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Summary

Summary

The modelling frameworks, which include greenhouse gas emission scenarios, climate
models, downscaling methods and hydrological models, are generally used to assess climate
change impacts on river floods. In this research, the uncertainty associated with each
component of the modelling framework is analysed with particular reference to climate
change impacts on flood frequency. A method of risk-averse economic optimisation has
been proposed for adapting river dikes to climate change under uncertainty. The Huai River
Basin in China has been selected as a case study.

The outputs of climate models, i.e., General Circulation Models (GCMs), under greenhouse
gas emission scenarios have been commonly used as fundamental inputs of the climate
change impact assessments. The analysis in this thesis employed the climate model
projections of the WCRP CMIP3 and CMIP5 datasets. In Chapter 2, a brief introduction of
emission scenarios, as well as a preliminary analysis of the simulative ability and future
projections of the participating climate models, is provided. The results confirm the
necessity to bias-correct and downscale the climate model outputs before being used in
impact-related studies. The annual mean temperature in the study area is suggested to
increase up to 8°C at the end of this century under a high greenhouse gas emission scenario
without mitigation measures. The standard deviation of precipitation intensity is suggested
to increase, especially in summer, which may in the future lead to high-magnitude floods.
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Empirical statistical downscaling methods are becoming increasingly popular in climate
change impact assessments that require downscaling multi-GCM projections. In Chapter 3
empirical statistical downscaling methods are classified based on calibration strategies and
statistical transformations. Ten combinations of calibration strategies and transformation
methods were used to represent a range of empirical statistical downscaling methods. To
test the performance of these methods in downscaling daily precipitation and temperature,
an inter-model cross validation was carried out using an ensemble of 16 GCMs. These
downscaling methods were further applied to downscale the climate for the future period
to assess the associated uncertainties. The results show that the change factor based
methods outperform the bias correction based methods in projecting the probability
distribution of downscaled daily temperature. With the change factor calibration strategy,
simply adding (for temperature) or multiplying (for precipitation) the mean change factor is
sufficient to represent most of the relative changes projected by GCMs. The use of quantile
based methods appear to be advantageous only at the tails of the distribution. More
sophisticated bias correction based methods are needed to remove the biases in the higher-
order statistics of the GCM outputs. The two calibration strategies led to fundamentally
different temporal structures and spatial variability of the downscaled climatic variables.
Bias correction based methods produced larger uncertainty bounds of inter-annual
variability than the change factor methods. For downscaled precipitation, the uncertainty
arising from the downscaling methods is comparable to the uncertainty arising from GCMs,
while more uncertainty is introduced by calibration strategies than statistical transformation
methods.

There is a growing consensus that the performance of hydrological models should be
routinely evaluated before being used in impact-related studies. The uncertainty, which
stems from transferring calibrated models to a changing future climate, is receiving
increasing attention. Chapter 4 assesses the uncertainties associated with the parameter
calibration of the lumped Xinanjiang hydrological model when assessing the climate change
impacts on river flow. The transferability of model parameters was tested in the context of
historical climate variability using the differential split-sample test. The parameters
calibrated from the periods representing differing climatic conditions were used to project
future river flow in a changing climate. The uncertainties in projected future river flows
stemming from the choice of calibration periods and parameter equifinality were compared.
The results show that the transferability of the parameters calibrated from a wet period to a
dry period is poorer than the other way around. The model error as well as the variability in
the simulations due to equifinality increase with the increase of the difference in rainfall
between the calibration and validation periods. The uncertainty due to the choice of
calibration periods takes the majority of the total parameter uncertainty in the projected
future mean discharge. When the calibration period contains enough information on
climate variability, the equifinality effect and the choice of calibration periods contribute
comparable magnitudes of uncertainty in terms of extreme discharge.
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Five sources of uncertainty mentioned above were compared in Chapter 5, i.e. GCM
structure, greenhouse gas emission scenario, downscaling method, choice of period for
calibrating the hydrological model, and non-uniqueness of hydrological parameters.
Multiple samples of flood frequency curves were generated through the combinations of
different emission scenarios, GCMs, downscaling methods and hydrological model settings.
All samples were given equal weights in the analysis. The results show that the future flood
magnitude is expected to increase, not only due to the increase in mean precipitation, but
also due to the increase in variation of precipitation. Nonetheless, there is still a small
likelihood that the flood quantiles with a high return period (above 20 years) will decrease
in the future. The results of uncertainty comparison suggest that the GCM structure is the
dominant source of uncertainty, emission scenarios and empirical statistical downscaling
methods also result in considerable uncertainty, and the uncertainties related to
hydrological model are less than those related to other uncertainty sources.

To guarantee a safe flood defence in a changing environment, the adaptation to climate
change needs to be considered in the design of river dikes. However, the large uncertainty
in the projections of the future climate leads to varied estimations of future flood
probability. How to cope with the uncertainties in future flood probability under climate
change is an inevitable question in adaptation decision-makings. In Chapter 6, the
uncertainty introduced by climate projections was integrated into the ‘expected predictive
flood probability’, and the risk-aversion attitude was introduced in the adaptation of river
dikes. The uncertainty in the climate change projections on flood probability was
represented by the uncertainty in the parameters of the probabilistic model. This parameter
uncertainty was estimated based on the outputs from the GCMs participating in IPCC AR4.
The parameter uncertainty, estimated from the selected GCMs under different scenarios,
was integrated into the expected predictive probability of flooding, which was then used in
the risk-averse economic optimization. Different optimal results were obtained based on
varied values of the risk-aversion index which represents the risk-averse altitude of decision
makers. The case of a dike ring area in the Bengbu City in the Huai River Basin is studied as
an example using the proposed approach. The results show that the uncertainty of climate
change decreases the optimal safety level and increases the optimal dike heightening up to
8.23 m (with the risk-aversion index of 1.5) in a gradually changing climate. The value would
be even larger if the climate will change sooner. Integrated adaptive measures rather than
only dike heightening are needed to respond to the uncertain impacts in the future. The
proposed approach enables decision makers to cope with climate change and the associated
uncertainty by adjusting the level of risk aversion.

Lu Wang

December 2014 in Delft
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Samenvatting

Samenvatting

In de beoordeling van de gevolgen van klimaatverandering op rivieroverstromingen wordt
over het algemeen het procesmatig modelleringskader gebruikt. Het modelleringskader
bevat prognoses van klimaatmodellen onder invloed van broeikasgas scenario's,
downscaling methoden en hydrologische modellen. In dit onderzoek wordt de onzekerheid,
die gekoppeld is aan elke component van het modelleringskader, geanalyseerd en wordt
bijzondere aandacht gegeven aan de gevolgen van klimaatverandering op
overstromingsfrequentie. Een methode van risicomijdende economische optimalisatie
wordt voorgesteld voor de aanpassing van de rivierdijken aan klimaatverandering onder
onzekerheid. Het Huai Rivier bekken in China is geselecteerd als een casestudie.

De uitkomsten van de klimaatmodellen onder scenario’s van broeikasgasuitstoot zijn
gebruikt om basisinformatie te verstrekken in de beoordelingen van de effecten van
klimaatverandering. In dit proefschrift worden de prognoses van klimaatmodellen gebruikt
aan de hand van de WCRP CMIP3 en CMIP5 datasets. In hoofdstuk 2 wordt een korte
inleiding gegeven over zowel de emissie scenario's als een voorlopige analyse van het
simulatie vermogen, en wordt een toekomstige prognose van de onderzochte
klimaatmodellen verstrekt. De resultaten bevestigen de noodzaak van bias-correctie en
downscaling van uitkomsten van het klimaatmodel, alvorens het gebruik in effect-
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gerelateerde evaluaties. De jaarlijkse gemiddelde temperatuur in het studiegebied wordt
verhoogd tot 8oC aan het eind van deze eeuw, onder het hoge emissie scenario en zonder
risico beperkende maatregelen. De standaarddeviatie van neerslag intensiteit wordt
verhoogd, met name in de zomer, wat in de toekomst tot overstromingen van grote omvang
kan leiden.

Empirisch-statistische  downscalingmethoden worden steeds populairder in de
beoordelingen van de gevolgen van klimaatverandering die downscaling van multi-GCM
projecties vereisen. In hoofdstuk 3 worden empirische statistische downscalingmethoden
ingedeeld op basis van ijkingsstrategieén en statistische transformaties. Tien combinaties
van ijkingsstrategieén en transformatie methoden werden gebruikt om een aantal
empirische statistische downscalingmethoden weer te geven. Een kruisvalidatie tussen de
modellen onderling is uitgevoerd om de prestaties van deze methoden van downscaling van
dagelijkse neerslag en temperatuur, met behulp van een ensemble van 16 GCMs, te testen.
Deze downscalingmethoden werden verder toegepast op downscaling van klimaat in de
toekomst om de bijbehorende onzekerheden te beoordelen. De resultaten tonen aan dat,
methoden gebaseerd op veranderingsfactoren, de methoden overtreffen op basis van bias
correctie in de projectie van de kansverdeling van downscaling van dagelijkse temperatuur.
Met de strategie van verandering van kalibratiefactor, door simpele toevoeging (voor
temperatuur) of vermenigvuldiging (voor neerslag), is de gemiddelde veranderingsfactor
voldoende om de relatieve, door GCMs geprojecteerde veranderingen, te
vertegenwoordigen. Het gebruik van op kwantiel gebaseerde methoden lijkt alleen aan het
einde van de verdeling gunstig te zijn. Meer geavanceerde op bias correctie gebaseerde
methoden zijn nodig om de afwijkingen van de GCM uitkomsten, die samengaan met de
statistieken van hogere orde, weg te nemen. De twee ijkingsstrategieén hebben geleid tot
fundamenteel verschillende temporele structuren en ruimtelijke variabiliteit van de
ingekrompen klimatologische variabelen. De op bias correctie gebaseerde methoden
hebben aanzienlijke grotere onzekerheidsbeperkingen van intra-jaarlijkse variabiliteit
geproduceerd dan de methoden van veranderingsfactor. Voor ingekrompen neerslag is de
onzekerheid als gevolg van downscalingmethoden vergelijkbaar met de onzekerheid als
gevolg van GCMs, terwijl meer onzekerheid wordt geintroduceerd door kalibrerings-
strategieén dan statistische transformatie methoden.

Er is een groeiende consensus dat de prestaties van hydrologische modellen regelmatig
moeten worden geévalueerd alvorens te worden gebruikt in effect-gerelateerde evaluaties.
De onzekerheid die voortkomt uit de overdracht van gekalibreerde modellen op een
gewijzigd toekomstig klimaat krijgt steeds meer aandacht. Hoofdstuk 4 beoordeelt de
onzekerheden in verband met de kalibreringsvariabele van het ‘lumped’ Xinanjiang
hydrologische model bij de beoordeling van de gevolgen van klimaatverandering op de
afvoer van de rivier. De overdracht van de variabelen van het model is getest in de context
van historische klimaatvariaties met behulp van de differentiéle split-proef test. De
gekalibreerde variabelen uit de perioden die verschillende klimatologische omstandigheden
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vertegenwoordigen, worden gebruikt om toekomstige rivier afvoer in een veranderend
klimaat te projecteren. De onzekerheden in de verwachte toekomstige rivierafvoer, die
voortvloeien uit de keuze van de kalibratie periode en de variabele van equifinaliteit,
worden vergeleken. Uit de resultaten blijkt dat de overdracht van de variablen die
gekalibreerd zijn vanuit een natte naar een droge periode, zwakker zijn dan andersom. De
modelfouten, evenals de variabiliteit in de simulatie als gevolg van equifinaliteit, nemen toe
met de verhoging van het verschil in neerslag tussen de kalibrerings- en validatieperiodes.
De onzekerheid als gevolg van de keuze van kalibreringsperioden vormt het merendeel van
de totale onzekerheid in de geprojecteerde toekomstige gemiddelde neerslag. Wanneer de
kalibreringsperiode voldoende informatie over klimaatvariatie bevat, dragen het
equifinaliteitseffect en de keuze van kalibreringsperioden aan een vergelijkbare omvang van
onzekerheid bij, in termen van extreme neerslag.

Vijf bronnen van onzekerheid worden in hoofdstuk 5 vergeleken: GCM structuur,
broeikasgas emissie scenario, downscalingmethode, keuze van de periode voor het
kalibreren van hydrologische model, en niet uniekheid van hydrologische parameters.
Meerdere reeksen van overstroming frequentie curves zijn gegenereerd door combinaties
van verschillende emissie scenario's, GCMs, downscalingmethoden en hydrologische model
instellingen toe te passen. Alle hebben in de analyse hetzelfde gewicht. Uit de resultaten
blijkt dat de omvang van toekomstige overstroming toename niet alleen te wijten is aan de
stijging van de gemiddelde neerslag, maar ook een gevolg is van een toename van variatie in
neerslag. Er is echter nog een kleine kans dat de overstromingsquantielen met een grotere
herhalingsperiode (boven 20 jaar) in de toekomst zal dalen. De vergelijking van onzekerheid
suggereert de volgende volgorde van belang van componenten (grootste naar minste):
GCM > emissie scenario > (empirische) downscalingmethode > hydrologisch model
modellering (keuze van kalibreringsperiode en equifinaliteit).

Om een veilige overstromingsverdediging in een veranderende omgeving te garanderen,
moet de aanpassing aan de klimaatverandering in het ontwerp van rivier dijken in acht
worden genomen. De grote onzekerheid in de prognoses van het toekomstige klimaat leidt
echter tot uiteenlopende schattingen van de waarschijnlijkheid van toekomstige
overstromingen. Hoe om te gaan met de onzekerheden en kans op overstroming en
klimaatverandering in de toekomst, dit is een onvermijdelijke vraag in de
aanpassingsproblematiek. In hoofdstuk 6 wordt onzekerheid, geintroduceerd door klimaat
prognoses, geintegreerd in de 'verwachte voorspellende overstromingskans', en wordt de
aversie van risico geintroduceerd in de aanpassing van de rivier dijken. De onzekerheid van
de gevolgen van klimaatverandering op de kans op overstromingen wordt weergegeven
door de onzekerheid in de variabelen van het probabilistische model. Deze parameter
onzekerheid wordt geschat op basis van de resultaten van de GCMs in de IPCC AR4. De
parameter onzekerheid, geschat vanuit verschillende GCMs onder geselecteerde scenario's,
is geintegreerd in de verwachte voorspellende waarschijnlijkheid van overstroming, die
vervolgens in de risicomijdende economische optimalisatie wordt gebruikt. Verschillende
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optimale resultaten werden verkregen op basis van uiteenlopende waarden van de
risicoaversie index. Het voorbeeld van een dijkring in China wordt bestudeerd als een case
dat gebruik maakt van de voorgestelde aanpak. Uit resultaten blijkt dat door de onzekerheid
van klimaatverandering het optimale veiligheidsniveau afneemt en de optimale dijkhoogte
wordt verhoogd tot 8.23m (met een risico aversie index van 1.5) in een geleidelijk
veranderend klimaat. Deze waarde kan zelfs hoger zijn indien het klimaat sneller verandert.
Geintegreerde aanpassingsmaatregels zijn dan meer noodzakelijk dan slechts het verhogen
van een dijk om in de toekomst te reageren op de onzekere gevolgen. De voorgestelde
aanpak stelt besluitvormers in staat om te gaan met de verandering van het klimaat en de
bijbehorende onzekerheid door de risicoaversie niveau aan te passen.

Wang Lu

December 2014 in Delft
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Introduction

Chapter 1 Introduction

1.1 Background
1.1.1 Uncertainties in assessing hydrological impacts of climate change

There have been unequivocal evidences of humane-induced climate change in the
past century (Solomon 2007). Substantial changes of the climate during the coming decades
and centuries will be influenced by the greenhouse gas emissions of the future world.
Because of the deep uncertainty in the future climate status, it is not possible to give
probabilistic predictions of the future climate. The generally used approach is to use
scenarios to understand the uncertainty about human activities, the response of the climate
system to human activities, the impacts of climate change, and the implications of mitigation
and adaptation measures (Moss et al. 2010).

The future climate states corresponding to the assumptions of the future world are
commonly simulated by multiple General Circulation Models (GCMs). The GCMs are
mathematical models of the general circulation of a planetary atmosphere or ocean based
on the physical laws. They attempt to explicitly simulate the atmospheric and oceanic
processes that regulate the direction and magnitude of climate changes on global and at
least large regional scales (Raisdnen 2007). The projections of climate models corresponding
to climate change scenarios provide fundamental information for impact assessments. Due
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to the uncertainty of GCM simulations, such as radiative forcing, initial conditions, model
formulation and model inadequacy, the uncertainty in climate change projections has to be
considered in impact assessments. Typically, uncertainty in climate models can be
investigated by using multiple model structures with different greenhouse gas scenarios, i.e.,
the so called “ensemble of opportunities”. This approach is commonly realized through the
multi-model ensembles such as the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC AR4)/Phase 3 of the Coupled Model Intercomparison Project
(CMIP3). An alternative approach is the perturbed physics ensembles, which perturbs the
parameters representing various physical processes to evaluate uncertainty in GCM
formulations and initial conditions (Murphy et al. 2004, Stainforth et al. 2005).

The mismatch of modelling scales is a problem which has to be resolved when using
the outputs of climate models in assessing climate change impacts. The spatial resolution of
GCMs is typically around 2° latitude and 3° longitude, and their outputs are currently not
considered reliable at time scales shorter than 1 month (Prudhomme et al. 2002). However,
climate change usually impacts the process at much finer spatial and temporal scale, such as
the generation of river floods. Thus, there is a mismatch between the resolution of climate
models and the local scale of impact modelling. Downscaling methods are commonly used in
climate change impact assessments in order to bridge the gap between large-scale GCMs
and local-scale impact models. Generally, dynamical and statistical downscaling are two
distinct approaches to transfer large-scale GCM outputs to local-scale variables. Dynamical
downscaling nests a regional climate model (RCM) into the GCM to simulate physical
processes at a fine scale. Although RCMs preserve the physical coherence between
atmospheric variables, they have disadvantages. For example,1) they are computationally
intensive, 2) they are generally not available for varied scenario ensembles, 3) the model skill
depends strongly on biases inherited from the driving GCM (Fowler et al. 2007). It is not
practical for RCMs to provide multi-decade simulations with multiple GCMs and/or
greenhouse gas scenarios (Maurer and Hidalgo 2008). These shortcomings complicate the
use of RCMs in the impact-related research. Therefore, statistical downscaling has been
widely used in impacts studies, especially in those which perform uncertainty assessment.
Statistical downscaling methods have the advantages of relative ease of application and less
expense of computation. They are flexible to provide climate information at any required
resolution and, thus, can be used directly for climate change impact studies (Murphy 1999,
Wilby et al. 2004, Fowler et al. 2007). Past research shows that the performance of statistical
downscaling can be comparable to dynamical downscaling (Kidson and Thompson 1998,
Mearns et al. 1999, Murphy 2000, Haylock et al. 2006). The downscaling uncertainty has
been typically analysed by comparing various kinds of downscaling methods. The
performances of downscaling methods depends partly on the climate model used, additional
uncertainty could raise from the interactions of downscaling methods and GCMs.

To assess hydrological responses to climate change, hydrological models are useful tools to
simulate the local hydrological processes corresponding to future climatic conditions.
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Conceptual rainfall-runoff models have been widely used in the assessment of climate
change impacts on water resources and river floods. Conceptual rainfall-runoff models use
simple mathematical equations to describe the main hydrological processes. They attempt
to incorporate realistic representations of the major non-linearities inherent in the rainfall-
runoff relationships based on simplified forms of the physical laws. The general procedure of
modelling hydrological responses under climate change is to force downscaled GCM
simulations into rainfall-runoff models. The uncertainties that stem from model structures
and parameters are inherent in hydrological modelling. These uncertainties have been
investigated by various methodologies including state-space filtering, model averaging, and
formal and informal Bayesian approaches (Beven and Binley 1992, Beven and Freer 2001,
Montanari 2007, Vrugt et al. 2009), but relatively few climate change impact studies have
drawn on these approaches (Surfleet and Tullos 2013). Previous impact-related studies have
paid considerable attention on assessing the uncertainties associated with GHG emission
scenarios and GCM structures, the choice of which has been considered as the main
uncertainty in the impact analysis of future climate change. More and more studies stress
the necessity and importance of routinely testing the performance of hydrological models
and analysing the related uncertainty in the impact assessments (Wilby 2005, Bastola et al.
2011, Seiller et al. 2012). The uncertainty associated with model structures is commonly
analysed by using model ensembles consisting of varied conceptual configurations (Jiang et
al. 2007, Bae et al. 2011, Bastola et al. 2011, Chen et al. 2011, Najafi et al. 2011) or by
comparing different spatial scales of configuration (Booij 2005, Das et al. 2008, Surfleet et al.
2012). It is not until recent years that parameter uncertainty is intensively investigated in the
studies of hydrological impact under climate change (Bastola et al. 2011, Li et al. 2012,
Brigode et al. 2013).

Considerable uncertainty arises from each component of the cascade in impact assessments
as introduced above: GCM projections under future greenhouse gas emission scenarios,
downscaling methods and hydrological modelling. Majority of the previous studies have
been focused on the analysis of uncertainty from each component or the uncertainty
envelope of the modelling framework without confidence intervals. There has been few
attempts to address the propagation of the uncertainties through the cascaded models
(Cameron et al. 1999, Surfleet and Tullos 2013) and to provide the probabilistic impact
predictions based on climate projections (New et al. 2007). Estimating likelihood based on
the performances of models in simulating historical observations or on the agreement of
model results faces the risk of obtaining false probability in future predictions. Cautions
should be taken when using probabilistic impact predictions because they remain
conditional on the available data and resources (Dessai and Hulme 2004). The relative
contributions from different sources of uncertainty could vary among basins with different
hydro-climatic conditions. It is important to identify the dominating uncertainties, reduce
the uncertainties caused by errors and explore the full uncertainty range. The uncertainty
analysis is thus should be an integral part of any climate change impact assessment.
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1.1.2 Adaptation to climate change under uncertainty

The extreme climatic and hydrological events could become more frequent in the future due
to the change of climate. In particular, the intensification of the global water cycle due to the
radiative effects of changes in atmospheric compositions could lead to the increase in flood
risk. The frequency of the great floods with discharge exceeding 100-year level from the
worldwide large basins has increased substantially during the twentieth century. A
statistically significant positive trend was detected from both the streamflow measurements
and the climate model projections, and the model suggested that the increasing trend will
continue (Milly et al. 2002).

The change in flood risk suggests a need for adapting flood defenses to climate change. The
IPCC defines adaptation as an ““adjustment in ecological, social, or economic systems in
response to actual or expected climatic stimuli and their effects or impacts”(IPCC 2001).
Adaptation strategies for river flood management can be implemented as “hard” and “soft”
measures. Hard measures reply predominately on adapting human-built infrastructures, e.g.
heightening and strengthening river dikes and reinforcing buildings that could be inundated.
In contrast, soft measures utilize natural system or non-structure technologies, e.g., land-use
planning and early warning system. Compared to soft adaptations, which are usually less
expensive, flexible and at local level, hard measures require large investments and long-term
planning at national level. Hard flood defenses effectively protect large areas from being
flooded and will continue to play a key role in the future. Adapting hard flood defenses may
exert large consequences over the social and environmental systems, studies should
therefore be carried out to achieve appropriate solutions.

Adapting to climate change is a decision problem with uncertainty. How climate will change
in the future is highly uncertain, and the impact of climate change on hydrological conditions
is also uncertain due to the lack of knowledge of the environmental system. There have been
many assessments on the hydrological responses to climate change. The wide range of the
outputs from the hydrological models driven by GCM ensembles demonstrates the large
uncertainty of the future predictions.

Large ensembles of climate models are increasingly available which could provide useful
information for developing adaptation strategies to climate change. The majority of the
previous studies employing ensembles of climate projections have focused on assessing
climate change impacts and the associated uncertainties, the results of which have not been
well incorporated in the adaptation decision making. Lopez et al. (2009) claimed that the
climate model ensemble provides a better understanding of the possible ranges of future
conditions and enables decision makers to easily compare the merits of different
management options and the timing of adaptations. The utility of climate projections in
making adaptation decisions to climate change uncertainties is still under development.
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The adaptation decision could be made using the recently popular “bottom-up” approaches
which emphasize on developing robust adaptation responses to a range of plausible future
climatic conditions. For instance, Lempert and Groves (2010) employed the Robust Decision
Making for supporting decisions in water management under climate change uncertainty.
This approach use simulation models to assess the performance of adaptation plans over
thousands of plausible futures; it identifies those futures where the plans fail to perform
adequately and helps decision makers understand the vulnerabilities of their plans and
assess the options for ameliorating these vulnerabilities. Similar idea was carried forward by
Prudhomme et al. (2010) in assessing the design allowance for flood risk in the catchments
in UK. Dessai and Hulme (2007) used a local sensitivity analysis to determine whether or not
a decision to adapt to climate change is sensitive to uncertainty in the various elements of
the modelling framework (e.g., emissions of greenhouse gases, climate sensitivity and global
climate models).

The conventional “top-down” approaches have dominate the present impact-related studies
to date. These approaches are scenario led and drive cascaded models as described in
Section 1.1.1. Quantitative estimates of future impacts are provided by the impacts models
conditional on the scenario used. Adaptations are expected to response to the anticipated
impacts. The top-down approach could characterize climate change uncertainty and provide
basis for reducing the uncertainty. However, the majority of previous studies did not keep on
to utilize these information in the following adaptation studies. This may be because that the
uncertainty envelope expands at each step in the cascaded models, and the range of
outcomes offered to the decision-maker is bewildering (or worse, spans changes of opposite
sign) (Prudhomme et al. 2010). How to cope with the uncertainty revealed by impact
assessments in adaptation decision making is still a question to be answered.

1.1.3 Introduction of the study area

The study area selected here is the Huai River Basin, China (Figure 1.1). The Huai River Basin
is located in eastern China between the Yellow River basin and Yangtze River basin, at the
latitude from 30°55’N to 36°36’ N and the longitude from 111°55’E to 121°25’E. It covers the
area from the Tongbai-Funiu Mountains in the west to the Yellow Sea in the east with a total
area of about 270,000 km?. The basin lies in the transition zone between a humid subtropical
climate (in the south) and a semi-humid warm temperate climate (in the north).
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Figure 1.1 Map of the Huai River Basin (a) Location of the Huai River Basin and other river basins in China. (b)
Map of the water system and elevation of the study area.

