

Delft University of Technology

Pragmatic software testing education

Aniche, Maurício; Hermans, Felienne; van Deursen, Arie

DOI
10.1145/3287324.3287461
Publication date
2019
Document Version
Accepted author manuscript
Published in
SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on Computer Science Education

Citation (APA)
Aniche, M., Hermans, F., & van Deursen, A. (2019). Pragmatic software testing education. In SIGCSE 2019
- Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 414-420).
Association for Computing Machinery (ACM). https://doi.org/10.1145/3287324.3287461

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3287324.3287461
https://doi.org/10.1145/3287324.3287461

Pragmatic Software Testing Education
Maurício Aniche

Delft University of Technology
The Netherlands

m.f.aniche@tudelft.nl

Felienne Hermans
Delft University of Technology

The Netherlands
f.f.j.hermans@tudelft.nl

Arie van Deursen
Delft University of Technology

The Netherlands
arie.vandeursen@tudelft.nl

ABSTRACT
Software testing is an important topic in software engineering edu-
cation, and yet highly challenging from an educational perspective:
students are required to learn several testing techniques, to be able
to distinguish the right technique to apply, to evaluate the qual-
ity of their test suites, and to write maintainable test code. In this
paper, we describe how we have been adding a pragmatic perspec-
tive to our software testing course, and explore students’ common
mistakes, hard topics to learn, favourite learning activities, and
challenges they face. To that aim, we analyze the feedback reports
that our team of Teaching Assistants gave to the 230 students of our
2016-2017 software testing course at Delft University of Technology.
We also survey 84 students and seven of our teaching assistants on
their perceptions. Our results help educators not only to propose
pragmatic software testing courses in their faculties, but also bring
understanding on the challenges that software testing students face
when taking software testing courses.

CCS CONCEPTS
• Applied computing → Education; • Software and its engi-
neering → Software verification and validation;

KEYWORDS
software testing education, software engineering education, com-
puter science education.

ACM Reference Format:
Maurício Aniche, Felienne Hermans, and Arie van Deursen. 2019. Pragmatic
Software Testing Education. In SIGCSE ’19: 50th ACM Technical Symposium
on Computer Science Education, February 27–March 2, 2019, Minneapolis, MN,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3287324.
3287461

1 INTRODUCTION
Every software developer should be aware of the (high) impact
that malfunctioning software can have in our society. We have
seen huge losses in the financial market [30], and even researchers
withdrawing their papers [33]; all of them caused by software bugs.
Making sure software works is maybe the greatest responsibility
of a software developer. Luckily, over the years, software testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/2. . . $15.00
https://doi.org/10.1145/3287324.3287461

moved away from being considered the activity that ‘less skilled’
software engineers do to one of the most important skills an engi-
neer should have.

The act of inspecting large and complex code bases to find bugs
is not a trivial task in the real world: engineers need to have a broad
understanding of different practices that vary from simple manual
exploratory testing, where a human tries to find bugs manually by
interacting with the system, to advanced bleeding-edge testing tech-
niques, such as automated testing and automated test generation,
where engineers program machines to test their system.

Companies such as Facebook [12], Google [41], and Mi-
crosoft [35] take testing seriously and require their engineers to
master such techniques. Surveys have shown that developers un-
derstand the importance of testing-related training [15] and yet
many of them still lack formal testing education [6, 34].

Indeed, educating a student in the art of software testing is
challenging, for both students and educators. From the educator’s
perspective, it is hard to keep a testing course up-to-date with the
novelties of the field as well as to come up with exercises that
are realistic [14]. Due to the importance of the topic, educators
have been experimenting with the introduction of testing earlier
in Computer Science programs [17, 19–21, 23, 27], introducing
a test-first approach in CS courses [9, 10, 22], developing tools
focused on software testing education [11, 38], and proposing more
complete postgraduate courses focused on testing [39]. Educators
also face the fact that some testing topics are not conceptually
straightforward, not easy to demonstrate and generalize, and are
not all available in a single textbook [40].

This paper has a twofold goal. First, to present howwe have been
teaching pragmatic software testing to the first year CS students
at Delft University of Technology. Second, we explore students’
common mistakes, hard topics to learn, favourite learning activities,
and challenges they face when learning pragmatic software testing.

To this aim, we analyzed the 1,993 quotes from the feedback
report that we, as teachers and teaching assistants, gave to each of
the 230 students of the 2017 edition of the Software Quality and
Testing course, which is taught at the first year of our Computer Sci-
ence bachelor. In addition, we performed a survey with 84 students,
which we augmented by also surveying seven of our TAs.

