f ∈ C2(R) that

f [2](λ0, λ1, λ2) =
3∑

j=1

θ̃ j (λ0, λ1, λ2) f [2](λ0, λ1, λ2). (3.3)

We shall now decompose each of these three summands. A general decomposition
method can be found in [35, Lemma 5.8]; however, in the special case of divided
difference functions, both the statement and the proof are more straightforward in our
version below.

Lemma 3.1 Let f ∈ Cn(R), n ≥ 1 and let λ0, . . . , λn ∈ R be such that for some
i, j ∈ {0, . . . , n} we have λi 
= λ j . Let μ ∈ R. Then,

f [n](λ0, . . . , λn) = λi − μ

λi − λ j
f [n](λ0, . . . , λ j−1, μ, λ j+1, . . . , λn)

+ μ − λ j

λi − λ j
f [n](λ0, . . . , λi−1, μ, λi+1, . . . , λn).

Proof Since f [n] is invariant under permutation of its variables [14], we assume with-
out loss of generality that (i, j) = (0, 1) to simplify the notation. It follows forμ 
= λi ,

i = 0, 1, that

f [n](λ0, λ1, λ2, . . ., λn)

= 1

λ0−λ1

(
f [n−1](λ0, λ2, λ3, . . ., λn)− f [n−1](λ1, λ2, . . ., λn)

)
= 1

λ0 − λ1

(
f [n−1](λ0, λ2, λ3, . . . , λn) − f [n−1](μ, λ2, λ3, . . . , λn)

)
+ 1

λ0 − λ1

(
f [n−1](μ, λ2, λ3, . . . , λn) − f [n−1](λ1, λ2, . . . , λn)

)
= λ0 − μ

λ0 − λ1
f [n](λ0, μ, λ2, λ3, . . . , λn) + μ − λ1

λ0 − λ1
f [n](μ, λ1, λ2, . . . , λn).

Note the same formula holds for λ0 = μ or λ1 = μ as long as λ0 
= λ1. Indeed,
assume without loss of generality λ0 = μ 
= λ1, then

λ0 − μ

λ0 − λ1︸ ︷︷ ︸
=0

f [n](λ0, μ, λ2, λ3, . . . , λn) + μ − λ1

λ0 − λ1︸ ︷︷ ︸
=1

f [n](μ, λ1, λ2, . . . , λn)

= f [n](λ0, λ1, λ2, . . . , λn).

��

123



M. Caspers et al.

We define the following functions for (λ0, λ1, λ2) ∈ R
3. Let

ψ1(λ0, λ1, λ2) = λ0 − λ1

λ0 − λ2
, λ0 
= λ2,

ψ2(λ0, λ1, λ2) = ψ1(λ2, λ0, λ1) = λ2 − λ0

λ2 − λ1
, λ2 
= λ1,

ψ3(λ0, λ1, λ2) = ψ1(λ1, λ2, λ0) = λ1 − λ2

λ1 − λ0
, λ0 
= λ1.

and

φ f (λ, μ) = f [2](λ, μ,μ), φ̊ f (λ, μ) = f [2](λ, λ, μ), λ, μ ∈ R.

As divided difference functions are permutation invariant, we have φ̊ f (λ, μ) =
φ f (μ, λ).

At this point we note that θ̃ jψ j , j = 1, 2, 3 extends to a bounded continuous
function on R

3\�. Indeed, let λ ∈ R
3\� be in the support of θ̃ j .Note that the support

is by definition a closed set contained in� j,ε, and that� j,ε does not intersect the rays
λ0 = λ2 (for j = 1), λ2 = λ1 (for j = 2), or λ0 = λ1 (for j = 3), see (3.2). Hence
θ̃ jψ j is bounded on the support of θ̃ j . We may thus extend θ̃ jψ j by setting it equal to
zero outside the support of θ̃ j . This extended function is a smooth even homogeneous
function on R

3\�.

We now apply the decomposition of Lemma 3.1 in the case n = 2. In case
(λ0, λ1, λ2) ∈ �1,ε we have, as also noted in the previous paragraph, that λ0 
= λ2,

and we get

f [2](λ0, λ1, λ2) = λ0 − λ1

λ0 − λ2
f [2](λ0, λ1, λ1) + λ1 − λ2

λ0 − λ2
f [2](λ1, λ1, λ2)

= ψ1(λ0, λ1, λ2)φ f (λ0, λ1) + (1 − ψ1)(λ0, λ1, λ2)φ̊ f (λ1, λ2).

(3.4)

Similarly, we may use the permutation invariance of divided difference functions and
find for (λ0, λ1, λ2) ∈ �2,ε that

f [2](λ0, λ1, λ2)

= f [2](λ2, λ0, λ1) = λ2 − λ0

λ2 − λ1
f [2](λ2, λ0, λ0) + λ0 − λ1

λ2 − λ1
f [2](λ0, λ0, λ1)

= ψ2(λ0, λ1, λ2)φ̊ f (λ0, λ2) + (1 − ψ2)(λ0, λ1, λ2)φ̊ f (λ0, λ1). (3.5)

Finally, for (λ0, λ1, λ2) ∈ �3,ε, we have that

f [2](λ0, λ1, λ2)

= f [2](λ1, λ2, λ0) = λ1 − λ2

λ1 − λ0
f [2](λ1, λ2, λ2) + λ2 − λ0

λ1 − λ0
f [2](λ2, λ2, λ0)

= ψ3(λ0, λ1, λ2)φ f (λ1, λ2) + (1 − ψ3)(λ0, λ1, λ2)φ f (λ0, λ2). (3.6)
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Combining (3.3), (3.4), (3.5), and (3.6) we find that

f [2](λ0, λ1, λ2)
= θ̃1(λ0, λ1, λ2)

(
ψ1(λ0, λ1, λ2)φ f (λ0, λ1) + (1 − ψ1)(λ0, λ1, λ2)φ̊ f (λ1, λ2)

)
+θ̃2(λ0, λ1, λ2)

(
ψ2(λ0, λ1, λ2)φ̊ f (λ0, λ2) + (1 − ψ2)(λ0, λ1, λ2)φ̊ f (λ0, λ1)

)
+θ̃3(λ0, λ1, λ2)

(
ψ3(λ0, λ1, λ2)φ f (λ1, λ2) + (1 − ψ3)(λ0, λ1, λ2)φ f (λ0, λ2)

)
.

(3.7)

This decomposition (3.7) is not yet optimal for our purposes. In Sect. 6, we shall
require that the symbols of the bilinearToeplitz formSchurmultipliers in our decompo-
sition are odd (instead of even) homogeneous. This in particular implies the vanishing
of the paraproduct terms that occur in transference methods for the bilinear term,
improving the bound on the norm of our Schur multiplier. In order to achieve this, we
include an extra sign function in the three-variable terms, for which we compensate
by including a sign function in the two-variable terms. Set

ε(λ, μ) = sign(μ − λ), ε1(λ0, λ1, λ2) = sign(λ1 − λ0),

ε2(λ0, λ1, λ2) = sign(λ2 − λ1), ε3(λ0, λ1, λ2) = sign(λ2 − λ0),

where we use the convention that sign(0) = 1. Then we obtain the following
decomposition, that we record here as a proposition.

Proposition 3.2 Let f ∈ C2(R) and let (λ0, λ1, λ2) ∈ R
3\�. Then,

f [2](λ0, λ1, λ2) = ε1(λ0, λ1, λ2)θ̃1(λ0, λ1, λ2)ψ1(λ0, λ1, λ2) · ε(λ0, λ1)φ f (λ0, λ1)

+ε2(λ0, λ1, λ2)θ̃1(λ0, λ1, λ2)(1 − ψ1)(λ0, λ1, λ2) · ε(λ1, λ2)φ̊ f (λ1, λ2)

+ε3(λ0, λ1, λ2)θ̃2(λ0, λ1, λ2)ψ2(λ0, λ1, λ2) · ε(λ0, λ2)φ̊ f (λ0, λ2)

+ε1(λ0, λ1, λ2)θ̃2(λ0, λ1, λ2)(1 − ψ2)(λ0, λ1, λ2) · ε(λ0, λ1)φ̊ f (λ0, λ1)

+ε2(λ0, λ1, λ2)θ̃3(λ0, λ1, λ2)ψ3(λ0, λ1, λ2) · ε(λ1, λ2)φ f (λ1, λ2)

+ε3(λ0, λ1, λ2)θ̃3(λ0, λ1, λ2)(1 − ψ3)(λ0, λ1, λ2) · ε(λ0, λ2)φ f (λ0, λ2).

Remark 3.3 In the previous expression we separated the two-variable terms from the
three-variable terms with a ‘·’.

For the corresponding Schur multipliers we find the following decomposition.

Proposition 3.4 Let f ∈ C2(R). For x, y ∈ S2 we have

M f [2](x, y) = Mε1θ̃1ψ1
(Mεφ f (x), y) + Mε2 θ̃1(1−ψ1)

(x, M
εφ̊ f

(y))

+M
εφ̊ f

(Mε3θ̃2ψ2
(x, y)) + Mε1θ̃2(1−ψ2)

(M
εφ̊ f

(x), y)

+Mε2 θ̃3ψ3
(x, Mεφ f (y)) + Mεφ f (Mε3θ̃3(1−ψ3)

(x, y)). (3.8)
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Proof Note by Sect. 2.4 (or [10, Proposition 5]) that all linear and bilinear Schur
multipliers appearing in (3.8) are bounded as maps on S2 → S2 or S2 × S2 → S2.
The proposition is now a consequence of a mild variation of [35, Lemma 3.2], which
can easily be verified directly in the same way. ��

Now we outline our proof strategy for the next sections. All the linear Schur mul-
tipliers appearing in the decomposition (3.8) shall be estimated in Sect. 4. Each of
the six summands in (3.8) contains a bilinear Schur multiplier. The last four of these
summands shall be estimated in Sect. 5. The first two summands shall be estimated in
Sect. 6. In fact, the methods of Sect. 6 can be used to estimate all six bilinear terms
in (3.8). However, the constants obtained in Sect. 5 have better asymptotics, which is
particularly relevant for the asymptotics for p ↘ 1 (as in Theorem A) for the third
and sixth summand.

Strictly speaking, the sign functions ε, εi in the last four summands of (3.8) are not
needed for the estimates in Sect. 5. We have included them to show that these terms
can also be estimated with the methods of Sect. 6.

4 Bounding linear terms with the Hörmander–Mikhlin–Schur
multiplier theorem

In this section, we show the boundedness of the linear Schur multipliers Mφ f and M
φ̊ f

defined in Sect. 3. Note that while the majority of this paper is concerned with second
order divided difference functions, we will prove the results in this section for general
n-th order divided difference functions.

We will use the following theorem.

Theorem 4.1 [12, Theorem A] Let φ ∈ C� d
2 �+1

(R2d\{λ = μ}), p ∈ (1,∞), and
let Mφ be the Schur multiplier associated with φ. Then

‖Mφ‖Sp→Sp � pp∗|||φ|||HMS

with |||φ|||HMS :=∑|γ |≤� d
2 �+1

‖(λ, μ) 
→ |λ − μ||γ |(|∂γ
λ φ(λ, μ)| + |∂γ

μφ(λ, μ)|)‖∞.

We want to apply Theorem 4.1 to multipliers with symbol φ f (λ, μ) =
f [n](λ(k), μ(n+1−k)) for some 1 ≤ k ≤ n. Here, we use the notation introduced
in Sect. 2.5. We need the following two lemmas.

