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 A B S T R A C T

Gaussian process state-space models are a widely used modeling paradigm for learning and estimation in 
dynamical systems. Reduced-rank Gaussian process state-space models combine spectral characterization of 
dynamical systems with Hilbert space methods to enable learning, which scale linearly with the length 
of the time series. However, the current state of the art algorithms struggle to deal efficiently with the 
dimensionality of the state-space itself. In this work, we propose a novel algorithm, referred to as Domain-
Aware reduced-rank Gaussian Process State-Space Model (DA-GPSSM), which exploits the relationship between 
state dimensions to model only necessary dynamics resulting in reduced computational cost, by potentially 
orders of magnitude in comparison to the state-of-the-art. The proposed approach grants modeling flexibility 
while maintaining comparable performance and thus increasing the applicability of these models. We present 
implications of the proposed approach and discuss applications where DA-GPSSM can be beneficial. Finally, we 
conduct simulations to demonstrate the performance and reduced computational cost of our proposed method, 
compared to the state-of-the-art learning method, and propose future research directions.
1. Introduction

Gaussian Process regression can be used to learn nonlinear state 
transition and measurement models using only measurement data. 
Previous works, on learning state transition and measurements models 
using Gaussian processes have shown to lead to a better performance 
as compared to traditional nonlinear filters such as extended Kalman 
filters (EKF) which require the true nonlinear model to be known in 
advance [1]. Gaussian process state-space models (GPSSMs) combine 
a Bayesian framework for representing dynamical systems using state-
space models (SSMs) with the flexibility of modeling the nonlinearities 
present within the system using versatile covariance functions provided 
by Gaussian processes. The flexibility afforded by the use of GPs 
to model the state-transition function allows for the estimation of a 
wider scope of nonlinear state-transition functions by using appropriate 
covariance functions. Other approaches such as Recurrent Neural Net-
works (RNNs) have been used previously to model dynamical systems 
but require the latent state, akin to states of an SSM, to be deterministic. 
This is particularly unreliable in the presence of process noise. Further-
more, to add stochasticity to the hidden states in RNN, latent variables 
have been introduced. However, the proposed approaches are com-
plicated and better suited to high-dimensional measurement sensors 

I This work is partially funded by the European Commission Key Digital Technologies Joint Undertaking - Research and Innovation (HORIZON-KDT-JU-
2023-2-RIA), under grant agreement No 101139996, the ShapeFuture project - ’’Shaping the Future of EU Electronic Components and Systems for Automotive 
Applications’’.
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E-mail addresses: a.mishra@tudelft.nl (A. Mishra), r.t.rajan@tudelft.nl (R.T. Rajan).

such as cameras. Alternatively, GPSSMs provide a fully probabilistic 
approach that not only allow for latent states to be stochastic, but 
also enable multiple sensor modalities to be fused in a coherent way, 
exploiting the uncertainty information available for each modality.

Learning in GPSSMs conventionally requires operations involving 
the inversion of the covariance matrix and thus scale poorly with the 
number of datapoints with time complexity (𝑇 3) where 𝑇  is the length 
of the timeseries. Hence GPs and consequently GPSSMs suffer from 
the curse of dimensionality [2]. To address this challenge, two types 
of approaches are considered in literature: input-based methods [3–5] 
and spectrum-based methods [6–8]. In input-based methods, e.g. [3], a 
subset of the data is used to form an approximate covariance matrix, 
which reduces the computational complexity to (𝑁2𝑇 ) where 𝑁 < 𝑇
is the length of the selected subset obtained using eigendecomposi-
tion. Principled methods to choose the data subset, not necessarily 
from the training set, have been proposed in [4,5]. In contrast, the 
spectrum-based methods approximate the covariance function using 
basis function expansion in the spectral domain. In particular, Reduced-
Rank Gaussian Processes, based on the Hilbert space approximation of 
the covariance function proposed in [8], which allows for the full spec-
trum governing the dynamical process to be utilized for a given rank 𝑀 . 
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This reduces the computational complexity from cubic to linear in time. 
However, this approach scales poorly in computational complexity 
when the dimension of the state-space (𝐷) is large i.e., (𝑀3𝐷). The 
extension of the Hilbert space approach in [8] to state-space models is 
referred to as Reduced-Rank Gaussian Process State-Space Models (RR-
GPSSMs) [9], and suffers from similar computational issues associated 
with the dimension of the state-space. In [10], the authors propose deep 
hidden layers, similar to deep neural networks, to limit the exponential 
increase in the number of parameters to be learnt. However, in absence 
of further analysis, the spectral interpretation of the original process 
using the Hilbert space approximation is lost in such an approach. 
A similar work on deep layers of GPSSM is presented in [11] based 
on Fourier random features [6]. However, for high-dimensional state-
space, the number of spectral points required in this approach are 
significantly large [8]. Another approach is given in [12–14], where 
variational approximation of the covariance function is proposed based 
on inducing point methods in [5]. For scaling the inducing input based 
variational approach to large datasets, the authors in [13] propose 
a variational approximation that allows for the reparameterization 
trick from [15] to be used to efficiently optimize the evidence lower 
bound. However, the approach is still computationally expensive. Ad-
ditionally, these approaches do not directly treat the dimensionality of 
the underlying state-space model. In addition, there have been other 
works recently, based on Gaussian processes and state-space models 
e.g., [16–18], for the learning of ordinary differential equation in a 
regression setting but they do not deal with the dimensionality of the 
state space.

