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Inelastic scattering of photons is a promising technique to manipulate magnons but it suffers from weak
intrinsic coupling. We theoretically discuss an idea to increase optomagnonic coupling in optical whispering
gallery mode cavities by generalizing a previous analysis to include the exchange interaction. We predict that the
optomagnonic coupling constant to surface magnons in yttrium iron garnet (YIG) spheres with radius 300 μm
can be up to 40 times larger than that to the macrospin Kittel mode. Whereas this enhancement falls short of
the requirements for magnon manipulation in pure YIG, nanostructuring and/or materials with larger magneto-
optical constants can bridge this gap.

DOI: 10.1103/PhysRevB.99.214423

Magnetic insulators such as yttrium iron garnet (YIG) are
promising for future spintronic applications such as low power
logic devices [1], long-range information transfer [2], and
quantum information [3]. Their excellent magnetic quality
[4,5] implies that spin waves or magnons, the excitations
of the magnetic order, are long-lived. Microwaves in high-
quality cavities and striplines couple strongly to magnons with
long (mm) wavelengths [6–12], i.e., the rate of energy ex-
change between the two systems is higher than their individual
dissipation rates, but not to short wavelengths (except under
special geometries [13]). Magnons can be injected electrically
by metallic contacts incoherently [14,15], but only in rather
small numbers. Here, we focus on the coherent coupling of
magnetic order and infrared laser light with sub-μm wave-
lengths, which is enhanced by using the magnet as an optical
cavity [16–18].

By the high dielectric constant and almost perfect trans-
parency in the infrared [19,20], sub-mm YIG spheres sup-
port long-living whispering gallery modes (WGMs) [16,21].
The photons, with energy deep within the band gap, scatter
inelastically by absorbing or creating magnons [22,23]. This
is known as Brillouin light scattering (BLS) [24], which is
enhanced in an optical cavity [16–18,21,25–29]. These results
led to predictions of the Purcell effect [30] (optically induced
enhancement of magnon linewidth), magnon lasing [31], and
magnon cooling [32]. However, the models addressed only
the magnetostatic magnon modes, i.e., ignored retardation
and the exchange interaction, which have a small overlap
with the WGMs [16–18,25,29,33,34]. Thus, the observed and
predicted coupling rates were too low to be able to optically
manipulate magnons [31,32]. Higher optomagnonic coupling
can be achieved by reducing the size of the magnets down to
optical wavelengths [35], but this requires nanostructuring of
the magnet [36–38]. Coupling to magnons over a magnetic
vortex is large [39]. Here, we suggest and analyze a method
to increase coupling in a conventional setup of a uniformly
magnetized sub-mm YIG sphere by coupling to exchange-
dipolar modes with wavelengths comparable to the WGMs.

Bulk magnons in films with both exchange and dipolar
interactions have been extensively studied [40–42]. In thick
films, exchange reduces the lifetime of surface magnons
[43–45], while in thinner films exchange leads to modes with
partial bulk and surface character [45,46]. Here, we address
magnetic spheres with radii that are large enough to support
surface exchange-dipolar magnons.

Our system is sketched in Fig. 1. A ferromagnetic sphere
acts as a WGM resonator in which photons interact with the
magnetic order via proximity coupling to an optical prism or
a fiber. The frequency of photons is four to five orders of
magnitude larger than that of magnons at similar wavelengths,
thus the incident and scattered photons have nearly the same
frequency and wavelength. Forward scattering of photons
occurs via magnons of large wavelength ∼100 μm, and is
well described by a purely dipolar theory [33]. Here we
discuss backscattering of photons by magnons with sub-μm
wavelengths that are affected significantly by exchange. We
find magnon modes that have a near ideal overlap with the
optical WGMs, with an optomagnonic coupling limited only
by the bulk magneto-optical constants.

We first briefly review the basics of cavity optomagnonics
and derive an upper bound for the optomagnonic coupling
constant in cavities in Sec. I. We model the magnetization dy-
namics by the Landau-Lifshitz equation introduced in Sec. II.
The spatial amplitude of surface exchange-dipolar magnons
is discussed in Sec. III, with details of the derivation in
Appendix A. The optomagnonic coupling constants found in
Sec. IV are compared with the upper bound found in Sec. I.
We conclude with a discussion and outlook in Sec. V.

I. CAVITY OPTOMAGNONICS

Here we summarize the basic theory of magnon-photon
coupling in spherical optical resonators [33]. The electric and
magnetic fields of the optical modes in a spherical resonator
are labeled by orbital indices {l, m, ν} and a polarization
σ ∈ {TM, TE}, stands for transverse magnetic and transverse
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FIG. 1. A sphere made of a ferromagnetic dielectric in proximity
to an optical fiber or prism. A magnetic field saturates the magneti-
zation. The input photons in the fiber, Ain, leak into the whispering
gallery modes (WGMs) {WP}. The latter can be reflected by magnons
{MA} of twice the angular momentum into the blue, via WP + MA →
WQ, or red, WP → WQ + MA, sideband. The photons {WQ} can leak
back into the fiber and be observed in the reflection spectrum.

electric respectively. They become optical whispering gallery
modes (WGMs) at extremal cross sections when l, m �
{1, |l − m|}. WGMs are traveling waves in the ±φ direction
with dimensionless wavelength 2π/m. ν − 1 and l − m are
the number of nodes in the optical fields in the r and θ

direction. The electric field of these modes is ETM = E (r)θ̂
and ETE = E (r)r̂, where [47]

E (r) = EY m
l (θ, φ)Jl (kr). (1)

Here Jl is the Bessel function of order l [Eq. (A10)] and Y m
l is

a scalar spherical harmonic [Eq. (A3)]. The wave number k,
for l � 1 [47],

kR ≈ l + βν

(
l

2

)1/3

− Pσ , (2)

where R is the radius of the sphere, βν ∈ {2.3, 4.1, 5.5, . . . }
are the negative of the zeros of Airy’s function Ai(x), PTM =
ns/

√
n2

s − 1, and P−1
TE = ns

√
n2

s − 1. E is a normalization con-
stant chosen such that the integral over the system volume∫ [

