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ABSTRACT

Owing to their atomic thickness and low bending rigidity, suspended two-dimensional (2D) materials are prone to wrinkle formation. Here,
we use molecular dynamics (MD) simulations to probe the effect of these wrinkles on the nonlinear elasticity of atomically thin graphene
membranes. We observe a stress—strain response that consists of two linear regions that are separated by a transition. It is found that this
transition is sharp in membranes where wrinkles are formed by uneven stresses at the boundaries. However, when wrinkles are formed by
crystal defects, this nonlinear transition is seen to be more gradual. To capture these effects, we use a phenomenological model based on
experimentally measurable quantities. We demonstrate the model’s fidelity by fitting it to the MD simulated nonlinear response of many
graphene membranes providing evidence that the sharpness of the transition between the linear regions in the stress—strain response is a

measure of the type of wrinkles and can be quantified by our model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0061822

I. INTRODUCTION

Wrinkles are out-of-plane deviations from flat configuration
that are frequently observed in the fabrication of 2D material mem-
branes. These corrugations manifest themselves in both suspended'
and substrate-supported™’ 2D materials and can significantly influ-
ence their electronic and mechanical properties.”® Therefore, thor-
ough understanding of the influence of wrinkles in 2D material
membranes is key to the development of high-performance 2D
nanomechanical devices.

Multiple wrinkled regions with different patterns may coexist
in a single 2D membrane.””"” These regions often comprise static
wrinkles that can be the consequence of uneven stress at the
boundaries of the membrane,''*'"> surface functionalization with
molecules, ¢ or crystal defects.' " Among them, the latter is
particularly shown to reduce the stiffness of 2D membranes and
lead to auxetic properties such as negative Poisson’s ratio.”'

Entropic fluctuations due to Brownian motion are another source
of wrinkles intrinsic to these materials that can give rise to exotic

. . . . 2
properties such as negative thermal expansion coefficient” and

: : 23,24
size-dependent elastic constants.

The stretching of a wrinkled 2D material is a two-level process
and exhibits a bilinear stress—strain response that consists of two
linear parts, each with a different effective stiffness. At relatively
low tensile strains, the applied force “irons out” the wrinkles and
results in low effective stiffness.”” Once the wrinkles are suppressed,
high stiffness is observed due to the stretching of the atomic
bonds.”® Recent experimental observations also suggest a nonlinear
transition state between these two stiffness levels that so far is not
well-understood.' >

This work aims at clarifying the nature of this nonlinear
behavior via molecular dynamics (MD) simulations. We perform
our simulations on graphene as a model system to develop a
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general procedure for probing the elasticity of wrinkled 2D materi-
als. We create wrinkles both by compressive forces at the boundar-
ies and by introducing crystal defects. While pre-stress is the root
cause of wrinkle formation in the presence of compressive forces at
the boundaries, 2D crystal defects in a stress-free membrane gener-
ate a wrinkled state that is solely the result of the 2D lattice
imperfections.

The proposed approach for probing the nonlinear elasticity of
wrinkled graphene is as follows: In Sec. II, we use a theoretical
model to qualitatively describe the nonlinear elasticity of wrinkled
membranes. In Sec. 1], we employ MD simulations for modelling
and comparing the response of membranes that are either wrinkled
by compressive forces at the boundaries or by crystal defects.
Finally, in Sec. IV, we discuss the effects of these wrinkles on the
stress—strain response of graphene and propose a phenomenologi-
cal model that captures the nonlinear elasticity of wrinkled mem-
branes and identifies the differences between the effect of lattice
defects and compressive stress via the stress—strain response.

Il. ANALYTICAL MODELING

From linear elasticity, it is known that isotropic materials
follow Hooke’s law. According to this law, material stiffness is char-
acterized by the biaxial modulus Esz = Eh/(1 —v) (E is Young’s
modulus, v is Poisson’s ratio, and 4 is the thickness) in a standard
equi-biaxial test. However, for wrinkled membranes, experimental
results show that the stress—strain response deviates from Hooke’s
law, and the observed slopes do not depend on the material stiffness
but instead are geometrical effects that can be influenced by the
boundary forces and morphological imperfections.””