Lemma 4.2 Let n ≥ 1, 0 ≤ k ≤ n + 1, and let f ∈ Cn+1(R). Then the partial
derivatives of the map (λ, μ) 
→ f [n](λ(k), μ(n+1−k)) are given by

∂λ f [n](λ(k), μ(n+1−k)) = k f [n+1](λ(k+1), μ(n+1−k)),

∂μ f [n](λ(k), μ(n+1−k)) = (n + 1 − k) f [n+1](λ(k), μ(n+2−k)).

Furthermore,
(
(λ, μ) 
→ f [n](λ(k), μ(n+1−k))

) ∈ C1(R2\{λ = μ}).
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Proof Since f [n] is invariant under permutation of its variables, it is sufficient to
calculate the partial derivatives in λ. For n = 1, there are three cases to consider:

• k = 0: ∂λ f [1](μ,μ) = 0.
• k = 2: ∂λ f [1](λ, λ) = ∂λ f ′(λ) = f ′′(λ) = 2 f [2](λ, λ, λ), where we used
Definition 2.1.

• k = 1: We use the product rule to show

∂λ f [1](λ, μ) = ∂λ

f (λ) − f (μ)

λ − μ
= f ′(λ)

λ − μ
− f (λ) − f (μ)

(λ − μ)2

= f [1](λ, λ) − f [1](λ, μ)

λ − μ
= f [2](λ, λ, μ).

By definition, continuity of f [1] follows from continuity of f . Furthermore, its
derivatives are continuous in λ 
= μ by continuity of f ′′ and f [1].

Now let n ∈ N. For k = 0, the statement is immediate. For 0 < k ≤ n + 1, we use
the product rule and induction to show

∂λ f [n](λ(k), μ(n+1−k))

= ∂λ( f [n−1](λ(k), μ(n−k)) − f [n−1](λ(k−1), μ(n+1−k)))

λ − μ

− f [n−1](λ(k), μ(n−k)) − f [n−1](λ(k−1), μ(n+1−k))

(λ − μ)2

= k f [n](λ(k+1), μ(n−k)) − (k − 1) f [n](λ(k), μ(n+1−k)) − f [n](λ(k), μ(n+1−k))

λ − μ

= k f [n+1](λ(k+1), μ(n+1−k)).

Continuity of (λ, μ) 
→ f [n](λ(k), μ(n+1−k)) in λ 
= μ follows by induction from
continuity of the corresponding f [n−1]-terms. As in the base case, continuity of its
first derivatives in λ 
= μ follows from continuity of f (n+1) and f [n]. ��

Lemma 4.3 For n ∈ N, 0 ≤ k ≤ n + 1, 0 ≤ γ ≤ min{k, n + 1 − k}, and (λ, μ) ∈
R
2\{λ = μ},

|λ − μ|γ |∂γ
λ f [n](λ(k), μ(n+1−k))| ≤ 2γ (k + γ − 1)!

(k − 1)!
‖ f (n)‖∞

n! .

Proof For γ = 0, this statement is immediate from (2.5). Let now0 < γ ≤ min{k, n+
1 − k}. By repeatedly applying Lemma 4.2, we obtain

∂
γ
λ f [n](λ(k), μ(n+1−k)) = (k + γ − 1)!

(k − 1)! f [n+γ ](λ(k+γ ), μ(n+1−k)).
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We now decompose f [n+γ ] by applying the definition of divided difference functions
multiple times as

f [n+γ ](λ(k+γ ), μ(n+1−k))

= 1

λ − μ

(
f [n+γ−1](λ(k+γ ), μ(n−k)) − f [n+γ−1](λ(k+γ−1), μ(n+1−k))

)
= . . .

= 1

(λ − μ)γ

γ∑
j=0

(−1) j
(

γ

j

)
f [n](λ(k+γ− j), μ(n+1−k−(γ− j))).

Using the estimate ‖ f [n]‖∞ ≤ ‖ f (n)‖∞
n! from (2.5), we conclude

|λ−μ|γ |∂γ
λ f [n](λ(k), μ(n+1−k))|

≤ (k+γ −1)!
(k−1)!

γ∑
j=0

(
γ

j

)
| f [n](λ(k+γ− j), μ(n+1−k−(γ− j)))|

≤ (k + γ − 1)!
(k − 1)!

γ∑
j=0

(
γ

j

)‖ f (n)‖∞
n! = 2γ (k + γ − 1)!

(k − 1)!
‖ f (n)‖∞

n! .

��
Altogether we can now show the following.

Theorem 4.4 Let n ∈ N, f ∈ Cn(R), 1 ≤ k ≤ n, and p ∈ (1,∞). Set φ f (λ, μ) :=
f [n](λ(k), μ(n+1−k)). Then

‖Mφ f ‖Sp→Sp � 2n + 3

n! pp∗‖ f (n)‖∞.

Proof We can apply Theorem 4.1, since φ f ∈ C1(R2\{λ = μ}) by Lemma 4.2. From
Lemma 4.3, we conclude

|||φ f |||HMS

≤ ‖φ f ‖∞+‖(λ, μ) 
→ |λ−μ|∂λφ f (λ, μ)‖∞ + ‖(λ, μ) 
→ |λ−μ|∂μφ f (λ, μ)‖∞

≤ (1 + 2k + 2(n + 1 − k))
‖ f (n)‖∞

n! = 2n + 3

n! ‖ f (n)‖∞.

��
Remark 4.5 Recall that we set ε(λ, μ) = sign(μ − λ). Under the assumptions of
Theorem 4.4 if follows also that

‖Mεφ f ‖Sp→Sp � 2n + 3

n! pp∗‖ f (n)‖∞.

123



On the best constants of Schur multipliers…

Indeed, εφ f satisfies the same Hörmander–Mikhlin differentiability criteria as φ f , so
that we may appeal again to Theorem 4.1.

5 Bilinear Schur multipliers that map to S1

The aim of this section is to estimate the last four of the bilinear Schur multipliers
occurring in the six summands of (3.4). It turns out that these Schur multipliers are
special, as they admit an S1-bound.

Theorem 5.1 Let m : R
2\{0} → C be smooth and homogeneous with support con-

tained in one of the four quadrants σ1R>0 ×σ2R>0, where σ j ∈ {+,−}. Define m̃ as
in (3.2). Then for every 1 ≤ p < ∞, 1 < p1, p2 < ∞ with 1

p1
+ 1

p2
= 1

p we have

‖Mm̃ : Sp1 × Sp2 → Sp‖ � C(m)p1 p∗
1 p2 p∗

2,

for a constant C(m) > 0 only depending on m.

Proof For simplicity assume that σ2 = +, as the other case can be treated similarly. Set
then ρ(λ) = m(λ, 1), λ ∈ R. Then ρ(ξ1/ξ2) = m(ξ1/ξ2, 1) = m(ξ1, ξ2), where the
last equality follows as m is homogeneous and supported on (ξ1, ξ2) with ξ2 positive.
Further, note once more that m is homogeneous and thus constant on rays. Since
its support is a closed set contained in the quadrant σ1R>0 × R>0, it must thus be
a proper radial subsector of that quadrant. Therefore, it follows that ρ has compact
support contained in σ1(0,∞). In particular, ρ is a compactly supported Schwartz
function.

It follows that the function t 
→ ρ(σ1et ), t ∈ R is Schwartz. So using Fourier
inversion we write

ρ(σ1et ) =
∫
R

g(s)eist ds

with g a Schwartz function. Substitute t = log(σ1ξ1/ξ2), where (ξ1, ξ2) ∈ σ1R>0 ×
R>0. This gives

m(ξ1, ξ2) = ρ(
ξ1

ξ2
) =

∫
R

g(s)|ξ1|isξ−is
2 ds, (ξ1, ξ2) ∈ σ1R>0 × R>0.

Let

k1s (λ0, λ1) =
{ |λ1 − λ0|is, if σ1(λ1 − λ0) > 0,
0, otherwise.

k2s (λ1, λ2) =
{

(λ2 − λ1)
is, if (λ2 − λ1) > 0,

0, otherwise.
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Hence

m̃(λ0, λ1, λ2) =
∫
R

g(s)k1s (λ0, λ1)k
2−s(λ1, λ2)ds.

It then follows that

Mm̃(x, y) =
∫
R

g(s)Mk1s
(x)Mk2−s

(y)ds.

Note that |||k1s |||HMS = |||k2s |||HMS = 1 + 2|s|. Thus by Theorem 4.1,

‖Mm̃ : Sp1 × Sp2 → Sp‖ �
∫
R

g(s)(1 + 2|s|)2ds p1 p∗
1 p2 p∗

2 .

This concludes the proof. ��
For the following corollary we recall the notation from Proposition 3.4.

Corollary 5.2 Let a3 := ε3θ̃2ψ2, a4 := ε1θ̃2(1 − ψ2), a5 := ε2θ̃3ψ3 and a6 :=
ε3θ̃3(1 − ψ3). Then for every 1 ≤ p < ∞, 1 < p1, p2 < ∞ with 1

p1
+ 1

p2
= 1

p we
have

‖Ma j : Sp1 × Sp2 → Sp‖ � C(a j )p1 p∗
1 p2 p∗

2, 3 ≤ j ≤ 6,

for a constant C(a j ) > 0 only depending on a j .

Proof Each of the functions a j is smooth, homogeneous, of Toeplitz form, and sup-
ported on one of the two quadrants −σR>0 × σR>0 with σ ∈ {+,−}. Therefore the
conclusion follows from Theorem 5.1. ��
Remark 5.3 The constantC(a j ) depends in particular on the choice of ε > 0 in Sect. 3,
see (3.1). Note that we cannot expect a bound as in Corollary 5.2 that is uniform as
ε ↘ 0, since in [8, Theorem 5.3] and its proof it is shown that such Schur multipliers
do not map to S1.

6 Bilinear transference

The aim of this section is to estimate the remaining bilinear terms occurring in
Proposition 3.4. The crucial observation is that these multipliers are of Toeplitz form
and therefore, using bilinear transference techniques, can be estimated by Fourier
multipliers and Calderón–Zygmund operators.

6.1 Bilinear Calderón–Zygmund operators and Fourier multipliers

We say K : R
2 → C satisfies the size condition if for some constant C1 > 0 we have

|K (z)| ≤ C1

|z|2 , z ∈ R
2\{0}. (6.1)
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We say that K satisfies the smoothness condition if K is continuously differentiable
on R

2\{0} and there exists some constant C2 > 0 such that

|∇K (z)| ≤ C2

|z|3 , z ∈ R
2\{0}. (6.2)

Set K̃ (x, y, z) = K (x − y, x − z), x, y, z ∈ R. If K satisfies (6.1) and (6.2), then

|K̃ (x, y, z)| ≤ C1

(|x − y| + |x − z|)2 , (x, y, z) ∈ R
3\�, (6.3)

and it follows from the chain rule that

|∇ K̃ (x, y, z)| ≤ C2

(|x − y| + |x − z|)3 , (x, y, z) ∈ R
3\�. (6.4)

It is assumingly well-known (see e.g. the introduction of [20]) that Condition 6.4
implies the following more general condition. We provide a proof for completeness
as we did not find it in the literature.