εs

2
|E|2 + 1

2μ0
|B|2

]
dV = h̄ω

2
, (3)

where iωB = ∇ × E, εs = ε0n2
s , and ω = kc/ns, with ns being

the refractive index of the sphere. Then

E =
√

h̄ω

2εsR3Nl (kR)
, (4)

where

Nl (x)
�=

∫ 1

0
r̃2d r̃ J2

l (xr̃)

≈ J2
l (x) − Jl+1(x)Jl−1(x)

2
, (5)

and the approximation holds again for l � 1. The angular
dependence for l = m with l � 1 [47],

Y l
l (θ, φ) ≈

(
l

π

)1/4

exp

[
− l

2

(
π

2
− θ

)2
]

eilφ

√
2π

, (6)

is a narrow Gaussian around θ = π/2 with a width
√

2/l and
a traveling wave along the circle with wave number l/R. The
radial dependence for l � 1 [48],

Jl (kr) ≈
(

2

l

)1/3

Ai(x − βν ), (7)

where the radial coordinate is scaled to

x = l

(l/2)1/3

(
1 − r

R

)
. (8)

The leading interaction between magnons and WGMs is
two-photon one-magnon scattering. Consider a TM-polarized
WGM P ≡ {p,−p′, μ} that scatters into a TE-polarized
WGM Q ≡ {q, q′, ν} by absorbing a magnon A (to be gen-
eralized below). We take in the following p′ > 0, and thus
back (forward) scattering corresponds to q′ > 0 (q′ < 0). The
coupling constant depends on the modes as [22,23]

GPQA = nsε0λ0

πMs

∫
EPE∗

Q (�CMA,ρ − i�F MA,φ ) dV, (9)

where the integral is over the sphere’s volume, λ0 is the
vacuum wavelength of the incident light, Ms is the saturation
magnetization, �F is the Faraday rotation per unit length,
�C is the Cotton-Mouton ellipticity per unit length, and MA,φ

(MA,ρ) is the φ (ρ) component of A-magnons.
For the uniform precession of the magnetization, i.e., the

Kittel mode K [49],

MK,φ = iMK,ρ =
√

h̄γ Ms

2Vsph
, (10)

where Vsph is the volume of the sphere and γ is the modulus
of the gyromagnetic ratio. We normalized the magnetization
as ∫

Re[iM∗
φMρ] dV = h̄γ Ms

2
, (11)

equivalent to Eq. (B14). The coupling constant is finite only
when q′ + p′ = 1, p − |p′| = q − |q′|, and μ = ν [27,33]
with value

|GPQK | = GK = c(�F + �C )

ns
√

2sVsph
, (12)

where s = Ms/γ h̄ is the spin density. For the parameters in
Table I, GK = 2π × 9.1 Hz.

An upper bound on GPQA for a given set of WGMs can
be found by maximizing it over all normalized functions
{MA,ρ (r), MA,φ (r)}. The solution Mopt gives the magnetiza-
tion profile with the highest possible optomagnonic coupling.
Later, we show that there exist eigenstates that are close
to Mopt. We consider circularly polarized magnons MA,φ =
iMA,ρ and discuss the effect of finite ellipticity below. By the
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TABLE I. Parameters for a standard YIG sphere: exchange con-
stant Aex [40,51], refractive index ns [40], saturation magnetization
Ms [40], gyromagnetic ratio γ [40], Faraday rotation angle �F

[52,53], Cotton-Mouton ellipticity �C [21,54,55]. We assume the
applied dc field Happ and the radius R based on a typical experimental
setup [16–18].

Aex ns Ms γ /(2π )
3.7 pJ/m 2.2 140 kA/m 28 GHz/T

�F �C Happ − Ms/3 R
400 rad/m 150 rad/m 200 mT/μ0 300 μm

method of Lagrange multipliers,

L =
∫

EPE∗
QMφ dV − λ

(∫
M∗

φMφ dV − h̄γ Ms

2

)
(13)

is stationary at Mφ = Mopt
φ . We find

Mopt
φ = E∗

PEQ

λ
∝ Jp(kPr)Jq(kQr)Y p′

p Y q′
q , (14)

with

λ =
√

2

γ h̄Ms

∫
|EPEQ|2 dV . (15)

Therefore,

GPQ
�= |GPQ,opt| = c (�F + �C )

ns
√

2sVPQ
, (16)

defining the effective overlap volume

VPQ = (
∫ |EP|2 dV )(

∫ |EQ|2 dV )∫ |EP|2|EQ|2 dV
. (17)

The WGMs, which are most concentrated to the surface,
have mode numbers p = p′ and q = q′. Since the magnon
frequency ∼1–10 GHz is much smaller than that of the
photons, ∼200 THz, the incident and scattered photons have
nearly the same frequency, implying p ≈ q [see Eq. (2)]. The
Bessel function Jp approaches the Airy function Ai(x) for
p, q � 1 [see Eq. (7)],

Mopt
φ ∝ Ai(x − βμ)Ai(x − βν )e−p( π

2 −θ )2
ei(p+q)φ, (18)

where the coordinate x is given by Eq. (8) after the substitution
l → p. This is a traveling wave in the φ-direction and a
Gaussian in the θ -direction. Its radial dependence for the
lowest {μ, ν} is plotted in Fig. 2, showing significant values
only very close to the surface. The overlap volume (17)
reads

VPQ ≈
(

2

p

)7/6 R3π3/2|Ai′(−βμ)Ai′(−βν )|∫ ∞
0 Ai2(x − βμ)Ai2(x − βν ) dx

. (19)

For p = 3000 and μ = ν = 1, Vsph/VPQ ≈ 1600, reflecting
the localized nature of the WGMs.

For light with λ0 = 1.3 μm, p = 3190 for a YIG
sphere with parameters in Table I. For the first modes
{μ, ν,GPQ/(2π )} = {1, 1, 364 Hz}, {1, 2, 224 Hz}, and
{2, 2, 304 Hz}, so GPQ � GK . For a fixed λ0, p ∝ R, and

0.980 0.985 0.990 0.995 1.000
r/R

−0.2

0
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0.4
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E
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E

Q
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rb
. 
u
n
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FIG. 2. The r-dependence of the product of the electric field of
WGMs, in arbitrary units, for p = p′ = q = q′ = 3000 and radial
mode numbers μ, ν ∈ {1, 2}. For the parameters of our system in
Table I, this corresponds to photons with free-space wavelength
≈1.3 μm. The magnons similar to these profiles have nearly the
largest possible optomagnonic coupling; cf. Eq. (14).