In this work, we focus on RR-GPSSM which is based on the Hilbert 
space approximation of the covariance function proposed in [8], and 
implemented in [9] in the context of state-space models. In contrast 
to other approximations, the Hilbert space approach in [8] allows 
for the full spectrum governing the dynamical process to be utilized 
for a given rank 𝑀 . This reduces the computational complexity from 
cubic to linear in time. However, the approach scales poorly when the 
dimension of the state-space, 𝐷, is large with computational complexity 
of (𝑀3𝐷). This has been a particular bottleneck of RR-GPSSMs [9]. 
In this paper, we aim to reduce the computational load associated 
with Hilbert spaced based RR-GPSSMs, allowing for a wider range of 
high-dimensional state-space models to be learnt. The key contributions 
made in this work are briefly listed below:

1. We model the interactions between the state dimensions, using 
selection matrices based on the binary relationships between 
the dimensions, leading to reduced computational complexity of 
(𝑀3𝐾 ), where 𝐾 ≤ 𝐷.

2. We propose Domain-Aware Gaussian Process State-Space Models 
(DA-GPSSMs), extending the work of [9], to learn the required 
parameters of the modified model.

3. We discuss the implications of the proposed modification in 
terms of modeling capability and computational gains and dis-
cuss scenarios where the proposed DA-GPSSM offers exponential 
computational gains.

4. We provide simulations to show the effectiveness of our model 
when compared to the implementation in [9].

The layout of the paper is as follows. In Section 2, we introduce RR-
GPSSM model and briefly discuss the learning algorithm. In Section 3, 
we propose DA-GPSSM and discuss in detail the implications of the 
modeling assumptions used in the proposed approach. Simulations 
showcasing the performance of the proposed approach are provided in 
Section 4, and the results are compared to traditional as well as the 
state-of-the-art algorithms.

2. Gaussian process state-space models

A Gaussian process is a collection of random variables, any fi-
nite number of which have a joint Gaussian distribution [2]. Given 
2 
a dataset {𝐗, 𝐲}, with input 𝐗 ∈ R𝑁×𝐷 and output 𝐲 ∈ R𝑁 , the 
underlying process which generates this data, is modeled by defined 
by a mean function 𝜇(𝐱) ∈ R and a covariance matrix 𝐊 ∈ R𝑁×𝑁 . 
Each element of the covariance matrix is determined by a scalar ker-
nel function which is parameterized by the hyperparameters 𝜽. For 
example, consider the squared-exponential kernel function given by 
𝑘(𝐱, 𝐱′) = 𝜎2SE exp−

‖

‖

𝐱 − 𝐱′‖
‖

2
2

2 𝑙2SE
, where the hyperparameters are given 

as 𝜽 =
[

𝜎2SE 𝑙SE
]𝑇 , with 𝜎2SE and 𝑙SE being the kernel variance and 

lengthscale, respectively. Learning in GPs then amount to learning the 
hyperparameters 𝜽, allowing for prediction at a new data point 𝐱∗ ∈
R𝐷.

Let  ≜ {1,… , 𝐷}, then for 𝑑 ∈  a standard GPSSM is given by 
𝑓𝑑 (𝐱) ∼ (𝑚(𝐱),𝐊(𝐱, 𝐱′)), (1a)

𝐱0 ∼ 𝑝(𝐱0), (1b)

𝐱𝑡 | 𝐱𝑡−1 ∼  (𝐱𝑡 | 𝐟 (𝐱𝑡−1),𝐐), (1c)

𝐲𝑡 | 𝐱𝑡 ∼ 𝑝(𝐲𝑡 | 𝐱𝑡), (1d)

where 𝐱𝑡 ∈ R𝐷 is the state vector at time 𝑡 ∈ R and 𝐐 ∈ R𝐷×𝐷

models the process noise of the dynamics. The state-transition function 
is denoted by the mapping 𝐟 ∶ R𝐷 → R𝐷 and the output 𝐲𝑡 ∈ R𝑃  follows 
a measurement model with a known probability distribution function 
(pdf) 𝑝(𝐲 | 𝐱𝑡). In GPSSMs, the unknown vector-valued state transition 
function 𝐟 (𝐱) =

[

𝑓1(𝐱), … , 𝑓𝐷(𝐱)
]𝑇  is assumed to be modeled by 

an independent Gaussian process for each dimension as given in (1). 
For learning in GPSSMs, a number of methods have been proposed 
in literature [19,20]. However, these methods are computationally 
impractical for large datasets due to the inversion of the covariance 
matrix which has a computational complexity of (𝑇 3), where 𝑇  is the 
length of the time-series.

We now describe RR-GPSSM, which aims to reduce the cubic depen-
dence of computational complexity on time, using spectral methods. 
As proposed in [8], a valid covariance function of a Gaussian process 
admits an infinite dimensional basis function expansion, as laid out by 
the Wiener–Khintchine theorem. Based on the work in [9], for a scalar 𝑥, 
the infinite dimensional basis function expansion can be approximated 
by an 𝑀-rank truncation, i.e. 