The main contributions of this paper are:
• A proposal for a pragmatic software testing course based on
nine key principles that can be taught for computer science
students, including building a test mindset and interaction
with practitioners (Section 3).
• An empirical analysis of the students’ most common mis-
takes (Section 6.1), their perceptions on the most difficult
topics in software testing (Section 6.2), and the importance
of different teaching activities (Section 6.3) when learning
pragmatic software testing.

https://doi.org/10.1145/3287324.3287461
https://doi.org/10.1145/3287324.3287461
https://doi.org/10.1145/3287324.3287461

SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA Maurício Aniche, Felienne Hermans, and Arie van Deursen

2 RELATEDWORK
Software Testing is an important part of any Software Engineering
program [2, 8, 26, 42], and by itself poses several other challenges to
educators. Unfortunately, the topic still does not receive its deserved
attention in several CS programs. Wong [42] argues that many
engineers are not well trained in software testing because most CS
programs offer ST as an elective course. Clarke et al. [8] also points
to the fact that due to the large number of topics to be covered in a
Software Engineering program, little attention is given to Software
Testing. Astigarraga et al. [2] show that most CS programs tend
to emphasize development at the expense of testing as a formal
engineering discipline. Lemos et al. [26] show that software testing
education can improve code reliability in terms of correctness;
however, authors also argue that university instructors tend to
lack the same knowledge that would help students increase their
programming skills toward more reliable code.

Educators have been suggesting different approaches on how to
introduce testing in a CS curriculum: from students submitting their
assignments together with test plans or sets [16, 17, 21], performing
black-box testing in a software seeded with errors [21, 24, 31],
students testing each others’ programs [36], to suggesting students
to use a test-first approach at the very beginning of the program [9,
10, 22, 27]. Many of these authors even suggest that tests should be
incorporated to the Computer Science and Software Engineering
curricula, not only as an elective discipline, but throughout the
curriculum.More specifically, Jones [23] suggests that students need
to see the practice of software testing as part of the educational
experience and that each core course in the curriculum should
impart one or more testing experiences.

In addition, educators have proposed tools that are solely fo-
cused on software testing education. Elbaum et al. [11] propose
BugHunt. BugHunt is a tool that contains four different lessons
on software testing (terminology, black box, white box, efficiency
in testing). 79% of the students in their experiment agreed that
BugHunt added significant value to the material presented in the
lecture(s) on software testing, and 61% of the students agreed that
BugHunt could replace the classes on testing. Spacco and Pugh
propose Marmoset [38], a tool to help incentivize students to test
their software. Marmoset’s innovative element is that if a submis-
sion passes all of the public test cases, then students are given the
opportunity to test their code against a test suite that is not publicly
disclosed.

3 PRAGMATIC SOFTWARE TESTING
EDUCATION

The Software Testing and Quality Engineering at Delft University
of Technology is a course that covers several different aspects of
software testing, ranging from topics in the ISTQB industry certifi-
cation [5] to software testing automation, as well as the future of
testing by means of selected research papers.

The course is currently a compulsory part of the 4th quarter
of the first year in the Computer Science bachelor. The course
corresponds to 5 ECTS (140 hours). Students have two lectures
of 1.5 hours plus 4 hours of labwork a week. As a pre-requisite,
students should have at least basic knowledge on Java programming
language.

The teaching team is currently composed of two teachers and
teaching assistants (TAs). The number of TAs vary as our university
has a policy of 1 TA per 30 students. Teachers are responsible for the
course design, lectures, creating and assessing multiple choice ex-
ams, and they have the overall responsibility of the course. TAs are
responsible for helping students, grading all labwork deliverables,
and for giving concrete and specific feedback on what students can
improve.
Learning goals. At the end of the course, students (1) are able to
create unit, integration, and system tests using current existing
tools (e.g., JUnit, Mockito) that successfully test complex software
systems, (2) are able to derive test cases that deal with exceptional,
corner, and bad weather cases by performing several different tech-
niques (i.e., boundary analysis, state-based testing, decision tables),
(3) are able to measure and reflect on the effectiveness of the de-
veloped test suites by means of different test adequacy metrics
(e.g., line and branch code coverage, MC/DC), (4) are able to reflect
on limitations of current testing techniques, when and when not
to apply them in a given context, and to design testable software
systems, (5) Participants are able to write maintainable test code
by avoiding well-known test code smells (e.g., Assertion Roulette,
Slow or Obscure Tests).
Program. The course covers software quality attributes, maintain-
ability and testability, manual and exploratory testing, automated
testing, devops, test adequacy, model-based testing, state-based test-
ing, decision tables, reviews and inspections, design-by-contract,
embedded system testing, test-driven design, unit versus integra-
tion testing, mocks and stubs. More specifically:

• Week 1: Introduction to software testing, fault vs failure, princi-
ples of testing, (un)decidabilitily, introduction to JUnit, introduc-
tion to labwork.
• Week 2: Life cycle, validation vs verification, V-model, code re-
views. Functional testing, partition testing, boundary testing, and
domain testing.
• Week 3: Structural testing, adequacy criteria, code coverage. Unit
vs integration vs system testing, mock objects, and test-driven
development.
• Week 4: State-based testing, model-based testing, and decision
tables.
• Week 5: Test code quality, test code smells. Design for testability.
Design-by-contracts.
• Week 6: Security testing. Search-based software testing.
• Week 7: Guest lectures from industry.