In order to model such effects in a simple way, we assume
Hooke’s law for the material, use plane-stress condition, and deter-
mine the engineering strain ¢ in the following way:"’

1 1AA(o)
glo)=—o+=
D 2 A

) @

where o is the engineering stress, A is the surface area of the flat
lattice in the absence of external forces, and AA is the “hidden
area” that is defined as the difference between the total surface area
of the membrane and the area projected onto the plane containing
the boundaries. Unlike equi-biaxial straining of a flat membrane
that solely yields in-plane stretching, the straining of a wrinkled
membrane involves in-plane stretching and out-of-plane bending,
simultaneously. Thus, Eq. (1) has an additional term with respect
to conventional linear Hooke’s law to capture the bending defor-
mations. Since Eq. (1) shows 1D strain in an equi-biaxial tension
test, to convert the 2D area change to 1D extension, a coefficient of
1/2 is multiplied by (AA/A). We also note that Eq. (1) is not a con-
stitutive law but rather a phenomenological model that can capture
the geometric nonlinearity of wrinkled membranes during equi-
biaxial straining.

As shown in Fig. 1, the typical stress—strain curve of a wrinkled

membrane is composed of a linear part [g; = (1 / EQD) o] and a

nonlinear part [eny = (1/2)(AA(0)/A)], which converges to
(1/2)(AA/A), ..« at large strains. From Eq. (1), it is then possible to

ARTICLE scitation.org/journalljap

Strain

Stress

FIG. 1. Phenomenological model of the effective stress—strain response of biax-
ially tensioned wrinkled graphene membranes. (a) Schematic representation of
the bilinear approximation and its independent and dependent parameters. The
solid black line is the response of a wrinkled membrane following Egs. (1)—(3),
the solid orange line represents a pristine unwrinkled membrane and the
dashed-dotted green lines are the tangents to the curve close to the origin and
at maximum stress [bilinear approximation, Eq. (4)]; (b) spring-in-series system
with a linear spring with constant stiffness representing the intrinsic stiffness of
flat pristine graphene E;D and nonlinear spring with a stress-dependent stiffness
E}p (o) representing the stiffness of the wrinkles.

obtain the effective stiffness of the membrane as

e 11
do g~ Ep(o)’

@

1
Eeff
where EL,(c) can be seen as a stress-dependent nonlinear stiffness
term that is in series with a linear spring with constant Ej;, [see

Fig. 1(b)]. Comparing Egs. (1) and (2), the hidden area then obeys
the following relation:

1AA(o)

2 4 =J#da. (3)

EéD(G )

Our goal is to find a symbolic function that best represents the
hidden area throughout the wrinkle ironing out process. To capture
the physics associated with E (o), we start from the bi-linear
model as shown schematically in Fig. 1(a),

4

o, o <o,
o) =4

+ % (AITA) max, oc<o.

J‘L|._‘ N“%|._‘
S i~

We note that this model’s stress—strain curve has two slopes that
are given by the experimentally measurable tangential stiffness EJ;,
of the wrinkled state at low stress and the intrinsic biaxial modulus
of graphene EQD at high stress. The strain-axis-intercept (AA/A), ..
of the high stress line can be determined experimentally by analyz-
ing the stress-strain curves of 2D materials and can also be
obtained by performing complementary Raman spectroscopy and
interferometric profilometry measurements on wrinkled 2D mem-
branes.”® Therefore, the unknown transition stress o. can be
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obtained from Eq. (4) and the continuity condition of the stress—
strain curve, which results in

_ % (AITA) mangDE)ZrD
o, =2 A maxc 2D 20

(B — £)

To estimate the nonlinear spring response corresponding to
wrinkle suppression, we replace (AA/A) in Eq. (3) with
(AA/A),.8lo/0.), where g(o/o.) is a function that captures the
transition between the two linear regions due to the “ironing out”
of the wrinkles that will be determined by comparison to MD sim-
ulations and experiments in Sec. IV.

(©)

l1l. ATOMISTIC MODELING

MD simulations are found to be a powerful tool for investigat-
ing the influence of wrinkles on the mechanics and material prop-
erties of 2D materials under different loading conditions.”*™* Here,
to investigate the influence of different wrinkling patterns on the
nonlinear mechanics of 2D membranes, we perform MD simula-
tions where we create wrinkles by two means, as shown in
Figs. 2(a) and 2(b), respectively. Either we apply external force at
the boundary to deform the membrane, generate wrinkles, and sub-
sequently constrain the boundary to preserve them, or we induce
crystal defects to obtain out-of-plane imperfections in the absence
of boundary force.