𝑘(𝑥𝑖, 𝑥𝑗 ) ≈
𝑀
∑

𝑚=1
𝑆𝜃(𝜆(𝑚)) 𝜙(𝑚)(𝑥𝑖) 𝜙(𝑚)(𝑥𝑗 ), (2)

where 𝜆(𝑚) and 𝜙(𝑚)(𝑥) are the eigenvalues and eigenfunctions corre-
sponding to the covariance function 𝑘(⋅, ⋅). This allows for the Kosambi–
Karhunen–Loéve (KKL) expansion of the function 𝑓 (𝑥), given by 

𝑓 (𝑥) ∼ (0, 𝑘(𝐱, 𝐱)) ↔ 𝑓 (𝑥) ≈
𝑀
∑

𝑚=1
𝑎(𝑚) 𝜙(𝑚)(𝑥), (3)

with 𝑎(𝑚) ∼  (0, 𝑆𝜽(𝜆(𝑚))). The GPSSM itself can be written as a linear 
state-space model with basis functions, i.e., 

𝑥𝑡+1 =
[

𝑎(1), … , 𝑎(𝑀)]
⎡

⎢

⎢

⎣

𝜙(1)(𝑥𝑡)
⋮

𝜙(𝑀)(𝑥𝑡)

⎤

⎥

⎥

⎦

+ 𝜖𝑡, (4)

where 𝜖𝑡 is the zero-mean noise variable plaguing the system. For the 
multi-dimensional case of 𝐱𝑡 ∈ R𝐷 [8], a truncation of order 𝑀𝑑 for 
𝑑 ∈ , is typically performed for each dimension and the iterant of the 
kernel expansion runs through all possible combinations of truncated 
eigenvalues and eigenfunctions for each dimensions, i.e., 

𝑘(𝐱𝑖, 𝐱𝑗 ) ≈
𝑀𝐷
∑

𝑚1 ,…,𝑚𝐷=1
𝑆𝜃(𝜆(𝑚1 ,…,𝑚𝐷)) 𝜙(𝑚1 ,…,𝑚𝐷)(𝐱𝑖) 𝜙(𝑚1 ,…,𝑚𝐷)(𝐱𝑗 ), (5)

where each iterant in the index {𝑚1,… , 𝑚𝐷} varies from 1 to 𝑀𝑑 , 
i.e. 𝑚𝑖 ∈ {1,… ,𝑀𝑑}. The form of the eigenvalue and eigenfunction in 
the basis expansion depends on the choice of the covariance function. 
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For example, the squared exponential covariance function for the mul-
tidimensional case admits the following eigenfunctions and eigenvalues 
given by 

𝜆(𝑚1 ,…,𝑚𝐷) =
𝐷
∑

𝑑=1

(

𝜋 𝑚𝑑
2 𝐿𝑑

)2
, (6a)

𝜙(𝑚1 ,…,𝑚𝐷)(𝐱) =
𝐷
∏

𝑑=1

1
√

𝐿𝑑
sin

(

𝜋 𝑚𝑑 (𝑥𝑑 + 𝐿𝑑 )
2 𝐿𝑑

)

, (6b)

where 𝐿𝑑 gives the boundary conditions for each dimension 𝑑. Conse-
quently, the summation in (5) involves 𝑀 ≜

∏𝐷
𝑑=1 𝑀𝑑 terms combining 

the eigenvalues and eigenfunctions over all 𝐷 dimensions. Similar to 
(4), the KKL expansion for the multi-dimensional case results in 

𝐱𝑡+1 =
⎡

⎢

⎢

⎢

⎣

𝑎(1)1 … 𝑎(𝑀 )
1

⋮ ⋱ ⋮

𝑎(1)𝐷 … 𝑎(𝑀 )
𝐷

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀

⎡

⎢

⎢

⎣

𝜙(1)(𝐱𝑡)
⋮

𝜙(𝑀 )(𝐱𝑡)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝝓(𝐱𝑡)

+𝝐𝑡 (7)

where 𝐀 ∈ R𝐷×𝑀 , 𝝓(𝐱𝑡) ∈ R𝑀  and E[𝝐𝑡 𝝐𝑇𝑡 ] = 𝐐 is the covariance 
matrix, akin to the process noise in standard state-space models. As 
detailed in [9], learning in (7) is carried out using a block Gibbs 
sampler for the state trajectory 𝐱0∶𝑇  and the parameters 𝐀, 𝐐 and 𝜽. 
Sampling of the state trajectory is then carried out using a conditional 
particle filter with ancestral sampling (CPF-AS [21]) as laid out in 
Algorithm 1. Please note that we use 𝐱(𝑖)𝑡  to denote the state vector for 
the 𝑖th particle in Algorithm 1.

Algorithm 1 CPF-AS [21]
1: Input: Reference trajectory, 𝐱0∶𝑇 , prior 𝑝(𝐱0) and 𝑁 particles.
2: Sample 𝐱(𝑖)0  with 𝑝(𝐱0) for 𝑖 ∈ {1,… , 𝑁 − 1}.
3: Set the last particle 𝐱(𝑁)

0 = 𝐱0.
4: Set weights 𝐰0 = 𝟏∕𝑁 .
5: for 𝑡 = 2 to 𝑇  do
6:  Draw ancestor 𝑎(𝑖)𝑡 ∝ 𝐰(𝑖)

𝑡−1 for 𝑖 ∈ {1,… , 𝑁 − 1}.

7:  Draw 𝐱(𝑖)𝑡 ∼ 𝑝(𝐱𝑡 | 𝐱
𝑎(𝑖)𝑡
𝑡−1) for 𝑖 ∈ {1,… , 𝑁 − 1}.

