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SUMMARY

In 2023, renewable energy generation reached an all-time high, with 29% of all elec-
tricity coming from renewable sources. However, electrical energy will not be able to
fully replace fossil fuels, as the intermittency of renewable sources requires additional
solutions to match the energy demand. Additionally, conversion to chemical bonds is
required to supply chemicals for plastics, fertilizers, steel, etc. Electrolysis – particularly
water and CO2 electrolysis – offer a promising solution to these problems by convert-
ing renewable electricity into fuels and chemical building blocks. Although electrolysis
processes are very promising for the energy transition, their costs are currently still too
high.

This thesis focusses on the role that gas bubbles have on the performance of electrol-
ysers: the formation of gas bubbles is inevitable in most electrolysers, since the common
electrolysis products (e.g. H2, O2 or CO) have a poor solubility in water. Controlling the
behaviour of gas bubbles offers a pathway to lower the cell voltage or improve the mass
transport, which allows operation at higher operating current densities. This could help
with decreasing the costs of electrolysers, bringing them closer to competing with fossil
fuel-based processes.

Gas bubbles increase the cell voltage of electrolysers, as they reduce electrolyte con-
ductivity and block a section of the active electrode surface area. To mitigate these ef-
fects, we introduce a zero-gap alkaline water electrolyser that operates with a periodic
pressure swing to remove the gas bubbles (Chapter 2). The pressure swing creates a state
of the electrolyser with and without gas bubbles, which allows us to measure the effects
of gas bubbles on cell voltage in situ. The electrode geometry and electrolyte conduc-
tivity are the main factors that dictate voltage losses due to gas bubbles, while effects
of operating pressures between 2-5 bar had a limited influence on the volltage losses
by bubbles. A pressure swing also allows us to reduce the time-averaged cell voltage. We
manage to reduce the irreversible energy losses (i.e. resulting from overpotentials) by 5%
when using 1 M KOH, 30 °C and nickel foam electrodes. Finally, using a model, we show
that perforated plate electrodes at high electrolyte conductivity (80 °C, 30% KOH) results
in very small bubble voltage losses, making a pressure swing only marginally effective.

Despite their drawbacks, gas bubbles can also benefit electrolysers. The growth, co-
alescence, and movement of bubbles contribute to the mass transport. However, the
impact of the individual processes on the mass transport needs better understanding.
One promising approach that can shed light on these processes is Fluorescence Lifetime
Imaging Microscopy (FLIM), as it can capture both spatial and temporal concentration
changes near an electrode surface.

In Chapter 3, we introduce 1-methyl-7-amino quinolinium-based fluorescent pH
probes as new dyes for FLIM, enabling pH measurements under electrolyzer-relevant
conditions (pH 8-13). These probes are highly photostable, water-soluble, and have flu-
orescence lifetimes of up to 11.5–13 ns, while showing limited sensitivity to temperature

ix

9



x SUMMARY

and common ions in aqueous environments. Our experiments demonstrate that these
probes can capture chemical and mass transfer processes with a spatial resolution of 4
µm and a temporal resolution of 3 frames per second at low probe concentrations (0.1
mM). Additionally, the modular design of these probes allowed us to extend the pH sen-
sitivity from pH 5 to 13.5, and leaves room for development of more dyes.

We apply FLIM and micro-Particle Image Velocimetry (µPIV) to investigate bubble-
induced mass transport at hydrogen evolving electrodes in Chapter 4. Using FLIM, we
observe that bubble detachment at a Pt wire electrode significantly reduces the bound-
ary layer thickness. Additionally,µPIV allows us to measure velocity profiles around bub-
bles at a Ni plate electrode, which we then integrate into a mass transport model. These
two experiments both show that bubble detachment and wake flow have substantial ef-
fects on mass transport enhancement. Interestingly, we also observed that ‘single bub-
ble’ events where a bubble grows and detaches without interference from nearby bub-
bles, are rare at vertical electrodes. Even at low current densities (< 5 mA cm−2), wake
flows from neighboring bubbles frequently disturb the surrounding electrolyte.

Finally, we combine pressure swings and bubble-induced mass transport in Chapter
5. We use fast pressure swings (50 Hz, 1.2 bar) to enhance mass transport in an aqueous
CO2 electrolyser, generated with a vibratory pump typically found in coffee machines.
The pressure pulses result in vibrating bubbles and flow circulations in the electrolyte,
which allow us to reach a limiting current density of 87 mA cm−2 towards CO2 reduc-
tion products. This is an order of magnitude higher compared to H-cell systems and
three times higher compared to an electrolyser where the pulses have been damped out.
The limiting current density can be increased even further at higher peak-to-peak pres-
sure amplitudes or pump frequencies, which we show through a PIV and an order-of-
magnitude scaling analysis. While promising, some challenges still remain if a pressure
pulsed CO2 electrolyser would be upscaled, such as pump energy consumption, con-
tamination and heating, and pressure wave damping.

All things considered, the movement of bubbles is the key factor that distinguishes
bubbles from having a positive or a negative impact on electrolysers. We believe that in-
novative electrode designs and innovative processes could make use of this movement.
This could bring electrolysis processes one step closer to being cost-competitive with
traditional fossil fuel based processes.
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SAMENVATTING

De opwekking van hernieuwbare energie bereikte in 2023 een recordhoogte: 29%
van alle elektriciteit op aarde kwam uit groene bronnen. Elektriciteit zal fossiele brand-
stoffen echter niet volledig kunnen vervangen. Schommelingen in de opwekking van
zonne- en windenergie vereisen extra oplossingen om in alle weersomstandigheden aan
de energievraag te voldoen. Daarnaast moet er elektrische energie worden omgezet naar
chemische verbindingen om chemicaliën te leveren voor plastics, kunstmest, staal, enz.
Elektrolyse – in het bijzonder de elektrolyse van water en CO2 – biedt hier een veelbelo-
vende oplossing door groene elektriciteit om te zetten in brandstoffen en kleine basis-
moleculen. Ondanks dat elektrolyseprocessen veelbelovend zijn voor de energietransi-
tie, zijn ze momenteel nog niet economisch rendabel.

Dit proefschrift richt zich op de rol van gasbellen op de performance van elektrolyse
processen. De vorming van gasbellen is onvermijdelijk in de meeste elektrolysers. Dit is
omdat veelvoorkomende elektrolyseproducten (bv. H2, O2 of CO) slecht oplosbaar zijn
in water. Een potentiële manier om de energiekosten van elektrolyse te verlagen, is door
het gedrag van gasbellen in het systeem te beïnvloeden. Hierdoor kunnen we de cel-
spanning verlagen en het massatransport verbeteren, waardoor er gewerkt kan worden
op hogere stroomdichtheden. Dit kan helpen om de kosten van elektrolyse te verlagen,
waardoor het beter kan concurreren met processen op basis van fossiele brandstoffen.

Gasbellen verhogen de celspanning van elektrolysers omdat ze de geleidbaarheid
van het elektrolyt verminderen en delen van het elektrodeoppervlak blokkeren. Om de
negatieve effecten van gasbellen te verminderen, introduceren we een zero-gap alkaline
water elektrolyser die werkt met een periodieke pressure swing om gasbellen te verwij-
deren (hoofdstuk 2). Deze drukgolf creëert een toestand van de elektrolyser met en zon-
der gasbellen, waardoor we de effecten van gasbellen op de celspanning in situ kunnen
meten. De geometrie van de elektrode en de geleidbaarheid van het elektrolyt bleken
de belangrijkste eigenschappen die spanningsverliezen door gasbellen bepalen, terwijl
de effecten van de werkdruk tussen 2 en 5 bar beperkt zijn. Daarnaast kunnen pressure
swings ook worden gebruikt om de gemiddelde celspanning te verlagen. Het lukt ons om
de irreversibele energieverliezen (d.w.z. als gevolg van overpotentialen) met 5% te ver-
minderen bij een elektrolyser met 1 M KOH, 30 °C en nikkel foam elektroden. Tot slot la-
ten we met behulp van een model zien dat perforated plate elektroden bij een elektrolyt
met hoge geleidbaarheid (80 °C, 30 massa-% KOH) tot zeer kleine belspanningsverliezen
leiden. Dit maakt de pressure swing minder effectief onder deze omstandigheden.

Ondanks de negatieve effecten op de celspanning, kunnen gasbellen elektrolysers
ook ten goede komen. De groei, coalescentie en verplaatsing van bellen dragen bij aan
het massatransport bij de elektrode. De invloed van deze afzonderlijke processen op
het massatransport moet echter beter worden begrepen. Een veelbelovende technologie
die licht kan werpen op deze processen is Fluorescence Lifetime Imaging Microscopy
(FLIM). Hiermee kunnen concentratieveranderingen zowel in de tijd als in de ruimte bij
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xii SAMENVATTING

het oppervlak van een elektrode worden gemeten.
In hoofdstuk 3 introduceren we fluorescerende pH-probes gebaseerd op 1-methyl-

7-amino quinolinium. Deze nieuwe FLIM probes maken pH-metingen van pH 8 tot 13
mogelijk, wat relevante omstandigheden voor elektrolysers zijn. Deze probes zijn zeer
fotostabiel, oplosbaar in water en hebben een fluorescentielevensduur van 11.5-13 ns.
Bovendien worden ze niet sterk beïnvloed door temperatuur en veelvoorkomende io-
nen. Onze experimenten tonen aan dat deze probes chemische en massatransportpro-
cessen kunnen vastleggen met een ruimtelijke resolutie van 4 µm en een tijdsresolutie
van 3 frames per seconde bij lage probeconcentraties (0.1 mM). Bovendien konden we
door het modulariteit van deze probes de pH-gevoeligheid uitbreiden van pH 5 tot 13.5
en is er nog ruimte voor verdere ontwikkeling.

In hoofdstuk 4 gebruiken we FLIM en micro-Particle Image Velocimetry (µPIV) om
massatransport door gasbellen aan waterstof-elektroden te onderzoeken. Met FLIM zien
we dat het loslaten van bellen bij een platinadraadelektrode de dikte van de grenslaag
aanzienlijk vermindert. Daarnaast kunnen we met µPIV snelheidsprofielen in het elek-
trolyt rondom gasbellen meten bij een nikkel plaatelektrode. Deze snelheidsprofielen
implementeren we vervolgens in een massatransportmodel. Deze twee experimenten
tonen aan dat tijdens het loslaten van bellen en de wake flow het massatransport het
beste is. We hebben ook geobserveerd dat een ’enkele bel’, waarbij een bel groeit en los-
laat zonder invloed van nabijgelegen bellen, zeldzaam is bij verticale elektroden. Zelfs
bij lage stroomdichtheden (< 5 mA cm−2) verstoort de wake flow van naburige gasbellen
vaak het omringende elektrolyt.

Tot slot combineren we in hoofdstuk 5 pressure swings en door bellen veroorzaakt
massatransport. We gebruiken snelle drukpulsen (50 Hz, 1.2 bar) om het massatransport
te verbeteren in een CO2 elektrolyser. Deze pulsen zijn opgewekt met een vibratiepomp
die gewoonlijk in koffiezetapparaten te vinden is. De drukpulsen resulteren in trillende
bellen en stromingscirculaties in het elektrolyt waardoor we een limiting stroomdicht-
heid van 87 mA cm−2 naar CO2-reductieproducten kunnen bereiken. Dit is een orde
van grootte hoger vergeleken met H-cel systemen en drie keer hoger vergeleken met een
wanneer de drukpulsen worden gedempt. De limiting stroomdichtheid kan nog verder
worden verhoogd bij hogere piek-tot-piek drukamplitudes of pompfrequenties. Dit la-
ten we zien aan de hand van een analyse met PIV experimenten en een orde-van-grootte
schaling. Hoewel dit systeem veelbelovend is, zijn er nog enkele uitdagingen om een
drukgepulseerde CO2 elektrolyser op te schalen. Bijvoorbeeld het energieverbruik van
de pomp, effecten van verontreiniging in het elektrolyt, en demping van de drukgolven.

Al met al is de verplaatsing van bellen de belangrijkste factor die bepaalt of ze een po-
sitieve of negatieve invloed hebben op elektrolysers. Nieuwe elektrodeontwerpen en/of
-processen die de beweging van gasbellen benutten, zouden elektrolyseprocessen kun-
nen verbeteren. Wij geloven dat dit elektrolyseprocesses een stap dichter bij de kosten
van traditionele fossiele brandstof-gebaseerde processen kan brengen.
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1
INTRODUCTION

1.1. THE NEED FOR WATER AND CO2 ELECTROLYSIS
The previous year, 2023, broke many climate records[1]. The global average temper-

ature was the highest since the beginning of temperature data measurements (1850)[2].
This resulted in more extreme weather events[3], such as forest fires[4], floods[5] and
record braking heat waves[6]. The global temperature increase is mainly driven by the
rapidly increasing concentrations of CO2 (to 419 ppm) and CH4 (to 1902 ppb)[2]. The
high CO2 and CH4 concentrations are a result of the consumption of fossil fuels by hu-
mans, which remains large to this day.

Luckily 2023 was not only characterized by lows, we also globally produced the largest
amount of renewable electricity ever recorded[7]. Of all generated power, 29% was pro-
duced from renewable sources (hydro, wind, solar and bio-energy) to power houses,
electronics, transport and the industry. Many regions, like California, Spain, Portugal
and Costa Rica, even achieved 100% renewable power on windy and sunny days[8–11].
However, even if we can build a sufficiently large renewable energy capacity, electrical
energy cannot fully replace fossil fuels. Three major challenges for switching to renew-
able energy are discussed below (Figure 1.1):

1. Intermittent energy sources: Renewable energy consists for a large part of wind
and solar energy[7], energy sources which are dependent on the time of the day
and the local weather conditions. The corresponding mismatch in electricity pro-
duction rates and consumer demands[12] requires large scale electricity storage
to ensure electricity is available on cloudy or windless days[13]. Batteries per-
form well for short term energy storage, but are not suitable for longer durations
(weeks/months)[14]. Hydrogen from water electrolysis is often suggested as a long-
term storage alternative[14]. This hydrogen can be stored for long durations, either
by compressing, cryogenic liquid hydrogen, metal hydrides or other hydrogen car-
riers [14], [15]. At moments of insufficient solar or wind power, the stored hydro-
gen can then be turned back into electricity using fuel cells.

1
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Figure 1.1: Renewable energy cannot stop climate change without solving major challenges. Water and CO2
electrolysis could be the tools to overcome some of those barriers. (Original artwork by Nik Heemskerk)

2. Need for carbon based fuels and chemicals: Fossil fuels are used in the produc-
tion of most consumer products. Plastics[16], small organic chemicals[17–19], sol-
vents[20] and lubricants[21] are just a few of those essential products. Additionally,
some forms of transport, such as long distance flights[22] and heavy-duty trans-
port[23], cannot be powered by electricity, as the energy density of batteries is just
not high enough. Sustainable alternatives to electric energy are needed to replace
fossil-based fuels and chemicals. Electrolysis can be used to make e-chemicals
and e-fuels where batteries cannot fulfil the job[15, 24–26]. With techniques such
as CO2 electrolysis, water electrolysis and the Fischer-Tropsch process, one can
produce almost all carbon based chemicals from renewable energy[24, 26].

3. Overloaded electricity grids: Electric cars, heat pumps, and other essential ele-
ments of the energy transition result in a rising demand for electricity. Unfortu-
nately, in many countries (including the Netherlands) the progress on grid expan-
sion is slower than the growing demand for electricity[27]. This results in over-
loaded electricity grids which prevent the efficient distribution of electricity to
consumers[28]. The transportation of hydrogen from electrolysis via pipelines and
its subsequent utilization (for example using fuel cells at the destination), could al-
leviate the strain on the grid[29, 30]. On top of that, the transport of H2 through
pipelines has a larger capacity and lower MW km−1 cost than typical kV electrical
transmission lines[31].
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To conclude, electrolysis processes can provide a solution by converting renewable
electrical energy into molecular bonds. Given their versatility and technical readiness,
the main target molecules for electrolyzers are H2 from water electrolysis and small car-
bon molecules (like CO, C2H4, HCOOH, etc) from CO2 electrolysis. These can act as fuels
directly, or as building blocks for more complex molecules in the chemical industry.

Although electrolysis processes are very promising for the energy transition, their
costs are currently still too high compared to fossil fuel-based processes[26]. The two
largest contributors to the high price of electrolysis are: Electricity consumption and
Capital expenses (CAPEX)[32]. To minimize the electricity costs, the operating voltage of
electrolyzers needs to be as low as possible. The CAPEX can be reduced when operating
electrolyzers at higher current densities (i.e., making them more productive) because
fewer and/or smaller electrolyzers can be used to produce the same amount of products.

The International Renewable Energy Association (IRENA) concluded that higher cur-
rent densities are the most important parameter to reduce the price of green hydrogen;
even tripling the current density for alkaline electrolyzers is targeted for 2050 without
compromising on the energy efficiency[33]. However, at higher current densities more
hydrogen and oxygen gas bubbles will form, and their corresponding ohmic losses be-
come a significant issue. This is because the contribution of gas bubbles to the energy
consumption scales linear or super-linear with current density, while reaction kinetics
scale sub-linear with current density.

In this thesis, I will focus on the role of gas bubbles in water and CO2 electrolyzers,
and their impact on both the electricity consumption and achievable current densities.
In the rest of this chapter I will discuss the negative effects gas bubbles on the cell volt-
age and the positive effects of gas bubbles on the mass transport. Finally, the effect of
pressure on gas bubbles will be discussed, which can be used to control gas bubble be-
haviour.

1.2. HOW DO GAS BUBBLES INFLUENCE THE CELL VOLTAGE OF

ELECTROLYZERS?
In a cost-effective electrolyzer, the cell voltage (ECell) should be as low as possible,

while the electrical current (I ) should be as high as possible. Unfortunately gas bub-
bles inside electrolyzers can significantly increase the cell voltage[34, 35]. To explain the
effect of gas bubbles on ECell, I will use an alkaline water electrolyzer as example. A typ-
ical alkaline water electrolyzer consists of two nickel-based electrodes in concentrated
KOH, separated by a porous separator (Figure 1.2A)[36]. When an electrical current is
applied to these electrodes, H2 and O2 bubbles will form as a result of the following two
reactions:

Cathode 2H2O+2e− −−→ H2 +2OH− E 0 = 0.00 V vs RHE (1.1)

Anode 4OH− −−→ O2 +2H2O+4e− E 0 = 1.23 V vs RHE (1.2)
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The voltage difference between these two reactions, E 0
Cell, is 1.23 V, is the standard

potential difference for water splitting. This is the voltage at which the reaction starts to
take place. However, in a real alkaline electrolyzer the required ECell is higher[34, 35]:

ECell( j ) = E 0
Cell + j

L

κ
+ηCat( j )+ηAn( j )+ j rSep + I RCircuit (1.3)

Here ECell (in V) is a function of current density j (A cm−2), L is the distance between
the electrodes in cm, κ is the effective electrolyte conductivity in S cm−1, ηCat and ηAn

are the activation overpotential of the cathode and anode reactions in V, rSep is the area
resistance of the membrane or separator in Ω cm2 and RCircuit is the resistance of the
electrical wires and connection in Ω. Even though gas bubbles are not directly visible in
this equation, they do affect four terms in equation 1.3.

Figure 1.2: A. Schematic representation of an alkaline electrolyzer B. Gas bubbles increase the electrolyte resis-
tance C. Gas bubbles on an electrode can cause high local current densities D. Qualitative breakdown of ECell
inside a zero-gap alkaline water electrolyzer, adapted from Haverkort and Rajaei (2021)[34].

• Figure 1.2B shows the effect of gas bubbles on the electrolyte conductivity. Gas
bubbles block the path of least resistance, which increases the distance that OH –

ions have to travel. This reduces the effective electrolyte conductivity κ. The ef-
fect of bubbles on the conductivity is commonly expressed with the Bruggeman
equation[37]:

κ= κ0
(
1−xg

)1.5 (1.4)

Where κ0 is the electrolyte conductivity without gas bubbles and xg is the gas frac-
tion in the liquid between anode and cathode. These losses can be minimized
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by making the distance between electrodes (L) as small as possible. Such a design,
also called zero-gap, typically has two electrodes pressed against the separator[38].

• When gas bubbles stick to the electrode surface, they can also increase the elec-
trode overpotential, ηi. These bubbles block a part of the active area of an elec-
trode, which result in a small area of the electrode being subject to higher current
densities (Figure 1.2C). Assuming that the electrode overpotentials are in the Tafel
regime, the overpotential for an electrode that is covered with gas for fraction ϵg

can be calculated with[34, 37, 39]:

ηi( j ) = bi log

(
j

ji0(1−ϵg)

)
(1.5)

Here, ηi is the electrode overpotential, bi is the Tafel slope (bi=RT /(αiF )) with R as
the ideal gas constant, T as temperature in K, αi the charge transfer coefficient, F
the Faraday constant and ji0 exchange current density of electrode i.

• Finally, even rSep can increase if bubbles stick to the membrane or if gas enters
porous separators[40]. The separator resistance is approximately inverse propor-
tional to the available surface area, making the effect:

rSep =
r 0

Sep

1−ϵg
(1.6)

In which r 0
Sep is the separator resistance without gas bubbles.

To conclude, gas bubbles have a large effect on ECell in alkaline water electrolyzers.
This can also be seen in the work of Haverkort and Rajaei[34], where bubbles are one
of the main contributions to the cell voltage, even in a zero-gap design (Figure 1.2D). A
low cell voltage can therefore only be achieved if gas bubbles are handled effectively[41],
which is confirmed by the exceptional performance of bubble-free systems. Both capillary-
fed electrolyzers[42] and Polymer Electrolyte Membrane (PEM) electrolyzers[43] can reach
2 to 10 times higher current densities at the ECell, compared to their two-phase alkaline
electrolysis counterpart.

1.3. BUBBLE-INDUCED MASS TRANSPORT IN ELECTROLYZERS
Up to now, I only discussed the negative influences of gas bubbles on the ECell. How-

ever, the movement of gas bubbles inside an electrolyzer also create convection. This
convection can improve the heat and mass transport from and to the electrode (Figure
1.3A). For gas evolving electrodes, the convection is created close to the electrode sur-
face, where the mass transport is usually needed the most. I will discuss this “bubble-
induced transport” with aqueous electrochemical CO2 reduction (CO2R) as an exam-
ple[44]:

Cathode CO2 (aq)+H2O+2e− −−→ CO+2OH− E 0 = −0.106 V vs RHE (1.7)

Anode 4OH− −−→ O2 +2H2O+4e− E 0 = 1.23 V vs RHE (1.8)
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The CO2R process is mainly limited by low current densities. For example, on a flat sil-
ver electrode the current densities are typically limited to only 5-10 mA cm−2 [45, 46].
Even on electrodes with a very high selectivity towards CO[47–49] the maximum obtain-
able current density is around 20 mA cm−2. This is because CO2R is strongly limited by
mass transport, as CO2 has slow diffusion (1.91·10−9 m2 s−1) and a low solubility in water
(0.032 mol L−1 at 25 °C, and 1 bar). Increasing the current beyond this limiting current
density ( jlim) will result in H2 evolution, which greatly reduces the energy efficiency for
carbon-based products[50, 51]. To increase jlim, the diffusion boundary layer thickness
(δ) needs to be reduced as much as possible (Figure 1.3A). The relationship between jlim

and δ is described by the following equation:

jlim

nF
=−D

(
dc

dx

)

x=0
∼−D

cBulk

δ
(1.9)

Here n is the amount of electrons in the reaction, F is the Faraday constant and−D(dc/dx)x=0

the diffusive flux towards the electrode surface. This term can be linearly approximated
to obtain δ, where cBulk is the concentration of CO2 in the bulk electrolyte.

Figure 1.3: A. Effect of gas bubbles on the diffusion boundary layer thickness in CO2R B. Example of good
gas bubble control in CO2R (Figure inspired by Burdyny et al.[52]) C. Order of magnitude comparison of lim-
iting current density ( jlim) on different electrodes. References: Flat silver electrodes[45, 46], Catalysts with
high CO selectivity (Ag on Zn dendrites[47], Au25 clusters[48] and Ag nanoparticles[49]), Nano-structured elec-
trodes[52].

Gas bubbles, as shown by Burdyny et al.[52], are an effective tool to reduce the dif-
fusion boundary layer thickness. In Burdyny’s work, gas bubble sizes were reduced by
employing a nanostructured catalyst. The large amount of small bubbles caused more
mixing events, which improved the mass transport significantly (Figure 1.3B)[52]. The
jlim obtained with this bubble-induced mass transport surpassed a flat Ag electrode by
an order of magnitude, and even exceeded the jlim of highly selective catalysts[47–49] by
more than twice (Figure 1.3C).

To wrap up, gas bubbles are an essential part in the optimization of electrochemical
processes and can help to achieve larger current densities. Although the focus of this
thesis is mainly on the reduction of water and CO2, the findings will apply to any gas-
evolving electrochemical device, since all gases will behave similarly.
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1.4. CONTROLLING GAS BUBBLES WITH PRESSURE
Having established that gas bubbles can have either a negative impact on ECell or can

increase the productivity of electrolyzers through bubble-induced mass transport, it is
essential to actively control gas bubbles to our advantage. Figure 1.4A shows forces act-
ing on a gas bubble that can be tuned by operational modes or electrode modifications.
By adjusting one of these parameters, e.g. with an external centrifugal force[53, 54], by
applying a strong shear flow [55] or by making the electrode more hydrophobic[56–58],
we can gain control over how the gas bubbles inside the electrolyzer behave.

The pressure is a noteworthy case, as doubling the pressure will result in half the vol-
ume of produced gas (P ∝ V −1

gas). This has already been widely used in industrial alkaline
electrolyzer stacks (operating under 10-50 bar pressure) to reduce ECell and downstream
compression costs[40, 59]. However, while a static high pressure will reduce the rate of
gas bubbles that are formed, there can still be a considerable amount of gas bubbles
inside the system, as the forces acting on the gas bubbles remain unchanged.

Figure 1.4: A. Examples of properties that dictate how a gas bubble behaves, and methods that were used to in-
fluence these properties. (FSurf = Surface force, FB = Buoyancy force, P = pressure) B. Changes in the pressure
will cause gas bubbles to grow and shrink. C. Typical pressure wave frequencies for methods that are used to
control gas bubbles inside electrolyzers. The region between 10−2 Hz to 1 kHz remains relatively unexplored.
References: Supergravity[60, 61], Centrifugal forces[53, 54, 62], Ultrasound[63–65], Pressure swings[66], Sur-
factants[67–69], Hydrophobic electrodes[56–58].

On the other hand, a dynamic pressure can impact the forces acting on a bubble
(Figure 1.4B). By adjusting the pressure in the system, the size of gas bubbles can be
changed. This phenomenon has primarily been studied at high frequencies (kHz-MHz)
with ultrasound[63–65]. However, work from our group has shown that slower pressure
changes can also be used to remove gas bubbles from the electrode[66]. By periodically
reducing the pressure for a short time (5 s) at intervals of 50-3000 s, gas bubbles will grow
and are pulled off the electrode by the generated convection and additional buoyancy
force.

Even though the initial pressure swing research showed promise, the best results
were found with the fastest cycles. Unfortunately, the frequency was limited to 0.02 Hz
by the setup. electrolyzers operating under ultrasound have also shown improved mix-
ing and bubble detachment. However, ultrasonic waves dampen quickly, making them
difficult to apply to scaled-up electrolyzers. In this thesis, I will apply pressure waves in
the intermediate range (10−2 Hz to 50 Hz). This range has the promise to enhance the
effects of previous pressure swing work while maintaining the possibility for scale-up
(Figure 1.4C).
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1.5. THESIS OUTLINE AND RESEARCH QUESTIONS
Good gas bubble management is essential for electrolysis processes, as gas bubbles

have both negative effects on ECell and positive effects on the mass transport. However,
due to the stochastic nature of gas bubbles it can be difficult to make general statements
on bubble effects. The wide variety of electrolyzer configurations and electrode geome-
tries studied across the scientific community adds to this complexity. Hence, there is
a need for new methods to quantify bubble effects in electrolyzers and at electrodes,
which can allow us to study bubble effects on a case by case basis.