Key elements. To achieve a pragmatic software testing course, we
have devised and currently follow some key elements:
Theory applied in the lecture.We put our efforts into developing lec-
tures where students can see theory being applied to practice. Our
lectures often have the following structure: we present a (buggy)
code implementation (initially on slides, and later in the IDE), we
discuss where the bug is, we explore, at a conceptual level, a sys-
tematic approach to detect the bug, we apply the approach into a
set of concrete examples. In other words, we do not only focus on
explaining abstract ideas, but on concretely showing how to apply
them on different real world problems, using real-world tools, like
JUnit, Mockito, and Cucumber.

Pragmatic Software Testing Education SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA

Real-world pragmatic discussions. Software testing is a challenging
activity to be done in practice. This means that developers often
make trade-offs in decidingwhat and howmuch to test. Engineering
questions that arise when complex software systems are being
tested, such as “how much should I test?”, “how should I test a
mobile application that communicates with a web server?”, and
“should I use mocks to test this application?” are often discussed in
classroom so that students see how to extrapolate from our often
small exercises to their future real lifes as developers.
Build a testing mindset. Software testing is not seen as an important
task by many students. A software testing course should inspire
students to think about testing whenever they implement any piece
of code. In our testing course, we aim to achieve such a testing
mindset by (1) showing how testing can be a creative activity, re-
quiring strong developers, by means of several live coding sessions
and rich pragmatic discussions, (2) demonstrating not only the use-
fulness of any testing technique we teach, but also how they are
applied, as well as what trade-offs such techniques have in the real–
world, (3) bringing guest lecturers who talk about the importance
of software testing for their companies.
Software testing automation. The software engineering industry
has long been advocating the automation of any software testing
activity [12, 35, 41]. However, some software testing courses still
focus on writing test case specifications solely as documents, and
do not discuss how to automate them. In our course, to all the
theoretical and systematic test design techniques we present, from
functional testing to structural testing, from unit to system-level
tests, students later write them in a form of an automated test.
Mastering tools such as JUnit and Mockito, standard tools for test
automation in Java, is a clear learning goal of our course. The
importance of automation also strongly appears in our labwork,
which we discuss next.
A hands-on labwork. We see the labwork as an important learning
method. In our course, by means of a practical labwork assignment,
students apply a selection of techniques to a 3k lines of code game
written in Java, namely, JPacMan. The labwork contains a set of 50
exercises in which students are able to exercise all the techniques
we teach. It is important to notice that students not only generate
test cases on the paper, but also automate them. A great amount of
their work is in actually producing automated JUnit test cases.

In the following, we present the main deliverables of our labwork.
The complete assignment can be found in our online appendix [1].

• Part 0 (Pre-requisites). Clone the project from Github, configure
the project in your IDE, write your first JUnit test, run coverage
analysis.
• Part 1.Write a smoke test, functional black-box testing, boundary
tests, reflect on test understandability and best practices.
• Part 2. White-box testing, mock objects, calculate code coverage
and apply structural testing, use decision tables for complex
scenarios, reflect on how to reduce test complexity and how to
avoid flaky tests.
• Part 3. Apply state-based testing, test reusability, refactor and
reflect on test smells.

Test code quality matters. Due to the importance of automated test-
ing activities, software testers will deal with large test codebases.

Empirical research has indeed shown that test code smells often
happen in software systems, and that their presence has a strong
negative impact on the maintainability of the affected classes [3].
We often reinforce the importance of refactoring test code and
make sure they are free of smells. To any test code we write during
live coding sessions, we make sure that they are as free of smells
as possible. Test smell catalogues such as the ones proposed by
Meszaros [32] are deeply discussed in a dedicated lecture.
Design systems for testability. Designing software in such a way
that it eases testability is a common practice among practition-
ers [13, 18, 29]. This requires us to not only discuss software testing
in our course, but software architecture and design principles of
testable software systems, such as dependency inversion [28], ob-
servability and controllability, in an entire dedicated lecture for the
topic. Questions like “Do I need to test this behavior via an unit
or a system test?”, “How can I test my mobile application?” are
extensively discussed not only through the eyes of software testing,
but also to the eyes of software design.
Mixture of pragmatic and theoretical books. The two books we use
as textbooks in the course are the “Foundations of software testing:
ISTQB certification” [5], which gives students a solid foundation
about testing theory, and the “Pragmatic Unit Testing in Java 8 with
JUnit” [25], which gives students concrete and practical examples
on how to use testing tools, like JUnit. We believe both complement
each other and both are important for students who will soon
become a software tester.
Interaction with practitioners. We strongly encourage their inter-
action with practitioners throughout our course. Having guest
lectures from industry practitioners helps us to show the pragmatic
side of software testing. Guests focus their lectures on how they
apply software testing at their companies, tools they use, their pros
and cons, and on the mistakes and challenges they face. In the
2017 edition, we also experimented with Ask-Me-Anything (AMA)
sessions, where we called experts from all over the world via Skype
and students had 15 minutes to ask any software-testing related
questions.
Grading. We currently use the following formula to grade our
students: 0.25 * labwork + 0.75 * exam. The labwork (as
we explain below) is composed of 4 deliverables, each graded by
our TAs in a range of [0..10]. We later average the grades of four
deliverables, which compose the labwork component of the grade.
At the end of the course, we propose a 40-question multiple choice
exam. Students may take a resit 6 weeks later if they did not pass in
the first time. We also offer an optional midterm exam for students
who want to practice beforehand.