8:  Set 𝐱(𝑁)
𝑡 = 𝐱 𝑡.

9:  Draw 𝑎(𝑁)
𝑡 ∝ 𝐰(𝑖)

𝑡−1 𝑝(𝐱 𝑡 | 𝐱
(𝑖)
𝑡−1).

10:  Set 𝐱(𝑖)1∶𝑡 =
[

𝐱(𝑎
(𝑖)
𝑡 )

1∶𝑡−1, 𝐱
(𝑖)
𝑡

]

 for 𝑖 ∈ {1,… , 𝑁}.

11:  Set 𝐰(𝑖)
𝑡 = 𝑝(𝐲𝑡 | 𝐱

(𝑖)
𝑡 ) for 𝑖 ∈ {1,… , 𝑁} and normalize the 

weights.
12: end for
13: Sample 𝑘 ∝ 𝐰𝑇  and set 𝐱0∶𝑇 = 𝐱(𝑘)0∶𝑇 .
14: Output: Trajectory 𝐱0∶𝑇 .

3. Domain-aware GPSSM

For the linear state-space model in (7), matrix 𝐀 assumes a Matrix-
Normal distribution 𝐀 ∼  (𝟎,𝐐,𝐕). As a consequence of the KKL
theorem, the eigenvalues and hence the hyperparameters of the co-
variance kernel function form the diagonal of the column covariance 
matrix 𝐕 = diag

([

𝑆−1
𝜽 (𝜆1),… , 𝑆−1

𝜽 (𝜆𝑀 )
])

. Note that the eigenfunctions, 
𝝓(𝑚)(𝐱), only depend on the class of chosen covariance function, which 
are known, and the kernel hyperparameters enter the state space 
through the matrix 𝐀. Since the kernel hyperparameters, 𝜽, enter the 
state-space equation in (7) through matrix 𝐀, learning in RR-GPSSM 
involves learning the parameters for 𝐀 and process noise parameter 𝐐
using the algorithm proposed in [9]. This allows for the computational 
complexity to be linear in time (𝑇 ) and is well suited for Kalman 
filtering approaches for large datasets. However, they scale poorly if 
the dimension of the state-space is high. Assuming the same truncation 
parameter for each dimension, i.e. 𝑀 = 𝑀, ∀𝑑 ∈ , the total number 
𝑑

3 
of eigenvalues and eigen functions to be considered is 𝑀 = 𝑀𝐷, thus 
limiting the usage of the method to lower dimensional state-space mod-
els. We now leverage domain-specific knowledge about the dynamical 
system being modeled to reduce the computational complexity and 
propose a modification to the learning algorithm in [9] for efficient 
computation. Observe from (7), that the transition function for each 
state, 𝑓𝑑 (.), depends upon all state dimensions from the previous time-
step 𝐱𝑡−1 for maximum expressivity, which may not be required for most 
dynamical systems.

We assume that each state dimension in 𝐱(𝑑)𝑡 ∈ R, 𝑑 ∈  depends 
only on a subset 𝐾𝑑 < 𝐷 of the state vector. Here, we use the superscript 
(⋅)(𝑑) to refer to the 𝑑th dimension of 𝐱𝑡 unless otherwise stated. We 
define a selection matrix 𝐒𝑑 ∈ R𝐾𝑑×𝐷, such that 𝐱(𝑑)𝑡  depends only on 
𝐒𝑑 𝐱𝑡−1, and subsequently (7) can be rewritten as 

𝐱(𝑑)𝑡 = 𝐀𝑑 𝝓(𝐒𝑑 𝐱𝑡−1) + 𝐰(𝑑)
𝑡−1 ∀𝑑 ∈ , (8)

where 𝐀𝑑 ∈ R1×𝑀𝑑 , 𝝓(𝐱) ∈ R𝑀𝑑  with 𝑀𝑑 = 𝑀𝐾𝑑  and 𝐰(𝑑)
𝑡−1 ∼  (0,𝐐𝑑 ). 

Here, the eigenfunction 𝝓𝑡(⋅) is a variadic function taking inputs of 
different dimensions. We make the following observations.

• The dependencies between the state vectors are modeled through 
the set of selection matrices,  ≜ {𝐒1,… ,𝐒𝐷}.

• For all 𝑑 ∈ , each state dimension 𝐱(𝑑)𝑡  is modeled with separate 
kernel hyperparameter denoted by 𝜽𝑑 with its own lengthscale 
and variance in case of a squared-exponential kernel.

• 𝐀𝑑 follows a multivariate normal distribution, i.e. 𝐀𝑑 ∼  (𝟎,𝐕𝑑 )
where 𝐕𝑑 = diag

([

𝑆−1
𝜽𝑑

(𝜆𝑑,1),… , 𝑆−1
𝜽𝑑

(𝜆𝑑,𝑀𝑑
)
])

 and 𝜆𝑑,⋅ are the 
eigenvalues in (6).

• The process covariance matrix 𝐐 = diag
(

𝑄1,… , 𝑄𝐷
) is a diagonal 

matrix, elements of which follow an inverse-gamma distribution, 
i.e. 𝑄𝑑 ∼ (𝛼𝑑 , 𝛽𝑑 ) where 𝛼𝑑 ∈ R determines the shape parameter 
of the distribution and 𝛽𝑑 ∈ R gives the scale parameter for each 
dimension.