In this thesis I will provide new methods to determine the effects of gas bubbles on
the cell voltage, show how large the effects of gas bubbles are on alkaline water elec-
trolyzers and aqueous-based CO2 electrolysis, and finally try to control gas bubbles in-
side electrolyzers with 10−2 to 100 Hz pressure variations. The following research ques-
tions (RQ) will be answered in this thesis:

RQ1: How large is the effect of gas bubbles on the cell voltage in a zero-gap alkaline
water electrolyzer? (Chapter 2)

RQ2: How much can the cell voltage be reduced when gas-bubbles are removed from
a zero-gap alkaline water electrolyzer with a pressure swing (5-180 s, 1-2 bar)?
(Chapter 2)

RQ3: What fluorescent pH probe is suitable to study mass transport at a gas-evolving
electrode with Fluorescent Lifetime Imaging Microscopy (FLIM)? (Chapter 3)

RQ4: What microprocesses during gas bubble evolution are the biggest contribution to
bubble-induced mass transport at electrodes? (Chapter 4)

RQ5: How much can the limiting current density of aqueous CO2 reduction be improved
with fast pressure pulses (50 Hz, 1-2.5 bar)? (Chapter 5)

These questions are answered throughout the thesis in the following chapters. Chap-
ter 2 reports a pressure swing-assisted zero-gap alkaline water electrolysis setup, which
will be used both for understanding the effects of gas bubbles on ECell and to mitigate
those effects by bubble removal. In Chapter 3, I report a series of new quinolinium pH
probes for Fluorescence Lifetime Imaging Microscopy (FLIM) that will allow us to study
the mass transport at gas-evolving electrodes. In Chapter 4, I will investigate the mass
transport during gas evolution at an electrode with micro Particle Imaging Velocimetry
(µPIV) and FLIM. In Chapter 5, I will apply a fast pressure pulsed flow (50 Hz, 1-2.5 bar)
to boost the limiting current density in an aqueous electrolyzer. Chapter 6 will show
overarching conclusions and opportunities for future research.
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To make green hydrogen more economically attractive, the energy losses in alkaline elec-
trolysis need to be minimized while operating at high current densities (1 A cm−2). At these
current densities the ohmic resistance and gas bubbles effects contribute largely to the en-
ergy losses. To mitigate the gas bubbles losses, we demonstrate, for the first time, a pressure
swing to remove gas bubbles in a zero-gap alkaline water electrolyzer. The pressure swing
leverages the ideal gas law to increase the volume of gas in the system periodically, for
a short duration (<2 s). This temporal volume increase effectively removes bubbles from
the electrolyzer. We show that pressure swing can be used to measure the effect of bub-
bles on the ohmic resistance (RBubbles). Our results reveal that foam electrodes have a sig-
nificantly larger RBubbles than perforated plate electrodes (1.8 Ω cm2 vs 0.3 Ω cm2). The
time-averaged cell voltage reduces by 170 mV when applying pressure swings to an elec-
trolyzer operating at 200 mA cm−2 in 1 M KOH with foam electrodes. The bubble resistance
further depends on the electrolyte conductivity (inversely proportional) and is only moder-
ately affected by operating pressure (25% lower when increasing pressure amplitude from
1-2 to 1-5 bar). By implementing these findings in a model, we estimate that the pressure
swing could reduce the cell voltage by ∼0.1 V for an electrolyzer operating at industrial
conditions (6 M KOH, 80 °C, 1 A cm−2) for foam electrodes. However, for perforated plate
electrodes, the compression energy is often larger than the gain in energy efficiency.
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2.1. INTRODUCTION
To limit global warming, fossil fuels need to be phased out as our main source of

energy and chemicals[1, 2]. Green hydrogen is indispensable for the fossil-free produc-
tion of fertilizers, steel and chemicals.[3] IEA estimates that we will need 80 Mton yr−1 of
green hydrogen production by 2030 to be on track to net zero CO2 emissions by 2050[4],
which is enormous compared to the predicted installed 0.45 Mton yr−1 capacity by the
end of 2023[5].

To produce such large amounts of green hydrogen, we can use alkaline electroly-
sis[6]. Alkaline electrolysis benefits from its scalability as it uses abundant metal cata-
lysts like iron and nickel, which is mandatory if we consider the required scale of hy-
drogen production[6, 7]. Unfortunately, alkaline electrolysis is not economically attrac-
tive yet. The US department of energy calculated that the costs need to be reduced by
80% to reach their target of 1 dollar per 1 kg H2[8]. These large cost reductions can only
be achieved when the energy efficiency of alkaline electrolysis improves significantly at
high current densities (>1 A cm−2)[9].

At high current densities the contribution of energy losses shifts towards ohmic losses
(which scale linearly with current) and losses due to gas bubbles (which scale linearly or
even more than linearly)[10–12]. The latter originates from hydrogen and oxygen bub-
bles that block the active sites on the electrodes and reduce the conductivity of the elec-
trolyte solution[13–15]. This causes large energy losses, as the bubbles can take up more
than 50% of the volume of the electrolyzer[16].

Ohmic losses can be mitigated to some extent by reducing the inter-electrode dis-
tance. This is why nowadays a large fraction of alkaline electrolyzers are designed with
an (almost) zero-gap design[9, 17]. This design requires porous electrodes to ensure wa-
ter and gas transport remains possible. Electrode geometries are that are typically used
are metal foams[18, 19], expanded meshes[20] and perforated plates[16, 21]. However,
a zero-gap configuration still suffers from bubbles, since gas gets stuck in the electrode
pores and reduces the electrochemically active surface area[16, 22]. Not only do gas
bubbles increase the ohmic resistance, they can also mechanically damage catalyst sur-
faces[23] and fluctuations in the electrical potential due to bubbles can lead to gradual
degradation of the catalyst layer[24, 25]. Creative methods to avoid and remove gas bub-
ble are therefore crucial to fully optimize alkaline electrolyzers. Gas bubble-mitigation
strategies can be divided into three main approaches: Reducing gas bubble effects at the
electrode microstructure level, electrode geometry level and at the process level.

Electrodes can be optimized at the microscale by creating nano- and micro-structured
electrodes[26] (such as nanoneedles[27] and striped-pattern superlattices[25]). The sharp
interfaces reduce the adhesion forces of gas bubbles, which results in a much faster re-
lease and thus 2-100x reduction in gas bubble sizes[25, 27]. Additionally, electrodes with
small hydrophobic have been synthesized to locally induce nucleation and collect gas,
to keep the remaining electrode area gas-free[28–30]. However, it is highly challenging
to make such electrodes stable under high current densities at the hostile conditions of
30wt% KOH and 80 °C for hundreds or even thousands of hours[31].

The macroscale electrode geometry can also mitigate the adverse effects of gas bub-
bles. The optimal geometry is a trade-off between a high electrochemically active sur-
face area (ECSA) while keeping large enough pores to prevent bubble trapping in the
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pores. Previous work showed that mesh and foam electrodes with the highest ESCA can
be outperformed by electrodes with a lower ECSA but large enough pores for bubble re-
lease[18, 32, 33]. Although, shape optimization and the use of non-standard electrode
geometries[19, 34, 35] could result in even better gas-bubble mitigation, the complexity
and trade-off with active surface area still limits the effectivity of this route for gas bubble
mitigation.

On the process level, the electrolyte, operating conditions and cell geometry can be
optimized or one can apply external forces to reduce bubble effects. For example, Zhao
et al. and others have shown that adding a surfactant to the electrolyte reduces the bub-
ble nucleation energy and enhances bubble removal[23, 36–38]. However, surfactants
also cause foaming[27], which will make downstream gas-liquid separation more dif-
ficult. Operating the electrolyzer at a higher pressure has minimal impact in zero-gap
electrolyzers; the stagnant bubbles ultimately release after reaching sufficient buoyancy,
which means the bubble coverage is similar at low or high pressure in steady state[21,
39]. Gas bubble removal can be enhanced to some extent with turbulence promoters[40]
or by having a “small-gap” instead of zero-gap[20]. Finally, gas bubbles can also actively
be removed by process intensification, such as having an external force field[41–43], cen-
trifugal flow[44], with ultrasound[45–47] or pressure waves[48]. Nevertheless, even with
these strategies, gas bubble resistance remains a substantial part of the irreversible en-
ergy losses in electrolysis.

We introduce, for the first time, a pressure swing to remove gas bubbles in a zero-
gap water electrolyzer. A pressure swing leverages the ideal gas law, by temporarily in-
creasing the buoyancy and volume of gas bubbles at lower pressures. In our previous
work[48], we showed that the average cell voltage can be reduced by 0.1-0.2 V apply-
ing a pressure swing (1-4 bar) periodically to an electrolyzer with a large gap. We have
improved the response time of the pressure swing to be able to apply it to a zero-gap
electrolyzer. Here, we use the pressure swing to analyse and quantify the effect of gas
bubbles on the cell voltage. We demonstrate that the cell voltage is reduced when apply-
ing a pressure swing to a zero-gap electrolyzer, and that pressure swings can be leveraged
to obtain in-operando information about the gas bubble coverage.

2.2. METHODS

2.2.1. ELECTROCHEMICAL CELL AND MATERIALS

Pressure swing assisted electrolysis was performed in a custom-made rectangular
Poly(methyl methacrylate) (PMMA) flow cell, see figure 2.1. To achieve high transparency
the PMMA was milled with a special diamond mill. The flow channels are 5 mm deep and
25 mm wide, and three polypropylene pillars (6 mm diameter) were added to keep the
electrodes in place. The electrodes were either Ni foam (Recemat BV, RCM-Ni4753.005,
0.5 mm thickness, 0.4 mm average pore diameter, 0.952 porosity) or Ni perforated plate
(Veco B.V., 0.3 mm thickness, 1.0 mm average pore size, 0.312 porosity). During ex-
periments, the cathode and anode always had the same geometry (e.g. foam/foam).
The electrodes have a geometric surface of 40 cm2 and were pre-treated in situ. We
welded two nickel wires to each electrode for electrical contact. The electrodes were
separated by a Selemion AHO anion exchange membrane, which was used because of
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its good pressure-, gas-crossover- and alkalinity-resistance. EPDM O-rings (3 mm diam-
eter, ERIKS) were used for sealing. The cell was pressure tested for 7 bar.

Figure 2.1: Exploded diagram of the electrolyzer used in the pressure swing assisted electrolysis experiments

2.2.2. PRESSURE SWING EQUIPMENT

The KOH catholyte and anolyte (45wt% Thermo Scientific, diluted with demineral-
ized water to 0.3, 1, 2, 3 or 6 M) are pumped through the system with peristaltic pumps
at 72 mL min−2 (MasterFlex L/S with 16HP tubing, max pressure 8.5 bar). The maxi-
mum pressure in the electrolyzer was controlled at the outlet with two back-pressure
regulators (Swagelok, Stainless steel, Kalrez seals) to 2-5 bar. The pressure swing was
regulated with solenoid valves (Buschjost 82560 series, Stainless steel) at the inlet (1/4”)
and outlet (1/2”) of the electrolyzer. To achieve a quick pressure response, membrane
expansion vessels (Reflex Winkelmann GmbH, Reflex S2) were installed before the inlet
solenoid valves. The gas cushion in the expansion vessels was pressurized with nitrogen
to the desired operating pressure of the electrolyzer. See figure 2.2 for the process dia-
gram of the system. During high pressure operation, the inlet valve was open and the
outlet solenoid was closed, and the liquid is exits the system through the back pressure
regulator. The pressure swings were performed in four steps:

1. For 0.5 s, all valves are closed.

2. For 1 s, the outlet valve is opened. The system is now open to atmosphere and
depressurizes. The pump continues pumping, but into the expansion vessel.

3. For 0.5 s, all valves are closed.
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Figure 2.2: Process diagram of the pressure swing setup, see SI 2.5.1 for the operation scheme of the pressure
swing

4. The inlet valve is opened again. High pressure liquid enters the system from the
pump and expansion vessel.

This setup results in a pressure response of <1 s to achieve low pressure (step 2) and high
pressure (step 4), which is much faster compared to previous work (5 s to low pressure,
∼20 s to high pressure)[48]. The pressure was recorded with pressure transmitters (TC-
Direct, 716-908) at the in- and outlet of the electrolyzer. The temperature was recorded
by a thermocouples in the catholyte bottle and the cathode and anode compartments
inside the electrolyzer (TC-Direct), during all measurements the temperature was 23-30
°C.

2.2.3. ELECTROCHEMICAL MEASUREMENTS
All electrolysis experiments were performed at constant current to ensure a constant

gas production rate. The current was controlled with an Ivium XP20 Potentiostat. This
was connected to the anode and cathode in a 4-electrode configuration to minimize
ohmic losses in the voltage signal. Before every measurement series, the cell was op-

30



2.3. RESULTS AND DISCUSSION

2

19

erated at 200 mA cm−2 for 30 min at atmospheric pressure without a pressure swing.
This was both to pretreat the electrodes and saturate the electrolytes with oxygen and
hydrogen, to minimize Nernstian effects on the voltage. In all ∆EBubbles measurements,
the experiments were performed from high to low current densities, to minimize the ef-
fects of Ni redox reactions and effects from changes in dissolved gas concentration at
lower currents.

2.2.4. CONTROL AND DATA ACQUISITION
The pressure transmitters and thermocouples were read out with a NI-9207 and NI-

9213 modules respectively and the solenoid valves were controlled with a NI-9482 relay
module. The setup was controlled with a custom Labview script and the data was pro-
cessed with in Python. All scripts are available on the Zenodo repository.

2.3. RESULTS AND DISCUSSION
We developed a pressure swing to remove hydrogen and oxygen gas bubbles from

a zero-gap alkaline water electrolyzer. First, the concept of the pressure swing will be
demonstrated and used to quantify the effects of gas bubbles on our zero-gap elec-
trolyzer setup. Then pressure swing assisted electrolysis will be evaluated experimentally
and with a simple analytical model.

2.3.1. PRESSURE SWING CONCEPT IN A ZERO-GAP ELECTROLYZER
The gas production in a zero-gap alkaline electrolyzer is largest near the electrode

separator interface[16], as the ionic travel distance between cathode and anode is the
shortest here. A zero-gap configuration always has some small gap between the elec-
trode and the separator. This is because the electrodes are not perfectly flat or the cell
is compressed in-homogeneously[16, 20] (see figure 2.3Left). As there is no easy path to
release into the bulk electrolyte, gas bubbles tend to accumulate in this gap and in the
pores of the electrode. The pressure swing is a method to remove these gas bubbles in
three stages (figure 2.3):

Figure 2.3: Left/Middle top. Graphical representation bubble removal of a pressure swing in a zero gap alkaline
water electrolyzer. Step 1. High pressure operation, Step 2. Low pressure step of the pressure swing, Step 3.
Compression back to high pressure. Middle bottom. Images of oxygen bubbles on a Ni perforated plate anode
during the pressure swing, 80 mA cm−2 Right. Voltage response to the pressure swing between 1 – 4 bar, at 200
mA cm−2, 1 M KOH, Ni foam electrodes. Section 2.6 contains videos of the electrodes during a pressure swing
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1. Default operation at constant current and high pressure. The electrode and cell are
saturated with gas bubbles. The cell voltage is high and fluctuating from constant
detachment and coalescence of hydrogen and oxygen bubbles.[49]

2. The pressure is reduced to atmospheric pressure for 1 s. This causes gas bubbles
to expand. Bubbles inside the pores of the electrode are expanded and pushed out
into the bulk electrolyte. During the low pressure stage the cell voltage increases,
as all gas bubbles expand and further reduce the active electrode area and elec-
trolyte conductivity. During stage 2 the pump is not connected to the electrolyzer
and the flow is driven by expanding gas bubbles.

3. The electrolyzer reconnected to the pump and pressurized by an inflow of high
pressure electrolyte, which recompresses the remaining gas in the system. This
flush of electrolyte removes the remaining gas bubbles from the bulk electrolyte.
As the electrolyzer continuously produces new hydrogen and oxygen, the system
will eventually transition back to stage 1.

To conclude, the pressure swing is an effective method for removing gas bubbles from
the electrode surface of a zero-gap alkaline electrolyzer The effectiveness of the bub-
ble removal can be seen in the images in figure 2.3, the videos in section 2.6 and in the
voltage response, where most of the fluctuations have disappeared during stage 3. The
combination of the pressure pulse and the large flowrate in step 3 is key for good gas
bubble removal. Our preliminary experiments have shown that a large flowrate pulse
alone is not able to remove all gas, see SI 2.5.2.

DETERMINING THE OHMIC CONTRIBUTIONS OF GAS BUBBLES (RBubbles)
The pressure swing allows us to measure the cell voltage of a electrolyzer in-situ with

and without gas bubbles. When comparing the voltage directly after the pressure swing
to the steady state voltage, the effects of gas bubbles (∆EBubbles) can be quantified (Figure
2.4A) at the operating pressure, i.e. 4 bar in Figure 2.4A. We acknowledge that ∆EBubbles

could be underestimated because most, but not all, gas bubbles are removed, especially
at higher current densities. ∆EBubbles could also be overestimated as the large inflow of
fresh electrolyte could affect the concentration overpotential or induce slight changes in
temperature. Swiegers et al. stated in their review article that estimates of bubble over-
potentials are rare[12]. Because gas bubbles influence both the local current density and
ohmic resistance, it is hard to isolate their contribution from other unrelated contribu-
tions to the overpotential. We believe that fast pressure swings, applied to electrolyz-
ers in operando, could be a reliable approach to investigate and isolate bubble overpo-
tentials (∆EBubbles). By installing (micro-)reference electrodes one could even measure
∆EBubbles on cathode and anode individually.

Figure 2.4B shows the relation between ∆EBubbles and the current density for a Ni
foam electrode, 1 M KOH and a 1-2 bar pressure swing. ∆EBubbles is almost linear with
current density until 150 mA cm−2, with an RBubbles slope of 1.8 Ω cm2. The linearity
indicates that gas bubbles in a zero-gap Ni foam electrode cause an ohmic resistance,
that is independent of the current up to 150 mA cm−2. In other words, the rate of gas
bubble production in the system does not seem to have a large effect on the bubble
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Figure 2.4: A. Cell voltage drop after bubble removal with a pressure swing (∆EBubbles) B. ∆EBubbles for various
current densities ( j ), 1M KOH, 1-2 bar pressure swing, Ni foam. Linear fit until 150 mA cm−2 of ∆EBubbles
results in a RBubbles (=∆EBubbles/ j ) of 1.8 Ω cm2 C. Cell voltage vs time for a 1-2 bar pressure swing, 150 mA
cm−2, 1M KOH, Ni foam. Linear fits were performed after pressure swing to find the dEcell/dt . D. Saturation
time after a 1-2 bar pressure swing, 1M KOH, Ni foam electrodes. Averaged over at least 10 pressure swings.
Fitted with Eq 2.1 with a V0 of 0.045 mL cm−2.

resistance. We believe this is caused by a saturation of the electrode pores and electrode-
separator gap with gas bubbles, as was also suggested by others[16, 22]. In Figure 2.4B
a lower ∆EBubbles slope is observed at >150 mA cm−2. We believe this slope change is
a results from the large gas production during the low pressure of the pressure swing.
During the low pressure time at 150 mA cm−2, 0.029 mL cm−2of H2 gas is formed, which
is 60% of the pore volume of the foam. These remaining gas bubbles increase the voltage
after a pressure swing, hence ∆EBubbles is no longer a true representation of the voltage
change due to gas bubbles. These points were therefore not included in the RBubbles

slope fit.
After the pressure swing, the system will return to a steady state where the electrode

pores are saturated with gas bubbles. We calculated this saturation timescale, tsat, with a
linear fit of the cell voltage (Figure 2.4C). Here tsat = ∆EBubbles/(dE/dt )fit. tsat is inversely
proportional to the current density ( j ) (Figure 2.4D). We can further hypothesize that
tsat equals the bubble volume in the porous electrode at saturated conditions (V0, in mL
cm−2) divided by the volumetric gas production rate:
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tsat = V0

j RT
pnO2F

(2.1)

In which j is the current density (mA cm−2), R the ideal gas constant (83.14 mL bar
K−1 mol−1), T temperature (K), p the pressure (bar), nO2 is 4 (the ratio of electrons to
oxygen) and F the Faraday constant (9.6485 107 mC mol−1). A least squares fit of the
experimental data with Eq 2.1 resulted in a saturated gas volume V0 of 0.045 mL cm−2,
which is similar to the specified pore volume of our Ni foam (0.048 mL cm−2, SI 2.5.3). In
steady operation, we therefore believe that most of the pores in the foam are filled with
gas, independent of the current density.

EFFECT OF CONDUCTIVITY AND PRESSURE

To further investigate RBubbles we operated the pressure swing at different electrolyte
concentrations and operating pressures. We expect ∆EBubbles to scale linearly with con-
ductivity, if RBubbles is ohmic in nature.

Figure 2.5A shows ∆EBubbles for a 1-2 bar pressure swing at different concentrations
of KOH. All concentrations show a linear relationship with current density. RBubbles was
calculated with a linear fit and scales inversely with electrolyte conductivity (Figure 2.5B
and SI 2.5.4), which further suggests that the effect of gas bubbles is mainly ohmic. Only
at 0.3 M KOH other phenomena start to affect the ∆E after a pressure swing, such as
temperature difference from ohmic heating and the concentration overpotential[20]. At
6 M KOH, RBubbles is significantly lower than in an electrolyzer with a 10 mm gap[48] but
still substantial: 0.63 Ω cm2 for a zero-gap system (this work) vs 0.91 Ω cm2 for a gap
system (Bakker et al. 2019, SI 2.5.5)[48]. This shows that a zero-gap with foam electrodes
only reduces a fraction of the ohmic effects of gas bubbles.

The effect of operating pressure on ∆EBubbles was determined by changing the high
pressure of the pressure swing (2, 3, 4 or 5 bar), while the low pressure was kept at at-
mospheric (Figure 2.5C). We expect the operating pressure having only a small effect on
RBubbles at pressure swing timescales above tsat. However, the effectivity of gas bubble
removal is improved by the larger pressure difference. We observe that ∆EBubbles and
RBubbles only change by ∼25% at a 1-5 bar pressure swing compared to an electrolyzer
operating at 1-2 bar (see SI 2.5.4 for RBubbles values), while the pressure and gas bubble
formation are 2.5x higher. This is in agreement with the small effect of current density
on RBubbles, which shows that the bubble resistance of a flow-by zero-gap electrolyzer
is almost independent of the gas production rate. This was also observed in figure 2.4B
and in literature[21, 39, 50].

The saturation time, tsat, also follows Eq 2.1 at higher pressures (Figure 2.5D). Also at
higher pressures, the fitted volume V0 is the same order of magnitude as the pore volume
of the electrode. This indicates that the trapped gas volume inside the pores of the foam
is independent of pressure. Bubble release at the electrode is therefore key, even for
zero-gap configurations. To that end, other electrode geometries than foams, such as
electrodes with a larger pore size, could result in a smaller RBubbles.

EFFECT OF ELECTRODE GEOMETRY

Figure 2.6A compares ∆EBubbles for a 1-2 bar pressure swing in 1 M KOH between
foam and perforated plate electrodes. RBubbles is calculated to be 1.8 Ω cm2 and 0.3
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Figure 2.5: Bubble effects on Ni foam electrodes at different concentrations and pressures A. ∆EBubbles for a
1-2 bar pressure swing at different current densities and KOH concentrations, a linear fit was made to calculate
the bubble resistance (RBubbles) B. Effect of KOH concentration on RBubbles. The 6 M KOH case is compared
with a 10 mm gap electrolyzer reported by Bakker and Vermaas[48] C. ∆EBubbles for 1-2, 1-3, 1-4 and 1-5 bar
pressure swings in 1 M KOH D. Saturation time (tsat) for the datapoints in C, fitted with Eq 2.1. See SI (2.5.4 for
all fitted V0 and RBubbles

Ω cm2, for foam and perforated plate electrodes respectively. By just changing the elec-
trodes, a 6 times reduction in RBubbles can be achieved. This highlights the importance
of selecting a suitable electrode geometry for mitigating gas bubble effects. Figure 2.6B
and C show the voltage response over time to a pressure wing at 150 mA cm−2 for the
foam and perforated plate electrodes, respectively. After gas bubble removal, the voltage
cell voltage for both electrodes is very similar (2.55 - 2.6 V). While the foam electrode has
a linear increase in the voltage, the perforated plate seems to have a bi-modal pattern.
First a quick increase in the voltage, followed by a slower buildup of voltage. Based on
the timescales and the high speed videos (Video S2.12 and S2.13), we believe this is be-
cause the electrode membrane gap is quickly filled with gas, after which the 1 mm pores
of the perforated plate are filled more slowly. The larger timescale is because H2 and O2

bubbles, which have a typical diameter of 50-200 µm[51], can easily escape from the 1
mm pores. This confirms that high surface area electrodes do not always perform best
and gas bubble management is equally important.
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A

B C

150 mA/cm2 2 mm 2 mm150 mA/cm2

Figure 2.6: A. Comparision of ∆EBubbles at different current densities ( j ) in Ni foam or perforated plate elec-
trodes, 1-2bar pressure swing and 1 M KOH B. Voltage/time response for an electrolyzer with two Ni foam
electrodes. Inset is a photo of the electrode. C. Voltage/time response for an electrolyzer with two Ni perfo-
rated plate electrodes. See SI 2.5.6 for larger photos of the electrode material

The RBubbles of 0.3 Ω cm2 measured for a 1 mm Ni perforated plate electrode with the
pressure swing, is of the same order of magnitude as simulations by de Groot and Vre-
man[16]. In addition to this, data from Kraglund shows that foam electrodes can have
4.7x higher RBubbles than perforated plate electrodes[50] (for the comparison with liter-
ature, see SI 2.5.5). Although the geometries of his electrodes are different, the order of
magnitude increase of RBubbles is similar in our work. This demonstrates that the pres-
sure swing is a suitable method to estimate bubble effects.

2.3.2. REDUCING THE CELL VOLTAGE BY APPLYING PRESSURE SWINGS
We can leverage the pressure swing to reduce the average cell voltage of a zero-gap

electrolyzer by removing gas bubbles periodically. Two parameters are varied to optimize
the effects of a pressure swing: the high pressure time (tHP) and the operating pressure.
tHP is the time the electrolyzer operates at a high pressure between two pressure swings
(Figure 2.7A and B). Each pressure swing is most effective when the electrodes are sat-
urated with gas bubbles, when tHP ≥ tsat. An electrolyzer operating under smaller tHP

removes gas bubbles more often. Although such a frequent pressure swing can keep the
total amount of gas to a minimum, a too high pressure swing frequency compromises
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D
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C

B

tHP

tHP

tHP

tHP

Figure 2.7: 1 M KOH, Ni foam electrodes, 200 mA cm−2 A. Voltage response to a 1-2 bar pressure swing for
two different high pressure times (tHP). B. Pressure/time response of A. C. Average cell voltage (ECell−avg)
for 1-2 bar pressure swings for different tHP, compared to if no pressure swing was applied D. Average cell
voltage for 1-4 bar pressure swings. Note: The cell voltage of 3.0 - 3.2 V is relatively high compared to similar
systems in the literature[16, 20, 52]. We attribute this is to the high ohmic resistance of the Selemion AHO anion
exchange membrane, which was used because of its high pressure resistance (12 bar), and the low electrolyte
conductivity (1 M KOH at 25-30 °C).

the cell voltage. At low tHP the electrolyzer will also be more often in the low pressure
stage (stage 2 in Figure 2.4A), where gas bubbles are expanded and the ohmic resistance
is higher. Moreover, a small tHP also requires more energy for the more frequent com-
pressions. Similarly, at a high operating pressure, less pressure swings are required (as
tsat increases), but the compression costs of a single swing will be higher (see SI 2.5.7 for
an estimation of the compression costs).

In a zero-gap electrolyzer with Ni foam electrodes operating at 1 M KOH, 1-2 bar
pressure swings and 200 mA cm−2, the average cell voltage can be reduced by 170 mV
when applying pressure swings with a tHP of 5 s (Figure 2.7C). This is a 10% reduction of
the energy losses. When the additional compression energy consumption of the pressure
swing are included into the cell voltage, the average cell voltage is reduced by 120 mV.

tsat is around 7 s at 200 mA cm−2 and 2 bar (see Figure 2.5D), the optimal pressure
swing frequency (5 s in Figure 2.7C) is faster than the saturation time. This is, however,
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a trade-off between compression costs and voltage gain. We could not investigate at tHP

lower than 5 s, because our system did not pressurize in quick enough for the next pres-
sure swing. In addition to this, at tHP < 5 s the required pump energy starts to become
excessive and outweighs the gains in efficiency by the pressure swing.

EFFECT OF OPERATING PRESSURE

Figure 2.7C and D show the average cell voltage vs tHP when operating under a 1-2
or 1-4 bar pressure swing (see SI 2.5.8 for 1-3 and 1-5 bar pressure swings). At all pres-
sures, the improvement of the average cell voltage was around 150 mV. Noticeable, at
higher pressure the same improvement can be achieved at higher tHP, which is a logical
consequence of slower gas bubble saturation at higher applied pressure (Figure 2.5D).
However, the compression costs also increase with the higher pressure, also when tak-
ing into account the larger possible tHP. When compression costs are included, the best
performing pressure swing is between 1-2 bar, with an improvement of -120 mV in cell
voltage.

Similar results are obtained at lower current densities, SI 2.5.9. Here, less gas is pro-
duced, so higher tHP values still result in an improvement of the cell voltage. However
the compression costs have a relatively bigger impact, as the power consumption of the
electrolyzer goes down, while the compression costs remain unchanged.

Although the pressure swing is effective at 1-2 bar and 200 mA cm−2, higher current
densities would require even smaller (<5 s) tHP values, which can cause difficulties from
an engineering point of view and would increase the compression costs. Increasing the
low pressure and high pressure could be a solution for both problems. At high pressures
higher tHP values are possible and the compression costs scale with gas volume differ-
ence, so increasing the low pressure could make the pressure swing economically more
attractive. For example, operating a hypothetical pressure swing between 30 and 40 bar
could create a large average voltage improvement, while also saving on downstream hy-
drogen compression (compared to a system with a low pressure of 1 bar).

MODEL ANALYSIS OF PRESSURE SWING ASSISTED ELECTROLYSIS

To assess the possibilities of pressure swing assisted alkaline electrolysis system, we
calculated the change of the average cell voltage under various conditions. A simple an-
alytical model was made and implemented in Python (SI 2.5.11). The compression costs
of the pressure swing are included in these calculations. The model uses experimental
values of this chapter (e.g. RBubbles and V0).