o
—_—

)-SA
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In Fig. 2, we detail out the wrinkle creation process in our
study. We start by realizing an initial honeycomb square lattice of
graphene (200 x 200 A2), comprising 15744 atoms. To simulate
clamped boundary conditions, we fix atoms within a range of 5 A
from each edge. We then create the wrinkles by two methods. In
the first method, the wrinkles are created by compressing the
boundary coordinates by p% (0.5 <p <7) in both directions
[Fig. 2(al)] and use different shape functions to displace the atoms
in the z-direction as a function of x and y coordinates [see Fig. 2
(all)]. Finally, to have flat smooth boundaries, we project the
obtained shape in Fig. 2(all) on a kernel that suppresses the wrin-
kles’ height toward boundaries [Fig. 2(alll)]. We label these
wrinkled membranes “pre-stressed” samples throughout the article.
The details of the wrinkling patterns and the kernel for suppressing
boundary wrinkles are given in supplementary material S1.

In the second method, we create stress-free wrinkles using
crystal defects, following the procedure mentioned in Ref. 21.
Briefly, to achieve this second type of wrinkles, we first arbitrarily
select sets of two neighboring atoms (d% of total atoms;
0.5 < d < 3) [Fig. 2(bI)] and remove them from the initial lattice
[Fig. 2(bII)]. Next, we generate the so-called 5-8-5 defects”' by cre-
ating relevant bonds using Materials Studio software [Fig. 2(bIII)].

The resulting atomic coordinates of wrinkled graphene
samples are then used as the input for LAMMPS software.”> We
use Tersoff potential to evaluate atomic interactions.”® The simula-
tion box walls are built far enough from the graphene edges to
avoid numerical interaction between atoms adjacent to the walls,
and the boundary conditions are set as periodic. The energy of the

aVI)

alll)
-06

<
E X F2174
2 7 h-osA
Wrinkles made by pre-stress

F+6.63 A

ﬁ q
f3944

bI) bII) bIII)

Wrinkles made by crystal defect

FIG. 2. The procedure for wrinkle creation in MD simulations. (al) The x and y coordinates are compressed by p%. (all) Pre-defined shape functions are employed to
impose deviation from flat configuration. (alll) The shape obtained in all is projected on a Kernel to suppress boundary wrinkles. (alV) The pre-stressed pattern obtained in
LAMMPS after minimizing the energy and thermalizing the system. (bl) Neighboring atoms are randomly chosen and marked through the lattice. (bll) The marked atoms in
step bl are removed from the lattice. (blll) Bonds are created manually, and then the bond angles and lengths are modified locally using Materials Studio software. (blV)
Wrinkled pattern due to crystal defect obtained in LAMMPS after minimizing the energy and thermalizing the system.
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system is then minimized with the conjugate-gradient method. To
ensure a steady configuration, the created membranes also undergo
a canonical ensemble (NVT) for 500 ps. This simulation is carried
out using the velocity Verlet integrator with a time step of 1 fs and
a Nosé-Hoover thermostat with a time constant of 0.01 ps at 4 K.
This relatively low temperature is intentionally chosen to suppress
thermodynamical ripples in the lattice,” so as to solely study the
effect of statically generated wrinkles by pre-stress or crystal defect.
We should note that the presence of static wrinkles can mask the
influence of thermal ripples. This is mainly because the contraction
due to thermal ripples is much smaller than contractions caused by
compressive forces at the boundary.'”*® We should also highlight
that T = 4K is chosen over T = 1 K merely to decrease computa-
tional cost and speed up the thermalization process in the wrinkle
creation and equilibration after equi-biaxial loading steps. During
the minimization and thermalization of the pre-stressed samples,
we fix the boundaries in all directions to prevent the stress release.
For the samples with crystal defects, though, we only fix the

ARTICLE scitation.org/journalljap

boundaries in the z-direction and allow movement in x and y to
ensure a stress-free configuration. Typical thermalized wrinkled
graphene membranes are shown in Figs. 2(alV) and 2(bIV).

Moreover, to study the effect of both pre-stress and crystal
defects simultaneously, we performed additional simulations in
which after creating defects, we compressed the samples and then
fixed the boundary coordinates in x, y, and z directions. We shall
also emphasize that the pre-stressed wrinkles are made only by
compression, and the samples are sufficiently equilibrated in
LAMMPS to ensure isotropic behavior. Moreover, the location of
crystal defects are chosen randomly to avoid possible anisotropy of
stress-free wrinkles.