4 RESEARCH METHODOLOGY
The goal of this study is to provide a better understanding of the dif-
ficulties and challenges that students face when learning pragmatic
software testing.

To that aim, we analyze the data from 230 students of the 2016-
2017 edition of our software testing course. We propose three re-
search questions:

RQ1: What common mistakes do students make when learning
software testing?

SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA Maurício Aniche, Felienne Hermans, and Arie van Deursen

RQ2: Which software testing topics do students find hardest to
learn?

RQ3: Which teaching methods do students find most helpful?

To answer our research questions, we collect and analyze data
from three different sources: the feedback reports that TAs give to
students throughout the course, a survey with students, and a sur-
vey with the TAs, both performed after the course. We characterize
the participants in Section 5. In the following, we detail the three
parts of our methodology.
Manual content analysis on the feedback. As we explain in
Section 3, students work on and produce four deliverables during
the course. After each deliverable, our team of TAs manually reads
students’ reports, source code, and tests, and with the help of a
rubric, provides them with rich qualitative feedback.

This feedback usually contains several quotes that touch on a
mix of different topics, such as mistakes they made in the exercises,
tips on how to improve their existing work, issues on the written
report, and even compliments for their good work. The language
of such feedback reports is usually informal, as we do not give
constraints to TAs on how the feedback should be.

We analyze the content of all feedback reports. To that aim, we
first filter out any feedback that is not directly related to software
testing (e.g., comments on exercises that were not done, or compli-
ments). We then follow an iterative process, derived from standard
qualitative data analysis procedures [37]: (1) we assign a code for
each quote in the feedback; the code summarizes the essence of
the quote, (2) if a quote does not belong to any existing codes, we
introduce a new code, (3) each quote has just a single code; if a
quote tackles two different problems, we split the original quote
into two quotes, (4) to assign the correct code to a quote, we used
our knowledge of the testing course, labwork, and the existing
rubrics. We assigned 40 different codes to a total of 1,993 quotes. As
a next step, we started an iterative merging process to derive the
final themes, by grouping similar codes into higher-level themes,
e.g., the theme “maintainability of test code” contains quotes from
the “test quality”, and “test duplication” codes. We ended up with
eight themes that we present in the Results (Section 6).
Survey with students. With the goal of capturing their percep-
tions on learning software testing, we asked students to answer a
questionnaire that contained both open and closed questions at the
end of the course.

The survey contains a total of 18 questions, none of which are
required. The two closed questions of the survey asked students
about the difficulty of learning and putting into practice the con-
cepts and techniques we taught, and about the importance of the
different activities we used throughout the course. In these ques-
tions, students had to choose from a five point Likert-scale, ranging
from strongly disagree to strongly agree (see Figures 2 and 3). The
open questions were mostly focused on understanding the students’
main challenges, difficulties, and suggestions of improvements for
our testing course. We apply qualitative techniques to analyze the
results of each open question individually, similarly to our analysis
of the feedback reports. The full survey as well the full code book
can be found in our online appendix [1].

We did not make answering the survey compulsory for the stu-
dents. We received 84 complete answers out of the 230 students.

0

10

20

30

2.5 5.0 7.5 10.0

N
um

be
r

of
 s

tu
de

nt
s

when
after
before

Figure 1: Histogram of the students’ (X axis) perceptions in
terms of their knowledge (Y axis) on software testing before
and after the course. Scale: from 1 to 10.

Survey with Teaching Assistants. Our TAs support students
throughout the course, by answering their questions, supporting
their work during the lab, and by grading their assignments. As a
consequence of such intense contact with students, TAs obtain a
good perspective on the challenges of teaching software testing.

We also performed a similar survey with TAs, focusing on what
they perceive as challenges for students. The survey contained the
same two closed questions from the students’ survey (challenges
when applying software testing, and the importance of the differ-
ent activities). In the open questions, we focused on asking about
the common mistakes students do during the lab, as well as their
perceptions on the challenges that students face.

We shared the survey internally at the end of our course. We
also did not make answering the survey compulsory for TAs. At
the end, we received 7 complete answers out of the 10 TAs.

5 CHARACTERIZATION OF THE
PARTICIPANTS

Students. 66 students identify themselves as male, 8 as female, and
10 preferred not to answer. 89.3% of the students are between 18 to
24 years, five are between 25 and 34, and four are 17 or younger.
Only three students were international students. In terms of Java
knowledge, in a scale from 1 to 10, 9.5% of students consider their
knowledge between 9 and 10, and 72% of them consider themselves
between 7 and 8. Only 4 students consider themselves 5 or below.

