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Gaussian process state-space models are a widely used modeling paradigm for learning and estimation in
dynamical systems. Reduced-rank Gaussian process state-space models combine spectral characterization of
dynamical systems with Hilbert space methods to enable learning, which scale linearly with the length
of the time series. However, the current state of the art algorithms struggle to deal efficiently with the
dimensionality of the state-space itself. In this work, we propose a novel algorithm, referred to as Domain-
Aware reduced-rank Gaussian Process State-Space Model (DA-GPSSM), which exploits the relationship between
state dimensions to model only necessary dynamics resulting in reduced computational cost, by potentially
orders of magnitude in comparison to the state-of-the-art. The proposed approach grants modeling flexibility
while maintaining comparable performance and thus increasing the applicability of these models. We present
implications of the proposed approach and discuss applications where DA-GPSSM can be beneficial. Finally, we
conduct simulations to demonstrate the performance and reduced computational cost of our proposed method,

compared to the state-of-the-art learning method, and propose future research directions.

1. Introduction

Gaussian Process regression can be used to learn nonlinear state
transition and measurement models using only measurement data.
Previous works, on learning state transition and measurements models
using Gaussian processes have shown to lead to a better performance
as compared to traditional nonlinear filters such as extended Kalman
filters (EKF) which require the true nonlinear model to be known in
advance [1]. Gaussian process state-space models (GPSSMs) combine
a Bayesian framework for representing dynamical systems using state-
space models (SSMs) with the flexibility of modeling the nonlinearities
present within the system using versatile covariance functions provided
by Gaussian processes. The flexibility afforded by the use of GPs
to model the state-transition function allows for the estimation of a
wider scope of nonlinear state-transition functions by using appropriate
covariance functions. Other approaches such as Recurrent Neural Net-
works (RNNs) have been used previously to model dynamical systems
but require the latent state, akin to states of an SSM, to be deterministic.
This is particularly unreliable in the presence of process noise. Further-
more, to add stochasticity to the hidden states in RNN, latent variables
have been introduced. However, the proposed approaches are com-
plicated and better suited to high-dimensional measurement sensors

such as cameras. Alternatively, GPSSMs provide a fully probabilistic
approach that not only allow for latent states to be stochastic, but
also enable multiple sensor modalities to be fused in a coherent way,
exploiting the uncertainty information available for each modality.
Learning in GPSSMs conventionally requires operations involving
the inversion of the covariance matrix and thus scale poorly with the
number of datapoints with time complexity ©(T3) where T is the length
of the timeseries. Hence GPs and consequently GPSSMs suffer from
the curse of dimensionality [2]. To address this challenge, two types
of approaches are considered in literature: input-based methods [3-5]
and spectrum-based methods [6-8]. In input-based methods, e.g. [3], a
subset of the data is used to form an approximate covariance matrix,
which reduces the computational complexity to O(N2T) where N < T
is the length of the selected subset obtained using eigendecomposi-
tion. Principled methods to choose the data subset, not necessarily
from the training set, have been proposed in [4,5]. In contrast, the
spectrum-based methods approximate the covariance function using
basis function expansion in the spectral domain. In particular, Reduced-
Rank Gaussian Processes, based on the Hilbert space approximation of
the covariance function proposed in [8], which allows for the full spec-
trum governing the dynamical process to be utilized for a given rank M.
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This reduces the computational complexity from cubic to linear in time.
However, this approach scales poorly in computational complexity
when the dimension of the state-space (D) is large i.e., @(M?P). The
extension of the Hilbert space approach in [8] to state-space models is
referred to as Reduced-Rank Gaussian Process State-Space Models (RR-
GPSSMs) [9], and suffers from similar computational issues associated
with the dimension of the state-space. In [10], the authors propose deep
hidden layers, similar to deep neural networks, to limit the exponential
increase in the number of parameters to be learnt. However, in absence
of further analysis, the spectral interpretation of the original process
using the Hilbert space approximation is lost in such an approach.
A similar work on deep layers of GPSSM is presented in [11] based
on Fourier random features [6]. However, for high-dimensional state-
space, the number of spectral points required in this approach are
significantly large [8]. Another approach is given in [12-14], where
variational approximation of the covariance function is proposed based
on inducing point methods in [5]. For scaling the inducing input based
variational approach to large datasets, the authors in [13] propose
a variational approximation that allows for the reparameterization
trick from [15] to be used to efficiently optimize the evidence lower
bound. However, the approach is still computationally expensive. Ad-
ditionally, these approaches do not directly treat the dimensionality of
the underlying state-space model. In addition, there have been other
works recently, based on Gaussian processes and state-space models
e.g., [16-18], for the learning of ordinary differential equation in a
regression setting but they do not deal with the dimensionality of the
state space.