Lemma 6.1 Suppose that K satisfies the smoothness condition. Let (x1, x2, x3) ∈
R
3\�. Let x̃ j ∈ R, j = 1, 2, 3, be such that

|x j − x̃ j | ≤ 1

2
max(|x1 − x2|, |x1 − x3|). (6.5)

Then,

|K̃ (x1, x2, x3) − K̃ (̃x1, x2, x3)| � |x1 − x̃1|
(|x1 − x2| + |x1 − x3|)3 ,

|K̃ (x1, x2, x3) − K̃ (x1, x̃2, x3)| � |x2 − x̃2|
(|x1 − x2| + |x1 − x3|)3 ,

|K̃ (x1, x2, x3) − K̃ (x1, x2, x̃3)| � |x3 − x̃3|
(|x1 − x2| + |x1 − x3|)3 .

Proof We only prove the first estimate, the other two are proved in a similar way. It
suffices to prove the case x2 
= x3, since R

3\{x2 = x3} is a dense subset of R
3\� and

K is continuous. Take x ′
1 in the interval [x1, x̃1] (or in [̃x1, x1] in case x1 > x̃1 ) such

that

|K̃ (x1, x2, x3) − K̃ (̃x1, x2, x3)| = |x1 − x̃1||∂1 K̃ (x ′
1, x2, x3)|.

But then the assumptions (6.3) and (6.5) imply that
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|K̃ (x1, x2, x3) − K̃ (̃x1, x2, x3)| � |x1 − x̃1|
(|x ′

1 − x2| + |x1 − x3|)3

� |x1 − x̃1|
(|x1 − x2| + |x1 − x3|)3 ,

where the second inequality follows from (6.5) since

|x1 − x2| ≤ |x1 − x ′
1| + |x ′

1 − x2|
≤ |x1 − x̃1| + |x ′

1 − x2|
≤ 1

2
|x1 − x2| + |x ′

1 − x2|.

��
Lemma 6.1 shows that the conditions (6.1) and (6.2) imply that the kernel K̃

satisfies the size and smoothness conditions appearing in [15]. Next, we show that
for bilinear Fourier multipliers with odd homogeneous symbols, their associated
Calderón–Zygmund kernels satisfy these criteria. Recall that the Fourier transform
F was defined in the preliminaries (2.1) in a distributional sense.

Proposition 6.2 Let m : R
2\{0} → R be smooth and odd homogeneous, and set

m(0, 0) = 0. Then Fm : R
2 → C is a function satisfying conditions (6.1), (6.2), and

(Fm)(0, 0) = 0.

Proof The proof is essentially the same as [5, Lemma 4.3] but for the convenience of
the reader we give it here. We identify R

2 with C. Since m is smooth on the circle, we
may write

m(eiθ ) =
∑
k∈Z

αkeikθ , θ ∈ [0, 2π),

where the Fourier coefficients αk decay faster than any polynomial. As m is odd, it
has mean zero on the circle, and thus α0 = 0. It follows that

m =
∑

0 
=k∈Z
αk gk, gk(z) = zk

|z|k , 0 
= z ∈ C.

We have for k 
= 0 that (Fgk)(0) = 0, and as in [5, Lemma 4.3] one can show that

(Fgk)(z) = |k|
2π i k

zk

|z|k+2 , 0 
= z ∈ C.

Hence (Fm)(0) = 0 and

(Fm)(z) =
∑

0 
=k∈Z

|k|αk

2π i k

zk

|z|k+2 , 0 
= z ∈ C.

123



On the best constants of Schur multipliers…

As the coefficients |k|αk are summable it follows therefore that

|(Fm)(z)| ≈ O(|z|−2), |∇(Fm)(z)| ≈ O(|z|−3),

which finishes the proof. ��
Proposition 6.3 Let m : R

2\{0} → R be smooth, odd, homogeneous, and set
m(0, 0) = 0. Then the Fourier multiplier Tm is a bilinear Calderón–Zygmund operator
with kernel −(2π)−1̃Fm, see the definition below (6.2). More precisely, for Schwartz
functions f1, f2 we have

Tm( f1, f2)(x) = − 1

2π

∫
R

∫
R

(Fm)(x − y, x − z) f1(y) f2(z)dydz,

x ∈ R\(supp( f1) ∩ supp( f2)). (6.6)

Proof We have for x ∈ R\(supp( f1) ∩ supp( f2)) that

Tm( f1, f2)(x) = 1

2π

∫
R

∫
R

m(ξ1, ξ2)(F f1)(ξ1)(F f2)(ξ2)e
i(ξ1+ξ2)x dξ1dξ2

= 1

2π

∫
R

∫
R

m(ξ1, ξ2)((F f1)(ξ1)e
iξ1x )((F f2)(ξ2)e

iξ2x )dξ1dξ2

= 1

2π

∫
R

∫
R

m(ξ1, ξ2)(F f1( · + x))(ξ1)(F f2( · + x))(ξ2)dξ1dξ2

= 1

2π

∫
R

∫
R

(Fm)(ξ1, ξ2) f1(ξ1 + x) f2(ξ2 + x)dξ1dξ2

= 1

2π

∫
R

∫
R

(Fm)(ξ1 − x, ξ2 − x) f1(ξ1) f2(ξ2)dξ1dξ2.

As m is odd so is Fm, hence we conclude (6.6).
To show that Tm is indeed a Calderón–Zygmund operator as defined in Sect. 2.6, it

remains to show conditions (6.1), (6.2), and boundedness of Tm . The first two of these
conditions hold by Proposition 6.2. Finally, the boundedness condition follows from
[25, Theorem 8]. ��
Remark 6.4 For Calderón–Zygmund operators T on R with a convolution kernel

K̃ (x, y1, . . . , yn) = K (x − y1, . . . , x − yn), x, y1, . . . , yn ∈ R,

it holds that 〈T (1, . . . , 1), φ〉 = 0 for all φ ∈ L∞
c (R) with

∫
R

φdx = 0, i.e.
T (1, . . . , 1) vanishes in BMO. As is common in the literature, we will refer to this
as “T (1, . . . , 1) = 0”. We decided to omit the detailed proof of this fact as it is
commonly used in the literature. We refer the reader to the last equation in the proof
of [20, Proposition 6] which applies to our situation; though we note that the proof
there is only formal. Similarly, all partial adjoints T ∗1 and T ∗2 of T (defined via
〈T ∗1( f , g), h〉 := 〈T (h, g), f 〉, 〈T ∗2( f , g), h〉 := 〈T ( f , h), g〉, see [16]) vanish
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for these operators. See e.g. [16, 30] for well-defined constructions of these expres-
sions. Hence in particular, for a bilinear Calderón–Zygmund operatorwith convolution
kernel, it holds that 〈T (1, 1), φ〉 = 〈T ∗1(1, 1), φ〉 = 〈T ∗2(1, 1), φ〉 = 0 for all
φ ∈ L∞

c (R) with
∫
R

φdx = 0.

6.2 Completely bounded estimates and constants for bilinear multipliers

The following is a special case of the main theorem of [15], specialised to our setting
of Proposition 6.3 and Schatten classes. Unfortunately [15] does not keep track of the
constants, though they can be made explicit by following the proof. We have outlined
the proof of (6.8) in Appendix A. Note that Remark 6.4 implies the vanishing of
the paraproduct terms in [15], which allows for a significantly better bound of (6.8)
compared to general Calderón–Zygmund operators, see Remark 6.6.

Theorem 6.5 (Special case of [15, Theorem 1.1]) Let T be a bilinear Calderon–
Zygmund operator on R. Then the bilinear operator

Tcb

( J∑
j=1

f j ⊗ y j ,

K∑
k=1

gk ⊗ zk

)
:=
∑
j,k

T ( f j , gk) ⊗ y j zk

with f j , gk ∈ L∞
c (R), y j ∈ Sp1 , zk ∈ Sp2 , extends to a bounded operator

Tcb : L p1(R, Sp1) × L p2(R, Sp2) → L p(R, Sp)

for p1, p2, p ∈ (1,∞) such that 1/p1 + 1/p2 = 1/p. Moreover, if for every φ ∈
L∞

c (R) with
∫
R

φdx = 0, we have

〈T (1, 1), φ〉 = 〈T ∗1(1, 1), φ〉 = 〈T ∗2(1, 1), φ〉 = 0, (6.7)

then

‖Tcb : L p1(R, Sp1) × L p2(R, Sp2) → L p(R, Sp)‖ � C(p, p1, p2), (6.8)

where

C(p, p1, p2) = βpβp1βp2 + min(β2
p1βp, β

2
pβp1) + min(β2

p2βp, β
2
pβp2)

+min(β2
p2βp1 , β

2
p1βp2), (6.9)

and βq = qq∗, 1 < q < ∞.

Remark 6.6 Without the condition (6.7) the paraproducts in the representation theorem
described in Appendix A.1 do not vanish. Theorem 6.5 remains true but with a worse
constant C ′(p, p1, p2) given by

C ′(p, p1, p2) = C(p, p1, p2) + min(C ′′(p, p1), C ′′(p, p2))
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+ min(C ′′(p1, p2), C ′′(p1, p)) + min(C ′′(p2, p1), C ′′(p2, p)),

C ′′(p, q) = β3
pβ

2
q CBMOq ,

where CBMOp = 2e(ep�(p))1/p refers to the constant in the John–Nirenberg inequal-
ity, see e.g. [21]. For p → ∞, we have CBMOp = O(p). The constant C ′ is derived
through a combination of the permutation argument that we present at the end of
Appendix A, and explicit calculations found in [38]. The facts we present in this
remark shall not be used in this paper.

Next, we translate this statement to Fourier multipliers. This allows us to use trans-
ference to estimate bilinear Schur multipliers such as the ones in Proposition 3.4 by
their corresponding Fourier multipliers.

Theorem 6.7 Let m : R
2\{0} → R be smooth, odd, homogeneous, and set m(0, 0) =

0. Then for 1 < p, p1, p2 < ∞ with 1
p = 1

p1
+ 1

p2
we have

‖Tm : L p1(R2, Sp1) × L p2(R2, Sp2) → L p(R2, Sp)‖ � C(p, p1, p2),

where C(p, p1, p2) is as in (6.9).

Proof By Proposition 6.3, Tm is a bilinear Calderón–Zygmund operator. By
Remark 6.4, we see that (6.7) holds. Therefore, the statement follows directly from
Theorem 6.5. ��
Theorem 6.8 Let m : R

2\{0} → R be smooth, odd, homogeneous, and set m(0, 0) =
0. Set

m̃(λ0, λ1, λ2) = m(λ1 − λ0, λ2 − λ1), (λ0, λ1, λ2) ∈ R
3.

Then

‖Mm̃ : Sp1 × Sp2 → Sp‖
≤ ‖Tm : L p1(R, Sp1) × L p2(R, Sp2) → L p(R, Sp)‖ � C(p, p1, p2),

with C(p, p1, p2) as given in (6.9).