Thanks to the introduction to JUnit that students receive during
their very first course on programming, most of them already had
some knowledge on software testing prior to our course. In fact, as
we show in Figure 1, before the course starts, in a scale from 1 to 10,
39% of them consider themselves between 6 and 8, 44% between 4
and 5, and only 16% between 1 and 3. No student considered herself
a 9 or 10. Students considered that their knowledge increased after
the course. All of them considered their knowledge after the course
as 6 or greater; 39% of them ranked themselves with a 8, and 14.6%
with a 9. Two students ranked themselves with a 10.

Pragmatic Software Testing Education SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA

17%

19%

30%

31%

42%

35%

27%

35%

29%

46%

56%

36%

30%

44%

54%

46%

73%

76%

49%

42%

33%

32%

27%

25%

25%

25%

21%

20%

19%

18%

16%

16%

14%

14%

2%

1%

34%

39%

37%

37%

31%

40%

48%

41%

50%

35%

26%

46%

54%

40%

32%

41%

25%

23%

Minimum set of tests Q18
Avoiding flaky tests Q17
Exploratory Testing Q16

Defensive programming Q15
How much to test Q14
Acceptance tests Q13

Design by contracts Q12
TDD Q11

Testability Q10
Best practices Q9

State−based testing Q8
Apply MC/DC Q7

Structural testing Q6
Boundary Testing Q5

Mock Objects Q4
Choose the test level Q3

AAA pattern Q2
Usage of JUnit Q1

100 50 0 50 100

Figure 2: Students’ perception on the difficulty of each test-
ing topic. Scale: very easy, easy, neutral, hard, very hard. The
full questionnaire can be found in our appendix [1].

Teaching Assistants. All TAs are between 18 and 24 years-old,
one of them being female. They all ranked their Java knowledge
between 8 and 10, and software testing knowledge between 7 and 8.
Four of them are TAs for the first time in our software course; the
other three TAs are performing this role for the third year in a row.

6 RESULTS
6.1 RQ1: What common mistakes do students

make when learning software testing?
We characterize the labwork feedback in eight different themes
(ordered by their frequency): test coverage, maintainability of test
code, understanding testing concepts, boundary testing, state-based
testing, assertions, mock objects, and tools.
Test coverage (416 times, 20.87%). Students commonly either miss
tests, i.e., they do not provide all the expected tests for a given piece
of code, or they write tests that are not totally correct, e.g., the test
does not actually test the piece of code, or the test exercises the
wrong class. In addition, we also observed cases (14) where the
student actually “overtested” (i.e., wrote tests for more cases than
required).
Maintainability of test code (407 times, 20.42%). Students often need
advice on how to write maintainable test code. More specifically,
test quality advices in general, such as better naming and excessive
complexity (247), code duplication and lack of reusability (69), tests
that could be split in two (31), better usage of test cleanup features,
such as JUnit’s Before and After (47).
Understanding testing concepts (306 times, 15.35%). Students provide
incomplete answers or have difficulties when it comes to questions
that involve testing concepts and ideas, such as what flaky tests are
about, advantages and disadvantages of unit and system tests, and
the importance of removing test smells.
Boundary testing (258 times, 12.95%). Students often miss all the
tests required to cover a boundary (142). As we also ask them to
first build a decision table and then derive the tests, we also see
that they often miss elements in the table (50) and generate tables
that are not fully correct (46).

State-based testing (247 times, 12.39%).When it comes to state-based
testing, students often miss or create wrong states or events (56) and
transitions (72), or develop non-clear or not legible state machines
(68).
Assertions (158 times, 7.93%). Most feedback related to assertions
focus on missing assertions, i.e., the student forgot to assert one or
more expected result, and on assertions that are wrong or should
not exist in that test.
Mock Objects (117 times, 5.87%). Students required some feedback
on how to use mock objects. More specifically, on how to prop-
erly verify interactions with mock objects (i.e., Mockito’s ‘verify’
method) and to explain when one should mock an object.
Tools (84 times, 4.21%). Students sometimes do not use the tools
properly. More specifically to our course, students commonly use
JUnit 4 features instead of JUnit 5, do not correctly use AssertJ’s
fluent API, and make wrong use of Cucumber features.
TAs perspective. Overall, the observations of TAs match with
what we observed in the labwork analysis. In terms of testing best
practices, TAs mentioned to help students in writing maintainable
test code. According to one TA, students often write tests that
contain unnecessary code and weird interactions with the class
under test. In addition, according to one TA, students do not clearly
see how to reuse test code. Another TA mentioned that a common
question is on how to properly test exceptions. Finally, a TA also
observed that students often write tests that actually do not exercise
any production code (in this case, JUnit still shows a green bar,
giving a false impression of success to the student).