To learn the trajectory 𝐱0∶𝑇 , the matrix 𝐀 and the hyperparameters 𝜽𝑑 , 
sampling approaches such as Particle Gibbs with Ancestral Sampling 
(PGAS) Markov kernel [22] and Regularized Auxiliary Particle Chain 
Filter (RAPCF) [23] can be used. In this work, we use the PGAS kernel, 
similar to the approach in [24], to define the following statistics 

𝜱𝑑 =
𝑇
∑

𝑡=1
𝐱(𝑑)𝑡

(

𝐱(𝑑)𝑡

)𝑇
, 𝜳 𝑑 =

𝑇
∑

𝑡=1
𝐱(𝑑)𝑡 𝝓𝑇 (𝐒𝑑 𝐱𝑡−1),

𝜮𝑑 =
𝑇
∑

𝑡=1
𝝓(𝐒𝑑 𝐱𝑡−1) 𝝓𝑇 (𝐒𝑑 𝐱𝑡−1),

(9)

resulting in the following closed form posterior distributions [9] 

𝑝(𝐀𝑑 |𝑄𝑑 , 𝐱1∶𝑇 ) = 
(

𝐀𝑑 | 𝜳 𝑑
(

𝜮𝑑 + 𝐕𝑑
)−1 , 𝑄𝑑 ,

(

𝜮𝑑 + 𝐕𝑑
)−1

)

(10a)

𝑝(𝑄𝑑 | 𝐱1∶𝑇 ) = 
(

𝑄𝑑 | 𝑇 + 𝛼𝑑 , 𝛽𝑑 + 𝜳 𝑑
(

𝜮𝑑 + 𝐕𝑑
)−1 𝜳 𝑇

𝑑

)

. (10b)

The posterior distribution for the kernel hyperparameters 𝜽𝑑 for each 
dimension of the state-space can be factored as 
𝑝(𝜽𝑑 | 𝐱1∶𝑇 , 𝑄𝑑 , 𝐀𝑑 ) ∝ 𝑝(𝜽𝑑 ) 𝑝(𝑄𝑑 | 𝐱1∶𝑇 ) 𝑝(𝐀𝑑 | 𝑄𝑑 , 𝐱1∶𝑇 ) (11)

One can now sample from the above distributions using an MCMC 
algorithm such as the Metropolis–Hastings sampler. Other more com-
plex MCMC sampling methods such as slice sampling [25] can be used 
as well. Learning in RR-GPSSM, as given in (7), is summarized in 
Algorithm 2.

3.1. Selection matrices 

The set of selection matrices  can be constructed from logical 
matrices that define a binary relation over the set of state dimensions, 
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Algorithm 2 PGAS for Domain-Aware GPSSM
1: Input: Measurements over time 𝐲0∶𝑇 , where 𝑇  is the length of the time series, selection matrices  constructed as described in Section 3.1 and 
priors 𝑝(𝐀, 𝐐) and 𝑝(𝜽).

2: Initialize 𝐱1∶𝑇 [0] and 𝐀𝑑 [0], 𝐐𝑑 [0], 𝜽𝑑 [0] for each dimension 𝑑 ∈  and total number of iterations 𝑁 .
3: for 𝑛 in 1 to 𝑁 do
4:  Sample 𝐱1∶𝑇 [𝑛 + 1]|𝐀𝑑 [𝑛],𝐐𝑑 [𝑛],𝜽𝑑 [𝑛],𝐒𝑑 for 𝑑 ∈  using CPF-AS
5:  for 𝑑 ∈  do
6:  Sample 𝐐𝑑 [𝑛 + 1]|𝐀𝑑 [𝑛], 𝐱1∶𝑇 [𝑛 + 1] using the known posterior in (10b)
7:  Sample 𝐀𝑑 [𝑛 + 1]|𝐐𝑑 [𝑛 + 1], 𝐱1∶𝑇 [𝑛 + 1] using the known posterior in (10a)
8:  Sample 𝜽𝑑 [𝑛 + 1]|𝐀𝑑 [𝑛 + 1],𝐐𝑑 [𝑛 + 1], 𝐱1∶𝑇 [𝑛 + 1] using Metropolis–Hastings sampler.
9:  end for
10:  Update 𝑛 ← 𝑛 + 1
11: end for
12: Output: Trajectory 𝐱0∶𝑇 , matrix coefficients 𝐀𝑑 , process covariance 𝐐𝑑 and hyperparameters 𝜽𝑑 , ∀𝑑 ∈ .
𝑀

Fig. 1. Mean predicted trajectory plot and rmse for trajectory over iterations for LV 
Model in (12). Performance is similar with lower complexity for the proposed approach.

. Given a binary relationship  over the set of indices , i.e.  ⊆
 ×, the elements of 𝐒 is given by

[𝐒]𝑖𝑗 =
{

1 (𝑖, 𝑗) ⊂ 
0 (𝑖, 𝑗) ⊄ 

Denoting the 𝑑th row of logical matrix 𝐒 as 𝐒𝑑,∶, the selection matrix 
for dimension 𝑑 ∈ , can be constructed as 𝐒𝑑 = 𝜗{diag

(

𝐒𝑑,∶
)

}, 
where the operator 𝜗{⋅} removes all zero rows from a given matrix, 

e.g. 𝜗
⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

1 0 0
0 0 0
0 0 1

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

=
[

1 0 0
0 0 1

]

. This allows us to model the tran-

sition function for each dimension individually, resulting in separate 
covariance function for each dimension with its own hyperparameters 
𝜽𝑑 . However, for the implementation in [9], the hyperparameters are 
shared between all output dimensions. Thus, the proposed approach is 
more flexible. The choice of selection matrices in  depends on the 
domain knowledge and is predicated on the assumption that the state 
transition function for each state does not depend on the all the other 
states. The simulations in Section 4 illustrate this point in detail.