In this work, we focus on RR-GPSSM which is based on the Hilbert
space approximation of the covariance function proposed in [8], and
implemented in [9] in the context of state-space models. In contrast
to other approximations, the Hilbert space approach in [8] allows
for the full spectrum governing the dynamical process to be utilized
for a given rank M. This reduces the computational complexity from
cubic to linear in time. However, the approach scales poorly when the
dimension of the state-space, D, is large with computational complexity
of @(M?P). This has been a particular bottleneck of RR-GPSSMs [9].
In this paper, we aim to reduce the computational load associated
with Hilbert spaced based RR-GPSSMs, allowing for a wider range of
high-dimensional state-space models to be learnt. The key contributions
made in this work are briefly listed below:

1. We model the interactions between the state dimensions, using
selection matrices based on the binary relationships between
the dimensions, leading to reduced computational complexity of
O(M3K), where K < D.

2. We propose Domain-Aware Gaussian Process State-Space Models
(DA-GPSSMs), extending the work of [9], to learn the required
parameters of the modified model.

3. We discuss the implications of the proposed modification in
terms of modeling capability and computational gains and dis-
cuss scenarios where the proposed DA-GPSSM offers exponential
computational gains.

4. We provide simulations to show the effectiveness of our model
when compared to the implementation in [9].

The layout of the paper is as follows. In Section 2, we introduce RR-
GPSSM model and briefly discuss the learning algorithm. In Section 3,
we propose DA-GPSSM and discuss in detail the implications of the
modeling assumptions used in the proposed approach. Simulations
showcasing the performance of the proposed approach are provided in
Section 4, and the results are compared to traditional as well as the
state-of-the-art algorithms.

2. Gaussian process state-space models

A Gaussian process is a collection of random variables, any fi-
nite number of which have a joint Gaussian distribution [2]. Given
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a dataset {X,y}, with input X € RN*? and output y € RV, the
underlying process which generates this data, is modeled by defined
by a mean function u(x) € R and a covariance matrix K € RV*V,
Each element of the covariance matrix is determined by a scalar ker-
nel function which is parameterized by the hyperparameters 6. For
example, consider the squared-exponential kernel function given by
=¥
2
Isg
as 0 = [og, Isp] , with o3 and Igg being the kernel variance and
lengthscale, respectively. Learning in GPs then amount to learning the
hyperparameters 6, allowing for prediction at a new data point x, €
RP.
Let D £ {l1,..., D}, then for d € D a standard GPSSM is given by

k(x, x') = aéE exp , where the hyperparameters are given

]T

fa®) ~ GP(m(x), K(x,x")), (1a)

Xg ~ p(Xp), (1b)

X | Xop ~ N X, | £(x21), Q) (1)
Yo | X~ p(y; | X0), aad

where x, € R? is the state vector at time + € R and Q € RP*P
models the process noise of the dynamics. The state-transition function
is denoted by the mapping f : R? — RP and the output y, € R” follows
a measurement model with a known probability distribution function
(pdf) p(y | x,). In GPSSMs, the unknown vector-valued state transition
function f(x) = [ [i1x), ..., f D(x)]T is assumed to be modeled by
an independent Gaussian process for each dimension as given in (1).
For learning in GPSSMs, a number of methods have been proposed
in literature [19,20]. However, these methods are computationally
impractical for large datasets due to the inversion of the covariance
matrix which has a computational complexity of O(T?), where T is the
length of the time-series.