6.2 RQ2: Which software testing topics do
students find hardest to learn?

In Figure 2, we show, based on the survey data, how students and
TAs perceive the difficulty of each of the topics we teach.

Most students consider using the JUnit framework (Q1) as well
as to think about the Act-Arrange-Assert pattern that composes
any unit test (Q2) easy to learn. In fact, 76% and 73% of students
consider it easy or very easy to learn JUnit and to use the AAA
pattern, respectively. These perceptions are also shared by TAs, and
matches with RQ1 results, as the number of feedback related to bad
tool usage is small (4.21%).

Interestingly, applying MC/DC (Modified Condition/Decision
Coverage) [7] criteria to test complicated conditions (Q7) was con-
sidered hard or very hard by 49% of the students; this is the hardest
topic among all of them. However, it seems that other coverage crite-
ria are easier to learn, as only 16% of students considered structural
testing hard (Q6).

Applying software testing in a pragmatic way, as expected, was
considered hard for students. Deciding how much testing is enough
(Q14) is also considered a hard topic by 42% of students (the second
most hard topic). TAs agree and even perceive this topic harder
than the students. This result also matches with our findings on
RQ1, where test coverage is the most prominent topic in feedback.
In addition, writing the mininum set of tests that gives confidence
(Q18) is considered hard for 25% of students and neutral for 40%.
Choosing the right level of testing (e.g., unit, integration, or system
tests) is not considered easy to all of them; 29% consider it easy,

SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA Maurício Aniche, Felienne Hermans, and Arie van Deursen

0%

1%

7%

6%

9%

10%

7%

31%

30%

35%

29%

93%

93%

80%

75%

73%

72%

65%

33%

32%

30%

20%

7%

6%

12%

19%

19%

18%

28%

36%

38%

34%

51%

Midterm exam Q11

AMA sessions Q10

Related papers Q9

Support from TAs Q8

Labwork Q7

ISTQB book Q6

PragProg book Q5

Live discussions Q4

Live coding Q3

Guest lectures Q2

Lectures Q1

100 50 0 50 100

Figure 3: Importance of different activities in software
testing learning. Scale=strongly disagree, disagree, neutral,
agree, strongly agree. The full questionnaire can be found
in our appendix [1].

50% of the students are neutral, and 21% perceive it as a hard topic
(Q3). Not a single TA perceived this topic as easy. We believe these
findings highlight even more the importance of discussing even
more the pragmatic side of software testing.

When it comes to testing code best practices, students had a
contradicting perceptions. The usage of mocks to simulate a de-
pendency (Q4) and writing fast, reproducible, and non-flaky tests
(Q17) were considered easy topics to be learned by 42% and 56% of
students, respectively. TAs agree that students learn these topics
with less difficulties. However, when it comes to following testing
best practices (Q9), 46% of students perceive it as an easy topic,
while 71% of TAs perceive it as a hard topic for students. The stu-
dents’ perceptions also contradicts the results of RQ1, where we
observe a large number of feedback focused on best practices in
their assignments.

Finally, testability seems less challenging for students than for
TAs. While students perceive optimizing code for testability (Q10)
as just somewhat challenging (35% find it easy, 41% are neutral, and
25% find it hard), 67% of TAs belive that testability is a hard topic for
students. As we conjecture that TAs have a better understanding
of testability than the students, these findings suggest that the
students are not sufficiently aware of the difficulty of testability.

6.3 RQ3: Which teaching methods do students
find most helpful?

In Figure 3, we show how students perceive the importance of each
learning activity we have in our software testing course.

Students perceive activities that involve practitioners as highly
important. More specifically, guest lectures from industry (Q2) were
considered important by 72% of participants. The Ask-me-Anything
sessions (Q10), on the other hand, was considered important by
only 32% of participants; 38% are neutral, and 30% do not consider
them important.

Moreover, different interactions during the lecture are also con-
sidered important for students. Teachers performing live code (Q3)

and discussions and interactions during the lecture (Q4) are con-
sidered important by 75% and 65% of students, respectively. We
conjecture that discussions and live coding are moments in which
students have the opportunity to discuss the topics they consider
hard, such as how much testing is enough, which test level to use,
and test code best practices (as seen in RQ1 and RQ2).

On the other hand, the two books we use as textbooks in the
course are not considered fundamental for students. More specif-
ically, 31% of students find the ISTQB [5] not important and 36%
are neutral (Q6), whereas 29% of them find the PragProg [25] not
important and 51% are neutral (Q5). Reading related papers (Q9) is
also considered not important for 35% of them.

6.4 Limitations of our study
The qualitative analysis of the open questions in the survey was
manually conducted by the first author of this paper. The analysis,
therefore, could be biased towards the views of the authors. To
mitigate the threat, we make all the data available for inspection in
our online appendix [1],

TAs were responsible for giving feedback to students throughout
the study. Although we instruct all TAs on how to grade and what
kind of feedback to give (they all follow the same rubrics), different
TAs have different personalities. In practice, we observed that some
TAs provided more feedback than other TAs. While we believe this
could have little impact on the percentages of each theme in RQ1,
we do not expect any other theme to emerge,

In terms of generalizability, although we analyzed the behavior
of 230 students, we do not claim that our results are complete
and/or generalizable. Furthermore, most students were dutch (we
only had 3 international students answering our survey), which
may introduce cultural bias to our results. We urge researchers
to perform replications of this study in different countries and
universities.