The January 0 °C isotherm and the 800 mm isohyet generally run along the main stream of
the Huai River, which is regarded as the geographical divide of northern and southern China.
The annual mean air temperature ranges from 11 °C to 16 °C. The maximum monthly mean
temperature occurs in July with the multi-year mean of 25 °C, while the minimum monthly
mean temperature occurs in January with the multi-year mean of 0 °C. Heavy rainfall mainly
occurs in the summer from June to September, with large annual and seasonal variability
(Figure 1.2). The Huai River Basin has had a long history of floods, and the change of climate
is likely to significantly increase the flood vulnerability in this area.
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Figure 1.2 Boxplots of observed monthly precipitation over the Huai River Basin over a period of 30 years
(1961-1990)
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An increase in temperature has been observed in the past decades over the study area (see
Figure 1.3). The Mann-Kendall trend test confirms the upward trend at a significance level of
0.01, and an abrupt change was detected in the year of 1997.
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Figure 1.3 Historical record of the basin-mean annual temperature

The topography of the Huai River basin is mostly characterized by low plains with numerous
lakes and depressions. In the west and southwest of the basin, there is mountain area along
the basin boundaries. The Huai River has many tributaries, among which, 21 tributaries have
a catchment area lager than 1000 km?”. The floods along the Huai River generally happen in
July or August. The period between 1 May and 31 September is officially regarded as the
Huai River flood season. The high discharges in the main stream usually last more than one
month with several peaks. The high discharges are generally caused by the large-scale
precipitation which leads to the intersection of the main stream discharge and the tributary
discharges.

The Bengbu Hydrologic Station, with a catchment area of 122,000 km?, is located along the
main stream at the midstream of the Huai River (shown as the red triangle in Figure 1.1). The
calculation of the total water flux is complicated by the complex irrigation canal network
when the river flows pass the station into the low plains near Yellow Sea and Hongze Lake.
Thus, the analysis of the streamflow at this station is crucial for understanding the runoff
regime of the whole basin. The annual hydrographs of 1954, 1991, 2003 and 2007 in which
the extreme floods occurred were shown in Figure 1.4. The shapes of these hydrographs
could be one single peak or multiple peaks. In flood season, the hydrographs started to rise
between May and June and the fell to the low level between October and November. The
high flow usually lasted more than three months. The peak discharge could occur in July or
August. The historical maximum peak discharge that occurred on 6th August in 1954 was
11500m?/s.
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Figure 1.4 Annual hydrographs at the Bengbu station in the years of 1954, 1991, 2003 and 2007

The total water volume in summer at Bengbu station over the period of 1961-2006 is shown
in Figure 1.5. The total water volume in summer was calculated as the area below the
hydrograph and it can be seen as an index of extreme flood. The inter-annual variability of
the summer water volume is large. Although the trend line has a positive slop, the Mann-
Kendall trend test does not suggest a significant increase trend.
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Figure 1.5 Historical records of total water volume in summer at the Bengbu station

In the Huai River basin, the rapid development of agriculture and industry began in the
1980s. Frequent droughts and floods, such as the heavy flood in 1991, have spurred new
construction of water supply and management projects and the intense use of the existing
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infrastructures including more than 5700 reservoirs and 5000 sluice gates (Yang et al. 2010).
With the increase in the catchment area and the channel length, the effects of hydraulic
structures on discharges decrease downstream (Quan et al. 2009). The contribution of the
upstream hydraulic structures to decrease the peak discharge at Bengbu station is limited.
Take for example the flood in 2003, the water volume stored in the reservoirs only absorbed
10% of the total water volume passed Bengbu station during the 30-day period with the
maximum water volume (Wang and Zhang 2005). The effect of the sluices in the wet season
is less significant than in the dry season (Hu 2012). The sluices are totally opened during
floods. The dams and sluices upstream reduced 30% of the peak discharge at Bengbu in 1991
(Zhang et al. 2010).

In this thesis, the economic optimisation method for climate change adaptation is developed
and tested on the case of Bengbu Old Dike Ring. Bengbu City, with an area of 601.5 km? and
a population of 1.05 million (2009), is a very important city in regard to transportation,
industry and business in Anhui Province, China. The GDP in 2009 was 53.2 billion RMB. The
main stream of the Huai River flows through this city from the west to the east and divides it
into two parts (231.53 km? in the north part and 369.97 km?® in the south part). The
urbanized area covers 105 km?. The city is protected by several dike rings.

Figure 1.6 Satellite map of the Bengbu City and the Old Dike Ring

The risk assessment is carried out over the most urbanized area, which is surrounded by the
reverse “U”-shaped Old dike ring on the south bank of the Huai River. The Old dike ring, with
a length of 12.6 km, protects the lower land area of 49 km?. The area is bounded by the
Longzi River in the east, the Huai River in the North, the Xijia Ditch in the west and the higher
located land in the south. This area, as the center of the Bengbu city, is directly threatened
by floods from the main stream of the Huai River. In flood seasons, the discharges of the
tributaries, the Longzi River and the Xijia Ditch, are obstructed due to the high water level in
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the main stream. Consequently, floods from the main stream of the Huai River is the primary
cause of flooding in the study area.

The Old dike ring is designed to prevent the south part of the city from being flooded by the
Huai River. It runs along the south bank of the Huai River connecting to Cao Mountain in the
east and Tiger Mountain in the southwest. The Old dike ring was built in 1951 and was
strengthened to the present-day safety level in the 1990s, which was the greatest historical
flood, in 1954, with a return period of 40 years. The strengthening, including paving the
concrete revetment, removing the sluice and building a road on top, started in 1998 to
reassure that the dike reaches the design safety level. The design crest level is the highest
water level in 1954 with 2.5m of freeboard. The study area has not been flooded from the
water from Huai River since the dike ring was constructed.

1.2 Problem outline

The objectives of this thesis are 1) to set up a modelling framework for assessing climate
change impacts on future river floods; 2) to analyse the uncertainty stemming from each
component in the modelling framework; 3) to explore the plausible uncertainty envelope of
the future flood frequency; and 4) to develop a decision making method for decision makers
to economically optimise the adaptation of flood defences to climate change

In order to clarify the objectives of this study as stated above, the following questions have
to be answered. The chapter number, in which the corresponding question is answered, in
shown in brackets.

e How will the climate of the Huai River Basin change in the future? What is the
uncertainty associated with greenhouse gas emission scenarios and climate models?
(Chapter 2)

e What is the influence of the uncertainty in empirical statistical downscaling methods?
And how large is it compared with the uncertainties from emission scenarios and
climate projections? Is there a most suitable empirical downscaling method for the
purpose of downscaling extreme rainfall over the study area? (Chapter 3)

e What is the transferability of the calibrated hydrological model to a different
climate? How much will hydrological modelling influence the projection of future
streamflow? What is the relative contributions of hydrological model parameters?
(Chapter 4)

e What is the plausible range of the projected future flood frequency suggested by the
modelling framework? What is the major contributor to the total uncertainty?
(Chapter 5)

e How can the uncertainty in the projections of future floods be taken into account in
the risk-based design of river flood defences? What is the influence of different
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decision-making strategies on the design of river flood defences under climate
change? (Chapter 6)

1.3 Outline of this thesis

An introduction to commonly used future climate projections and the plausible range of
climate change over the study area is given in Chapter 2. Empirical statistical downscaling
methods and the associated uncertainties are discussed in Chapter 3. The parameter
uncertainty of the hydrological model in the context of climate change is analysed in Chapter
4. An overall uncertainty assessment of the modelling framework is presented in Chapter 5.
A risk-averse economical optimisation method for adapting flood defences to climate change
is developed in Chapter 6. Conclusions and recommendations are presented in Chapter 7.
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Projections of climate change

Chapter 2 Projections of climate
change

Greenhouse gas emission scenarios and the commonly used projections of climate change
are introduced in this chapter. The ability of climate models to reproduce the present-day
climate over the study area are analysed, and the changes in future climate suggested by the
multi-model ensemble are presented.

2.1 Introduction

The basis of impact assessments is the information about how the climate will change in the
future, which is usually represented by projections of the future climate generated by
climate models under the scenarios of the future world. The reason of using the term
“projection” rather than “forecast” or “prediction”, is that climate modelling experiments
are dependent on assumptions concerning the future world (Raisdanen 2007). The goal of
generating scenarios is not to predict the future, but to better understand uncertainties in
order to reach robust decisions under a wide range of possible futures (Moss et al. 2010).
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The development of scenarios in climate change research usually starts with socio-economic
scenarios, based on which emissions scenarios are produced. The developments in the
creation and use of emission scenarios and climate projections in the past two decades were
summarized by (Moss et al. 2010). There have been overviews of the methods for
developing scenarios in climate change research (Alcamo et al. 1995, Nakicenovic et al. 2000,
Carter et al. 2007). Specifically, emissions scenarios developed by the Intergovernmental
Panel on Climate Change (IPCC) have been widely used in the impact assessment of climate
change. The IPCC was established jointly by the World Meteorological Organization (WMO)
and the United Nations Environment Programme (UNEP) to assess periodically the scientific,
technical and socio-economic information on climate change. The IPCC has developed
several sets of emissions scenarios in its reports and stimulated the development of climate
modelling experiments in the research of climate change.

The projections of climate change used in this thesis are the data sets used in the
preparation of The Fourth and Fifth Assessment Report of IPCC (AR4 and AR5). These data
sets are climate models outputs developed by leading modeling centers around the world
collected by Program for Climate Model Diagnosis and Intercomparison (PCMDI). The World
Climate Research Programme’s (WCRP’s) Working Group on Couples Modeling (WGCM)
organized this activity of data collection in part to enable projections of climate change
accessible by climate change-related researchers. These collections of data are officially
known as the "WCRP CMIP3 multi-model dataset” and the "WCRP CMIP5 multi-model
dataset”.

2.2 Emissions Scenarios

In climate change research, scenarios are used to represent assumptions of the future world
including social-economic development, world population, land use and greenhouse gas
emissions. Emissions scenarios are the descriptions of possible future emissions of
greenhouse gas into the atmosphere. Emissions scenarios for climate change research are
not forecasts or predictions, but are the reflection of expert judgments regarding plausible
future emissions (Moss et al. 2010). They focus on long-term (decades to centuries) trends
rather than “short-term” fluctuations.

The Intergovernmental Panel on Climate Change (IPCC) has developed several generations of
emission scenarios including the 1990 IPCC Scenario A (SA90) (Houghton et al. 1992), the
1992 IPCC scenarios (1S92) (Leggett et al. 1992) and the Special Report on Emissions
Scenarios (SRES) (Nakicenovic et al. 2000).

The SA90 scenario developed in 1990 included a ‘business as usual’ future and three policy
scenarios. The 1S92 family of emissions scenarios (Leggett et al. 1992) developed by IPCC in
1992 consists of different sets of assumptions about future population totals, economic
development and land use change. The construction of this set of scenarios is not aimed at
the application in impacts assessments, and the socio-economic and demographic
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developments assumed in impact assessment may be not consistent with the assumptions
of the worlds used to construct emissions scenarios (Arnell et al. 2004).

The following generation of emissions scenarios was published in the IPCC’s Special Report
on Emissions Scenarios (SRES) (Nakicenovic et al. 2000). The SRES scenarios were
constructed in a fundamentally different way from the 1S92 scenario set, which enables
them to be more than just inputs of climate models. In order to provide consistent world
futures with impact estimates, the SRES scenarios were projected to represent a diverse
range of different development pathways for the world. Four storylines were defined to
describe the possible evolvement of the world population, economies and political structure
over the next few decades. Their main characteristics are introduced by Arnell et al. (2004).
Greenhouse gas emissions scenarios were produced with integrated assessment models
based on the four storylines. Six marker emissions scenarios were defined and driven into
climate models to generate corresponding scenarios of climate change. In contrast with
previous scenarios that were generated using only one or two models, the development of
SRES scenarios involved many different modelling teams.

IPCC’s SRES narrative storylines and associated socio-economic characterizations were
specifically designed to be used in the assessment of future climate change. There have been
many publications on impact assessments using the SERE scenarios, among which the most
widely used scenarios are A2, A1B and B1, which represent high, median and low levels of
greenhouse gas emissions, respectively. It is notable that the SRES storylines do not cover all
possible future worlds and they do not encompass the full range of possible socio-economic
futures (Arnell et al. 2004), but they provide the basis for, to some degree, a range of
possible future impacts of climate change. SRES are the scenarios used in WCRP CMIP3
multi-model experiments.

A new set of emission scenarios named “representative concentration pathways” (RCP) was
described by Moss et al. (2010) and is driven to the climate models participating the WCRP
CMIP5 experiments. Unlike the SRES scenarios that did not include the intervention of
mitigation policy, the RCP scenarios assume that policy actions will be taken to achieve
certain emissions targets. Four RCPs (RCP 2.6, RCP 4.5, RCP6.0 and RCP 8.0) have been
formulated based on a range of projections of future population growth, technological
development, and societal responses. RCP2.6 is a mitigation scenario in the lower end;
RCP4.5 is a scenario with a less aggressive mitigation policy. RCP6.0 and RCP8.5 are non-
mitigation scenarios, and the emissions of RCP8.5 are comparable with those of A1FI of
SRES.

A comprehensive overview of the CMIP5 experiment design and differences between the
CMIP3 and CMIP5 experiments was summarized by Taylor et al. (2012). Compared to CMIP3,
CMIP5 includes increased number of comprehensive models providing more complete set of
output fields. The spatial resolutions of the CMIP5 models are generally finer than those of
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the CIMP3 models, and more outputs at daily scale are available. The CMIP5 multi-model
ensemble was found improved performances than the CMIP3 ensemble in simulating the
observations in the twenties century (Lauer and Hamilton 2012, Li et al. 2012, Sperber et al.
2012). Bastola (2013) compared the temperature and precipitation projected from the
climate models run with the SRES and RCP scenarios over 28 watersheds located within the
Southwest United States. His results show that the CMIP3 models run with SRES resulted in
greater spread of relative changes than the spread for the CMIP5 models run with RCP
scenarios. These two sets of model ensembles suggested different seasonal changes in the
future. For the resulted streamflow projections, the climate model uncertainty dominated
the emission scenario uncertainty.

2.3 Climate scenarios

Climate scenarios are plausible representations of future climate conditions, among which
the most important variables for impacts assessments are temperature and precipitation.
They can be produced using a variety of approaches including: incremental techniques,
spatial and temporal analogues, extrapolation, expert judgment and physical climate and
Earth system models (Mearns et al. 1999, Moss et al. 2010). Climate modelling experiments
have been widely used in climate change research to generate climate projections driven by
emissions scenarios and other related conditions such as land use. The earliest model-based
‘scenarios’ in climate change research were to force a doubling or quadrupling of
greenhouse gas into early climate models.

General Circulation Models (GCMs), are currently the best way to model the complex
processes that occur at the earth system’s level. They are the numerical representations of
the earth natural system and have solid physical basis. They are useful tools to study the
behaviour of the climate system and its response to human-induced perturbations such as
increases in greenhouse gas concentrations. They divide the atmosphere and oceans into
grid cells, and simulate interactions of the atmosphere, land surface, ocean and sea ice. Due
to limitations in computing power, the atmospheric components in current GCMs typically
have a horizontal resolution in the order of 250 km x 250 km.

Due to the lack of reliable observed data and the internal variability in both observed and
simulated climate, there is no perfect model that agrees completely with observations.
Lambert and Boer (2001) found that the biases in the individual model simulations are
almost invariably larger than the biases in the multi-model mean fields. Together with the
fact that projections of future climate change vary between different models, the multi-
model ensembles are generally used to provide a quantitative estimate of uncertainty in
future climate change. Raisanen (2007) discussed the reliability of climate models using the
simulations covering a 20th century and a 21st century simulation based on the SRES A1B
emission scenario from the IPCC AR4 climate models. He believed that climate models can
provide useful information on the future climate based on the arguments of their physical-
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based modeling built-up, their good simulations of several large-scale aspects of present-
day climate and observed climate change, qualitative or semi-qualitative agreement
between different models and consistent simulations with observation-based estimates of
global climate sensitivity.

Multi-GCM ensembles have been commonly used in the analysis of climate change studies.
The latest data set of climate change projections is the Fifth phase of the Coupled Model
Intercomparison Project (CMIP5) archive which provided the data basis for the Fifth
Assessment Report (AR5) of the IPCC. The CMIP5 data set is the collection of the outputs of
state-of-the-art climate models driven by the RCP emission scenarios. The analysis in
Chapter 2, 3, 4 and 5 is based on the selected GCM outputs from CMIP5 (see Table 2.1).

Table 2.1 The GCMs outputs used in this thesis

Country Modeling Center Model Resolution (°) (Lon x Lat)
Australia CSIRO-BOM ACCESS1.0 1.875x1.25
China BCC BCC-CSM1.1 2.8x2.8

Canada CCCma CanESM2 2.8x2.8
USA NCAR CCsMm4 1.25x0.94
USA NSF-DOE-NCAR CESM1(CAMS5) 1.25x0.94

France CNRM-CERFACS CNRM-CM5 1.4x1.4

Australia CSIRO-QCCCE CSIRO-Mk3.6.0 1.875x1.875
USA NOAA GFDL GFDL-CM3 2.5x2.0
Korea NIMR/KMA HadGEM2-AO 1.875x1.25
UK MOHC HadGEM2-ES 1.875x1.25
Russia INM INM-CM4 2.0x1.5
France IPSL IPSL-CM5A-MR 2.5x1.25
Japan MIROC MIROC5 1.4x1.4
Germany MPI-M MPI-ESM-MR 1.875x1.875
Japan MRI MRI-CGCM3 1.1x1.1
Norway NCC NorESM1-M 2.5x1.875

A comparison between the climatology of observation and that of GCM outputs in the
baseline period (1961-1990) is presented in Figure 2.1 and Figure 2.2 for the Huai River
Basin. The observed climatology was calculated as the arithmetic mean of the observations
at the stations within the basin. The modelled climatology was calculated as the arithmetic
mean of the values of the grid cells covering the basin. GCMs showed better ability in
simulating temperature than precipitation. The intra-annual variation of temperature is well
reproduced by the models. The curve of observed temperature is encompassed by the
ensemble of model simulations, and it generally stays in the middle of the modelled
envelope.
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Varied results were produced by the GCMs when reproducing the historical precipitation.
Some of the GCMs produced different intra-annual variation of monthly precipitation.
Almost all the GCMs overestimated the precipitation in spring (March, April and May) and
underestimated the precipitation in the flood season (July and August). Observed winter
precipitation (December, January and February) stayed within the modelled envelope,
although most of the models provided an overestimation.

The variability among the GCM outputs can be attributed to the differences in the physical-
based modelling build-ups and the model resolutions. The backbone of climate models is
formed by the fundamental laws of physics that describe the conservation of mass, energy
and momentum. Parametrisation equations are also required to describe the processes at
the sub-grid scale, such as the phase change of water and transfer of radiation. The
modelling centres participating the ensemble run the models with different parametrization
schemes. They differ both in their basic structures and in the numerical values used in their
equations, which leads to the variability in the model outputs. It is notable that the model
outputs from Korea Meteorological Administration/National Institute of Meteorological
Research (NIMR/KMA) and Met Office Hadley Centre (MOHC) agree with each other in
simulating precipitation (see Figure 2.2) as both of the two modelling centres run the
HadGEM2 model. The model resolution is also a factor influencing the accuracy of the model
outputs. The outputs of the models with large grid size (BCC-CSM1.1, CanESM2 and GFDL-
CM3) do not agree with the observed inner-annual pattern of precipitation; while the
models with finer resolutions are generally able to reproduce the maximal monthly
precipitation in the flood season. However, fine resolution does not always lead to good
model performance, e.g., MRI-CGCM3 dramatically underestimated the summer
precipitation, which implies that the model build-up could have more contribution to the
variability among the model outputs than the model resolution.
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2.4 Plausible change in climate over the Huai River Basin

First, the observation from an example gauge station (located in the center of the basin) was
compared to the grid values provided by climate models in the baseline (1961-1990) and
future period (2071-2100). The emission scenario at the high end (RCP8.5) was used.
Secondly, the changes in mean and standard deviation of the basin-mean temperature and
precipitation under scenario RCP8.5 are presented. The changes over time suggested by the
ensemble of climate models under different emission scenarios are discussed at the end of

this section.
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Figure 2.4 Empirical CDFs of daily precipitation in winter (left) and summer (right) at Station 7 from raw
GCMs under the scenario of RCP8.5 and observation

The observed daily temperature at the example gauge station in winter (DJF) and summer
(JJA) as well as the projections from the GCM ensemble for the baseline period (red curves)
and the future period (blue curves) are shown in Figure 2.3. Each individual GCM run is
indicated by the dotted curves; the thick solid curves indicate the ensembles mean (taking all
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GCM sums as equal-weighted samples). The GCM ensemble generally has a cold bias in
winter for the baseline period, while both cold and warm biases can be found in summer.
The agreement among model projections is better in winter than in summer. All models
project an increased mean temperature in both winter and summer for the future period.

Figure 2.4 shows the empirical CDFs of observed and projected daily precipitation at the
selected station in winter and summer. The observed wet-day frequency, shown as the
intercept on the y-axes in the magnified subfigure on the left, is overestimated by the GCM
ensemble in both seasons. A wet bias in winter and a dry bias in summer at the high-end of
the distribution is projected by most of the GCMs. A slight increase from the baseline to the
future period is observed at the high end of the projected daily precipitation.

Table 2.2 Projected changes in daily temperature and precipitation intensity under the scenario of RCP8.5

(underlined numbers represent a decreasing trend, bold italic numbers with * represent maximum increasing
trend among models, mm/wd means mm/wet day )

Change in Temperature Change in Precipitation
Shift of Mean (°C) Ratio of S.D. Shift of Mean (mm/wd) Ratio of S.D.
Models Seasons Winter Summer | Winter Summer Winter Summer | Winter Summer
ACCESS1.0 5.49 6.63 1.02 1.14 0.54 1.70 1.46 1.27
BCC-CSM1.1 4,52 5.22 0.91 1.18 0.53 0.42 1.22 1.20
CanESM2 4.71 5.67 0.99 1.06 0.24 1.49 1.16 1.57
CCsm4 3.92 4.48 0.93 1.09 0.54 -0.07 1.28 1.10
CESM1(CAMS5) 4.82 4.87 1.00 1.03 0.66 1.01 1.38 1.31
CNRM-CM5 3.33 3.40 1.11 1.01 0.59 0.68 1.33 1.19
CSIRO-Mk3.6.0 5.40 6.32 1.12* 1.16 1.06 0.46 2.01*  1.13
GFDL-CM3 6.76* 5.92 0.99 0.95 0.69 1.88 1.37 1.36
HadGEM2-AO 6.76* 5.92 0.81 1.11 0.99 1.23 1.79 1.26
HadGEM2-ES 6.62 6.26 0.89 1.10 0.59 1.62 1.58 1.44
INM-CM4 3.35 2.30 0.95 0.88 -0.75 0.80 0.94 1.11
IPSL-CM5A-MR 6.59 6.64* 1.04 1.34* 0.31 -0.08 1.07 1.38
MIROC5 5.07 4.11 1.08 1.05 0.58 0.55 1.15 1.17
MPI-ESM-MR 5.27 4.33 1.04 1.04 2.07* 1.74 1.27 1.27
MRI-CGCM3 4.15 2.89 1.12*% 1.02 0.55 2.02* 125  1.58*
NorESM1-M 4.89 4.97 0.96 1.10 0.22 -0.28 1.17 1.06
Ensemble mean 5.10 4.99 1.01 1.13 0.59 0.86 1.26 1.25

Detailed future changes in daily temperature and precipitation intensity projected by each
GCM and the ensemble means are shown in Table 2.2. All models project an increased mean
temperature in winter and summer; the shift ranges between 3.33-6.76 °C for winter and
2.30-6.64 °C for summer. The ratio of standard deviations between future and baseline
periods is close to one, which indicates that the models do not project significant changes in
the variance of daily temperature in the future. Compared to temperature, the standard
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deviation of future precipitation intensity is projected to have a larger increase, up to twice
of the baseline period in winter. However, the increase in the mean intensity is not as large
as for temperature. Four out of 16 models even project a minor decrease in mean
precipitation intensity.

The annual change of the areal mean temperature and precipitation over the sub-basin
upstream of Bengbu is presented in Figure 2.5 and Figure 2.6. The change was calculated
relative to the baseline period (1961-1990). The median of the ensemble under each
scenario is indicated by solid curves.
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There is an obvious increase in temperature. The increasing trend has occurred in the 1990s
of the 20" century. The observation generally falls in the envelope of the GCM ensemble in
the baseline period, and the ensemble is able to reproduce the changing trend of the
observation. The ensembles representing different emission scenarios suggest similar results
at the beginning of the 21" century, while the ensembles gradually spread toward the end of
this century. The high emission scenario resulted in the increase ranging from 4°C to 8°C in
the year of 2100. Temperature under the low emission scenario does not increase after the
year of 2050 due to the mitigation measures. In contrast, the median emission scenario
continues to increase in the second half of this century, but the increasing range is not as
large as the high emission scenario.

In terms of precipitation, the difference among emission scenarios is marginal. Both
increases and decreases are suggested by the ensemble members. The future precipitation
in a year is projected to increase by up to 80% compared to the baseline period. A slight
increase in annual precipitation in the second half of the 21* century is suggested by the
medians of the ensembles. The ensemble envelop becomes larger with time.

2.5 Discussion

In this chapter, a brief introduction of emission scenarios is provided as well as a preliminary
analysis of climate models’ simulative ability against the baseline observation and the future
projections. Generally, climate models are more skilful in reproducing temperature than
precipitation. Climate models tend to overestimate the wet-day frequency due to the
average over a grid area. Wet-day frequency of climate model outputs needs to be adapted
before being used in the impact assessments. The projections of temperature is greatly
influenced by greenhouse gas emissions. The temperature over the study area is suggested
to increase by 4°C to 8°C at the end of this century under the high emission scenario without
mitigation measures. Varied projections of future precipitation were resulted from different
climate models. The standard deviation of precipitation intensity is suggested to increase
especially in summer, which may lead to extreme floods with large magnitude in the future.