GPQ ∝ R−11/12 can be further enhanced by reducing the di-
ameter.

Magnetic anisotropies and dipolar interaction can deform
the circular precession of the magnons into an ellipse. Solving
the above problem for a hypothetical linearly polarized mag-
netization precession, e.g., by letting Mφ → ∞ and Mρ → 0
while maintaining Eq. (11), leads to a diverging GPQ → ∞.
But such strong linear polarization is difficult to achieve in
practice, and ellipticity is typically limited to ∼10%, also
valid in the calculations below.

A similar analysis for P and Q being TE- and TM-
polarized, respectively, reveals the same results with �F +
�C → �F − �C and thus reduced couplings by a factor
0.45. It is therefore advantageous to input TM photons over
TE for a larger blue sideband (magnon absorption) [22,50].
The coupling constant concerning magnon emission processes
follows a very similar discussion since Gblue

PQA = G∗
QPA.

II. LANDAU-LIFSHITZ EQUATION

Here we derive the equations for the magnetic eigenmodes,
which will later be shown to approximate the optimal profile
derived above. The parameters for a standard YIG sphere are
given in Table I. The Gilbert damping does not affect the
magnon mode shapes to leading order and is disregarded.
The magnetization dynamics then obeys the Landau-Lifshitz
equation

dM
dt

= −γμ0M × Heff , (20)

where M is the magnetization, μ0 is the free-space permeabil-
ity, and the effective magnetic field

Heff = Happẑ + 2Aex

μ0M2
s

∇2M + Hdip, (21)

where Happ is the applied field that saturates the magnetization
to Ms in the ẑ-direction, Aex is the exchange constant, and
Hdip is the dipolar field that solves Maxwell’s equations in the
magnetostatic approximation:

∇ × Hdip = 0, ∇ · Hdip = −∇ · M, (22)

214423-3



SHARMA, RAMESHTI, BLANTER, AND BAUER PHYSICAL REVIEW B 99, 214423 (2019)

which is valid for magnons with wavelengths sufficiently
smaller than c/ω ∼ 1 cm [56]. The amplitudes m = M − Msẑ
are taken to be small. The dipolar field has a large dc and a
small ac component, Hdip = Hdemag + hdip, where the demag-
netization field Hdemag = −Msẑ/3 for a sphere. We disregard
the small magnetocrystalline anisotropies in YIG.

The scalar potential hdip = −∇ψ satisfies

∇2ψ = ∇ · m. (23)

After substitution into Eq. (20), linearizing in m, and in the
frequency domain ∂/∂t → −iω,[

±ω + ωa − ωs

k2
ex

∇2

]
m± = −ωs∂±ψ, (24)

where we used the circular coordinates m± = mx ± imy and
∂± = ∂x ± i∂y. Here ωa = γμ0(Happ − Ms/3), ωs = γμ0Ms,
and the inverse exchange length

2π

λex
= kex =

√
μ0M2

s

2Aex
. (25)

We call m− (m+) the Larmor (anti-Larmor) component since
m+ = 0 for a pure Larmor precession. Outside the magnet

∇2ψo = 0. (26)

The coupled set of differential equations (23)–(26) are
closed by boundary conditions derived from Maxwell’s
equations at the interface,

ψ (R) = ψo(R), −∂rψ (R) + mr (R) = −∂rψo(R). (27)

The first condition is required for a finite hdip at the surface,
while the second one enforces continuity of the normal com-
ponent of the magnetic field hdip + m. At large distances, the
magnetic field vanishes, implying a constant potential that can
be chosen to be zero,

ψo(r → ∞) = 0. (28)

The boundary conditions for the magnetization depend on
the surface morphology and are complicated by the long-
range nature of the dipolar interaction [46,57,58]. Here,
we present calculations for pinned boundary conditions,
mx,y(R) = 0, valid when the surface anisotropy is high
[44,57,58]. This is not very realistic for samples with high
surface quality but is sufficiently accurate for our purposes, as
justified in Sec. III. For parameters in Table I, we get λex =
109 nm, ωa = 2π × 5.6 GHz, and ωs = 2π × 4.9 GHz.

III. EXCHANGE-DIPOLE MAGNONS

Here we discuss the amplitude of the magnons in dielec-
tric magnetic spheres, which resemble the ideal magneti-
zation distribution derived in Sec. I. These are the surface
exchange-dipolar magnons localized at the equator derived
in Appendix A. Our discussion follows a similar analysis as
Refs. [42,46], albeit in a different geometry.

Analogous to the photons discussed above, magnons in
spheres are characterized by three mode numbers {l, m, ν}.
Their amplitudes are a linear combination of three terms

[cf. Eqs. (A22) and (A23)],

m±(r) = m0Y
m±1

l±1 (θ, φ)

[
ζdip,±

(
r

R

)l±1

+ ζex,±
Jl±1(kr)

Jl−1(kR)

+ ζs,±
Il±1(κr)

Il−1(κR)

]
, (29)

with ‘dispersion’ relations [cf. Eq. (A7)],

k2

k2
ex

= ωsq − ωDE

ωs
,

κ2

k2
ex

= ωsq + ωDE

ωs
,

(30)

ωsq =
√

ω2 + ω2
s

4
, ωDE = ωa + ωs

2
.

The partial waves appear with coefficients ζ defined below.
Here kex, ωs, ωa are defined below Eq. (24), ωDE is the fre-
quency of the surface magnons in a purely dipolar theory
[59,60], ω is the resonance frequency of the magnon, and the
normalization constant m0 is determined below. {“dip”, “ex”,
“s”} refers to {dipolar, exchange, surface}, respectively.

The ratios of anti-Larmor (m+) and Larmor (m−) compo-
nents are a measure of the ellipticity [see Eq. (A24)]:

ζdip+ = 0,
ζex+
ζex−

= ωsq − ω

ωs/2
,

ζs+
ζs,−

= ωsq + ω

ωs/2
. (31)

The coefficients ζ read for pinned boundary conditions
m(R) = 0 [see Eqs. (A25) and (A26)]

ζdip,− = ωsq

ωs/2
, ζex,− = −κ2

k2
ex

, ζs,− = −k2

k2
ex

. (32)

Close to the boundary, the “dip” and “s” terms dominate, but
the “ex” term in m± takes over for r/R < 1 − 1/l .