Figure 2.8A predicts of how much the operating voltage of an electrolyzer can be im-
proved by a 1-2 bar pressure swing. A room temperature electrolyzer (1 M KOH or 6 M
KOH) with nickel foam electrodes could benefit significantly (< -0.2 V) from a pressure
swing. However, an electrolyzer operating at industrial conditions (6 M KOH and 80 °C)
will see limited, (0 to 0.1 V), improvements from a pressure swing. The red regions in
Figure 2.8 (>0 V) indicate operating regions where the compression energy costs out-
weigh the gain in operating voltage. A pressure swing should not be implemented in
such a scenario. Figure 2.8B shows that an electrolyzer with perforated plate electrodes
will benefit little from a pressure swing. This is in agreement with our experiments, in
which the effectiveness of a pressure swing in an electrolyzer with perforated plates is
limited (Figure 2.6 and SI 2.5.12).
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A B

Figure 2.8: Predicted maximum voltage change for a 1-2 bar pressure swing assisted zero-gap alkaline elec-
trolyzer as a function of current density and electrolyte conductivity. Compression costs of the pressure swing
are included. See SI 2.5.11 for the description of the model A. An electrolyzer operating with Ni foam electrodes
B. Ni perforated plate electrodes

The reduction of the cell voltage is similar to other gas bubble removal techniques,
like ultrasound[45] or supergravity[41], even after the additional energy costs for a pres-
sure swing are taken into account. Additionally, a pressure swing can be implemented
and scaled up relatively easily, as only an expansion tank and solenoid valves need to be
installed at the in- and outlet of the electrolyzer. In comparison, ultrasound waves will
dampen out and lose strength over larger electrolyzer stacks and supergravity through
centrifuges becomes more difficult to implement at large systems. Pressure swing-assisted
electrolysis can also easily be combined with other bubble mitigation strategies (i.e. su-
perwetting electrodes or flow-through electrolyzers) to minimize bubble effects.

However, the implementation of a pressure swing on an industrial alkaline electroly-
sis plant will also bring some difficulties. Large pressure differences, fast-moving valves
and pumps increase the amount of hazards in a plant and will require extra maintenance
and monitoring. In addition, the pressure swing will also results in a fluctuating voltage
(or fluctuating current when operating at constant voltage), which is challenging to sup-
ply at a large scale and could damage catalyst surfaces.

While the application of a pressure swing on an industrial electrolyzer might be dif-
ficult, it has promise as a testing rig to analyse the effects of gas bubbles in various elec-
trolyzer designs. Gas bubble removal with a pressure swing allows to decouple the effects
of gas bubbles from the total ohmic resistance. Furthermore, the technique could also
be used for gas bubble removal from porous materials in different systems, such as H2

generation from borohydrides[53], fouling removal in membrane processes[54] or CO2

capture with organic redox agents[55].
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2.4. CONCLUSIONS
The effects of gas bubbles on the cell voltage in a zero-gap alkaline electrolyzer were

investigated with a pressure swing. We demonstrate a pressure swing which removes
gas bubbles attached to the electrode in a fast (<1 s) swing between high pressure (2-5
bar) and atmospheric pressure. A zero-gap configuration still suffers from gas bubbles,
represented by a substantial bubble resistance RBubbles, although the bubble effects are
smaller than in a regular gap electrolyzer. RBubbles strongly depends on the electrode
geometry; a Ni perforated plate has a much lower bubble resistance (0.3 Ω cm2, 1 M
KOH, 30 °C) than a foam electrode (1.8 Ω cm2, 1 M KOH, 30 °C). By investigating the
saturation time, it was discovered that the gas bubble volume (V0 = 0.045 mL cm−2) is
close to the pore volume in foam electrodes (0.048 mL cm−2), which means that foam
electrodes in a flow-by configuration are almost completely filled with gas bubbles. The
timescale for gas saturation is in the second (<5 s) range at 2 bar, the optimal time be-
tween two pressure swings (tHP) is around 5 s too. Finally, under industrial conditions
(6 M KOH, 80 °C) a pressure swing could reduce the cell voltage by 0.1 V at 1 A cm−2

for foam electrodes. However, this is mainly because foam electrodes have a very large
bubble resistance. In perforated plate electrodes under industrial conditions, the energy
gain of a pressure swing is limited because the required compression energy is larger
than the voltage gain. We believe that the pressure swing has therefore most value as a
gas bubble analysis method at both scientific and industrial scale.
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2.5. SUPPLEMENTARY INFORMATION

2.5.1. PRESSURE SWING OPERATION SCHEME

Figure S2.1: Schematic representation of the operation of the pressure swing
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2.5.2. EFFECT OF AN ELECTROLYTE FLUSH
During initial experiments, the effect of flushing a large electrolyte volume through the elec-

trolyzer was tested as a means to remove gas bubbles. In the images below it can be seen that
the gas bubble removal is not perfect, even at a flush of 31.5 mL (1.5x electrolyzer volume). Gas
bubble removal became more efficient once the pressure variations of the pressure swing were
implemented.

Figure S2.2: Images of the electrode before and after an electrolyte flush.

2.5.3. CALCULATION OF NI FOAM PORE VOLUME
Ni foam - RCM-Ni4753.005 :

• Thickness: 0.5 mm

• Electrode area: 1 cm2

• Porosity: 95.2%

• Volume: 1 cm2 * 0.05 cm = 0.05 mL

Pore volume: 0.05 mL cm−2 * 0.952 = 0.0476 mL cm−2
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2.5.4. FITTED RBubbles AND V0 VALUES

Table S2.1: Fitted RBubbles and V0 from pressure swing experiments. Electrolyte conductivity is calculated at
30 °C with equations from Gilliam et al.[56]. In the column RBubbles*κwe show that area resistance scales with
conductivity, and that the values converge on 0.41-0.47 cm for foam electrodes.

Electrode p [KOH] κ RBubbles RBubbles*κ V0
geometry (bar) (mol L−1) (S cm−1) (Ω cm2) (cm) (cm3 cm−2)

Foam 2 1 0.23 1.8 0.045
Foam 3 1 0.23 1.95 0.076
Foam 4 1 0.23 1.4 0.054
Foam 5 1 0.23 1.4 0.069
Foam 2 0.3 0.075 1.9 0.14 0.034
Foam 2 1 0.23 1.8 0.41 0.045
Foam 2 2 0.405 1.15 0.47 0.04
Foam 2 3 0.531 0.78 0.41 0.043
Foam 2 6 0.685 0.63 0.43 0.043

Foam [48]
(with gap)

4 6 0.685 0.91 N/A

Perf plate 2 1 0.23 0.3 N/A

2.5.5. COMPARISON WITH LITERATURE
Bakker & Vermaas[48]:

A value for RBubbles for a regular gap electrolyzer with Ni foam electrodes at 6 M KOH was cal-
culated from Figure 7 of the work of Bakker & Vermaas[48], who also used a pressure swing to
remove gas bubbles. Here we assumed that the ∆ES from this work is similar to the ∆EBubbles that
was used in this work. We believe the linear slope in the ∆ES vs current density graph indicates a
similar Ohmic relation (and hence an RBubbles can be calculated from this. The trendline in Fig 7
has a slope (RBubbles) of 0.905Ω cm2.

De Groot & Vreman[16]:
De Groot and Vreman performed simulations of a zero-gap electrolyzer with a perforated plate
electrode, for different gas fractions in the electrode-diaphragm gap (Z1) and in the bulk (Z2). The
bubble resistance was calculated from the resistance values from Table 4 of the article (see se-
lected values in Table S2.2). Here we assumed a bulk gas fraction between 0 - 0.3 and a gap gas
fraction between 0.6 - 0.999, which is in line with our measurements. The resistance (R0), without
diaphragm or gas bubbles can be taken from case A0:

R0 = R – Rdiaphragm = 0.021Ωcm2 (S2.1)

To calculate the effect of gas bubbles (RBubbles) we assume the following (see Table S2):

RBubbles = R – Rdiaphragm – R0 (S2.2)

At 300 mA cm−2 we measured a gas fraction of 0.25 (Figure S2.5), and we expect the electrode-
membrane gap to be almost completely filled. We therefore expect RBubbles to be between 0.024-
0.080 Ω cm2 for a perforated plate electrode. The simulations of de Groot and Vreman were done
for 30wt% KOH at 80 °C. When we convert the measured RBubbles (0.3Ω cm2, 1M KOH 30 °C) from
our experiments to this conductivity, the resulting RBubbles is 0.051 Ω cm2. This agrees with the
simulations of de Groot and Vreman.
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Table S2.2: Selected values taken from the work of de Groot & Vreman [16](Table 4 of their work), all resistances
are in Ω cm2

Case α1 (gap) α2 (bulk) Rdiaphragm R RBubbles
A0 0 0 0.11 0.131 0
A2 0.6 0 0.109 0.145 0.015
A3 0.999 0 0.134 0.194 0.039
A5 0.6 0.3 0.112 0.157 0.024
A6 0.999 0.3 0.135 0.236 0.08

Kraglund PhD Thesis[50]: A value for RBubbles for a foam electrode was extracted from figure
4.11 from the PhD thesis of Mikkel Kraglund (Figure S2.3). From figure B, the m-PBI resistance can
be extracted: Rmembrane = 0.042 – 0.022 Ω cm2 ∼ 0.020 Ω cm2. R0 = R – Rmembrane ∼ 0.022 Ω cm2.
As there are two perforated plate electrodes, we assumed:

RBubbles(perf plate) = 0.5R0 = 0.011Ωcm2 (S2.3)

In figure A, the only difference between the red and orange line is that one perforated plate
electrode has been swapped with a foam electrode. The specific resistance increased from 0.042
to 0.078 Ω cm2.

RBubbles(foam) = 0.078 − 0.042Ωcm2 +RBubbles(perf plate) = 0.047Ωcm2 (S2.4)

The foam has a 4.3 times higher RBubbles. Although the dimensions of our electrodes are not
the same, the order of magnitude agrees with our measurements

Figure S2.3: Specific resistance values from the work of Kraglund, for a zero gap electroylser with a m-PBI
membrane, foam(f) and/or perforated plate (pp) electrodes[50]. T= 80 °C, 24wt% KOH
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2.5.6. PHOTO OF THE ELECTRODES

Figure S2.4: Photograph of a Ni perforated plate (left) and Ni foam (right) electrode surfaces. Metric ruler for
scale

2.5.7. CALCULATION OF THE ENERGY COSTS REQUIRED FOR THE PRESSURE

SWING
To calculate the additional compression work that the pump has to perform on top of normal

operation without a pressure swing, the following assumptions were made:

• Gas fraction of 25% (this is a worst case assumption, see Figure S2.5)

• Pump efficiency of 50%

• Liquid is incompressible, all compression costs are gas compression

• Adiabatic process

• Ideal gas

Figure S2.5: Catholyte gas fraction (xgas) versus current density at 2 bar pressure on Ni foam electrodes. The gas
fraction was measured by operating the cell for 2 min and then closing all the valves around the electrolyzer.
The system was drained, electrolyte was weighed and compared to a system operating at 0 mA cm−2. All
measurements were performed 4 times and an average of the gas volume was taken.

The work for the compression is defined as follows: dW = pdV , where:

dV =Vcellxg as

(
1 bar

p
−1 bar

)
(S2.5)
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Where Vcell is the volume of the electrolyzer and tubing until the back pressure valve (in m3),
xgas is the gas fraction (25%) and p is the high pressure in bar. For these experiments Vcell is 44

mL, or 44 10−6 m3.
The compression costs are then converted to power:

Pcompression = dW f = dW

tHP + tLP
= dW

tHP +1.5 s
(S2.6)

Where f is the frequency of the pressure swing, and tHP and tLP are the high and low pressure time
respectively. In all experiments tLP was held constant at 1.5 s.

The compression power was converted into an equivalent voltage to be added to Ecell as:

Ecompression = Pcompression

I
= Pcompression

j A
(S2.7)

Where I is the current in A, j is the current density in A cm−2 and A is the electrode area in cm2,
which was 40 cm2 in all experiments.

2.5.8. PRESSURE SWING ASSISTED OPERATION AT LARGER PRESSURE DIF-
FERENCES

Figure S2.6: Average cell voltage for 1-2, 1-3, 1-4 and 1-5 bar pressure swings for different high pressure times,
compared to the average voltage without applying a pressure swing. Note: The change in average cell voltage
for the different pressures is likely due to slight movements in the membrane/electrodes in the cell during the
cell assembly.
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2.5.9. PRESSURE SWING ASSISTED OPERATION AT LOWER CURRENT DEN-
SITIES

Figure S2.7: Average cell voltage for a 1-2 bar pressure swings at 40, 80 and 200 mA cm−2, compared to the
average voltage without applying a pressure swing.

2.5.10. CALCULATION OF THE FILLING TIME OF THE ELECTRODES
The filling time of an electrode is the time it takes for the pores of the electrode to be com-

pletely filled with hydrogen and oxygen gas bubbles. This is a hypothetical value, were it is as-
sumed that no gas escapes from the electrode pores and the formed hydrogen and oxygen bubbles
follow the ideal gas law (i.e. molar volume of 24.9 L mol−1 gas at 30 °C & atm). The molar volume
of the gas is calculated with the ideal gas law: VM = V

n = RT
p Here VM is the molar volume (mL

mol−1), T is the temperature (K), p is the pressure (bar) and R is the ideal gas constant (83.14 mL
bar K−1 mol−1).

The production rate of hydrogen and oxygen gas are: V̇gas = j
nF VM Where V̇gas is the gas pro-

duction (mL s−1), j is the current density (A cm−2), F is the Faraday constant (96485 C mol−1) and
n is a stoichiometric constant. n is 2 for hydrogen gas and 4 for the anode, we assumed n to be 3

to find the average fill time over the two electrodes. The filling time is then defined as: tfill =
Vpore

V̇gas

where tfill is the filling time (s) and Vpore is the volume of the pores in the electrode (mL).
The nickel foam from Recemat BV (RCM-Ni4753.005) has a thickness of 0.5 mm and a porosity

of 95.2%, resulting in a pore volume of 0.048 mL cm−2. At 200 mA cm−2 and 2.1 bar, the filling time
is 4.91 s, which is about 50% of the time it takes to reach a steady state voltage at these conditions.
This value of 50% holds up for all measured current densities between 40-300 mA cm−2. It is logical
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that the actual relaxation time of the voltage is higher, as gas continuously escapes the electrode.
This was also observed in videos of the setup, where gas bubbles were observed in the electrolyte
at times below tfill.

2.5.11. PRESSURE SWING MODEL
Figure 2.8 calculates the improvement to the cell voltage Ered by applying a pressure swing

to our zero-gap electrolyzer. Ered was calculated by the difference between the voltage reduction
by removing gas bubbles 0.5*∆EBubbles and the pumping costs required for the pressure swing
∆Epump, the factor 0.5 is because when pressure swing is operated at the saturation time, the
average cell voltage is reduced by half of the ∆EBubbles (Figure S2.8):

Ered = 0.5∆EBubbles −∆Epump (S2.8)

Figure S2.8: Assumed cell voltage during the pressure swing operation

∆EBubbles is calculated from the current density j , the experimentally determined bubble re-
sistance RBubbles, which are 1.8 Ω cm2 and 0.3 Ω cm2 for Ni foam and perforated plate electrodes
respectively (1 M KOH 30 °C) the electrolyte conductivity κ and the conductivity at 1 M KOH and
30 °C (κ0 = 0.230 S cm−1):

∆EBubbles = j RBubbles
κ

κ0
(S2.9)

∆Epump is calculated by dividing the required pumping power for the pressure swing Ppump
divided by the current I , or the current density j and the geometric electrode area A.

∆EPump = PPump

I
= PPump

j A
(S2.10)

Ppump is calculated with the work required for a single pressure swing Wpump and frequency
t−1
fill (see 2.5.7).

PPump = WPump

tFill
(S2.11)

WPump is calculated with similar to 2.5.4, Here p is the high pressure of the pressure swing
in Pa, ygas is the gas fraction inside the electrolyzer (0.25 taken as conservative value), Vcell is the
liquid volume inside the electrolyzer (44 mL for our system) and ηpump the pump efficiency (50%
taken as conservative estimate).

WPump =−pygasVcell

ηPump
(

105

p
−1) (S2.12)
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tfill is calculated similar to 2.5.10, where Vpore is the pore volume in the electrode in m3 cm−2,
j current density in A cm−2, nO2 is 4, F is the Faraday constant, R the ideal gas constant (8.314 J
mol−1 K−1), T temperature in Kelvin and p is the high pressure of the pressure swing in Pa.

tfill =
VporenO2F RT

j p
(S2.13)

The model was implemented in Python.

2.5.12. PRESSURE SWING WITH FOAM VS PERFORATED PLATE ELECTRODES
Figure S2.9 shows the average cell voltage for various tHP values for an electrolyzer with Ni

foam and Ni perforated plate electrodes. The RBubbles of foam electrodes make the Ni foam elec-
trode perform worse at all tHP values. Due to experimental limitations, we did not manage to
measure below a tHP of 10 s. However, it is likely that the trend continues at lower tHP and that Ni
foam electrode will outperform its perforated plate counterpart when bubble effects are mitigated.

Figure S2.9: Average cell voltage for a 1-2 bar pressure swings for comparing a electrolyzer with Ni foam or
perforated plate electrodes operating at 80 mA cm−2
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2.6. SUPPLEMENTARY VIDEOS

Video S2.10: Video of cathode during a pressure swing. Ni Foam electrode, 1 M KOH, 1-4 bar, 200 mA cm−2.
https://www.youtube.com/watch/fWjIUCNVXcU

Video S2.11: Video of anode during a pressure swing. Ni Foam electrode, 1 M KOH, 1-4 bar, 200 mA cm−2.
https://www.youtube.com/watch/CgaMQBYNhWk

Video S2.12: High speed video of cathode during a pressure swing. Ni Perforated Plate, 1 M KOH, 1-2 bar, 80
mA cm−2.
hhttps://www.youtube.com/watch/7aLzeHfkz1o

Video S2.13: High speed video of anode during a pressure swing. Ni Perforated Plate, 1 M KOH, 1-2 bar, 80 mA
cm−2.
https://www.youtube.com/watch/gNBlXdT2GO0
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Spatiotemporal pH imaging, using fluorescence lifetime microscopy (FLIM) is an excellent
technique for investigating dynamic (electro)chemical processes. However, probes that are
responsive at high pH values are not available. Here we describe the development and
application of dedicated pH probes based on the 1-methyl-7-amino-quinolinium fluo-
rophore. The high fluorescence lifetime and quantum yield, the high (photo)stability and
the inherent water solubility make the quinolinium fluorophore well suited for the de-
velopment of FLIM probes. Due to the flexible fluorophore-spacer–receptor architecture,
probe lifetimes are tuneable, in the pH range between 5.5 and 11. An additional fluo-
rescence lifetime response, at tuneable pH values between 11 and 13, is achieved by de-
protonation of the aromatic amine at the quinolinium core. Probe lifetimes are hardly af-
fected by temperature and the presence of most inorganic ions, thus making FLIM imaging
highly reliable and convenient. At 0.1 mM probe concentrations, imaging at rates of 3 im-
ages per second, at a resolution of 4 µm, while measuring pH values up to 12 is achieved.
This enables the pH imaging of dynamic electrochemical processes involving chemical re-
actions and mass transport.
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3.1. INTRODUCTION
Imaging chemical and biological systems can give insights into the local mass trans-

port and reaction kinetics. Fluorescent molecular probes are excellent materials for
characterizing these dynamic processes[1, 2]. Characteristics of the medium that are
probed may be physical in nature, such as measurements of temperature[3–6], pres-
sure[7], mechanical stress[8], solvent mobility[9–11] or solvent polarity[12]. Alterna-
tively, the chemical composition of the medium, such as pH[13–16], the concentration
of ions[17, 18] or more complex chemical species[19–21] can be monitored. A distinct
advantage of fluorescent probes is their inherently low detection threshold. Fluores-
cence can be detected at very low probe concentrations, in principle down to the single
molecule, but routinely in the micromolar range (10-6 M). Because fluorescent probes
can be localised by microscopic techniques and fluorescence can be monitored in real
time, the use of fluorescent probes enables spatiotemporal probing.

In order to detect chemical species, the fluorescence of probe molecules should be
influenced by interaction with analytes. In most cases this probe-analyte interaction is
a reversible binding event. The most convenient and flexible probe architecture is the
modular fluorophore-spacer-receptor configuration[22], in which a receptor is attached
to a fluorophore by a flexible spacer, see Figure 3.1. Upon binding the analyte to the
receptor, the fluorophore emission is altered and the most commonly encountered fluo-
rescence response is a change in emission intensity. In most cases intensity changes are
induced by changing the non-radiative decay rate of the excited state knr, as described
by Equations 3.1 and 3.2. In these equations, kF and knr are the rate constants for flu-
orescence and non-radiative decay, respectively, and ΦF and τF are the quantum yield
and the lifetime of fluorescence. Equations 3.1 and 3.2 clearly express that if the bind-
ing event only changes knr, which is generally the case for fluorophore-spacer-receptor
probes,ΦF and τF will be proportional.

ΦF = kF

kF +knr
(3.1)

τF = 1

kF +knr
(3.2)

Although an altered fluorescence intensity provides information about the local an-
alyte concentration, this is not the most desired probe response, because fluorescence
intensity also changes with probe concentration, which may be problematic in case of
an uneven probe distribution. Also, the recorded probe intensity is influenced by other
factors such as fluctuations in lamp intensity, photobleaching of the probe and light
scattering in the medium. Probes that respond to environmental changes by emission
wavelength shifts, so-called ratiometric probes, are more desirable. The fluorescence
response of such probes is more robust and reliable as the probe response no longer de-
pends on the probe concentration and excitation light intensity and is less sensitive to
scattering of the medium. For that reason, ratiometric probes are often referred to as
"self-referencing" probes. Unfortunately, ratiometric probes are far less common than
intensity probes, mainly because emission wavelength shifts are generally accompanied
by severe changes in emission intensity[23–26].
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Technical advancements in recent years have made fluorescence lifetime measure-
ment an affordable, highly accessible and user-friendly technique[27, 28]. Lifetime probes
are self-referencing because lifetimes are independent of probe concentration, excita-
tion light intensity and hardly influenced by scattering. Using fluorescence lifetime imag-
ing microscopy (FLIM), spatiotemporal probing at high spatial and temporal resolution
has become an established technique.

Fluorescence intensity changes result in changes to the fluorescence lifetime for most
probes, as expressed in Equations 3.1 and 3.2. Therefore, intensity sensitive probes can
be used as self-referencing fluorescence lifetime probes as well. Probe requirements for
lifetime probes, however, are different from those of intensity probes. The main require-
ments for intensity probes are high fluorescence quantum yields in the "on-state" and
low quantum yields in the "off-state", resulting in large fluorescence enhancements, Fl.E
= Ion/Ioff. For FLIM application, probes with high fluorescence quantum yields, long life-
times[29, 30] and modest changes in emission intensity are required. Generally, the life-
times and fluorescence quantum yield of probe molecules, in their bound and unbound
state, are proportional, providing that the analyte binding does not severely affect the
intrinsic photophysical properties of the fluorophore. For fluorophore-spacer-receptor
probes kF will not change significantly because the binding event does not take place di-
rectly at the fluorophore. At analyte concentrations around the dissociation constant of
the receptor unit, mixtures of bound and unbound probes are formed resulting in dual
lifetime emissions. While the emission intensity scales linear with the (un)bound probe
concentration, the average lifetime in this probe mixture, as given by equations 3.3 and
3.4, does not. The fluorescence lifetime is dominated by the strongly fluorescent and
long-lived species, as expressed by equation 3.4[28].

IF(t ) =∑
Ciexp

(
t

τi

)
(3.3)

τavg =
∑

Ciτi∑
Ci

(3.4)

In equations 3.3 and 3.4, τi is the fluorescence lifetime of species i, τavg is the average
lifetime of the different probe species and the term Ci is called the pre-exponential fac-
tor, which represents the magnitude of the species i in the fluorescence decay profile. It
is assumed that the pre- exponential factor is the product of concentration and fluores-
cence quantum yield and therefore the lifetime response will deviate from the intensity
response, in particular when analyte binding induces strong changes in fluorescence
quantum yields.

The prospect of using FLIM for spatiotemporal probing, i.e. real time monitoring of
complex processes in three-dimensional space, has been exploited for examining bio-
logical processes, using probes that are sensitive to pH, other relevant chemical species
such as reactive oxygen species (Rox)[20], or temperature[5]. In recent years FLIM probes
have been developed aimed at probing pH, temperatures and chemical species at bio-
logically relevant conditions. For pH probing, lifetime probes that monitor pH changes
in mildly acidic and neutral media, in the pH domain between 5 and 8, are commercially
available[31].

58



3.2. RESULTS AND DISCUSSION

3

47

Recently, real-time monitoring of complex systems in two dimensions using FLIM
has also been employed for non-biological processes. Using conventional probes, pH
gradients in electrochemical processes[32] and flow through porous catalysts have been
monitored[33]. In our current research we are investigating electrochemical processes
that are relevant for the coming energy transition, such as electrochemical water split-
ting and CO2 reduction. The electrodes in CO2 reduction typically operate at a high pH
and produce or consume OH – ions, which results in pH changes at moderately high pH
values[34]. In order to study these processes, fluorescence lifetime probes with tune-
able properties and sensitivities outside the biological constraints, notably for high pH
values, are required.

In previous research we have developed "switch on/switch off" pH probes fluores-
cent probes based on the 1-methyl-7-amino-quinolinium fluorophore.[14, 35] In addi-
tion, ratiometric mobility probes for monitoring physical ageing[36] as well as deter-
mining crystallization and glass transition temperatures[37] in amorphous and semi-
crystalline polymers were developed. The 1-methyl-7-amino-quinolinium fluorophore
has (photo) physical properties that are highly suitable for developing lifetime probes for
FLIM applications. The fluorophore has a high fluorescence quantum yield in the 0.7-
0.8 range and fluorescence lifetimes are in the 12-13 ns range, which is well above the 4
ns lifetime of common fluorophores[33]. On top of that, this fluorophore is inherently
water soluble and highly photo stable. Most importantly, using the “fluorophore-spacer-
receptor” configuration the pH range in which the probes are sensitive, and the extent of
fluorescence quenching are easily tuned by systematic variation of the spacer-receptor
units that are attached to this fluorophore.

In this research we will demonstrate that "fluorophore-spacer-receptor" probes based
on 1-methyl-7-amino-quinolinium are excellent materials for FLIM probing. Fluores-
cence lifetimes of these probes are pH sensitive and easily tuned in the pH window be-
tween 5.5 and 13. FLIM measurements were demonstrated at 3 Hz with 4 µm resolu-
tion using a 0.1 mM probe concentration using default settings. Model measurements
demonstrate that pH changes due to reactions and mass transfer are visualised accu-
rately and in detail by FLIM measurements.

3.2. RESULTS AND DISCUSSION

3.2.1. PROBE DESIGN AND SYNTHESIS

The general fluorescence behaviour and the molecular architecture of 7-amino-1-
methyl quinolinium-based pH probes with a spacer-receptor moiety attached at the 7-
position is depicted in Figure 3.1. At low pH values, the appended amine receptor is
protonated and the probe, H2Q2+ in Figure 3.1, is highly fluorescent with fluorescence
quantum yields ΦF around 0.6-0.8 and fluorescence lifetimes in the 12-13 ns domain.
Upon deprotonation of the receptor, HQ+ is formed and quenching by the amino func-
tionality due to photoinduced electron transfer (PET) occurs[22]. Both the fluorescence
quantum yield and lifetime decrease. The pH value at which this transition takes place,
pKA1∗ , depends on the excited state acidity of the protonated amine receptor, which de-
pends on the substituents at the amino functionality (R1 and R2) and the length of the
spacer between the electron deficient fluorophore and the receptor unit, see Figure 3.1 .
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Figure 3.1: General emission intensity versus pH behaviour of quinolinium probes. Values used for construct-
ing this graph are: pKA1∗ = 5, Fl.E = 2 and pKA2∗ = 11.5.

In a previous contribution, we have reported pKA1∗ values between 6 and 10,[14] but
with appropriate modifications of the molecular structure, pKA1∗ values outside that
range can be obtained in a straightforward fashion. The extent of quenching, quanti-
fied by the fluorescence enhancement Fl.E = Ion/Ioff, is mainly determined by the length
of the spacer between the fluorophore and the receptor. The shorter the spacer, the
stronger the quenching upon deprotonation is. It should be noted that changes in ab-
sorption are determined by the ground state dissociation constant pKA, while changes
in fluorescence depend on the excited state dissociation constant pKA∗ , providing that
equilibrium in the protonation reaction is achieved during the excited state lifetime.
For fluorophore-spacer-receptor probes, differences between pKA and pKA∗ values are
small. Finally, at higher pH values, deprotonation of the aromatic amino proton at the
quinolinium takes place and Q, a non-fluorescent species, is formed. This process has
an apparent dissociation constant pKA2∗ around 11[38]1. Ground state deprotonation
is not observed for this process, not even at pH values as high as 14, which indicates
that only the excited state of Q is acidic. Similar excited state proton transfer processes
(ESPT) have been reported for related compounds such as the "superacids" 6-,7- and
8-hydroxyquinoline and 6-,7- and 8-aminoquinoline compounds[39]. The large differ-
ences in ground state and excited state dissociation constants observed for these com-

1The reported “apparent” pKA2∗ values are measured from fluorescence intensity, assuming equilibration
prior to fluorescence, which is not necessarily the case. Correct pKA2∗ values will be lower than the reported
“apparent” pKA2∗ values, see[38]
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pounds is not surprising because now the receptor is part of the fluorophore[40], which
undergoes (partial) transfer of the positive charge from the quinolinium nitrogen to the
amino nitrogen upon excitation.

For lifetime probing, in contrast to intensity probing, modest decreases in intensity
upon receptor deprotonation are preferred. This requirement translates into the use of
longer spacers (n = 3,4). The full intensity quenching caused by deprotonation at the aro-
matic amine at high pH values around pH = 11-12, will result in lifetime changes as well.
Although full intensity quenching is often not accompanied by lifetime changes[41], de-
creases in lifetime are expected because deprotonation takes place in the excited state
by ESPT, as illustrated by Figure S3.10. This is explained in more detail in the Supporting
Information (3.5.2).