Biases against the baseline observations remain in the outputs of climate models with varied
model formulations and resolutions, especially in the simulated precipitation, which
indicates that the model outputs have to be post-processed to deal with the biases before
being used in climate change impact assessments. The results does not show a clear
relationship between the model performance on reproducing the present-day climate and
the model resolution. The higher-resolution models could lead to precipitation with higher
spatial variability. However, previous studies show that higher resolution does not guarantee
more skilful model performance or smaller uncertainty (Rdisanen 2007, Masson and Knutti
2011). Masson and Knutti (2011) found that the resolution of models participating the
CMIP3 ensemble is correlated with their performance in reproducing temperature but not
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precipitation. More comprehensive representation of the subgrid-scale processes should be
developed to reach a better model performance especially for precipitation.

The variability among the results of different GCMs implies the considerable uncertainty due
to the lack of understanding of the climate system. The multi-model ensembles should thus
be used to take account of this uncertainty. The use of the multi-model ensembles allow
exploring the relationships between the prediction skill in the future and the modelling skill
in reproducing the baseline observation. However, it might be misleading to rank the future
climate change projections based on the discrepancy between the model simulations and
the baseline observations. For example, a skilful turned model might produce the smallest
discrepancy but have large but compensating process-based errors. Previous studies found
that climatological errors and projected changes are weakly correlated (Knutti et al. 2006,
2010b)(Murphy et al. 2004, Masson and Knutti 2011). The uncertainty in multi-model
ensembles cannot fully represent the true uncertainty in the real world. The true uncertainty
could be larger than the ensemble uncertainty as it is argued that the actual uncertainty in
the representation of subgrid scale processes is not covered by the differences between the
parametrization schemes used in existing models (Allen and Ingram,2002; Palmer et al.,
2005). On the other hand, multi-model ensembles could exaggerate the uncertainty when
some models is less credible than others. Summing up, impact-related studies could use
multi-GCM ensembles to take account of the uncertainty in future climate change
projections, and the interpretation of this uncertainty should be used with cautions.
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Chapter 3 Empirical statistical
downscaling methods

The objective of this chapter is to assess the uncertainty in the empirical statistical methods
for downscaling daily GCM outputs and to provide the basis for using these downscaling
methods in climate change impact assessments at a local scale.

3.1 Introduction

Due to the bias against observations and the lack of sufficient spatial resolution, it is well
acknowledged that outputs of Global Climate Models (GCMs) need to be post-processed
(including bias correction and downscaling) prior to being used for climate change impact
studies. Assessments of climate change impacts usually focus on the local scale, while GCMs
are run at coarse spatial resolution and are inherently unable to resolve important sub-grid
scale features. Thus, downscaling methods are developed to bridge this gap in order to
obtain the weather and climate information at the local scale. The downscaling methods can
be divided into dynamical downscaling and statistical downscaling. The computationally-
intensive nature complicates the use of dynamical downscaling in providing multi-decade
simulations with multiple GCMs and/or greenhouse gas scenario (Wilby et al. 2000, Maurer
and Hidalgo 2008, Tabor and Williams 2010, Jarosch et al. 2012). In contrast, statistical
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downscaling methods are computationally efficient and sufficiently flexible to be used
directly for climate change impact studies (Xu 1999, Wilby et al. 2002, Wood 2002, Diaz-
Nieto and Wilby 2005, Fowler et al. 2007). Numerous previous studies have shown that the
performance of statistical downscaling can be comparable to dynamical downscaling (Kidson
and Thompson 1998, Mearns et al. 1999, Murphy 2000, Haylock et al. 2006).

Among the various statistical downscaling methods, a group of methods known as “empirical
downscaling methods” (Chen et al. 2013) or “empirical scaling methods” (Mpelasoka and
Chiew 2009) aiming to reduce the bias in climate model outputs is becoming increasingly
popular especially if the analysis requires multi-GCM projections. In this group of methods,
statistical transformation functions are calibrated and then used to adjust observations or
raw climate model outputs to generate future climate scenarios at local scale. In contrast to
the use of large-scale atmospheric fields as predictors in “perfect prognosis” statistical
downscaling, empirical statistical downscaling methods directly use the observed or
modelled variables of interest as predictors, which enable downscaling over regions where
large-scale atmospheric observations are not available. Moreover, the use of relatively
simple statistical transformations makes these methods particularly attractive (Salathe 2005,
Fowler et al. 2007, Leander and Buishand 2007, Chiew et al. 2009, Mpelasoka and Chiew
2009, Teutschbein and Seibert 2012, Chen et al. 2013).

Depending on their use of calibration strategies, empirical downscaling can be divided into
bias correction based methods and change factor based methods (Ho et al. 2012). Both
these strategies aim to cope with the bias in climate model outputs, albeit being based on
different assumptions. The bias correction based methods assume that the discrepancies
between observation and model simulations stay constant in time, while the change factor
based methods assume that the change from the present day to the future in the observed
climatology will be the same as the change in the modelled climatology suggested by climate
models. These methods also differ in the statistical transformations which are performed to
adjust different statistics of the predictors including mean, variance or probability
distribution.

Previous studies show that different choices of calibration strategies can lead to
substantially different outcomes which may be as large as the differences between emission
scenarios (Ho et al. 2012). The performance of different statistical transformation methods
may also differ substantially (Gudmundsson et al. 2012). Despite the increasing use of these
methods, a detailed investigation of the range of possible combinations of calibration
strategy and statistical transformation methods as well as associated uncertainties has not
yet been undertaken.

This chapter has the following specific objectives: 1) to classify the existing empirical
statistical downscaling methods and to compare the possible combinations of calibration
strategy and statistical transformation, 2) to test the performance of calibration strategies
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and statistical transformation methods on downscaling GCMs daily precipitation and
temperature to station scale, 3) to assess the uncertainty associated with empirical
statistical methods for the full range of calibration strategies and statistical transformation
methods tested.

3.2 Empirical methods for statistical downscaling

To describe the two distinct calibration strategies of empirical statistical downscaling
(change factor and bias correction), the observed climatic variable during the baseline period
is denoted as X, and its future projection as X,; the climate model simulations of this
variable are given as X\, and X, for baseline and future periods, respectively. Then the bias
correction based methods can be generally formulated as:

X, =Tgc(Xy), Tge : calibrated on Xy and X, 3-1
while the change factor based methods are generally formulated as:
X, =Ter(Xo), Tcp : calibrated on Xy and Xy, 3-2

where T and T are the statistical transformation functions for the bias correction based
methods and the change factor based methods, respectively.

In each group, the downscaling methods are classified into five types based on the statistical
transformations used. The different combinations of calibration strategies and statistical
transformations lead to ten empirical statistical downscaling methods as shown in Table 3.1.
The transformation methods with bias correction strategy are described in the following
paragraph; the transformation methods with change factor strategy have the same forms
with the bias correction based methods and only differ in the variables (Table 3.1). Herein,
these 10 methods were used to downscale daily GCM temperature and precipitation to
station scale. To account for the seasonality, transformation functions were calibrated with
daily data grouped into four seasons.

e Mean based (MB) method: The simplest transformation is to match the mean of
climate model simulations to that of observations and subsequently remove the
mean bias in the climate model simulations. Additive and multiplicative correction
factors were respectively applied to the modeled time series of temperature and
precipitation.

e Variance based (VB) method: This is a more sophisticated method which corrects
both the mean and variance of climate model simulations to match those of the
observations. This is done by including the standard deviation in the transformation
function.

¢ Quantile mapping (QM) method: In this method a quantile-based mapping (Panofsky
and Brier 1958) is constructed from modelled probabilistic distribution to observed
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probabilistic distribution. Specifically, a value of modeled variant, e.g. the pth
percentile in the modeled distribution, is corrected as the value of the pth percentile
in the observed distribution. The basic assumption of this method is that the
distributions of the modelled variable from the baseline period to the future period
remain similar. The probabilistic distribution of climatic variables can be described by
theoretical or empirical CDFs. Here, the commonly used 99-percentile tables were
employed (Boé et al. 2007, Deque 2007) due to the superior performance of
empirical CDFs in the previous studies (ThemeRl et al. 2011, Gudmundsson et al.
2012, Gutjahr and Heinemann 2013). The values in between the percentiles were
obtained by linear interpolation, and the values exceeding the percentile tables were
corrected using the correction factor at the highest (or lowest) percentile.

e Quantile correcting (QC) method: This method is also a quantile based correction. It
allows incorporating the information of the change in modelled distributions from
the baseline period to the future period, which is different with the basic assumption
of the quantile mapping method that no evolvement occurs in the modelled
distribution over time. At each quantile, the difference between the modelled and
observed value during the baseline period is assumed to be stationary and then
applied to the modelled distribution in the future period. If there is no change in the
modelled distribution over time, the quantile correcting method will derive the same
results as the quantile mapping method. It can also be considered as a variant of the
mean based method that corrects model simulations at different quantiles instead of
applying one single correcting factor throughout.

e Transfer function (TF) method: This method uses the same distribution-correction
principle as the quantile mapping method, but applies the correction in a parametric
way. Parametric functions are fitted to the quantile-quantile relationship between
modeled and observed variables during the calibration period, which was then used
to correct the future modeled values. Various transfer functions have been used in
previous studies (Piani et al. 2010, Dosio and Paruolo 2011, Rojas et al. 2011). Here,
power functions and linear functions were used to correct precipitation and
temperature, respectively. However, for both precipitation and temperature, linear
functions were used to correct extreme values (exceeding the 90™" percentile or less
than the 10" percentile for temperature, and exceeding the 90™" percentile for
precipitation).
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The above statistical transformations do not change the temporal sequence of the predictor.
In the case of downscaling daily precipitation based on bias correction strategy, because
precipitation events are intermittent, the biases in both the frequency and intensity of the
modelled precipitation need to be considered. As GCMs tend to project the “drizzle-effect”
and overestimate the wet-day frequency, a frequency adaptation step was applied to match
the modelled wet-day frequency with observations (Ines and Hansen 2006, Schmidli et al.
2006). A modelled wet-day threshold was determined from the GCM daily precipitation
series such that the threshold exceedance matches the wet-day frequency in the observed
series. The calculation of the modelled wet-day threshold can be expressed as

WTy = Fy'[Fo(WTp)] 3-3

where the minimum observed rainfall amount WT, for a day to be considered wet was 0.1
mm, which is the minimal value of the historical rainfall records; F and F~! represent
empirical cumulative distribution function (ECDF) and reversed ECDF. Then the bias-
correction based downscaling can be expressed as

X - {TBC(X,;,) for Xj =WTy -
o~ 1lo for Xy < WTy

3.3 Validation in a model world
3.3.1 Inter-model cross validation

To compare the different methods described above, the inter-model cross validation
method (Raisdnen and Palmer 2001, Murphy et al. 2004, Raisdnen and Raty 2012) was
adopted in this study. This is a ‘perfect sibling’ framework, where data from a set of model
simulations are calibrated and verified against an independent model simulation which is
treated as the pseudo-observation of the climate (or ‘true’ climate).

As shown in Figure 3.1, the model cross validation is performed over a multi-GCM ensemble
(e.g. with N GCMs). The projection of one GCM (model i) including baseline climate and
future climate is selected as the pseudo-observation. The pseudo-observation is considered
as a “true” climate; and the outputs of other N-1 GCMs (i.e., calibrating models) in the
ensemble are considered the biased simulation of the climate in the pseudo-observation.
The projection of the future climate corresponding to the pseudo-observation is derived
from each calibrating model and then verified against the “true” future climate in the
pseudo-observation. Repeating the process N times to enable all ensemble members to be
treated as the pseudo-observations, statistics can be obtained to compare the performances
of different downscaling methods.
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Figure 3.1 Sketch of inter-model cross validation

To mimic empirical statistical downscaling in the real-world, when a GCM is taken as a
pseudo-observation, the gridded simulation was interpolated to station locations (30
stations) using bilinear interpolation. This way, the pseudo-observation at station scale
corresponding to the selected GCM simulation is constructed. Statistical transformations
were performed at each station to construct the downscaled Climate projections.

To assess the performance of the different downscaling methods, a factor of Mean Relative
Error (MRE) was used to quantify the similarity of empirical CDFs between pseudo-
observations and downscaled projections. MRE is calculated as

(ABS(Xp—X)G

MRE, = ((ABS(X{}“W—Xg))G

)s.sT.0 3-5
Where X, and X,‘,’ are the pth percentiles of the downscaled and pseudo-observed
distributions, respectively; X{,‘“W is the pth percentile of raw GCMs projection, p = 0 ... 100;
ABS denotes the absolute values; () denotes taking average over all choice of calibrating
GCMs (denoted as G); {)sg sr,0 denotes taking average over all seasons (SE), stations (ST)
and pseudo-observations (O).

MRE is essentially a ratio of the absolute error of downscaled projections to the absolute
error of raw projections. When MRE is larger than 1, the downscaling method introduces
more bias than the raw GCM; when MRE is equal to 1, the downscaling method performs
the same as the raw GCM; when MRE approaches 0, the downscaling method projects the
same distribution as the pseudo-observation.

CMIPS5 (Coupled Model Intercomparison Project Phase 5) projections of daily precipitation
and temperature from 16 GCMs (grid size ranging from 1.1° to 2.8°) were used in this study
(see Table 2.1 in Chapter 2). The baseline (calibration) period was selected as 1961 to 1990
and the future period was selected as 2071 to 2100. All future GCM outputs were obtained
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under a high greenhouse gas emission scenario (RCP8.5). The grid cells of the GCM with the
largest resolution and the gauge stations are shown in Figure 3.2.
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Figure 3.2 Stations and the grid cells of GCM BCC-CSM1.1 (2.8125°x2.8°) over the Huai River Basin
3.3.2 Results of inter-model cross validation

3.3.2.1 Temperature

Figure 3.3 (a) shows the MRE of temperature for all the methods under consideration. For
comparison, the MRE of raw GCMs is also drawn as the horizontal line with a uniform value
of one. The change factor based methods generally outperformed BC based methods
especially at the upper part of the distribution, which is in agreement with Hawkins et al.
(2013). Moreover, the spread between different transformation methods applied with the
CF strategy is smaller than those applied with the BC strategy. As an exception, the quantile
correcting methods with both calibration strategies show almost the same performance. The
simplest mean based method with the change factor strategy has the best overall
performance. With the bias correction strategy, the mean based transformation resulted in
the smallest errors in the middle part of the distribution (30%-60% percentiles), but
produced large errors at the lower and upper parts of the distribution owing to the uniform
correction over the whole distribution. The transfer function method and variance based
method with the change factor strategy have a similar performance around the middle part
of the distribution (30%-70% percentiles) due to the use of similar transformation functions.
At the extreme high and low tails of the distribution, TF methods have the largest MRE,
which indicates that the use of linear transfer functions fitted to extrapolate the extreme
values performed less well on projecting extremes.
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Figure 3.3 Performance ranking of empirical downscaling methods used for downscaling daily
temperature (a) and daily precipitation intensity (b). BC and CF calibration strategies are indicated by
black dashed lines and red solid lines, respectively.

3.3.2.1 Precipitation
Precipitation intensity

The MRE of daily precipitation intensity for all the methods is shown in Figure 3.3 (b). In
contrast to temperature, there is no overall better performing calibration strategy. The
difference arising from the choice of transformation methods is larger than the difference
arising from the choice of calibration strategies. The change factor based methods generally
downscaled extreme values with lower MREs compared to the bias correction based
methods, which is probably caused by the extrapolation uncertainty of the transformation
methods. Because transformation functions with bias correction strategy were calibrated on
GCM simulations of the baseline period, the transformation functions have to be
extrapolated when the values of the future projection exceed the range of the baseline
simulation. The performances of different downscaling methods vary obviously at the lower
half of the distribution mainly owing to the choice of transformation methods. Similar to the
results of temperature downscaling, with the change factor strategy the mean based
method shows better performance than other more sophisticated methods. The non-
parametric quantile mapping and quantile correcting methods with the bias correction
strategy show relatively better overall performance, and they both outperform their
counterparts with the change factor strategy. The variance based methods have the worst
overall performance but show a decreasing error in the upper part of the distribution, which
indicates they put more weight on adjusting the daily precipitation with high intensity. In the
lower part of the distribution, the transfer function methods do not perform as well as other
quantile-based methods.

100
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Frequency of precipitation occurrence

Taking the example of one station (Station 7 in Figure 3.2), the occurrence frequency (the
fraction of wet days) of downscaled precipitation and pseudo-observation in four seasons
for the future period is compared in Figure 3.4. The comparison between calibration
strategies is carried out by comparing two sets of “true-against-projection pairs” that
respectively resulted from bias correction (BC) strategy and change factor (CF) strategy. The
CF sample pairs are from 16 pseudo-observations against their corresponding projections
downscaled from other models (blue circles). Since the frequency adaptation in BC strategy
was only performed when the modelled wet-day frequency exceeds the wet-day frequency
of a pseudo-observation, the BC samples are the pseudo-observation with the lowest
baseline wet-day frequency against its projections downscaled from the other 15 models
(red crosses). The mean relative error is used as the criterion to assess the performance of
the two strategies. Generally, the BC strategy projects larger relative error than the CF
strategy in every season at Station 7. The projections at other stations show similar results
(not shown). Figure 3.4 indicates that the CF strategy generally underestimates the
precipitation frequency. This can be explained by the increase in the precipitation frequency
of the pseudo-observation from the calibration period to the future period. The lower
relative error of the CF strategy compared to the BC strategy implies that the GCM-projected
change in precipitation frequency from calibration period to the future period is smaller than

the variability in projected precipitation frequency among different GCMs.
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Figure 3.4 Comparison of the future precipitation frequency of pseudo-observation and downscaled
precipitation using different calibration strategies
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3.4 Downscaling for the future

The downscaling methods were also applied to obtain a downscaled future climate based on
the information from historical observations. The 10 downscaling methods were used to
downscale the outputs from the 16-GCM ensemble, which results in 160 combinations of
downscaling methods and GCM outputs. This section investigates the uncertainty in the
downscaled future local climate associated with the choice of different empirical
downscaling methods (calibration strategies and transformation methods) and climate
models.

3.4.1 Future climatology

Temperature

Since GCMs are not designed to simulate the actual temporal sequence of the climatic
variable, the downscaled future mean climatology and the inter-annual variability of the
monthly temperature were analyzed. The 30-year means and standard deviations of
monthly mean temperature averaged over 30 stations from downscaled future GCM
ensembles (2071-2100) and observations (1961-1990) are shown in Figure 3.5. The
downscaled results of an individual GCM (HadGEM-ES) are also shown.

The downscaled GCM ensemble generally projected an increase in mean temperature. The
agreement in the intra-annual variations among downscaled monthly means reflects the
main feature of empirical statistical downscaling methods, i.e., they are designed to remove
the bias in the statistics (at least the mean) of the GCM outputs. The uncertainty bound (the
range encompassed by the maximum and minimum of the results downscaled from the 16
GCMs using the 5 statistical transformations) of the bias correction based methods (light
grey area) is slightly larger than that of the change factor based methods (dark grey area).

In terms of the inter-annual variability, the bias correction based methods resulted in much
larger uncertainty than the change factor based methods did due to the uses of different
predictors. The varied results of the bias correction based methods reflect the large
variability in the projected temporal structures among different GCMs. In contrast, the
change factor based methods preserved the same temporal structure as observed daily time
series. The mean-based change-factor (MB-CF) method (red crosses) resulted in exactly the
same intra-annual variability as only the shift in mean was applied to the observed time
series, and the differences between mean based method and other sophisticated methods
were caused by adjusting other statistics of the observation.
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Precipitation

Because precipitation events are intermittent, the downscaled precipitation was assessed
using three indicators: monthly total amount (mm/day), monthly mean intensity (mm/wet
day) and monthly frequency (the proportion of the number of wet days within a month) (see

Figure 3.6).
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Figure 3.6 Interannual mean (left panel) and standard deviation (right panel) of monthly precipitation
amount (top), intensity (middle) and wet-day frequency (bottom). Grey areas indicate the ensemble of GCM
outputs downscaled with bias correction (light grey) and change factor (dark grey) strategies. Lines with
symbols are downscaled projections of model HadGEM-ES.

Generally speaking, the two calibration strategies both projected increases in mean values
and inter-annual variability of precipitation amount and intensity. However, similar with the
results of temperature, the change factor based methods resulted in narrower uncertainty
bounds than the bias correction based methods did. The choice of the calibration strategies
has more significant influence on the inter-annual variability than on the mean values of the
precipitation indicators.

By comparing the results from one GCM (black dotted and red solid lines), it can be seen that,
for all precipitation indicators, the results from one calibration strategy with different
transformation methods are very similar. The choice of calibration strategies leads to
different annual patterns of the mean precipitation factors, which again reflects one of the
features of empirical statistical downscaling methods in that they project the downscaled
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time series with the same temporal structure of the predictor variable. In general the
distribution-wise transformation methods projected larger inter-annual variability of
precipitation amount and mean intensity than the mean based methods; however, the
difference is marginal. This implies that scaling the mean of the distribution is capable of
correcting most of the change in the inter-annual variation of the mean precipitation
intensity; distribution-wise methods do not significantly improve the ability to project inter-
annual variability of mean precipitation intensity.

The methods with the same calibration strategy produced the same downscaled wet-day
frequency with the exception of the variance based method, which projected lower
frequency compared to other methods. As the statistical transformations were performed
over daily GCM output, the shift in mean and the scaling of standard deviation in the
variance based methods may convert small values of wet days into negative values which
would hence be converted as dry days. The same reason holds for the variance based
method projecting higher monthly mean intensity than other transformation methods.
However, there is no obvious deviation between the monthly amounts of the variance based
method and other methods.

3.4.2 Comparison of different sources of uncertainty

To quantify the uncertainties associated with downscaling methods and GCMs, the “analysis
of variance” method was used (Déqué et al. 2011, Raisdnen and Raty 2012). The total
variance of downscaled projections was divided into three parts of variation caused by GCMs,
downscaling methods and the interactions between GCMs and downscaling methods (the
GCM-method interactions), respectively. The variance caused by GCMs is represented by the
variation of multi-method mean projections across GCMs, and the variance caused by
downscaling methods is represented by the variation of multi-GCM mean projections across
methods. The contribution of GCM-method interactions is explained as the method
dependence of inter-GCM differences, or equivalently GCM dependence of inter-method
differences. The percentages of variation components were calculated at each percentile,
and the results were averaged over stations and months. The analysis of variance was
respectively performed on downscaled projections at monthly and daily scales. The analysis
was performed separately for the bias correction based methods, the change factor based
methods and all downscaling methods.
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Figure 3.7 Fractions of temperature variance explained by GCM difference (dark grey), downscaling method
differences (black) and the GCM-method interactions (light grey). Left, middle and right panels respectively
show the results of BC methods, CF methods and all methods; top and bottom rows show the results at
monthly and daily scale, respectively.

For temperature, the uncertainty associated with the choice of GCMs accounts for a large
part of the total uncertainty (see Figure 3.7). The percentages of variance due to
downscaling methods and the GCM-method interactions grow slightly from monthly scale to
daily scale, and the growth is larger at the extreme high and low ends of the distribution.
Bias correction strategy resulted in relatively more variance caused by downscaling methods
and the GCM-method interactions than change factor strategy. The variance due to the bias
correction based methods keeps increasing toward the higher end of the distribution due to
the extrapolation uncertainty of transformation methods. Taking all the downscaling
methods into account, the variance due to downscaling methods and GCM-method
interactions respectively contribute 15% and 22% to the total variance of daily temperature
averaged over the distribution.
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Figure 3.8 Fractions of precipitation variance explained by GCM difference (dark grey), downscaling method
differences (black) and the GCM-method interactions (light grey). Left, middle and right panels respectively
show the results of BC methods, CF methods and all methods; top and bottom rows show the results at
monthly and daily scale, respectively.

Figure 3.8 shows the fractions of variance of downscaled precipitation due to GCMs,
downscaling methods and the GCM-method interactions. The downscaling methods used
are more influential on downscaled precipitation on a daily scale than a monthly scale. For
downscaled monthly precipitation (the top row in Figure 3.8), downscaling methods have a
minor contribution to the total variance in the case of single calibration strategy, and their
contribution increases toward the tails of the distribution. However, the contribution of
downscaling methods is comparable to the contribution of GCMs in the case of all
downscaling methods, which indicates that the two calibration strategies lead to deviated
results at monthly scale. For downscaled daily precipitation (the bottom row in Figure 3.7),
the choice of downscaling methods and the GCM-method interactions dominate the total
variance in the lower part of the distribution, but their impacts decrease at the higher end of
the distribution. Comparing the two calibration strategies, the uncertainty related to
transformation methods resulted in a smaller percentage of the total variance with the
change factor strategy than with the bias correction strategy; however, the change factor
based methods lead to more GCM-method interaction uncertainty than the bias correction
based methods.
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Figure 3.9 Similar with Figure 3.8 but excluding sub-optimal performing met. Left, middle and right panels
respectively show the results of well-performing BC methods, well-performing CF methods and all well-
performing methods.

As can be seen in the results of the inter-model cross validation (Figure 3.3b), the MB-BC,
VB-BC, TF-BC and VB-CF methods lead to larger errors compared to other methods for
downscaling precipitation. When making the decomposition of variance excluding these
methods, the fraction of variance caused by downscaling methods decreases in the case of
single calibration strategy (Figure 3.9). However, the contribution of all well-performing
methods (excluding the sub-optimally performing methods) to the total variance of monthly
precipitation amount (Figure 3.9c) is comparable to the contribution of all methods (Figure
3.8c). For downscaled daily precipitation intensity, the fraction of the variance caused by
GCMs takes a large part of the total variance in the case of single calibration, while this
fraction decreases toward the tails of the distribution. When taking into account all well-
performing methods, the contribution of downscaling methods is about 20% of the total
variance at the low end of the distribution, increasing to about 30% toward the high end of
the distribution. Around 50% of the total variance at the low end of the distribution is due to
the interactions between downscaling methods and GCMs. This fraction decreases to about
25% toward the high end of the distribution, where it is comparable with the contribution of
downscaling methods.