IV. RESULTS AND DISCUSSION
A. MD simulations

To probe the elasticity of the created samples upon biaxial
stretching, we apply pseudo-static tensile strains to the four

a) .06
0.05F Sample with pre-stress
0.04
=)
.= - +6.63A
g 0.03 A
n Sample with crystal defects
0.02 3944
0.01F —_———— +0.10 A
]
— . | Pristine graphene
0 L L L I
0 2 4 6 8 10 -0.10 A
b Stress (N/m)
) 059A  +175A 032A  +10.1A -0.16A  +1.28A +0.1 A
= - = L | = . | -3
£=0.010 £=0.030 0.040
€)  338A 3904 251A 41324 85A 40934
[

£=10.025

£=0.010

=0.030 £=10.040

FIG. 3. Biaxial tensile response of wrinkled graphene with pre-stress (achieved by 2.3% compressive force in both x and y-directions) and 5-8-5 crystal defects (achieved
by 1% defects): (a) Stress—strain response. Snapshots of the pre-stressed sample upon tension, corresponding to the dashed lines shown in (a), are shown for (b) pre-
stressed and (c) stress-free wrinkled sample. The color-scales demonstrate the local height of wrinkles. The orange line represents the sample with pre-stress, and the
green line shows the sample with crystal defects. Moreover, the black line despicts pristine graphene data.
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boundaries in discrete steps of 0.1ns (rate of 0.5A/ns), with a a)
relaxation period of 0.1ns. The stepwise strain-increment is
repeated many times to achieve stretching in x- and y-directions. 156
The average biaxial stresses are then obtained by calculating the
average normal force at the boundaries and dividing it by the .
perimeter. The tangential biaxial stiffness is merely the slope of the T 1.54¢
stress—strain curve at every applied strain. <
Figure 3(a) shows the stress—strain response of the pre-stressed o0
and defected samples obtained in Fig. 2, along with the elastic 5 1527 )
response of pristine graphene. We note that the pristine and the =
defected sample are at their stress-free state at the origin, while the e 15
pre-stressed sample is at a compressed state (p = 2.3). A linear rela- o '
tionship can be observed between stress and strain for the pristine ©
graphene with a slope of EZD = 330N/m that corresponds to the 2 148
stretching of carbon-carbon bonds. The obtained value of EéD <
matches well the acclaimed high biaxial stiffness of graphene.”®™"
In contrast, for the pre-stressed sample, the stress—strain response 1.46 : . ,
is characterized by two slopes, and the sample with crystal defects 0 .01 002 Sfc)f?in 004 0.95 0.06

exhibits nonlinear behavior. We note that the observed nonlinearity

is at relatively low strains and is different from the nonlinear b)
response characterized by the negative third-order elastic modulus
of graphene.”""> The latter nonlinear response comes into play
only at high strains.

To understand how wrinkling patterns evolve with the applied
strain, in Figs. 3(b) and 3(c), we trace the morphology of our gra-
phene samples while straining them. It is interesting to note that
for the pre-stressed sample, the wrinkling shape only changes at a
critical strain &, associated with critical stress o, before which only
the height of the created wrinkle shrinks. At &, a change in the
wrinkling pattern can be observed in Fig. 3(b). We note that
the observed pattern is unstable and with a slight additional strain
the membrane flattens completely. However, in the sample with
crystal defect [see Fig. 3(c)], even at relatively high strains, e.g., 4%,
the sheet still has buckled regions locally. Movies of the MD simu-

[o)} -

W

w

Average Disorder Height (A)
0 IS

lations associated with the stretching process for both samples are 0 ‘ ‘
shown in supplementary material S2. 0 0.01 0.02 0.03 0.04 0.05 0.06
To explain the observed morphology change, in Figs. 4(a) and Strain

4(b), we show the average bond length and the average wrinkle
height as a function of the applied biaxial strain, respectively.
Interestingly, unlike the sample with crystal defects where a nonlinear
trend in the average bond length variation is apparent for the pre-
stressed sample before the critical strain &, the average bond length is
~1.46 A, that is the stable bond length of the Tersoff potential at 4 K.
This observation suggests that for the pre-stressed sample beyond &,
only the atomic bonds of graphene are being stretched, while before
£, graphene is subjected to both in-plane and out-of-plane deforma-
tion. A similar conclusion can be drawn by tracing the average
wrinkle height of the pre-stressed sample [see Fig. 4(b)], where a
gradual decrease can be observed until £, after which the wrinkles
are ironed out. It is also apparent from the figures that throughout
the straining procedure, pristine graphene stays planar, and its bond
length varies linearly as a function of strain. FIG. 4. Average bond length and wrinkle height as a function of strain.
(a) Average carbon—carbon bond-length of the samples; (b) average sample height