7 CONCLUSIONS
Software testing is a vital discipline in any Software Engineering
curriculum. However, the topic poses several challenges to edu-
cators and to students. In this paper, we proposed a pragmatic
software testing curriculum and explored students’ common mis-
takes, hard topics to learn, favourite learning activities, important
learning outcomes, and challenges they face when studying soft-
ware testing.

Researchers and educators agree that software testing education
is fundamental not only to industry, but also to research. We hope
this paper helps the community to improve even more the quality of
their software testing courses. As Bertolino [4] states in her paper
on the achievements, challenges, and dreams on software testing
research: “While it is research that can advance the state of the art, it
is only by awareness and adoption of those results by the next-coming
generation of testers that we can also advance the state of practice.
Education must be continuing, to keep the pace with the advances in
testing technology”.

ACKNOWLEDGMENTS
We thank all the students and teaching assistants that followed our
course in the last years.

Pragmatic Software Testing Education SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA

REFERENCES
[1] Maurício Aniche, Felienne Hermans, and Arie van Deursen. 2018. Pragmatic

Software Testing Education: Appendix. (2018). https://doi.org/10.5281/zenodo.
1459654.

[2] Tara Astigarraga, Eli M Dow, Christina Lara, Richard Prewitt, and Maria R Ward.
2010. The emerging role of software testing in curricula. In Transforming Engineer-
ing Education: Creating Interdisciplinary Skills for Complex Global Environments,
2010 IEEE. IEEE, 1–26.

[3] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? An empirical study. Empirical
Software Engineering 20, 4 (2015), 1052–1094.

[4] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering. IEEE Computer Society, 85–103.

[5] Rex Black, Erik Van Veenendaal, and Dorothy Graham. 2012. Foundations of
software testing: ISTQB certification. Cengage Learning.

[6] FT Chan, TH Tse, WH Tang, and TY Chen. 2005. Software testing education and
training in Hong Kong. In Quality Software, 2005.(QSIC 2005). Fifth International
Conference on. IEEE, 313–316.

[7] John Joseph Chilenski and Steven P Miller. 1994. Applicability of modified
condition/decision coverage to software testing. Software Engineering Journal 9,
5 (1994), 193–200.

[8] Peter J Clarke, Debra Davis, Tariq M King, Jairo Pava, and Edward L Jones. 2014.
Integrating testing into software engineering courses supported by a collaborative
learning environment. ACM Transactions on Computing Education (TOCE) 14, 3
(2014), 18.

[9] Stephen H Edwards. 2003. Rethinking computer science education from a test-
first perspective. In Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications. ACM, 148–
155.

[10] Stephen H Edwards. 2004. Using software testing to move students from trial-
and-error to reflection-in-action. ACM SIGCSE Bulletin 36, 1 (2004), 26–30.

[11] Sebastian Elbaum, Suzette Person, Jon Dokulil, and Matt Jorde. 2007. Bug hunt:
Making early software testing lessons engaging and affordable. In Proceedings of
the 29th international conference on Software Engineering. IEEE Computer Society,
688–697.

[12] Facebook. [n. d.]. Building and Testing at Facebook. https://www.
facebook.com/notes/facebook-engineering/building-and-testing-at-facebook/
10151004157328920/. ([n. d.]). Last visited in October, 2017.

[13] Steve Freeman and Nat Pryce. 2009. Growing object-oriented software, guided by
tests. Pearson Education.

[14] Vahid Garousi and Aditya Mathur. 2010. Current state of the software testing
education in north american academia and some recommendations for the new
educators. In Software Engineering Education and Training (CSEE&T), 2010 23rd
IEEE Conference on. IEEE, 89–96.

[15] Vahid Garousi and Junji Zhi. 2013. A survey of software testing practices in
Canada. Journal of Systems and Software 86, 5 (2013), 1354–1376.

[16] Judith L Gersting. 1994. A software engineering “frosting” on a traditional CS-1
course. In ACM SIGCSE Bulletin, Vol. 26. ACM, 233–237.

[17] Michael H Goldwasser. 2002. A gimmick to integrate software testing throughout
the curriculum. In ACM SIGCSE Bulletin, Vol. 34. ACM, 271–275.

[18] Misko Hevery. 2008. Testability explorer: using byte-code analysis to engineer
lasting social changes in an organization’s software development process.. In
Companion to the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications. ACM, 747–748.

[19] Thomas B Hilburn. 1996. Software engineering-from the beginning. In Software
Engineering Education, 1996. Proceedings., Ninth Conference on. IEEE, 29–39.