3.4.3 Uncertainty in future changes at one station

The uncertainty in downscaled projections was also analysed with preference to one specific
location. For Station 7, the changes in future downscaled temperature and precipitation
intensity compared to the historical observations are shown in Figure 3.10. The change of
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temperature was calculated as the shift at each percentile between the future projection
and the baseline observation, and the change of precipitation intensity was calculated as the
ratio at each percentile between the future projection and the baseline observation. The
changes were averaged over seasons and GCMs.
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The spread of different downscaling methods is generally in accordance with the results in
the inter-model cross validation (Figure 3.3). For temperature, there is a deviation between
the spread of the BC based methods and that of the CF based methods, and the former
produced less warm future climate than the latter. The result of the MB-BC method
intersects the results of other methods and deviates from them at the low and high ends of
the distributions, which explains why the MB-BC method lead to small errors at the middle
of the distribution and large errors at the lower and higher distribution in the inter-model
cross validation (Figure 3.3a). The MB-CF method projected relatively greater changes at the
low end and smaller changes at the high end compared to other methods applied with the
CF strategy.

For precipitation, the spread of the projected changes is larger for low intensity than for
higher intensity. The curves of the MB-BC, VB-BC and VB-CF methods obviously deviate from
those of other methods. These observations are in accordance with the results in the inter-
model cross validation. The TF-BC method lead to more deviated result from other methods
compared to its performance in the virtual-world experiment, which is probably due to the
larger difference between the observed and modelled wet-day frequencies. As expected, the
MB-CF method resulted in a horizontal line for most part of the distribution. This line
deviates toward smaller values at percentiles lower than 25% because the small values of

100

Figure 3.10 Changes at percentiles in downscaled future daily temperature (a) and daily precipitation intensity (b) at
Station 7. BC and CF calibration strategies are indicated by black dashed lines and red solid lines, respectively.
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the projected precipitation intensity were rounded to zeros. The MB-CF, QM-CF, TF-CF, QM-
BC and QC-BC methods projected comparative changes for high intensity precipitation.

3.4.4 Difference in temporal structure and spatial variability due to the
choice of downscaling methods

The temporal structure and spatial variability of the downscaled future daily precipitation
were shown in Figure 3.11 and Figure 3.12. The time series of daily precipitation at 8 stations
within one grid of model BCC-CSM1.1 were selected (indicated as stars in Figure 3.2), and
the summers in the years from 2071 to 2073 are taken as the example time segments. The
downscaled climatic variables at different stations within a GCM grid inherit the same areal-
mean GCM information from this grid cell. When downscaled by the change factor based
methods, the stations within a GCM grid cell share the same relative change and the spatial
variability stays the same with that of the observation. On the other hand, when downscaled
by the bias correction based methods, the stations within a GCM grid follow the temporal
structure of the GCM and the spatial variability on a specific day is thus lower compared to
the observations. The methods applied with the same calibration strategy resulted in a
similar temporal structure with the exception that the variance based methods lead to more
dry days than other transformation methods.
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Figure 3.11 Time series for raw GCM (top) and downscaled daily precipitation using the BC based methods
for selected seasons
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Figure 3.12 Time series for observed (top) and downscaled daily precipitation using the CF based methods for
selected seasons

The empirical CDFs of the downscaled daily precipitation at Station 7 are shown in Figure
3.133, and the empirical CDFs of the areal mean of the downscaled precipitation are shown
in Figure 3.13b. The bias correction based methods resulted in smaller extreme values than
the change factor methods at a specific station, which is caused by the extrapolation of the
transformation functions for the future values exceeding the range of the baseline values. In
contrast, the bias correction based methods resulted in greater areal-mean extreme values
than the change factor based methods. This is due to the lack of spatial variability in the bias
correction based methods, i.e., if the GCM projects a high value at a grid cell on a day, all the
stations within the grid have high values on this day and the areal-mean value is thus
exaggerated. For the same reason, bias correction based methods projected more dry days
than the change factor based methods at the areal-mean scale.

The MB-BC method produced comparable areal-mean extreme values to the change factor
based methods due to the former’s underestimation of point extreme values. The MB-CF
method resulted in comparable point and areal-mean values to those of other change factor
based methods, which confirms our claim that with the change factor calibration strategy,
simply adding (for temperature) or multiplying (for precipitation) the mean change factor is
sufficient to represent the relative changes projected by GCMs. The variance based methods
produced comparable sorted values with others but more dry days, which explains the large
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deviation in the precipitation intensity. Thus, care should be taken when using the variance
based methods when the length of dry spell is important.
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Figure 3.13 ECDFs of downscaled future daily precipitation at Station 7 (left) and areal mean at one GCM
grid (right) for selected seasons

3.5 Discussion

Assessing the performances of calibration strategies and statistical transformation
methods

For downscaling daily GCM temperature, the change factor based methods generally
outperformed the bias correction based methods, which implies that the climate models
provide more accurate simulations of relative change than absolute values. The different
statistical transformation methods with change factor strategy showed similar performances,
among which the simplest mean based method produced lower overall errors than other
more sophisticated methods. These results can be explained by the property of the used
pseudo-observations, i.e., GCMs tend to project a shift in mean temperature rather than a
change in the higher-order statistics. In the bias correction based methods the probabilistic
distributions of different GCM projections differ not only in the means but also in the scale
and shape parameters of the distribution; thus, corrections of the higher-order statistics of
the GCM outputs are required.

The obvious deviation in the performances of the two strategies at the higher part of the
distribution is probably caused by the uncertainty associated with the extrapolation of the
transformation functions. This is attributed to the use of a high-end greenhouse gas
emission scenario (RCP85) which leads to the projected future temperature that significantly
exceeds the maximum baseline temperature. If the projected increase in mean temperature
is first removed from the future temperature time series before bias correction and later



Climate Change Impacts on River floods: Uncertainty and Adaptation

added back to the corrected time series, the influence of the extrapolation uncertainty could
be decreased. Quantile correcting method is the only member of the bias correction family
that produced comparable performance with the change factor family, because no
extrapolation is required in this method.

For downscaling daily GCM precipitation, there is no overall-better-performing calibration
strategy. The difference arising from the choice of transformation methods is larger than the
difference arising from the choice of calibration strategies with regard to the probabilistic
distributions of daily intensity. The downscaled precipitation intensity was mainly influenced
by the choice of statistical transformations at the lower part of the distribution. The bias
correction strategy resulted in larger errors at the high extremes than the change factor
strategy, which may be due to the unrealistic values projected by GCMs.

The comparative performances between mean based methods and distribution-wise
methods with change factor strategy imply that the scaling of mean precipitation is sufficient
to represent most of the relative change projected by GCMs. The advantage of using
quantile-based methods is only apparent at the tails of the distribution. This mean-based
change factor method has been widely used in the climate change impact assessments due
to its ease of use. The variance based methods are not recommended to downscale daily
precipitation as they focus on adjusting high precipitation intensity and thus may result in
large biases in low intensity and wet-day frequency. The transfer function methods used in
this study generally underperformed the quantile mapping methods especially at the low
and high ends of the distribution. The parametric functions used here tend to fit well in the
middle part of the distribution while sacrificing on accuracy at the ends of the distribution. In
contrast, empirical quantile mapping methods are sufficiently flexible to describe the
quantile-quantile relationships. However, when introducing more flexible parametric
functions, the performance of the transfer function methods can be as good as the empirical
quantile based methods. Examples can be seen in Gudmundsson et al. (2012)’s study. On the
other hand, the use of empirical quantile mapping methods may be criticised to be less
robust or constant in time since they have too many degrees of freedom (Piani et al. 2010).
There has not been a consensus on the preference of parametric functions and empirical
quantile mapping methods. Moreover, the suitability of parametric functions may also be
dependent on the GCM outputs used.

The different results obtained for wet-day frequency from different calibration strategies are
due to the distinctly different ways of projecting future precipitation series. The change
factor based methods are designed to produce the downscaled future precipitation series
preserving the same temporal sequence with that of the pseudo-observation. In contrast,
the bias correction based methods use the modelled future precipitation series as predictor
and apply the frequency adaptation to approximately match the modelled precipitation
frequency to the pseudo-observations. The change factor strategy preserved the same wet-
day frequency and tended to underestimate this in the future as most GCMs projected
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increased future wet-day frequency. For the ensemble used here, the variation of wet-day
frequency among GCMs projections was larger than the projected changes in each model.
Thus, the bias correction strategy resulted in much more varied results than the change
factor strategy. It should also be noted that the step of frequency adaptation in the bias
correction based methods may also have an influence on the downscaled precipitation due
to the risk of rejecting useful wet-day information.

The performances of change factor based methods in the virtual world were actually
dependent on the degree of the similarity between the future changes projected by the
calibrating GCM and the validating GCM. The relatively better performance of the MB-CF
method in the virtual-world experiment only implies that the future changes projected by
GCM members are more similar in mean than in higher-order statistics, and it does not
guarantee that the MB-CF method will lead to more reliable results for the real-world future.
This might be a drawback of using the inter-model cross validation. Moreover, the bilinear
interpolation at the pseudo-station locations in the inter-model cross validation did not
result in the variability and existence of extremes common in true station data. Thus, the
uncertainty analysis on the downscaled precipitation based on a real station was carried out
to confirm the results from the virtual world (shown in Section 3.4.3). These latter results
generally confirmed the results from the virtual-world experiment. The uncertainty behavior
in projecting future real-world climate was found similar to that in the inter-model cross
validation.

Assessing the uncertainty of downscaling methods in downscaling future climate

The bias correction and change factor calibration strategies led to fundamentally different
time structure and spatial variability in the downscaled climatic variables. This issue is more
important in downscaling precipitation because precipitation event is intermittent and
unevenly spatially distributed. When aggregating the downscaled point values to areal-mean
values, the bias correction based methods were found to underestimate the wet-day
frequency and exaggerate the extreme values. The results confirm the findings of Maraun
(2013), who discussed the inflation problem when bias correction based methods are used
to bridge the scale mismatch between observations and GCM outputs.

For the 16-GCM ensemble used in this paper, the uncertainty bound of inter-annual
variability projected by the bias correction based methods is much larger than that projected
by the change factor based methods. This is understandable as although the different GCMs
project varied future temporal structures, they still tend to project similar relative changes.
The difference in uncertainty bounds produced by the two calibration strategies stems from
their underlying assumptions, i.e., assumption that GCMs project realistic absolute values
and temporal structures (BC methods) or that they only project reliable relative changes (CF
methods).
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The choice of GCMs has been acknowledged as one of the main uncertainty sources in
climate change impact assessments. Compared to the GCMs, the downscaling methods
adopted played a relatively less influential role in the downscaled temperature. When
downscaling precipitation, however, the uncertainty associated with the choice of
downscaling methods is comparable to the GCM uncertainty, which is in agreement with
previous studies (Chen et al. 2013). Moreover, downscaling methods played a dominant role
on downscaling the low precipitation intensity owing to the frequent occurrence of wet days
with small precipitation amounts. The influence of GCMs increased when the temporal step
of downscaled variable was aggregated from daily to monthly scale. For monthly
precipitation, the large increase of downscaling-method variance from the single-strategy
case to the all-method case indicates that the choice of calibration strategies is the main
source of downscaling methods uncertainty.

The bias correction based methods resulted in relatively more percentages of total variance
than the change factor based methods at each percentile of the probabilistic distributions of
downscaled variables. In other words, the choice of transformation methods is more
influential when with bias correction strategy. This implies that the bias-corrected GCM
outputs vary with the different transformation methods, while the relative changes
projected by GCMs can be described by different transformation methods in better
agreement. The interaction uncertainty between GCMs and the change factor based
methods is larger than that between GCMs and the bias correction based methods, which
indicates that the difference due to the choice of transformation methods is more
dependent on the employed GCMs when implementing change factor strategy.

When excluding the sub-optimally performing transformation methods, the results of the
monthly precipitation were similar to the results including all methods (comparing Figure 3.8
and 3.9). However, the results of the daily precipitation intensity were quite different. This
indicates that a large proportion of the downscaling method induced variance in
precipitation intensity was mainly due to the sub-optimally performing transformation
methods. The choice of GCMs became the dominant source of uncertainty in the case of the
single calibration strategy. The influence of downscaling methods increased when the
differences due to the calibration strategy were taken into account, which reiterates that
more uncertainty is introduced by the -calibration strategies than the statistical
transformation methods.
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Chapter 4 Hydrological modelling in
the context of climate change

This chapter assesses the uncertainty associated with the hydrological modelling, with
particular reference to parameter calibration, when assessing the hydrological impacts of
climate change on river flows.

4.1 Introduction

The focus of previous impact-related research that considered parameter uncertainty has
been toward addressing the equifinality effect (Beven and Freer 2001), i.e., different sets of
parameters lead to equally good model performances. There has not been a consensus on
the role of the uncertainty arising from parameter equifinality. Wilby and Harris (2006)
proposed a probabilistic framework for combining information from multiple emission
scenarios, GCM structures, statistical downscaling methods, and hydrologic model
parameters and structures over the River Thames. Their results indicate that uncertainty in
hydrological model parameterization has greater influence on high flows than low flows. In
contrast, New et al. (2007) found that low flows of River Thames are most sensitive to
parameter uncertainty using the same hydrological model as Wilby and Harris (2006)’s study
but different GCM projections. Tian et al. (2013) assessed the uncertainty in high and low
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flows due to model structures and parameters over two rainfall-dominated basins in China.
Their results show that the parameter uncertainty of the high flows becomes larger as the
discharge increases, and the influence of parameter uncertainty differs with different model
structures. Similar results were found in the study of Bastola et al. (2011), who investigated
the role of hydrological modelling uncertainties in climate change impact assessment of four
Irish catchments. Moreover, they also demonstrated that prediction uncertainties from
model parameterization varied among catchments and grew wider in time when moving
from the period of 2050s to the period of 2070s. Jung et al. (2012) investigated the
parameter uncertainty by sampling the behavioural model parameters (determined
according to a statistical performance measure) and obtained the result that hydrological
parameter uncertainty has more effect on snow-dominated regions than a rain-dominated
basin. The aforementioned studies highlight the importance of conducting uncertainty
analysis on the equifinality effect of model parameters on a case by case basis.

Besides the uncertainty associated with the equifinality of parameter sets, an additional
uncertainty emerges when applying calibrated hydrological models under the future
condition which differs from the condition in the calibration period. Merz et al. (2011)
claimed that “care needs to be taken when using calibrated parameters for projecting into
the future due to the potential large errors caused by a transient climate”. The implicit
assumption of using hydrological models is that the models calibrated based on historical
records are still valid for other periods outside of the calibration period. Whether this
assumption still holds in the future under a changed climate is a critical question that has not
been well answered. There have been a few studies aimed at validating this assumption over
different catchment sets and models (Wilby 2005, Vaze et al. 2010, Merz et al. 2011, Coron
et al. 2012, Li et al. 2012). Most of the previous findings observed increased model errors
when the climatic conditions between calibration and validation periods are different. In
these studies, differential split-sample tests (KlemeS 1986) have been used to evaluate the
transferability of calibrated hydrological models to a differing climatic condition.

Since the issue of identifying and understanding the transferability of hydrological model
parameters to a contrasted climate has not been well resolved, significant uncertainty could
emerge from the choice of the calibration periods that represent specific climatic
characteristics. Unfortunately, the assessment of this uncertainty is usually ignored in the
impact analysis. Brigode et al. (2013) investigated parameter uncertainty of two rainfall
runoff models in the context of climate change impact assessment over 89 catchments in
northern and central France. They found that the dependence of the parameter sets on the
climate characteristics of the calibration periods had a significant contribution to the
variability in projected future streamflow. Wilby (2005) found that for a simple water
balance model the uncertainty in projected river flow changes due to choice of training
periods was comparable to the uncertainty due to future greenhouse gas emission
scenarios, although the uncertainty due to the choice of training periods is smaller for a
more complex water balance model. The previous findings prove the need of routinely
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carrying out the uncertainty assessment of hydrological modeling in the context of climate
change impact studies.

This chapter assesses the uncertainties associated with the parameter calibration of a
conceptual rainfall-runoff model when assessing the impacts of climate change on river flow
in the sub-basin upstream of the Bengbu City (see Figure 1.1). The scope of this chapter
includes 1) testing the transferability of hydrological model parameters among differing
climatic conditions; 2) assessing the relative magnitude of uncertainties in projected future
river flow arising from the choice of calibration periods and the equifinality effect. The
results will provide a basis for the hydrological impact assessment of climate change.

The four-step methodology in this chapter is shown as below:

N
e |dentification of calibration and validation periods
J
N
e Calibration of the hydrological model
e |entification of bahaviour parameter sets
J
. . . . \
e Split Differential Sampling Test
e Assess the transferability of parameters in the context of historical climate
variability
J
N
e Force future climate projections into the hydrological model calibrated from
differen periods
¢ Assess the uncertainties associated with the hydrological parameters )

Figure 4.1 lllustration of the methodology in Chapter 4
4.2 Differential split-sample test

For the hydrological modelling under climate change, hydrological models are commonly
required to perform under a changed climate condition for the future projections. The
“differential split-sample test” (KlemeS 1986) is able to test whether the hydrological models
calibrated under the present-day climate can be used to project reliable river flow under a
contrasting climate in the future. In this test hydrological models are calibrated and
validated under contrasting climatic conditions. Historical records are divided into sub-
periods to represent different climatic conditions.
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Figure 4.2 Annual area-mean rainfall of the sub-basin upstream of Bengbu with the selected calibration
periods

The basin-mean annual rainfall series was used to determine the periods with various
climatic conditions. The segment from 1992 to 1995 with consecutive annual rainfall less
than the multi-year mean was selected as “dry” period. The segment from 1982 to 1985 with
consecutive annual rainfall greater than the multi-year mean was selected as “wet” period.
The segment from 1967 to 1972 was considered as “mean” period because the consecutive
annual rainfall is within £5% of the multi-year mean, while the segment from 1998 to 2003
was considered as “diverse” period because the consecutive annual rainfall has the highest
variance. The hydrological model was calibrated on each of the four periods and validated
on the remaining periods in turn. A 1-year warm-up period was considered for each

calibration.
Table 4.1 Statistics of the full records and the sub-periods
Full period Dry Mean Wet Diverse
Periods 1961-2005 1992-1995 1967-1972 1982-1985 1998-2003
Annual cumulative rainfall (mm/yr) 911.0 782.2 927.6 1068.6 969.6
Annual mean temperature (°C) 15.0 15.4 14.5 14.5 15.6

For comparison, the whole historical period was also divided into three calibration periods
with equal length: 1961-1975, 1976-1990 and 1991-2005. Each of the 15-year period is
considered to contain sufficient information for model calibration, and the difference
between the periods is considered as historical climatic variability. The parameters
calibrated from the three periods were used to generate the future flow series under climate
change.

A relatively short length of data (4 or 6 years) was used to calibrate the hydrological model,
and the calibrated parameters were transferred to the validation periods with different
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lengths from that of the calibration period. The influence of the length of the calibration
period on the objective function was not considered in this study. Theoretically, a better
calibration should be achieved by a longer set of data. However, model performance over
the 4-year period was close to the model performance over the 15-year period. For example,
the behavioural parameters calibrated from the period of 1998-2003 resulted in the NSE
values ranging between 0.9-0.92, and the behavioural parameters calibrated from the period
of 1991-2005 resulted in the NSE values ranging between 0.89-0.92. The previous studies
also show the evidence that model performance is not dependent on the length of
calibration data (Sorooshian and Gupta 1983, Yew Gan et al. 1997). Moreover, the analysis
here is focused on comparing the changes in model performance between the validation
results and the calibration results in each period. Thus, the influence of different lengths of
calibration periods was ignored.

4.3 Xinanjiang Hydrological model

The Xinanjiang Model is a conceptual rainfall runoff model developed by Zhao (1992) in
1973. Its main feature is the concept of runoff formation on repletion of storage, which
means that runoff is not produced until the soil moisture content of the aeration zone
reaches field capacity, and thereafter runoff equals the rainfall excess without further loss.
The generated runoff was originally separated into two components (surface water and
groundwater) using Horton’s concept. The model was updated by introducing interflow as
an additional component in 1980. The three-runoff-component Xinanjiang Model has been
successfully and widely used over humid and semi-humid regions in China.
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Figure 4.3 Flow chart of the Xinanjiang model (Zhao 1992)

The symbols outside the blocks are the parameters, and their definitions are given in Table 4.2. The symbols inside the
blocks are the inputs, outputs and state variables, and the definitions are given below. E is the actual evapotranspiration
from the whole basin; and EU, EL and ED are the actual evapotranspiration from the upper, lower and deep layers,
respectively. P is the areal mean rainfall. EM is the measured pan evaporation. IM is the fraction of the impervious area.
R is the generated runoff with three components: RS (surface runoff), Rl (interfiow), and RG (groundwater flow). FR is the
variable runoff producing area. W is the areal mean tension water storage with the components WU, WL, and WD in the
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upper, lower, and deep components, respectively. S is the areal mean free water storage. T is the total sub-basin inflow
to the channel network. Q is the discharge from a sub-basin consists of the components QS, Ql, and QG which
representing surface runoff, interfiow, and groundwater, respectively.

In the traditional Xinanjiang model, the outflow hydrograph is simulated for each sub-basin
and then routed along the channels to the main basin outlet. The flow chart is shown in
Figure 4.3. The inputs to the model are the measured areal mean rainfall depth (P) and the
measured pan evaporation (EM) on each sub-basin. The outputs are the discharge from each
sub-basin (Q), the sum of which is the outlet discharge from the whole basin, and the actual
evapotranspiration from the whole basin (E), which is the sum of the evapotranspiration
from the upper layer (EU), the lower layer (EL), and the deep layer (ED). The symbols for the
state variables are shown inside the blocks of Figure 4.3, and parameters are shown outside
the corresponding blocks, and their definitions are given in Table 4.2. The model structure
consists of four parts: evapotranspiration calculation, runoff generation, separation of runoff
components and flow routing.

Table 4.2 Parameters of Xinanjiang model and their ranges in calibration

Structures Notations Definition Sensitivity Range/Value
Ratio of potential evapotranspiration to pan
K fp. P P P sensitive 0-2.5
evaporation
UM Tension water storage capacity of the upper Relatively not 2
S layer (mm) sensitive
Evapotranspiration -
| . Tension water storage capacity of the lower Relatively not
calculation LM o 100
layer (mm) sensitive
Evaporation coefficient of the deep layer, which R
) . Relatively not
C depends on the proportion of the basin area it 0-0.3
sensitive
covered by vegetation with deep roots
Areal mean tension water storage capacity Relatively not
WM - 200
(equal to the sum of UM LM, DM) (mm) sensitive
Exponent parameter with a single parabolic
) curve, which represents the non-uniformity of Relatively not
Il | Runoff generation B hich repres: runtrormity ey 0.65
the spatial distribution of the soil moisture sensitive
storage capacity over the sub-basin
M The percentage of the impervious Relatively not 0.02
area of the sub-basin sensitive '

Areal mean free water capacity of the surface
M soil layer, which represents the maximum sensitive 0-80
possible deficit of free water storage (mm)

Exponent of the free water capacity curve

Separation of Relatively not

EX influencing the development of the saturated » 1.5
I | runoff sensitive
area
components Outflow coefficient of the free water storage to .
KG sensitive 0.01-1
groundwater
Outflow coefficient of the free water storage to
Ki ) 4 Z f the fi g sensitive 0.01-1
interflow
cl Recession constant of the interflow storage sensitive 0.1-1
Runoff cG Recession constant of the groundwater storage sensitive 0.8-1

. Recession constant in the Lag and Route
IV | concentration and i .
X cs method for water routing through the channel sensitive 0.1-1
flow routing s .

system within each sub-basin

L Lag parameter in the Lag and Route method sensitive 2
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Evapotranspiration calculation: Evapotranspiration is calculated through a three-layer soil-
moisture model.

Until the storage of the upper layer (WU) is exhausted, the evapotranspiration of the upper
layer (EU) is equal to the potential evapotranspiration which is proportional to the pan
evaporation with the proportional parameter K. On exhaustion of the upper layer (capacity
UM), any remaining potential evapotranspiration is applied to the lower layer, but the
efficiency is modified by multiplying the ratio of the actual storage (WL) to the capacity
storage (LM) of the lower layer. When the storage of the lower layer is reduced to a
proportion C (the evaporation coefficient of the deep layer) of LM, the evapotranspiration in
the deep layer (ED) occurs.

Since the future pan evapotranspiration cannot be measured, the Blaney-Criddle method
(Blaney and Criddle 1950) was used to estimate the potential evapotranspiration:

PET = kp(0.46T + 8.13) 4-1

where, PET is daily potential evapotranspiration, T is daily mean temperature in °C, p is the
percentage of the daytime hours for each day out of total daytime hours of the year, and k is
a monthly consumptive use coefficient, depending on vegetation type, location and season.
This method has been commonly used to calculate the reference crop evaporation.
According to (Blaney and Criddle 1950) for the growing season (May to October) k varies
from 0.5 for orange tree to 1.2 for dense natural vegetation. In this study, the monthly
consumptive use coefficient k is integrated into the evapotranspiration coefficient K in the
Xinanjiang Hydrological model and is determined through the model calibration.

Runoff generation:

The Xinanjiang Model considers a non-uniform spatial distribution of soil moisture deficit
and storage capacity in the catchment. The key hypothesis of the model is that the runoff at
a point only occurs when the tension water capacity at that point is reached. A tension water
capacity curve was introduced to represent a non-uniform distribution of the tension water
capacity throughout the sub-basin. The relationship between the proportion of the area
producing runoff and the tension water capacity at a point can be described as:

,B
d_szzl_(l_M) W< WM
dp F wM 4-2
Z—’;=1 W =>WwM

where WM’ is the tension water capacity at a point, WM is the areal mean tension water
capacity, B is an exponent parameter, R is runoff, P is rainfall, F is the total area of a sub-
basin, and f represents the pervious area of F. f/F represents the proportion of the pervious
area of the basin whose tension water capacity is less than or equal to WM’.
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Separation of runoff components: The concepts of free water storage (S) is used to separate
the generated runoff (R) into three components: surface runoff (RS), interflow (RI) and
groundwater (RG). The free water storage capacity at a point is assumed to be distributed
between zero and a point maximum value in a parabolic manner over the portion of the area
which is currently producing runoff. The parabola is described by the parameters of areal
mean free water storage capacity (SM) and the exponent of the free water capacity curve
(EX). The component of surface runoff (RS) is determined by this parabola. The remainder of
the runoff becomes an addition, AS, to the free water storage S, which in turn contributes R
laterally to inflow and RG vertically to groundwater. Rl and RG are proportional to the free
water storage with the proportional parameter K/ and KG, respectively.

