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Figure 1: Snapshot of the client material manager with different estimated material assets applied to the above 3D models
(Lamborghini [Performance 5 20] and Ferrari [vincent091036 2024])

ABSTRACT
Accurately replicating the appearance of real-world materials in
computer graphics is a complex task due to the intricate interac-
tions between light, reflectance, and geometry. In this paper we
address the challenges of material representation, acquisition, and
editing by leveraging the potential of deep learning algorithms our
framework provide. To enable the visualization and generation of
material assets from single or multi-view images, allowing for the
estimation of materials from real world objects. Additionally, a ma-
terial asset exporter, enabling the export of materials in widely used
formats and facilitating easy editing using common content creator
tools. The proposed framework enables designers to effectively
collaborate and seamlessly integrate deep learning-based material
estimation models into their design pipelines using traditional con-
tent creation tools. An analysis of the performance and memory
usage of material assets at various texture resolutions shows that
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our framework can be used plausibly according to the needs of the
end-user.

CCS CONCEPTS
• Computing methodologies → Reflectance modeling; Artifi-
cial intelligence; Image-based rendering; • Human-centered
computing → Visualization systems and tools.
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1 INTRODUCTION
Human perception of materials is affected by how light interacts
with objects (reflection, scattering, and absorption), altering their
appearance based on material properties like color and roughness.
Therefore, photo-realistic rendering is crucial across various fields
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Figure 2: The architecture of our material predictor framework

such as visual effects, architectural modeling, cultural heritage, com-
puter games, movies and automotive design. However, accurately
replicating these material characteristics from real-world objects
is challenging due to the lack of a universal material model. This
results in significant issues in rendering systems, such as the need
for uniform material representations, high costs, and additionally,
material models are difficult to edit for artists and require substan-
tial memory storage.
The appearance of real-world objects is a complex phenomenon
resulting from intricate interactions between light, reflectance, and
geometry. Lightweight appearance capture [Deschaintre et al. 2018;
Han et al. 2023; Henzler et al. 2021] aims to extract reflectance func-
tions from a limited number of photographs, which is a challenging
task due to the ill-posed nature of the problem. This is because mul-
tiple reflectance properties can produce the same visual output in an
image. Nevertheless, deep learning methods have shown promise
in automatically learning effective priors from data, offering a new
pathway to tackling this complex problem. Recent advancements in
deep learning-based multi-view methods, such as Neural Radiance
Fields (NeRF) [Mildenhall et al. 2020] and 3D Gaussians [Kerbl et al.
2023], have made significant progress in novel view synthesis, 3D
reconstruction, and inverse rendering. Extensions to these meth-
ods [Boss et al. 2021; Jiang et al. 2023; Liu et al. 2023; Saito et al.
2024; Zarzar and Ghanem 2023] enable the decomposition of the
estimated appearance into lighting and material properties, leading
to more accurate and realistic rendering of scenes from different
viewpoints. Single image or multi-view image deep learning based
material asset estimation based on different shading models have
opened up new opportunities for designers to generate material
assets from real-world sources. However, single and multi-view
material asset estimation methods like [Henzler et al. 2021; Jiang
et al. 2023] have not been widely adopted in industrial applications.
To bridge this gap, we propose a comprehensive framework that en-
ables visualization, editing, and export of material assets. With this

framework, designers can collaborate effectively, harnessing the
advantages of these methods to perform their work more efficiently.
The main contributions of this paper are:

• A framework that utilizes deep learning algorithms to visu-
alize and generate material assets from either a single image
or multiple view images. The framework allows for the edit-
ing of material assets generated from single images, which
can be applied to various scenes. For multi-view material
estimation, the generated atlases can be edited and applied
specifically to the scene from which they were generated.

• Material asset exporter that offers the capability to export
materials in widely used formats (.png, .jpg, and .mtx ) and
hence, the exported materials can be easily edited using
common content creator tools.

2 RELATEDWORK
Material acquisition is a critical aspect of creating realistic scenes
[Guarnera et al. 2016]. Material management systems like Substance
[Allegorithmic 2018] provide tools for organizing, accessing, and
sharing materials, streamlining workflows for designers. Open stan-
dard formats like MaterialX [Foundation 4 24] have democratized
the exchange process by enabling the representation, transfer, and
management of materials across different content creation engines.