We now describe RR-GPSSM, which aims to reduce the cubic depen-
dence of computational complexity on time, using spectral methods.
As proposed in [8], a valid covariance function of a Gaussian process
admits an infinite dimensional basis function expansion, as laid out by
the Wiener—Khintchine theorem. Based on the work in [9], for a scalar x,
the infinite dimensional basis function expansion can be approximated
by an M-rank truncation, i.e.

M
k(x;,x;) ~ 2 Sp(A™) ™ (x;) ¢(M)(xj)9 ()]
m=1
where A and ¢ (x) are the eigenvalues and eigenfunctions corre-
sponding to the covariance function k(-, -). This allows for the Kosambi-
Karhunen-Loéve (KKL) expansion of the function f(x), given by
M
F() ~ GPO,k(x, %)) & f(x) & Y a™ ¢ (x), ®
m=1
with a™ ~ N'(0, Sg(4)). The GPSSM itself can be written as a linear
state-space model with basis functions, i.e.,

e (x,)
Xy = [a(”, s a(M)] : +¢, 4
dM(x,)

where ¢, is the zero-mean noise variable plaguing the system. For the
multi-dimensional case of x, € RP [8], a truncation of order M, for
d € D, is typically performed for each dimension and the iterant of the
kernel expansion runs through all possible combinations of truncated
eigenvalues and eigenfunctions for each dimensions, i.e.,

MD
KX X) & ) Sp(A D)) M) () i mD)(x ), (5)
mp,..., mp=1
where each iterant in the index {m,...,mp} varies from 1 to M,

i.e. m; € {1,..., M,}. The form of the eigenvalue and eigenfunction in
the basis expansion depends on the choice of the covariance function.
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For example, the squared exponential covariance function for the mul-

tidimensional case admits the following eigenfunctions and eigenvalues
given by

D 2
Almemp) = ) <—sz> , (6a)
d

a=1
D
(M) D) (40) — . [ mmy(xqg+Ly)
¢ (x) g i sin <—2 » , (6b)

where L, gives the boundary conditions for each dimension d. Conse-
quently, the summation in (5) involves M £ Hle M, terms combining
the eigenvalues and eigenfunctions over all D dimensions. Similar to
(4), the KKL expansion for the multi-dimensional case results in

a(ll) a(lM) dV(x,)
X4 = ¢ i U +e€; (@]
a(Ll)) a(DM) ¢(M)(X1)
—_— —
A d(x,)

where A € RP*M | ¢(x,) € RM and E[e, €7] = Q is the covariance
matrix, akin to the process noise in standard state-space models. As
detailed in [9], learning in (7) is carried out using a block Gibbs
sampler for the state trajectory x,., and the parameters A, Q and 6.
Sampling of the state trajectory is then carried out using a conditional
particle filter with ancestral sampling (CPF-AS [21]) as laid out in
Algorithm 1. Please note that we use xf” to denote the state vector for
the ith particle in Algorithm 1.

Algorithm 1 CPF-AS [21]

: Input: Reference trajectory, X,.p, prior p(x,) and N particles.
: Sample x with p(x,) for i € {1,....N —1}.
: Set the last particle x(()N ) =X
: Set weights wy =1/N.
forr=2to T do
Draw ancestor o « wf?l forie{l,...,N —1}.

t

N

" (i)
Draw x\ ~ p(x, | x," ) fori e {1,....N —1}.
Set x™ =%
Draw a

®

. =X,

N o )
f x wgfl p(x; | Xgl—)l)‘

. (i) .
100 Setx? =[x x(”] forie{l,...,N}.