Runoff concentration and flow routing:

The surface runoff directly enters the channel system. The interflow component and the
groundwater component are routed through linear reservoirs representing interflow and
groundwater storage, respectively. The linear reservoirs are dependent on the recession
constants of the interflow storage (Cl) and the groundwater storage (CG), respectively. The
sum of the three flow components is the total inflow to the channel network. The total
inflow to the channel network is routed to the basin outlet using "Lag and Route" method
with parameters L and CS.

Due to the data availability of the historical records and the future climate projections, the
lumped version of the Xinanjiang Model is used in this study, i.e., the basin-mean daily
rainfall and temperature data were used as the model inputs and the output is the simulated
daily discharge at the basin outlet (Bengbu). According to the sensitivity of the model
performance to the parameters, the parameters that were calibrated and analysed are
emphasized by the bold and italic symbols in Table 4.2, and the ranges of values from which
the calibration takes are also shown. The values of the less sensitive parameters are assigned
according to the recommendations of the previous applications and a preliminary sensitivity
analysis.

Model calibration and performance criteria

The Huai River is regulated by hydraulic structures (e.g., reservoir and sluices). To exclude
the influence of human interventions, the hydrological model was run at daily step but
calibrated at monthly step with the consideration that the influence of hydraulic structures
on monthly water volume is not significant. The objective functions were calculated for
monthly mean discharge series. Two objective functions were selected: the Nash-Sutcliff
Efficiency (NSE) and the percentage volume error (PVE).

NSE is a common measure of goodness-of-fit to evaluate hydrological model performance.
NSE primarily focuses on the peaks and high flows of the hydrograph (Krause et al. 2005),
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but it is also influenced by extreme low flow events and, thus, can be a good individual
calibration target in highly variable flow regimes (Price et al. 2012). NSE is defined as

N (Mi-0)?

NSE=1-— —%gill((oi-a))z 4-3
where 0; and M; are the observed and modelled monthly mean discharge at the month i,
respectively; O is the observed mean monthly mean discharge, and N is the number of
months. The higher the NSE is, the better performance the model produces. Monthly fits of
the models can be considered ‘very good’ when NSE for these individual fits is greater than
0.75, ‘good’ when NSE is between 0.65 and 0.75, and ‘satisfactory’ when NSE is between 0.5
and 0.65 (Moriasi et al. 2007).

PVE is used to assess the water balance over the calibration period. It provided information
on the agreement between observed and modelled total discharge, which is defined as
_ = i-0p)|

PVE = 2=

0 -
o, x100% 4-4

where 0; and M; are the observed and modelled monthly flow at the month i, respectively;
and N is the number of months. Monthly fits of the models can be considered ‘very good’
when the absolute value of the volume error for these individual fits is less than 10%, ‘good’
when the error is between 10% and 15%, and ‘satisfactory’ when the error is between 15%
and 25% (Moriasi et al. 2007). Here, PVE is used as a constraint, i.e., the behavioural
parameter sets should result in the value of PVE less than 10%.

The Monte Carlo simulation is commonly used to explore the behaviour parameter space of
hydrological models (Wilby and Harris 2006, New et al. 2007, Jung et al. 2012). Here, the
Monte Carlo simulation was employed to address the effect of parameter equifinality, i.e.,
the phenomenon that different parameter sets lead to equally good model performance. For
each calibration period, the Monte Carlo simulation was undertaken with 1 000 000 runs for
the Xinanjiang model; each run randomly generated parameter values drawn from plausible
ranges (see Table 4.2). Each parameter set was used to generate daily flow at Bengbu given
observed daily rainfall and temperature. The 1000 best parameter sets for each calibration
period were selected as “behaviour” parameter sets according to the goodness-of-fit
measures defined above. Then, the hydrological model were run with the behaviour
parameter sets to simulate daily flow at Bengbu during the validation periods for the
differential split-sample test as well as during future period under changed climate.

To assess the ability of the hydrological model simulating historical discharges, the annual
discharge (m®/s) and annual maximum 30-day mean discharge (AM 30d discharge) (m>/s)
were analysed when transferring the parameters to the different validation periods. The
relative bias of the multi-year mean was used as performance criterion to give information
about the errors of the model simulations against the observations, which is given as
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S|

Bias = x100% 4-5

o

where M and O are the modelled and observed multi-year mean values of the flow
character.

The annual maximum 30-day mean discharge was selected as flood index with the
underlying assumption that the water withdrawing from the river in wet years can be
ignored and the dams and sluices in the upstream don’t have significant influence on the
outlet at the downstream. The effect of land use change was not taken into account in the
calibration, and it is assumed that the land use in the basin stays unchanged in the future.

4.4 Future climate information and performance criteria

The daily precipitation and temperature projected by four GCMs from the CMIP5 were
selected to provide the future climate information (See Table 4.3). All GCM projections were
obtained under a high greenhouse gas emission scenario (RCP 8.5). The gridded projections
were downscaled to the station scale using the mean-based change-factor downscaling
method (the so-called delta change method) (Prudhomme et al. 2002, Fowler et al. 2007)
and then aggregated to provide areal mean input for the hydrological model. Following the
common practice, the period from 1961 to 1990 was selected as baseline period and the
period from 2071 to 2100 was selected as the future period. The selected GCMs project the
future climate that is wetter than the climate of the baseline period with the increase
ranging from 9.8% to 43.5%.

Table 4.3 Statistics of climate projections

GCM1 GCM2 GCM3 GCM4
Model name CCSM4  BCC-CSM1.1  MPI-ESM-MR HadGEM2-ES
Country-Modelling Center USA-NCAR  China-BBC Germany-MPI-M UK-MOHC
Resolution (° lon x lat) 1.25%0.94 2.8x2.8 1.875x1.875 1.875x1.25

Annual rainfall (mm/yr) and the relative change
against the baseline observation (%)

Annual mean temperature (°C) and the change (°C)
against the baseline observation

994 (+9.8) 1017 (+12.3) 1142.9 (+26.1) 1300.3 (+43.5)

19.2 (4.4)  19.6 (+4.8) 19.6 (+4.8) 20.8 (+6.0)

To assess the uncertainty in the projected future river flow, the relative changes in the
projected future annual mean discharge and AM 30d discharge against the observations in
the baseline period were calculated. The relative magnitudes of the uncertainties from
different sources were assessed using the analysis of variance. The projected relative
changes were grouped by the choice of the calibration periods, and the total sum of squares
of the relative changes was partitioned into two components: the sum of the squares of the
differences of group means from the grand mean (representing the uncertainty stemming
from the choice of the calibration periods) and the mean of the sum of the squares of the
differences of the projected relative changes from their group mean (representing the
uncertainty stemming from the equifinal parameter sets).
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SStot = SScari + Ssequi 4-6

SSeqii = Lizani(8; — A)? 4-7
. —\2

SSequi = 2i=1 Z;l;l(Aij —A;) 4-8

where SS;,; is the total sum of squares, SS.,;; is the sum of squares resulted from the choice
of the calibration periods, SS,4,; is the sum of squares resulted from equifinal parameter
sets, A;j is the projected relative change using the parameter set j calibrated from the
calibration period i, A; is the group mean of the results from the calibration period i, A is the
grand mean, n; is the number of the samples in group i and c is the number of the groups.

The relative magnitudes of the uncertainties from the choice of the calibration periods and
the equifinal parameter sets were calculated as the percentages of the corresponding sum
of squares over the total sum of squares.

4.5 Parameter transferability under historical climate variability

4.5.1 Calibration and validation of the parameters over different periods -
comparison of NSE

The scatter plots of the parameter values against the NSE values resulted from the four
calibration period are shown in Figure 4.4. The hydrological model has a poor performance
over the dry period with NSE less than 0.6, which is around the performance rating of
satisfactory. The model return NSE up to 0.83 in the mean period and higher than 0.9 in the
wet and diverse periods. The identification of the parameters which control water balance (K
and C) is greater than other parameters. The evaporation coefficient C showed greatest
identifiability in the dry period and poor identifiability in the wet period. The identifiability of
other parameters did not show difference among the calibration periods. NSE values varies
little across a wide range of the parameter KG, CS and other water routing parameters (Cl
and CG, not shown), which highlights the non-uniqueness of the optimal parameter sets, i.e.,
different combinations of the parameter values lead to equally good model performances.

The parameter identification does not vary much with the difference in the climatic
specificity of the calibration periods. The identification of the parameters related to the
water balance is good, while the parameters related to the water routing has a poor
identification. The poor identification of the parameters related to water routing is due to
the monthly objective functions used to calibrate the model. Moreover, the study area is a
large river basin containing many tributaries, while the inputs and parameters of the
hydrological model are areal means over the whole basin area. The only observation of
discharge at the basin outlet cannot guarantee the calibration of the accurate parameters
related to water routing. The influence of the hydraulic structures may also attributes to this
issue.
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Figure 4.4 Identifiability of the Xinanjiang model parameters calibrated from the dry, wet, mean and diverse
sub-periods

The transferability of model parameters between calibration periods is tested using
Differential Split-Sample Test. The parameter sets determined form each calibration period
were validated on the remaining three sub-periods, respectively. 1000 best performed
parameter sets were selected from each calibration period to take account of the
equifinality effect. The boxplots of model performances on each validation period are shown
in Figure 4.5. For comparison, the model performances during the calibration for each sub-
period are also shown in the figure.

For each validation period, the parameters from the diverse period provided the best overall
model performance, while the parameters from the dry period resulted in the largest spread
of model performances. There is a general decrease of model performance on each sub-
period when using the parameters calibrated from other periods. The decrease is the most
obvious on the dry period, where most of the parameters calibrated from other sub-periods
lead to very poor model performances. When validated on the mean period, the parameters
from the wet period and the diverse period resulted in higher values of NSE than those from
the dry period. When validated on the wet period, the parameters from the other sub-
periods led to comparable averaged model performance, but the parameters from the dry
and mean periods resulted in larger spread of model performances than the parameters
from the diverse period. There is also a large spread in the results of the parameters from
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the dry period when validated on the diverse period. The parameters from the mean and
wet periods have similar average performances when validated on the diverse period,
although the spread of the results from the wet-period parameters is larger.
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Figure 4.5 Model performances on sub-periods with the parameters calibrated from different calibration

periods

The above results show that parameters calibrated from the diverse period provide relative
more robust model performance compared with those calibrated from other periods.
Although the model performance during the calibration is poor, some of the parameters
calibrated from the dry period can result in good model performances when transferred to a
wetter period. The transferability of the parameters from a wet period to a dry period is
poorer than that from a dry period to a wet period.

It is notable that the hydrological model used here had much poorer performance on the dry
period compared to other periods. This could be related to the issues of data quality and the
simulative ability of the hydrological model. In the dry period, the sluices at the river were
operated more often to preserve water for the nearby water withdrawing, which may
influence the water balance in the model calibration. Moreover, there are both high-flow
information and low-flow information in the wet periods due to the seasonality, while the
dry period contained less high-discharge event, which makes it difficult to obtain accurate
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parameters. On the other hand, the Xinanjiang Model is designed for simulating the rainfall-
runoff process in the humid or semi-humid basin, and the runoff is generated when the soil
moisture content of the aeration zone reaches field capacity. In the continuous dry period
the antecedent soil moisture is at a low level. The runoff may be generated when the rainfall
intensity exceeds the infiltration rate before the soil moisture storage is reached. Moreover,
the spatial variability of rainfall cannot be represented by the areal-mean input, which is also
likely to have more impact on the dry period than the wet period.

The transferability of parameters was also carried out among the 15-year calibration periods
(see Figure 4.6). Similar with the previous analysis, the spread of NSE increases when the
parameters were transferred to other periods. The simulative ability of the parameters
transferred to other periods is acceptable as all the NSE were greater than 0.65, which again
indicates that the calibration period containing various information leads to robust model

simulation.
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Figure 4.6 Model performances on three-split sub-periods with the parameters calibrated from different
calibration periods
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4.5.2 Model simulations over different periods - comparison of bias
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Figure 4.7 Spread of the biases in the simulated flow characters (annual mean discharge at the top and AM
30d discharge on the bottom) on the validation periods using the parameters calibrated from different
calibration periods

The spread of the biases in simulated annual mean discharge and AM 30d discharge when
transferring the parameters to the different periods is show in Figure 4.7. The calibration
bias, i.e., the simulation bias for a period which uses the parameters calibrated from that
period, is also shown in the figures for the sake of comparison. When transferring the
parameters calibrated from the dry period to wetter periods, the hydrological model tended
to underestimate the mean discharge and the AM 30d discharge. The model performance is
worse on the mean period (with the absolute value of the biases greater than 20%) than on
the wet and diverse periods. When the parameters calibrated from the mean period were
transferred to the other periods, the model tended to overestimate the flow characters.
When transferred to the wetter periods, the parameters generated reasonable mean
discharge (with the absolute value of the biases less than 0.2), but most of them resulted in
large biases in the AM 30d discharge. Most of the parameters calibrated from the wet period
generated reasonable simulations when transferred to the diverse period, vice versa. Both of
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the parameter sets from the wet and diverse periods tended to generate wet biases in the
dry period and dry biases in the mean period, as shown in the results of mean discharge.

The results show that when transferring the parameters calibrated from wetter periods to
the dry period, considerable wet biases were generated in the discharge. Conversely, when
transferring the parameters calibrated from the dry period to wetter periods, dry biases
were generated. However, contrary results are observed for the transferring among the
mean and wetter periods. The parameters calibrated from the mean and diverse periods are
able to generate reasonable simulations of mean discharge in the wet period, but they tend
to overestimate the extreme. There is a relatively good transferability between the
parameters calibrated from the wet period and the diverse period.
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Figure 4.8 Statistics of simulation biases against percentage differences in rainfall between the validation
and calibration periods. The sub-figures at the top show the mean simulation bias for mean discharge (left)
and the AM 30d discharge (right); the sub-figures at the bottom show the increase in the spread of
simulation biases for mean discharge (left) and the AM 30d discharge (right). The labels below the dots show
the pairs of calibration/validation periods.

The dependence of simulation bias on the difference in annual rainfall between the
validation and calibration periods is shown in Figure 4.8. The positive values on the x-axis
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represent the simulation results where the rainfall in the validation period is greater than
the calibration period and vice versa. The top row shows the scatter plot of the mean bias
resulted from the equifinal parameter sets against the percentage difference in annual
rainfall between the validation and calibration periods. The mean bias greater than zero
represents an overestimation, and the mean bias less than zero represents an
underestimation. The bottom row shows the increase in the spread of bias, which is
calculated as the ratio between the standard deviation of bias resulted from equifinal
parameter sets on the validation period and the standard deviation of bias resulted from
equifinal parameter sets on the calibration period. The ratio greater than one representing
an increase in the spread of the results due to equifinality, and the ratio less than one
representing a decrease in the spread of the results due to equifinality. The statistics for
annual mean discharge is shown in the left panel, and the statistics for AM 30d discharge is
shown in the right panel.

For the simulations of annual mean discharge, the absolute value of bias increases when the
difference between the rainfall in the validation and calibration periods gets larger.
Moreover, the increase of bias is generally greater when the parameters calibrated from a
wet period are transferred to a drier period compared to the other way around. Similarly,
the spread of bias resulted from equifinal parameter sets also generally increases with the
difference between the rainfall in the validation and calibration periods, and the increase is
greater when the parameters calibrated from a wet period are transferred to a drier period
than the other way around. The results indicate that the calibrated parameters have a
relatively better transferability in simulating annual discharge when being transferred to a
wetter period compared to when being transferred to a drier period. The model
performance decreases with the increase in the rainfall difference from the in the calibration
period.

For the simulation of extreme discharge, the scatter of the bias is large. The results of the
parameters calibrated or validated over the dry period show a different trend compared to
the results of transferring between other periods, i.e., the absolute values of bias decreases
when the difference in rainfall between the validation and calibration periods increases. For
transferring the parameters between the mean, wet and diverse periods, the
overestimations occur when the parameters are validated on a wetter period, and the
underestimations occur when the parameters are validated on a drier period. A general
increase in the spread of bias is found when transferring the calibrated parameters to a
different period; the exceptions lies in the calibration/validation pairs of wet/mean,
wet/diverse, diverse /mean and dry/mean, which indicates less spread in the results due to
equifinal parameter sets. The increase in the spread of bias due to equifinality is up to twice
of the spread in calibration. In contrast with the result of the mean discharge, the influence
of equifinality on the extreme discharge does not differ much whenever the parameters
were calibrated to a drier period or a wetter period.
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4.6 Uncertainty in projecting future river flow

Mean of change(%)

200

150

100

50

50

GCM1

GCM2

GCM3

GCM4

SH+

. *o +

200

150

100

50

-50

SH+

200

4 150

4 100

50

50

200

150

100

SH+

sof°*

50

o+

Mean Q

2 5 10 203050 100
Retumn period of Am30d Q

Mean Q

2 5 10 2030 50 100
Return period of Am30d @

Mean Q

2

5 10 203050 100
Retumn period of Am30d Q

Mean Q

5 10 203050 100
Return period of Am30d Q

Figure 4.9 Projected changees in mean discharge and AM 30d discharge resulted from the five GCMs using
the parameters calibrated from different periods. (Dot, cross, start and diamond represent the results of
using the parameters calibrated from the dry, mean, wet and diverse periods, respectively).

Since the uncertainty caused by transferring the model to a different climate is investigated
here, the future relative change was calculated against the observation in the baseline
period with the underlying assumption that the simulation biases from different calibration
periods are at the same magnitude in the baseline period. Figure 4.9 shows the projected
changes in the future river flow. For each GCM, mean values of the projected changes in the
extreme discharge resulted from the equifinal parameter sets calibrated from each
calibration period are plotted against return periods. Mean values of the projected change in
the multi-year mean annual discharge is also shown at the left of each subfigure for the sake
of conciseness. According to the projected annual rainfall, the GCM1 to GCM4 represent the
future climate that is 9.8%, 12.3%, 26.1% and 43.5% wetter compared to the climate in the
baseline period, respectively.

The employed GCM is a dominant influence for the future changes in the multi-year mean
annual discharge. The increase in the projected discharge is not proportional to the increase
of annual rainfall. The projected changes in mean discharge resulted from the parameters
calibrated on the wet, mean and diverse periods are close to each other (with the difference
less than 25%).The hydrological model calibrated over the dry period generated much lower
mean annual discharge compared to the model calibrated over the wetter periods, which is
in line with the model performances in the Differential Split-Sample Test.

For the results of extreme flow, greater change is observed at the high-return period
extreme discharge compared to the low-return-period extreme discharge. The spread of the
changes between different calibration periods gets larger when the projected annual rainfall
increases especially for the change in the low-return-period extreme discharge, which
implies that the difference due to the choice of the calibration periods increase when the
future climate gets wetter. The hydrological model calibrated from the mean and diverse
periods resulted in higher extreme discharge compared to the dry and wet periods. Although
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GCM1 and GCM2 projected slightly increase in the annual rainfall, the hydrological model
calibrated over the mean and diverse periods projected the increase of more than 50% in
the high-return-period extreme discharge.
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Figure 4.10 Percentages of total sum of squares resulted from the difference in the choice of differing
calibration periods and the equifinal parameter sets

To compare the relative magnitudes of the uncertainties, the total uncertainty in the flow
characters resulted from each GCM projection is partitioned into two parts: the uncertainty
stemming from the climatic specificity of the calibration periods and the uncertainty
stemming from equifinality. The magnitude of the uncertainty is represented by the
proportion of the sum of squares. Figure 4.10 shows the percentage of total sum of squares
resulted from the two sources of uncertainty. The results of mean annual discharge
suggested by the four GCMs are shown in the left, and the results of 10-year-return-period
and 100-year-return-period of the extreme discharge is shown in the middle and right,
respectively.

The uncertainty stemming from the climatic specificity of the calibration periods is larger
than the uncertainty due to equifinality. For the mean annual discharge and low-return-
period extreme discharge, the percentage of the sum of squares caused by the climatic
specificity of the calibration periods takes around 80% of the total sum of squares. The
influence of equifinal parameter sets gets larger in the high-return-period extreme discharge
in a wetter future climate (up to 34%).
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Figure 4.11 Percentage of total sum of squares resulted from the difference in the choice of long-length
calibration periods and the equifinal parameter sets
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The selected calibration periods above represent only the segments of the whole historical
record with contrasted climatic specificities. In the common practice, the longer length of
data is used to provide as much as possible information for the calibration. It is considered
that robust parameters will be calibrated provided by the sufficient information contained in
the calibration period. Even using the longest available data, the selected periods only
represent part of the historical climate, additional uncertainty may be introduced by the
screening of different historical periods to the future flow projections. To analyse this, the
45-year historical record was divided into three 15-year continuous sub-periods. 1000
behavioural parameters were calibrated from each of the sub-periods to account for
equifinality.

The uncertainty due to the choice of the calibration periods takes the majority of the total
uncertainty in the projected mean annual discharge, but the percentage decreases when the
future climate is projected to be wetter. For the low-return-period extreme discharge, the
uncertainty due to equifinal parameter sets takes around 40% of the total sum of squares in
a climate that is close to the historical condition (GCM1 and GCM2), while this uncertainty
takes more than half of the total sum of squares in a wetter climate. For the extreme
discharge with high return periods, the uncertainty due to equifinal parameter sets accounts
slightly more than the uncertainty due to the choice of calibration periods.

4.7 Discussion

Transferability of parameters

The Differential Split-Sampling Test allows testing the transferability of hydrological model
parameters to a different period in the context of historical climate variability. The
examinations of model errors reveal that the parameters calibrated from climatic-specified
periods are not equally transferrable. Better transferability of the parameters calibrated
from a dry period to a wet period was observed than the other way around. The parameters
calibrated from the diverse period showed the highest transferability to other periods. This
is understandable as the diverse period contains both high-flow and low-flow, which enables
all the parameters well calibrated. Dry biases in the simulated mean discharge were
observed when transferring the parameters calibrated from a dry period to a wet period;
conversely, wet biases were observed when transferring the parameters calibrated from a
dry period to a wet period. The bias increased with the increase of the difference in rainfall
between the calibration and validation periods. Similar results have found in previous
studies (Yew Gan et al. 1997, Vaze et al. 2010, Li et al. 2012).

It is notable that the parameters calibrated from the mean period generated overestimated
mean discharge when validated on the wet period. This exception is attributable to the
rough simulation of potential evapotranspiration used in this study, where potential
evapotranspiration (PET) is proportional to daily mean temperature. The mean period had
the same simulation of mean PET compared to the wet period since the mean temperature
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were the same in the two periods. Less water supply leads to less actual evapotranspiration
given the same PET. The value of evaporation coefficient K calibrated from the mean period
was thus smaller than the value calibrated from the wet period. Overestimation of mean
discharge was generated when transferring K from the mean period to the wet period. The
same reason explains the higher values of future discharge suggested by the parameters
calibrated from the mean period. Introducing more climatic variables may improve the
estimation of PET. It is also suggested that the influence of temperature should be
considered when determining the climatically contrasting periods (an example can be seen
in the study of Seiller et al. (2012)).

There is not a straightforward influence of parameter transferring on AM 30d discharge.
Underestimation was observed when transferring the parameters calibrated from the dry
period to a wetter period, and overestimation was observed when the parameters were
transferred to the dry period. However, the opposite results were found when transferring
parameters among the mean, wet and diverse periods. The slow routed interflow and
groundwater takes a larger portion in a wet period than in a dry period. The SM parameter,
which determines the proportion of surface flow, may over-partitioned part of interflow and
groundwater to surface flow when transferred to a period that was wetter than the
calibration period. Due to the fast routing of surface flow, the AM 30d discharge was thus
overestimated. This can also be seen the future projections. The opposite results of the
transferring the parameters ‘to’ or ‘from’ the dry period was probably caused by the high
sensitivity of the parameters related to water balance, i.e., the parameter K led to the
overestimation in actual evaporation and thus lower runoff.

Uncertainty comparison

Comparing the two sources of uncertainty, the choice of calibration periods introduced more
uncertainty than the equifinal parameter sets in the future mean discharge. This can be
attributed to the high sensitivity of the parameters controlling water balance to the choice
of calibration periods. The water routing parameters, which are the main contributions to
the equifinal effect, did not have obvious influence the multi-year mean discharge. Thus, the
future mean hydrological condition was largely influenced by the choice of calibration
periods. In term of high discharge, the contrasting climatic conditions of the selected
calibration periods dominated the total uncertainty compared to the equifinal parameters.
This uncertainty decreases when the calibration periods were not climatically contrasted,
but it still contributed more than 30% of the total parameter uncertainty.

More variability was caused by the equifinal parameter sets in the high-return-period high
discharge than in the low-return-period high discharge. When the calibration period
contained enough information of climate variability, the uncertainty arising from the
equifinality effect and that from the choice of calibration periods are comparable for
extreme floods.
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Performance of the hydrological model calibrated from the dry period

Part of the parameters calibrated from the dry period cannot provided satisfied performance
(NSE values less than 0.6) when being transferred to other periods. In a future climate that
does not differ much from the historical condition (results of GCM1 and GCM?2), the model
calibrated over the dry period generally projected lower discharge than the model calibrated
over the wet period. In contrast, in the future climate that is much wetter than the historical
period, the model calibrated over the dry period projected greater extreme discharge at
higher return period than the model calibrated over the wet period did. The above
observations may be explained by the response of a model to an extreme forcing. For
example, the soil moisture content may be saturated under an extremely wet climate and a
large part of the rainfall will be generated as runoff. The hydrological model calibrated from
a dry period may produce less reliable results when forced by the rainfall that is much
greater than that of the calibration period. Thus, care should be taken when driving the
hydrological model by the future climate that is much wetter than the historical climate used
to calibrate the model.