3.2. Computational and storage analysis

We now present an analysis on the computational and storage 
aspects of the proposed DA-GPSSM. Let 𝐾 ≜ max

{

rank(𝐒𝑑 ) | 𝐒𝑑 ∈ 
}

be the maximum rank of the selection matrices in . If we assume 
the truncation parameter to be the same for all dimensions, i.e. 𝑀𝑑 =
𝑀, ∀𝑑, the number of eigenfunctions to be considered is given by 
4 
Fig. 2. Comparison w.r.t. state of the art methods: (a) Trajectory tracking of a mobile 
robot and (b) root-mean-square-error (rmse) of system states in (13).

Table 1
Number of coefficients to be learnt for matrix 𝐀 in (7) and 𝐀𝑑 in (8), with truncation 
order 𝑀 = 6.
 Use case RR-GPSSM [9] DA-GPSSM 
 Lotka–Volterra model 648 288  
 Trajectory tracking 23328 468  

̃ ≜ 𝑀𝐾 , where 𝐾 ≤ 𝐷. Thus, the computational time for the 
algorithm scales with 𝐾 in the proposed approach. In [9], sampling 
the hyperparameters 𝐐 and 𝐀 depends upon the size of covariance 
matrices in (7) and is carried out using Cholesky decomposition with 
computational complexity of (𝑀 3) while the same operation for 
Algorithm 2 is (𝑀̃3), thus resulting in significant computational gains 
for 𝐾 < 𝐷. The additional hyperparameters related to 𝜽𝑑 do not 
have any significant affect on the computational complexity which is 
dominated by the learning of matrix 𝐀. For kernel hyperparameters, 
𝜽, Metropolis–Hastings sampler is used for which the computational 
complexity depends upon on the complexity of the target distribution 
and the number of iterations required to achieve stationarity. For 
storage, again the limiting parameters is the matrix 𝐀 for [9] and 𝐀𝑑 for 
our approach. Thus, our approach also reduces the storage requirement 
from (𝑀 2) in [9] to (𝑀̃2) when 𝐾 < 𝐷.

4. Simulations

In this section, we illustrate the performance of the proposed 
method. In Section 4.1, we illustrate the difference in performance 
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between our approach and the state of the art in [9] on the Lotka–
Volterra (LV) model. In Section 4.2, we showcase the computational 
gain using the proposed approach in a localization application for a 2D 
robot with anchor measurements. The performance for the two cases is 
evaluated as the root-mean-square error defined as

rmse(𝐱) = 1
𝑇

⎛

⎜

⎜

⎜

⎝

√

√

√

√

√

1
𝑁exp

𝑁exp
∑

𝑛=1

‖

‖

𝐱0∶𝑇 [𝑛] − 𝐱0∶𝑇 ‖‖
2
2

⎞

⎟

⎟

⎟

⎠

,

where 𝑁exp is the number of Monte-Carlo runs and 𝐱0∶𝑇  is the true 
trajectory. The code for the simulations in this paper can be found 
on [26]. For the simulations carried out in this paper, we use 𝑁exp =
100 Monte-Carlo runs to calculate the RMSE. The number of particles 
used for the CPF-AS in Algorithm 1 is 𝑁 = 5 and the proposal 
distribution for the Metropolis–Hastings sampler in step 8 of Algorithm 
2 is taken to be a Gaussian distribution with mean equal to value in the 
previous iteration and the diagonal covariance matrix.

4.1. Lotka–Volterra model

We consider the Lotka–Volterra (LV) model, generally used for sim-
ulating the population dynamics in a multi-species ecosystem, to com-
pare the performance of the proposed approach w.r.t. the state of the 
art (SOTA) implementation in [9]. The state-transition model for such 
as system with 𝐷 species is given by [27] 

𝐱𝑡 = 𝐅(𝐱𝑡−1) + 𝐰𝑡 (12a)

𝐅(𝐱𝑡) =
(

𝐈𝐷 + diag (𝜶)
)

𝐱𝑡 + 𝐱𝑡◦(𝐆 𝐱𝑡) (12b)

𝐲𝑡 = 𝐱𝑡 + 𝑒𝑡 (12c)

where 𝜶 ∈ R𝐷, 𝐆 ∈ R𝐷×𝐷 and ◦ is the Hadamard product. The process 
noise 𝐰 ∼  (0, 𝜎2 𝐈𝐷). For each dimension in 𝐱𝑡, the dependency on 
the previous time step depends upon the structure of 𝜶 and 𝐆, where 
𝜶 and 𝐆 [27] are

𝜶 =
[

3 4 7.2
]𝑇 and 𝐆 =

⎡

⎢

⎢

⎣

−0.5 −1 0
0 −1 −2

−2.6 −1.6 −3

⎤

⎥

⎥

⎦

.