The dipolar (subscript “dip”) term in Eq. (29) decays
exponentially with distance from the surface with a length
scale R/l . This solution is not affected by exchange [49,60]
because ∇2(Y m

l (θ, φ)( r
R )l ) = 0. For l � 1, the surface term

(subscript “s”) simplifies by the asymptotics of the Bessel
function to

Il−1(κr)

Il−1(κR)
≈

(√
l2 + κ2R2 − l√
l2 + κ2R2 + l

)
Il+1(κr)

Il−1(κR)

≈ exp

[
−

√
l2 + κ2R2

R − r

R

]
. (33)

This is again an exponential decay, but on an even shorter
scale R/

√
l2 + κ2R2 than the dipolar term. At first glance,

it appears to have a large negative exchange energy, ∝ −κ2,
but its total contribution to the energy is small due to its very
small mode volume. Both “dip” and “s” terms are important
to satisfy the boundary conditions, but they do not contribute
significantly to the optomagnonic coupling because the opti-
cal WGMs penetrate much deeper into the magnet (see Fig. 2).
The exchange “ex” function in Eq. (29), on the other hand,
resembles a photon WGM when kR ≈ l (see Sec. I). We show
below that this condition is satisfied by magnons with ν > 0.

We now turn to the magnon eigenfrequencies and modes
for fixed l and m with ν � 0 (using Appendix A). For
ν = 0, the resonance frequency ω2

0 ≈ ω2
a + ωaωs and mode
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amplitudes Eq. (29) approach

mφ ≈ l3/2

√
γ h̄Ms

2R3
Y m

l (θ, φ)

(
r

R

)l−1(
1 − r2

R2

)
(34)

and mρ = −imφ when kexR � √
l , which is the case for typ-

ical experimental conditions discussed below. We normalized
mφ according to Eq. (B14). Note that (only) the results for
ν = 0 depend strongly on the surface pinning.

For nonzero ν ∼ O(1), analogous to Eq. (2) for
the photons,

kνR = l + βν

(
l

2

)1/3

, (35)

where βν ∈ {2.3, 4.1, 5.5, . . . } are again the negative of the
zeros of Airy’s function. We compute coefficients {ζdip,−,

ζex,−, ζs,−, ζdip,+, ζex,+} ≈ {3.5, 3.4, 0.1, 0.5, 1.0}. Although
ζex ∼ ζdip, the energy of the “dip” term is much smaller than
that of the “ex” term because the former is localized to a
small skin depth ∼R/l and therefore does not contribute much
when integrated over the mode volume. We disregard “dip”
and “s” terms at the cost of an error scaling as ∝l−1/3. The
magnetization

mφ (r) ≈
√

γ h̄Ms

2R3Nl (kR)
Y m

l (θ, φ)Jl (kνr) tan θe, (36)

mρ (r) ≈ −imφ (r) cot2 θe (37)

for r/R < 1 − 1/l , where N is given by Eq. (5). Since the
magnetic field generated by magnetic dipoles is elliptically
polarized, the magnetization precesses on an ellipse with ma-
jor and minor axes along ρρρ and φφφ, respectively. The ellipticity
is parametrized by the angle θe, given by

tan θe =
√

ζex,− − ζex,+
ζex,− + ζex,+

=
√

ωs/2 − ωsq + ω

ωs/2 + ωsq − ω
. (38)

The amplitudes (36) are normalized according to Eq. (B14).
For R = 300 μm and l = 6000 (see Sec. IV), 2πR/l ≈

300 nm is the magnon wavelength for a typical experiment.
The φ-component of the magnetization mφ for ν � 3 is plotted
in Fig. 3, while mρ looks similar to mφ after scaling (not
shown for brevity). ν > 0 modes contribute significantly to
the coupling with large overlap factors (see Sec. IV for explicit
expressions).

For the parameters in Table I, we find λex = 2π/kex = 109
nm, ωa = 2π × 5.6 GHz and ωs = 2π × 4.9 GHz. Putting
kR = l in Eq. (30), we get the frequency ωN = 2π × 8.4 GHz.
ω0 = 2π × 7.7 GHz, while frequencies for ν = {1, 2, 3} are
ων = ωN + 2π × {7.5, 13.2, 17.9} MHz, respectively. We es-
timate the linewidth of the magnons ∼αGων , in terms of
the (geometry-independent) bulk Gilbert constant αG = 10−4

[5,37]. The frequency splittings are an order of magnitude
larger than the typical linewidth, so the magnon resonances
are well defined. The exchange mode has a small ellipticity
tan θe = 0.8.

At these frequencies the “surface” term in Eq. (29) has
wavelengths 2π/κν ≈ 60 nm. It decays much faster into the
sphere than the wavelength of infrared light, >500 nm in YIG,
which validates our statements above.

We assumed perfect pinning at the boundary, m±(R) = 0,

which is realistic only when surface anisotropies are strong
[46,57,58]. While Eqs. (29)–(31) do not depend on the
boundary conditions, the relative weights of three waves,
{ζdip,−, ζex,−, ζs,−}, do. However, the validity of Eq. (36) and
(37) depends only on the fact that the energy is dominated by
the Bessel function, which still holds for imperfect pinning
and ν > 0. We estimate the contributions of surface exchange
waves to the magnon mode energy by the parameter

η = |ζdip,−|2
|ζex,−|2

J2
l (kR)

∫
(r/R)2l dr∫

J2
l (kr)dr

. (39)

For a film, the squared ratio of the ζ coefficients is ∼1 [46],
which should be the case also for a sphere with curvature R
much larger than the magnon wavelength R/l . The second
fraction is of O(l−1/3). Therefore η � 1, implying that the en-
ergy is indeed dominated by the Bessel function as assumed in
Eq. (36). Reduced pinning changes the magnetization profile
near the surface, r/R > 1 − 1/l , but not the coupling of states
with ν > 0 to the WGMs.