L = [Tlee=10

11: Set wsi) = p(y, | xt(i)) for i € {1,...,N} and normalize the

weights.
12: end for
13: Sample k < wy and set X(.; = xg‘)T

14: Output: Trajectory Xg.r.

3. Domain-aware GPSSM

For the linear state-space model in (7), matrix A assumes a Matrix-
Normal distribution A ~ MAN'(0,Q,V). As a consequence of the KKL
theorem, the eigenvalues and hence the hyperparameters of the co-
variance kernel function form the diagonal of the column covariance
matrix V = diag ([S;'(4)). ..., S;'(A3;)]). Note that the eigenfunctions,
¢ (x), only depend on the class of chosen covariance function, which
are known, and the kernel hyperparameters enter the state space
through the matrix A. Since the kernel hyperparameters, 0, enter the
state-space equation in (7) through matrix A, learning in RR-GPSSM
involves learning the parameters for A and process noise parameter Q
using the algorithm proposed in [9]. This allows for the computational
complexity to be linear in time O(T) and is well suited for Kalman
filtering approaches for large datasets. However, they scale poorly if
the dimension of the state-space is high. Assuming the same truncation
parameter for each dimension, i.e. M, = M, Vd € D, the total number
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of eigenvalues and eigen functions to be considered is M = MP, thus
limiting the usage of the method to lower dimensional state-space mod-
els. We now leverage domain-specific knowledge about the dynamical
system being modeled to reduce the computational complexity and
propose a modification to the learning algorithm in [9] for efficient
computation. Observe from (7), that the transition function for each
state, f,(.), depends upon all state dimensions from the previous time-
step x,_; for maximum expressivity, which may not be required for most
dynamical systems.

We assume that each state dimension in xid) € R, d € D depends
only on a subset K; < D of the state vector. Here, we use the superscript
()@ to refer to the dth dimension of x, unless otherwise stated. We
define a selection matrix S, € RKs*P, such that xfd) depends only on
S, x,_;, and subsequently (7) can be rewritten as

X = Ay ¢Sy x_)+w?  VdeD, ®

t=1

where A, € R"Md, ¢(x) € RMa with M, = MKd and w'¥) ~ N'(0.Q,).
Here, the eigenfunction ¢,(-) is a variadic function taking inputs of
different dimensions. We make the following observations.

» The dependencies between the state vectors are modeled through
the set of selection matrices, S 2 {S;,...,Sp}.

For all d € D, each state dimension xfd) is modeled with separate
kernel hyperparameter denoted by 6, with its own lengthscale
and variance in case of a squared-exponential kernel.

A, follows a multivariate normal distribution, i.e. A; ~ N'(0,V,)
where V, = diag ([S(;;(Ad,l), 85! (Adind)])
eigenvalues in (6).

The process covariance matrix Q = diag (Q;. ..., Qp) is a diagonal
matrix, elements of which follow an inverse-gamma distribution,
i.e. Q; ~ IG(ay, p;) where a,; € R determines the shape parameter
of the distribution and g, € R gives the scale parameter for each
dimension.

and 4,. are the

To learn the trajectory x,.r, the matrix A and the hyperparameters 6,
sampling approaches such as Particle Gibbs with Ancestral Sampling
(PGAS) Markov kernel [22] and Regularized Auxiliary Particle Chain
Filter (RAPCF) [23] can be used. In this work, we use the PGAS kernel,
similar to the approach in [24], to define the following statistics

T T T
2= Tx (x) . w, = Y 5D TS, %0,
1=1 1=1 ©)
T
Zy= Z $Sy %) ¢ (Sax,y),

t=1
resulting in the following closed form posterior distributions [9]
-1 -1
P(Ay 10y Xy:7) = MN (Ad 1Py (Z4+ V) Qa (Z4+Vy) )
(10a)
POy 1%1:7) = TW (Qu | T+ g, By + ¥y (£,+V,) " WT). (10b)