Impacts of land use change

In addition to climate change, land use changes can also influence the hydrograph. The
forest cover plays an effective role in intercepting the precipitation and allows evaporation
to take place directly into the atmosphere; thus, the amount of water available for overland
flow is reduced. The decayed tree roots create hollows which act as a temporary storage
reservoir to contain runoff and reduce the velocity of the flow. The large increase in forest
cover could counteract the impact of climate change, i.e., decrease the frequency and
magnitude of floods (Reynard et al. 2001). On the other hand, urban land processes the
opposite hydrological properties of forest land. The extension of urbanisation increases the
proportion of impermeable areas in the basin, which reduces the infiltration capacity and
speeds up the response time of the basin to rainfall.

Effects of land use change are not taken into account in this study. In the Huai River basin,
the extreme flood events are generally caused by long-lasting rainfall events which induces
soil saturation, and therefore the change in the soil storage capacity due to land use change
affects the surface discharge to a smaller extent. The index of flood event used here, i.e., the
AM 30d discharge, is a factor related to the total water volume at monthly scale; it is less
influenced by the change in the timing of flood peaks. Previous researches show that the
effects of land use change on hydrological processes are mainly shown in the magnitude of
low flows and the timing of flood peaks at the basin outlet(Bultot et al. 1990, Brath et al.
2002, Naef et al. 2002). Streamflow at the outlet of large basins proved rather insensitive to
land use changes due to the relatively small proportion of affected area over the entire basin
(Hurkmans et al. 2009). The peak flows with high return period are less sensitive to land use
change than those with low return period (Hollis 1975, Brath et al. 2006). Considering the



Hydrological modelling in the context of climate change

properties of flood events in the study area and the previous findings, selecting the AM 30d
discharge as an index of flood events avoids the distortion in the results due to the effect of
land use change.

Due to the complex of the combined effects of climate change and land use change, it is
important to separate and quantify the effect of each factor on river flows. Reynard et al.
(2001) found that changing the land use can have a similar scale of impact to that due to
climate change if an extreme large increase in urbanisation was assumed, while the “best
guess” land use changes show little impact on flood response. Shi et al. (2012) compared the
effects of climate change and land use change on the hydrological processes in the upstream
of the Huai River. They found that climate variability played a dominant role in this basin and
the effects of climate variability were offset by the effects of land use change which may
explain the unapparent change in stream-flow. It would be interesting to investigate
whether climate change effects are different under a different land use condition in the
future work.



Climate Change Impacts on River floods: Uncertainty and Adaptation



Overall uncertainty in the impacts assessment

Chapter 5 Overall uncertainty in the
impacts assessment

In this chapter, an overall uncertainty assessment of the modelling framework used to assess
climate change impacts on river floods is carried out. The uncertainty associated with each
component of the framework (introduced in Chapter 2, 3 and 4) is analysed and compared.
The projected future flood frequency as well as the uncertainty envelope is presented.

5.1 Introduction

It is generally acknowledged that the climate is changing due to the enhanced greenhouse
effect. The associated change in temperature and precipitation will impact the frequency
and magnitude of floods in the future (Monirul Qader Mirza 2002, Das et al. 2011). Since the
future climate is considered to be non-stationary, the traditional frequency analysis based
on historical records cannot answer the question how flood frequency will change under
future climatic condition. Thus, the GCM projections under multiple greenhouse gas
emission scenarios have been commonly used in impact assessments. The future climate
projections are firstly downscaled to the local scale and then driven into the hydrological
model to provide continuous time series of river discharge. Future flood frequency is
subsequently derived based on the time series of discharge.
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There are examples of studies that use the process-based modelling framework translating
climate model projections into river flow in order to assess flood risk under the future
climatic conditions. Bell et al. (2007 a,b) developed a grid-based flow routing and runoff-
production model for use with the output of a regional climate model (RCM), and the
approach was used to assess the changing flood risk in catchments across the UK. They
found that changes in flood frequency at higher return periods are generally less robust than
at lower return periods. Raff et al. (2009) used statistical methods to downscale selected
GCM outputs under multiple emission scenarios, and the downscaled climate projections
were driven into a conceptual hydrological model to estimate flood frequency over the
American river basins. Similar modelling configuration was also used in Leander et al. (2007,
2008)’s study over the Rhine River. Most of the previous studies assessing climate change
impacts on flood risk use single downscaling method or single hydrological model setting.
The uncertainties stemming from components of the model cascade need to be quantified
and compared.

To date, the GCM structure has been recognised as the largest contributor to the uncertainty
associated with the impact assessments (Kingston et al. 2011, Xu et al. 2011). The studies
comparing the relative magnitudes among the uncertainties arising from other components
have not reached a conclusion and may differ among basins with different climatological and
hydrological conditions. Jung et al. (2011) showed that the uncertainty associated with
urban flooding analysis is highly affected by the GCM structure in the shorter term flood
frequency change, while the uncertainty is dominated by natural variability in the longer
term flood frequency change. Kay et al. (2009) conducted an uncertainty assessment of
flood frequency analysis in England and compared the uncertainties associated with the
GCM structure, the GCM initial condition and the downscaling method. Their results
indicated that uncertainties due to GCM initial conditions and RCM structure are more
significant if the results from an extreme GCM simulation are excluded. Wilby and Harris
(2006) developed a framework to explore the uncertainty in future low flows for the River
Thames. The results suggest the following order of component significance (greatest to
least): GCM > (empirical) downscaling method > hydrological model structure > hydrological
model parameters > emission scenario. However, Maurer (2007) investigated climate change
impacts on water resources using the climate projected by 11 GCMs under two emissions
scenarios; and they found that future emissions scenarios play a significant role in the
degree of impacts to water resources in California. Considerable uncertainty also occurs in
the hydrological modelling. Jiang et al. (2007) employed six monthly water balance models
to assess hydrologic model structural uncertainty. They showed that the selection of
hydrologic models results in different hydrologic climate change impacts. Najafi et al.
(2011)’s results showed that hydrologic model selection is more critical in the dry season
than in the wet season in rainfall-dominated regions. Wilby (2005) and Cameron et al. (1999)
found that uncertainty in projected river flow changes due to choice of training periods was
comparable to the uncertainty due to future greenhouse gas emission scenarios. Finger et al.
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(2012) carried out the uncertainty analysis of climate change impacts on future water
availability based on multi future RCM climate projections, hydrological model parameters,
and projected glacier extents. The analysis revealed that the fraction of uncertainty
contributed by the components differs with seasons and future time horizons. Jung et al.
(2012) claimed that major uncertainty sources might vary depending on the locations of the
basins with differing hydro-climatology; and the degree of matches between the GCM or
RCM simulations and conditions in each region and/or season will also influence the
uncertainty analysis. Thus, the uncertainty analysis on modelling components is
recommended to be taken routinely in the climate change impact assessments.

In this chapter, the climate change impact on flood quantiles is analysed using the process-
based modelling framework consisting of multiple greenhouse gas emission scenarios, GCM
structures, downscaling methods and hydrological model settings (including the choice of
calibration periods and the equifinality effect of parameter sets) (Figure 5.1). The
uncertainty assessment was carried out by comparing the uncertainty contribution from
each component.
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Figure 5.1 A modelling framework of the impact assessment

5.2 Sources of uncertainty
5.2.1 Emission scenarios and GCMs

The daily precipitation and temperature projected by 12 GCMs from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) were selected to provide the future climate change
information (See Table 5.1). The GCM projections were obtained under three scenarios
representing low (RCP2.6), median (RCP4.5) and high (RCP8.5) greenhouse gas emission. The
grid size of these GCMs ranges from 1.1° to 2.8°. The baseline period is selected as the
period from 1961 to 1990, and the future period is the period from 2071 to 2100.
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The changes of future precipitation and temperature in summer (June, July and August)
relative to the model simulations in the baseline period are also shown in Table 5.1. All
GCMs projected increasing mean summer temperature. Higher greenhouse gas emission
leads to higher temperature. The GCM ensemble projected the increase in mean summer
temperature up to 3 °C under the scenario of RCP2.6, while the increase ranges from 2.9 °C
to 7 °C under the scenario of RCP8.5. The GCM ensemble provided the divided projections in
precipitation. Both increase and decrease in mean summer precipitation were projected by
the ensemble members. Most of the members projected an increasing standard deviation
indicating an increasing occurrence of low and extreme precipitation events. More extreme
precipitation events are projected in the high emission scenario.

Table 5.1 Statistics of climate projections

Change in Precipitation Increase in Temperature (°C)
GCM information RCP2.6 RCP4.5 RCP8.5 | RCP2.6 RCP4.5 RCP8.5| RCP2.6 RCP4.5 RCP8.5
Modeli Resoluti
GCMs Country CZnete"r‘g Model eso(.,l; fon mean mean mean std std std mean mean mean
. BCC-
1 China BCC CSM1.1 2.8x2.8 2% -4% -3% 1 1 1 1.9 2.9 53
2 Canada CCCma CanESM2 2.8x2.8 27% 23% 35% 1.2 1.3 1.8 1.8 3.2 5.8
3 USA NCAR CCsm4 1.25%0.94 -4% -4% -7% 1.5 1.5 1.7 1.2 2.4 4.6
4 France CERNFFX\Q; CCN,\;T:’" 1.4x1.4 2% 5% 18% 1 1.2 13 1.9 2.7 3.4
5 Australia C(z:(S:l:RCOE- N(I:kSBiRGO(; 1.875x1.875 -1% -18% -17% 1.2 0.9 1 2.6 4.5 6.7
NOAA GFDL-
6 USA GFDL M3 2.5x2.0 33% 40% 59% 0.9 1.3 11 3 4.1 6
7 UK MOHC HadéSSEMZ- 1.875x1.25 7% 18% 27% 1.2 1.2 1.6 2.7 3.5 6.3
8 France IPSL lPSL;\j:\;ISA_ 2.5x1.25 -4% -10% -11% 0.9 1 13 1.8 3.5 7
9 Japan MIROC MIROCS 1.4x1.4 -1% 2% 4% 1.2 1.1 13 1.8 2.4 3.8
10 Germany MPI-M MP:\_/IE:M> 1.875x1.875 -3% -6% -7% 1.6 1.6 2 1.7 2.8 4.4
MRI-
11 Japan MRI CGCM3 1.1x1.1 14% 40% 40% 1.1 1.4 1.2 1 1.5 2.9
12 Norway NCC NDFE';MI' 2.5x1.875 | 1% % 8% | 12 17 14 17 26 4.9

5.2.2 Downscaling methods

The above future climate projections were downscaled to station scale by six variants of
empirical downscaling methods. In this group of methods, statistical transformation
functions were calibrated and then used to adjust observations or raw climate model
outputs to generate future Climate projections at local scale. Two calibration strategies were
employed, i.e., the bias correction strategy and the change factor strategy; three
transformation methods were used, i.e., mean based method, quantile mapping method,
and quantile correcting method. To avoid unrealistic areal mean extremes in precipitation
discussed in Chapter 3, the bias correction based methods were carried out based on each
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gird cell, i.e. each grid value of GCM outputs was transformed based on the areal mean
precipitation or temperature at stations within this grid.

We denote an observed climatic variable during the baseline period as X, and its future
projection as Xj,; the climate model simulations of this variable are given as X, and X;, for
the baseline and future periods, respectively. The downscaling methods can be expressed by
the following equations:

1) Mean based method implementing the bias correction calibration strategy (MB-BC)

Xy =Xy -Z—O for precipitation 5-1
M
Xy =Xy + 1o —py fortemperature 5-2

where u, and u,, are the means of the observation and the modeled values in the baseline
period, respectively. This method was also named as Local Intensity Scaling method by
Schmidli et al. (2006). This method ensures that modeled and observed climatic variables
have the same mean climatology. To handle the drizzle effect, the precipitation frequency
was corrected using a wet-day threshold, which was determined from the model daily
precipitation series such that the threshold exceedance matches the wet-day frequency in
the observed series.

2) Quantile mapping method implementing the bias correction calibration strategy (QM-BC)
Xo = F5 ' [Fy(X3)] 5-3

where F and F~1 are empirical cumulative function (ECDF) and reverse ECDF, respectively.
The commonly used 99-percentile tables were employed (Boé et al. 2007, Deque 2007) due
to the superior performance of empirical CDFs in the previous studies (ThemeRl et al. 2011,
Gudmundsson et al. 2012, Gutjahr and Heinemann 2013).

3) Quantile correcting method implementing the bias correction strategy (QC-BC)

Fo [Fyyr (Xi)]

Xo = X " 5oir (i)

for precipitation 5-4

Xo =Xy + Fo [Fyr (X)) — Fyt[Fyr (X3)]  for temperature 5-5

Li et al. (2010) termed this method a “equidistant CDF matching method” and they used a
theoretical distribution to fit the monthly observed and modelled data. Mpelasoka and
Chiew (2009) termed this method a “daily translation method” when using it to correct daily
modelled rainfall. It can be considered a variant of mean-scaling method that correcting
model simulation at the different ranks or percentiles instead of applying one uniform
correcting factor.
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4) Mean based method implementing the change factor calibration strategy (MB-CF)

Xy =Xo % for precipitation 5-6

Xy = Xo + upy — 1y for temperature 5-7

This method is usually named as “perturbation method”(Prudhomme et al. 2002) or “delta
change method” (Fowler et al. 2007). This method applies GCM-scale projections in the form
of change factors to the baseline observations; and the change factors represent the climate
change signal which is defined as climatological means between the future climate
projection and the baseline simulation (ThemeRl et al. 2011).

5) Quantile mapping method implementing the change factor calibration strategy (QM-CF)
X6 = Fyyi [Fy (Xo)] 5-8

This methods can be considered as a variant of the delta change method which applies
different change factors to the observation at different ranks or percentiles instead of
uniform change factors.

6) Quantile correcting method implementing the change factor strategy (QC-CF)

F1[Fo(X0)]
I M _
Xo = Xo Pl lFo(Ro)] for temperature 5-9
Xo = Xo + Fyt [Fo(X0)] — Fy'[Fo (X5)]  for precipitation 5-10

In QC-CF method, the changes at each quantiles of modeled distribution from the calibration
period to the future period are directly applied to adjust the corresponding quantiles of the
historical observations.

5.2.3 Hydrological modelling

The lumped Xinanjiang Model was used to transform the climate condition to the
hydrological condition. The model was run at daily scale, and the basin-mean daily rainfall
and temperature data were used as model inputs. The objective functions were calculated
for monthly mean discharge series in order to decrease the influence of hydraulic structures
on the calibration. Two objective functions were selected as objective functions: the Nash-
Sutcliff Efficiency (NSE) and the Percentage Volume Error (PVE).

Choice of calibration periods

To analyse the uncertainty stemming from the choice of calibration periods, the historical
period was divided into three sub-periods with equal length: 1961-1975, 1976-1990 and
1991-2005. Each of the sub-period contains sufficient hydrological information, including dry
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years and wet years, to calibrate the hydrological model. The hydrological model was
calibrated on three calibration periods, respectively.

Equifinality effect

To analyse the influence of equifinality (Beven and Freer 2001), a set of behavioural
parameters rather than an optimal set of parameter were used to project the future
discharges. The equal weighted Monte Carlo algorithm was employed to calibrate the
hydrological model. For each calibration period, 100 parameter sets for each calibration
period were selected as behaviour parameter sets according to the goodness-of-fit measures
defined above.

Table 5.2 Simulative ability of the hydrological model

Periods | 1961-1975 1976-1990 1991-2005
NSE 0.859-0.865 0.839-0.859 0.913-0.924
PVE 0.5%-9% 0.2%-9.9% 0.1%-9.7%

The simulative ability of the hydrological model using the behavioural parameter sets over
three calibration periods is shown in Table 5.2. The values of NSE are above 0.8 indicating a
good simulative ability. The parameters calibrated on the periods of 1991-2005 produced
higher values of NSE. This is because the NSE puts more weight on high discharge than low
discharge, and there are more high-discharge events in this period than other periods. The
index of PVE was used as a limit objective function, thus all the behavioural parameters lead
to PVE values smaller than 10%.
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Figure 5.2 Observed hydrograph (black line) and the modelled hydrograph ensembles (shaded area)

The example of observed hydrograph and modelled hydrograph ensemble are shown in
Figure 5.2. The modelled ensemble generally has a good agreement with the observation.
Underestimation is observed for low flow, and overestimation is found for high flow. The
simulative ability of the hydrological model is mainly limited by the lumped configuration.
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The basin-mean input is not able to represent the spatial variability of rainfall, and the model
parameters were calibrated as basin-mean level. Thus, the model has difficulties in
simulating low and high flows.

5.3 Comparison of different sources of uncertainty

The uncertainty sources of emission scenarios, GCM structures, downscaling methods and
hydrological model parameters are analysed and compared in this section. The results were
grouped into five uncertainty sources. The sample size of each group is presented in Table
5.3. Each sample is weighted equally in the following analysis.

Table 5.3 Sample size of the group for each source of uncertainty

Source Gsri(;p Combination of Each group Z?Zp;
1 Ch‘g;zr‘(’ﬁjgeirci;’ldnfgiiz‘i"(igf‘)ﬁ“g 3 12(GCM)*3(ES)*6(DM)* 100(EP) 21600
2 Equifinal parameter sets (EP) 100 12(GCM)*3(ES)*6(DM)*3(CP) 648
3 Downscaling method (DM) 6 12(GCM)*3(ES)*3(CP)*100(EP) 10800
4 Emission scenario (ES) 3 12(GCM)*6(DM)*3(CP)*100(EP) 21600
4 GCM 12 3(ES)*6(DM)*3(CP)*100(EP) 5400

The high water level at the outlet of the basin in flood season usually lasts more than one
month due to the heavy rainfall over the large river basin. Thus, the annual maximum 30-day
mean discharge (AM 30d discharge) was selected as the index of the flood event. The
General Extreme Value (GEV) distribution was used to fit the observed and modelled AM
30d discharge.

Additional biases could arise from the modelling framework, e.g., the mismatch between the
downscaled variable and the observation in the baseline period, the errors in the
hydrological modelling and the fitting of the probabilistic distributions. These biases were
propagated and eventually caused the discrepancy between the flood frequency curves
derived from the simulations and the observation. To avoid these systematic biases, the
relative change in the flood frequency is analysed here by assuming that the systematic
biases stay constant from the baseline period to the future period and can be cancelled out.
The relative change in a future flood frequency was calculated at each flood quantile against
the corresponding baseline flood frequency resulted from the same model chain setting. The
flood quantiles with return period of 2, 5, 20, 20 and 50 year were selected to be analysed.
The mean changes of flood quantiles due to different sources of uncertainty are compared in
Figure 5.3. The empirical cumulative density functions (ECDFs) of the changes at the
quantiles with the return period of 5 year and 20 years are shown in Figure 5.4.
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5.3.1 Uncertainty due to emission scenarios

Generally, a higher emission scenario leads to greater increase in flood quantiles. The
scenario RCP2.6 has the least relative increase (around 40%) at each flood quantile (see the
diamonds in the 4™ sub-figure of Figure 5.3). The scenario RCP4.5 led to slightly larger flood
magnitude than the scenario RCP2.6, while the scenario RCP8.5 led to much larger flood
magnitude than the other scenarios. For both the quantiles with the return periods of 5
years and 20 years (see the 4™ row in Figure 5.4), about 50% of the future projections under
scenario RCP4.5 resulted in similar changes with those under RCP4.5, but the rest of the
projections under RCP4.5 resulted in greater increase than those under RCP2.6. About 15%
likelihood of a decreasing change is observed under each scenarios at the high-return-period
quantile (20 years). The likelihood of decreasing low-return-period quantile (5 years) is less
than 10% under the scenarios of RCP2.6 and RCP4.5, and the likelihood of decreasing low-
return-period quantile is zero for the scenario of RCP8.5.

5.3.2 Uncertainty due to GCMs

Although many of the GCMs projected a decrease in mean summer precipitation, the GCM
ensemble generally suggested an increase in flood quantiles (see the 5" sub-figure in Figure
5.3). There is large variation among the projections resulting from different GCM structures.
The change at the 5-year-return-period quantile ranges from 16% to 148%, while the change
at the 50-year-return period quantile ranges from -10% to 106%. The ordering of the effects
of the GCMs differs among quantiles. The results can be divided into two groups: the GCMs
projecting an increase in mean precipitation (GCM2, GCM6, GCM7 and GCM11) resulted in
greater increase in flood quantiles compared with other GCMs projecting a decrease in
mean precipitation. Most of the GCMs projected greater relative increases at low quantiles
than high quantiles, while two exceptions are GCM3 and GCM10 which projected obvious
increase in standard deviation of precipitation (see Table 5.1). It can be seen from Figure 5.3
that larger likelihood of a decreasing projection is found at the 20-year-return-period
quantile than at the 5-year-return-period quantile.

GCM3 and GCM10 projected a smaller increase at low flood quantiles and a greater increase
at high flood quantiles, which is a reverse ordering compared to the results from other
GCMs. This may be explained by the increase of standard deviation projected by the two
GCMs. GCM3 and GCM10 both projected decreasing mean precipitation but increasing
standard deviation which is up to twice of the standard deviation in the baseline period. A
large amount of precipitation with a high return period could be projected by these GCMs,
which leads to an increase at the high flood quantiles.

5.3.3 Uncertainty due to downscaling methods

The range of the changes due to the choice of downscaling methods is comparable with
those due to emission scenarios. A large part of the downscaling uncertainty is contributed
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by the MB-BC method. As discussed in Chapter 3, only adjusting the mean values is not
sufficient to correct the biases in GCM outputs, which explains the obvious deviation of the
MB-BC method from other downscaling methods. Other downscaling methods suggested
comparable results among each other. For the 20-year-return-period quantile, the bias
correction based methods suggested up to 30% likelihood of the decreasing projection,
which is higher than their counterparts based on the change factor calibration strategy. For
the quantiles with low return periods, the bias correction based methods suggested greater
increases than the change factor based methods.

The main difference between the bias correction based methods and the change factor
based methods lies in the temporal structure and spatial distribution of the downscaled
variables. The precipitation and temperature downscaled by the bias correction based
methods have the same temporal series with the raw GCM outputs, while those downscaled
by the change factor based methods maintain the temporal series of the observation. The
difference in temporal structure does not have obvious influence on downscaled
temperature, while downscaled daily precipitation can be significantly influenced by the
choice of calibration strategies due to the intermittent property and the large variation in
amount. For instance, some GCMs project continuous rainfall with wet spell longer than the
historical level. Even the precipitation intensity is not projected to increase, extreme flood
could be generated due to the saturated antecedent soil moisture condition and the large
total rainfall amount.

5.3.4 Uncertainty due to hydrological modelling

The magnitude of the uncertainties due to the choice of the calibration periods and the
equifinality effect are comparable. The size of the uncertainty range resulting from the
different calibration periods is around 20%, and it decreases towards the higher quantiles. A
similar phenomenon is also observed for the uncertainty range resulted from the equifinal
parameter sets: the uncertainty range at the 2-year-return-period quantile is 20%, while it is
less than 10% at the 50-year-return-period quantile. The ordering of the changes resulting
from three calibration periods is the same at different quantiles, i.e., the parameter sets
calibrated from the period of 1996-2005 always resulted in greater increase than the
parameters calibrated from other period. This is probably caused by the difference of
information contained in the three calibration periods. The high discharges in the period of
1996-2005 is greater than those in the other periods. Since the NSE objective function is
biased towards high flow, the hydrological model tends to generate more runoff in order to
simulate the high discharge.

5.4 Future hydrologic impact

For each scenario, the 90% one-sided upper and lower bounds of the projected future flood
frequency ensemble as well as the mean of the frequency ensemble are shown in Figure 5.5.
The future flood frequency was obtained by applying the relative changes to the present-day
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flood frequency at each quantile. The 90% upper and lower bounds were respectively
determined by the 90™ and 10" percentiles of the ensemble of future flood frequency that is
resulted from the combinations of all the participating GCMs, downscaling methods and
hydrological parameter sets.

It can be seen that the uncertainty envelope, indicated by the width of the 90% bounds, gets
wider with the increase in greenhouse gas emissions. By comparing the present-day flood
frequency to the mean of the ensemble taking all samples, the flood event with a 10-year
return period in the baseline period turns to be a 2-year-return-period event under the
scenarios of RCP2.6 and RCP4.5. The change is more drastic under the scenario of RCP8.5,
where the 2-year-return-period event in the future is as large as the magnitude of the flood
event with the return period of 50 years in the baseline period. The ensemble suggests an
absolute increase in the flood quantiles with a low return period, while a small fraction of
the ensemble suggest a decrease in the flood quantiles with a high return period.

It can be seen from Table 5.1 that a great increase in mean summer precipitation is
suggested by four GCMs (GCM2, GCM6, GCM7 and GCM11), while other GCMs generally
suggest a decrease in mean summer precipitation. Thus, a constrained ensemble was taken
by excluding the samples from the four GCMs which significantly enlarge the uncertainty
envelope. The constrained ensemble consisting of the rest of the GCMs is considered to
suggest conservable increase in future precipitation. The samples resulting from the MB-BC
method were also excluded in the constrained uncertainty analysis as this method is not
recommended in impact assessments according to the previous analysis. It appears that the
uncertainty envelope of the constrained ensemble is half of that of the ensemble taking all
the samples. Most of the ensemble members still suggest an increase in flood quantiles,
although they project a decrease in mean summer precipitation. It can be concluded that
GCM projections are in a good agreement in suggesting an increase in flood magnitude, and
that the increase is not only caused by the increase in mean future precipitation but also by
the increase in the variation of future precipitation.
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5.5 Discussion

This chapter analysed different sources of uncertainty in climate change impact studies, with
particular reference to the impact of climate change on flood frequencies in the sub-basin
upstream of Bengbu in the Huai River Basin. Uncertainties stemming from greenhouse gas
emission scenarios, GCM structures, downscaling methods and hydrological parameters
were analysed and compared.

The choice of GCM structures is the dominant contributor to the total uncertainty. The GCM
ensemble suggested a large uncertainty envelope of the future flood frequency. Much of the
uncertainty was contributed by the GCMs projecting an increase in future precipitation.
Most of the GCMs project a slightly decrease in mean summer precipitation; however, they
suggested an increase in flood quantiles. The variation in precipitation intensity is projected
to increase in the future, and flood events are thus expected to be more severe in the
future. Twelve GCMs participating CMIP5 were selected due to data availability. If more
GCMs are included, the uncertainty from GCM structures will not necessarily increase the
range of uncertainty, but would lead to more robust conclusions.