IV. OPTOMAGNONIC COUPLING

We calculate the coupling constant GPQA given by
Eq. (9). Consider an incident TM-polarized optical WGM
P ≡ {p,−p′, μ} that reflects into a TE-polarized WGM
Q ≡ {q, q′, ν} by absorbing a magnon A ≡ {α, α′, ξ}. Their
frequencies are, respectively, ωP, ωQ, and ωA � ωP, ωQ.
By energy conservation, ωP ≈ ωQ and thus p ≈ q [see
Eq. (2)]. For the modes localized near the equator,
θ = π/2, the indices x ≈ x′, where x ∈ {p, q, α}. The
conservation of angular momentum in the z-direction [33],
cf. Eq. (43), implies p′ + q′ = α′. For λ0 ≈ 1.3 μm, Eq. (2)
and Table I give p ≈ 3000 for νP ∼ O(1). Summarizing,
p ≈ p′ ≈ q ≈ q′ ≈ α/2 ≈ α′/2 ≈ 3000.

From Figs. 2 and 3, we observe that the radial magnon
amplitude can be close to the optimal profile. This is also
the case in the azimuthal θ -direction close to the equator
(not shown). Here, we confirm this observation by explicitly
calculating the mode overlap integrals.

0.980 0.985 0.990 0.995 1.000
r/R

−15

−10
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10
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20
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rb
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u
n
it

s)
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ν = 1
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ν = 3

FIG. 3. Radial dependence of mφ = (m+e−iφ − m−eiφ )/2 for
ν � 3 and l = 6000 with parameters from Table I. ν = 0 resembles
a purely dipolar wave and is localized to 1 > r/R > 1 − 2/l . For
ν > 0 the magnetization is dominated by the Bessel function except
for the region occupied by the ν = 0 mode.
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The coupling constant Eq. (9) can be written

GPQA = c(�F + �C )

ns

√
2sR3

APQARPQA, (40)

in terms of the dimensionless angular and radial overlap
integrals, APQA and RPQA.

The angular part,

APQA =
∫

Y −p′
p Y α′

α

(
Y q′

q

)∗
sin θ dθ dφ, (41)

is a standard integral that can be written in terms of Clebsch-
Gordan coefficients 〈l1m1, l2m2|l3m3〉. For p, q, α � 1,

APQA ≈
√

pq

2πα
〈pp′, qq′|αα′〉〈p0, q0|α0〉. (42)

With x = x′, where x ∈ {p, q, α}, the Gaussian approximation
[Eq. (6)] leads to

APQA ≈ δα,p+q
(pqα)1/4

π3/4
√

p + q + α
≈ δα,p+q

p1/4

3.97
, (43)

where in the second step we used p ≈ q ≈ α/2. APQA van-
ishes when α �= p + q, reflecting the conservation of angular
momentum in the z-direction. The angular overlap is optimal
because Y α

α ∝ Y p
p Y q

q for p ≈ q ≈ α/2, which equals the angu-
lar part in Eq. (18). For p = 3000, APQA = 1.9.

We discuss the radial overlap first for the magnon ξ = 0
with magnetization given by Eq. (34). Then

R(0)
PQA =

∫ R

0

α3/2Jp(kPr)Jq(kQr)√
Np(kPR)Nq(kQR)

rα+1(R2 − r2)

Rα+4
dr, (44)

where {kP, kQ} are the photon wave numbers, Eq. (2). Since
the magnetic amplitude is significant only near the surface, we
may linearize the optical fields (the Bessel functions) close to
R. Using Eq. (2) and the Airy’s function approximation [48],
cf. Eq. (7),

Jp(kPr) ≈ 22/3Ai′(−βμ)

p2/3

[
PTM + p

(
1 − r

R

)]
(45)

and

Np(kPR) ≈
(

2

p

)4/3 Ai′2(−βμ)

2
. (46)

Similar results hold for {p, P, μ, PTM} → {q, Q, ν, PTE}. For
p ≈ q ≈ α/2,

R(0)
PQA =

√
2

p

[
PTMPTE + PTM + PTE + 3

2

]
. (47)

For p = 3000 and ns = 2.2, R(0)
PQA = 0.08 and the coupling

G(0)
PQA = 2π × 2.8 Hz is of the same order as that to the Kittel

mode, GK = 2π × 9.1 Hz (see Sec. I) [33]. We emphasize
that this result depends strongly on the magnetic boundary
condition (taken to be fully pinned here) and only indicates
the smallness of the coupling.

The magnetization Eq. (36) for ξ � 1 gives

RPQA

Me
≈

∫ R

0

dr

R

Jp(kPr)Jq(kQr)Jα (kAr)√
Np(kPR)Nq(kQR)Nα (kAR)

, (48)

to leading order in α, where

Me = tan θe�F + cot θe�C

�F + �C
. (49)

For a YIG sphere with parameters in Table I, the ellipticity of
the magnons tan θe = 0.8 and Me ≈ 0.95. The parameter Me

takes into account that mρ and mφ contribute differently to the
coupling being proportional to the magneto-optical constants
�C and �F , respectively [see Eq. (9)]. In YIG, �F > �C in
the infrared (see Table I), so the coupling is reduced because
|mφ| < |mρ | [see Eqs. (36) and (37)].

The Bessel functions asymptotically become Airy’s func-
tions, Eq. (7),

|RPQA|
Me

≈
√

2p1/3
∫ ∞

0
Aμ(x)Aν (x)Aξ (22/3x) dx, (50)

where the scaled radial coordinate x,

x = l

(l/2)1/3

(
1 − r

R

)
, (51)

and the normalized Airy’s function,

Ao(x) = Ai(x − βo)

|Ai′(−βo)| . (52)

RPQA mainly depends on the radial structure of the mode
amplitudes with a weak scaling factor of p1/3. We summarize
results as {μ, ν, ξ,RPQA}, where ξ is chosen to maximize
RPQA for given {μ, ν}. For p = 3000, we find {1, 1, 1, 8.02},
{1, 2, 1, 3.64}, and {2, 2, 3, 5.63}, much larger than the dipo-
lar mode R(0)

PQA = 0.08.
For a given pair (P, Q), we define GPQ as the maximum

over all GPQA. With x = x′, where x ∈ {p, q, α}, the angular
momentum of the magnon is fixed by the WGMs; see Eq. (43).
The radial index can be found by maximizing the integral
appearing in Eq. (50) by enumerating it for each ξ . The
maximum appears at ξ ∼ O(1) for μ, ν ∼ O(1), so we do not
need to go beyond ξ = 10.