The posterior distribution for the kernel hyperparameters 6, for each
dimension of the state-space can be factored as

POy | Xp.75 Oy Ay) x p(0,) p(Qy | Xp.7) P(A, | Qu> Xy.7) an

One can now sample from the above distributions using an MCMC
algorithm such as the Metropolis-Hastings sampler. Other more com-
plex MCMC sampling methods such as slice sampling [25] can be used
as well. Learning in RR-GPSSM, as given in (7), is summarized in
Algorithm 2.

3.1. Selection matrices S

The set of selection matrices S can be constructed from logical
matrices that define a binary relation over the set of state dimensions,
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Algorithm 2 PGAS for Domain-Aware GPSSM

1: Input: Measurements over time y,., where T is the length of the time series, selection matrices S constructed as described in Section 3.1 and

priors p(A, Q) and p(6).

2: Initialize x,.,[0] and A,[0], Q,[0], 6,[0] for each dimension d € D and total number of iterations N.

3: forninlto N do

4: Sample x;.r[n+ 11|A,[n], Quln], 6,4[n],S, for d € D using CPF-AS
5: for d € D do

6: Sample Q,[n + 1]|A4[n],X;.y[n + 1] using the known posterior in (10b)
7: Sample A,[n + 1]|Qy[n + 11,x,.7[n + 1] using the known posterior in (10a)
8: Sample 0,[n + 1]1|A [n+ 11, Qyln + 11, X,.7[n + 1] using Metropolis—Hastings sampler.
9: end for

10: Update n < n+1
11: end for

12: Output: Trajectory x,.,, matrix coefficients A ,, process covariance Q, and hyperparameters 6,, Vd € D.

H: ground truth — 10714 —— RR-GPSSM

0 9] == RR-GPSSM = —— DA-GPSSM

% — = DA-GPSSM || @

S | E

ol \_J ' | 1072 4
0 20 40

44 = - ]

= [} =M — e

~ N \ || Z7

o \ 9]

24 i I

g2l v VIR

% T T \‘V 10_2 Aﬁ%ﬁ
0 20 40 0 50 100

: 2 1071 ]

m A A=

3 1 7\ ] a

'8 " || 7\ J c

04 W S = 10774

-.-—

0 20 40 0 50 100
time [s] Iterations [-]

Fig. 1. Mean predicted trajectory plot and rmse for trajectory over iterations for LV
Model in (12). Performance is similar with lower complexity for the proposed approach.

D. Given a binary relationship R over the set of indices D, i.e. R C
D x D, the elements of S is given by

1 (G,j))cR
S].. =
Sl {00w¢k

Denoting the dth row of logical matrix S as S, ., the selection matrix
for dimension d € D, can be constructed as S, = 9{diag(S,.)},
where the operator 9{-} removes all zero rows from a given matrix,
1 0 O
eg 9410 0 O
0 0 1

= [(1) 8 (1)] This allows us to model the tran-

sition function for each dimension individually, resulting in separate
covariance function for each dimension with its own hyperparameters
6,. However, for the implementation in [9], the hyperparameters are
shared between all output dimensions. Thus, the proposed approach is
more flexible. The choice of selection matrices in S depends on the
domain knowledge and is predicated on the assumption that the state
transition function for each state does not depend on the all the other
states. The simulations in Section 4 illustrate this point in detail.