In the realm of single-image deep learning, methods such as [Ait-
tala et al. 2016] have leveraged deep learning to extract material
maps from 2D images. While single-image-based SVBRDF estima-
tion like [Deschaintre et al. 2018] has shown promise, it is limited
to low resolutions due to memory constraints. Advances in genera-
tive approaches, such as [Henzler et al. 2021], have allowed for the
creation of high-resolution material assets, with recent works [Guo
et al. 2023] aiming to further enhance quality.

Furthermore, multi-view image-based 3D scene reconstructions
like Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] and 3D
Gaussian splatting (3DGS) [Kerbl et al. 2023] have made significant
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progress in generating realistic novel views. These advancements
have facilitated multi-view material estimation using both implicit
representations [Boss et al. 2021; Liu et al. 2023; Munkberg et al.
2022] and explicit representations [Jiang et al. 2023; Saito et al. 2024],
demonstrating promising results for various surfaces, including
shiny objects [Jiang et al. 2023; Liu et al. 2023].

3 MATERIAL PREDICTOR
Our framework estimates material assets (SVBRDF parameters of
parameteric reflectance/shading models [Blinn 1977; Burley 2012;
Cook and Torrance 1982; Guarnera et al. 2016; Karis 2013]) from
single image or multi-view images leveraging deep learning algo-
rithms. It can be used with various shading models, including those
that handle anisotropic materials (only for multi-view images), as
long as the underlying deep learning model supports this func-
tionality. The framework is currently able to estimate materials
from both single flash images (limited to stationary isotropic mate-
rials) and multi-view images. Additionally, for materials estimated
from multi-view images, the framework also estimates image-based
environment light, supporting both relighting and material editing.

3.1 Architecture and implementation
We propose a client-server architecture (Fig. 2) that utilizes JSON
RPC over websockets for efficient data exchange. The client is a
web application developed using ThreeJS and JavaScript, while the
server hosts a deep learning model deployed using root-less Docker
[Gomes et al. 2018] and Slurm [Yoo et al. 2003]. To ensure effective
workload management and deployment, we containerize the model
using Docker and configure Slurm for job scheduling on server
nodes.

For single image material asset estimation, we employ a modified
version of a generative model [Henzler et al. 2021], by changing
the encoder network to a Vision transformer [Dosovitskiy et al.
2021] instead of ResNet50 [He et al. 2015] as the network needs
less number of iterations during the fine-tuning step to generate
qualitatively similar results. Additionally, our framework integrates
different isotropic shading models, including the Phong [Blinn
1977], Isotropic Ward [Guarnera et al. 2016], Cook-Torrance [Cook
and Torrance 1982], and Disney models [Burley 2012] which can
be used for estimation of stationary isotropic materials.

Formulti-viewmaterial asset estimation, we utilize a shading and
lighting estimation network [Jiang et al. 2023] based on Gaussian
splatting which uses the split-sum approach [Karis 2013].
The main features of our framework are the following:

• Generating material assets from images: The web-client al-
lows users to choose a specific shading model and send
image(s) to the server, which hosts deep learning models
for estimating the SVBRDF (Spatially-Varying Bidirectional
Reflectance Distribution Function) using various parametric
shading models. The server processes the images and returns
the corresponding material assets, such as diffuse and rough-
ness, as compressed textures in the form of .basis files back
to the client. The compression of these textures is performed
using Basis Universal [Binomial 4 24], a GPU texture data
interchange system that supports highly-compressed inter-
mediate file formats (.basis or .KTX2). These compressed

files can then be efficiently transcoded into various GPU
compressed and uncompressed pixel formats, providing flex-
ibility and optimization for rendering purposes. The perfor-
mance and scalability of our framework is greatly enhanced
using compressed textures without any percept ual loss in
quality of the materials rendered.

• Material asset visualization: The material assets (generated
from single flash images) can be applied to different 3D
models, and the lighting conditions can be changed to obtain
different perspectives and visualizations as shown in Figure
1. For multi-view material asset estimation, the generated
atlases (Figure 4) can be optionally edited and applied to the
same scene under different lighting conditions.

• Material asset exporter: In the client-side, the compressed ma-
terial assets (.basis files) can be uncompressed and exported
as texture-maps in .png or .jpg formats, allowing further
editing in tools like Blender. Additionally, the assets can be
exported in MaterialX [Foundation 4 24] format, facilitating
integration into different rendering engines and 3D software
for material definition exchange.