Probe molecules 2a-2e, depicted in Figure 3.2 have been selected for further inves-
tigation. Probes 2b and 2c have modest 4 fold decreases in emission intensity with
markedly different excited state dissociation constants pKA1∗ for the receptor deproto-
nation of 9.4 and 6.5, respectively. The fluorescence lifetimes change with a factor 3-4
from 12.7 to 3.5 ns upon this deprotonation. The final deprotonation of the aromatic
amine has a pKA2∗ value around 12.2 and results in full quenching of the fluorescence.
Probe 2a has a strong 80-fold decrease in emission with a pKA1∗ value of 7.9 and due
to this large quenching 2a is not expected to be a useful lifetime probe. Probes 2d and
2e do not have spacer-amino receptors attached to the quinolinium core and fluores-
cence quenching takes place by deprotonation of the quinolinium amine only. For this
process a lower pKA2∗ value is expected for probe 2d because the ethyl trimethyl am-
monium substituent at the aromatic amine in 2d is more electron withdrawing than the
hexyl substituent in compound 2e. Photophysical properties of probes 2a-2e, obtained
from this work and reference[14], are listed in Table 3.1.

Table 3.1: Photophysical data of probes 2a-2e, from previous work and obtained in this work.

Probe 2a 2b 2c 2d 2e
pKA1∗ (I) 7.9b 9.4b 6.5b - -
pKA1∗ (t) 9.3b 9.7b 6.7b - -
pKA2∗ (I) - 12.2b 12.2b 11.3b 11.7b

pKA2∗ (t) - 12.4b 12.4b 11.5b 11.9b

ΦF-on 0.85a 0.78a 0.74a 0.82a 0.59b

τF-on (ns) 13.0b 12.6b 12.7b 13.0b 11.5b

Ion/Ioff 80b 4.1b 4.2b - -
τon/τoff - 4.0b 3.7b - -
λabs

max (nm)c 401b 410b 410b 402b 418b

λemi
max (nm)c 486b 496b 494b 484b 503b

a : Taken from [14] b : This work. c : Maximum absorption and emission
wavelength for the quinolinium in protonated form. Full absorption and
emission spectra can be found in Figure S3.11 and S3.12 respectively
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3.2.2. SYNTHESIS
The fluorescent quinolinium probes 2a-2e were synthesised by reacting primary amines

with 7-fluoro-1-methylquinolinium iodide 1[42] by a nucleophilic aromatic substitution
reaction, as depicted in Figure 3.2. Probes 2a, 2c and 2e were obtained by reacting 1 with
a small excess of amine and were isolated in high yields after crystallisation from the re-
action mixtures. Probe 2b was obtained by a similar procedure, using a 10-fold excess
of diamine, in 84% yield. Finally probe 2d was obtained in 64% yield by alkylation of
compound 2a with methyl iodide in methanol at room temperature.

Figure 3.2: Molecular structure and synthesis of probes 2a-2e.

3.2.3. PHOTO PHYSICAL PROBE CHARACTERISATION
The fluorescence emission intensities of probes 2a-2e, as a function of pH, are plot-

ted in Figure 3.3. The data points in Figure 3.3 are the experimental data points, the
curves have been obtained using Equation 3.5 that describes the probe composition in
the excited state, as a function of pH.

ΦF = (
ΦF(H2Q2+)−ΦF(HQ+)

) 10pKA1∗−pH

1+10pKA1∗−pH
+ΦF(HQ+)

10pKA2∗−pH

1+10pKA2∗−pH
(3.5)

In Equation 3.5, H2Q2+, HQ+ and Q are the protonated quinolinium probe, the quino-
linium probe and the deprotonated probe, respectively, as depicted in Figure 3.1. pKA1∗

and pKA2∗ are the excited state dissociation constants of the H2Q2+/HQ+ and HQ+/Q
equilibria, respectively.

From Figure 3.3, pKA1∗ values of 7.9, 9.4 and 6.5 are determined for probes 2a, 2b
and 2c along with fluorescence enhancements of 80, 4.1 and 4.2, respectively. These
values in good agreement with previous work[14]. For probes 2b and 2c, an identical
pKA2∗ value of 12.2 was determined. Probes 2d and 2e do not have amine receptors ap-
pended to the quinolinium ions, so only pKA2∗ values of 11.3 and 11.7 were observed.
These pKA2∗ values correlate very well with the electron donating ability of the spacer-
receptor unit attached to the aromatic amine at the quinolinium moiety. For probe 2d
the strongly electron deficient ethyl trimethylammonium unit induces the lowest pKA2∗

value, whereas the electron-rich amine appended propyl units in probes 2b and 2c in-
duce the highest pKA2∗ values in these compounds.
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Figure 3.3: Fluorescence intensity vs pH for probes 2a-2e in a 0.1 mM phosphate buffer. Curves connecting
the data points were obtained by using Equation 3.5 or S3.1

Surprisingly, decreases in emission intensity around neutral pH values were observed
for compounds 2b, 2d and 2e, with apparent pKA∗ values close to 7.1. For compound 2b
and 2e decreases in emission intensity are small, 3 and 2%, respectively, but for com-
pound 2d, the decrease in intensity is a more substantial 12%. We found that the origin
of this decreased emission intensity is HPO4

– 2 that is formed in the 10−4 M phosphate
buffer around pH = 7.43. Similar decreases in intensity around pH 7 have been reported
for phenol appended DAOTA dyes in phosphate buffers as well[30, 43]. It was noted
that this quenching increases if more concentrated buffer solutions are used, see Fig-
ures S3.1, S3.2 and S3.3. We assume that is due to hydrogen phosphate binding and that
the dicationic probe 2d has the best geometry for HPO4

– 2 binding. The strong quench-
ing of probe 2d to HPO4

– 2 could be interesting in the future for developing a HPO4
– 2

concentration probe, similar to anthrylpolyamines reported previously[44]. Finally, the
phosphate quenching has been incorporated in Equations S3.1 and S3.5.

The fluorescence lifetime of probes 2a-2e as a function of pH is depicted in Figure
3.4, while normalised lifetimes versus pH plots are presented in Figure S3.4. At low pH
values all probes exhibit lifetimes between 11.5 and 13.1 ns and these values are pro-
portional to the fluorescence quantum yields ΦF of these probes. Changes in lifetimes
due to deprotonation of a spacer-bound amine receptor occurs for probes 2a, 2b and
2c only. For probes 2b and 2c, by fitting the experimental data using Eq S3.4 (see 3.5.4)
pKA1∗ values of 9.7 and 6.7 were determined from lifetime measurements. These val-
ues were 0.2-0.3 units higher than those determined by intensity measurements. This
“delayed” response in lifetime was anticipated, because mixtures of H2Q2+ and HQ+ are
present in the solution, at pH values of pKA1∗ ± 1, for which the emission is dominated
by the strongly emitting, long-lived H2Q2+. For probe 2a, due to the 80-fold quenching
upon deprotonation, this effect is most pronounced and the pKA1∗ measured in lifetime
is 9.3; a 1.4 shift compared with the intensity measurements.

For probes 2b-2e, lifetimes further decrease due to deprotonation of the aromatic
amine proton. For probes 2d and 2e, whose fluorescence lifetime is not affected be-
low pH 10, this decrease in lifetime is most pronounced. The pKA2∗ values measured in
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lifetime are slightly higher than those measured in intensity by a value of 0.2. It should
also be noted that, due to the low fluorescence intensity and short lifetimes, lifetimes
reported at high pH have limited accuracy.

Figure 3.4: Fluorescence lifetime vs pH for probes 2a-2e in a 0.1 mM Phosphate buffer. Curves connecting
the data points were obtained by using Equation S5 or S6. Error bars, as included in Figures 3.5, 3.5, are not
included for better readability.

In Figure 3.5, the normalised fluorescence intensities and lifetimes as a function of
pH for probes 2b and 2c are depicted, along with the curve fitting based on Equations 3.5
and S3.4. From Figure 3.5 it is clear that the major differences between emission intensity
and lifetime curves are that pKA∗ values are right-shifted for the lifetime measurements
and that the decreases in lifetime upon deprotonation at higher pH values are smaller
than those measured in intensity.

Figure 3.5: Relative intensity and lifetime vs pH of probe 2b (left) and probe 2c (right) in water containing 0.1
mM phospate buffer. The curves around the data points are generated using Equation 3.5, S3.1 or S3.4. The er-
ror bars in this graph are the standard deviation from the FLIM measurement. See 3.5.6 for more information.
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In Figure 3.6, the normalised fluorescence intensities and lifetimes as a function of
pH for probes 2a and 2e are depicted, along with the curve fitting based on Equation
3.5. From Figure 3.6 it is visible that for probe 2a, the lifetime responds to pH changes
at much higher pH values at which the probe emission is very low. This is because the
probe exhibits a 80-fold intensity decrease around pH = 8. This is so because above pH =
8 (pKA1∗ ) the lifetime is dominated by the strong emission of the protonated probe. For
that reason, probes with high fluorescence enhancement, like probe 2a, are not suitable
as lifetime probes. Probe 2e, responds to pH changes only at very high values due to de-
protonation of the aromatic quinolinium proton. Intensity and lifetime profiles are very
similar. Figure 3.6 shows that, in contrast to the intensity, the lifetime of probe 2e does
not respond to hydrophosphate quenching and that the pKA2∗ in lifetime has increased
by a modest 0.2. At high pH values between 11 and 12, N7-alkylated quinolinium probes
like 2e are very sensitive lifetime probes. A similar behaviour is observed for probe 2d,
see Figure S3.5.

Figure 3.6: Relative intensity and lifetime vs pH of probe 2a (left) and probe 2e (right) in water containing 0.1
mM phospate buffer. The curves around the data points are generated using Equation 3.5, S3.1 or S3.4. The er-
ror bars in this graph are the standard deviation from the FLIM measurement. See 3.5.6 for more information.

To be useful as pH probes, the probe lifetime should not be influenced by changes
in temperature and common ions, such as Na+, K+, Cl – , Br – and SO4

2 – , that we expect to
be present in the sample. Previous experiments with 7-ethylamino-1-methylquinolinium
iodide[14], the ethyl analogue of probe 2e, revealed that the probe intensity was insensi-
tive to Cl – and Br – ions. In contrast, I – and OH – ions induced quenching due to photo
induced electron transfer (PET) and deprotonation of the aromatic amine, respectively.
Similar sensitivities are expected for fluorescence lifetimes. The fluorescence lifetimes
of probes 2b, 2d and 2e were investigated as a function of the temperature and the con-
centration of phosphate and sulphate ions. As depicted in Figures 3.7, S3.6 and S3.7,
the fluorescence lifetime decreases upon increasing the temperature, with a gradient of
0.05-0.06 ns/°C. As mentioned earlier, hydrogen phosphate ions (HPO4

2 – ) reduce both
intensity and lifetime, but at concentrations below 0.1 mM, the effect is negligible for all
probes in lifetime measurements and hardly visible in intensity measurements, with the
notable exception of probe 2d, see Figures S3.1-S3.3 and S3.8. The lifetime response of
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probe 2d to the sulphate concentration is shown in Figure S3.9. When the sulphate con-
centration is increased from 10−4 to 10−1 M, lifetimes between 13.3 ns to 13.6 ns were
recorded. This happens both at a pH of 7 and 3.5. These changes fall well within the
standard deviation of the FLIM measurements. Hence we can say that pH probing is
unaffected by sulphates.

Figure 3.7: Fluorescence lifetime τF vs temperature of probe 2e in demineralised water. The lifetime vs tem-
perature slope is -0.057 ns/°C

3.2.4. SPATIOTEMPORAL PH IMAGING IN AQUEOUS ENVIRONMENT

The large pH range of the quinolinium probes enables spatiotemporal pH probing
in various pH domains. To demonstrate the possibilities of the quinolinium probes, we
have performed two experiments with 2b. We probed the pH in the vicinity of a CO2

bubble, which dissolves in the surrounding alkaline medium and monitored the diffu-
sion of Ba(OH)2 from a small paper bag into the surrounding liquid. The FLIM setup
allowed pH imaging using a 0.1 mM probe solution at a rate of up to 3 images per second
and at a pixel size of 4 µm.

The dissolution of gaseous CO2 in an alkaline medium decreases the pH value by
forming carbonate ions (CO2 + 2OH – ↔ CO3

2 – + H2O). This phenomenon is also ap-
plied when capturing CO2 from the air[45] or from post-combustion gas streams[46].
Spatiotemporal monitoring the pH during such processes could help to gain insights in
the mass transport in these processes. Figure 3.8 shows a bubble of CO2 gas which is
pumped through a needle in a 0.01 M KOH solution. A higher fluorescence intensity can
clearly be seen around the bubble on the intensity plot (Figure 3.8B). This is caused by
the high fluorescence emission of the dye at lower pH, which is a result of CO2 dissolving
and creating a locally more acidic environment close to the bubble. While the intensity
images are highly dependent on dye concentration, excitation intensity and light scat-
tering, the fluorescence lifetime image (Figure 3.8C) allows us to directly measure and
visualize the local pH around the CO2 bubble. Interestingly, both intensity and lifetime
measurements show that the radial symmetry that one would expect for CO2 dissolu-
tion is not observed in this experiment: a lower pH is observed at the left top of the gas
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bubble, indicating advection in this direction.

Figure 3.8: A. Schematic representation of the experiment: A bubble of CO2 pumped in an alkaline (0.01 M
KOH, 10−4 M 2b) solution. B. Light intensity image. C. Fluorescence lifetime image, calculated from the phase
shift from the reference. D. pH image, lifetime image was converted using the lifetime pH curve from Figure
3.4. See section 3.6 for the video of this process.

To show that the probe works also in cases with low bulk pH and high surface pH, we
injected dye solution (0.2 M K2SO4, 10−4 M 2b) on top of a paper bag filled with Ba(OH)2

and monitored the diffusion of the OH – ions into the solution (Figure 3.9). The lifetime
and pH images in Figure 3.9C/D show a complex mixing behaviour resulting from the
liquid being injected into the cuvette and the beginning of the formation of an alkaline
layer above the paper bag.

The additional strength of the FLIM technique, in combination with the quinolin-
ium probes, are demonstrated by the pH videos in section 3.6. These videos allow great
insights in the mixing dynamics in these systems. For example, when the CO2 bubble
emerges from the tube one can clearly see a swirl with a decreased pH forming above
the bubble. Similar swirls were formed in repeat experiments and would be difficult to
model. Also in the Ba(OH)2 diffusion experiment one can see complex mixing behaviour
when the liquid is pumped into the cuvette, and the resulting inhomogeneities in the pH
in the electrolyte above the paper bag. The fast imaging of the FLIM camera, combined
with the large and tuneable range in pH, facilitates mapping of mass transport in elec-
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trochemical flow cells, such as flow batteries or CO2 electrolyzers.

Figure 3.9: A. Schematic representation of the experiment: Cuvette with a small paper bag filled with Ba(OH)2
powder, on which electrolyte (0.2 M K2SO4, 10−4 M 2b) is added using a 5 mL syringe. B. Light intensity image.
C. Fluorescence lifetime image, calculated from the phase shift from the reference. D. pH image, lifetime image
was converted using the lifetime pH curve from Figure 3.4. See section 3.6 for the video of this process.

It should be noted that 1-methyl-7-aminoquinolinium-based fluorescent pH probes
allowed for accurate pH resolution, as lifetime changes are large (1-10 ns), much larger
than the standard deviation in the measurements (0.5-1 ns). The intensity of the quino-
linium dyes remained unchanged for long (∼1 hour) experiments, which indicates a high
photostability. Commercial FLIM pH probes, like BCECF[31], SNARF-5F[31] and Fluo-
rescein[47], on the other hand, have much smaller lifetime change of around 0.5-1 ns
and exhibit significant decreases in fluorescence intensity due to photo bleaching under
standard irradiation conditions. These commercial dyes did not yield accurate and dy-
namic pH information in our setup and were not sensitive at high pH values. Finally, it
should be noted from Figures 3.8 and 3.9 that the images taken from intensity measure-
ments, Figures 3.8B and 3.9B, are “contaminated” with dark spots and other artefacts
(vertical lines in 3.9B) that are not present in the lifetime and pH images.
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3.3. CONCLUSIONS
In this work we have demonstrated that 1-methyl-7-aminoquinolinium-based flu-

orescent pH probes are excellent spatiotemporal pH probes by fluorescence lifetime
imaging (FLIM). These fluorescent probes are inherently water soluble and highly photo
stable, have high inherent lifetimes (11.5-13 ns) and have limited sensitivity to tempera-
ture and common ions present in the aqueous media that we investigated. Preliminary
experiments have demonstrated that dynamic processes involving chemical reactions
and mass transfer, can be imaged with a spatial resolution of 4 µm at a rate of 3 images
per second using 0.1 mM probe concentrations.

Due to the modular design, sensitivities of the probe molecules are easily tuned in a
pH range between 5 and 11 by attaching spacer-receptor units to the quinolinium core.
An additional tuneable regime around pH 11-13 is available by deprotonating the quino-
linium fluorophore. Notably the tuneable sensitivity at high pH values is unprecedented
for FLIM probes and makes the quinolinium probes excellent candidates for investigat-
ing local pH effects in complex (electro)chemical reaction systems.

Finally, it was demonstrated that the pH-dependence of fluorescence lifetimes and
fluorescence intensities, apart from a 0.2 pH unit shift to higher values, were very similar,
for probes with modest fluorescence enhancements. Therefore, data available from pH-
dependent fluorescence intensity measurements are useful input for the development
of FLIM probes.

3.4. METHODS
PROBE SYNTHESIS AND CHARACTERISATION

Probes 2a-2d, were synthesised according to the procedures described in reference
[14]. The synthesis and characterisation of probe 2e is described in the Supporting Info
(3.5.5).

ABSORPTION SPECTRUM CHARACTERIZATION

The absorption spectra of the Quinolinium dyes were taken on a Perkin Elmer Lambda
40 by dissolving 10−4 M dye in a 10−4 M phosphate buffer solution in polystyrene cu-
vettes, one solution acidified to pH 2.5 by addition of 0.025 M HCl and one to pH 13 by
addition of 0.1 M KOH.

FLUORESCENCE INTENSITY MEASUREMENTS

The fluorescence intensity/pH curves were made using 200 mL of stirred buffered
dye solution, 10−4 M phosphoric acid, and quinolinium was added until the absorbance
was 0.12 in a standard quartz cuvette. A few drops of 37% HCl were added at the start
to reduce the pH to 2-3. The pH was increased by adding KOH. The pH was monitored
using a 913 pH Meter from Metrohm. The fluorescence spectra were taken on a Jobin
Yvon-Spex Fluorolog 3-11 spectrofluorimeter and the fluorescence intensity was mea-
sured at the wavelength of the emission maximum at low pH (λmax).

FLUORESCENCE LIFETIME MEASUREMENTS

The lifetime/pH curves were made using 200 mL of stirred buffered dye solution
(10−4 M quinolinium and 10−4 M Phosphoric acid). A few drops of HCl were added at
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the start to reduce the pH to 2-3. The pH was increased by adding KOH solution man-
ually with a pipette. The pH was monitored using a 913 pH Meter from Metrohm (pH
accuracy of ±0.003 pH) and samples were taken and stored in polystyrene cuvettes. We
made sure the total volume increase was less than 25% to prevent significant dilution of
the dye.

The lifetimes were measured with a Toggel FLIM camera from Lambert instruments
(frequency-domain), in combination with a X-Light V2 spinning disk confocal unit from
CrestOptics (see 3.5.6). The solutions were excited by a 405 nm modulated laser (Omi-
cron LuxX+ 405-300). The FLIM camera and confocal disk unit were connected to a Zeiss
Axiovert 200m microscope with a 5x objective, in which a cuvette can be mounted. The
fluorescence from the samples are filtered by a long-pass filter with a cutoff at 420 nm.
We used a strongly buffered solution of 2b (pH = 8) as a fluorescence lifetime reference
(τφ = 10 ns, τφ is the fluorescence lifetime calculated by phase shift) in all experiments.
All reported lifetimes are calculated with the frequency method (τφ) in the LIFA soft-
ware from Lambert instruments. Photographs of the setup and full instrument settings
are shown in the supplementary information. To check the validity of the lifetime mea-
surement method, the lifetimes were also measured on a Lifespec-PS from Edinburgh
instruments (time-domain). See 3.5.6 for more information.

FLIM DEMONSTRATION EXPERIMENTS

The FLIM demonstration experiments were performed on the same setup as the life-
time measurements. The CO2 bubble dissolution experiment was done in a polystyrene
cuvette (1x1x3.5 cm), CO2 gas was flown through a small steel needle into the electrolyte,
which consisted of 0.01 M KOH and 10−4 M 2b. The Ba(OH)2 diffusion experiment was
performed by carefully adding an electrolyte of 0.2 M K2SO4 and 10−4 M of dye 2b into a
cuvette which had a small paper bag filled with Ba(OH)2 powder.
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3.5. SUPPLEMENTARY INFORMATION

3.5.1. EFFECT OF PHOSPHATE BUFFER, SULPHATES AND TEMPERATURE
Quenching of fluorescence intensity and lifetime is observed at high concentration phosphate

buffers due to the formation of hydrogen phosphate dianions (HPO4
2 – ) at increasing pH. Phos-

phorous acid has 3 dissociation constants with pKA values of pKA1 = 2.2, pKA2 = 7.2 and pKA3 =
12.4, respectively. Therefore the hydrogen phosphate quenching process will be observed when
HPO4

2 – becomes present in the solution, so pH values around 6.2-7.2. For describing fluores-
cence intensity versus pH plots of probes 2a-2e, Equation 3.5 is appended to form equation S3.1:

ΦF =
(
ΦF(H2Q2+)H2PO4

− −ΦF(H2Q2+)HPO4
2−

) 10(pKA2−pH)

1+10(pKA2−pH)
+

(
ΦF(H2Q2+)HPO4

2− −ΦF(HQ+)HPO4
2−

) 10(pKA1∗−pH)

1+10(pKA1∗−pH)
+

ΦF(HQ+)HPO4
2−

10(pKA2∗−pH)

1+10(pKA2∗−pH)

(S3.1)

Here H2Q2+, HQ+ and Q are the protonated quinolinium probe, the quinolinium probe and
the deprotonated probe, respectively, as depicted in Figure 3.1. ΦF(H2Q2+)H2PO4

− is the fluo-
rescence quantum yield of H2Q2+ in the presence of dihydrogen phosphate anions (H2PO4

2 – ),
species that do not quench the fluorescence. ΦF(H2Q2+)HPO4

2− andΦF(HQ+)HPO4
2− are the fluo-

rescence quantum yields of H2Q2+ and HQ+, in the presence of hydrogen phosphate ions (HPO4
– 2)

and these values depend on the buffer concentration. pKA1∗ and pKA2∗ are the excited state dis-
sociation constants of the H2Q2+/HQ+ and HQ+/Q equilibria, respectively and pKA2 is the second
dissociation constant of phosphoric acid with a values between 6.2-7.2.
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Figure S3.1: Normalised fluorescence intensity and lifetime of probe 2b in 0.1 M and 0.1 mM phosphate buffer.
The error bars in this graph are the standard deviation from the FLIM measurement. See 3.5.5 for more infor-
mation.

Parameters obtained from Figure S3.1:
Intensity versus pH with 0.1 mM Phosphate buffer, using Eq S3.1:

• pKA = 6.5, pKA1∗ = 9.4, pKA2∗ = 12.2

• ΦF(H2Q2+)H2PO4
− −ΦF(H2Q2+)HPO4

2− = 0.025

• ΦF(H2Q2+)HPO4
2− −ΦF(HQ+)HPO4

2− = 0.75

• ΦF(HQ+)HPO4
2− = 0.225

Lifetime versus pH with 0.1 M Phosphate buffer, using Eq S3.5:

• pKA = 6.4, pKA1∗ = 10.6, pKA2∗ = 12.5

Lifetime versus pH with 0.1 mM Phosphate buffer, using Eq S3.4:

• pKA1∗= 9.7, pKA2∗= 12.4
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Figure S3.2: Normalised fluorescence intensity and lifetime of probe 2d in 0.1 M and 0.1 mM phosphate buffer.
The error bars in this graph are the standard deviation from the FLIM measurement. See 3.5.5 for more infor-
mation.

Parameters obtained from Figure S3.2: Intensity versus pH with 0.1 mM Phosphate buffer,
using Eq S3.1:

• pKA = 7.15, pKA2∗ = 11.3

• ΦF(H2Q2+)H2PO4
− −ΦF(H2Q2+)HPO4

2− = 0.12

• ΦF(HQ+)HPO4
2− = 0.88

Lifetime versus pH with 0.1 M Phosphate buffer, using Eq S3.5:

• pKA = 6.0, pKA2∗ = 11.9

Lifetime versus pH with 0.1 mM Phosphate buffer, using Eq S3.4:

• pKA2∗ = 11.5
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Figure S3.3: Normalised fluorescence intensity and lifetime of probe 2e in 0.1 M and 0.1 mM phosphate buffer.
The error bars in this graph are the standard deviation from the FLIM measurement. See 3.5.5 for more infor-
mation.

Parameters obtained from Figure S3.3: Intensity versus pH with 0.1 mM Phosphate buffer,
using Eq S3.1:

• pKA = 6.15, pKA2∗ = 11.7

• ΦF(H2Q2+)H2PO4
− −ΦF(H2Q2+)HPO4

2− = 0.025

• ΦF(HQ+)HPO4
2− = 0.975

Lifetime versus pH with 0.1 M Phosphate buffer, using Eq S3.5:

• pKA = 7.1, pKA2∗ = 11.8

Lifetime versus pH with 0.1 mM Phosphate buffer, using Eq S3.4:

• pKA2∗ = 11.9
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Figure S3.4: Normalized fluorescence lifetime vs pH for probes 2a-2e in a 0.1 mM Phosphate buffer. Curves
connecting the data points were obtained by using Equation S3.4 or S3.5. Error bars are not included for better
readability.

Figure S3.5: Normalised fluorescence intensity and lifetime of probe 2d in water containing 0.1 mM phospate
buffer. The curves connecting the data points are generated using Eq. 3.5 and the equations in 3.5.3. The error
bars in this graph are the standard deviation from the FLIM measurement. See 3.5.5 for more information.
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Figure S3.6: Fluorescence lifetime τF vs temperature of probe 2b in demineralised water. The lifetime vs tem-
perature slope is -0.045 ns/°C.

Figure S3.7: Fluorescence lifetime τF vs temperature of probe 2d in demineralised water. The lifetime vs tem-
perature slope is -0.060 ns/°C.
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Figure S3.8: Phosphate dependent fluorescence lifetime of probe 2b and 2d in water at pH = 7.5-8.

Figure S3.9: Sulphate dependent fluorescence lifetime of probe 2d at pH = 7 and pH = 3.5, the solution was
acidified with sulfuric acid to get the pH 3.5 solution. 10−4 M phosphate buffer was added to stabilize the pH.

3.5.2. PHOTOPHYSICS OF HQ AND Q AT HIGH PH VALUES
The photophysics of alkylated quinolinium probes is depicted in Figure S3.10. Here kF and kIC

are rate constants for fluorescence and non-radiative decay by internal conversion, respectively.
rESPT and rGSPT are the rates of excited state proton transfer and ground state proton transfer. KA2
and are KA2∗ are the acid dissociation constants in the ground and the excited state, respectively.

In the ground state HQ+ is the only species that is detected by absorption spectroscopy. This is
the case because pKA has a value well above 14. In the excited state, the equilibrium composition
is determined by equation S2 in which pKA2∗ has values between 11.5 and 12.5.

[HQ+∗]

[HQ+∗]+ [Q∗]
= 10(pKA2∗−pH)

1+10(pKA2∗−pH)
(S3.2)

At pH values well below pKA2∗ only HQ+* is formed, because there is no driving force for de-
protonation in the excited state according to Eq. S2. At pH values well above pKA2∗ , non-emissive
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Figure S3.10: Photo physics of 1-methyl-7-aminoquinolinium probes at high pH values.

Q* is formed exclusively upon excitation of HQ+. This is the case because the [HQ+*]/[Q*] ratio
described by Eq. S2 approaches 0 and because at high pH values the rate of deprotonation rESPT
(= kESPT [OH – ]) is high enough to fully deprotonate HQ+* during its lifetime. At pH values close
to pKA2∗ , mixtures compose of HQ+* and Q* will be formed. The ratio [HQ+*]/[Q*] will be de-
termined by the equilibrium ratio described by Eq. S2, the rate of deprotonation rESPT and the
excited state lifetime that is available to reach equilibrium. If the ESPT process is fast compared to
the lifetime, i.e. rESPT » kIC ,the equilibrium constant KA∗ measured from intensity versus pH plots
will equal KA2∗ . If the ESPT process proceeds slower, deprotonation lags behind and the apparent
dissociation pKA∗ will have a higher value.

