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1 Introduction

Mixing of partial solutions is a key mechanism used for creating new solutions in many Genetic Al-
gorithms (GAs). However, this mixing can be disruptive and generate improved solutions inefficiently.
Exploring a problem’s structure can help in establishing less disruptive operators, leading to more effi-
cient mixing. One way of using a problem’s structure is to consider variable linkage information.

This paper focuses on exploring different methods of building family of subsets (FOS) linkage mod-
els, which are then used with the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) to
solve MAX-SAT problems. The GOMEA framework provides an efficient mechanism for mixing par-
tial solutions and generating new candidate solutions, given a FOS linkage model [1]. We wish to
examine if learning variable linkage information, and representing this linkage within a FOS model can
be beneficial in creating highly fit solutions more efficiently.

2 FOS Linkage Model and GOMEA Instances

A linkage model has the capacity to represent groups of variables for a given problem, which make an
important contribution to the fitness of solutions. A family of subsets (FOS) linkage model is a set of
subsets of a main set, which contains all problem variables. Each subset of the FOS contains between
one and [ —1 items, where [ is the number of problem variables. Individual algorithms from the GOMEA
family are distinguished by how the linkage models are constructed.

GOMEA is a family of genetic algorithms which generate new solutions through mixing. Initially,
a random population of solutions is created and evaluated. During solution mixing, each subset of
the FOS model is used as the variation operator, or a mask, which is applied to copy values from a
randomly picked donor solution from the population to the current solution and the effect is evaluated
immediately. Any improvement to the fitness of the solution from applying a FOS subset mask is kept
[1]. This process is repeated for every solution in the population. In the Black Box setting we consider
three GOMEA Instances which generate the FOS linkage model differently.

The Linkage Tree Genetic Algorithm (LTGA) is a GOMEA instance that learns the linkage between
the problem variables, by generating a linkage tree at each generation. Building this tree is accom-
plished by a hierarchical clustering algorithm which uses mutual information to determine dependencies
between variables [2]. Each variable is first assigned to a single cluster. Based on the mutual informa-
tion new clusters are created by joining together already existing clusters. This process continues until
only one cluster (containing all variables) is left. FOS model subsets generated by LTGA consist of the
variable clusters present in the linkage tree.

Random-Tree GOMEA has a linkage structure identical to LTGA. While the FOS linkage structure
is still based on a linkage tree, the actual linkage information is not based on learned variable dependen-
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cies. Mutual information used to determine variable dependencies and cluster proximities is completely
random. No real linkage information is discovered.

Univariate GOMEA is a very simple instance of the GOMEA family. All the problem variables are
considered to be independent, resulting in no linkage between the variables being modeled. In other
words, the FOS linkage structure only consists of singleton subsets.

3 Results

Figure below shows how different algorithms from the GOMEA family perform on representative
benchmarks (averaged over 30 independent runs). Unif is a random and uniformly distributed bench-
mark, while am55 and ¢880 are structured and not uniform. The only algorithm which attempts to learn
linkage information is LTGA. The results show that Univariate-GOMEA is only efficient for small
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population sizes of uniformly distributed random problems. LTGA becomes more efficient for larger
populations. Problems with a better defined underlying structure favor linkage learning in all cases.
LTGA outperforms the Random-Tree and Univariate GOMEA instances. This indicates that learning
variable linkage can be a powerful tool in the MAX-SAT domain.

4 Summarized Additional Results and Conclusions

In the full version of this paper White Box setting results are presented, where problem specific informa-
tion can be explored. We also provide comparisons with other SAT solving algorithms such as hBOA,
GSAT and Walksat, showing how linkage-learning GOMEA instances (such as LTGA enhanced with a
local search) often outperform them.

Given experimental data in the full version of this paper, we conclude that exploring variable linkage
of MAX-SAT problems helps in generating better solutions more efficiently. The results hold in terms
of evaluations performed in both black and white-box settings, and in terms of the total run-time the
algorithms need to generate near-optimal solutions.
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