Proof We will apply [8, Theorem A] to a modification of m that is continuous at zero.
Define m(λ1, λ2;μ1, μ2) = m(λ1 − μ1, λ2 − μ2), λi , μi ∈ R. Let f ∈ Cb(R) with
compact support be such that f ≥ 0 and ‖ f ‖1 = 1. We set

m f (λ1, λ2) =
∫
R

∫
R

f (μ1) f (μ2)m(λ1, λ2;μ1, μ2)dμ1dμ2,

which is continuous. Set again m̃ f (λ0, λ1, λ2) = m f (λ1−λ0, λ2−λ1). It now follows
from [8, Theorem A] that

‖Mm̃ f : Sp1 × Sp2 → Sp‖ ≤ ‖Tm f : L p1(R, Sp1) × L p2(R, Sp2) → L p(R, Sp)‖.
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Next, observe that [9, Lemma 4.3] shows that Tm and Tm( · , · ;μ1,μ2) have the same
norm as bilinear maps. Therefore, it follows that

‖Tm f : L p1(R; Sp1) × L p2(R; Sp2) → L p(R; Sp)‖
≤
∫
R

∫
R

f (μ1) f (μ2)‖Tm : L p1(R; Sp1) × L p2(R; Sp2) → L p(R; Sp)‖dμ1dμ2

= ‖Tm : L p1(R; Sp1) × L p2(R; Sp2) → L p(R; Sp)‖.

Combining the previous two estimates with Theorem 6.7 yields that

‖Mm̃ f : Sp1 × Sp2 → Sp‖ � C(p, p1, p2). (6.10)

Now replace f by functions f j ∈ Cc(R) satisfying f j ≥ 0, ‖ f j‖1 = 1, supp( f j ) ⊂
supp( f j−1), and

⋂
j supp( f j ) = {0}. Take x1 ∈ Sp1 ∩ S2, x2 ∈ Sp2 ∩ S2, and

x3 ∈ Sp∗ ∩ S2.Assume that each of these operators is rank one with respective kernels
Ai (s, t) = ξi (s)ηi (t) (see Sect. 2.4), where we assume ξi , ηi ∈ Cc(R), i = 1, 2, 3.
Then as j → ∞ we get for the Schatten class duality pairing

〈Mm̃ f j
(x1, x2), x3〉p,p∗

=
∫
R3

m̃ f j (s0, s1, s2)ξ1(s0)ξ2(s1)ξ3(s2)η1(s1)η2(s2)η3(s0)ds0ds1ds2

=
∫
R3

∫
R2

f j (μ1) f j (μ2)m(s1 − s0 − μ1, s2 − s1 − μ2)

×ξ1(s0)ξ2(s1)ξ3(s2)η1(s1)η2(s2)η3(s0)dμ1dμ2ds0ds1ds2

=
∫
R3

∫
R2

f j (μ1) f j (μ2)m(s1 − s0, s2 − s1) × ξ1(s0 − μ1)ξ2(s1)ξ3(s2

+μ2)η1(s1)η2(s2 + μ2)η3(s0 − μ1)dμ1dμ2ds0ds1ds2. (6.11)

As each ξ j and η j is continuous and compactly supported, we have

∫
R2

f j (μ1) f j (μ2)ξ1(s0 − μ1)ξ2(s1)ξ3(s2 + μ2)η1(s1)η2(s2 + μ2)η3(s0 − μ1)dμ1dμ2

j→∞−−−−→ ξ1(s0)ξ2(s1)ξ3(s2)η1(s1)η2(s2)η3(s0), (6.12)

in the L1(R3)-norm, where we see the expressions in (6.12) as functions of
(s0, s1, s2) ∈ R

3. Therefore, taking the limit j → ∞ in (6.11) gives

〈Mm̃ f j
(x1, x2), x3〉p,p∗

j→∞−−−→
∫
R3

m(s1 − s0, s2 − s1)ξ1(s0)ξ2(s1)ξ3(s2)η1(s1)η2(s2)η3(s0)ds0ds1ds2

= 〈Mm̃(x1, x2), x3〉p,p∗

(6.13)
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By linearity, density, and uniformboundedness of Mm̃ and Mm̃ f j
asmaps S2×S2 → S2

(see Sect. 2.4) the convergence (6.13) holds for any x1 ∈ S2∩ Sp1 , x2 ∈ S2∩ Sp2 , x3 ∈
S2 ∩ Sp∗ . Hence,

‖Mm̃ : Sp1 × Sp2 → Sp‖
= sup

x1∈S2∩Sp1 ,x2∈S2∩Sp2 ,x3∈S2∩Sp∗ ,

‖x1‖p1=‖x2‖p2=‖x3‖p∗=1

|〈Mm̃(x1, x2), x3〉p,p∗ |

= sup
x1∈S2∩Sp1 ,x2∈S2∩Sp2 ,x3∈S2∩Sp∗ ,

‖x1‖p1=‖x2‖p2=‖x3‖p∗=1

lim
j→∞ |〈Mm̃ f j

(x1, x2), x3〉p,p∗ |

≤ lim sup
j→∞

‖Mm̃ f j
: Sp1 × Sp2 → Sp‖,

which concludes the proof. ��

7 Proof of Theorem A and extrapolation

7.1 Main result

We now collect all estimates we have obtained so far in this paper.

Theorem 7.1 (Theorem A) For every f ∈ C2(R) and for every 1 < p, p1, p2 < ∞
such that 1

p = 1
p1

+ 1
p2

we have that

‖M f [2] : Sp1 × Sp2 → Sp‖ � D(p, p1, p2)‖ f ′′‖∞,

where

D(p, p1, p2) = C(p, p1, p2)(βp1 + βp2) + βp1βp2(βp + βp1 + βp2)

where C(p, p1, p2) was defined in (6.9) and βq = qq∗.

Proof Consider the decomposition of M f [2] given in (3.8) in terms of bilinear Schur
multipliers of Toeplitz form and linear Schur multipliers. It is sufficient to show that
each of these maps are bounded on the corresponding Schatten classes. Each of the
functions a1 := ε1θ̃1ψ1, a2 := ε2θ̃1(1 − ψ1), a3 := ε3θ̃2ψ2, a4 := ε1θ̃2(1 − ψ2),

a5 := ε2θ̃2ψ2 and a6 := ε3θ̃3(1 − ψ3) is smooth, odd, homogeneous, and has value
zero at zero. Note that we added the εi terms to assure that the functions are odd.
Therefore by Theorem 6.8 we get the bounds

‖Mai : Sp1 × Sp2 → Sp‖ � C(p, p1, p2), 1 ≤ i ≤ 6.

We shall only use this fact for i = 1, 2. By Corollary 5.2 we also get

‖Mai : Sp1 × Sp2 → Sp‖ � p1 p∗
1 p2 p∗

2 = βp1βp2 , 3 ≤ i ≤ 6.
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For the linear term Mεφ f , we apply Remark 4.5 to see that for any 1 < q < ∞,

‖Mεφ f : Sq → Sq‖ � ‖ f ′′‖∞qq∗ = βq ,

and similarly for εφ̊ f . These estimates together with the decomposition (3.8) allow
us to conclude

‖M f [2] : Sp1 × Sp2 → Sp‖ � C(p, p1, p2)(βp1 + βp2) + βp1βp2(βp + βp1 + βp2).

��
Remark 7.2 We examine the constant D(p, 2p, 2p) with 1 < p < ∞ and its asymp-
totics for p going either to ∞ or 1. Note that if p ↘ 1 then (2p)∗ ↗ 2. In fact, (2p)∗
is uniformly bounded for 1 < p < ∞. We therefore find for 1 < p < ∞ that

D(p, 2p, 2p) ≈ p4 p∗.

Remark 7.3 The p-dependence of the norm of the triple operator integral appearing
in [35, Remark 5.4] is not made explicit in [35]. Following the proof of [35] in the
bilinear case we find that D(p, 2p, 2p) = O(p12) as p → ∞. This is justified as
follows.

(1) The three triangular truncations used on [35, p. 533] yield a factor of order O(p3).
(2) Estimating the linear terms in decomposition [35, Eqn. (4.3)] yields a factor of

order O(p3), arising from the application of [35, Lemma 4.5], which is of order
O(p3).

(3) Estimating the bilinear terms in decomposition [35, Eqn. (4.5)] yields a factor of
order O(p6). As shown on [35, p. 519], these estimates require two applications
of [35, Lemma 4.5], which is of order O(p3), to estimate the operator Rs of [35].

A detailed account of these facts is contained in [38]. Our proof thus gives a sig-
nificant improvement of estimate for D(p, 2p, 2p) from O(p12) to O(p4) in case
p → ∞. In Sect. 8 we show that the order of D(p, 2p, 2p) is at least O(p2) for
p → ∞.

7.2 Extrapolation

Let x ∈ B(H) be a compact operator. We set the decreasing rearrangement of t ∈
[0,∞) as

μt (x) = inf{‖xp‖ | p ∈ B(H) projection with Tr(p) ≤ t}.

We define M1,∞ as the Marcinkiewicz space of all compact operators x such that

‖x‖M1,∞ := sup
t∈[0,∞)

log(1 + t)−1
∫ t

0
μs(x)ds < ∞.

123



On the best constants of Schur multipliers…

Theorem 7.1 now yields the following extrapolation result, which should be compared
to [2, Corollary 5.6].

Theorem 7.4 For every f ∈ C2(R) we have

‖M f [2] : S2 × S2 → M1,∞‖ < ∞.

Proof Let s > 0 be large, set p = log(s) and set q = p∗ = p(p − 1)−1 to be the
Hölder conjugate of p. Note that as s → ∞ we thus have q ↘ 1. Let x, y ∈ S2 and
set T = M f [2](x, y). Then by Hölder’s inequality, Theorem 7.1, and the fact that the
embedding S2 ↪→ S2q is contractive, we have

∫ s

0
μt (T )dt ≤ s

1
p

(∫ s

0
μt (T )qdt

) 1
q ≤ s

1
p ‖T ‖q � s

1
p D(q, 2q, 2q)‖x‖2q‖y‖2q

≤ s
1
p D(q, 2q, 2q)‖x‖2‖y‖2.

We have

s
1
p D(q, 2q, 2q) ≤ 100s

1
p q∗ = 100e

1
p log(s) p = 100e1 log(s).

So we see that ∫ s

0
μt (T )dt � log(s)‖x‖2‖y‖2.

This proves the extrapolation result. ��
Remark 7.5 The question what the best recipient space for triple operator integrals
of second order divided difference functions is remains open. In particular we do not
know whether for f ∈ C2(R) we have

‖M f [2] : S2 × S2 → S1,∞‖ < ∞,

where S1,∞ is the weak S1-space. Only in case f (s) = s|s|, as well as some simple
modifications of this function, this question is answered in the affirmative [7]. In Sect. 8
we prove lower bounds for Schur multipliers associated with the latter function.

8 Lower bounds and proof of Theorem B

In this section we investigate the lower bounds of Schur multipliers of second order
divided difference functions. In [11] it was already shown that for general f ∈ C2(R)

we do not necessarily have that M f [2] maps S2 × S2 to S1. The counterexample of [11]
is given by the function f (s) = s|s|, s ∈ R (or in fact a perturbation of this function
around zero that makes the function C2). Here we improve on this result by providing
explicit lower bounds for the corresponding problem on Schatten classes. Our proof
gives in fact better asymptotics for p → ∞ than [11], as we explain in Remark 8.5.
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Theorem 8.1 (Theorem B, Part 1) Let f (s) = s|s|, s ∈ R. Then for every 1 < p < ∞
we have

‖M f [2] : S2p × S2p → Sp‖ � p2.

We prove Theorem 8.1 through a couple of lemmas.

Lemma 8.2 Let f (s) = s|s|, s ∈ R. Let q ∈ (0, 1) and let i, j, l ∈ N be such that
i 
= j and j 
= l. Then

lim
k→∞ f [2](qki ,−qkj , qkl) =

{−1 if j < i, and j < l,
1 otherwise.