When pKA = pKA∗ (no ESPT), “static” mixtures of HQ+* and Q* are formed intensities go down
as the [HQ+*]/[Q*] ratio decreases. Lifetimes, however, stay constant because only HQ+* has a
finite lifetime. For that reason ESPT is a prerequisite for lifetime dependence if one of the species,
Q in this case, is non-fluorescent. The expression for the lifetime of HQ+* is given in Equation S4:

τF = kF

kF +kIC + rESPT
(S3.3)

In this Equation kF and kIC, are rate constants for fluorescence and non-radiative decay by
internal conversion. rESPT is the rate of excited state proton transfer. In equation S4, rESPT is
the unknown. rESPT is proportional to [OH – ] and we can write the equation rESPT= kESPT[OH – ].
However, in this equation kESPT is a rate “constant” that is pH dependent, is the unknown. As is
the case in the intensity measurements, a slower ESPT process will result in a higher experimental
pKA∗ value. In a follow-up manuscript we will address the kinetics of the ESPT process.
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3.5.3. ABSORPTION AND FLUORESCENCE SPECTRA

Figure S3.11: UV-Vis Absorption spectra of quinolinium probes 2a-2e in 0.1mM Phosphate buffer. pH 2.5 was
achieved by addition of 0.025 M HCl, pH 13 was achieved by addition of 0.1 M KOH until pH was reached
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Figure S3.12: Fluorescence emission spectra of quinolinium probes 2a-2e in 0.1mM Phosphate buffer
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3.5.4. FITTING THE FLUORESCENCE LIFETIME VS PH CURVES
Fluorescence lifetime curves were fitted using Equation S3.4 that is similar to Equation 3.5,

that we used for fitting fluorescence intensity curves. Equation S3.4 lacks a solid physical founda-
tion, because lifetimes are proportional to the concentrations of the constituents in a mixture. Still
Eq. S3.4 provides excellent fitting curves and the obtained pKA* values and lifetime enhancements
are reported in Table 3.1.

τF =
(
τF(H2Q2+)−τF(HQ+)

) 10pKA1∗−pH

1+10pKA1∗−pH
+τF(HQ+)

10pKA2∗−pH

1+10pKA2∗−pH
(S3.4)

In case phosphate quenching occurs Equation S3.4 will be expanded, analogous to the expan-
sion of Equation 3.5 to Equation S3.1, and Equation S3.5 is obtained:

τF =
(
τF(H2Q2+)H2PO4

− −τF(H2Q2+)HPO4
2−

) 10(pKA2−pH)

1+10(pKA2−pH)
+

(
τF(H2Q2+)HPO4

2− −τF(HQ+)HPO4
2−

) 10(pKA1∗−pH)

1+10(pKA1∗−pH)
+

τF(HQ+)HPO4
2−

10(pKA2∗−pH)

1+10(pKA2∗−pH)

(S3.5)

The symbols used in Eq. S3.5 are explained in sections 3.5.3 and 3.5.1.

3.5.5. SYNTHESIS OF PROBE 2E
Synthesis steps of 2e (7-(Hexylamino)-1-methylquinolinium Iodide): 7-Fluoro-1-methylquinolinium

iodide (1, 250 mg, 0.86 mmol), hexylamine (120 mg, 1.2 mmol), and triethylamine (95 mg, 94
mmol) in 100% ethanol (3 mL) were heated to reflux for 30 min. The reaction mixture was al-
lowed to cool to room temperature. After addition of 1 mL of diethyl ether, orange crystals were
formed and 260 mg (82%) of 2e was obtained after filtration.
For the NMR data, please refer to the SI of [48].

3.5.6. TOGGEL FLIM CAMERA SETTINGS AND SETUP
All lifetime measurements were performed with a Toggel FLIM camera. The solutions were

placed in a cuvette and an image was taken at the following experimental settings:

• 20 MHz laser modulation frequency

• 12 Phases (12 images taken to fit the lifetime)

• 50 ms Exposure time

• Image intensifier gain 2

• 300 mW Laser power

• 5x zoom lens on the microscope

The LIFA software calculates the lifetime from the phase shift of the laser at every pixel. The
lifetimes shown in the figures (i.e. Figure 3.4) were calculated by taking an average over all the
pixels (Figure S3.13). This method is also known as the “Frequency domain”.
Note on the error bars:
The error bars in all graphs are the standard deviations of the FLIM measurements. We acknowl-
edge that the error bars of our measurements (in figures 4, 5, 6, S1-S7) are relatively high. The two
main reasons for this are:
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Figure S3.13: Example of a lifetime measurement in the LIFA software. The measured lifetime is an average of
the majority of the pixels in the screen.

• At high lifetimes (>10 ns) – The FLIM camera calculates the lifetime at >200000 pixels and
takes an average over all these pixels to calculate the average lifetime (Figure S18). How-
ever, exponential decay is a random process and at every pixel the lifetime can therefore be
slightly different. At larger lifetimes the excited state molecule is more stable and therefore
results in a larger spread of times (which in turn results in a larger standard deviation).
Also, in all measurements the modulation frequency was 20 MHz, which is optimal for de-
tecting lifetimes of around 8 ns. The higher lifetimes (12 ns+) would be more accurate if a
modulation frequency of 15 MHz was used.

• At low light intensities – At low light intensities we also observed large standard deviation,
this is mainly due to the poor signal to noise ratio at these conditions. The noise in the
measurements was usually around 50-100 counts, which was similar to the signal at the
lower fluorescence intensities.

The setup is shown in Figure S3.14.
A more standard method of determining the lifetime of a fluorescent probe is by looking at

the exponential decay of the light intensity, which is also known as the “Time domain”. In order to
translate lifetimes to pH values reliably, we have compared lifetimes measured in the time domain
with those measured in the frequency domain on our FLIM microscope setup. The data collected
for probe 2b, presented in Figure S3.15, demonstrate that lifetimes determined by both methods
are almost identical.
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Figure S3.14: Photograph of the FLIM lifetime measuring setup. A. Zeiss Axiovert 200m Microscope to which
everything is attached B. Objective and 3D printed sample holder C. CrestOptics X-Light V2 spinning disk
confocal unit, the 405 nm laser is connected at the back D. Lambert Instruments Toggel FLIM camera.

Figure S3.15: Comparison of fluorescence lifetime of probe 2b in a 0.1 M phosphate buffer as a function of pH
measured using time domain (black squares) or frequency domain (red circles) measurements.
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3.6. SUPPLEMENTARY VIDEOS

Video S3.16: pH vs time video of a CO2 bubble dissolving in the surrounding KOH liquid.
https://www.youtube.com/watch/Zs37uDybhQI

Video S3.17: pH vs time video of BaOH diffusion from a paper bag into the surrounding liquid.
https://www.youtube.com/watch/JhYEKTM1Ljc
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Gas-evolving electrodes, for example in electrolysis applications, benefit from enhanced
mass transport driven by the movement of gas bubbles. To maximize this “bubble-induced
mass transport”, we need to better understand the underlying processes. Here, we present
an optical investigation of microscale mass transport processes at vertical hydrogen evolv-
ing electrodes. Using fluorescence lifetime imaging microscopy (FLIM), we show that the
boundary layer thickness at a Pt wire electrode is mainly reduced by bubble detachment.
Next, velocity profiles were measured around bubbles at a nickel plate electrode using
micro-particle image velocimetry (µPIV) and integrated into a mass transport model. This
showed that both bubble detachment and wake flow have large impact on improving mass
transport. Our observations also showed that “single bubble”-events do not exist at vertical
electrodes, due to the frequent wake flow events from passing bubbles, even at low current
densities (< 5 mA cm−2).
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4.1. INTRODUCTION

Gas-evolving electrochemical processes, such as water electrolysis[1], electrochemi-
cal CO2 reduction (CO2R)[2], and electrochemical CO2 capture[3] are essential for a suc-
cessful energy transition. Electrochemically produced gas bubbles typically have a bad
reputation, as the bubbles can block the active sites of the electrode and increase the
cell resistance by reducing the electrolyte conductivity[4–7]. This results in a higher cell
voltage and hence in higher electricity costs for these processes. However, gas produc-
tion can also work beneficially in electrolyzers. Firstly, detached gas bubbles can remove
other bubbles by dragging them along or by coalescence. Secondly, gas bubbles will
create convection by growing, coalescing and moving through the electrolyte, thereby
alleviating mass transport limitations[6, 8, 9].

This “bubble-induced transport” improves the transport of dissolved species to and
from gas-evolving electrodes. This is particularly useful in aqueous CO2R, where the im-
proved transport of CO2 to the electrode allows the system to operate at higher current
densities[10, 11]. Also alkaline water electrolyzers benefit from enhanced mass trans-
port, because dissolved H2 and O2 are transported away from the electrode, this reduces
electrode overpotential, crossover of gasses and improves safety[12–14]. Finally, bubble-
induced transport can also reduce in the pH build-up at the electrode surface, which
reduces the Nernstian overpotentials for systems operating at near-neutral pH[11].

Having established that bubble-induced mass transport is important, we need to
know how to better leverage its effects. The transport has described in equations in the
works of Janssen[15–17], Tobias[18], Vogt[19] in the 1980s, and more recently by Vogt[9]
and Haverkort [8, 20], which are usually fitted to mass transport data from boundary
layer experiments with indicator ions (e.g., Fe2+/3+ or Fe(CN)6

3+/4+)[16, 21]. Although
this method is statistically robust, it provides limited insights into the underlying micro-
scale processes that drive the mass transport, such as bubble growth, detachment, wake
flow and Marangoni vortices[15, 19, 22, 23] (see Figure 4.1).

A B

C D

Figure 4.1: Proposed micro-convective mixing mechanisms at gas-evolving electrodes A. Refreshment of elec-
trolyte after bubble detachment[22] B. Convection generated by growing bubbles[19] C. Wake flow around
rising gas bubbles[15] D. Marangoni convection at the base of a gas bubble[23]. Figure inspired by Zhao et
al.[6]
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Good understanding of the micro-scale processes is crucial when one wants to ex-
trapolate the equations to different current densities, flow conditions or alternative elec-
trode geometries. While significant effort has been made to better understand these
micro-processes through computational modelling[24–26], realistic modelling of mov-
ing gas bubbles at vertical electrodes remains challenging. Also experimental investiga-
tion on these microprocesses is limited, and has primarily been obtained through optical
methods like particle tracking[23, 27, 28] and fluorescence[29], and are mostly limited to
horizontal (micro) electrodes and low current densities[23, 30–33].

In this work, our objective is to analyse the micro-processes of bubble-induced mass
transport at vertical hydrogen evolving electrodes at current densities up to 40 mA cm−2.
To this end, we present an optical analysis of bubble-induced mass transport using Flu-
orescence Lifetime Imaging Microscopy (FLIM) and micro-Particle Image Velocimetry
(µPIV). We first use FLIM to visualize the development of the boundary layer at a Pt wire
electrode and demonstrate that gas bubble detachment is dominant for confining the
boundary layer thickness. We then apply µPIV to determine the velocity fields near a
hydrogen-evolving Ni plate electrode. These velocity fields are integrated into a simple
mass transport model to calculate the diffusion boundary layer thickness under condi-
tions of bubble growth, detachment, and wake flow. Finally, we discuss the influence of
bubble diameter on mass transport and outline the limitations of these techniques when
applied at higher current densities.

4.2. METHODS

4.2.1. FLIM EXPERIMENTS

Water electrolysis with operando fluorescence lifetime imaging microscopy was per-
formed in the electrochemical cuvette cell shown in Figure 4.2A. This setup consists of
two Pt wires, 300 µm diameter and 2.6 cm deep in electrolyte (∼0.25 cm2 electrode area)
in a polystyrene cuvette (1x1x3 cm3), filled with 0.2 M K2SO4 and 100 µM FLIM probe 2b
from Bleeker et al.[34] (Figure 4.2B). The FLIM camera was connected on a microscope
with a 2.5x objective, in which the cuvette could be mounted. The objective has a scale
factor of 0.105 pixel µm−1. The total image size was 504 x 512 pixels or 4.79 x 4.86 mm2.
The lifetime was recorded with every 2.9 s and converted into pH with the calibration
curve in Figure 4.2B. See 4.5.1 and previous publications from our group[34] for more
information on the setup.

During the boundary layer analysis, we focused the microscope objective to the cath-
ode while applying a negative current (-4, -8 and -16 mA cm−2 for 2 minutes with 30-
second pauses at 0 mA cm−2). The current was controlled with a potentiostat (Ivium
CompactStat.h10800).

4.2.2. µPIV EXPERIMENTS

The µPIV experiments were performed in an electrochemical flow cell, which al-
lowed us to apply a forced convection (Figure 4.2C). This cell consisted of two transpar-
ent acrylate (PMMA) flow channels (0.4x0.4 cm2 wide, 8 cm long), supported by two 3D
printed PMMA backplates. The flow channels were milled with a special diamond mill
to create optical transparency. Silicone gaskets (0.5 mm thickness) were used for sealing.
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The flow channels, while composed of two separate parts, were not physically separated,
thus forming a single continuous channel. Two nickel plate (99.5%, Thermo Scientific)
electrodes were used as anode and cathode, which were milled in such a way that 0.4 x
3 cm2 of the electrode was protruding into the flow channels, while the remaining area
of the electrode was covered with gaskets, resulting in an active area of 1.2 cm2 (Figure
4.2D).

Silicone gaskets

Transparant flow channel

Cathode (Ni plate)

Anode (Ni plate)

Electric wire connec�ons

Liquid inlet

Liquid outlet

A B

C

B
0.2 M K2SO4
100 μM FLIM probe
Pt wire electrodes

D
Cathode

1.2 cm2

ac�ve area

Gasket

Electric
connec�on

Anode

Figure 4.2: A. Electrochemical cuvette cell used in FLIM experiments B. Fluorescence lifetime (τφ) vs pH cal-
ibration curve of FLIM probe 2b from Bleeker et al.[34] C. Electrochemical flow cell used in the µPIV experi-
ments D. Side cross-section view of the assembled electrochemical flow cell. See 4.5.1 for a photograph of the
assembled cell.

During the µPIV experiments we pumped electrolyte (1 M KOH with Rhodamine
6G fluorescent particles, with 2 µm diameter) with a NE-1000 syringe pump (1 to 9 mL
min−1). We used a long 1/16” tube at the inlet to create a large pressure drop and mini-
mize fluctuations in the flowrate[35]. The electrodes were connected to the potentiostat
(Ivium CompactStat.h10800) with copper wires through the backplate of the cell. The
electrodes were connected with two wires each to operate the electrochemical cell un-
der a 4-electrode configuration. Gas evolution was controlled by applying a constant
current (0.5 to 50 mA cm−2) for 100 seconds.

The µPIV data was collected with a Lavision Imager Intense CCD camera (5 double
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frames s−1) in combination with a New Wave Nd YAG laser. The laser shoots two pulses
separated by 0.5-10 ms time interval, during the pulses the camera records two images.
The time between two pulses was adjusted to ensure particles moved less than ¼ inter-
rogation window to follow PIV best practises[36]. The camera and laser were connected
to the Zeiss Axiovert 200 M microscope with a 10x/0.30 objective, a dichromatic mirror
(LP590) and a beam splitter (FT580) (see 4.5.1). The 10x/0.30 objective has a scale factor
of 1.59 pixel µm−1. The total image size was 1376 x 1040 pixels or 863 µm x 652 µm. The
data was processed with DaVis software from LaVision, see 4.5.2 for an explanation of
the method, pre-treatment steps, calibration and the PIV settings.

4.2.3. MASS TRANSPORT MODEL
The velocity fields measured with µPIV were translated into bubble-induced mass

transport with a 2D model in COMSOL Multiphysics, through a continuum modelling
approach. The model simulates OH – diffusion from an electrode into the bulk elec-
trolyte (i.e., simulating a proton-coupled electron transfer cathode[10]). The velocity
profile from theµPIV measurements was imported into COMSOL and interpolated across
the entire domain. A 2D concentration field was calculated under these conditions. The
model is governed by Eq 4.1:

0 =∇· (DOH∇c −vc) (4.1)

and the following boundary conditions:

c
(
x = 0, y

)= c0 (4.2)

c
(
x = L, y

)= 0 (4.3)

c
(
x, y = 0

)= c
(
x, y = H

)
(4.4)

Here DOH is the diffusion coefficient of OH – , c is the concentration, v is the 2D ve-
locity field obtained from µPIV, c0 is the OH – concentration at the electrode surface and
L and H are the width and height of the visualized area. Eq 4.4 is a periodic boundary
condition where the source is at y = 0 and the sink at y = H . We acknowledge that these
equations strongly simplify a water electrolysis system, and serve only to understand
the magnitude of mass transport from the obtained velocity fields from µPIV. See 4.5.3
for detailed information on the modelling steps.
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4.3. RESULTS

4.3.1. BOUNDARY LAYER FORMATION AT A PT WIRE ELECTRODE
To investigate bubble-induced mass transport at an electrode, we visualize the de-

velopment of an OH – boundary layer, formed at a Pt wire acting as a cathode in 0.2 M
K2SO4 electrolyte (Figure 4.3A). The boundary layer was visualized using Fluorescence
Lifetime Imaging Microscopy (FLIM). We use 100 µM of a tailor-developed FLIM dye, la-
belled as dye 2b from Bleeker et al.[34], which allows us to resolve the pH from 8 to 13.5
(Figure 4.2B) and subsequently convert these values to OH – concentration by using cOH

= 10pH−14.
Figure 4.3B shows the development of the OH – boundary layer thickness (δ) when

a cathodic current is applied. The typical development of the boundary layer (at 4, 8
and 16 mA cm−2) is demonstrated in a video of the 2D pH profiles, which can be found
in section 4.6. This time- and space-resolved pH mapping, with a pixel resolution of 10
µm, emphasizes the power of FLIM as a tool to analyse mass transport.

The boundary layer thickness (δ) is defined as the region where the normalized OH –

concentration decreases by 95% of the surface OH – concentration. The OH – concen-
tration at the surface fluctuated around 4 mmol OH – L−1 (see 4.5.4 for cOH plots), which
makes the threshold for δ approximately 0.2 mmol OH – L−1. Inside the boundary layer
OH – transport is mainly governed by diffusion, the contribution from migration is neg-
ligible since the main charge carriers are K+ and SO4

2 – ions at neutral pH (the transport
number of OH – is <1%). Since diffusive mass transport scales with 1/δ, we calculate
the effective boundary layer thickness (δeff) as the harmonic average over the electrode
height (y):

δeff =
L∫ L

0
1

δ(y) dy
(4.5)

Where L is the length of the visualized electrode and δ(y) is the boundary layer thick-
ness at height y .

Initially, at 4 mA cm−2, δeff grows with
p

DOHt according to the penetration theory
(Figure 4.3B), until the first bubbles start to form around 75 s (Figure 4.3C). After 75 s,
the boundary grows at a smaller rate, which could indicate micromixing caused by the
growth of stationary gas bubbles. The surface pH increases up to around 12, and δeff

becomes around 1 mm. The lower pH observed in the gas bubbles is an optical artifact;
the bubbles act as lenses and reflect light from the bulk electrolyte.

The δeff is smaller at higher current densities (Figure 4.3D), which agrees with the
findings of previous studies[8]. This is due to gas bubbles breaking up the boundary
layer, which enhances transport during their detachment (Figure 4.3E). This is further
highlighted in Figure 4.3B, where the boundary layer thickness reduces most after bub-
ble detachments. In more detail, the 2D FLIM images show that higher current densities
create pH profiles with a thinner, more fluctuating boundary layer with higher pH near
the surface (Figure 4.3C-E).
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A B

C

Bubble detachment

Increasing current density

Growing pH boundary layer

41 s 58 s 75 s

136 s 290 s 434 s

322 s 325 s 328 s

0.2 M K2SO4

Pt wire electrode

H2 Bubble

D

E

B

Figure 4.3: Boundary layer visualization experiments at a H2 evolving Pt wire electrode in 0.2 M K2SO4. The
pH was obtained using FLIM and 100 µM of quinolinium pH probe (see Figure 4.2B) A. Image of the Pt wire
and H2 bubbles during the experiment B. OH – boundary layer thickness (δeff) development over time at dif-
ferent applied constant current densities. FLIM obtained pH profiles during C. an applied current, showing
growth without effects from gas bubbles, D. for increasing current densities, E. before, during and after bubble
detachment. See 4.5.4 for cOH plots for various timestamps during the measurement.
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4.3.2. FLUID FLOW AROUND GAS BUBBLES AT A NI PLATE ELECTRODE

Our FLIM experiments show that gas bubbles are effective at reducing the boundary
layer thickness. To further gain insights into the microprocesses that occur during gas
evolution, we analysed the fluid flow during electrolysis using micro Particle Image Ve-
locimetry (µPIV). We focused on a 0.6 x 0.8 mm2 area adjacent to a flat nickel electrode
immersed in 1 M KOH operating at 2.5 mA cm−2 with an electrolyte flowrate of 5 mL
min−1 (Figure 4.4A).

We implement the velocity fields obtained from µPIV in a simple steady state 2D
mass transport model in COMSOL to calculate the corresponding mass transport rates.
We applied a forced convection (3 to 5 mL min−1, average velocity: 1.6 to 2.6 mm s−1, Re
= 8 to 14) which also serves to minimize the effects of natural convection due to heating
from the light source (see 4.5.5 for validation of the µPIV and the modelling method).
Our mass transport model ignores the presence of the gas bubble and assumes elec-
trolyte in the entire domain. This assumption will no longer hold for large bubbles or
large gas fractions in the observed area.

Figure 4.4A and B show three consecutive frames and x-velocity fields before, dur-
ing and after the detachment of a H2 bubble. During the bubble growth, fluid is flowing
around the bubble, hindering the mass transport below the bubble. This is reflected
in the relatively thick boundary layer (Figure 4.4C, first panel). During bubble detach-
ment, a strong flow occurs around the bubble with lateral velocities of an order of mag-
nitude larger than during bubble growth, resulting in the smallest boundary layer (Figure
4.4C, second panel). Subsequent wake flow results in a flow towards the electrode, which
keeps the boundary layer small after bubble departure (Figure 4.4C, third panel). The ef-
fects of wake flow can be observed for 1 to 2 frames (0.2 - 0.4 s) after bubble detachment.
The detachment and subsequent wake flow disrupt the boundary layer above the bub-
ble and a distance of approximately one bubble diameter (dBubble) below the gas bubble.
Beyond this region, the boundary layer thickness remains relatively unaffected, which
can also be observed in the FLIM experiments in Video S4.10.

The bubble-induced mass transport from bubble nucleation (t = 0 s) up to bubble
detachment and wake flow is shown in Figure 4.4D. We use 1/δeff as a metric to quan-
tify the mass transport, since diffusive mass flux scales with 1/δ. The base case, when
a velocities of zero (v = 0) are given as an input of the simulation, resulted in a 1/δeff of
1.32 mm−1. Using the measured velocity field associated to forced convection of 5 mL
min−1, without gas evolution (0 mA cm−2), causes 1/δeff to slightly increase to 1.38 ±
0.06 mm−1, and hence has a small effect on the resulting mixing. This increase is a re-
sult of small velocity fluctuations and errors in the measured x-velocity (vx ). At 2.5 mA
cm−2, the values for 1/δeff are significantly higher, 3.66 ± 1.24 mm−1, compared to the
case without applied current density (Figure 4.4D). During bubble detachment and sub-
sequent wake flow, the mass transport is 4-6 times larger compared to a system without
gas evolution. This aligns with the observations in the FLIM analysis, where the bound-
ary layer is consistently thinnest after bubble detachment and wake flow (Figure 4.3B).
Similar results are obtained for repeated experiments and at different flow rates (Fig-
ure 4.4E): the largest peaks in 1/δeff correspond to cases of bubble detachment, and are
rather independent of the forced convection flow rate, as previously also explained by
Janssen [37, 38].
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Figure 4.4: µPIV investigation of a H2 evolving Ni plate electrode (1 M KOH, 2.5 mA cm−2, 5 mL min−1 flowrate)
A. Images during bubble growth, detachment and wake flow of a H2 bubble, the small white dots are PIV parti-
cles B. Velocity fields at the electrode obtained withµPIV. Streamlines indicate the flow direction, the color con-
tour is the velocity component in the x-direction C. Dimensionless OH – concentration fields, obtained after
implementing the velocity fields into the mass transport model model, the dashed line indicates the boundary
layer thickness D. Mass transport, expressed as 1/δeff, during bubble evolution with an electrolyte flowrate of
5 mL min−1 (the datapoints with timestamps correspond to those in Figure A, B and C) E. 1/δeff for two addi-
tional datasets at 2.5 mA cm−2 at different flowrates.

Additionally, Figure 4.4D and E highlight that an isolated “single bubble” does not re-
ally exist on vertical electrodes at relevant current densities, which can be deduced from
the large amount of peaks in 1/δeff. The peaks, for example at 1.4 s and 2.2 s in Figure
4.4D, are a result of the wake flow of passing bubbles (see Video S4.11 & S4.12). Although
the largest peaks are caused by bubble release in the direct vicinity, the effect of passing
bubbles leads to a 2-3 times better mass transport compared to the case without applied
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current density [37, 38]. Moreover, passing bubbles also increase the chance of another
bubble-release event when hit by a passing bubble. Hence, even at a small 1.2 cm2 elec-
trode and low current densities (<5 mA cm−2) the effect of wake flow of other bubbles
significantly affects the mass transport. We conclude that industrially relevant research
on mass transport at gas-evolving electrodes should always be done including a large
number of bubbles at a substantial electrode size. These findings agree with the model
of Haverkort[8], which states that a H2 evolving electrode in KOH mainly experiences
mixing due to natural convection from rising gas bubbles.

We did not observe large effects of bubble growth on the mass transport. Also, we did
not detect large velocity fields on the 1-5 mm s−1 scale that correspond to Marangoni
convection, as reported by Yang and Eckert[23]. Hence, we believe that the effect of
Marangoni convection is minor regarding mass transport on plate electrodes. The large
difference in velocities could be explained to differences in experimental setups, as their
use of a microelectrode likely produces stronger local concentration and temperature
gradients.

4.3.3. EFFECT OF BUBBLE DIAMETER ON MASS TRANSPORT
The microprocesses during bubble-induced mass transport are known to strongly

depend on dbubble[10, 16, 39]. Therefore, we relate our measured diffusion boundary
layer thickness (inferred from FLIM) and flow velocities (inferred from µPIV) to dbubble.

Figure 4.5A shows the reduction of the boundary layer thickness upon detachment
of a H2 bubble with diameter dbubble during the FLIM experiment. Although some scat-
tering occurs, the strongest reduction in boundary layer thickness correlates to the de-
tachment events of the largest bubbles (dbubble 450-500 µm). These findings align with
the model proposed by Ibl et al.[22], which proposes that during gas bubble detach-
ment, the bubble is completely replaced by fresh electrolyte. Therefore, larger bubbles
enhance mass transport more effectively by refreshing a larger volume of electrolyte at
the electrode surface.

Additionally, larger gas bubbles also travel faster. The terminal velocity (vt ) of a rising
bubble in free electrolyte scales with d 2

bubble, ref[40]:

vt = g

18µ
d 2

bubble

(
ρL −ρG

)
(4.6)

Here g is the gravitational constant (9.81 m s−2), µ the dynamic viscosity in Pa·s, and
ρL and ρG are the densities of the electrolyte and gas, respectively. (Note that this equa-
tion is valid for Stokes flow, for bubbles with a Reynolds number of < 1 or dbubble < 120
µm.) In µPIV measurements we observed that the maximum y-velocity of (vy ) around
a rising bubble is 0.36 vt (Figure 4.5B). This velocity is likely lower than vt because the
rising bubbles experience extra shear stress from the electrode and other bubbles.

Although the primary motion of the electrolyte is upward, gas bubbles also generate
lateral fluid motion, towards and away from the electrode (Figure 4.5C). For increasing
hydrogen bubble diameter (50 to 200 µm) we observe larger positive and negative lateral
velocities, as measured in the µPIV experiments (Figure 4.5D). We can scale the lateral
velocities to the relative velocity of rising bubbles, i.e. vx ∝ vt , which is derived from
the continuity equation (see 4.5.6). A Lagrangian model of a rising bubble with speed
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0.36 vt predicts a lateral velocity of vx ∼ 0.085·vt (see 4.5.6). However, most measured
vx were smaller than 0.085·vt , especially for smaller bubbles, and a log-log fit showed
that vx scales more like d 2.32

bubble. This could be the result of some bubbles being slightly
out of focus plane, or possibly because of other factors (i.e. surface forces) which have
a greater impact on smaller bubbles. In any case, we can conclude that larger bubbles
create higher lateral velocities, thus stronger convective mixing.

Figure 4.5: A. Change in boundary layer thickness (∆δeff) for different dbubble as observed in FLIM. The dat-
apoints correspond to the detachment events of Figure 4.3 B. Measured velocity of rising H2 bubbles in 1 M
KOH next to an electrode with no forced convection (0 mL min−1). The data was fitted to Eq 4.6, scaled with
a constant (see 4.5.6 a log-log plot). C. Sketch of a typical flow field after bubble detachment. D. Maximum
positive and negative observed vx during bubble detachment. The data is compared to the observed velocity
of bubbles (0.36vt ), the predicted lateral velocity (0.085vt ) and power law fit (see 4.5.6 for log-log plot).

However, at equal current density, large bubbles require more time to form than
smaller bubbles. A bubble with a diameter of 150 µm contains the same amount of gas
as 27 smaller bubbles with a diameter of 50 µm. Consequently, for 50 µm bubbles, the
electrolyte is refreshed far more frequently. While vx does not directly translate to a mass
transport coefficient (k), because it does not include the bubble release frequency and
passing bubble events, we can use it for a rough estimate. If we assume that the total
convective mixing for bubble release events is proportional to the amount of bubbles
and peaks in vx , we can indicate the effect of bubble diameter. Because the number of
bubbles scales with d−3, and the lateral velocity scales with vt (thus scales with d 2 or
d 2.32 see 4.5.6), we argue that many smaller bubbles create more mixing than few larger
bubbles. This is in agreement with work of Haverkort[8], which revealed that k scales
with d−0.5

bubble.
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4.3.4. LIMITATIONS OF µPIV AND FLIM FOR ANALYSING MASS TRANSPORT
Mass transport research is primarily relevant for industrial applications when con-

ducted at high current densities, where large volumes of bubbles are generated. At these
higher current densities, bubble coalescence occurs more frequently, significantly en-
hancing mass transport, as reported in prior studies[8, 16]. Consequently, we explore
the limitations of using µPIV and FLIM at higher current densities in this section.