. X calculated by %va: +|zi| (N, total number of atoms, z;, the z-coordinate of the

B. Symbolic regression of MD data atom /). The color scales demonstrate the local height of wrinkles. The orange line

represents the sample with pre-stress, and the green line shows the sample with
crystal defects. Moreover, the black line depicts pristine graphene data.

Sample with pre-stress

Sample with crystal defects

Pristine graphene

1
-0.10 A

Next, to obtain an analytic expression that captures the
observed nonlinearity, we determine g(c/o.). For this, we convert

J. Appl. Phys. 130, 184302 (2021); doi: 10.1063/5.0061822 130, 184302-5
Published under an exclusive license by AIP Publishing


https://www.scitation.org/doi/suppl/10.1063/5.0061822
https://aip.scitation.org/journal/jap

Journal of
Applied Physics

the £(o) curves from the MD data into AA(c)/A curves using
Eq. (4). By doing so, we can eliminate the contribution of Hooke’s
law from the datasets and use Eureqa to determine only the hidden
area symbolically. We also make the datasets dimensionless by
dividing stress by o, and to retain only g(c/o,) in the fitting pro-
cedure, we divide the strain by (1/2)(AA/A),... We obtain the
normalized function g(o/o.) for 38 wrinkling configurations.
These patterns include 24 wrinkled membranes with pre-stress
created in a similar fashion to Fig. 2(alV), 10 samples with crystal
defects obtained similar to Fig. 2(bIV), and 4 graphene membranes
that have both pre-stress and crystal defect (see supplementary
material S1). In Fig. 5, we show the normalized response of seven
of these membranes, and in Table I, we report the corresponding
bi-linear fits using Eq. (4). It is interesting to note that all the
samples created by crystal defects follow the same trend of nonline-
arity irrespective of the shape and height of wrinkles (samples D, E,
and F). The same observation holds true for the samples made by
pre-stress (samples A, B, and C) where a bi-linear response is
apparent. We note that the stress—strain response of samples with
both pre-stress and crystal defects lies within the response of the
wrinkled membranes made by crystal defect and those made by
pre-stress only (see sample G).

To analytically describe the stress-strain characteristics of
membranes with different types of wrinkles, it is thus interesting to
obtain a phenomenological equation that can capture all the
observed curves g(o/o.). To this end, we import the normalized
stress—strain data [g(o/o,)] into the Eureqa symbolic regression
software to automatically search for a function space using a
selected set of operators and operands.”’ Eureqa uses genetic pro-
gramming to search for mathematical equations that best describe a
set of data and has been successfully used to distill physical laws of
motion from experimental data.*”** The output of Eureqa is a set
of possible fitting functions (Pareto front) ranked based on the
mean absolute error and a complexity index that balances the com-
plexity of the proposed models, measured as the number of terms
included in the model (see supplementary material S3). The
obtained models from Eureqa were either overfitting the MD data
or contained few fitting parameters. Among the proposed models,
the following symbolic function is found to fit both samples with
pre-stress and crystal defects with high accuracy:

1
e=—o0
2

D
+1 AA
2\ A max

In this model, the nonlinear spring can be well-approximated
by three physically meaningful and measurable parameters,
namely, EQD, o, and (AA/A),,, in addition to the fitting parameter
B that determines the degree of nonlinearity. We note that in the
limit of f — 1, Eq. (6) is seen to represent the response of wrinkled
membranes made by pre-stress well, while in the limit of § — 0.1,
stress-free wrinkled membranes can be best fitted (see Fig. 5).
Moreover, we observe that the mechanical response of samples
made by a combination of pre-stress and crystal defects can be well-

o/o.

o/o.+ exp(f(a/ac) - ﬁ(O'/CTC)4) ’