We present the final results in Table II, where GPQ ∼
2π × 200 Hz. This can be compared with the maximum
coupling possible for WGMs, GPQ discussed in Sec. I. We
find GPQ/GPQ = MeMr , where Me is given in Eq. (49) and
the radial “mismatch”

Mr = 21/3
∫ ∞

0 Aμ(x)Aν (x)Aξ (22/3x) dx√∫ ∞
0 A2

μ(x)A2
ν (x) dx

. (53)

TABLE II. The calculated optomagnonic coupling for a given
{μ, ν} and ξ chosen to maximize GPQA. Mr is the radial overlap
defined in the text, such that Mr = 1 for the ideal magnetization
distribution. Mr ∼ 1 indicates high overlap.

μ ν ξ GPQ/(2π ) Mr

1 1 1 304 0.88
1 2 1 138 0.65
2 2 3 213 0.74
1 3 2 144 0.82
2 3 4 130 0.66
3 3 5 180 0.70
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Table II indeed shows Mr ∼ O(1) implying a near-ideal mode
matching. Furthermore, GPQ � GK , the coupling to the Kittel
mode. By doping with bismuth, the coupling can be increased
tenfold [20] to GPQ ∼ 2π × 2 kHz. We see that GPQ/GPQ

does not depend on R and hence both scale GPQ,GPQ ∝
R−0.9. For a microsphere with R = 10 μm (p ≈ 100), GPQ ∼
2π × 4 kHz is possible in YIG, but fabrication is challenging.
A very similar theory as outlined here can be applied to
YIG disks when their aspect ratio is close to unity and the
demagnetization fields are approximately uniform. Scaling
those down by nanofabrication of thin films may be the most
straightforward option to enhance the coupling in otherwise
monolithic optical waveguide structures.

The above analysis for magnon cooling via TM → TE
scattering can be generalized, similar to the discussion at the
end of Sec. I. The coupling constant Gcool

TE→TM is smaller by
a factor �F − �C/(�F + �C ) = 0.45. Also, by hermiticity,
|Gpump

σ→σ ′ | = |Gcool
σ ′→σ | if the directions of motion are reversed

as well.
A-magnons are efficiently cooled by the process

P + A → Q when the magnon annihilation rate exceeds
that of the magnon equilibration. For the internal optical
dissipation κint and the leakage rate of photons into the fiber
κext, the cooperativity should satisfy [32]

C = 4G2
PQAnP

(κint + κext )κA
> 1, (54)

where nP is the number of photons in P-mode, κA ∼ 2π ×
0.5 MHz is the magnon’s linewidth in YIG, and κint ∼ 2π ×
0.1–0.5 GHz [16–18]. We assumed ωP + ωM = ωQ for sim-
plicity. In terms of input power Pin [32],

nP = 4κext

(κint + κext )2

Pin

h̄ωP
. (55)

The cooperativity C is maximized at κext = κint/2 for a given
input power.

For GPQA ∼ 2π × 200 Hz, CPQA = 1 for nP ∼ 109–1010

requiring large powers Pin ∼ 50–1000 mW for ωP = 2π ×
200 THz. However, required Pin can be significantly reduced
by scaling or doping as discussed above: a tenfold increase
in G causes a hundredfold decrease in required input power.
Similar arguments hold for magnon pumping processes P →
A + Q′. The steady-state number of magnons is governed by a
balance of all cooling and pumping processes, whose analysis
we defer to a future work.

The strong-coupling regime is reached under the condi-
tion GPQA

√
nP > (κint + κext ), κA, which again requires an

unrealistically large nP > 1012 for GPQA ∼ 2π × 200 Hz and
powers exceeding kilowatts, because of the large optical
linewidths observed in typical YIG spheres [16–18]. The
optical lifetime is limited by material absorption [16] and thus
can be improved only at the cost of reduced magneto-optical
coupling. Two to three orders of magnitude improvement in
the coupling constant is required to bridge this gap.

V. DISCUSSION

We modeled the magnetization dynamics in spherical cavi-
ties in order to find its optimal coupling to WGM photons. We
find that selected exchange-dipolar magnons localized close

to the equator (but not the Damon-Eshbach modes) are almost
ideally suited to play that role. We predict an up to 40-fold
increase in the coupling constant, implying a 1000-fold larger
signal in Brillouin light scattering, as compared to that of the
Kittel mode (in equilibrium). Further improvement requires
smaller optical volumes or higher magneto-optical constants.

The option to shrink the cavity and optical volume is
limited by the wavelength λ0/ns. For λ0 = 1.3 μm and ns =
2.2, a cavity with an optical volume of λ3

0/n3
s gives an upper

limit ∼2π × 50 kHz for pure YIG. In a Bi:YIG sphere of
radius ∼λ0/ns, the optical first Mie resonance may strongly
couple with the Kittel mode [35].

The coupling can be enhanced by the ellipticity angle
θe of the magnetization, which is controlled by crystalline
anisotropy, saturation magnetization, and geometry. Linear
polarization θe → 0 or θe → π/2 would lead to a diverging
coupling, but in practice magnons are close to circularly
polarized, θe ≈ π/4. For YIG spheres, the weak ellipticity
even suppresses the coupling, Me < 1 in Eq. (49).

In purely dipolar theory, the surface magnons are chi-
ral, i.e., only modes with m > 0 exist. Then, from Fig. 1,
magnon creation is not allowed, leading to improved cooling
of magnons [32]. When the exchange interaction kicks in,
propagation is not unidirectional [61], but we still expect
suppression of the red sideband (magnon creation). We leave
an analysis of the chirality of exchange-dipolar magnons to a
future article.