At higher current densities more bubbles can be observed, which are both growing
bubbles on the electrode and detached bubbles passing by at a higher frequency (Fig-
ure 4.6A). The effect of the wake flow caused by passing bubbles has a significant and
frequent impact on the surrounding fluid dynamics, which can be seen in the many
regions with elevated velocities (Figure 4.6B). Additionally, the distinct velocity profile
around a rising bubble (Figure 4.5C) becomes less common at higher current densities,
as the fluid will often need to manoeuvre around a collection of gas bubbles that are on
the electrode. We observe that the velocity fields that we measured around “single bub-
bles” do not exist anymore at >5 mA cm−2, which raises concerns about the applicability
of mass transport data from micro-electrode experiments to higher current densities.

Figure 4.6C and D show the maximum positive and negative vx as a function of cur-
rent density, where the maximum vx was averaged over 25 frames (5 s). The magnitude of
vx increases with current density, independent of applied forced convection. We believe
this increase in vx is primarily due to the increasing number of rising bubbles, in addi-
tion to having more large (>150µm) bubbles available at higher current densities. Unfor-
tunately, the large amount of bubbles no longer allowed us to model the mass transport
with a continuum model and using our measured velocity field. We can no longer as-
sume that the entire domain is electrolyte. Additionally, some bubbles generate sharp
velocity gradients which resulted in numerical instabilities. Hence, the resulting µPIV
data is not suitable for our modelling method and will not result in physically correct
fields at current densities above 5 mA cm−2.

At the same time, FLIM can provide accurate boundary layer thicknesses above 10
mA cm−2. We measured (δeff) up to 16 mA cm−2 in our static cuvette cell (Figure 4.3),
and are able to use FLIM for pH boundary layers up to 50 mA cm−2 in a flow cell with
gas-evolving solid silver plate electrode (see 4.5.7). Previous research by Baumgartner
et al.[11] has demonstrated that FLIM can be even used at current densities as high as
100 mA cm−2 in a CO2 electrolyzer with gas diffusion electrodes. We believe the FLIM is
better capable of capturing the fluid-averaged mass transport at dense bubbly electrodes
because 1) it is a more direct measurement of concentration (rather than via a complex
velocity field), 2) the tracer is a dissolved dye instead of physical particles, and 3) the
upstream concentrations and non-steady effects are included in the direct pH mapping.
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33.3 mA cm-216.7 mA cm-2

A

B
8.3 mA cm-24.2 mA cm-2
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Figure 4.6: µPIV investigation at higher current densities A. Images and B. x-velocity fields at higher current
densities. C. Maximum observed postive and D. negative vx for increasing current densities. The maximum
velocities were taken in each frame, and then averaged over 25 frames (5 s). Error bar is standard deviation.

4.4. CONCLUSIONS
In this work we investigated the microprocesses that drive bubble-induced mass

transport at vertical hydrogen-evolving electrodes. We used two optical methods in our
investigation: FLIM and µPIV in combination with a mass transport model.

The FLIM experiments revealed that bubble detachment and the resulting wake have
the largest role in enhancing mass transport. TheµPIV experiments confirmed these ob-
servations as the calculated mass transport was highest during bubble detachment. Ad-
ditionally, we observed that a “single bubble” does not exist, even at low current densities
(<5 mA cm−2) and small electrodes, since a bubble will always experience wake flow ef-
fects of passing bubbles. We also observe that microprocesses of bubble induced mass
transport were stronger for larger bubble diameters, but that smaller bubbles together
create more mixing.

To conclude, FLIM and µPIV are effective methods for investigating bubble-induced
mass transport at the microscale. However, gas bubbles make imaging difficult at higher
current densities. We believe combination of µPIV and continuum modelling is not suit-
able for investigating hydrogen evolving electrodes at atmospheric pressure at current
densities above 5 mA cm−2. In contrast, FLIM remains a usable technology, even at
higher current densities (>50 mA cm−2).
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4.5. SUPPLEMENTARY INFORMATION

4.5.1. PHOTOS OF THE SETUP

Figure S4.1: (Left) Photograph of the setup with 1. µPIV camera 2. Microscope 3. 3D printed holder for the
electrolyzer on a movable plate (controlled with joystick) and lens objectives. This holder can be replaced
with a 3D holder for a cuvette 4. µPIV Laser camera 5. Halogen lamp (used when setting up and focussing) 6.
Spinning disk confocal unit 7. FLIM camera (Right) Photograph of the setup during µPIV operation

Figure S4.2: Photos of the electrochemical flow cell used for µPIV
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4.5.2. µPIV METHOD EXPLANATION
In this section we explain theµPIV method, from taking the images up to obtaining the velocity

profile, see Figure S4.3:

Figure S4.3: (Left) Schematic representation of the light path from the laser to the camera. (Right) Schematic
step-by-step explanation of PIV

Imaging: The µPIV system was calibrated using LaVision’s 50 µm calibration plate, which in-

cludes mark spacing. When using 10x/0.30 objective, the scale factor is 1.59 pixel µm−1. The total
image size was 1376 x 1040 pixels2 or 863 x 652 µm2. Throughout the experiments, the particles
had a diameter of 2-4 pixels. The number of particles in a 128px by 128px interrogation window
was around 10. The time interval between a double frame was adjusted so that the displacement
of the particles did not exceed 25% of the largest interrogation window. In the validation experi-
ments at 0 mA cm−2, a double frame time interval between 2 ms and 90 ms was used. In the other
experiments, the time interval was varied between 0.5 ms and 10 ms. In every experiment a video
of 100 to 200 double frames was taken (20 - 40 s).

Pre-processing of the double images: The images were pre-processed in the DaVis software in
three steps (see Figure S4.4):

1. Masking – To ensure only particles in the fluid were tracked, a geometric mask was applied
over the electrode.

2. Subtract time filter – To minimize background noise, the average intensity of each pixel
position over all frames (100 to 200 double images) was subtracted from all images.

3. Subtract pixel intensity – Because of lens effects and particles in front and behind the focal
plane, small clouds appear. To make sure only particles in focus were tracked, we subtracted
between 10 to 25 counts from all pixels. This significantly improved the signal-to-noise
ratio.

PIV cross-correlation: The velocity vector fields were calculated with cross-correlation in the
DaVis software[36]. This was done in two steps: First a 512 x 512 interrogation window was used
with 50% overlap, then an interrogation window of 128 x 128 was used with four passes with a 75%
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overlap. The data from the 512 x 512 interrogation window was used to find the best correlation
near the predicted vector in the 128 x 128 interrogation windows. After cross-correlation the data
was post processed with a 5x5 median filter.

Before pre-processing Masking

Substract �me filter Substract pixel intensity

Figure S4.4: µPIV pre-processing steps

4.5.3. COMSOL MODEL EXPLANATION
Here we describe the parameters, equations and boundary conditions used the in COMSOL

model. 2D concentration fields were calculated from the velocity fields obtained in the µPIV mea-
surements. Our system is modelled as a water electrolyzer, similar to the FLIM experiments, gen-
erating OH – at the electrode (Figure S4.5). We acknowledge that these equations strongly simplify
a water electrolysis system, and serve only to understand the magnitude of mass transport from
the obtained velocity fields from µPIV.
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Figure S4.5: Graphical representation of the domain and boundary conditions of the COMSOL model
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Model Geometry: The model has a rectangular geometry, which matches the visualized area in
the PIV experiments, which was 582.2 µm by 782.9 µm. The model uses a triangular physics con-
trolled “extra fine” mesh. All meshes were generated automatically by COMSOL. The “extremely
fine” mesh did not yield significantly different results, hence we used the coarser mesh to reduce
computation time.

Material: We model the transport of OH – in water with diffusion coefficient (DOH) 5.27 10−9

m2 s−1 (Source: Aqion.de).
Governing equations & boundary conditions: The transport of OH – is calculated with the “Trans-

port of diluted species” module of COMSOL:

∂NOH

∂y
+ ∂NOH

∂x
+ vy

∂cOH

∂y
+ vx

∂cOH

∂x
= ROH (S4.1)

Convective transport is calculated with the experimentally obtained velocity field. As initial value
for the calculations, we used cOH = 0. The left boundary is a constant concentration (cOH(x=0) = 4
mmol L−1) to mimic the electrode from the FLIM measurements in Figure 4.3. On the right side,
a constant concentration boundary condition with the bulk concentration was used (cOH(x=L) =
0). The top and bottom have a periodic boundary condition (Figure S4.5).

Importing the µPIV velocity field: The velocity fields were exported from the DaVis PIV-software
as x-coordinate, y-coordinate, vx and vy . Before loading the data into COMSOL, the outliers of the
velocity field are removed. The vectors with the highest and lowest 1% vx values were removed,
because we observed the µPIV experiments would sometimes result into few incorrectly large ve-
locity vectors, especially near the electrode and the boundaries of the image. After processing the
data, the velocity vectors are imported to COMSOL. These velocity vectors were converted into a
2D velocity field with linear interpolation in the software.

Post-processing of the model results: A 2D concentration field was obtained after running the

model. The boundary layer was extracted by plotting a contour line at 5% of 4 mmol L−1, which
was exported as x- and y-coordinates. Since the y-coordinates were spaced irregularly, we calcu-
lated the effective boundary layer thickness (δeff) with a discretized version of Eq 4.5 (see deriva-
tion in next section):

δeff = L

(
N∑

i=1

Li

δi

)−1

(S4.2)

Here δeff is the effective boundary layer thickness, L is the total y-length of the boundary layer
profile, Li is the y-distance between two datapoints and δi is the boundary layer thickness at that
datapoint.

Derivation of effective boundary layer thickness (δeff): To derive the equation for δeff, we as-
sumed that inside the mass-transport boundary layer all mass transport is through diffusion. At a
given height y along the electrode, the mass flux will be given by Fick’s law:

N
(
y
)=−D

(
dc

d x

)
∼=−D

(
cbulk − c (x = 0)

)
δ

(
y
) = D

c(x = 0)

δ
(
y
) (S4.3)

Here, N (y) is the flux at point y , D is the diffusion coefficient, c is the concentration, cbulk is the
bulk concentration outside the boundary layer (which is 0) and δ(y) is the boundary layer thick-
ness at point y . If we want to calculate the average mass flux (Navg) along an electrode with length
L, we can integrate the Eq S4.3:

Nav g =
∫ L

0 N
(
y
)

d y

L
=

Dc(x = 0)
∫ L

0
1

δ(y) d y

L
(S4.4)
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If we discretize this integral, the equation becomes:

Navg =
Dc(x = 0)

∑N
i=1

Li
δi

L
(S4.5)

Here δi is the boundary layer thickness for point i and Li is the distance until the next data-
point. If we now rewrite Navg like Fick’s law, we get the following equation:

Navg = D
c(x = 0)

δeff
(S4.6)

By then combining Eq S4.5 and S4.6 we get:

1

δeff
=

∑N
i=1

Li
δi

L
→ δeff = L

(
N∑

i=1

Li

δi

)−1

(S4.7)

4.5.4. OH – CONCENTRATIONS DURING FLIM EXPERIMENTS
See figure S4.6 on next page.

4.5.5. µPIV METHOD VALIDATION
Here we validate our approach to use µPIV for mass transport research, i.e. to show that the

fluctuations originating from the forced convection have minimum impact on the resulting con-
centration plots. This way we can confirm that our method only sees the effect of gas bubbles, and
is not influenced significantly by the pumping of electrolyte. The flow needs to fulfill the following
requirements:

• A relatively stable, unidirectional flow (vy » vx , ∂vy /∂y = small). This will allow us to distin-
guish the effects from gas bubbles, from deviations in the velocity due to non-steady flow.

• The flowrate needs to be large enough avoid heating up from the laser light source, which
could result in natural convection.

Figure S4.7A and B show an image taken and the corresponding vx velocity field, which shows
that the flow is almost unidirectional, but still has small (<0.1 mm s−1) fluctuations in the vx .
Figure S4.7C and D show the vx and vy over the width of the frame, averaged over the height of
the frame and over 25 frames (5 s). The beginning of a parabolic flow profile can be seen, which
increases linearly with flowrate, indicating that the flow is fully developed.

However at 1 mL min−1 we observed small effects of natural convection due to heating from
the light source. We therefore chose to do all bubble induced mass transport experiments at
flowrates of 2 mL min−1 or higher. The vx is around 0 mm s−1, but the deviations increase at
higher flowrates. We decided to not measure at flowrates above 5 mL min−1 to minimize effects
of forced convection on the concentration plots. Figure S4.7E shows the calculated concentration
field after implementing the velocity profile from Figure S4.7B. An almost linear profile can be ob-
served, indicating that mass transport is mostly by diffusion, hence the small fluctuations in vx do
not significantly influence the calculated boundary layer thickness. Figure S4.7F shows that the
boundary layer thickness over 25 frames (5 s) is not strongly influenced by flow fluctuations, and
is at least an order of magnitude smaller than the effect of gas bubbles.

Hence we confirm that we developed a system that can be used to investigate the effect of gas
bubble dynamics on mass transport, without being affected by the small fluctuations in the flow
due to forced convection or heating.
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Figure S4.6: cOH averaged over the length of the electrode vs x, for various timestamps, and 2D cOH plots
at various timestamps during the FLIM experiment of Figure 4.3. The red dashed line in the cOH vs x plot
indicates the cut-off point of the boundary layer. In the 2D concentration plots, the white and red line are the
electrode surface and boundary layer cut-off respectively.

4.5.6. EFFECT OF BUBBLE DIAMETER ON FLUID VELOCITIES
To find the relation between the velocity of the bubble (vt ), and the lateral velocity of the fluid

(vx ) we perform order-1 scaling on the 2D-continuity equation:

∂vx

∂x
+ ∂vy

∂y
= 0 (S4.8)

If we nondimensionalize Eq S4.8, the equation becomes:

[vx ]

[x]

∂v∗
x

∂x∗ +
∂v∗

y

∂y∗ = 0 (S4.9)
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Figure S4.7: A. µPIV image of the electrode with a 5 mL min−1 flowrate and no applied current (0 mA cm−2)
B. Corresponding velocity field. Streamlines indicate the flow direction, the color contour is the velocity com-
ponent in the x-direction C. y-velocity and D. x-velocity over the width of the image at different flowrates,
averaged over 25 frames (5 s), error bar is std deviation. E. Resolved concentration profile after implementing
the flowfield of B in the mass transport model, dashed red line indicates the boundary layer F. 1/δeff when
applying no current, compared to a system with only diffusion (all velocities in the model are set to 0).

Here * indicates the nondimensional variable, and the square brackets indicate the length
scale of the velocity profile or the magnitude of the velocity. We then apply O(1) scaling.

[vx ]

[x]

[
vy

]
[

y
] (S4.10)

In our measurements, we observed that velocity profiles are present about one dbubble around the
bubble, therefore [x] and [y] are both proportional to dbubble. The y-velocity is proportional to the
terminal velocity. Thus: [

vy
]= vt [x] = [

y
]= dbubble (S4.11)

And:

[vx ] ∼ vt (S4.12)
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We also developed a 3D continuum CFD model in COMSOL to simulate a gas bubble rising near a
wall and to find the scale of the lateral velocity [vx ]. To simplify the model, we used a Lagrangian
reference frame (i.e. the model follows the bubble, so the bubble appears stationary while the
surrounding fluid and wall are moving downwards). The bubble was modelled as a solid sphere.
The gap between the bubble and the wall and the bubble was set to 0.1dbubble and the velocity
of the wall and fluid are -0.36vt . Figure S4.8B shows a typical velocity profile calculated with the
model, the shape closely resembles the observed profiles in µPIV. Figure S4.8C shows that the
model finds lateral velocities of around 0.085vt .

Figure S4.8: A. log-log plot of Figure 4.5 B. Sketch of the Lagrangian model around a rising bubble, and exam-
ples of x and y-velocity profiles for a bubble with dbubble of 80 µm C. Comparison of modelled velocities to
0.085vt D. log-log plot of Figure 4.5D.
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4.5.7. FLIM EXPERIMENTS AT HIGHER CURRENT DENSITIES
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Figure S4.9: A. 2D-pH resolved images with FLIM at increasing current densities. A CO2 electrolyzer catholyte
compartment is visualized, with the setup from Baumgartner et al. where the gas compartment is removed[11].
The experiments are done on a Ag cathode in 1 M KHCO3 saturated with CO2 under a flowrate of 1.4 mL min−1

(Re = 8). It can be seen, that even if during a of gas evolution at 50 mA cm−2 a local OH boundary layer is still
visible and can be resolved. B. Cross-sectional diagram of the setup used. All images in A are taken in the
middle of the cell (2).

111



4

100 4. BUBBLE-INDUCED MASS TRANSPORT

4.6. SUPPLEMENTARY VIDEOS

Video S4.10: Video of a forming OH – boundary layer at a H2 evolving Pt wire electrode in 0.2 M K2SO4. Corre-
sponds to Figure 4.3.
https://www.youtube.com/watch/v6-9Vy2YgXM

Video S4.11: Video at a H2 evolving Ni plate electrode (1 M KOH, 2.5 mA cm−2, 5 mL min−1 flowrate). Corre-
sponds to Figure 4.4A.
https://www.youtube.com/watch/Kc_47FWNBts

Video S4.12: Video of the lateral velocity (vx) at a H2 evolving Ni plate electrode (1 M KOH, 2.5 mA cm−2, 5 mL
min−1 flowrate). Corresponds to Figure 4.4B.
https://www.youtube.com/watch/tnHVfxtHZZw
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Context & Scale
The energy transition requires moving away from fossil fuels to renewable electricity. How-
ever, sectors such as long-distance transport and plastic manufacturing need carbon-based
chemicals. These sectors are responsible for 100’s millions tons of chemicals per year, which
is equivalent to 10-20% of CO2 emissions. Electrochemical CO2 reduction presents a promis-
ing alternative, enabling production using only CO2, water, and renewable electricity. To
make an impact on the climate, CO2 electrolysis needs to be urgently developed to a scal-
able design.
Here, we presents a potential breakthrough: a liquid aqueous CO2 electrolyzer operating
under pressure-pulsed flow, improving mass transport with a cheap vibratory pump. This
method achieves current densities of 87 mA cm−2—an order of magnitude higher than
typical aqueous systems. We use high-speed imaging to show that a liquid-fed CO2 sys-
tem can attain even higher current densities, making it a viable alternative to gas-fed CO2

electrolyzers.

Summary
Electrochemical CO2 reduction (CO2R) is a promising technology enabling carbon recy-
cling and energy storage. CO2R in water has advantages over gas-fed CO2R electrolyzers,
such as avoiding salt formation or needing water control, though it achieves lower current
densities. In this work, we improve the mass transport in an aqueous CO2 electrolyzer by
applying fast pressure pulses (50 Hz, 1.2 bar) with a vibratory pump typically found in
coffee machines. We demonstrate a limiting current density of 87 mA cm−2 towards CO2R
products, which is almost three times higher than for a system without pulses. The cur-
rent density can be further increased by leveraging the peak-to-peak pressure amplitude
or pump frequency, as shown through particle image velocimetry (PIV) and an order-of-
magnitude scaling analysis. Although challenges remain, such as pump energy consump-
tion, contamination and heating, and pressure wave damping, the pressure-pulsed con-
cept makes aqueous CO2R a viable alternative for gas-fed electrolyzers.
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5.1. INTRODUCTION
The electrochemical reduction of CO2 (CO2R) is a promising technology that uses

renewable electricity to convert CO2 and water into fuels and chemicals, enabling car-
bon recycling, energy storage, and climate change mitigation[1–3]. In CO2R, CO2 is con-
verted at the cathode into products such as CO, C2H4 and formic acid[4]. Hydrogen is an
undesirable by-product, and its reaction rate increases when the mass transport of CO2

to the electrode is insufficient[5, 6] or the catalyst is contaminated[7, 8].

To achieve higher current densities, attention has shifted towards gas-fed reactors
with gas-diffusion electrodes (GDE) and membrane electrode assemblies (MEA)[3, 9–
12]. With these technical features, CO2R can reach and sustain industrially relevant
current densities (>300 mA cm−2, >1000 hrs) and is being scaled up in start-up com-
panies[13, 14]. However, gas-fed electrolyzers still have problems with stability[15, 16],
control of water[17, 18] and salt formation[19]. In addition to the aforementioned chal-
lenges, these systems require gaseous CO2. If the CO2 source is an environmental cap-
ture system, such as direct air capture with alkaline[20, 21] or amine solutions[21, 22],
the CO2 will first need to be removed from the capture liquid (Figure 5.1A)[23]. In this
removal step, the vacuum pumps, compressors and de-humidifiers require 10 to 35% of
the energy consumption of a current state-of-the-art CO2 electrolyzer[21, 24](see 5.5.1
for calculation).

Figure 5.1: A. Schematic drawing of an integrated CO2 capture and conversion process with a gas-fed elec-
trolyzer. B. Schematic drawing of an integrated CO2 capture and conversion system with an aqueous CO2
electrolyzer. The Dissolved Inorganic Carbon (DIC) balancing step is required to convert some of the CO2 cap-
ture solution into dissolved CO2

Aqueous CO2R can avoid these costs by directly converting dissolved CO2 from cap-
ture solutions, which reduces the process steps and has potential to simplify the process
significantly[22] (Figure 5.1B). Omission of the dissolved CO2 extraction steps results in
lower required capital investments[22], although a balancing step (e.g. by adding an
acid) might still be required to create dissolved CO2 from bicarbonates. Unfortunately,
aqueous CO2R suffers from low limiting current densities towards CO2-based products.
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In typical electrolyzers, the limiting current densities are an order of magnitude lower
compared to GDE-based systems (5-10 mA cm−2 vs 100-400 mA cm−2)[25]. The low lim-
iting current densities in aqueous CO2R are a result off depleting CO2 concentration at
the cathode surface, which is caused by the low CO2 solubility in water and poor mass
transport in traditional H-cells and traditional flow-by cells.

Two common approaches for increasing the limiting current density in aqueous CO2R
are increasing the CO2 concentration and using in-situ conversion of bicarbonate to CO2

(e.g. with a bipolar membrane). The CO2 concentration can be increased by increasing
the pressure[26–28], supersaturation of CO2 in the electrolyte[29], addition of amines[22,
30, 31] or by using organic electrolytes which have a higher CO2 solubility[32, 33]. De-
spite substantial work on these approaches, the industrial goals for current density, cell
voltage, faradaic efficiency, scalability and lifetime are not fully met yet[34].

A less studied avenue is to leverage gas bubble motion to increase the mass transport
of CO2 from the bulk electrolyte towards the cathode surface. Nano-structured catalysts
can break up the diffusion boundary layer through bubble-induced mass transport and
obtain a 3-fold increase in current density compared to a flat electrode[6, 35, 36]. Simi-
larly, in gas-liquid microfluidic devices an artificially small diffusion boundary layer can
be created, which could give a 1 to 1.5 order of magnitude increase in current density
compared to a liquid system[37]. The effectivity of reducing the diffusion boundary layer
thickness to achieve high current densities has been confirmed by Wen et al., who ob-
tained current densities of >1000 mA cm−2 in an exsolution-induced flow cell[38], with a
calculated boundary layer thickness of <1.5 µm. While effective, these three approaches
(nano-structured catalysts, leverage of microfluidics, and exsolution-induced flow cells)
require complex reactor and electrode design.

An alternative method for reducing the boundary layer thickness is operating un-
der oscillatory flow conditions (Figure 5.2A). Here, oscillations in the electrolyte flow are
induced with a piston or pulsating pump. These oscillations in the flow rate cause vor-
tices in the electrolyte. The vortices create flow perpendicular to the electrode, instead of
mainly unidirectional flow parallel to the electrode surface[39]. Oscillatory flow has been
successfully applied in electrodialysis[40], redox flow batteries[41] and electrochemical
reactors[39, 42]. The oscillation frequencies applied in these studies were between 0.2-3
Hz, and resulted in a 2x[39, 40] to 5x[42] higher limiting current density compared to a
steady flow.

In this work, we apply a pressure pulsed flow to increase the limiting current density
( jlim) in aqueous CO2R. Similar to an oscillatory flow, pressure-pulsed flow induces pres-
sure fluctuations, but at a higher frequency (Figure 5.2B). We create 50 Hz oscillations in
the pressure, in which the pressure fluctuates between 1 and 2.2 bar, with a cheap (∼18
euro) vibratory pump, typically used in household coffee machines. We experimentally
evaluate the mass transport by measuring the limiting current density on a commercial
silver mesh cathode, and compare this to a system where pressure dampers are installed.
Additionally, the mass transport mechanisms are further studied with high-speed imag-
ing and particle image velocimetry (PIV). Through an order-of-magnitude scaling ap-
proach, we conclude that both vibrating bubbles and multidirectional oscillatory flow
contribute to enhancing the CO2R. Finally, we will evaluate the scalability of an aqueous
pressure-pulsed CO2R system and discuss three possible issues.
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5.2. RESULTS

5.2.1. GENERATION AND CHARACTERIZATION OF PRESSURE PULSED FLOW
To ensure adequate mass transport for aqueous CO2R, we generate pressure pulses

that oscillate the fluid and cause gas bubbles to vibrate. Our vibratory pump, comprises
a diode, a spool, and a magnetic piston (Figure 5.2C)[43]. When connected to an AC
grid (50 Hz, 220V), the diode converts the electrical signal into a half-wave rectified sine.
This creates a periodic electric field in the spool, which moves the piston. As a result, the
piston generates 50 pressure pulses per second with an amplitude of 1.5 bar and a flow
rate of 530 mL min−1 (average velocity of 8.9 mm s−1 in our cell).

However, the pressure waves before and after the electrolyzer were more complex
than a half-wave rectified sine (Figure 5.2D). We hypothesize that these extra peaks in
the pressure wave are not generated by the pump, but instead result from reflections
and vibration in the electrolyzer (see 5.5.2). To understand the effects of pressure pulses
on the CO2 electrolyzer, we also created a reference case where we damped out the pres-
sure waves with pressure dampers (Figure 5.2D). Here the pressure amplitude reduced
significantly, but the flow rate remained the same (see 5.5.3).

To characterize the shapes and waveforms, we introduce the following parameters
to describe the pressure waves (Figure 5.2E), which are all applied on datasets of >500
pressure waves (i.e. >10 s of data):

• Pavg - Time-averaged pressure for each dataset

• PPP – Peak to peak pressure, Ppeak - Pmin, averaged over all pressure waves

• χ – Relative expansion, Ppeak/Pmin, averaged over all pressure waves. χ expresses
the ratio of volume change of gas bubbles (according to the ideal gas law) during
the pressure pulse.

Figure 5.2F shows PPP for the pressure pulsed and damped CO2 electrolysis experiments,
averaged over 4 pressure sensors and 40 min of pressure data. The dampers are effective
at reducing the PPP by 70-80%, and will be a useful comparison case to study the effect of
pressure pulses on mass transport. The difference is even larger in χ, 2-2.2 for pressure
pulsed flow and 1.2-1.3 for damped flow, while the Pavg is similar for both pulsed flow
and damped flow (5.5.4).
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Figure 5.2: A. Hypothesized mixing behaviour during oscillatory flow B. Hypothesized mixing behaviour dur-
ing pressure pulsed flow C. Diagram with the workings of a vibratory pump D. Pressure waves at the inlet of
the cathode channel in the electrolyzer with no applied current (Pulsed) and when two pressure dampers are
installed (Damped) E. Schematic presentation of the peak pressure (Ppeak), minimum pressure (Pmin), time
averaged pressure (Pavg) and the peak to peak pressure (PPP) F. PPP at the inlet of the cathode for different
current densities for pressure pulses and damped pulses
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5.2.2. EFFECT OF FAST PRESSURE PULSES ON CO2 R PERFORMANCE
To express the performance of the pressure pulsed aqueous CO2 electrolyzer, we use

the limiting current density ( jlim) – the maximum obtained partial current density of
CO2R, at which the CO2 concentration at the cathode surface is assumed to approach
zero.
Figure 5.3A and B show the faradaic efficiency after 10 minutes of electrolysis for a pres-
sure pulsed and a damped system under constant current. Up to 50 mA cm−2, the
faradaic efficiencies are very similar for the two flow types. CO is the major product
with 60-70% faradaic efficiency, while less than 10% of the current is used for H2. We
note that this partial current density for CO2R is already higher than for typical H-cells
(5-10 mA cm−2)[25], which is likely due to the large flow rate in our system. At higher
current densities, the FECO for the damped system (Figure 5.3B) significantly decreases,
indicating strong CO2 mass transport limitations. At the same time, the pulsed (Figure
5.3A) system still performs well (FECO > 50%) at 130 mA cm−2. Even at 200 mA cm−2, ap-
proximately half of the observed products are CO2R products, including small amounts
(FEi < 5%) of CH4, C2H4, CHOO – , and EtOH.

The total FE was close to 80% at both the anode and cathode. The remaining 20%
of products is lost because catholyte and anolyte are mixed in the same container. This
leads to faradaic losses, as some O2, CO2R products and H2 are recycled and consumed
at the electrodes instead of producing new products. We expect the actual faradaic ef-
ficiency towards CO2R products to be slightly higher when catholyte and anolyte are
separated. Figure 5.3C compares the partial current densities of a pressure pulsed and
damped system. To express the consumption of CO2, while taking care of the number
of electrons per CO2 molecule, we introduce the equivalent CO partial current ( jCO-eq),
which is the current as if all products were CO:

jCO-eq = jCO + 1

4
jCH4 +

1

3
jC2H4 + jCHOO− + 1

3
jEtOH (5.1)

Here ji is the current density towards a specific CO2R product, which is multiplied with
the ratio of electrons compared to CO (nCO/ni , where n is the number of electrons per
molecule of product). Under pressure pulsed flow, a maximum jCO-eq of is 87 mA cm−2

was obtained, compared to 33 mA cm−2 when the flow is damped. Hence, the fast pres-
sure pulses increase the limiting current density of CO2R products by 2.6 times. Because
the flow rate and Pavg for the flow regimes are the same, we can conclude that pressure
pulses are the main cause of increased CO2 mass transport.