[20] Thomas B Hilburn and Massood Townhidnejad. 2000. Software quality: a cur-
riculum postscript?. In ACM SIGCSE Bulletin, Vol. 32. ACM, 167–171.

[21] Ursula Jackson, Bill Z Manaris, and Renée A McCauley. 1997. Strategies for
effective integration of software engineering concepts and techniques into the

undergraduate computer science curriculum. In ACM SIGCSE Bulletin, Vol. 29.
ACM, 360–364.

[22] David Janzen and Hossein Saiedian. 2008. Test-driven learning in early program-
ming courses. In ACM SIGCSE Bulletin, Vol. 40. ACM, 532–536.

[23] Edward L Jones. 2001. An experiential approach to incorporating software testing
into the computer science curriculum. In Frontiers in Education Conference, 2001.
31st Annual, Vol. 2. IEEE, F3D–7.

[24] Edward L Jones. 2001. Integrating testing into the curriculum—arsenic in small
doses. ACM SIGCSE Bulletin 33, 1 (2001), 337–341.

[25] Jeff Langr, Andy Hunt, and Dave Thomas. 2015. Pragmatic unit testing in Java 8
with JUnit. The Pragmatic Bookshelf.

[26] Otávio Augusto Lazzarini Lemos, Fábio Fagundes Silveira, Fabiano Cutigi Ferrari,
and Alessandro Garcia. 2017. The impact of Software Testing education on code
reliability: An empirical assessment. Journal of Systems and Software (2017).

[27] Will Marrero and Amber Settle. 2005. Testing first: emphasizing testing in early
programming courses. In ACM SIGCSE Bulletin, Vol. 37. ACM, 4–8.

[28] Robert C Martin. 2002. Agile software development: principles, patterns, and
practices. Prentice Hall.

[29] Robert C Martin. 2017. Clean architecture: a craftsman’s guide to software structure
and design. Prentice Hall Press.

[30] Scott Matteson. [n. d.]. Report: Software failure caused 1.7 trillion
in financial losses in 2017. https://www.techrepublic.com/article/
report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/.
([n. d.]).

[31] Renée McCauley and Ursula Jackson. 1999. Teaching software engineering early:
experiences and results. ACM SIGCSE Bulletin 31, 2 (1999), 86–91.

[32] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

[33] G. Miller. [n. d.]. A Scientist’s Nightmare: Software Problem Leads to Five
Retractions. http://science.sciencemag.org/content/314/5807/1856.full. ([n. d.]).
Last visited in October, 2017.

[34] SP Ng, Tafline Murnane, Karl Reed, D Grant, and TY Chen. 2004. A prelimi-
nary survey on software testing practices in Australia. In Software Engineering
Conference, 2004. Proceedings. 2004 Australian. IEEE, 116–125.

[35] Alan Page, Ken Johnston, and Bj Rollison. 2008. How we test software at Microsoft.
Microsoft Press.

[36] James Robergé and Candice Suriano. 1994. Using laboratories to teach software
engineering principles in the introductory computer science curriculum. In ACM
SIGCSE Bulletin, Vol. 26. ACM, 106–110.

[37] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
[38] Jaime Spacco and William Pugh. 2006. Helping students appreciate test-driven

development (TDD). In Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications. ACM, 907–
913.

[39] Muhammad Dhiauddin Mohamed Suffian, Suhaimi Ibrahim, and Mo-
hamed Redzuan Abdullah. 2014. A proposal of postgraduate programme for
software testing specialization. In Software Engineering Conference (MySEC), 2014
8th Malaysian. IEEE, 342–347.

[40] Joseph Timoney, Stephen Brown, and Deshi Ye. 2008. Experiences in software
testing education: some observations from an international cooperation. In Young
Computer Scientists, 2008. ICYCS 2008. The 9th International Conference for. IEEE,
2686–2691.

[41] James AWhittaker, Jason Arbon, and Jeff Carollo. 2012. How Google tests software.
Addison-Wesley.

[42] EricWong. 2012. Improving the state of undergraduate software testing education.
In American Society for Engineering Education. American Society for Engineering
Education.

https://doi.org/10.5281/zenodo.1459654.
https://doi.org/10.5281/zenodo.1459654.
https://www.facebook.com/notes/facebook-engineering/building-and-testing-at-facebook/10151004157328920/
https://www.facebook.com/notes/facebook-engineering/building-and-testing-at-facebook/10151004157328920/
https://www.facebook.com/notes/facebook-engineering/building-and-testing-at-facebook/10151004157328920/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/

	Abstract
	1 Introduction
	2 Related Work
	3 Pragmatic Software Testing Education
	4 Research Methodology
	5 Characterization of the participants
	6 Results
	6.1 RQ1: What common mistakes do students make when learning software testing?
	6.2 RQ2: Which software testing topics do students find hardest to learn?
	6.3 RQ3: Which teaching methods do students find most helpful?
	6.4 Limitations of our study

	7 Conclusions
	References