The impact of greenhouse gas emissions is not as large as that of the choice of GCM
structures, but it still contributes a large portion to the total uncertainty. The flood quantiles
are expected to increase under all the scenarios. The scenario of RCP4.5 leads to a slightly
greater increase in the flood quantiles compared with the scenario of RCP2.6, while the
scenario of RCP8.5 leads to a much greater increase in flood quantiles than the other
scenarios. This can be explained by the configuration of the emission scenarios: the RCP2.6 is
a mitigation scenario in the lower end, and RCP4.5 is an intermediate scenario with less
aggressive mitigation policy, whereas RCP8.5 is a non-mitigation scenario. The range of
emission scenarios used is not the full CMIP5 range (the intermediate scenario without
mitigation, RCP6.0, was not included due to the limited number of GCMs providing
projections under it), but the high- and low- end of the emission scenarios were included
which enables us to explore the plausible envelope of the emission uncertainty.

The choice of downscaling methods also contributes considerably to the uncertainty in the
impact assessment. The downscaling methods used here differ in the calibration strategies
and the transformation methods. The choice of calibration strategies has more influence
than the choice of transformation methods. The methods based on the change factor
strategy have good agreement with each other. The MB-BC method has been found to
provide biased precipitation intensity, which leads to deviated results from other methods.
When being propagated through hydrological modelling, this method led to more than 50%
wet bias in the projections of extreme discharge. This method is thus not recommended in
the impact assessments. All the downscaling methods used here produce deterministic
downscaled time series. Dynamical downscaling methods and more sophisticated statistical
downscaling methods (e.g., stochastic weather generator) were not used in the analysis due
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to the consideration of time consumption. The uncertainty due to downscaling methods
could be larger if more methods are considered, but this uncertainty is not expected to be as
large as the GCM uncertainty according to the results of the previous studies (Chen et al.
2011, Chen et al. 2011).

The uncertainty from hydrological modelling is represented by the parameter uncertainty
due to the choice of calibration periods and the equifinality effect. The uncertainty of the
hydrological model is less than other sources of uncertainty. The uncertainty due to the
model structure is not analysed here. Since the calibration of model parameters is aimed to
compensate for the error in model structure, it is considered that the parameter uncertainty
could to some degree encompass the structure uncertainty. Previous studies show that the
high flow can be significantly influenced by the hydrological parameterisation (Wilby 2005,
Finger et al. 2012).

All the samples of future discharge projections were analysed with equal weights in this
study. The uncertainty analysis could also be done in a probabilistic way. For instance, Wilby
and Harris (2006) weighted GCMs according to an index of reliability for downscaled
effective rainfall when assessing uncertainties in climate change impacts on river low flow.
The hydrological model structures and parameters can also be weighted according to their
performance in simulating historical observations (Bastola et al. 2011, Najafi et al. 2011).
Applying weights to the samples based on the performances in the historical periods enables
us to provide the confidence intervals of the projection. However, the question whether the
errors of models is stationary under future climate condition has not been well answered.

Overall, the considered ensemble suggests an increase in future flood magnitude with a
large uncertainty envelope. Even when only the conservative GCMs are selected,
considerable uncertainty remains. Further work will be needed to develop practical guidance
for decision makers to cope with this uncertainty.
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Chapter 6 Risk-averse economic
optimization of adapting river dikes
to climate change

In this chapter, a risk-averse economic optimisation method is proposed to adapt river dikes
to climate change. The case study indicates the feasibility of coping with the uncertainty of
climate change adaptation-decision makings by adopting a risk-averse attitude.

6.1 Introduction

There has been a growing concern on the adaptation to the impacts of climate change due
to the recent overwhelming consensus on global warming. Since the occurrence of floods is
highly susceptible to climatic conditions, much attention should be paid to the uncertainty of
climate change in flood management.

Since Van Dantzig (1956) applied the method of economic optimization to flood prevention,
the risk-based design has become a useful tool in the design of flood defences in the
Netherlands. The climatic condition is usually assumed as unchanged when the economic
optimization method is used. However, climate change can influence the probability of
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future floods and hence flood risk; furthermore, the projections of future climate are very
uncertain. In other words, climate change introduces uncertainty by having an uncertain
effect on flood frequencies. In the usual application of risk-based design, the uncertainty of
costs (the sum of investment and risk) is not considered because only the expectation of
total costs is optimized (i.e., minimized). In order to integrate the uncertainty related to
costs, the usual method can be extended by including a risk-aversion cost function (Vrijling
et al. 1995): the sum of the expectation of total cost and the product of the risk aversion
index and the standard deviation of the total cost. This risk-aversion cost function was
initially proposed as a simple measure of social risk based on loss of life; it can also be used
in economic decision making (Jonkman et al. 2003). However, only a few applications of this
risk-aversion function consider the economic optimization for the design of dikes (Slijkhuis et
al. 1997, Van Gelder and Vrijling 1998, Kuijper and Kallen 2010, Kuijper and Kallen 2012).

There has been an abundance of researches on the influence of climate change on river
streamflow (Middelkoop et al. 2001, Milly et al. 2002, Xu et al. 2005, Leander et al. 2008,
Kundzewicz et al. 2010, Das et al. 2011, Yang et al. 2012). Global Climate Models (GCMs)
have been widely used in climate change research to generate plausible future climatic
conditions driven by greenhouse gas emissions scenarios and other related conditions such
as land use. Due to the uncertainty in GCM simulations, such as model formulation and
model inadequacy, the uncertainty in climate change projections needs to be considered.
The previous studies show that there is large uncertainty in the projected future climate
from existing GCMs (Prudhomme et al. 2002, Kay et al. 2009, Bastola et al. 2011). Thus,
projections from multi-GCM ensembles are generally used in the climate change impact
related studies to help understand the uncertainty of future climate change. However, most
of the previous studies focus on analysing the uncertainty in climate change impacts on
hydrological regimes, and the approach of including this uncertainty in the design of flood
defences has not been well developed.

In order to fill this gap, this chapter attempts to include the uncertainty in climate change
impacts on flood probability in the risk-based design of river dikes. The result will also show
how much the optimal dike height is influenced by this kind of uncertainty. To achieve this,
the outputs from GCMs and a hydrological model were used to provide the projections of
future river stage (water level). An applicable method was proposed to project the
probabilistic models of the river stage in the future. The uncertainty related to climate
change and its impact on flood frequency was represented by the uncertainty of the
parameters of the probabilistic model. The risk-averse cost function was minimized to obtain
the optimal dike height.

6.2 Risk-averse economic optimization in the design of dikes

The economic optimization of dike heightening was originally proposed by Van Danzig
(1956). The total cost consists of flood risk and the investment cost of construction. Flood
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risk is calculated as the product of annual flood probability and potential damage; and the
cost of an investment is determined by the initial costs and the variable cost. The total cost
can be written as

n i
C:I()+Il-X+p-SAZ(Lj 6-1

im1 r+1

where Iy is the initial investment, /; is the variable investment, X is the height which the dike
is raised by, p is the annual flood probability, S is damage, and r is the discount rate. The
discount horizon is n years.

In this function, lp, /1, S and r are treated as constants based on economic data from the
study area. p, the probability of a flood per year, is calculated by an exponential function
given the dike height
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where hy is the current dike crest height, A is the location parameter, and B is the scale
parameter. This function was developed by Wemelsfelder (1939) to predict the probability
of a storm surge level using the long-time series of observations from tidal gauges.

The total cost can be seen as a function of increased dike height X. The optimal dike height is
determined by the value of X that minimizes the total cost

_hotX-A
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ax BT
where the discount horizon is infinite. No uncertainty of the cost components is considered.
Vrijling (1995) proposed a linear function as a simple risk-averse measure of the societal risk.
It was originally applied to the loss of life. Slijkhuis et al. (1997) used this risk-aversion
function in the economic optimization of the design of sea dikes and wrote the function as

Min[u(C)+k-o(C)] 6-4

where u(C) is the expectation of total cost, o(C) is the standard deviation of total cost, and k
is the index of risk aversion. The index of risk aversion reflects the risk-averse attitude of the
decision maker. A larger index implies the decision maker has a more risk-averse attitude.
Typically suggested value ranges from 0 to 3.



Climate Change Impacts on River floods: Uncertainty and Adaptation

6.3 Including the uncertainty of climate change in the economic
optimization

In the economic optimization, it is commonly assumed that an inundation occurs when the
water level exceeds the height of the dike, which means only the failure mechanism of
overtopping or overflowing is considered. Thus, the flood probability is assumed to be equal
to the exceedance probability of water level at the dike crest. The exponential function
mentioned above (Equation 6-2) is the standard way of determining design water levels for
sea dikes, while annual maximum series of river discharge in China are commonly described
by the Pearson type lll distribution, the Log-Pearson type Il distribution, the Weibull
distribution, the Gumbel distribution and the Generalized Extreme Value (GEV) distribution.
Considering its flexibility of the distribution function and the good distribution fitting in the
study area (Xia et al. 2012), the GEV probabilistic distribution is used here:

P

where, p can be considered an exponential function of the shift parameter A, the scale
parameter B and the shape parameter C at a given river stage (water level) H.

The occurrence of a flood per year can be treated as a Bernoulli trial Y with occurrence
probability p. In a stationary environment, p is considered constant for a certain dike height.
However, changes in climate introduce uncertainty to the probability of floods, because
climate change is highly uncertain and a changing climate has significant effects on flood
probability. Expressed mathematically, in a changing climate, the occurrence of a flood per
year is still a Bernoulli trial Y with occurrence probability P, but P is an uncertain value rather
than a constant. The uncertainty of P reflects the uncertainty in climate change and its
impacts on flood probability.

Assuming P is a random variable with the expectation u(P) and the standard deviation o(P),
the expectation and variance of the Bernoulli variable Y can be given by

E(Y)=E(E(Y|P))=u(P) 6-6
D(Y)=D,[E(Y | P)]+E,[D(Y | P)]= u(P)-[1-pu(P)] 6-7

It is observed that
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The above equations show that the expectation and variance of Y are determined by the
expectation of P. Based on the above equations, the expectation and variance of total cost
can be given by

u©)=1,+1. x + #2058 6-10
r
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6-11

where u(C) is the mean of total cost, o{(C) is the standard deviation of total cost, S is the
damage caused by flooding, and ris the discount rate. The cost is discounted on a very long
time horizon.

Apart from the uncertainty introduced by climate change, there is also variance in the
estimations of investment and damage costs which is caused by the shortage of information.
The uncertainty in the costs of investment and damage can be considered by assuming the
corresponding cost parameters in Equation 6-1 as normal distributed variables. Assuming
the Bernoulli variable Y and the variable S are independent, the variance of the product of Y
and S can be written as

Var(Y-S) = Var(Y)-Var(S)+E*(Y)-Var(S)+Var(Y)-E*(S)
U(P)-(1= u(P))-0°(S)+ > (P)-07(S)+ u(P)-(1 - u(P))- t*(S) 6-12
uP)-[ o)+ (1= u(P))-u(S) |

The expectation and standard deviation of total cost can be calculated as

6-13
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where pu(lp) is the mean of initial investment, oflp) is the standard deviation of initial
investment, u(/) is the mean of variable investment, o{/) is the standard deviation of variable
investment, u(S) is the mean of damage, o(S) is the standard deviation of damage, and r is
the discount rate. The added dike height X and the flood probability P are related through
the height of the dike. X is the difference between the dike heights before and after
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heightening. P is equal to the probability of a river water level exceeding the dike height; it is
determined by Equation 6-5 with the assumption that only the failure mechanism of
overflowing is considered.

The following question is how to calculate u(P), the expectation of P. Since variable P is
estimated by the probabilistic model, the parameters in the model are also random variables
in this case. The uncertainty of P can then be described by the parameter uncertainty of the
probabilistic model. Assuming the parameters A, B and C in the GEV probabilistic model
(Equation 6-5) are independent normally distributed variables, the expectation of P can be
calculated by

wpy = [T '[Cllmlt{ _elmel f)]c]f(c)f(B)f(A)dCdBdA, H>A Climit=—E_

wp = 77 j_i'm"[ et )]CJf(C)f(B)f(A)dCdBdA H<A Climit = 6-15
‘I+C J%

wp)y = [~ ] |1-e f(B)f(A)dBdA, c=0

where f(A), f(B) and f(C) are the probabilistic density functions of A, B and C. The GEV
distribution function is defined on the set {H: 1+C(H-A)/B>0}, and the shape parameter C
determines the type of the GEV family of distribution. Thus, the expectation of P is
calculated using the different functions shown above.

The above method of u(P) calculation implies that no model uncertainty is considered as
only one type of probabilistic model (GEV) is used. The uncertainty of P is described only by
the uncertainty in the parameters of probabilistic model, which leads to the assumption that
the uncertainty in the parameters of probabilistic model represents the uncertainty in
climate change and its impact on future flood probability. The calculation of u(P) is similar to
the method introduced by Van Gelder (1996) which copes with the statistical (parameter)
uncertainty caused by the limited historical observation distribution in a stationary
environment. In his study, the statistical uncertainty in the parameters of probabilistic model
was integrated out (or marginalised out) to determine the ‘predictive’ probabilistic. By doing
this, it is avoided that ‘using point estimators for uncertain parameters underestimates the
variance in the random variable’. In contrast to Van Gelder’'s method, the proposed
approach in this paper integrates out the uncertainty in climate change impacts on flood
probability; the parameter uncertainty is quantified from the hydrological simulations driven
by projected future climate conditions rather than from historical observations in Van
Gelder’s method. The approach of quantifying the parameter uncertainty will be described
in Section 6.4.
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6.4 The applicable approach for deriving future flood probability of
the Huai River

The Huai River basin is highly regulated by flood control projects including reservoirs, sluices,
and water retention area. The modelling framework of assessing climate change impacts on
flood frequency described in Chapter 5 could be generally carried out over the rivers without
hydraulic structures. However, the hydrological model calibrated with the daily observed
discharge in this modelling framework could not well simulate the future discharge series
influenced by the flood control measures.

To guarantee the reliable results of the economic optimisation, an approach of deriving
future flood frequency taking account of the influences of flood control measures was used
here. A data set of the historical natural monthly runoff was reconstructed by the Huai River
basin authority based on the observed discharge and the operation of the upstream
hydraulic structures. The hydrological model was calibrated with the reconstructed historical
natural runoff data at monthly scale; it was then used to project future monthly runoff.
Thus, the output of the hydrological model is considered as the future runoff without the
influence of the hydraulic structures. To bridge the outputs of the hydrological model and
river stages, the empirical relationship based on the historical data was employed; and the
derivation of this empirical relationship will be explained in the following paragraphs.

Since historical records cannot foresee the future climate, multi-GCM ensembles under
different scenarios have been widely used to take account of the uncertainty in climate
change and its impact. The GCMs selected from the IPCC AR4/ CMIP3 archives are taken as
an example of the multi-GCM ensemble to describe the approach of quantification of the
uncertainty introduced by climate change in this chapter. The period of 2070-2099 (2080s) is
set as the future target period. For this period, the future world is described by different
plausible scenarios, and GCMs were driven to provide climate projections (precipitation and
temperature) under each scenario. These scenarios are IPCC SRES A1B, A2 and B1 scenarios
that represent the median, high and low GHG emissions, respectively (Nakicenovic et al.
2000). The period of 1961-1990 is set as the baseline period that represents the historical
climate, and each GCM provides the retrospection of historical climate during the baseline
period. The monthly GCM projections of precipitation and air temperature are used here.

The parameter sets A, B and C of the GEV distribution from the projection of one GCM under
one future scenario is obtained in five steps (as shown in Figure 6.1):

Step 1 The monthly runoff volume (m?/month) series was calculated from the Xinanjiang
monthly hydrological model driven by the outputs from one GCM for both the baseline
period and the future period, respectively.
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Figure 6.1 Flowchart of the derivation of the parameters of the Generalised Extreme Value probabilistic
distribution of the future river stage. In this figure, annual maximum is denoted as AM.

Step 2 The curve of exceedance probability of annual maximum monthly runoff was
determined for both periods based on the above time series (see Figure 6.2: the red solid
line for the baseline period and the red dashed line for the future period).

Step 3 The ratio between the curve of the future period and that of the baseline period was
calculated at each percentile. Then the future probability curve of runoff was projected by
scaling the present-status curve derived from observations (the black line in Figure 6.2) by
the ratio at each percentile.

R ratio ) 6-16

Future,p = present ,p

ratiop _ R/mm‘u..‘GC Ms,p 6-17

baseline—-GCMs, p
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where, Rfturep is the future annual maximum monthly runoff at the percentile of p; Rpresentp
is the historical observed annual maximum monthly runoff at the percentile of p under
present climate; ratio, is the relative change between the baseline and future periods at
percentile p; Reaseline-cems,p 1S the annual maximum monthly runoff projected by the GCM
under present climate; Rpture-coms,p is the annual maximum monthly runoff projected by the
GCM under future climate.
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Figure 6.2 Projection of future probability - runoff curve (This figure is only used for indication)

Step 4 Then the projected exceedance probability of annual maximum monthly runoff was
converted to the river stage-probability relationship through an empirical relationship
(Subfigure a in Figure 6.3). The derivation process of this empirical relationship is shown in
Subfigure b-d of Figure 6.3. This process is employed to take account of the influence of the
flood control measures (in subfigure b) and to solve the problem of lacking long-term stage
records (in subfigure c and d). The relationships (solid curves) in subfigure b-d were derived
based on the historical records (circles). The derivation of the relationships is described
below:

First, the relationship between annual maximum actual (observed) monthly runoff and
annual maximum natural monthly runoff (Subfigure b) was used to obtain the future annual
maximum monthly runoff regulated by the hydraulic structures. It is assumed that the
operation of the flood control measures in the future remains the same as the present.
Secondly, the relationship between annual maximum observed instantaneous discharge and
annual maximum actual monthly runoff (Subfigure c) was used to obtain the future annual
maximum discharge. The underlying assumption is that this relationship between peak
discharge and monthly water volume stay unchanged in the future. Then the relationship
between the river stage and the discharge during the high-discharge event in 2007
(Subfigure d) was used to transform the discharge to river stage. It is assumed that the
present stage-discharge relationship stays unchanged in the future. The relationship
between the instantaneous river stage and annual maximum natural monthly runoff
(Subfigure a) was finally derived through the three relationships described above. This stage-
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natural monthly runoff relationship was used to transform the future annual maximum
natural monthly to the corresponding river stage.
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Figure 6.3 Conversion from monthly runoff to river stage

(From bottom right to top right in the counter clockwise direction)

Step 5 The parameter set of A, B and C was obtained by fitting the derived river stage-
probability relationship to the GEV cumulative distribution function using the least square
method.

Repeating the above five steps, the parameter sets from the projections of all GCMs for all
scenarios can be obtained. The distribution of each parameter can be derived by equally
weighting the participating GCMs; and it is then used to determine the expected predictive
probability u(P) (Equation 6-15).

The key assumption of the proposed approach is that the uncertainty of future climate
change is represented by the uncertainty in GCM projections and is then quantified by the
parameter uncertainty of the probabilistic model of the river stage. The derivation of future
runoff-probability relationship is essentially similar to the commonly used delta change
downscaling method which perturbs the observation by the projected difference from GCMs
between the future and baseline period. The hydrological modelling of monthly runoff and
its following conversion to river stage is more suitable to be applied over a large basin where
floods are generally caused by seasonal rainfall than over a small catchment.
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6.5 Application to the Old Dike Ring

The proposed approach was applied to the Old Dike Ring area in Bengbu, China. The Old
Dike Ring was built to protect the most urbanized part of Bengbu city on the south bank of
the Huai River. The Old Dike Ring is a reverse U-shape dike with the length of 12.6 km (see
Figure 1.6), and it protects an area of 49 km?. The mean elevation of the dike crest is 25.5m
(Chinese Height Datum 1985), which was designed to withstand the greatest historical flood
in1954, with a return period of about 40 years. The mean elevation of the bottom of the dike
is 21.0m. The elevation of mean river water level in non-flood season is 13.65 m. Here, the
failure probability of the dike is assumed to be equal to the exceedance probability of the
dike crest, which means only the failure mechanism of overflowing is considered. The failure
mechanism of overtopping, which is important for see dikes, can be neglected in the design
of river dikes.

6.5.1 Uncertainty in flood probability under climate change

For the sake of simplicity, the projections of future climate from two GCMs from IPCC AR4
data sets, CSIRO-Mk3.0 (CSMK3) and GFDL-CM2.0 (GFCM20), were selected based on their
performances of simulating the historical climate. Both of the GCMs provided the
retrospections of the historical climate from 1960 to 1990 representing the present climate
and the future projections from 2070 to 2099 under three GHG emission scenarios
representing the future climate (see Figure 6.4).

Present Climate Future Climate
3 1960 - 1990 2070 - 2099
| Baseline period Now Future period N
>
2 GCMs (2GCMs x 3 scenarios)

Figure 6.4 Timeline of the GCMs projections

Since the long-term record of the historical river stage is not available, through Step 4 and 5
in Section 6.4, the parameters of the present-status probabilistic model of river stage were
derived based on the historical records of runoff from 1956 to 2000. According to the
derived probabilistic model, the return period of river stage in 1954 is 60 years and the
return period of the river stage at the present dike height is about 1600 years. Compared to
the return period of the flood in 1954 (40 years) provided by the authority, the calculated
return period of river stage is higher. This discrepancy could be attributed to the difference
in the record lengths used and the bias in the derivation of river stage based on river runoff
(Step 4 and 5 in Section 6.4).

Through the five steps in Section 6.4, the parameters of the GEV probabilistic distribution of
future river stage resulted from two GCMs under three scenarios were obtained,
respectively (see Table 6.1). The spread of the probability curves is large (see Figure 6.5). The
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shape parameters from the GCM projections have much larger variation (with variance
coefficient of 185%) than the scale and shift parameters. The GCM ensemble projected a
higher flood probability than the present status except the projection of GFCM20 under low
emission scenario (B1). The high emission scenario (A2) leads to a higher probability than the
other scenarios. CSMK3 generally projected a higher flood probability than GFCM20.

Table 6.1 Parameter sets of the present status and from GCM projections

Parameters of GEV distribution

GCMs-scenarios Shape parameter (C)

Scale parameter (B) Shift parameter (A)
Present Status -0.0169 0.9705 18.7568
CSMK3-A1B 0.0124 1.3305 17.475
GFCM20-A1B 0.0564 1.1302 17.301
CSMK3-A2 0.0878 1.7044 16.3553
GFCM20-A2 0.0613 1.4385 18.5171
CSMK3-B1 0.0483 1.4745 16.9612

GFCM20-B1 -0.0767 0.7247 18.9283
Predictive_Mean 0.0316 1.30 17.59
Predictive_S.D 0.0584 0.339 0.97
Variance Coefficient 185% 26.1% 5.5%

Here the projections from both of the GCMs under three scenarios were treated as equally
weighted realizations. By assuming the parameters obey a normal distribution, the expected

predictive flood probability in the future, u(P), was calculated using Equation 6-15 (shown as
blue solid curve in Figure 6.5).
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Figure 6.5 Exceedance probability of river stage under present climate and future climate. P, is the failure
probability at current dike height
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The expected predictive flood probability, uP), is considered as the probability that
integrates the uncertainty related to the future climate. As can be seen in Figure 6.5, the
expected predictive flood probability is much larger than the present situation (no climate
change occurs), which indicates that climate change will lead to increased flood probability.
The predictive probability curve has an upward trend towards the low exceedance
probability end compared to the present-status curve, which is caused by the increased
spread of the flood probabilities of the GCM ensemble at the lower end. Larger uncertainty
in the projections of GCM ensemble leads to a higher expected predictive flood probability.

Compared to the present flood probability Py, the river stages suggested by the GCM
ensemble would be up to 10m higher than the present level. The drastic increase can be
explained by the physical reasons underlying the hydrological responses to climate change
and the extrapolation uncertainty in deriving the river stage-probability relationship, which
is explained in detail in the following paragraphs.

The river basin in this study is a rainfall dominated basin with a large area (about 120000
km?). The increase in river flow can be attributable to the absolute increase in the rainfall
and the changes in the spatial and temporal distribution of the rainfall. According to the
analysis on the historical records, annual runoff coefficient increases when the amount of
annual rainfall is larger. This implies that the increase rate of runoff is greater than that of
rainfall. If a GCM projects a drastic increase in rainfall, more drastic increase would be
resulted in river flow. Moreover, long-duration rainfall events affecting large areas could
cause simultaneous high flows in the tributaries, which leads to drastic high flow in the main
stream of the Huai River. Thus, future changes suggested by GCMs in the spatial and
temporal distribution of the rainfall may lead to more extreme high flows.

As shown in the beginning of this section, the approach of deriving the river stage based on
the runoff underestimated the flood probability at the present dike height. When being used
to derive future stage, the empirical relationships employed in the derivation need to be
extrapolated, which could bring additional uncertainty. For example, the rating curve used to
derive the stage-discharge relationship was determined based on the historical records. The
result would be less reliable if the hydraulic characteristics of the control section change
beyond the measured range. The relationship between annual maximum actual (observed)
monthly runoff and annual maximum natural monthly runoff is used to represent the
influence of the upstream flood control measures based on the historical records. This
relationship cannot accurately foresee the possible flood control measures in the future for
the river flows that are much greater than the present level. Moreover, the flood frequency
was determined from the 30-year river flow time series; thus, considerable uncertainty
occurs when extrapolating the frequency curves to lower probability. To reduce these
uncertainties, it is recommended to take account of the operations of hydraulic structures in
the hydrological models, to determine the rating curve by computational hydraulic
modelling and to use the resampling methods in order to obtain longer time series.
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6.5.2 The effect of climate change on risk-averse economic optimization

To prevent floods in a changing climate, the assumed precautionary adaptation measure is
to build a flood wall on the top of the dike in the year 2013 to increase the crest height. It is
assumed that the flood wall is robust enough to resist the potential water loads. The effect
of the uncertainty of climate change on the economic optimization was compared with the
effect of the uncertainty of damage. Three situations were analysed:

S1: The climate stays unchanged in the future. Only uncertainty in damage is included
(the standard deviation is assumed as 30% of the expected damage). The mean and standard
deviation of the total cost were calculated as
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where Py is the present flood probability; the definitions of other symbols are the same as
those in the previous equations.