A partial current density of 87 mA cm−2 is among the highest reported for aqueous
CO2R[25]. To compare our work to other aqueous CO2R works, the jCO-eq is plotted
against the product of FE and voltage efficiency (VE) (Figure 5.3D). The FE·VE can be
used to show the energy efficiency of an electrolyzer.

H-cell based systems can reach a high FE·VE (25-50%), but typically only reach jCO-eq

of 5-10 mA cm−2 (ref [28, 44–50]). An exception to this is the work of Burdyny et al.[6],
which utilizes gold nanostructured electrodes to promote gas-bubble induced mass trans-
port to achieve a jCO-eq of∼55 mA cm−2. Systems operating under higher pressures (3-10
bar)[28, 29, 48] could alleviate mass transport limitations as the CO2 solubility linearly
increases with pressure. However, only Lamaison et al.[48] reported high partial current
densities (up to 287 mA cm−2) at 10 bar. A direct bicarbonate electrolysis based system[8,
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51] can reach similar or slightly higher current densities to our system ( jCO-eq of 45-127
mA cm−2), but requires a bipolar membrane and therefore a higher operating voltage.
The exsolution based system[38] remains the best reported aqueous CO2R systems to
date, with both high currents (∼1000 mA cm−2) and a good energy efficiency. These high
current densities were achieved with a flow-through electrode in combination with a
CO2 supersaturated electrolyte.
The high jCO-eq in the exsolution-based system was achieved when combining methods
to increase the CO2 concentration and mass transport. In that line of reasoning, pres-
sure pulsed CO2 electrolysis can further expand its potential when combined with CO2

supersaturation or pressurization. We believe that aqueous systems with such combined
enhanced CO2 concentration and mass transport could reach similar current densities
as in gas-fed processes, while keeping the benefits of an aqueous process.
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Figure 5.3: Faradaic efficiency against total current density under A. Pressure pulsed flow and B. Damped flow,
for comparison FEO2 at the anode is also shown. C. Partial current density as if all products were CO ( jCO-eq)
against total current density, also displayed as molar CO2 consumption on the right axis. Operating condi-
tions: Ag mesh cathode, IrOx anode, 20 °C, 0.5 M KHCO3 saturated with 1 atm CO2. All experiments were per-
formed with duplicates, error bars are the standard error. The cathode voltage during the CO2R experiments is
shown in 5.5.5. D. Literature comparison of energy efficiency (expressed as FE·VE) and limiting current density
( jCO-eq). See 5.5.6 for data and references.
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5.2.3. THE MASS TRANSPORT MECHANISMS OF PRESSURE PULSED FLOW
To understand the effectivity of pressure pulsed flow for increasing the limiting cur-

rent density ( jlim), we estimate the diffusion boundary layer thickness. With the assump-
tion that the current density is only limited by mass transport of CO2 towards the cath-
ode, jlim can be expressed as follows:

jlim

nF
=

DCO2C∗
CO2

δ
(5.2)

Here n is the amount of electrons per CO2, F is the Faraday constant, DCO2 is the diffu-
sion coefficient of CO2, C∗

CO2
is the bulk concentration of CO2 and δ the diffusion bound-

ary layer thickness. Using a jlim of 87 mA cm−2 in eq. 5.2, we calculate the diffusion
boundary layer thickness to be approximately 14.5 µm, for all temperatures between 15
– 30 °C, see Table 5.1. For damped pressure pulses, the estimated δ is 38 µm.

Table 5.1: Calculation of the diffusion boundary layer thickness (δ) for different temperatures at 1 atm of CO2
for a jlim of 87 mA cm−2 (Pulsed) and 33 mA cm−2 (Damped). Solubility and diffusion data from CRC Hand-
book[52]

T (°C) C∗
CO2

(mol m−3) DCO2 (m2 s−1) δPulsed (µm) δDamped (µm)

15 45.6 1.45 · 10−9 14.6 38.6
20 39.2 1.67 · 10−9 14.5 38.3
25 34.1 1.91 · 10−9 14.5 38.1
30 30.0 2.17 · 10−9 14.5 38.1

We identified two mixing mechanisms by studying the electrolyzer with high-speed
imaging and Particle Imaging Velocimetry (PIV): the vibration of gas bubbles caused by
fast pressure changes (Figure 5.4A) and multidirectional oscillatory flow (Figure 5.4D).

VIBRATING GAS BUBBLES

In the high-speed videos (see videos in section 5.6) we observed growing and shrink-
ing gas bubbles on the electrode (Figure 5.4A). These vibrations were caused by the rapid
pressure changes during a pulse (1 to 2.5 bar, Figure 5.4B). Figure 5.4C shows the gas
bubbles at different stages of the pressure pulse, which drive fluid in all directions by
growing and shrinking[53]. Notably, some gas bubbles also move inside the porous mesh
electrode during the peak of the pulse, thereby pulling fluid towards the electrode. We
believe these vibrations enhance the mixing of electrolyte from the bulk to the electrode,
thereby sustaining high local CO2 concentrations. The volume of the bubbles scales with
pressure according to the ideal gas law:

Vmin

Vpeak
= d 3

min

d 3
peak

= Ppeak

Pmin
=χ (5.3)

Where Vi , and di are the bubble volume and the bubble diameter at the peak and
minimum of a pressure wave. The convective mass transport around the bubbles (quan-
tified in mass transfer coefficient kBubble, in m s−1) scales with the local velocity perpen-
dicular to the electrode (vx) which at the bubble-liquid interface is equal to dd/dt :
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kBubble ∝ vx,Bubble ∼
dd

dt
∼ dpeak −dmin

tpeak
∼ dmin

0.1/ f

(
χ−1/3 −1

)
(5.4)

Here tpeak is the time between a minimum and maximum pressure, which is about
0.1/ f in our experiments, where f is the frequency of the pump in s−1. Hence, when
comparing two systems with gas bubbles in similar amount and size, the mass transport
due to oscillating bubbles scales with the ratio between f (χ−1/3 −1) in the pulsed flow
and the damped flow.

Figure 5.4: Mass transport mechanisms in pressure pulsed CO2R A. Growing and shrinking gas bubbles due to
the pressure changes. Typical bubble diameters (dbubble) are 50-500µm, δmass is the mass transport boundary
layer B. Pressure wave during high-speed imaging averaged over 350 pulses, points correspond to images in C;
C. Image of the Ag mesh during a pressure pulse, a gas bubble is moving in and out of the pore, scalebar
is 200 µm D. Mixing due to the multidirectional oscillatory flow and circulations. E. Average fluid velocity
perpendicular to the electrode (vx), obtained with PIV and averaged over 10 pulses. The time on the horizontal
axis corresponds to that in B. For more information, see 5.5.7 F. Comparison of the pressure gradient measured
at the inlet of the electrolyzer(dPInlet/dt ) to vx at the electrode, see 5.5.8 for dPOutlet/dt . See 5.5.9 for PIV
results of the damped case.

MULTIDIRECTIONAL OSCILLATORY FLOW

The inlet of the flow channel is inclined relative to the electrode’s surface (Figure
5.6B). This, in combination with the relatively high flow rate and oscillations, creates a
complex transient flow with velocities components in all three dimensions (Figure 5.4D),
which improves the mass transport. To gain a better understanding of the mixing be-
haviour, the velocity field near the cathode was visualized with PIV (see 5.5.7). We did
not observe turbulence but rather multiple periodic circulations within the flow, which
matches the regime of the time-averaged Reynolds number (Re = 10-100). Figure 5.4E
shows the vx during a pressure pulse (see 5.5.8 for vy). The velocity profile does not
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significantly change while varying the distance from the electrode (0.05, 0.1 and 0.25
mm), which indicates bulk motion of fluid towards the electrode and likely fluid moving
through the electrode pores.

The mixing due to oscillatory flow scales with vx, which we hypothesize to scale
with dP/dt . This is observed in Figure 5.4F, where the largest peaks in pressure change
(dP/dt ), in the first 4 ms of the wave, have a similar profile as vx. Our hypothesis for the
relation between vx and dP/dt is further supported by estimating the pressure gradient
dP/dy due to oscillations, which is an order of magnitude larger than the pressure drop
due to mean flow in our system (see 5.5.10 for calculation). Hence, the forces on the wa-
ter caused by oscillations are dominating, compared to the forces caused by mean flow.
Using this scaling analysis, we estimate the mass transfer coefficient kOsc (in m s−1):

kOsc ∝ vx,Osc ∝ dP

dt
∼ PPP

0.1/ f
(5.5)

The mass transport due to oscillations scales with PPP, which we also observed with
a statistical analysis (5.5.11). Hence, when comparing two systems, the mass transport
due to oscillatory flow will scale with f ·PPP values of the two experiments.

COMPARISON BETWEEN PULSED & DAMPED FLOW

The flow properties of the pulsed and damped CO2R experiments are compared in
Table 5.2. The ratios of (χ−1/3 −1) (2.2 to 3.9) and PPP (2.5 to 4.5) are in the same order of
magnitude as the increase in jCO-eq (or CO2 mass transport towards the electrode). We
conclude that both mechanisms could cause the enhanced mass transport. The exact
ratio of contribution to the mass transport of these two processes will depend on the gas
bubble coverage on the electrode.

Table 5.2: Comparison of the scaling factors for bubble oscillation induced mixing (χ−1/3 −1) and oscillatory
flow induced mixing (PPP) to the CO2 mass transport, expressed as jCO-eq. f = 50 in both flow regimes.

(χ−1/3 −1) (-) PPP (bar) jCO-eq (mA cm−2)
Pulsed flow -0.26 to -0.30 (χ: 2-2.2) 1 to 1.2 87

Damped flow -0.06 to -0.11 (χ = 1.2-1.35) 0.25 to 0.4 33
Pulsed/Damped ratio 2.2 to 3.9 2.5 to 4.5 2.6

Understanding the origin of the enhanced mass transfer in pressure-pulsed flow, we
can predict the conditions to further increase the limiting currents. We believe that CO2R
current densities of >100 mA cm−2 can be achieved if higher f , PPP and/orχwere applied
in our system. At the same time, increasing f , PPP and/orχ alone would also require new
equipment and additional pumping energy. Considering the effectiveness of combining
high CO2 concentrations with enhanced mass transport (as shown in Figure 5.4D with
the exsolution strategy), we highlight the potential of using elevated pressure together
with high PPP. An elevated pressure increases the CO2 concentration, while a higher PPP

enhances the mass transfer. While χ is compromised by elevated pressure, the PPP is
not, thereby allowing high CO2 concentrations and simultaneous fast mass transfer for
obtaining even higher limiting current densities that could compete with gas-fed CO2

electrolyzers.
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5.2.4. OUTLOOK FOR THE IMPLEMENTATION OF PRESSURE PULSED FLOW

FOR CO2 R
To assess the potential for scaling and implementation of this technology, we con-

sider three potential issues 1) Energy consumption of the pump, 2) contaminations and
temperature effects due to the pump, and 3) damping of the pressure waves by gas bub-
bles upon scaling.

The compression of the electrolyzer during the pressure pulsed flow requires energy.
A calculation of the energy requirements, based on the thermodynamic work, is per-
formed in 5.5.12. The FE·VE of the pulsed system in Figure 5.4D would decrease from
30-40% to 22-28%, when this compression energy is included. This decrease is more
pronounced at lower current densities. However, the actual energy consumption of the
pump (based on a power meter) is much higher than this calculation, as coffee pumps
are not designed for energy efficiency. At the same time, the flow rate of this pump is
highly oversized for the electrode area (2 cm2). Based on the solubility of CO2 (33 mM
at 25 °C) and a partial CO-eq. current density of 87 mA cm−2, we calculate that this flow
rate provides more than 150x the required CO2. Hence, a lower flow rate (e.g. by creat-
ing the pressure oscillations with a additional piston instead of at the pump itself[40])
would be a potential lever to decrease the energy consumption while maintaining high
production rates.

Because the vibratory pump produces a significant amount of heat, the electrolyte
temperature increased by 8 to 10 °C over the course of the experiment. This higher tem-
perature increases the ohmic resistance of the coil, which results in a lower PPP and χ

(see 5.5.13) and reduces the CO2 solubility, causing a 10-30% lower jCO-eq after 35 min-
utes (see 5.5.11).

Alternatively, the decrease in FECO over time (see 5.5.14) can also be caused by con-
tamination. We detected iron contamination at the electrode (20 to 40 ppm versus 5 ppm
on electrodes with a stable FECO, see 5.5.14), possibly polluted from the pump interior
or impurities in the KHCO3. This high sensitivity of the FECO to ppm levels of iron has
also been observed by others[7, 8]. The electrodes do not seem to be damaged by the
pressure pulses, as the silver microstructures seem unchanged after 40 min of pulsation
(see SEM images in 5.5.15).

Finally, we considered the damping of pressure pulses during CO2R experiments
(Figure 5.5A), which is important for scaling up. Figure 5.5B shows pressure waves at
30 and 200 mA cm−2 at the inlet and outlet of the electrolyzer. We observed a reduction
of PPP and χ at the outlet, which was more pronounced at higher current densities. We
define damping with Eq 5.6:

Damping(%) = χInlet −χOutlet

χInlet −1
(5.6)

Here χInlet and χOutlet are the relative expansion at the inlet and outlet of the elec-
trolyzer. The system fully damps the pressure pulses if χOutlet is 1. Figure 5.5C shows the
effect of current density on damping. A steep increase in damping can be observed up
to 90 mA cm−2 after which the increase is more gradual. Because the damping increases
with the current densities, we hypothesise that electrolytic gas bubbles inside the elec-
trolyzer are the main cause of the damping. We expect the damping to increase for larger
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A B CA

Figure 5.5: A. Graphical representation of pressure wave damping through a CO2R electrolyzer B. Pressure
waves at the inlet and outlet of the electrolyzer at 30 and 200 mA cm−2 C. Time averaged damping (Eq 6) ver-
sus current density. Damping is calculated over 40 min, where the first 5 min are skipped to ensure a steady
gas bubble state is achieved. The error bars indicate the standard deviation calculated over duplicate mea-
surements.

electrolyzers as there will be more gas bubbles in the system. The damping at the anode
is stronger than at the cathode because of CO2 bubbles are formed by recombination of
H+ and HCO3

– , which makes the ratio of electrons to gas molecules at the anode and
cathode 1.25 and 0.5, respectively. Unfortunately, damping reduces the effectiveness of
the pressure pulses and therefore also reduces the mass transport. Thinner flow com-
partments with good bubble removal, which reduce the total gas bubble volume, could
mitigate this effect.

5.3. CONCLUSION
This work introduced a pressure pulsed aqueous CO2R electrolyzer. Using a cheap

vibratory pump (∼18 euro), typically found in coffee machines, fast pressure pulses (50
Hz, 1-2.5 bar) were generated to improve the mass transport of dissolved CO2 to the cath-
ode. High current densities for CO2R, up to 87 mA cm−2, are obtained using a commer-
cial silver mesh cathode, outperforming all H-cells in literature and even most aqueous
systems with elevated pressure. The limiting current density towards CO2R products was
2.6 times higher compared to a system where the pressure waves were damped. Through
a high-speed imaging analysis, PIV and order of magnitude scaling, we identified that
the enhanced mass transport is caused by oscillating gas bubbles and a multidirectional
oscillatory flow.

Three potential engineering challenges were identified that could limit the imple-
mentation and scaling of this technology: 1) high energy consumption of the pump, 2)
contaminations and temperature effects due to the pump, and 3) damping of the pres-
sure waves by gas bubbles upon scaling.

On the other hand, the pressure-pulsed flow could be further leveraged by increas-
ing the pressure wave frequency ( f ), peak-to-peak pressure (PPP) and relative expan-
sion (χ). Combining this optimization of the pumping parameters with using a more se-
lective electrode and applying higher CO2 concentrations (e.g. through supersaturated
electrolytes), even higher limiting current densities could be achieved. Altogether, the
pressure-pulsed concept could make aqueous CO2R a viable alternative to state-of-the-
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art gas-fed electrolyzers.

5.4. EXPERIMENTAL PROCEDURES

5.4.1. PRESSURE PULSED CO2 REDUCTION SETUP

The pressure pulsed CO2R setup consisted of a vibratory pump, an electrolyzer, a
back pressure regulator and an electrolyte container with connections to a CO2 gas bottle
and gas chromatograph (GC), see Figure 5.6A (for photos of the setup, see 5.5.16). The vi-
bratory pump (Ulka EP5) was controlled with a variable frequency drive (VFD, Schneider
Electric ATV12H037M2). This VFD model requires three phases as output, therefore we
installed two other vibratory pumps that were circulating water in a separate reservoir.
All three pumps were placed in a grounded aluminium box. During damped pressure
pulse experiments, we installed two pressure dampers (FPD 1.10 KPZ, KNF) between the
pump and the electrolyzer inlet.

The electrolyzer consisted of two 3D printed acrylate (PMMA) backplates, and two
laser cut transparent 4 mm thick PMMA flow channels (Figure 5.6B, drawings in 5.5.16).
A commercial silver mesh (80 woven, 0.115 mm diameter wire, 99.9% Thermo Scien-
tific) was used as the cathode and a titanium plate coated with mixed metal oxide (Ir/Ru,
PSC-101 Permascand) was used as the anode. The two channels were separated with a
Zirfon PERL UTP 500 separator, which was used for its good conductivity and mechan-
ical strength. To minimize pressure differences across the diaphragm, only one pump
was used for both the anode and cathode compartment. Catholyte and anolyte were col-
lected and mixed in the same electrolyte bottle. Silicone gaskets (0.5 mm thickness) were
used for sealing. Both the cathode and the anode have an exposed geometric electrode
area of 2 cm2 and were electrically connected to the potentiostat with Ag wires (0.25 mm
diameter, 99.99%, Agosi AG). The electrolyzer was operated in a 4-electrode configura-
tion. A LF-1-45 leak-free Ag/AgCl (Innovative Instruments) was used as the reference
electrode and an additional Ag wire connected to the cathode as the sense electrode.
The cell was designed to handle pressures up to 7 bar.

The amplitude of the pressure pulses was controlled with a back pressure regulator
(Swagelok SS-1R4F) at the outlet of the cell. The pressure was recorded by four pres-
sure transmitters (PT, TC-Direct 716-908), which were connected to T-junctions at the
inlets and outlets of the electrolyzer. The temperature was measured by pressing ther-
mocouples (K-type, TC Direct-405-011) against the tubing (see Figure 5.6A). The pres-
sure transmitters and thermocouples were read out with NI-9205 and NI-9213 modules
at 5000 and 1 Hz respectively.

5.4.2. EXPERIMENTAL DESCRIPTION

For each experiment, 200 mL of fresh liquid electrolyte (0.5 M KHCO3, 99.5+% Thermo
Scientific) was continuously bubbled with 100 mL min−1 of CO2. The gas headspace in
the electrolyte container was 100 mL. The experiments were performed over ∼40 min-
utes under constant current, controlled by an Ivium XP20 potentiostat. A GC sample
was taken from the electrolyte container headspace every 3.5 min (Compact GC4.0, In-
terscience). The methods and setup of Baumgartner et. al.[17] were used to calculate
the faradaic efficiency of gas products. A liquid sample was taken at the end of the ex-
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periment and analysed with HPLC (1290 Infinity II, Agilent) according to the methods
of Kortlever et. al.[32]. The faradaic efficiency of liquid products was assumed constant
over an experiment, due to lack of time-resolved data. The starting temperature of the
electrolyte was between 18 and 22 °C. The pump generated a significant amount of heat,
which caused the temperature to increase by 8 to 10 °C over the 40 minutes. The elec-
trolyte container was placed in an ice bucket to limit the temperature to 35 °C.

PT PTOp�onal: Dampers

PT PT

PR
CO2 feed

Pump

GC
TC

TC

TC

A B
Flow channel

Zirfon Diaphragm

Ag/AgCl Reference

Ag Mesh
Cathode

Ag wire electrical
connec�on

Electrolyte
connec�on

Ag wire sense 
electrode

Silicone 
gaskets

Ir/Ru Oxide anode

0.5M KHCO3
electrolyte

Electrolyte
in

Electrolyte
out

5 m
m

20 m
m

Figure 5.6: A. Diagram of the pressure pulsed CO2 reduction setup, TC: Thermocouple, PT: Pressure transmit-
ter, PR: Back-pressure Regulator, GC: Gas Chromatograph B. Graphical representation of the CO2 electrolyzer.
See 5.5.16 for a photo and a more detailed diagram of the electrolyzer.

5.4.3. ELECTRODE PRE-TREATMENT
Before each experiment, a fresh cathode was cleaned by holding it in a propane

flame. The cathode was then placed inside the cell and anodized for 1 min by apply-
ing a current density of 10 mA cm−2. After flushing the cell with fresh electrolyte, the
experiment was started, leading to a reduction of the oxidized silver surface and result-
ing in a roughening of the silver surface (5.5.17). The pre-treatment of the cathode with
a constant anodizing current almost doubled the faradaic efficiency towards CO and in-
creased the catalyst stability over time (5.5.17).

5.4.4. HIGH-SPEED IMAGING
High-speed imaging and PIV were used to investigate the mixing phenomena and

velocity fields inside the electrolyzer. To make the channel more transparent, a glass mi-
croscope slide was glued to the outside of the channel with Araldite 2020. A LaVision
Imager HS 4M camera was used for imaging at a rate of 3.7 kHz. The electrolyte used
during the PIV measurements was demineralized water seeded with 4 µm tracer par-
ticles (PS-FluoRed-Fi191, GmbH). For a detailed description of the imaging setup and
method see 5.5.7.
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5.5. SUPPLEMENTARY INFORMATION

5.5.1. ENERGY REQUIREMENT FOR CO2 EXTRACTION
A gas-fed CO2R electrolyzer requires a relatively pure CO2 inflow stream. When CO2 is cap-

tured from an environmental source, like in direct air or direct ocean capture, the CO2 first needs
to be extracted from the capture liquid. Sabatino et. al.[21] show in their work that the energy to
extract, purify, concentrate and pressurize the CO2 from the capture solutions is in the order of
1-5 MJ kg−1 CO2 for different capture technologies (direct air capture with alkaline, amine or solid
sorbents).

To indicate the magnitude of this energy requirement, we will compare it to the energy con-
sumption of a CO2 electrolyzer, which operates at a cell voltage (ECell) of 3 V and a faradaic effi-
ciency (FECO) of 100%. Below the energy consumption for converting 1 kg of CO2 to CO is calcu-
lated.

• 1 kg CO2 / 44.01 g mol−1 CO2 = 22.72 mol CO2

• 22.72 mol CO2 · 2 e – /CO2 · 96485 C mol−1 e – = 4.38·106 C kg−1 CO2

• 4.38·106 C kg−1 CO2 · 3 V · 100% = 1.32·107 J kg−1 CO2= 13.2 MJ kg−1 CO2

The CO2 extraction costs are therefore ∼ 10-35% of the energy consumption of a gas-fed CO2 elec-
trolyzer.

5.5.2. EXTRA PEAKS IN THE PRESSURE WAVE
To investigate the cause of extra peaks in the pressure pulses, we tested the pump after remov-

ing most components of the CO2R setup (Figure S5.1). A setup with only 15 cm of tubing after the
vibratory pump resulted in a cleaner pressure wave, better resembling a half-rectified sine wave.
We therefore assume the secondary waves in the pressure pulses originate from vibrations and re-
flections in the electrolyzer, tubing and pressure reducing valve and not from the pump. The peak
pressure (Ppeak) is also reduced, which can mainly be attributed to the removal of the pressure
regulator after the electrolyzer.

A B CB CB C

Figure S5.1: Investigation of extra peaks in the pressure pulses. A. Pressure pulses of demineralized water inside
the normal CO2R setup and B. if only 15 cm of tubing was installed after the pump.
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5.5.3. EFFECT OF DAMPERS ON THE FLOWRATE
To measure the effect of the pressure dampers on the pump flowrate, demineralized water was

pumped for 30 s into a bottle. The bottled was weighed and the flowrate was calculated by repeat-
ing this and taking the average (see Figure S5.2). 998.2 g L−1 was used as density of water (20 °C,
atm). The normal flowrate over six measurements was 533 ± 14 mL min−1, and with dampers 530
± 14 mL min−1. The flowrate difference is less than 1%, and is smaller than the error. The pressure
dampers therefore have no significant effect on the flowrate. We assume the flow is equally split
between the anode and cathode compartments, which would be a flowrate of 266 mL min−1. The
cross-sectional area of the compartment is 1·0.5 cm = 0.5 cm2. The average velocity is therefore
∼8.9 cm s−1.

Op�onal: DampersPump

35.2 g

BA

Figure S5.2: A. Setup for flowrate determination of the Ulka EP-5 vibratory pump, with and without dampers.
B. Boxplots of the mass of the liquid after pumping for 30 seconds.

5.5.4. AVERAGE PRESSURE, RELATIVE EXPANSION AND PRESSURE DROP DUR-
ING CO2 R EXPERIMENTS

Figure S5.3 below show the time averaged pressure (Pavg) at different current densities dur-
ing the CO2 electrolysis experiments at the inlet of the electrolyzer. The pressure for all damped
pressure pulses is up to 100 mbar lower. We attribute this to the additional pressure drop over the
pulsed dampers.

BA

Figure S5.3: A. Time averaged pressure (Pavg) during the pressure pulsed CO2 reduction experiments. B. Rela-
tive expansion (χ) the pressure pulsed CO2 reduction experiments. The error bars are the standard error over
duplicate measurements.
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Figure S5.4: Time averaged pressure drop at various current densities, for pressure pulsed (Puls), damped
(Damp) at the anode (A) and cathode (C). This value is the difference between the pressure measured at the
inlet and outlet PT, which are 40 cm apart.

5.5.5. CATHODE VOLTAGE OF PRESSURE PULSED CO2 R EXPERIMENTS
The cathode voltage of the pressure pulsed CO2 reduction experiments was measured against

a Leak-free Ag/AgCl micro reference electrode, positioned close to the electrode. The error bars of
the cathode voltage are relatively large, which we attribute to gas bubbles sometimes blocking the
active area of the reference electrode, causing large spikes in the voltage, and causing differences
between duplicate measurements.

A B

Figure S5.5: A. Cathode voltage vs CO partial current density. B. Cathode voltage vs total current density, aver-
aged over duplicates. All error bars are the std error over 2 duplicate measurements (except for 70 mA cm−2 in
the damped flow, which was a single measurement).
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5.5.7. HIGH-SPEED IMAGING AND PARTICLE IMAGE VELOCIMETRY (PIV )
The pressure pulsed CO2R setup was slightly modified for high-speed imaging (Figure S5.6):

• The potentiostat was disconnected, and the electrolyte was replaced with demineralized
water seeded with 4 µm diameter fluorescent tracer particles (PS-FluoRed-Fi191, GmbH).
Deen et. al. have discussed that PIV on gas-liquid flows with gas fractions of >2% will re-
sult in large measurement inaccuracies[55]. We therefore chose to use demineralized water
instead of saturated electrolyte, since the small amount of bubbles will result in more accu-
rate velocity fields. Some gas bubbles were still present in the electrode and electrolyte due
to cavitation in the pump and small ambient temperature changes during the day.

• A glass microscope slide was glued to the outside of the flow channel to improve the trans-
parency with Araldite 2020 two component epoxy glue.

• An Imager pro HS 4M high-speed camera (LaVision) was installed on the side, parallel to the
cathode to look inside the channel. A Navitar lens with 0.58-7 magnification was mounted
on the camera and set to 1.5x or 3x during the measurements. The imaging framerate during
PIV experiments was 3.7 kHz. The camera was installed at a slight (2-3°) angle to make sure
the electrode was visible (at 0°, the gaskets would block the view).

• For the high-speed videos, the cell was illuminated from the back with a desk lamp.

• For the PIV measurements, the cell was illuminated from the bottom by a double pulsed
Nd:YLF laser (lDY304, Litron Lasers, England). A beam focuser (VZ-Sheet, thin, 532 nm,
collimated, ITM000969802) was used to focus the laser into a thin sheet to only illuminate
the tracer particles in a thin layer of fluid in the electrolyzer and a 540 nm long-pass filter
was installed in front of the camera to make sure only the fluorescence is measured, and
not the reflections of the 527 nm laser light.

A

B

PT PTOp�onal: Dampers

PT PT

PR

Pump

TC

TC

TC

High-speed 
camera

LensFilter

Laser

Beam focuser

Figure S5.6: A. Schematic of the high-speed imaging setup, green arrows represent laser light, red arrows fluo-
rescence from the PIV particles B. Photograph of the imaging setup
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PIV processing The length in the PIV images were calibrated using the distance between two
strands of the Ag mesh cathode, which was visible inside the flow channel. The distance between
the centre of two adjacent threads of the mesh is 292 µm. The images were pre-processed with two
steps: First, a geometric mask is applied over the flow channel remove reflections of the electrode
and particles stuck on the electrode from the image. Next, a subtract sliding minimum time filter
was subtracted to minimize background noise.
After pre-processing, the images were converted into a velocity field with the PIV module of the
DaVis software. The PIV was performed with two steps: the initial displacement vector was calcu-
lated with an interrogation window of 256 x 256 pixels, with 50% overlap. The second step of the
PIV was performed with a smaller interrogation window was 64 x 64 pixels. An overlap of 75% was
used with four passes.