(8.1)

Proof Let λ0, λ2 > 0 and λ1 < 0, then f (λ0) = λ20, f (λ1) = −λ21, f (λ2) = λ22. First
expand

f [2](λ0, λ1, λ2) = f [1](λ0, λ1) − f [1](λ1, λ2)
λ0 − λ2

= 1

λ0 − λ2

(
f (λ0) − f (λ1)

λ0 − λ1
− f (λ1) − f (λ2)

λ1 − λ2

)

= 1

λ0 − λ2

(
λ20 + λ21

λ0 − λ1
− −λ21 − λ22

λ1 − λ2

)
. (8.2)

We set λ̃1 := −λ1. Then λ0, λ̃1, λ2 > 0 and

f [2](λ0, −̃λ1, λ2) = (λ20 + λ̃21)(̃λ1 + λ2) − (̃λ21 + λ22)(λ0 + λ̃1)

(λ0 − λ2)(λ0 + λ̃1)(̃λ1 + λ2)

= λ20̃λ1 + λ20λ2 + λ̃21λ2 − λ̃21λ0 − λ22λ0 − λ22̃λ1

(λ0 − λ2)(λ0 + λ̃1)(̃λ1 + λ2)

= (λ0 + λ2)̃λ1 + λ0λ2 − λ̃21

(λ0 + λ̃1)(̃λ1 + λ2)
. (8.3)

Let q ∈ (0, 1) as in the statement of the lemma and let k ∈ N. Set λ0 = qki , λ̃1 =
qkj , λ2 = qkl , where i, j, l ∈ N are natural numbers with i 
= j and j 
= l. By
considering each of the 6 possible orderings of λ0, λ̃1, and λ2, we see from (8.3) that

lim
k→∞ f [2](qki ,−qkj , qkl) =

{−1 if j < i and j < l.
1 otherwise.

(8.4)

This concludes the proof. ��
Lemma 8.3 Let f (s) = s|s|, s ∈ R. Let q ∈ (0, 1) and for i, j, l ∈ N, let
φk(i, j, l) := (qki ,−qkj , qkl). Then for all 1 < p < ∞ we have

‖M f [2]◦φk
: S2p(


2(N)) × S2p(

2(N)) → Sp(


2(N))‖ ≤ ‖M f [2] : S2p × S2p → Sp‖.
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Proof Let F, G ⊆ R be finite sets not containing 0. Then F ∪ G is contained in a set
Xδ ⊆ R of the form (−∞,−δ)∪ (δ,∞) for some δ > 0. Note that f [2] is continuous
on Xδ × Xδ × Xδ and so we may apply [8, Theorem 2.2]. By using respectively a
restriction of the domain of a bilinear Schur multiplier, then applying [8, Theorem 2.2]
and then again a restriction of the domain, we get

‖M f [2] : S2p(

2(F), 
2(G)) × S2p(


2(G), 
2(F)) → Sp(

2(F))‖

≤ ‖M f [2] : S2p(

2(F ∪ G)) × S2p(


2(F ∪ G)) → Sp(

2(F ∪ G))‖

≤ ‖M f [2] : S2p(L2(Xδ)) × S2p(L2(Xδ)) → Sp(L2(Xδ))‖
≤ ‖M f [2] : S2p(L2(R)) × S2p(L2(R)) → Sp(L2(R))‖.

Now let F, G ⊆ R be any subsets not containing 0. The union of all vector spaces
Sp(


2(F0), 

2(G0)) with F0 ⊆ F, G0 ⊆ G finite is dense in Sp(


2(F), 
2(G)).

Therefore we have,

‖M f [2] : S2p(

2(F), 
2(G)) × S2p(


2(G), 
2(F)) → Sp(

2(F))‖

= sup
F0⊆F,G0⊆G finite

‖M f [2] : S2p(

2(F0), 


2(G0))

×S2p(

2(G0), 


2(F0)) → Sp(

2(F0))‖

≤ ‖M f [2] : S2p(L2(R)) × S2p(L2(R)) → Sp(L2(R))‖.

Now let

Fk = {qki | i ∈ N}, Gk = −Fk = {−qki | i ∈ N}.

Let δx be as in Sect. 2.4 and define unitary maps

Uk : 
2(N) → 
2(Fk) : δn 
→ δqkn , Vk : 
2(N) → 
2(Gk) : δn 
→ δ−qkn .

By interpreting thesemaps as base change operators, one can relate M f [2]◦φk
and M f [2]

via

M f [2]◦φk
(x, y) = U∗

k M f [2](Uk xV ∗
k , Vk yUk)U

∗
k , x, y ∈ S2(


2(N)).

Therefore

‖M f [2]◦φk
: S2p(


2(N)) × S2p(

2(N)) → Sp(


2(N))‖
= ‖M f [2] : S2p(


2(Fk), 

2(Gk)) × S2p(


2(Gk), 

2(Fk)) → Sp(Fk)‖

≤ ‖M f [2] : S2p(L2(R)) × S2p(L2(R)) → Sp(L2(R))‖.

This concludes the proof. ��
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Proof of Theorem 8.1 Let T ± = Th̃± : S2p(

2(N)) → S2p(


2(N)) be the triangular
truncation given by the Schur multiplier with symbol,

h̃±(λ, μ) = h±(λ − μ), h±(λ) =
{
1 if ± λ < 0,
0 if ± λ ≥ 0,

There exist constants C, D > 0 such that for all 1 < p < ∞,

Cp < ‖T ± : S2p(

2(N)) → S2p(


2(N))‖ < Dp. (8.5)

The lower bound of this inequality, which is well-known and most relevant to us,
follows for instance from the explicit sequence of singular values of the Volterra
operator due to Krein (see [19, Theorem IV.8.2 and IV.7.4]). Now set M+ = T + −T −
and M− = T − − T +. Let P be the projection of S2p(


2(N)) onto the diagonal
elements. Then P is a contraction (see [4, Lemma 2.1]). Note that M± is a Schur
multiplier acting on S2p(


2(N)) with symbol H̃±(λ, μ) = H±(λ−μ), λ, μ ∈ N, and
H±(λ) = ±1 if ±λ < 0. Similarly, P is a Schur multiplier with symbol p(λ, μ) = 1
if λ = μ and p(λ, μ) = 0 otherwise, where again λ,μ ∈ N. In particular, T + =
1
2 (M+ + Id − P). Therefore, from (8.5) we get by the reverse triangle inequality

2Cp − 2 < ‖(M+ + Id − P)‖ − ‖Id − P‖ ≤ ‖M+‖,

where all norms are operator norms of linear maps on S2p(

2(N)). For 1 < p < ∞

we have by (2.2), which also hold for discrete symbols,

1 = ‖H̃+‖
∞(N×N) = ‖M+ : S2(

2(N)) → S2(


2(N))‖
≤ ‖M+ : S2p(


2(N)) → S2p(

2(N))‖.

We thus obtainmax(2Cp−2, 1) ≤ ‖M+ : S2p(

2(N)) → S2p(


2(N))‖.Furthermore,
for any 1 < p < ∞ we have 2

3Cp < max(2Cp − 2, 1). Altogether, we see that for all
1 < p < ∞ we have

2

3
Cp < ‖M+ : S2p(


2(N)) → S2p(

2(N))‖. (8.6)

Now fix 1 < p < ∞. By (8.6) we can for any ε > 0 choose x ∈ S2p(

2(N)) such

that

‖M+(x)‖2p >
2

3
Cp(‖x‖2p − ε). (8.7)

It follows that

‖M−(x∗)M+(x)‖p = ‖M+(x)∗M+(x)‖p = ‖M+(x)‖22p >
4

9
C2 p2(‖x‖2p − ε)2.
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Now for i, j, l ∈ N as in Lemma 8.3 we define φk(i, j, l) := (qki ,−qkj , qkl). Then
the limit in Lemma 8.2 shows that for x, y ∈ S2p(


2(F)) with F ⊆ N finite we have

lim
k

M f [2]◦φk
((1 − P)(y), (1 − P)(x))

= lim
k

∑
λ0,λ1,λ2∈F,
λ0 
=λ1,λ1 
=λ2

( f [2] ◦ φk)(λ0, λ1, λ2)pλ0xpλ1 ypλ2

= M−((1 − P)(y))M+((1 − P)(x))

= M−(y)M+(x). (8.8)

As we are deal with finite dimensional spaces, the limit (8.8) holds in the norm of
Sp(


2(F)). Moreover, as M f [2]◦φk
is bounded uniformly in k by Lemma 8.3, it fol-

lows by density of the span of {S2p(

2(F)) | F ⊆ N finite} in S2p(


2(N)) that this
convergence holds for any x, y ∈ S2p(


2(N)).

We now have the estimates

4

9
C2 p2(‖x‖2p − ε)2 < ‖M−(x∗)M+(x)‖p

≤ lim sup
k

‖M f [2]◦φk
((1 − P)(x)∗, (1 − P)(x))‖p.

Thus by Lemma 8.3 we get,

4

9
C2 p2(‖x‖2p − ε)2 < ‖M f [2] : S2p × S2p → Sp‖‖(1 − P)(x)‖22p

≤ 4‖M f [2] : S2p × S2p → Sp‖‖x‖22p.

Hence

‖M f [2] : S2p × S2p → Sp‖ � p2.

��
Note that if p ↘ 1, then 2p ↘ 2 and hence the norm in (8.6) remains bounded.

Therefore, we need a different proof to treat p ↘ 1, which we present below as a
separate theorem. Sincemany parts of the proof are similar to the proof of Theorem 8.1
we present it in a more concise manner.

Theorem 8.4 (Theorem B, Part 2) Let f (s) = s|s|, s ∈ R. Then for every 1 < p < ∞
we have

‖M f [2] : S2p × S2p → Sp‖ � p∗.

Proof Assume that λ0 > 0, λ1 ≥ 0, λ2 < 0 so that f (λ0) = λ20, f (λ1) = λ21,

f (λ2) = −λ22. In the proof we will take λ1 to be very close to zero and infinitesimally
smaller than both λ0 and |λ2|. As in (8.2), we expand
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f [2](λ0, λ1, λ2) = 1

λ0 − λ2

(
λ20 − λ21

λ0 − λ1
− λ21 + λ22

λ1 − λ2

)
. (8.9)

Take some q ∈ (0, 1) fixed and let k ∈ N. Assume that λ0 = λ0(k) = qki , λ1 =
qk(i+l), λ2 = λ2(k) = −qkl for i, l ∈ N different natural numbers. By our definition
zero is not included in N, and therefore λ1 is strictly smaller than both λ0 and |λ2|.

Again we see from (8.9) that

lim
k→∞ f [2](qki , qk(i+l),−qkl) =

{
1 if i < l,
−1 if l < i .

(8.10)

Now for i, j, l ∈ N, let

φk(i, j, l) = (qki , qk(i+l),−qkl).

Let the diagonal projection P and the Schurmultiplier M+ be defined as in the proof of
Theorem 8.1. Then from the limit (8.10) and the fact that as in the proof of Theorem 8.1
we can show that M f [2]◦φk

is bounded uniformly in k, we can show that

M+(yx) = lim
k

(1 − P)(M f [2]◦φk
(y, x)), y, x ∈ S2p(N),

with convergence in the norm of Sp(N).