(6)
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FIG. 5. Uniqueness of degree of nonlinearity for samples with pre-stress and
crystal defects. (a) g(o/o;) for seven different samples: A, B, and C pre-
stressed graphene with 2.3%, 2.3%, and 2.1% pre-stress; D and E, graphene
with randomly distributed 1% and 2% crystal defects; F, graphene with 1%
locally created defects; and G, graphene with 2.1% pre-stress and 0.5% crystal
defects. (b) Corresponding graphene samples with different wrinkle types/pat-
terns at the start of stretching. The color-scales demonstrate local wrinkle height
and the color symbols shown below each sample represents the corresponding
data in (a). The corresponding parameters obtained from MD simulations and
used for normalizing the stress-strain data are presented in Table |.

captured by 0.1 < 8 <1 (see Table S$4 in supplementary material
S4). We also note that for § — —oo, the nonlinear term of Eq. (6)
tends to zero and Hooke’s law is retrieved. The fits to all 38
samples using Eq. (6) are given in supplementary material S4. The
presented phenomenological model can capture the nonlinear
response of a large set of wrinkled membranes, with functional
form being obtained directly from MD fits . It is important to note
that there might be wrinkling patterns that cannot be captured by
Eq. (6), e.g., wrinkles made by shear. Thus, more MD work will be
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TABLE I. Bilingar approximation [Eq. (4)] parameters corresponding to the samples model proposed in Ref. 45 is derived for membranes that exhibit
A-G, explained in Fig. 5. stress-free out-of-plane fluctuations and does not account for the

I (Nm-D) (A4/A) o(Nm) pre-stress often present after the fabrication of graphene mem-
2D max < branes. Another reason might be the finite bending rigidity of gra-
Sample A 326.3 0.047 1.244 phene which results in the non-zero stiffness that samples show at
Sample B 332.7 0.046 1.321 low stress, before ironing out the wrinkles (see Fig. 6).
Sample C 308.6 0.042 1.971 For comparison, in Fig. 6(b), we show the fits of experimental
Sample D 282.5 0.031 1.858 data using Eq. (6). To capture the nonlinear behavior, we use
Sample E 258.2 0.045 2.621
Sample F 286.0 0.029 1.941
Sample G 309.3 0.043 1.478
@ Data A (Ref. [26]) @ Data B (Ref. [26]) @ Data C (Ref. [26])
. . a)
needed to establish the range of validity of the presented phenome- % 10-3
nological model. 7
It is interesting to note that in statistical mechanics studies,” .~
there also exists a parameter o that expresses the degree of nonline- ~er = |
arity in wrinkled membranes, and it was shown that in stress-free = s ° .
wrinkled membranes, irrespective of wrinkling pattern, the nonlin- S 5+ . ¢ R 7
ear behavior can be modelled as k= . e <l
S 4r A e :
1 o [(o\“ = ¢ & il e
elo) = o+ (21 I S e
EgD O‘EQD o = 3 g 27 o
Q) I'. ————
with o~ 0.1 for statically wrinkled membranes, and o« being E 2t /'/ == === Corresponding fit using Ref. [45] |
a re-normalizla_tion parameter set as the stress at which El, (o) g /e y /”“ == === Corresponding fit using Ref. [45]
= EZD (0/o+) ™%, that is when the nonlinear stiffness of Eq. (7) is A | 4 1
equal to the linear stiffness term E’;D.45 I,/j,"’ == === Corresponding fit using Ref. [45]
It was found that it is difficult to accurately fit the MD data ol : : w
with the physics-based Eq. (7), which is why the phenomenological 0 0.5 1 1.5
Eq. (6) is introduced, that matches the MD simulations with high Stress (N /m)
accuracy. b)
- . . %1073
C. Validation of the model using experimental data 7 ; ;
In order to show the applicability of Eq. (6) in fitting experi-
mental data and to compare its outcome to Eq. (7), we fit the 6+ . . i
stress—strain measurements for single-layer graphene membranes s L - ————
reported in Ref. 26 using both Eq. (6) [in Fig. 6(b)] and Eq. (7) [in 5t ° ° T
Fig. 6(a)]. The graphene membranes in the experiments™® were sus- S ,eo°v
pended over 5um circular cavities and pressurized by nitrogen gas 41 L. " ]
while their strain was probed by both Raman spectroscopy and d e o o0 o

w

interferometric profilometry. Before fitting, first the Raman spec-
troscopy values for the strain were subtracted from interferometric
measurements. Thus, the experimental data of Ref. 26 only contain
the nonlinear strain ey, corresponding to (1/2)(AA(c)/A) [see
Fig. 1(a)]. In order to account for the offset seen in the data at the
beginning of the measurements, o and o~ in Eq. (7) were replaced
with o — 0 and o+ — 0y, respectively, with ¢ being an un-known . . .
pre-stress. Then, @, o+, and oy were chosen as the fitting parame- 0.5 1 1.5
ters. The obtained values from the fits in*® were & = 0.12 + 0.02, Stress (N /m)

o+ =0.8 + 0.1N/m, and 6y = 0.07 + 0.01N/m.