3.2. Computational and storage analysis

We now present an analysis on the computational and storage
aspects of the proposed DA-GPSSM. Let K £ max {rank(S,) | S, € S}
be the maximum rank of the selection matrices in S. If we assume
the truncation parameter to be the same for all dimensions, i.e. M; =
M, Vd, the number of eigenfunctions to be considered is given by

A
ground truth ¢ ¢
201 . DA-GPSSM
—_ m— EKF
E 0l e« Prssm
> 4 anchors
—20
¢ | ¢
-40 -20
== Xpacpssm —#- Xprssm
g 100 4 =~ YDpaGPsSM —4- Yerssm L 0.4 =
= i —8— Opacpssm =4+ Oprssm ©
[}
n . ~ -~ Q
£ )i _‘__H*. - H0.2 2
101 et Sty .
0.0

0 25 50 75 100 125 150
iterations [-]

175 200

Fig. 2. Comparison w.r.t. state of the art methods: (a) Trajectory tracking of a mobile
robot and (b) root-mean-square-error (rmse) of system states in (13).

Table 1
Number of coefficients to be learnt for matrix A in (7) and A, in (8), with truncation
order M =6.

Use case RR-GPSSM [9] DA-GPSSM
Lotka-Volterra model 648 288
Trajectory tracking 23328 468

M 2 MK, where K < D. Thus, the computational time for the
algorithm scales with K in the proposed approach. In [9], sampling
the hyperparameters Q and A depends upon the size of covariance
matrices in (7) and is carried out using Cholesky decomposition with
computational complexity of @(M?) while the same operation for
Algorithm 2 is O(M?), thus resulting in significant computational gains
for K < D. The additional hyperparameters related to 6, do not
have any significant affect on the computational complexity which is
dominated by the learning of matrix A. For kernel hyperparameters,
0, Metropolis-Hastings sampler is used for which the computational
complexity depends upon on the complexity of the target distribution
and the number of iterations required to achieve stationarity. For
storage, again the limiting parameters is the matrix A for [9] and A for
our approach. Thus, our approach also reduces the storage requirement
from O(M?) in [9] to O(M?) when K < D.

4. Simulations

In this section, we illustrate the performance of the proposed
method. In Section 4.1, we illustrate the difference in performance
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between our approach and the state of the art in [9] on the Lotka—
Volterra (LV) model. In Section 4.2, we showcase the computational
gain using the proposed approach in a localization application for a 2D
robot with anchor measurements. The performance for the two cases is
evaluated as the root-mean-square error defined as

1 1 NCXp
- 2
rmse(x) = — xg.7[n] = Xo.7||3 |
T Nexp ’; ” ||2
where N, is the number of Monte-Carlo runs and X.7 is the true

trajectory. The code for the simulations in this paper can be found
on [26]. For the simulations carried out in this paper, we use Nexp =
100 Monte-Carlo runs to calculate the RMSE. The number of particles
used for the CPF-AS in Algorithm 1 is N = 5 and the proposal
distribution for the Metropolis—Hastings sampler in step 8 of Algorithm
2 is taken to be a Gaussian distribution with mean equal to value in the

previous iteration and the diagonal covariance matrix.
4.1. Lotka—Volterra model

We consider the Lotka—Volterra (LV) model, generally used for sim-
ulating the population dynamics in a multi-species ecosystem, to com-
pare the performance of the proposed approach w.r.t. the state of the
art (SOTA) implementation in [9]. The state-transition model for such
as system with D species is given by [27]

x, = F(x,_) +w, (12a)
F(x) = (Ip + diag (@) X, + x,0(G x,) (12b)
Yi=X +e (12¢)

where @ € R?, G € RP*P and o is the Hadamard product. The process
noise w ~ N'(0,62 Ip). For each dimension in x,, the dependency on
the previous time step depends upon the structure of @ and G, where
a and G [27] are