We recall from (8.6) and by duality, that there exist C, D > 0 such that for every
1 < p < ∞ we have

Cpp∗ < ‖M+ : Sp(N) → Sp(N)‖ < Dpp∗. (8.11)

For any ε > 0 and 1 < p < ∞ we can choose z ∈ Sp(N) such that

‖M+(z)‖p > Cp(‖z‖p − ε).

Write z = yx with y, x ∈ S2p(N) such that ‖z‖p = ‖y‖2p‖x‖2p. We now have the
estimates

Cp∗(‖z‖p − ε) < ‖M+(y, x)‖p

≤ lim sup
k

‖(1 − P)(M f [2]◦φk
(x, y))‖p

≤ lim sup
k

‖M f [2]◦φk
(x, y)‖p.

Then by [8, Theorem 2.2],

Cp∗(‖z‖p − ε) < ‖M f [2] : S2p × S2p → Sp‖‖x‖2p‖y‖2p

≤ ‖M f [2] : S2p × S2p → Sp‖‖z‖p.
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Hence we have obtained

‖M f [2] : S2p × S2p → Sp‖ � p∗.

��
Remark 8.5 We argue that our result of Theorem 8.1 is fundamentally better than the
methods employed in [11]. In principle, the method of proof in [11] can be adjusted
to yield that ‖M f [2] : S2p × S2p → Sp‖ � pp∗ for the same function f as in
Theorems 8.1 and 8.4. Indeed, the idea of [11] is to first prove the reduction inequality

‖M f [2] : S2p × S2p → Sp‖ ≥ sup
λ1∈R

‖M f [2]( · ,λ1, · ) : Sp → Sp‖.

The right hand side has order O(pp∗), which can be seen from Theorem 4.1 for
instance. So the reduction of [11] is not efficient enough to capture the optimal
constants.

Appendix A: Proof of Theorem 6.5 following [15]

A.1 Dyadic definitions and notations

Wefirst give a brief overview over the dyadic notions used in the proof of Theorem 6.5.
Unless noted otherwise, all definitions are from [15, Section 2.2]. While the concepts
introduced in this section are well-defined on R

d , we restrict our discussion to d = 1,
as it simplifies the notation and is in fact the only relevant case to our special case of
Theorem 6.5.

See e.g. [15, Section 2.2] for the definitions on R
d for d > 1.

Dyadic grids. The standard dyadic grid on R is defined as

D0 := {2−k([0, 1) + m) | k, m ∈ Z}.

Let � = {0, 1}Z and equip � with a probability measure such that its coordinates
are independent and uniformly distributed on {0, 1}. The random dyadic grid on R

associated with ω = (ωk)k∈Z ∈ � is defined as

Dω := {Q + ω | Q ∈ D0},
Q + ω := Q +

∑
k∈Z

2−k<|Q|

2−kωk,

where |Q| denotes the length of the cube Q in R. By a dyadic grid D we refer to
D = Dω for some ω ∈ �. For Q ∈ D, D dyadic grid, define Q(k) as the cube
R ∈ D such that Q ⊂ R and 2k |Q| = |R|. Further set chD(Q) := {Q′ ∈ D | Q′

�
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Q and there exists no Q′′ ∈ D such that Q′
� Q′′

� Q}. We refer to this set as the
children of Q in D. The index denoting the dyadic grid may be omitted.

Haar functions. Let D be a dyadic grid on R and let Q ∈ D. Let Qleft (resp. Qright)
denote the left (resp. right) half of Q. For η ∈ {0, 1}, we define the Haar function

hη
Q :=

{
|Q|−1/21Q, η = 0,

|Q|−1/2(1Qleft − 1Qright ), η = 1.

To simplify the notation, we set hQ := h1
Q . Note that

∫
R

hQ(x)dx = 0, hence
we refer to hQ as a cancellative Haar function. Furthermore, note that for any Q0 ∈
D, an orthonormal basis of L2(Q0) is given by the family {h0

Q0
} ∪ {hQ | Q ⊆

Q0 dyadic cube}.
From the Haar functions we construct the dyadic martingale difference of a locally

integrable function f as (DQ f )Q, where

DQ f = 〈 f 〉Qleft 1Qleft + 〈 f 〉Qright 1Qright − 〈 f 〉Q1Q = 〈 f , hQ〉hQ,

〈 f 〉Q denotes the average of f over a region Q, and 〈 f , g〉 := ∫
R

f (x)g(x)dx .Further
define

�l
Q f :=

∑
R∈D

R(l)=Q

DR f =
∑
R∈D

R(l)=Q

∑
R′∈chD(R)

(〈 f 〉R′ − 〈 f 〉R)1R′ .

Shifts, paraproducts, and representation of Calderón–Zygmund Operators. The
proof of Theorem 6.5 heavily relies on a dyadic representation theorem for Calderón–
Zygmund operators, see [30]. For the convenience of the reader, we repeat the relevant
definitions here; see [15] for the general n-linear case.

Let X be a Banach space and D a dyadic grid on R. A bilinear dyadic shift Sk
D of

complexity k = (k1, k2, k3) ∈ N
3
0 is defined on f , g ∈ L∞

c (R, X) as

Sk
D( f , g) :=

∑
Q∈D

Ak
Q( f , g), (A.1)

Ak
Q( f , g) :=

∑
I1,I2,I3⊆Q

|I j |=2−k j |Q|

αI1,I2,I3,Q〈 f , h̃ I1〉〈g, h̃ I2〉h̃ I3 , (A.2)

where exactly one of h̃ I1 , h̃ I2 , h̃ I3 is a non-cancellative Haar function and the other
two are cancellative Haar functions. The index corresponding to the cancellative Haar
function is denoted by j0. Furthermore, the coefficients αI1,I2,I3,Q ∈ C must satisfy

|αI1,I2,I3,Q | ≤ 1

|Q|2
3∏

j=1

|I j |1/2. (A.3)
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A bilinear paraproduct is defined on f , g ∈ L∞
c (R) as

πD( f , g) :=
∑
Q∈D

aQ〈 f , h̃1,Q〉〈g, h̃2,Q〉h̃3,Q,

where (h̃1,Q, h̃2,Q, h̃3,Q) are such that there is exactly one j0 ∈ {1, 2, 3} such that
for all Q ∈ D we have h̃ j0,Q = hQ and h̃ j,Q = 1Q/|Q| for all j 
= j0. The scalar
sequence (aQ)Q∈D is such that

sup
Q0∈D

⎛
⎜⎜⎝ 1

|Q0|
∑
Q∈D

Q⊂Q0

|aQ |2
⎞
⎟⎟⎠

1/2

≤ 1.

Note that wewill usually suppress the dyadic grid from the notation and refer to dyadic
shifts and paraproducts as Sk and π, respectively.

Let T be a bilinear Calderón–Zygmund operator and f , g, h ∈ L∞
c (R). Then

〈T ( f , g), h〉 = CT Eω

∑
k∈N3

0

∑
u

2−maxi ki /2〈U k
Dω,u( f , g), h〉, (A.4)

where CT is a constant depending only on T , the sum over u is finite, and Dω is
a random dyadic grid. For max j k j > 0, U k

Dω,u denotes a bilinear dyadic shift of

complexity k, whereas for max j k j = 0, U k
Dω,u denotes either a bilinear dyadic shift

of complexity 0 or a bilinear paraproduct. Note that by Equation (4.4) in [30], the
paraproducts in this representation are constructed from a scalar sequence

aQ = CT 〈T (1, 1), hQ〉,

hence T (1, 1) = 0 implies that the paraproducts in the representation of T vanish.
This applies in particular to the situation of Remark 6.4, where we have

〈T ( f , g), h〉 = CT Eω

∑
k∈N3

0

∑
u

2−maxi ki /2〈Sk
Dω,u( f , g), h〉. (A.5)

A.2 Relevant inequalities

Before presenting the proof of Theorem 6.5, we first list the estimates that will be
used, alongside the constants they introduce.

Following [15], it is sufficient to consider the following special case of the
decoupling estimate [22, Theorem 6].

Theorem A.1 (Decoupling Inequality [22, Theorem 6]) Let p ∈ (1,∞), let X be a
UMD space with UMD constant βp,X , and let D be a dyadic grid. Further define the
following:
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• D j,k := {Q ∈ D | |Q| = 2m(k+1)+ j for some m ∈ Z} for j, k ∈ Z fixed,

• the probability space VQ := (Q,Leb(Q), λQ), where Leb(Q) denotes the
Lebesgue measurable subsets of Q and λQ the normalised restriction of the
Lebesgue measure to Q,

• the product probability space V := ∏
Q∈D VQ with measure ν and elements

y = (yQ)Q∈D.

Let (εQ)Q∈D be a Rademacher sequence. Let ( fQ)Q∈D be a sequence of functions
R → X such that for all Q ∈ D, fQ is (1) supported on Q, (2) constant on every
Q′ ∈ chD(Q), and (3) 〈 fQ〉Q = 0 holds. Then

1

β
p
p,X

E

∫
R

∫
V

‖
∑

Q∈D j,k

εQ1Q(x) fQ(yQ)‖p
X dν(y)dx

≤
∫
R

‖
∑

Q∈D j,k

fQ(x)‖p
X dx ≤ β

p
p,X E

∫
R

∫
V

‖
∑

Q∈D j,k

εQ1Q(x) fQ(yQ)‖p
X dν(y)dx .

(A.6)

This inequality also holds when replacing D j,k with D.

Theorem A.2 (Kahane–Khintchine inequality, [23, Theorem 3.2.23]) Let (εn)n be
a Rademacher sequence on a probability space �, and let X be a Banach space.
For p, q ∈ (0,∞) there exists κp,q < ∞ such that for all N ∈ N and x1, . . . , xN ∈ X
we have

‖
N∑

n=1

εn xn‖L p(�,X) ≤ κp,q‖
N∑

n=1

εn xn‖Lq (�,X).

Remark A.3 Relevant in this section is the case p = 2, q > 1. Following the proof
of Theorem A.2 in [23], the constant κp,q is the same as in [23, Theorem 3.2.17]

for p, q ≥ 1, namely κp,q = 21+1/qe
(
1 + 2 p

q

)
. In particular, we thus have κ2,q ≤

12(1 + 4/q) ≤ 60 for all q ≥ 1.

The following theorem has been specialised to our dyadic setting. Stein’s inequality
is originally due to Bourgain, and for the explicit constant we refer to the proof in [17]
which is also contained in the monograph [23].

Theorem A.4 (Stein’s inequality, Eqn. (2.3) of [15], Theorem 4.2.23 of [23], or
Lemma 34 of [17]) Let X be a UMD space with UMD constant βp,X and let D
be a dyadic grid. Let ( fQ)Q∈D be a sequence in L1

loc(X) such that supp fQ ⊆ Q,

Q ∈ D, and such that only finitely many of them are nonzero, and let p ∈ (1,∞).

Then

E‖
∑
Q∈D

εQ〈 fQ〉Q1Q‖L p(R,X) ≤ βp,X E‖
∑
Q∈D

εQ fQ‖L p(R,X).
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Theorem A.5 (Kahane contraction principle, [23, Proposition 3.2.10]) Let (εn)n be a
Rademacher sequence on a probability space �, (an)n a finite scalar sequence, and
(xn)n a finite sequence in a Banach space X . Let 1 ≤ p ≤ ∞. Then

‖
N∑

n=1

anεn xn‖L p(�;X) ≤ max
n

|an|‖
N∑

n=1

εn xn‖L p(�;X).