The process and measurement noise are assumed to additive Gaussian 
and are given by 𝑤𝑡 ∼  (0, 𝜎2𝑥 𝐈𝐷) and 𝐞𝑡 ∼  (𝟎, 𝜎2𝑦 𝐈𝐷), respectively. 
The variances are chosen as 𝜎2𝑥 = 𝜎2𝑦 = 0.01. We model the state-
transition function using a squared exponential kernel with number of 
basis functions 𝑀 = 6 per dimension, giving a total of 𝑀𝐷 = 216 basis 
functions. This model is chosen because the dimensionality of the data 
is relatively manageable to showcase the modeling differences from 
Section 4.3. Given the structure of the matrix 𝐆, it should be noted 
that 𝐱(1)𝑡  and 𝐱(2)𝑡  do not depend on all three dimensions of the previous 
time step 𝐱𝑡−1 and 𝐱(3)𝑡  does. Representing the relation between state 

dimensions using the logical matrix 𝐒, we have 𝐒 =
⎡

⎢

⎢

⎣

1 1 0
0 1 1
1 1 1

⎤

⎥

⎥

⎦

. Thus, 

using the process described in Section 3.1, the set of selection matrices 
can be constructed as

 = {𝐒1, 𝐒2, 𝐒3} =

⎧

⎪

⎨

⎪

⎩

[

1 0 0
0 1 0

]

,
[

0 1 0
0 0 1

]

,
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

.

Here 𝐾 = rank(𝐒3) = 3, leading to some computational gains, as 
summarized in Table  1. Fig.  1 shows the predicted estimates of the 
population of different species and the trajectory rmse while learning 
using 𝑁exp = 100 Monte-Carlo runs. The performance of the two 
methods is similar. The error in the estimate towards the end of the 
simulation can be ascribed to lower samples available for learning in 
the corresponding region of the state-space. The number of coefficients 
to be learnt in SOTA is 𝐷 × 𝑀𝐷 = 648 and 2𝑀2 + 𝑀3 = 288 for the 
proposed approach leading to marginal computational gains.
5 
4.2. Trajectory tracking of mobile robots

To showcase the computational gains, we consider the problem 
of trajectory estimation for a mobile robot. The state vector is 𝐱𝑡 =
[

𝑥𝑡 𝑦𝑡 𝜃𝑡
]𝑇  denoting the spatial location (𝑥, 𝑦) and the orientation 𝜃

of the robot. The inputs to the state-space model are speed 𝑣𝑡 ∈ R and 
angular velocity 𝜔𝑡 ∈ R. The state dynamics for a mobile robot is given 
by 
𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑡−1 cos(𝜃𝑡−1) 𝛥𝑡, (13a)

𝑦𝑡 = 𝑦𝑡−1 + 𝑣𝑡−1 sin(𝜃𝑡−1) 𝛥𝑡, (13b)

𝜃𝑡 = 𝜃𝑡−1 + 𝜔𝑡−1 𝛥𝑡, (13c)

 Thus, the state-space model for the system can be written as 
𝐱𝑡 = 𝐟 (𝐱𝑡−1,𝐮𝑡−1) + 𝐰𝑡, (14)

where 𝐮𝑡 ∶=
[

𝑣𝑡 𝜔𝑡
]𝑇  denotes the inputs and 𝐰𝑡 ∼  (𝟎,𝐐) is the 

process noise, where 𝐐 = diag (0.01, 0.01, 0.0003). We further assume 
that there are 𝑃 = 6 fixed anchors measuring distance to the mobile 
robot, given as 𝐲𝑡 ∈ R𝑃 . The noise on the distance measurements is 
assumed to additive white Gaussian noise,  (0, 𝜎2𝑠 𝐈𝑃 ) with 𝜎𝑠 = 0.1
m [28]. Since the distance measurements do not give any information 
about the orientation of the robot, we assume the orientation of the 
robot is directly measured with additive Gaussian noise  (0, 𝜎2𝜃 ) with 
𝜎 = 0.0001 rad. Thus, the measurement model is given by

𝐲𝑡 =
[

𝐬𝑡
𝜃𝑡

]

+ 𝐞𝑡, 𝐬𝑡 ≜
[

‖

‖

𝐱𝑡 − 𝐚1‖‖2 , … , ‖
‖

𝐱𝑡 − 𝐚𝑃 ‖‖2
]𝑇 ,

where 𝐚𝑝, 𝑝 ∈ {1,… , 𝑃 } are the known anchor positions and 𝐞𝑡 ∼
 (0,𝐑) is the measurement noise such that 𝐑 = blkdiag(𝜎2𝑠 𝐈𝑃 , 𝜎

2
𝜃 ). For 

this simulation, the state 𝐱𝑡 is appended with the inputs 𝐮𝑡, resulting in 
𝐷 = 5. To learn the state transition function and the resulting trajectory, 
we model the state-transition function using a squared exponential 
kernel with the truncation parameter 𝑀 = 6 for each dimension. For 
the implementation in [9], the total number of coefficients to be learnt 
is 3𝑀𝐷 = 23328. The domain knowledge related to the nonholonomic 
motion of the robot can be coded in the selection matrices as explained 
in Section 3.1, i.e.