, -05 -1 0
a=[3 4 72| andG=| 0 -1 -2|.
-26 -16 -3

The process and measurement noise are assumed to additive Gaussian
and are given by w, ~ N'(0,07 Ip) and ¢, ~ N'(0,57 I5), respectively.
The variances are chosen as af = ¢2 = 0.01. We model the state-
transition function using a squared exponential kernel with number of
basis functions M = 6 per dimension, giving a total of M? = 216 basis
functions. This model is chosen because the dimensionality of the data
is relatively manageable to showcase the modeling differences from
Section 4.3. Given the structure of the matrix G, it should be noted
that xil) and x;z) do not depend on all three dimensions of the previous
time step x,_; and fo) does. Representing the relation between state
1 1 0
dimensions using the logical matrix S, we have S={0 1 1. Thus,

1 1 1
using the process described in Section 3.1, the set of selection matrices

can be constructed as
1 0 O

1 0 O 0o 1 0
S:{SI,SZ,S3}= [ ],[ ], 0o 1 0

0O 1 0 0 0 1 0 0 1
Here K = rank(S;) = 3, leading to some computational gains, as
summarized in Table 1. Fig. 1 shows the predicted estimates of the
population of different species and the trajectory rmse while learning
using Ny, = 100 Monte-Carlo runs. The performance of the two
methods is similar. The error in the estimate towards the end of the
simulation can be ascribed to lower samples available for learning in
the corresponding region of the state-space. The number of coefficients
to be learnt in SOTA is D x MP = 648 and 2M? + M> = 288 for the
proposed approach leading to marginal computational gains.
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4.2. Trajectory tracking of mobile robots

To showcase the computational gains, we consider the problem
of trajectory estimation for a mobile robot. The state vector is x, =
[x ¥ 0,]T denoting the spatial location (x, y) and the orientation 6
of the robot. The inputs to the state-space model are speed v, € R and
angular velocity o, € R. The state dynamics for a mobile robot is given
by

X, =x,_1 +v,_1 cos(6,_y) 4t, (13a)
Y = Vi + v,y sin(0,_) 4t, (13b)
0,=0,_| +w,_; At (13c)
Thus, the state-space model for the system can be written as

X, =f(x,_,u_p) +w,, 14)
where u, := [U, w,]T denotes the inputs and w, ~ N(0,Q) is the

process noise, where Q = diag(0.01,0.01,0.0003). We further assume
that there are P = 6 fixed anchors measuring distance to the mobile
robot, given as y, € R”. The noise on the distance measurements is
assumed to additive white Gaussian noise, N'(0, af Ip) with 6, = 0.1
m [28]. Since the distance measurements do not give any information
about the orientation of the robot, we assume the orientation of the
robot is directly measured with additive Gaussian noise N'(0, ag) with
o =0.0001 rad. Thus, the measurement model is given by

o= [Z] +en s =[x —afy X _aP”z]T’

where a, p € {l,...,P} are the known anchor positions and e, ~
N'(0,R) is the measurement noise such that R = blkdiag(a? Ip, ag). For
this simulation, the state x, is appended with the inputs u,, resulting in
D = 5. To learn the state transition function and the resulting trajectory,
we model the state-transition function using a squared exponential
kernel with the truncation parameter M = 6 for each dimension. For
the implementation in [9], the total number of coefficients to be learnt
is 3MP = 23328. The domain knowledge related to the nonholonomic
motion of the robot can be coded in the selection matrices as explained
in Section 3.1, i.e.