A.3 Proof of Theorem 6.5

We repeat the proof of Theorem 3.17 in [15], specialised to the bilinear case for
d = 1 and T (1, 1) = 0 (in the sense of Remark 6.4). By the representation theorem
introduced in Appendix A.1, the proof reduces to the following theorem from [15,
Section 4].

Theorem A.6 Let p, p1, p2 ∈ (1,∞) such that 1/p1 + 1/p2 = 1/p. Set p3 := p∗.
Let Sk be a bilinear dyadic shift of complexity k = (k1, k2, k3) ∈ N

3
0 and let f j ∈

L∞
c (R, Sp j ), j = 1, 2, 3. Define the associated trilinear form

�Sk ( f1, f2, f3) =
∑
Q∈D

∑
I1,I2,I3⊆Q

|I j |=2−k j |Q|

αI1,I2,I3,Qτ
(
〈 f1, h̃ I1〉〈 f2, h̃ I2〉〈 f3, h̃ I3〉

)
,

where τ denotes the trace. It then holds that

|�Sk ( f1, f2, f3)| � C(p, p1, p2)
3∏

j=1

‖ f j‖L p j (R,Sp j )
. (A.7)

Proof The trilinear form is first rewritten as

�Sk ( f1, f2, f3) =
κ∑

i=0

�Sk
i
( f1, f2, f3), (A.8)

�Sk
i
( f1, f2, f3) =

∑
K∈Di,κ

∑
L1,L2,L3∈D

L
(l j )

j =K

bL1,L2,L3,K τ

⎛
⎝ 3∏

j=1

〈 f j , h′
L j

〉
⎞
⎠ , (A.9)

bL1,L2,L3,K =
∑

Q1,Q2,Q3∈D
Q

(k j −l j )

j =L j

aQ1,Q2,Q3,K

3∏
j=1

|Q j |1/2
|L j |1/2 , (A.10)

where 0 ≤ l j ≤ k j and κ = max k j .This is a new shift operator with h′
L j

∈ {h0
L j

, hL j }
such that theremaybemore than two indices j such that their associatedHaar functions
are cancellative, whereas in (A.2), the Haar functions are cancellative for exactly two
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indices. Furthermore, the construction is such that if h′
L j

is not cancellative, then
l j = 0. For details on how to construct this new shift, see [15].

The proof now proceeds as follows. First, boundedness is shown in the case where
all Haar functions h′

L j
are cancellative. In the second case, where not all Haar functions

are cancellative, the fact h′
L j

= h0
L j

⇒ l j = 0 allows us to reduce the trilinear form
(A.9) to a bilinear form with only cancellative Haar functions. For this new bilinear
form, boundedness follows by the same proof method as in the first case.

Case 1. Let 0 ≤ i ≤ κ be such that all associated Haar functions in (A.9) are
cancellative. Note that for L(l3)

3 ∈ Di,κ , orthogonality of the Haar functions yields

∑
K∈Di,κ

�
l3
K hL3 =

∑
K∈Di,κ

∑
L∈D

L(l3)=K

DL hL3 =
∑

K∈Di,κ

∑
L∈D

L(l3)=K

〈hL3 , hL〉hL = hL3 .

Using the decoupling inequality from Theorem A.1, we thus have

‖Sk
i ( f1, f2)‖L p(R,Sp)

= ‖
∑

K∈Di,κ

∑
L1,L2,L3∈D

L
(l j )

j =K

bL1,L2,L3,K 〈 f1, hL1〉〈 f2, hL2〉hL3‖L p(R,Sp)

≤ βp,Sp (E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)
∑

L1,L2,L3∈D
L

(l j )

j =K

bL1,L2,L3,K

2∏
j=1

〈 f j , hL j 〉hL3(yK )‖p
Sp

dν(y)dx)1/p.

We can rewrite the inner sum in the integral by using 〈 f j , hL j 〉 = 〈�l j
K f j , hL j 〉.

Indeed,

〈�l j
K f j , hL j 〉 =

∑
L∈D

L(l j )=K

〈DL f j , hL j 〉 =
∑
L∈D

L(l j )=K

〈 f j , hL〉〈hL , hL j 〉 = 〈 f j , hL j 〉.

Hence we can write

∑
L1,L2,L3∈D

L
(l j )

j =K

bL1,L2,L3,K

2∏
j=1

〈 f j , hL j 〉hL3(yK )

=
∑

L1,L2,L3∈D
L

(l j )

j =K

bL1,L2,L3,K

2∏
j=1

〈�l j
K f j , hL j 〉hL3(yK )

123



On the best constants of Schur multipliers…

=
∫

K 2

∑
L1,L2,L3∈D

L
(l j )

j =K

bL1,L2,L3,K

2∏
j=1

�
l j
K f j (z j )hL j (z j )hL3(yK )dz.

By setting

bK (yK , z) = |K |2
∑

L1,L2,L3∈D
L

(l j )

j =K

bL1,L2,L3,K

2∏
j=1

hL j (z j )hL3(yK ),

we have

∫
K 2

∑
L1,L2,L3∈D

L
(l j )

j =K

bL1,L2,L3,K

2∏
j=1

�
l j
K f j (z j )hL j (z j )hL3(yK )dz

= 1

|K |2
∫

K 2
bK (yK , z)

2∏
j=1

�
l j
K f j (z j )dz =

∫
V2

bK (yK , zK )

2∏
j=1

�
l j
K f j (z j,K )dν(z),

where V and ν are as defined in Theorem A.1. We can use the triangle inequality and
as V2 is a probability space then apply Jensen’s inequality to show

‖Sk
i ( f1, f2)‖L p (R,Sp )

≤ βp,Sp

⎛
⎝E ∫

R

∫
V

‖
∫
V2

∑
K∈Di,κ

εK 1K (x)bK (yK , zK )

2∏
j=1

�
l j
K f j (z j,K )dν(z)‖p

Sp
dν(y)dx

⎞
⎠

1/p

≤ βp,Sp

⎛
⎝E ∫

R

∫
V

⎛
⎝∫

V2
‖
∑

K∈Di,κ

εK 1K (x)bK (yK , zK )

2∏
j=1

�
l j
K f j (z j,K )‖Sp dν(z)

⎞
⎠

p

dν(y)dx

⎞
⎠

1/p

≤ βp,Sp

⎛
⎝E ∫

R

∫
V

∫
V2

‖
∑

K∈Di,κ

εK 1K (x)bK (yK , zK )

2∏
j=1

�
l j
K f j (z j,K )‖p

Sp
dν(z)dν(y)dx

⎞
⎠

1/p

.

Note that by construction, |bK (yK , zK )| ≤ 1. Indeed, by unfolding definitions and
applying estimate (A.3) we have

|bK (yK , zK )|

≤ |K |2
∑

L1,L2,L3∈D
L

(l j )

j =K

|bL1,L2,L3,K |
2∏

j=1

|hL j (z j,K )||hL3(yK )|
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≤|K |2
∑

L1,L2,L3∈D
L

(l j )

j =K

∑
Q1,Q2,Q3∈D
Q

(k j −l j )

j =L j

|aQ1,Q2,Q3,K |
3∏

j=1

|Q j |1/2
|L j |1/2

1L1(z1,K )

|L1|1/2
1L2 (z2,K )

|L2|1/2
1L3(yK )

|L3|1/2

≤
∑

L1,L2,L3∈D
L

(l j )

j =K

∑
Q1,Q2,Q3∈D
Q

(k j −l j )

j =L j

3∏
l=1

|Ql |1/2
3∏

j=1

|Q j |1/2
|L j | 1L1(z1,K )1L2 (z2,K )1L3(yK ).

Since the size of |Q j | relative to |L j | is fixed, we can rewrite this expression as

∑
L1,L2,L3∈D

L
(l j )

j =K

∑
Q1,Q2,Q3∈D
Q

(k j −l j )

j =L j

3∏
l=1

|Ql |1/2
3∏

j=1

|Q j |1/2
|L j | 1L1(z1,K )1L2(z2,K )1L3(yK ).

=
∑

L1,L2,L3∈D
L

(l j )

j =K

∑
Q1,Q2,Q3∈D
Q

(k j −l j )

j =L j

3∏
j=1

2l j −k j 1L1(z1,K )1L2(z2,K )1L3(yK ).

Finally, we use

∑
Q1,Q2,Q3∈D
Q

(k j −l j )

j =L j

1 =
3∏

j=1

2k j −l j

and the disjointness of the children of K to conclude

∑
L1,L2,L3∈D

L
(l j )

j =K

∑
Q1,Q2,Q3∈D
Q

(k j −l j )

j =L j

3∏
j=1

2l j −k j 1L1(z1,K )1L2(z2,K )1L3(yK )

=
∑

L1,L2,L3∈D
L

(l j )

j =K

3∏
j=1

2k j −l j 2l j −k j 1L1(z1,K )1L2(z2,K )1L3(yK )

=
∑

L1,L2,L3∈D
L

(l j )

j =K

1L1(z1,K )1L2(z2,K )1L3(yK )

= 1K (z1,K )1K (z2,K )1K (yK )

≤ 1.
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Letting ‖(xk)
K
k=1‖Rad(Sp) :=

(
E‖∑K

k=1 εk xk‖2Sp

)1/2
, we can now finish the proof of

this case as follows. From the previous estimates and [15, Lemma 4.1], it follows that

‖Sk
i ( f1, f2)‖L p(R,Sp)

≤ βp,Sp

⎛
⎝E

∫
R

∫
V

∫
V2

‖
∑

K∈Di,κ

εK 1K (x)bK (yK , zK )

2∏
j=1

�
l j
K f j (z j,K )‖p

Sp
dν(z)dν(y)dx

⎞
⎠
1/p

≤ βp,Sp

⎛
⎝∫

R

∫
V

∫
V2

2∏
j=1

‖(1K (x)�
l j
K f j (z j ,K ))K∈Di,κ

‖p
Rad(Sp j )

dν(z)dν(y)dx

⎞
⎠
1/p

.

Using that V is a probability space and applying Hölder’s inequality yields

βp,Sp

⎛
⎝∫

R

∫
V

∫
V2

2∏
j=1

‖(1K (x)�
l j
K f j (z j,K ))K∈Di,κ ‖p

Rad(Sp j )
dν(z)dν(y)dx

⎞
⎠

1/p

= βp,Sp

⎛
⎝∫

R

∫
V2

2∏
j=1

‖(1K (x)�
l j
K f j (z j,K ))K∈Di,κ ‖p

Rad(Sp j )
dν(z)dx

⎞
⎠

1/p

≤ βp,Sp

2∏
j=1

(∫
R

∫
V2

‖(1K (x)�
l j
K f j (z j,K ))K∈Di,κ ‖p j

Rad(Sp j )
dν(z)dx

)1/p j

.

By unfolding the definition of ‖ · ‖Rad, we can apply the Kahane–Khintchine equality
to obtain

βp,Sp

2∏
j=1

(∫
R

∫
V2

‖(1K (x)�
l j
K f j (z j,K ))K∈Di,κ ‖p j

Rad(Sp j )
dν(z)dx

)1/p j

= βp,Sp

2∏
j=1

⎛
⎝∫

R

∫
V2

(E‖
∑

K∈Di,κ

εK 1K (x)�
l j
K f j (z j,K )‖2Sp j

)p j /2dν(z)dx

⎞
⎠

1/p j

≤ βp,Sp

2∏
j=1

κ2,p j

⎛
⎝∫

R

∫
V2

E‖
∑

K∈Di,κ

εK 1K (x)�
l j
K f j (z j,K )‖p j

Sp j
dν(z)dx

⎞
⎠

1/p j

.