Although the obtained fits provide good insight and confirm
deviation from Hooke’s law in wrinkled membranes, it appears that
with increasing stress, the fitted curves in Fig. 6(a) deviate from the
experimental data. A possible reason for this deviation is that the

e Corresponding fit using Eq. (6)

[\

= Corresponding fit using Eq. (6)

Nonlinear Strain (enz)

N\

e Corresponding fit using Eq. (6)

(@)
(@)

FIG. 6. Fits of the experimental stress—strain data reported in Ref. 26. (a) Fits
obtained using the power-law relation proposed by Gornyi et al.*> (b) Curves
obtained by fitting the data with [Eq. (6)].
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(AA/A),., and o, as the fitting parameters and fix § = 1, that is
the degree of nonlinearity obtained from our MD simulations for
pre-stressed wrinkled membranes. Similar to the procedure per-
formed in Ref. 26, we also add a constant term o, to Eq. (6) to
account for the offset observed at the onset of experiments. Using
these fitting parameters, we find (AA /A)max = 0.008 + 0.002,
0. =0.45 + 0.2N/m, gy = 0.065 + 0.065 N/m and find good fits
to the nonlinear stress—strain trends observed experimentally.

It is worth noting that the parameter § is a qualitative
measure of the smoothness of the transition between the two
straight parts of the stress—strain curve. For f = 1, this transition is
a sharp kink, a situation that corresponds to pre-stressed graphene,
whereas for § = 0.1, the transition is more smooth, a situation that
is representative of crystal defect-induced wrinkles. Further theoret-
ical work is required to clarify the physical origin of the proposed
functional form for the hidden area of wrinkled 2D materials and
the effect of defects and wrinkles on the value of 8. Such theoretical
work should be carried out using statistical mechanics theory of
membranes with crystalline or hexatic order similar to Ref. 45 or
46 accounting for the pre-stress effect. It would be interesting to
see if such models obtain a nonlinear function for wrinkle ironing
out process similar to our symbolic regression approximation.

We shall stress that the fits presented are aimed at demonstrat-
ing that the force-deflection curves of experimental data can be
well-captured by the presented phenomenological model; thus, the
range of applicability of the model is not limited to MD simula-
tions. However, the fitting values obtained for the experimental
data are certainly not comparable to the values obtained for the
MD results, especially since the exact experimental wrinkling struc-
ture is unknown and different from the MD simulations.

V. CONCLUSIONS

In conclusion, we study the effect of wrinkles on the mechan-
ics of graphene using molecular dynamics simulations and obtain
bilinear stress—strain characteristics consisting of two linear regions,
a low stress region that is related to the “ironing out” of the wrin-
kles and a high-stress region that is governed by the intrinsic stift-
ness of graphene. We show that the type of wrinkles influences the
smoothness of the transition between these regions. Although wrin-
kles created by crystal defects in stress-free membranes result in a
smooth and gradual transition, wrinkles generated by pre-stressing
of graphene by its edges result in a much sharper transition. To
capture and characterize these observations, we present a phenome-
nological model in terms of physically measurable quantities and a
fitting parameter f, which determines the degree of nonlinearity
and sharpness of the transition. Using this model, we find that
membranes with crystal defects and pre-stress each exhibit their
unique degrees of nonlinearity irrespective of their wrinkling pat-
terns. Our results suggest that the proposed model can be poten-
tially used to estimate the type of disorder in suspended 2D
material membranes by experimentally probing their nonlinear
elasticity.

SUPPLEMENTARY MATERIAL

See the supplementary material for the following: S1, the
shape functions and smoothing kernel used in forming the

ARTICLE scitation.org/journalljap

wrinkled graphene and the thermalized samples by LAMMPS; S2,
convergence of potential energy of wrinkled samples during equili-
bration; S3, movies of two equi-biaxial tension tests on two differ-
ent wrinkled samples; S4, detailed procedure of symbolic
regression; and S5, the fitting parameters of all 38 samples.
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