In this situation, if the risk-aversion index is taken as 0, the results would be the basic
outcomes of the economic optimisation under the present climate in a risk-neutral
condition.

$2: The climate will change. Only uncertainty in the flood probability caused by climate
change is included. The mean and standard deviation of the total cost were calculated as
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$3: The climate will change. Both uncertainties in damage and climate change are
included. The mean of the total cost was calculated in the same way as in S2 (Equation 6-20),
and the standard deviation was calculated as
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The values of the parameters in above equations are shown in Table 6.2
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Table 6.2 The values of the parameters used in the risk-averse economic optimisation

Variables | Values Method and Reference
Io 10 million RMB Calculated based on Regulations of Budget Quotas and Unit Value of the
Iy 11 million RMB Hydraulic Construction in Anhui Province, China.
u(s) 14.8 billion RMB Estimated based on the economic assessment carried out by Xu and Chen
(1999)
o(S) 30%* u(s) Recommended by Slijkhuis et al. (1997)
Recommended in Economic Evaluation Methods and Parameters about
r 8% Construction Project (the 3™ Version), Published by National Development and

Reform Commission and Ministry of Construction of China

For all three situations, the uncertainty in the investment cost was not considered for
simplicity. Because the flood probability is estimated as a function of the dike height, the
added dike height is set as the decision variable. The objective function is to minimize
u()+k-a(C), where u(C)and o(C) were respectively calculated by Equations 6-18 — 6-22
corresponding to each situation. The risk-aversion index, k, was respectively taken as 0, 0.5,
1 and 1.5 for each situation. The costs (u(C), o(C) and u(C)+k-o(C)) at different added dike
height is shown in Figure 6.6. Figure 6.7 is similar to Figure 6.6, but the horizontal axis is the
return period corresponding to the added dike height. It is notable that for the same added
dike height, the corresponding return period in the no-climate-change situation is different
from that in the climate-change situation.
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Figure 6.6 Costs V.S. Height for three situations with different risk-aversion indexes.

The black thin line and grey dashed curve show the investment and risk under the present climate,
respectively. The black solid curve show the total cost under a no-climate-change situation. The total cost
with varied risk-aversion indexes corresponding to situation S1, S2 and S3 are represented by red, blue and
green curve clusters, respectively. The dashed curves that monotonously decrease with heights are standard
deviation of total costs.
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Figure 6.7 Costs V.S. Return period for three situations with different risk-aversion indexes. The legend is the
same as in Figure 6.6

Generally speaking, the more uncertainties are included and the larger the risk-aversion
index is, the more investment and the higher the dike should be to reach the economic
optimum. The effect of the uncertainty in climate projections is much larger than that of the
uncertainty in damage, which can be seen in Figure 6.6, the curves of S3 (both uncertainties
are included) are close to the curves of S2 (the uncertainty caused by climate change is
included), but deviate obviously from S1 (the uncertainty in damage is included).

It is also observed that the uncertainty in climate change causes an obvious increase in the
standard deviation of the total costs, which leads to a higher optimal height. In terms of the
safety level, the effect of climate change reduces the optimal return period (blue solid curve
in Figure 6.7), which is due to the increase in the flood probability (as shown in Figure 6.5),
while the effect of including the uncertainty in damage leads to an increased optimal safety
level (red curves in Figure 6.7).

The optimal results of three situations are summarized in Table 6.3, in which the columns
correspond to the risk-aversion index k from 0 to 1.5 with an interval of 0.5. The index value
of 0 represents a risk-neutral condition when the optimisation is based only on mean values.
The risk-aversion level increases with the value of k as more proportion of uncertainty
(standard deviation) of total costs is included to determine a safer optimisation. S1 with k
equals to 0 represents the optimum under the present climate without uncertainty in
damage, which is the basic risk-neutral economic optimisation. It can be seen that when the
risk-aversion index increases, its influence decreases. For instance, for S1, the optimal height
increases by 3.3m when k increases from 0 to 0.5, but only by 0.62m when k increases from
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1 to 1.5. There are similar results in terms of optimal total costs and safety level. The effect
of climate change leads to wild results on optimal heightening and total cost: increase by
325% and 240%, respectively. Meanwhile, the optimal safety level is reduced dramatically
from one in 20620 to one in 5263. However, if the decision maker is more risk averse
(k=0.5), the optimal safety level is higher than the risk-neutral optimum under the present
climatic conditions.

Table 6.3 The optimal results of three situations

Optimal added height (m)

k 0 0.5 1 1.5
S1: U in Damage 2.13 5.42 6.48 7.1
S2:UinC.C. 9.06 16.83 21.35 24.55
S3: D &C.C. 9.06 17.07 21.67 24.91

Optimal total costs (million RMB)

k 0 0.5 1 1.5
$1: U in Damage 42.4 86.3 97.7 104.3
S2:UinC.C. 144.8 289.8 360.4 409.4
S3: D &C.C. 144.8 293.7 365.3 415.0

Optimal safety level (1/yr)

k 0 0.5 1 1.5
S1: U in Damage 20620 1.3E+06 5.3E+06 1.2E+07
S2:UinC.C. 5263 40000 100000 166667
S3: D &C.C. 5263 43478 111111 200000

6.5.3 The influence of the timing of climate change

The above analysis only considers the extreme timing pattern that the climate will change
right after the construction of the flood wall, which may be criticised as unrealistic. In reality,
climate change is a gradually evolving process. To analyse the influence of the timing of
climate change, a pattern of gradual climate change and an extreme pattern of a sudden
change in 2070 (as shown in Figure 6.8) are compared with the results of S2 in Section 6.5.2.

Pattern 1: The climate suddenly changes after heightening (2013). Discounting time
horizon: 2014~very long

Pattern 2: The climate gradually changes until 2070 and stays stationary after 2070.
Discounting time horizon is from 2014 to far future (2200). The flood probability during
2014~2069 is assumed to increase exponentially, which is given by:

P =P e 6-23
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m
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where P; is the flood probability in the year i, Py is the present flood probability, u(P) is the

future probability in 2070 and later, y is the increasing rate of flood probability, and m is the
number of years during 2014~2069.

Pattern 3: The climate stays stationary until the sudden change in 2070. Discounting time
horizon: 2014~ very long
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Figure 6.8 Flood probabilities over time without heightening the dike in three timing patterns

The case of Pattern 1 is equivalent to the situation S2 in Section 6.5.2, and the calculation is
the same as presented above (Equation 6-20 - 6-21).

For the case of Pattern 2, the total cost consists of the investment of construction, the risk
under the transient climate (2014-2069) and the risk under the changed climate (after 2070).
The mean and standard deviation of total cost can be given by

,u(C) = E(Itotal ) + E<Rbeforezo70,Pattern2 ) + E(Rafterzom)

56 1Y 704y 6-25
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For the case of Pattern 3, the total cost consists of the investment of construction, the risk
under the present climate (2014-2069) and the risk under the changed climate (after 2070).
The mean and standard deviation of the total cost can be given by:
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where liorq is the investment cost, Rpefore2070 and Ragterz070 are the risk under the present
climate and under a changed climate, respectively.

The optimal risk-neutral results for the three timing patterns are summarized in Table 6.4. If
the sudden change in climate occurs right after the construction of heightening (Pattern 1),
more investment is required to reach the optimal safety standard. For the pattern of a
gradually changing climate, the required investment of the heightening is much lower than
for Pattern 1; the optimal safety level is lower as well. In Pattern 3 where climate will not
change until 2070, the optimal dike heightening is further decreased and is close to the
results for the no climate change case. However, the corresponding optimal safety level of
Pattern 3 is dramatically lower than that of the present due to the increase in the flood
probability after the sudden change in climate. It is notable that the expected predictive
flood probability integrates the uncertainty in climate change projections, thus the future
safety level is an inference into the future based on the available predictions at present. The
real future flood probability could be lower or higher than the expected predictive level.
Whether further heightening is needed in 2070 depends on the information obtained in the

future.
Table 6.4 Optimal results of different climate patterns (risk neutral)
Pattern Added Height (m) Costs (million RMB) Return period
No climate change 2.13 42.4 20620
Patternl: Sudden change in 2013 9.06 144.8 5263
Pattern2: Gradual change until 2070 3.37 62.6 662
Pattern3: Sudden change in 2070 2.34 48.5 422

The optimal added dike height with risk aversion is shown in Table 6.5. The greater the risk-
aversion, the higher the dike should be. The influence of the risk-aversion index decreases
when its value increases.

Table 6.5 Optimal added height (m) with different risk-aversion indexes

Risk- aversion index: k

Pattern

0 0.5 1 1.5
No climate change 2.13 5.42 6.48 7.1
Patternl: Sudden change in 2013 9.06 16.83 21.35 24.55
Pattern2: Gradual change until 2070 3.37 6.3 7.48 8.23
Pattern3: Sudden change in 2070 2.34 5.4 6.38 6.93
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Figure 6.9 shows the flood probabilities with time corresponding to the optimal dike height
with risk-aversion levels of 0, 0.5 and 1 for the gradual climate change pattern. The flood
probability is lowered immediately after dike heightening for each risk-aversion level. With
the change of climate, the flood probability gradually increases until the assumed stationary
condition of climate in 2070. Following the assumption mentioned above, the flood
probability in the transition period increase exponentially with a constant increasing rate.
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Figure 6.9 Flood probabilities over time with heightening the dike under Climate Change Pattern 2. The
optimal dike heightening for each risk-aversion level is also shown

It can be seen that with no risk aversion, the optimal heightening leads to much higher flood
probability in the future. If the risk-aversion index is taken as 0.5, the optimal safety level will
be higher than the present safety level, even when climate change occurs. The difference in
optimal safety levels gets smaller when risk-aversion index gets larger.

6.6 Discussion

In this chapter, the uncertainty in GCM projections was assumed to represent the
uncertainty in future climate change. Actually, the variance in the projections of the future
climate only represents the agreement of the climate models rather than the true
uncertainty in climate change. There hasn’t been a way to fully explain and accurately
quantify the true uncertainty in future climate change. Using a GCM ensemble and
quantifying its uncertainty helps better understand the uncertainty in climate change. The
agreement of GCM projections represents the ability of climate models describing the real
world. The more uncertainty in the projections, the less confidence can be had in climate
models; thus, the more risk-aversion attitude should be held in the decision making in order
to guarantee a safe flood defence.
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In a risk-aversion economic optimisation, extra cost beyond the economic optimal cost is
paid to reduce the uncertainty and to guarantee a safer flood defence. The extra money is
quantified by the product of the standard deviation of total cost and the risk aversion index.
The risk aversion index reflects the willingness of the decision makers to invest more in order
to achieve a safer flood defence structure. A high value of the risk aversion index implies a
high willingness to avoid the risk. This method may be criticized to be subjective and
ambiguous in the selection of the risk-aversion index (Aven and Flage 2009). However, it is a
way to turn it into a quantifiable index when a “subjective” attitude has to be incorporated.
The selection of the risk aversion index value is dependent on the choice of the decision
maker and the specific application. As shown in Figure 6.9 an increasing risk-aversion level
does not always leads to significant improvement of safety. It is recommended to the
decision makers that an appropriate risk aversion index would be the value that most
effectively improves the safety.

The decision problem here is: what is the economic-optimal precautionary adaptation to
climate change by the way of dike heightening. The practical difficulty in making adaptations
is the timing of the action, because we cannot know the exact timing of change in climate
and the resulting change in river flows. Whether a precautionary adaptation is necessary to
be made now in order to cope with the impacts in the future is a question to be answered. It
can be seen from Table 6.4 that there is a large variability in the required investments of dike
heightening for different timing patterns of climate change. If an adaptation to cope with the
anticipating climate change in the near future is made while the climate actually changesin a
far future, the cost of “unnecessary” dike heightening would be up to 84 million RMB (Patten
1 vs. Patten 3). Thus it might be wiser to adopt an alternative “wait and see” adaptation
strategy if the climate will change in an unknown future. In this strategy, one could wait for a
couple of decades to see if there are changes in the statistics of river flows and the influence
factors such as rainfall. The preference between “take action now” and “wait and see”
depends on the costs of these options. If the calculated optimal dike heightening requires
more total costs than the cost of risk for doing nothing, it would be economically optimal to
stick to the present safety level and wait until more information is available. Assuming the
present-climate-status optimal dike heightening has been achieved, the remaining flood risk
is around 9 million RMB. The initial investment cost to make an adaptation is 10 million
RMB, which is even more than the remaining flood risk. If the climate will change in a very
far future, the optimal precautionary adaptation would require more total costs than the risk
of sticking to the present-status optimal safety level due to the relatively high initial
investment cost. Thus, the “wait and see” strategy may be better than the “take action now”
strategy from an economic point of view if the climate will change in the far future.

The drastic increase in the future river stage can be physically explained by the projected
increase in rainfall amount and the changes in the spatial and temporal distribution of
rainfall. The reality of the calculated river stage is thus dependent on the reality of the
projected rainfall by the GCMs. Additional uncertainty could arise from extrapolating the
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empirical relationships used in deriving the stage-probability relationship. The physical based
methods are recommended to be used instead of the empirical relationships in order to
reduce the extrapolation uncertainty.

It is notable that the resulted dike heightening of 9m-24m for a sudden climate change is
enormous and beyond physical reality. This is understandable as this results was obtained
based on an extreme hypothesis that the climate will change very soon and the flood wall is
robust to resist the future water load. The expected predictive flood probability is an
inference of the future flood probability based on the present available information, which
integrates the uncertainty in climate projections. It is rather an indication of the uncertainty
in climate projections than an actual future flood probability. Using the expected predictive
flood probability in an extreme situation with a sudden climate change helps us understand
what the cost is when taking action right now in order to cope with the deep uncertainty in
climate change based on the available information. Apart from the extrapolation uncertainty
mentioned in the last paragraph, the cheap adaptation considered in this study also partly
accounts for these great values. Since the adaptation analysed here is aimed at taking a
precautionary action, a cheap measure of constructing a flood wall is assumed rather than a
heightening of the whole dike, which requires more initial and variant investment. If a
permanent heightening is considered in the analysis, the optimal dike heightening would be
lowered to some degree.

Theoretically, a lower discount rate leads to a higher optimal dike height. The value of the
discount rate r was assumed to be constant in this study. As a long-term time period is
considered in this thesis, the uncertainty associated with the economic growth may be as
large as the uncertainty related to climate change. The uncertainty related to the discount
rate can also be modelled by a normal distribution. An example can be seen in the study of
Slijkhuis et al. (1997) who compared the use of a normally distributed discount rate (with a
variation coefficient of 10%) with the case of a fixed discount rate when estimating the total
costs of optimal dike heightening and the corresponding damage over a 100-year horizon
using Monte-Carlo simulation. Their analysis showed that the use of a normally distributed
discount rate leads to comparable result from the use of a constant discount rate.
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Chapter 7 Conclusions and
recommendations

7.1 Conclusions

A framework of analysing the uncertainty in assessing climate change impacts on river floods
has been presented in this thesis. To take account of this uncertainty, a decision-making
method of adapting river dikes to climate change has been proposed based on the risk-
averse economic optimization. The Huai River Basin in China was selected as a case study to
implement the uncertainty analysis framework, and a city dike ring located along the
midstream of the Huai River was selected to test the proposed decision-making method. The
framework of uncertainty analysis and the proposed method of risk-reverse economic
optimization could also be applied to other river basins and flood defenses.

7.1.1 Future climate projections

According to the GCM ensemble from the CMIP5 data set, the future temperature over the
study area is suggested to increase by 4°C to 8°C at the end of this century under the high
emission scenario without mitigation measures. The standard deviation of precipitation
intensity is also suggested to increase especially in summer, which may lead to floods of a
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larger magnitude in the future. The GCMs have a better agreement in reproducing the
present-day temperature. However, large variation was found in the simulation of
precipitation, which emphasizes the importance of bias-correcting and downscaling the
climate model outputs. The variability among the climate model outputs can be attributed
among other factors to the physics used by the models and the model resolution. Higher
resolution does not grant better model performances. The use of multi-GCM ensembles is
necessary to take account of the uncertainty in the future climate change projections.

7.1.2 Uncertainty in downscaling methods

Chapter 3 was under taken with the overarching aim of assessing the uncertainty in the
empirical statistical methods for downscaling daily GCM outputs and providing the basis for
using these downscaling methods in climate change impact assessments. Empirical statistical
downscaling methods were classified based on calibration strategies (bias correction and
change factor) and statistical transformations (mean based, variance based, quantile
mapping, quantile correcting and transfer function methods). The performances of ten
downscaling methods resulting from the combinations of calibration strategies and
transformation methods were assessed using a 16-GCM ensemble over the Huai River basin
in China.

The approach of inter-model cross validation was employed to measure the skill of the
downscaling methods in a pseudo-observed climate. The results show that the change factor
based methods outperform the bias correction based methods in projecting the probability
distribution of downscaled daily temperature. In downscaling daily precipitation, the choice
of the transformation methods dominates total uncertainty compared to the choice of the
calibration strategies. When implementing the change factor calibration strategy, simply
adding (for temperature) or multiplying (for precipitation) the mean change factor is
sufficient to represent the relative changes projected by GCMs. More sophisticated bias
correction based methods are needed to remove the biases in the higher-order statistics of
the raw GCM outputs. Non-parametric transformation methods perform better than the
simple parametric methods used in this study.

The two calibration strategies lead to fundamentally different temporal structures and
spatial variability in the downscaled future climatic variables. The bias correction based
methods produced larger uncertainty bounds of inter-annual variability than the change
factor methods. The bias correction based methods also resulted in relatively more
uncertainty than the change factor based methods with regards to the probability
distributions of the downscaled variables. The downscaling method uncertainty was
comparable to the GCM uncertainty for downscaled precipitation. More uncertainty was
introduced by the calibration strategies than the statistical transformation methods.
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7.1.3 Hydrological modelling in the context of climate change

Chapter 4 assessed the uncertainties associated with the parameter calibration of the
lumped Xinanjiang hydrological model when assessing the climate change impacts on river
flow of a large basin in China. The transferability of model parameters was tested in the
context of historical climate variability using the differential split-sample test. The
uncertainties in projected future river flow stemming from the choice of calibration period
and parameter equifinality were compared.

The transferability of the parameters calibrated from a wet period to a dry period was
poorer than the other way around. The model error increased with the increase of the
difference in rainfall between the calibration and validation periods. The variability in the
simulation due to equifinality also increased with the rainfall difference. The annual
maximum 30 day discharge may be overestimated when the parameters were transferred to
a period that is wetter than the calibration period.

When projecting future streamflow, the uncertainty due to the choice of calibration periods
is not negligible in the assessments where the mean hydrological condition is analysed. The
uncertainty stemming from the equifinal parameter sets should be considered when the
assessment is focused on the extreme floods. When forcing the hydrological model with a
future climate that is much wetter than the calibration period, unrealistic extreme discharge
may be generated. It is recommended to calibrate the hydrological model over the period
with similar climatic conditions compared to the future climate. The results presented are
dependent on the hydrological mode used and the climatic and geographic properties of the
basin. The uncertainty evaluation of the performance of the hydrological models should
routinely be carried out on a case by case basis.

7.1.4 The overall uncertainty assessment and the reflections

In Chapter 5, an uncertainty assessment was carried out by comparing the contribution of
each component in the modelling framework. Five sources of uncertainty were analysed, i.e.
GCM structure, greenhouse gas emission scenario, downscaling method, the choice of
period for calibrating hydrological model, and the equifinality effect of hydrological
parameters. The results show that the future flood magnitude is expected to increase not
only due to the increase in mean precipitation but also due to the increase in the variation of
precipitation. Nonetheless, there is still a small likelihood that the flood quantiles with a high
return period (above 20 years) will decrease in the future. The uncertainty comparison
suggests the following order of component significance (greatest to least): GCM > emission
scenario > (empirical) downscaling method > hydrological modelling (choice of calibration
period and equifinality.

Since the models used in impact assessments are not able to perfectly simulate the real
world, it has been generally recommended to use multiple methods or models for each
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component of the modelling framework and to analyse the associated uncertainties.
Chapters 2-5 in this thesis gave an example of the uncertainty assessment framework which
consists of the analysis on the uncertainty associated with each component and the
assessment of the overall uncertainty. The aim is not to reduce uncertainty but to gain
knowledge by exploring uncertainty, and uncertainty need to be identified from errors.
Implementing the proposed uncertainty assessment framework will help obtain reliable
impact assessments by employing appropriate approaches with computational efficiency.
Specifically, the preliminary analysis on the GCM ensemble helps better analyse the physical
reasons underlying the hydrological responses to climate change; the inter-model cross
validation approach can be used to measure the performances of the downscaling methods,
based on which, the underperforming downscaling methods should be discarded; the
differential split-sampling method helps assess the transferability of hydrological models to
differing climatic conditions based on the available historical records; the relative
contributions of different sources of uncertainty can be recognised by the analysis of
variance and the key uncertainties should be focused on in the following impact assessment.

Detailed reflections can also be drawn from the application of the uncertainty assessment
framework in the case study. Multiple GCMs and multiple emission scenarios have to be
employed to describe the plausible change of the climate. For the empirical downscaling
methods, the choice of calibration strategies should be considered as a source of uncertainty
in addition to other uncertainties in impact assessments especially where the change in the
temporal sequence of climate variables is a key factor. The simplest mean-based change
factor (the so-called delta change method) can be used in preliminary impact assessments,
especially those requiring multiple projections of GCMs and scenarios, due to its ease of use
and more or less similar performance compared to more sophisticated methods. For the
hydrological modelling, the parameter uncertainty has less influence on the impact
assessments compared to the uncertainties associated with GCMs and emission scenarios.
However, the additional uncertainty arising from transferring the model to a future climate
that is much different from the present climate should gain more attentions.

7.1.5 Adaptation to climate change under uncertainty

A risk-averse economic optimization method for river dike adaptation to climate change was
proposed in this thesis. This method provides a way of coping with climate change
uncertainty in economic optimization by adjusting the level of risk-aversion attitude. A case
study of the Old Dike Ring in Bengbu was carried out by using the proposed method. The
conclusions are drawn as follows:

The proposed approach enables decision makers to make trade-offs between the confidence
in the climate projections and the risk-aversion attitude. Introducing the risk-aversion
attitude in the adaptation of river dikes can help cope with the uncertainty in climate change
and reach a safer decision, but simply increasing the level of risk-aversion does not always
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lead to a significant improvement of safety. As can be seen in the timing pattern of gradual
climate change, the efficiency of the influence of the risk-aversion index on optimisation
decreases when its value increases.

The uncertainty related to climate change increases the optimal dike height and decreases
the optimal safety level in case of risk aversion. The uncertainty introduced by climate
change has a much more significant influence on the optimal decision than an uncertainty in
damage assumed as 30%. The uncertainty in damage was not further analysed in this thesis.
It is likely that this uncertainty could be much larger especially in the long term due to the
land use change and the economic development.

Timing of climate change is also an influential factor in adaptation decision makings. The
sooner climate change is expected, the more uncertainty in the flood probability caused by
climate change is taken into account in the economic optimisation. The practical questions in
adaptation decision making is when and to what extent should the dikes be strengthened,
considering the uncertainty in climate change impacts. The results of the case study suggest
that taking the “wait and see” strategy is more economic optimal than a precautionary
adaptation taken right now.

A flood wall with the height of 8 m or more is enormous and unfeasible in reality. This
implies that simply building a flood wall as a precautionary adaptive measure cannot
sufficiently reduce the impacts of climate change in a near future, and the integrated
adaptation including regulating reservoirs, using water retention areas and secondary levees
should be carried out.

Even though this study is focused on a “hard” measure of river dike heightening, the
proposed methods could be used in guiding adaptation decisions for other sectors
implementing both engineering and non-engineering measures.

7.2 Recommendations

Some parts of this thesis can be improved for the future work, and on the basis of this thesis
several recommendations are made below:

e Even though empirical statistical downscaling methods are computationally efficient
and easy to implement, further research is required to overcome their limitations.
For example, these downscaling methods do not address the reproduction of the
inter-annual variability of the climatic variables. Similarly, the difference in the
temporal sequence resulting from the choice of calibration strategies requires more
attention in impact assessments especially in those where the temporal structure of
climatic variables is a critical issue, e.g. design storm estimation and crop yield
prediction. The lack of spatial variability in the bias correction based methods is
another issue that warrants attention in future studies.
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e Dynamical downscaling methods and more sophisticated statistical downscaling
methods were not used in the analysis due to their high computational cost.
Including more downscaling methods would lead to more robust results. For
instance, using a stochastic weather generator to generate time series of future
precipitation could provide information on future climate variability.

e The hydrological model structure is also an important source of uncertainty in impact
assessments. Only one lumped hydrological model structure was used in this thesis.
It is recommended to include model structures with different assumptions in order to
explore the uncertainty envelope. Moreover, uncertainty could also arise from the
configuration of models, e.g., lumped vs distributed. With consideration of the
simulative ability of climate models, the appropriate model configuration should be
investigated on a case by case basis.

e The commonly used linear relationship between cost and dike height has been used
to estimate the investment cost of dike construction. The underlying assumption of
this linear approximation is that the added height X is considered to be relatively
small. If a larger change in height is required, the assumed linear approximation may
no longer be valid due to the required broader base of the dike associated with the
higher height. In practical decision problems under a stationary climate, the linear
approximation is able to fulfil the requirement of the analysis. However, in the
decision problem under a changed climate, the large uncertainty in future flood
probability increases the risk, which leads to an increasing range of the possible value
of X. The use of a linear function tends to underestimate the dike costs, which
explains the high optimal dike height found in this thesis. If a more realistic function
is used, the optimal dike height may be lower.

e Here, only the failure mechanism of overflowing was taken into account and a linear
relationship between damage and river stage was assumed. Damage estimation
based on inundation modelling is recommended to be used. Climate change could
impact on the future flood hydrographs which may complicate the estimation of
damage. The scenarios of possible flood hydrographs suggested by GCM ensembles
are recommended to be used as boundary conditions for the inundation models. In
addition, economic growth also plays an important role in the damage estimation. It
is thus recommended that varied economic growth rates should be used in
correspondence with the greenhouse gas emission scenarios.
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