4 EVALUATION
In our analysis of the performance and memory footprint of ma-
terial assets at different texture resolutions (Table: 1 and 2), we
conducted the analysis on a server PC equipped with an RTX 3090
GPU and a client PC with an RTX 3070 GPU. The performance
analysis assumed that the textures already exist on the server. How-
ever, it is important to note that for the initial conversion process
of each material asset, when the material does not exist, it takes
approximately 1 second on average for each material asset to be
converted to the basis format.

For the performance analysis, we utilized a diverse set of material
input images (Figure 3) to generate material assets with different
resolutions using the Cook-Torrance BRDF model [Cook and Tor-
rance 1982], Phong shading model [Blinn 1977], Ward isotropic
model [Guarnera et al. 2016], and the Disney shading model [Burley
2012]. We reported the average time for the generation process.

The memory analysis was conducted on the same set of materi-
als (Figure 3) using the Cook-Torrance shading model [Cook and
Torrance 1982].
The analysis provides valuable insights into the trade-offs between

Figure 3: Material assets involved in the performance and
memory footprint analysis
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Figure 4: Material assets and environment light generated from multi-view images (top-left image represents one such view)
using the Gaussian shader model [Jiang et al. 2023] which uses the split-sum approach [Karis 2013]. Our framework efficiently
generates corresponding atlases for these material assets from different views, as shown above.

performance and memory usage when working with material as-
sets at different texture resolutions. It assists in making informed
decisions regarding texture compression and resolution selection to
achieve a desired balance between rendering quality and resource
consumption.

Table 1: Average response times for different texture reso-
lutions (in pixels) considering different material assets and
isotropic parametric shading models

Resolution Avg. Time (in msec) Texture compression

256 40 ✓
76 ×

512 101 ✓
220 ×

1024 185 ✓
701 ×

2048 528 ✓
2518 ×

Table 1 shows that the basis texture compression reduces the
response time greatly, approximately it needs twenty-five percent
of the time without compression at higher resolution. Moreover,
we see this change as the memory footprint (Table 2) is reduced
to one-tenth (on average) in case of using compressed textures
considering all material assets of the Cook-Torrance shading model.
Based on our evaluation of quality and performance, we recommend
a resolution of 1024 pixels.

Table 2: Average memory footprint (in KB) of material assets
at different resolution (in pixels)

Resolution Material Assets Texture CompressionDiffuse Roughness Specular Normal

256 85 31 25 59 ×
7 7 6 2 ✓

512 360 134 106 230 ×
29 31 25 3 ✓

1024 1450 545 470 1056 ×
96 106 86 64 ✓

2048 5755 885 703 3512 ×
386 12 118 45 ✓

5 LIMITATION
Single image material asset estimation is limited to stationary
isotropic materials. Anisotropic materials are important for many
industrial and cultural heritage applications where our single image
estimation will fail. The material asset estimation from multi-view
images works better for a larger set of materials, including shiny
objects, but is constrained to a particular scene (Figure 4). Users
currently can only select from the implemented shading models to
estimate material assets and they cannot customize any shading
models and parameters to estimated themselves.

6 CONCLUSION AND FUTUREWORK
We have developed an architecture that utilizes a deep learning
model to generate material assets from images. This architecture is
versatile and can be applied to various 3D assets, with the ability to
export them into different formats for further usage. Our framework
allows for estimating material assets for different types of shading
models, using both single and multi-view images. The multi-view
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material asset estimation also estimates the image-based environ-
ment light, which enables the relighting of the current scene. Along
with that, users can edit the material asset atlases using 3D content
editing tools, allowing customization and modifications to the ma-
terial properties.
A valuable enhancement for the framework would be the capability
to segment different material types within a scene. This segmen-
tation can then be applied to other scenes using the multi-view
material estimation models, providing greater versatility in material
application. Furthermore, the architecture can be further enhanced
to incorporate a custom shading model that the deep learning mod-
els can estimate. This would enable more accurate estimation of
material assets and provide designers with greater flexibility in
defining their desired shading characteristics. By integrating these
features, the framework would facilitate efficient communication
and real-time updates, enabling a dynamic and interactive workflow
for material asset creation and management.
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