We find that light may efficiently pump or cool certain
surface (low-wavelength) magnons that do not couple easily
to microwaves. This could be used to manipulate macroscopi-
cally coherent magnons, raising hopes of accessing interesting
nonclassical dynamics in the foreseeable future.
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APPENDIX A: EXCHANGE-DIPOLAR MAGNONS

Here, we solve Eqs. (23)–(26) with Maxwell bound-
ary conditions, Eq. (27), and pinned surface magnetization
m±(R) = 0. The magnetization in the linearized LL equation,
Eq. (24), can be eliminated in favor of the scalar potential ψ ,
Eq. (23) [46],[

(O2 − ω2)∇2 + ωsO

(
∇2 − ∂2

∂z2

)]
ψ = 0, (A1)

where O = ωa − Dex∇2 with Dex = ωs/k2
ex. The general so-

lution for a sphere is complicated because the magnetization
breaks the rotational symmetry, but it can be simplified for the
surface magnons near the equator. The ansatz

ψ (r) = Y m
l (θ, φ)�(r), (A2)
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where

Y m
l (θ, φ) = (−1)m

√
2l + 1

4π

(l − m)!

(l + m)!
Pm

l (cos θ )eimφ (A3)

are spherical harmonics with associated Legendre polynomi-
als

Pm
l (x) = (−1)m

2l l!
(1 − x2)m/2 dl+m

dxl+m
(x2 − 1)l , (A4)

leads to ∇2ψ = Y m
l Ôl�, where

Ôl = 1

r2

∂

∂r

(
r2 ∂

∂r

)
− l (l + 1)

r2
(A5)

have spherical Bessel functions of order l as eigenfunctions.
The surface magnons with large angular momentum l are
localized near the equator and have a large “kinetic energy”
along the equator. The confinement along the θ -direction is
not so strong, however, so the magnon amplitude looks like
a flat tire. A posteriori, we find kθ ∝ √

l, while kφ ∝ l . For
large l , the terms ∂2

z ≈ R−2∂2
θ near the equator may therefore

be disregarded in Eq. (A1). This gives a cubic in Ôl , similar
to a magnetic cylinder [42],

Ôl (Ôl + k2)(Ôl − κ2)� = 0, (A6)

where

Dexk2 = ωsq − ωa − ωs

2
, Dexκ

2 = ωsq + ωa + ωs

2
, (A7)

where

ωsq =
√

ω2 + ω2
s

4
. (A8)

κ is real and k is real as well when ω >
√

ω2
a + ωaωs, which is

the case for k ≈ l/R, i.e., waves propagating along the equator
(see Sec. IV).

Consider the eigenvalue equation Ôl�μ = −μ2�μ with
reciprocal “length scales” μ ∈ {0, k, iκ}. Its two linearly in-
dependent solutions are spherical Bessel functions of the first
and second kind, which in the limit l � 1 are proportional
to Bessel functions of the first [Jl (μr)] and second [Yl (μr),
not to be confused with the spherical harmonic Y m

l ] kind,
respectively. Yl (μr) diverges at r = 0, so inside the sphere
�μ = Jl (μr). Thus, Eq. (A6) has three linearly independent
solutions, {�0, �k, �iκ}, and the general solution is

� =
3∑

i=1

αi
Jl (μir)

μiJl−1(μiR)
, (A9)

where μ1 → 0, μ2 = k, μ3 = iκ , αi are integration constants,
and the Bessel functions

Jl (z) =
∞∑

r=0

(−1)r

r!(r + l )!

(
z

2

)2r+l

. (A10)

The spatial distribution of the three components is discussed
in more detail in the main text (see Sec. III).

Bringing back the angular dependence, ψ = Y m
l � [see

Eq. (A2)], the derivative ∂± = ∂x ± i∂y (introduced in Sec. II),

∂±ψ = Y m
l e±iφ

3∑
i=1

αi

Jl−1(μiR)

(
J ′

l (μir) ∓ mJl (μir)

μiρ

)
,

(A11)

where ∂± = ∂x ± i∂y. Close to the equator, ρ ≈ r and using
l � |l − m|,

∂±ψ ≈ ∓Y m±1
l±1

3∑
i=1

Jl±1(μir)

Jl−1(μiR)
, (A12)

where we used the recursion relations [48]

Jα±1(x) = α

x
Jα (x) ∓ J ′

α (x) (A13)

and Y m±1
l±1 ≈ e±iφY m

l that holds for l � 1, |l − m|. Solving
Eq. (24) for magnetization,

m±(r) = Y m±1
l±1

3∑
i=1

ζi,±
Jl±1(μir)

Jl−1(μiR)
, (A14)

with coefficients

ζi,± = ωsαi

ω ± ω̃i
(A15)

and ω̃i = ωa + Dexμ
2
i .

Outside the magnet, ψo satisfies a Laplace equation (26).
Using the continuity of magnetic potential and ψo → 0 at
r → ∞,

ψo = Y m
l (θ, φ)

(
R

r

)l+1 3∑
i=1

αi
Jl (μiR)

μiJl−1(μiR)
. (A16)

The integration constants αi are governed by the following
boundary conditions: Maxwell boundary conditions, Eq. (27),
and the pinned magnetization boundary condition for the LL
equation m± = 0, which we justified a posteriori in Sec. III.
Demanding m−(r = R) = 0 and ∂r (ψ − ψo)|r=R = 0 gives

3∑
i=1

ωsαi

ω − ω̃i
= 0 =

3∑
i=1

αi, (A17)

which is solved by

α1 = m0
(ω − ω̃1)(ω̃2 − ω̃3)

ωs
, (A18)

α2 = m0
(ω − ω̃2)(ω̃3 − ω̃1)

ωs
, (A19)

α3 = m0
(ω − ω̃3)(ω̃1 − ω̃2)

ωs
, (A20)

where m0 is a normalization constant.
We now arrive at the solution discussed in the main text,

Sec. III. With {μ1, μ2, μ3} = {0, k, iκ},

lim
μ1→0

Jl (μ1r) ≈ 1

l!

(μ1r

2

)l
, Jl (iκr) = il Il (κr), (A21)

where I is the modified Bessel function. The above holds also
for l → l ± 1. Substituting into Eq. (A14),

m− = Y m−1
l−1

[
ζ1,−

(
r

R

)l−1

+ζ2,−
Jl−1(kr)

Jl−1(kR)
+ ζ3,−

Il−1(κr)

Il−1(κR)

]
,

(A22)

m+ = Y m+1
l+1

[
0 + ζ2,+

Jl+1(kr)

Jl−1(kR)
− ζ3,+

Il+1(κr)

Il−1(κR)

]
.