1 00 0 0]fo 1 0 0 0

S=1{8,.5,,8;1=310 0 1 0 o|]Jo o 1 0 o,

00 0 1 0flo o o1 0
o010
00 0 0 I

Thus, exploiting the proposed approach, the number of coefficient to
be learnt can be reduced to (2 M3 + M?) = 468. Here, K = 3 < D
resulting significant computational gains as summarized in Table 1.
Due to hardware limitations, the algorithm from [9] could not be
implemented for this case. However, the performance and comparison
is expected to be similar to LV example in Section 4.1. We compare the
performance of the proposed method to the GP-based approach using
PRSSMs [13] and include traditional extended Kalman filter (EKF) for
reference. For the PRSSM simulation, we have used the open source
code available online [29], where we have used N, = 50 inducing
points and a learning rate of 0.4 for the Adam optimizer. We have
performed Ny, = 400 trajectory simulations each with 400 iterations to
calculate the root mean square error. However, it should be noted that
the implementation of EKF requires the nonlinear transition function
as well as the noise parameters to be know a priori, while both DA-
GPSSM and PRSSM learn the model as well as perform the trajectory
tracking task simultaneously. Additionally, EKF performance is severely
affected by the degree of nonlinearity in the system, which is not a
limiting factor in the other two cases. Fig. 2 compares the results of the
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learning process. For DA-GPSSM we have used N, = 10 Monte-Carlo
runs. As can be inferred from Fig. 2b, DA-GPSSM outperforms PRSSM
while being computationally efficient. During the training phase, unlike
DA-GPSSM, observe that PRSSM requires the inversion of the covari-
ance matrix for each time step per iteration with a complexity of
o(r NZ). The computational gains for the two simulation use cases are
summarized in Table 1.

4.3. Discussion

Given the selection matrices from Section 3.1, observe that DA-
GPSSM models the transition function for each dimension individually,
resulting in separate covariance function for each dimension with in-
dividual hyperparameters 6,. On the contrary, the hyperparameters in
RR-GPSSM are shared between all output dimensions. Furthermore, in
non-homogeneous spaces, similar to the trajectory tracking problem in
Section 4.2 with translation and rotation spaces, the modeling assump-
tion in RR-GPSSM of shared hyperparameters is a strong assumption,
which is not the case in DA-GPSSM. In addition, RR-GPSSMs can induce
additional correlations between state dimensions forcing the model to
learn non-existing dynamical behavior. To illustrate this, we refer to
the Lotka-Volterra simulation in Section 4.1. The state dimension x®
in (12) depends only on dimensions x® and x®. In DA-GPSSM, this can
be modeled using appropriate selection matrix as shown in Section 3.1.
However, in RR-GPSSM, it is modeled using all state dimensions and
thus is directly affected by the dynamics of state dimension x(V. This
can also be seen by expanding the eigenfunctions for these two cases,
as given in (6), i.e.

(1) (1
¢<’"1""2""3)(x) _ 1 sin (7[ my x' + L )>

VIOLOLO 2LM
famy XD +LP)\ | amyx® +LO)
X sin n
2L@ 2L®

) (15a)

(2) (2)
Bmm) () = rm) (x¥ +L ))

1 )
sSin
VILOL® < 2L®
(amy(x® +LO)
Xsm| ———
2L0)

Thus, DA-GPSSM provides more flexibility as a modeling paradigm in
comparison with RR-GPSSM. However, in DA-GPSSM the process noise
is assumed to be diagonal and thus may not readily capture colored
process noises, which is not a limitation in RR-GPSSM.

(15b)

5. Conclusions

In this work, we introduced DA-GPSSMs and proposed modifications
to the learning algorithm laid out in [9], resulting in computational
gains for high-dimensional state-space dynamical models, while main-
taining comparable performance. We achieve this by defining a set
of selection matrices that model the dependencies between the state
dimensions. Given rank M approximation of the covariance function
per dimension, the proposed approach can potentially reduce the com-
putation complexity from O(M?3), M = MP to O(M3), M = MX, K < D.
Unlike the learning algorithm in [9], the proposed approach allows
for various state dimensions to be modeled using separate covariance
functions leading to more flexibility. We show that the performance of
DA-GPSSM is better than other approaches such as PRSSM while being
computationally efficient. However, the proposed approach requires
the process noise covariance to be diagonal and thus cannot capture
correlations between state dimensions. In our future work, we aim to
alleviate the requirement for the process covariance to be diagonal,
and to explore other samplers such as RAPCF for trajectory sampling
and slice sampler for kernel hyperparameters and discuss the trade-offs
w.r.t. existing state of the art methods.
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