 = {𝐒1,𝐒2,𝐒3} =

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥

⎥

⎦

,

×
[

0 0 1 0 0
0 0 0 0 1

]

⎫

⎪

⎬

⎪

⎭

Thus, exploiting the proposed approach, the number of coefficient to 
be learnt can be reduced to (2 𝑀3 + 𝑀2) = 468. Here, 𝐾 = 3 < 𝐷
resulting significant computational gains as summarized in Table  1. 
Due to hardware limitations, the algorithm from [9] could not be 
implemented for this case. However, the performance and comparison 
is expected to be similar to LV example in Section 4.1. We compare the 
performance of the proposed method to the GP-based approach using 
PRSSMs [13] and include traditional extended Kalman filter (EKF) for 
reference. For the PRSSM simulation, we have used the open source 
code available online [29], where we have used 𝑁𝑧 = 50 inducing 
points and a learning rate of 0.4 for the Adam optimizer. We have 
performed 𝑁exp = 400 trajectory simulations each with 400 iterations to 
calculate the root mean square error. However, it should be noted that 
the implementation of EKF requires the nonlinear transition function 
as well as the noise parameters to be know a priori, while both DA-
GPSSM and PRSSM learn the model as well as perform the trajectory 
tracking task simultaneously. Additionally, EKF performance is severely 
affected by the degree of nonlinearity in the system, which is not a 
limiting factor in the other two cases. Fig.  2 compares the results of the 
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learning process. For DA-GPSSM we have used 𝑁exp = 10 Monte-Carlo 
runs. As can be inferred from Fig.  2b, DA-GPSSM outperforms PRSSM 
while being computationally efficient. During the training phase, unlike 
DA-GPSSM, observe that PRSSM requires the inversion of the covari-
ance matrix for each time step per iteration with a complexity of 
(𝑇 𝑁2

𝑧 ). The computational gains for the two simulation use cases are 
summarized in Table  1.

4.3. Discussion

Given the selection matrices from Section 3.1, observe that DA-
GPSSM models the transition function for each dimension individually, 
resulting in separate covariance function for each dimension with in-
dividual hyperparameters 𝜽𝑑 . On the contrary, the hyperparameters in 
RR-GPSSM are shared between all output dimensions. Furthermore, in 
non-homogeneous spaces, similar to the trajectory tracking problem in 
Section 4.2 with translation and rotation spaces, the modeling assump-
tion in RR-GPSSM of shared hyperparameters is a strong assumption, 
which is not the case in DA-GPSSM. In addition, RR-GPSSMs can induce 
additional correlations between state dimensions forcing the model to 
learn non-existing dynamical behavior. To illustrate this, we refer to 
the Lotka–Volterra simulation in Section 4.1. The state dimension 𝐱(2)
in (12) depends only on dimensions 𝐱(2) and 𝐱(3). In DA-GPSSM, this can 
be modeled using appropriate selection matrix as shown in Section 3.1. 
However, in RR-GPSSM, it is modeled using all state dimensions and 
thus is directly affected by the dynamics of state dimension 𝐱(1). This 
can also be seen by expanding the eigenfunctions for these two cases, 
as given in (6), i.e. 

𝜙(𝑚1 ,𝑚2 ,𝑚3)(𝐱) = 1
√

𝐋(1) 𝐋(2) 𝐋(3)
sin

(

𝜋 𝑚1 (𝐱(1) + 𝐋(1))
2 𝐋(1)

)

× sin
(

𝜋 𝑚2 (𝐱(2) + 𝐋(2))
2 𝐋(2)

)

sin
(

𝜋 𝑚3 (𝐱(3) + 𝐋(3))
2 𝐋(3)

)

(15a)

𝜙(𝑚2 ,𝑚3)(𝐱) = 1
√

𝐋(2) 𝐋(3)
sin

(

𝜋 𝑚1 (𝐱(2) + 𝐋(2))
2 𝐋(2)

)

× sin
(

𝜋 𝑚3 (𝐱(3) + 𝐋(3))
2 𝐋(3)

)

(15b)

Thus, DA-GPSSM provides more flexibility as a modeling paradigm in 
comparison with RR-GPSSM. However, in DA-GPSSM the process noise 
is assumed to be diagonal and thus may not readily capture colored 
process noises, which is not a limitation in RR-GPSSM.

5. Conclusions

In this work, we introduced DA-GPSSMs and proposed modifications 
to the learning algorithm laid out in [9], resulting in computational 
gains for high-dimensional state-space dynamical models, while main-
taining comparable performance. We achieve this by defining a set 
of selection matrices that model the dependencies between the state 
dimensions. Given rank 𝑀 approximation of the covariance function 
per dimension, the proposed approach can potentially reduce the com-
putation complexity from (𝑀 3), 𝑀 = 𝑀𝐷 to (𝑀̃3),𝑀̃ = 𝑀𝐾 , 𝐾 ≤ 𝐷. 
Unlike the learning algorithm in [9], the proposed approach allows 
for various state dimensions to be modeled using separate covariance 
functions leading to more flexibility. We show that the performance of 
DA-GPSSM is better than other approaches such as PRSSM while being 
computationally efficient. However, the proposed approach requires 
the process noise covariance to be diagonal and thus cannot capture 
correlations between state dimensions. In our future work, we aim to 
alleviate the requirement for the process covariance to be diagonal, 
and to explore other samplers such as RAPCF for trajectory sampling 
and slice sampler for kernel hyperparameters and discuss the trade-offs 
w.r.t. existing state of the art methods.
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