Finally, Fubini’s theorem and the decoupling estimate yield

βp,Sp

2∏
j=1

κ2,p j

⎛
⎝∫

R

∫
V2

E‖
∑

K∈Di,κ

εK 1K (x)�
l j
K f j (z j,K )‖p j

Sp j
dν(z)dx

⎞
⎠

1/p j

= βp,Sp

2∏
j=1

κ2,p j

⎛
⎝E

∫
R

∫
V2

‖
∑

K∈Di,κ

εK 1K (x)�
l j
K f j (z j,K )‖p j

Sp j
dν(z)dx

⎞
⎠

1/p j
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≤ βp,Sp

2∏
j=1

κ2,p j βp j ,Sp j
‖ f j‖L p j (R,Sp j )

,

concluding the proof of Case 1. Altogether, this case yields the estimate

‖Sk
i ( f1, f2)‖L p(R,Sp) � βp,Sp

2∏
j=1

κ2,p j βp j ,Sp j
.

Case 2. Let 0 ≤ i ≤ κ be such that one Haar function in (A.9) is not cancellative.
We assume that h′

L2
= h0

L2
and h′

L j
= hL j , j = 1, 3; the estimates for the other

cases follow in the same manner. Note that (A.9) has been constructed such that this
implies l2 = 0, hence L2 = K ; see [15] for details. We use the decoupling estimate
(Theorem A.1) to estimate

‖Sk
i ( f1, f2)‖L p(R,Sp) = ‖

∑
K∈Di,κ

∑
L1,L3∈D
L

(l j )

j =K

bL1,L3,K 〈 f1, hL1 〉|K |1/2〈 f2〉K hL3‖L p(R,Sp)

≤ βp,Sp

⎛
⎝E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)〈ϕK ,y〉K ‖p
Sp

dν(y)dx

⎞
⎠
1/p

,

where the function ϕK ,y : R → Sp is defined as

ϕK ,y(x) := |K |1/2
∑

L1,L3∈D
L

(l j )

j =K

bL1,L3,K 〈 f1, hL1〉 f2(x)hL3(yK ).

We can now apply Stein’s inequality (Theorem A.4) with respect to x ∈ R to obtain

βp,Sp

⎛
⎝E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)〈ϕK ,y〉K ‖p
Sp

dν(y)dx

⎞
⎠

1/p

≤ β2
p,Sp

⎛
⎝E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)ϕK ,y(x)‖p
Sp

dν(y)dx

⎞
⎠

1/p

.

By Hölder’s inequality we can further estimate

⎛
⎝E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)ϕK ,y(x)‖p
Sp

dν(y)dx

⎞
⎠

1/p
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≤ (E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)|K |1/2
∑

L1,L3∈D
L

(l j )

j =K

bL1,L3,K 〈 f1, hL1〉hL3(yK )‖p
Sp1

‖ f2(x)‖p
Sp2

dν(y)dx)1/p

≤ (E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)|K |1/2
∑

L1,L3∈D
L

(l j )

j =K

bL1,L3,K 〈 f1, hL1〉hL3(yK )‖p1
Sp1

×dν(y)dx)1/p1‖ f2‖L p2 (R,Sp2 ).

We now proceed as in Case 1 to estimate the remaining term. We use

|K |1/2
∑

L1,L3∈D
L

(l j )

j =K

bL1,L3,K 〈 f1, hL1〉hL3(yK ) =
∫
V

bK (yk, zK )�
l1
K f1(zK )dν(z),

where we define

bK (yk, zK ) = |K |3/2
∑

L1,L3∈D
L

(l j )

j =K

bL1,L3,K hL1(z)hL3(yK ),

and estimate the remaining integral as

(
E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)|K |1/2
∑

L1,L3∈D
L

(l j )

j =K

bL1,L3,K 〈 f1, hL1 〉hL3 (yK )‖p1
Sp1

dν(y)dx

)1/p1

=
⎛
⎝E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)

∫
V

bK (yk , zK )�
l1
K f1(zK )dν(z)‖p1

Sp1
dν(y)dx

⎞
⎠
1/p1

≤
⎛
⎝E

∫
R

∫
V

∫
V

‖
∑

K∈Di,κ

εK 1K (x)bK (yk , zK )�
l1
K f1(zK )‖p1

Sp1
dν(z)dν(y)dx

⎞
⎠
1/p1

Using Fubini’s theorem and the Kahane contraction principle (Theorem A.5) we
further have

⎛
⎝E

∫
R

∫
V

∫
V

‖
∑

K∈Di,κ

εK 1K (x)bK (yk , zK )�
l1
K f1(zK )‖p1

Sp1
dν(z)dν(y)dx

⎞
⎠
1/p1

=
⎛
⎝∫

R

∫
V

∫
V

E‖
∑

K∈Di,κ

εK 1K (x)bK (yk , zK )�
l1
K f1(zK )‖p1

Sp1
dν(z)dν(y)dx

⎞
⎠
1/p1
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≤
⎛
⎝∫

R

∫
V

∫
V

max
K∈Di,κ

|bK (yk , zK )|E‖
∑

K∈Di,κ

εK 1K (x)�
l1
K f1(zK )‖p1

Sp1
dν(z)dν(y)dx

⎞
⎠
1/p1

.

As in Case 1, we have the pointwise estimate |bK (yk, zK )| ≤ 1, since

|bK (yk , zK )| ≤ |K |3/2
∑

L1,L3∈D
L

(l j )

j =K

|bL1,L3,K ||hL1(z)||hL3(yK )|

= |K |3/2
∑

L1,L3∈D
L

(l j )

j =K

|bL1,L3,K | 1L1 (z)

|L1|1/2
1L3(yK )

|L3|1/2

≤ |K |3/2
∑

L1,L3∈D
L

(l j )

j =K

∑
Q1,Q2,Q3∈D
Q

(k j −l j )

j =L j

|aQ1,Q2,Q3,K |
3∏

j=1

|Q j |1/2
|L j |1/2

1L1(z)

|L1|1/2
1L3 (yK )

|L3|1/2

≤
∑

L1,L3∈D
L

(l j )

j =K

∑
Q1,Q2,Q3∈D
Q

(k j −l j )

j =L j

3∏
j=1

|Q j |
|L j | 1L1(z)1L3(yK )

≤ 1.

Using the decoupling estimate (Theorem A.1) we thus conclude⎛
⎝∫

R

∫
V

∫
V

max
K∈Di,κ

|bK (yk , zK )|E‖
∑

K∈Di,κ

εK 1K (x)�
l1
K f1(zK )‖p1

Sp1
dν(z)dν(y)dx

⎞
⎠
1/p1

≤
⎛
⎝∫

R

∫
V

∫
V

E‖
∑

K∈Di,κ

εK 1K (x)�
l1
K f1(zK )‖p1

Sp1
dν(z)dν(y)dx

⎞
⎠
1/p1

=
⎛
⎝E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)�
l1
K f1(zK )‖p1

Sp1
dν(z)dx

⎞
⎠
1/p1

≤ βp1,Sp1

∫
R

‖ f1‖p1
Sp1

dx .

The second case hence yields the estimate

‖Sk
i ( f1, f2)‖L p(R,Sp) � β2

p,Sp
βp1,Sp1

in the case where the index of the non-cancellative Haar function is j0 = 2.
Boundedness of the cases j0 = 1, 3 already follows from this result by cyclic

permutation of the functions in the trilinear estimate (A.7) for �Sk
i
. However, we can

improve the resulting constant as follows.
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Case 2 is self-improving using cyclic permutations. Let j0 = 1 denote the index
of the non-cancellative Haar function. By applying the decoupling estimate, Stein’s
inequality, and Hölder’s inequality in the same manner as in the j0 = 2 case, we
obtain

‖Sk
i ( f1, f2)‖L p(R,Sp) ≤ β2

p,Sp
‖ f1‖L p1 (R,Sp1 )

×(E

∫
R

∫
V

‖
∑

K∈Di,κ

εK 1K (x)|K |1/2
∑

L2,L3∈D
L

(l j )

j =K

bL2,L3,K 〈 f2, hL2 〉hL3(yK )‖p2
Sp2

dν(y)dx)1/p2 .

Proceeding to estimate the remaining integral as in the j0 = 2 case yields

‖Sk
i ( f1, f2)‖L p(R,Sp) ≤ β2

p,Sp
βp2,Sp2

‖ f1‖L p1 (R,Sp1 )‖ f2‖L p2 (R,Sp2 ).

In order to optimise the behaviour of this constant as p ↘ 1, we now apply the
following permutation argument.

By writing out the trilinear form associated with Sk
i , see (A.9), where we add the

index of the non-cancellative Haar function as a superscript, we see that

�
( j0=1)
Sk

i
( f1, f2, f3) =

∑
K∈Di,κ

∑
L2,L3∈D
L

(l j )

j =K

bL2,L3,K τ
(
〈 f1, h0

K 〉〈 f2, hL2〉〈 f3, hL3〉
)

=
∑

K∈Di,κ

∑
L2,L3∈D
L

(l j )

j =K

bL2,L3,K τ
(
〈 f3, hL3〉〈 f1, h0

K 〉〈 f2, hL2〉
)

= �
( j0=2)

S
′k
i

( f3, f1, f2),

where S
′k
i is a dyadic shift with j0 = 2 and the same scalar sequence (bL j ,K ) as Sk

i
up to renumbering. Noting that βp∗,Sp∗ = βp,Sp (see e.g. [23]), we can thus apply the
estimate of the j0 = 2 case to conclude

|�( j0=1)
Sk

i
( f1, f2, f3)| = |�( j0=2)

S
′k
i

( f3, f1, f2)| � β2
p2,Sp2

βp,Sp

3∏
i=1

‖ fi‖L pi (R,Spi )
,

and by similar cyclic permutation arguments

|�( j0=2)
Sk

i
( f1, f2, f3)| = |�( j0=1)

S
′k
i

( f2, f3, f1)| � β2
p1,Sp1

βp,Sp

3∏
i=1

‖ fi‖L pi (R,Spi )
,

|�( j0=3)
Sk

i
( f1, f2, f3)| = |�( j0=1)

S
′k
i

( f3, f1, f2)| � β2
p2,Sp2

βp1,Sp1

3∏
i=1

‖ fi‖L pi (R,Spi )
,
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|�( j0=3)
Sk

i
( f1, f2, f3)| = |�( j0=2)

S
′k
i

( f2, f3, f1)| � β2
p1,Sp1

βp2,Sp2

3∏
i=1

‖ fi‖L pi (R,Spi )
,

where S
′k
i may denote different shifts in each line.

Combining all cases, where we consider all possible locations of the non-
cancellative Haar function in Case 2, we conclude (using κ2,q ≤ 60, see Remark A.3)

C(p, p1, p2) � βpβp1βp2 + +min(β2
p1βp, β

2
pβp1) + min(β2

p2βp, β
2
pβp2)

+min(β2
p2βp1 , β

2
p1βp2),

where we set βp := βp,Sp . Note that by [37], we have βp,Sp = pp∗, hence this
notation agrees with the notation of the constant C in (6.9) used in the main body of
this paper. ��
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