(A23)
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In spite of Jl−1(μ1r) → 0, the first term of m− is finite
while that of m+ vanishes. The Bessel function ratios in the
third terms are real even though Jl (iκr) need not be.

According to Eq. (A15), the polarization of each term
does not depend on the coefficients αi. With {ω̃1, ω̃2, ω̃3} =
{ωa, ωsq − ωs/2,−ωsq − ωs/2}, ω2

sq = ω2 + ω2
s /4,

ζ2,+
ζ2,−

= ω + ωs/2 − ωsq

ω − ωs/2 + ωsq
. (A24)

A similar result holds by substituting ζ2± → ζ3± and ωsq →
−ωsq. Multiplying the numerator and denominator in the
above equation by ω − ωs/2 − ωsq, we arrive at the form
Eq. (31) in the main text.

Substituting αi for the pinned boundary conditions,
Eqs. (A18)–(A20), into Eq. (A15),

ζ1,− = m0
2ωsq

ωs
, (A25)

ζ2,− = −m0
ωa + ωsq + ωs/2

ωs
, (A26)

ζ3,− = m0
ωa − ωsq + ωs/2

ωs
. (A27)

The above solutions satisfy Maxwell’s boundary condi-
tions, Eq. (27), and m−(R) = 0 by design [see Eq. (A17)].
The last condition m+(R) = 0 gives the resonance condition
R1(ω) = R2(ω), where

R1(ω) = −Jl+1(kR)

Jl−1(kR)
, R2(ω) = k2

κ2

ωsq + ω

ωsq − ω

Il+1(κR)

Il−1(κR)
.

(A28)

The roots of the above equation are counted by ν � 0. For
k > 0, the lowest root ν = 0 occurs near k ≈ 0 at frequency
ω ≈ √

ω2
a + ωaωs. The next and higher roots occur only

around kR � l as plotted in Fig. 4 (the root ν = 0 is to the
far left of the origin). R1 is a rapidly varying function, while
R2 ≈ 1.2 is nearly constant. Sufficiently far from the zeros
of Jl−1(kR), R1 < 0 and at the crossing with R2, R1 ≈ 1.2.
This implies that at magnon resonances, Jl−1(kR) ≈ 0 or
kR ≈ l + βν (l/2)1/3, while ω(k) is given by Eq. (A7). Their
explicit values are discussed in Sec. III.

0 1 2 3 4 5 6 7
(ω − ωN)/ωs [×10−3]

−4

−2

0

2

4 R1(ω)
R2(ω)

FIG. 4. The resonance condition R1 = R2 gives the allowed
magnon frequencies when the magnetization is pinned at the surface.
ωN is the frequency at which kR = l .

APPENDIX B: NORMALIZATION

The classical Hamiltonian for a sphere that leads to the LL
equation, Eq. (20), reads [40]

H = −μ0

∫ [(
Happ − Ms

3

)
Mz + m · heff

2

]
dV, (B1)

where

heff = 2Aex

μ0M2
s

∇2m + hdip, (B2)

and the integral is over all space. The solution
of the linearized LL equation of motion gives a
complete set of modes with spatiotemporal distribution
mp(r)e−iωpt and frequencies ωp. We may expand
the fields

A(r) =
∑

p,ωp>0

[Ap(r)αp + A∗
p(r)α∗

p], (B3)

where Ap is the amplitude of any of {mx, my, hx, hy} of the
pth mode. Here and below the sum is restricted to positive
frequencies. We have ωa = γμ0(Happ − Ms/3), ωs = γμ0Ms,
and

Mz ≈ Ms − m2
x + m2

y

2Ms
. (B4)

Equation (20) relates mp and hp,

ωshx,p = ωamx,p + iωpmy,p, (B5)

ωshy,p = ωamy,p − iωpmx,p. (B6)

Inserting these into the Hamiltonian,

H = μ0

2

∑
pq

[Xpqαpαq + X ∗
pqα

∗
pα

∗
q + Ypqαpα

∗
q + Y ∗

pqα
∗
pαq],

(B7)

where

Xpq = iωq

ωs

∫
(my,pmx,q − mx,pmy,q) dV, (B8)

Ypq = iωq

ωs

∫
(mx,pm∗

y,q − my,pm∗
x,q) dV. (B9)

Following Ref. [49], we find orthogonality relations
between magnons. For bp = hp + mp, ∇ · bp = 0 from
Maxwell’s equations and∫

ψ∗
q ∇ · bp dV = 0, (B10)

where the scalar potential ψq obeys ∇2ψq = ∇ · mq. Integrat-
ing by parts and using h∗

q = −∇ψ∗
q ,∫

(hp + mp) · h∗
q dV = 0. (B11)

Using the same relation with p ↔ q and subtracting,∫
(mp · h∗

q − m∗
q · hp) dV = 0. (B12)

Substituting the mode-dependent fields hp(q) from Eqs. (B5)
and (B6), we find that (ωp − ωq)Ypq = 0. A similar
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calculation starting with ψ∗
q → ψq in Eq. (B10) gives

(ωp + ωq)Xpq = 0. Exchange breaks the degeneracy of the
surface modes, as discussed in Appendix A. Since ωp > 0,
we conclude that Xpq = 0 and Ypq ∝ δpq. The Hamiltonian is
then reduced to that of a collection of harmonic oscillators:

H = μ0

∑
p

Ypp|αp|2, (B13)

where we used Ypp = Y ∗
pp.

αp is proportional to the amplitude of a magnon mode
p. Correspondence with the quantum Hamiltonian for har-
monic oscillators is achieved with a normalization that as-

sociates |αp|2 to the number of magnons by demanding
μ0Ypp = h̄ωp or∫

(|m−,p|2 − |m+,p|2) dV = 2h̄γ Ms. (B14)

For a pure (circular) Larmor precession, i.e., m+ = 0, this
condition can also be derived by assuming that the magnon
has a spin of h̄ since

Sz =
∫

dV
Ms − Mz

γ
= h̄

∑
p

|αp|2. (B15)

The spin of a magnon is not h̄ when the precession is elliptic
(m+ �= 0) [62].
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