Processing of the velocity fields The velocity fields of the pulsed and the damped pressure
waves case were compared by taking a spatial average. The vx (velocity in the direction of the
cathode) and vy (velocity in the flow direction, parallel to the cathode) were averaged at three
vertical lines parallel to the cathode at distances of 0.05, 0.10 and 0.25 mm from the cathode. Since
the velocity between pressure waves differed slightly, the velocity profiles were averaged over ten
pulses, see Figure S5.7.

Ag mesh cathode

2 cm

2 m
m

Outlet

Inlet

3x magnifica�on
Ca

th
od

evx

0.
25

 m
m

0.
10

 m
m

0.
05

 m
m

Average over 
10 cycles

Figure S5.7: Postprocessing of PIV data to generate the velocity plots used in Figure 5.4 in the paper. (Left)
Example of a PIV velocity field. The color bar indicates the magnitude of the velocity in the x direction (towards
the right).
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5.5.8. Y-VELOCITY FROM PIV AND OUTLET PRESSURE GRADIENT

A B

Figure S5.8: A. Average fluid velocity parallel to the electrode (vy), averaged over 10 pulses. The time on the
horizontal axis corresponds to that in Figure 5.4B B. Comparison of the pressure gradient measured at the
outlet of the electrolyzer(dPOutlet/dt ) to vx at the electrode

5.5.9. PIV RESULTS OF THE DAMPED PRESSURE WAVES
Below are the PIV results of the damped pressure pulsed flow regime. For the conditions,

please refer to 5.5.7.

A

B C

Ca
th
od

evx

Ca
th
od

evy

Figure S5.9: PIV results of the damped pressure pulsed flow. A. Pressure versus time profile (we acknowledge
that this wave is more significantly damped than other experiments, and do not have a good explanation for
this). B. Average velocity perpendicular to the electrode (vx) and C. Parallel to the electrode (vy) at three dis-
tances from the electrode. All velocities are averaged over 10 pressure pulses.
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5.5.10. ORDER OF MAGNITUDE COMPARISON OF THE PRESSURE GRADI-
ENTS

To understand the significance of the pressure wave compared to the pressure drop over the
electrolyzer, we will perform an order of magnitude comparison. The pressure drop, dP/dy was
measured, and is show in Figure S5.4. It is between 0 and 50 mbar. To be conservative we will
used 50 mbar in the order of magnitude comparison. The distance between the inlet and outlet
pressure sensors is 40 cm, however, we will assume that all the pressure drop happens inside the
electrolyzer, which has a length of ∼6 cm, including connections to the tubing. This results in a
pressure drop over the cell of 8.3 · 104 Pa m−1. The pressure drop due to oscillations is calculated
with the following equation:

(
dP

dy

)

osc
= 1

cwave

dP

dt
= 1

cwave

PPP

0.1/ f
(S5.1)

Here, cwave is the speed of the pressure wave inside the electrolyzer, PPP is the peak to peak
pressure and f the frequency. cwave is calculated as follows:

cwave = dy

dt
(S5.2)

Where dy is the distance between the two pressure transmitters and dt the time it takes for
a pressure wave to travel there. Figure 5.5B shows that dt is 7 ms, the distance between the two
pressure sensors (dy) is 40 cm, resulting in a cwave of 57 m s−1, which is a realistic speed in for a
gas-liquid flow[56].
The pressure gradient during a pressure pulse then becomes: 1.1 · 106 Pa m−1.
As the pressure gradient from pressure pulses is an order of magnitude larger than the pressure
drop over the cell, we conclude that it is significant for the mass transport.

5.5.11. DECREASE OF jCO-eq OVER TIME AND CORRELATION ANALYSIS

Figure S5.10: jCO-eq at various total applied current densities, after 6 and 40 min of experiments, all current
densities were investigated two times.

Figure S5.10 shows that the jCO-eq reduces by 5 to 30% after 40 minutes of measurements. This
is a result of the mass transport limitations at the end of an experiment, as the decrease in jCO-eq
is larger at higher current densities. We believe this worse mass transport is mainly caused by the
lower PPP and χ (see Figure S5.13), which are caused by the heating up of the vibratory pump.
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To further investigate this, we performed a statistical analysis (Pearson correlation coefficient)
on the PPP and jCO-eq versus time datasets (Figure S5.11). The PPP and jCO-eq are strongly corre-
lated at high applied current densities, indicated by a correlation value of close to 1. This can be
interpreted as: “When the PPP is lower, the resulting jCO-eq will be lower to.” This effect is more
pronounced at higher applied current densities, where mass transport limitations are more pro-
nounced. Here the results of a decrease in PPP is more visible in the resulting jCO-eq. As it takes
some time for the samples to travel to the GC, we also investigated the correlation coefficient with
a lag time of 1 GC sample (206 s).

A B

Figure S5.11: Correlation coefficients between the jCO-eq and PPP at various applied current densities. A. Lag
time of 0 s. B. Lag time of 206 s, the time between two GC samples.

5.5.12. CALCULATION OF THE ENERGY COSTS REQUIRED FOR PRESSURE

PULSES
The following assumptions were made to calculate the energy requirements for pressure pulsed

flow:

• Gas fraction (xgas) of 2%

– Liquid flowrate: 266 mL min−1 in catholyte flow channel
266 mL min−1 / 60 s min−1 / 1000 = 4.4 10−3 L s−1

– Gas production rate: 400 mA (worst case assumption)
0.4 A / 96485 C mol−1 / 2 e−/gas · 24.0 L mol−1 = 5.0 10−5 L s−1

– Gas/total = 1.1%, we will use 2% a conservative approach

• Liquid is incompressible, all compression costs are gas compression

• Adiabatic process

• Ideal gas

The compression cost during the pressure pulse are defined as follows:

dW = PpeakdV (S5.3)

Where dW is the performed work in J, Ppeak is the peak pressure of a pulse in in Pa, and dV is the

change in gas volume during the pressure pulse in m3, which is calculated as follows:

dV =Vcellxgas

(
1bar

Ppeak
−1bar

)
(S5.4)
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Where Vcell is the volume of the electrolyzer and tubing until the back pressure valve (in m3), xgas

is the gas fraction (2%) and Ppeak is the peak pressure in bar. For these experiments Vcell is 2 cm2

· 0.5 cm = 1 mL, or 1 10−6 m3. The power required for a pulsed flow is then defined as follows:

Powerpulses = dW · f (S5.5)

Where Powerpulses is the required power in W and f is the frequency of the pressure pulses in Hz.
Powerpulses is then converted into an equivalent voltage (Upulses) as follows:

Upulses =
Powerpulses

I
=

Powerpulses

j · A
(S5.6)

Where I is the current in A, j is the current density in A cm−2 and A is the electrode area in cm2

which was 2 cm2 for the pressure pulsed CO2 electrolyzer. The energy requirement for various
current densities is shown below in Figure S5.12, and included into the literature comparison from
Figure 5.3D.

A B

Figure S5.12: A. Equivalent voltage costs of of the pressure pulses versus current density B. Literature compar-
ison from Figure 5.3D when pump energy costs are included

5.5.13. PPP AND χ OVER TIME

A B

Figure S5.13: A. Peak to peak pressure (PPP) and B. relative expansion (χ) over the time of a CO2R experiment
for different current densities. The error bar is the standard deviation over 10< seconds (500+ pressure pulses)
during the recording.
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5.5.14. DISCREPANCY IN THE FE BETWEEN DUPLICATE MEASUREMENTS
Figure S5.14 shows three outliers in the pressure pulsed CO2 experiments that performed sig-

nificantly worse compared to their duplicate experiment. We attribute this worse performance to
metal contaminations. We believe some of the iron impurities came from newly installed vibratory
pumps, impurities in the KHCO3 batch and possibly dirty glassware.

Pulsed - 30 mA cm-2A
Pulsed - 30 mA cm-2

Pulsed - 50 mA cm-2B
Pulsed - 50 mA cm-2

C
Pulsed - 200 mA cm-2Pulsed – 200 mA cm-2

Figure S5.14: Faradaic efficiency over time for pressure pulsed CO2R experiments at A. 30 mA cm−2 B. 50 mA
cm−2 C. 200 mA cm−2. The right column contains outliers in the duplicate experiments, which have much
worse FE trends. This is attributed to metal contaminations on the cathode.

Table S5.2: Contaminations on electrodes as measured with ICP. The electrode samples are the same as the
CO2R experiments in Figure S5.14

ICP Sample Ag [m%] Cu [ppm] Fe [ppm] Zn [ppm]
50 mA cm2 (good) 100.6 65.9 4.9 3.1
50 mA cm2 (poor) 99.6 42.0 40.0 4.6
30 mA cm2 (poor) 99.6 58.2 18.5 3.9
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5.5.15. EFFECT OF PRESSURE PULSES AND CURRENT DENSITY ON THE ELEC-
TRODE MICROSTRUCTURES

Figure S5.15: SEM images of electrodes after 40 minutes of electrolysis experiments. No significant differences
in the microstructures were observed. x10000 magnification, the scalebar is 1 µm
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5.5.16. PHOTOS OF SETUP AND DRAWING OF ELECTROLYZER

Flow channel Backplate

Figure S5.16: Drawings of the electrolyzer

Figure S5.17: Photograph of the setup. The pumps are inside a box, placed on a foam to reduce vibration.
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5.5.17. EFFECT OF PRETREATMENT ON CO2 R PERFORMANCE
Pre-treated cathodes resulted into much more stable and better performing CO2R (Figure

S5.18). All cathodes were pretreated by applying an anodic current of 10 mA cm−2 before the
experiment. This removed dissolved from the silver, and creates a small layer of Ag2O. Once the
experiment start the Ag2O is reduced back into silver microstructures (Figure S5.19). The perfor-
mance increase is similar to what was observed by Ma et. al.[46].

A BPre-treated Ag mesh Untreated Ag mesh

Figure S5.18: Faradaic efficiency over time for a pre-treated (A) and untreated (B) cathode. Operating condi-
tions. 0.5 M KHCO3, 50 mA cm−2, pressure pulsed electrolysis.

Figure S5.19: Scanning electron microscope (SEM) images of a pre-treated silver mesh cathode (Left) and un-
treated electrode (Right) at 10000x magnification, scale bar is 1 µm. SEM model: JSM-IT700HR
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5.6. SUPPLEMENTARY VIDEOS

Video S5.20: 100x slow-motion video during pressure pulsed CO2R at 50 mA cm−2.
https://www.youtube.com/watch/ogQLQ0A3MIQ

Video S5.21: 100x slow-motion video during pressure pulsed CO2R at 130 mA cm−2.
https://www.youtube.com/watch/ZoZqwbxrWi8

Video S5.22: 100x slow-motion video during damped CO2R at 50 mA cm−2.
https://www.youtube.com/watch/QYqCOi-C7WY

Video S5.23: 100x slow-motion video during damped CO2R at 130 mA cm−2.
https://www.youtube.com/watch/6uMuX8VE6YQ

Video S5.24: Slow-motion video during a PIV measurement, where bubbles move into the Ag mesh cathode.
https://www.youtube.com/watch/rnmALR0VxCA
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Video S5.25: Real time video during pressure pulsed CO2R at 160 mA cm−2.
https://www.youtube.com/watch/ORFdmQ5JXmY
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6
REFLECTION AND OUTLOOK

This thesis started by highlighting the significance of gas evolving electrolysis pro-
cesses for the energy transition. These processes are currently still too expensive to com-
pete at a large scale with their fossil-fuel based counterparts. Gas bubbles could play
a crucial role in the development of more efficient electrolysers; in Chapter 2, I show
that gas bubbles compromise the electrolyser performance by increasing the resistance,
whereas in Chapter 4 and 5, I show that gas bubbles can also benefit electrolysers as
they induce mass transport. This dual behaviour of gas bubbles raises the question what
determines the balance between positive and negative impacts of gas bubbles in elec-
trolyzers, and how we can leverage this. The pivotal factor seems to be movement:

• Stagnant bubbles – whether on the electrode, membrane, or inside a porous sup-
port – have a negative effect on electrolyser performance. These stagnant bubbles
block the transport of ions, water, or electrons, and hence will result in extra resis-
tance (both ohmic and mass transport resistance).

• Moving gas bubbles – either through the pores of an electrode, or rising in the
electrolyte – positively affect the cell performance. By moving, gas bubbles dis-
place electrolyte and create additional convection. This bubble-induced convec-
tion breaks diffusion boundary layers in the electrolyser and hence will result in
improved mass transport.

To discuss the effects and potential of gas bubbles in electrolysers, I will address the
following two questions, while answering the research questions (RQ) discussed in the
introduction:

• How can we minimize the effects of stagnant bubbles in electrolysers?

RQ1: How large is the effect of gas bubbles on the cell voltage in a zero-gap alkaline water
electrolyzer?

RQ2: How much can the cell voltage be reduced when gas-bubbles are removed from a

zero-gap alkaline water electrolyzer with a pressure swing (5-180 s, 1-2 bar)?
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• How can we optimally benefit from moving gas bubbles?

RQ3: What fluorescent pH probe is suitable to study mass transport at a gas-evolving elec-
trode with Fluorescent Lifetime Imaging Microscopy (FLIM)?

RQ4: What microprocesses during gas bubble evolution are the biggest contribution to
bubble-induced mass transport at electrodes?

RQ5: How much can the limiting current density of aqueous CO2 reduction be improved

with fast pressure pulses (50 Hz, 1-2.5 bar)?

After answering these questions, I will reflect on the role of gas bubbles in electroly-
sers with the following question:

• Should we optimize bubble dynamics or aim for bubble-free systems?

HOW CAN WE MINIMIZE THE EFFECTS OF STAGNANT BUBBLES IN ELECTROLYSERS?
For alkaline water electrolyzers, and in particular zero-gap configurations (Chapter

2), quantifying the effects of gas bubbles is challenging. This is because electrolysers are
usually only benchmarked by the cell voltage, in which all the losses are included into
one number. A fast pressure pulse provides a solution here, as it allows for a compari-
son of an electrolyzer with and without bubbles. Virtually all bubbles are removed after
a pressure pulse, while other parameters (such as materials, flow rate, and current den-
sity) remain the same.
RQ1: How large is the effect of gas bubbles on the cell voltage in a zero-gap alkaline wa-
ter electrolyzer? The pressure swing measurements show that the overpotential due to
bubbles (ηBubbles) scales linearly with current at low current densities (<150 mA cm−2),
suggesting that the primary influence of bubbles on an alkaline electrolyser is ohmic
in nature. For Ni perforated plate electrodes, the resistance is 0.3 Ω cm2, while for Ni
foam electrodes, the resistance is 1.8 Ω cm2 both in 1 M KOH, 30 °C. Like other ohmic
resistances, bubble resistance is inversely proportional to the conductivity, which allows
us to extrapolate the resistances to operating conditions relevant for industrial alkaline
electrolysers (6M KOH, 80 °C). The bubble resistance for perforated plate electrodes, at
these conditions is 0.051 Ω cm2. Using a typical industrial current density of 300 mA
cm−2, ηBubbles will be 15 mV for alkaline electrolysers. PEM electrolysers also suffer from
bubbles, mostly due to mass transport limitations, the resulting ηBubbles is about 40 mV
at 1 A cm−2(ref[1]).

Using this, we can estimate the global electricity losses due to electric bubbles in
2030. By this year, the planned electrolyser capacity for green hydrogen is 560 GW[2].
At the time of writing this thesis, both PEM and alkaline electrolysers are commonly ap-
plied. By assuming a future 50%/50% split between PEM and alkaline water electroly-
sers, the total losses due to bubbles could reach up to 9.20 GW (Figure 6.1A). While this
represents only a small fraction of the total electrolysis output, it is an enormous amount
of energy. To put this into perspective, these losses would exceed the total installed elec-
trical power of the Czech Republic in 2023 (∼6.5 GW)[3]. I believe that addressing the
stagnant bubble problem is strongly relevant in accelerating the energy transition.
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Total electrolyser capacity:
560 GW

PEM bubble losses:
6.63 GW

Alkaline bubble losses:
2.57 GW

Figure 6.1: Estimated bubble losses, assuming green water electrolyser targets of 2030 are met, assuming a 50%
PEM, 50% alkaline split. The cell voltage was taken from IV curves of Hodges et.al.[4] Calculations are available
in 6.1.1.

RQ2: How much can the cell voltage be reduced when gas-bubbles are removed from
a zero-gap alkaline water electrolyzer with a pressure swing (5-180 s, 1-2 bar)? We have
demonstrated that the effects of gas bubbles can be mitigated to an extent by applying
pressure swings to an electrolyser. For a zero-gap electrolyser with Ni Foam electrodes
(200 mA cm−2, 1 M KOH, 30 °C), this reduced cell voltage by up to 0.1 V. Regrettably, I
believe that the additional energy costs for constant re-pressurization of the system, en-
gineering challenges and safety risks of this approach, make successful implementation
in an industrial-scale water electrolyser challenging.

While active bubble removal with a pressure swing poses challenges, passive bub-
ble mitigation could be a viable alternative. During the pressure swing experiments, I
observed the strong relationship between ηBubbles and the geometry of the electrode.
A foam electrode, which traps gas bubbles, results in a six times higher bubble resis-
tance compared to a perforated plate electrode, which has sufficiently large pores to
allow bubbles to escape. With emerging technologies such 3D printing and computa-
tional topology optimization, it should be possible to calculate and manufacture the
ideal electrode geometry. I hypothesize that these electrodes will have sufficiently large
surface areas to keep activation overpotentials low, while also incorporating large pores
and flow-through characteristics to facilitate effective bubble removal.

A challenge for optimizing electrode geometries is establishing a reliable method for
deconvoluting effects of bubble coverage from other geometry aspects (such as surface
area and tortuosity). A crucial parameter for this is bubble coverage (θ), which indi-
cates the fraction of the electrode surface that is blocked by gas bubbles[5]. Traditionally,
bubble coverage is measured optically on horizontal electrodes without flow. An under-
explored alternative is to leverage the double layer capacitance (C ). I performed some
initial tests to show that this method works (Figure 6.2A and B, 10% lower capacitance for
θ = 10%). We should be able to measure θ in situ and in operando using electrochemical
impedance spectroscopy (EIS), provided we can accurately extract C from the constant
phase element. This should greatly speed up the optimization of electrode geometries
and operating conditions for good bubble management.

155



6

144 6. REFLECTION AND OUTLOOK

Figure 6.2: A. Photo of the capacitance measurements, air bubbles were placed with a pipette on the Ni foil
surface until ∼10% of the surface was covered. B. Measurement of the double layer capacitance (C ) of two
Ni foil electrodes in 2 M KCl. C was measured by performing cyclic voltammetry (CV) at different scan rates
(S). The y-axis shows the current of the CV curve at 0 V during the forward and backward scans. Data and
corresponding CV curves are in 6.1.2.

HOW CAN WE OPTIMALLY BENEFIT FROM MOVING GAS BUBBLES?
After bubbles detach from the electrode, they become advantageous moving bub-

bles that contribute to the mass and heat transport in electrolyzers. To illustrate the im-
portance of this transport: the world’s largest green hydrogen project (260 MW alkaline
electrolysis plant) is currently not fully operational due to issues with gas crossover[6].
Dr. M.T. de Groot (TU/e) commented the following on LinkedIn:

Gas crossover is a point of concern for pressurized alkaline electrolyzers and
can seriously affect their flexibility. We did some research on the topic showing
that there are ways to mitigate this. Yet, more research is needed. My sugges-
tion would be to do this at labscale and not at 260 MW-scale.

The research he is referring to shows that gas crossover can be reduced by creating an
electrode-diaphragm gap. When this gap is large enough, gas bubbles can move through
this gap, absorb gasses from the oversaturated electrolyte solution, and transport them
out the electrolyser. This can reduce the transport of dissolved gases across the di-
aphragm[7]. This modification emphasizes the importance of understanding bubble
induced mass-transport.

However, the understanding of bubble induced mass transport in electrolysis is not
a new problem, and even the most recent mass transport coefficient equations make
use of results from the 40-80’s.[8–10] The existing relations are typically fitted to bound-
ary layer experiments, which provide statistically robust data but require simplified as-
sumptions about the underlying processes.[8, 11] The contributions of certain factors,
such as bubble coalescence and Marangoni convection, remain poorly understood and
are largely speculative at this point.[8, 12, 13] I believe we need to tackle this problem
with new and out-of-the-box investigation methods. The researchers of the 40-80’s were
also competent; had the solution been straightforward, then they would have resolved it
by now with existing methods.
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To that end, in operando optical measurements of flow and mass transport could
facilitate the understanding of bubble phenomena. An upcoming and promising tech-
nique in this class is Fluorescence Lifetime Imaging Microscopy (FLIM). To my knowl-
edge, this technique has only been sparsely applied to study mass transport, with the
earliest reports dating back to just 2013.[14–19] Since FLIM is self-referencing, experi-
ments can be set up quickly. However, the majority of FLIM research has been performed
on biological systems, and hence little probes are existing for conditions relevant for CO2

or water electrolysis.
RQ3: What fluorescent pH probe is suitable to study mass transport at a gas-evolving elec-
trode with FLIM? In Chapter 3 we have shown that Quinolinium-based probes open up
pH measurements from 5 to 13.5. With FLIM we measure at a microscopic scale (4 µm),
at a temporal resolution of 3 fps. Using these probes, we investigated the mass transport
in water and CO2 electrolysers.[20] Additionally, I have tested additional molecules after
the publication of our probe paper that will extend this pH range beyond 5-13.5 (Figure
6.3).

A BA BA B

Figure 6.3: Fluorescent lifetime (τ) of two pH probes, that have potential to increase the pH range of FLIM
even further, measurement method is identical to Chapter 3. A. Perylene-bis-anhydride (PBA) up to pH 14.5 B.
Quinolinium probe QB21 up to pH 3. Data is available in 6.1.3.

RQ4: What microprocesses during gas bubble evolution are the biggest contribution
to bubble-induced mass transport at electrodes? Using FLIM and µPIV, we have shown
that bubble detachment and wake flow are the main drivers of bubble-induced mass
transport. However, these experiments were still at a limited range of relatively low cur-
rent densities (1-20 mA cm−2). Experiments at a larger range of current densities should
allow us to compare the mass transport to theoretical and numerical models, for exam-
ple from the Haverkort group.[8] FLIM is also expected to perform well at higher current
densities, which could provide insights into, for example, the role of bubble coalescence
in mass transport.
RQ5: How much can the limiting current density of aqueous CO2 reduction be improved
with fast pressure pulses (50 Hz, 1-2.5 bar)? A good design of electrolyser and electrode
has shown to enhance the effects of bubble-induced mass transport.[7, 21–23] In Chap-
ter 5, I have demonstrated that process intensification can amplify these effects even
further. By applying fast pressure pulses that cause bubbles on the electrode to vibrate,
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we achieved partial CO2 reduction (CO2R) current densities of 89 mA cm−2—an order of
magnitude higher than systems relying solely on bubble-induced mass transport. De-
spite these promising results, fast pressure pulses may introduce new engineering chal-
lenges. For example, as a pulse generating system, we used vibratory pumps designed
for an espresso machine as a last resort because we could not find a better system. Be-
cause these pumps were operating continuously, instead of for a short duration in an
espresso machine, the lifetime of the pumps in our device was only ∼100 hours of op-
eration. Moreover, the energy efficiency of these pumps is very low. Therefore, it would
be required to develop new pressure pulse generating systems, i.e. vibratory pumps that
are designed for continuous, more energy efficient operation.

SHOULD WE OPTIMIZE BUBBLE DYNAMICS OR AIM FOR BUBBLE-FREE SYSTEMS?
To make the adoption of green hydrogen viable, the technology will need to be cost

competitive with traditional fossil-based resources. Figure 6.4A shows the levelized cost
of hydrogen (LCOH) for a PEM and alkaline electrolyser, calculated for on-shore wind
electricity in the Netherlands[24]. At these conditions 1 kg of alkaline hydrogen costs
€5.33. One kg contains 33.3 kWh of energy, which makes the energy price 0.160 € kWh−1,
which is already in the same order of magnitude as the current energy price of gasoline
0.208 € kWh−1 (E10, Netherlands[25]). Note that typical combustion engines have a per-
formance of, at most, 30%, whereas fuel cells should give, at least, 60%. This will make H2

energy prices more favorable.
However, the green H2 price does not include additional costs, like transport storage

and certification yet, which can result in another 2-5 €/kg added to the costs[26], or the
high taxes (∼45%) on gasoline. I believe a large cost reduction (>20%) is required to make
green hydrogen cost-competitive. This is also needed to compete with grey H2 which
currently has a cost of ∼2 €/kg.[27]

A BA B

Figure 6.4: A. Levelized cost of hydrogen (LCOH) in the Netherlands, based on-shore wind energy[24] This
price does not include additional costs, like pressurization, profit margins and certification B. I/V curves of
commercial alkaline and PEM electrolysers, compared to the novel capillary flow-fed electrolysis. Data source:
Figure 3C of Hodges et.al.[4]

Good bubble management could reduce electricity costs and allow for higher cur-
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rent densities, which in turn would lower the CAPEX. However, as already shown in Fig-
ure 6.1, it is unlikely that such improvements alone would lead to the required large cost
reduction. This cost reduction will need to be tackled by bit by bit, for example by im-
provements in membranes/separators, catalysts, and the balance of plant (BOP). I be-
lieve both PEM and alkaline electrolysers will play important roles during the transition
to green energy, but I believe technologies with a different approach have the potential
to make much larger reductions of the LCOH.

For example, the Battolyser[28]—a technology that combines the functionalities of
a battery and an electrolyser—could justify higher capital costs by offering more utility.
Additionally, in 2022, a novel bubble-free electrolyser was introduced, utilizing capillary
flow and a very thin porous diaphragm. As shown in Figure 6.4B, this system surpasses
the energy efficiency of both commercial alkaline and PEM electrolysers, while simul-
taneously using earth-abundant materials and having easier BOP. This raises the ques-
tion: should we consider going bubble-free? While this bubble-free design resolves the
gas transport issue, it creates a water transport issue. The startup behind it is currently
facing challenges with scaling up, because of the insufficient water transport to the cata-
lyst. Even though electrolysis is a century-old, large-scale technology, new developments
must show which pathways will make green hydrogen viable. I am excited for what the
future will bring.
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6.1. SUPPLEMENTARY INFORMATION

6.1.1. CALCULATION OF BUBBLE LOSSES
IEA predicts an installed green electrolyser capacity of 560 GW by 2030, when assuming a

50%:50% split between alkaline and PEM electrolysis, their total capacity will be 280 GW each by
20301. The losses caused by gas bubbles were calculated as follows:

Ploss-Bubbles = P · ηBubbles

ECell
(S6.1)

Here Ploss-Bubbles is the amount of power lost due to gas bubbles in GW, P is total electrolyser
capacity in GW, ηBubbles is the overpotential due to gas bubbles in V, and ECell is the cell potential
of the process in V. For operating current densities I used 1 A cm−2 and 0.3 A cm−2 for PEM and
alkaline respectively to have a comparable cell voltage.

Table S6.1: Electrolyser performance data used for calculating global losses due to gas bubbles

P [GW][2] j [A cm−2] ECell [V] ηBubbles [V] Ploss-Bubbles [GW]
PEM 280 1 1.69 [4] 0.04 [1] 6.63

Alkaline 280 0.3 1.665[4] 0.015 2.57

6.1.2. DATA OF CAPACITANCE MEASUREMENTS

A B
θ = 0 θ = 0.1

Figure S6.1: Cyclic voltammetry curves corresponding to capacitance in Figure 6.2 for a bubble coverage of A.
θ = 0 and B. θ = 0.1
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Table S6.2: Currents from the cyclic voltammetry curves at 0 V, averaged over 3 cycles. Currents did not deviate
more than 2% over repeat cycles. These values were fitted with the trendline function of Excel to find the
Capacitance in Figure 6.2B

Scanrate [mV/s] Current, θ = 0 [µA] Current, θ = 0.1 [µA]
10 0.14 -0.13 0.15 -0.22
25 0.34 -0.20 0.24 -0.30
50 0.66 -0.68 0.82 -0.89
75 1.20 -1.21 1.18 -1.26

100 1.58 -1.56 1.52 -1.59
150 2.22 -2.21 2.10 -2.17
200 2.79 -2.78 2.60 -2.67
250 3.18 -3.19 2.92 -3.03
300 3.66 -3.64 3.32 -3.43
350 4.08 -4.08 3.67 -3.81
400 4.47 -4.47 4.03 -4.14
450 4.86 -4.84 4.38 -4.47
500 5.22 -5.20 4.66 -4.80

6.1.3. DATA OF FLIM PROBES

Table S6.3: pH-Lifetime data for FLIM probes PBA and QB21

PBA QB21
pH τφ [ns] Stddev [ns] pH τφ [ns] Stddev [ns]

11.5 5.53 0.22 4.02 6.23 0.34
12.063 5.62 0.23 3.55 7.95 0.38
12.464 5.71 0.23 3.04 8.54 0.38
12.439 5.71 0.23 2.75 8.68 0.39
12.75 5.67 0.22 2.55 8.73 0.39

13.005 5.61 0.22 2.25 8.75 0.38
13.256 5.51 0.22 2.03 8.76 0.38
13.502 5.45 0.21 1.75 8.74 0.39
13.756 5.4 0.22 1.5 8.72 0.38
13.908 5.34 0.22 1.25 8.68 0.39
14.02 5.27 0.22 1.08 8.63 0.39
14.16 5.19 0.21
15.02 4.65 0.41
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