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Abstract. We describe and evaluate version 2.1 of the Com-
munity Ice Sheet Model (CISM). CISM is a parallel, 3-
D thermomechanical model, written mainly in Fortran, that
solves equations for the momentum balance and the thick-
ness and temperature evolution of ice sheets. CISM’s veloc-
ity solver incorporates a hierarchy of Stokes flow approxi-
mations, including shallow-shelf, depth-integrated higher or-
der, and 3-D higher order. CISM also includes a suite of test
cases, links to third-party solver libraries, and parameteri-
zations of physical processes such as basal sliding, iceberg
calving, and sub-ice-shelf melting. The model has been veri-
fied for standard test problems, including the Ice Sheet Model
Intercomparison Project for Higher-Order Models (ISMIP-
HOM) experiments, and has participated in the initMIP-
Greenland initialization experiment. In multimillennial sim-
ulations with modern climate forcing on a 4 km grid, CISM
reaches a steady state that is broadly consistent with ob-
served flow patterns of the Greenland ice sheet. CISM has
been integrated into version 2.0 of the Community Earth Sys-
tem Model, where it is being used for Greenland simulations
under past, present, and future climates. The code is open-
source with extensive documentation and remains under ac-
tive development.

1 Introduction

As mass loss from the Greenland and Antarctic ice sheets
has accelerated (Shepherd et al., 2012; Church et al., 2013;
Hanna et al., 2013; Shepherd et al., 2017), climate modelers
have recognized the importance of dynamic ice sheet mod-
els (ISMs) for predicting future mass loss and sea level rise
(Vizcaino, 2014). Meanwhile, ISMs have become more ac-
curate and complex in their representation of ice flow dy-
namics. Early ISMs used either the shallow-ice approxima-
tion (SIA; Hutter, 1983) or the shallow-shelf approximation
(SSA; MacAyeal, 1989). The SIA, which assumes that verti-
cal shear stresses are dominant, is valid for slow-moving ice
sheet interiors, whereas the SSA, which assumes that flow is
dominated by lateral and longitudinal stresses in the horizon-
tal plane, is valid for floating ice shelves. Neither approxima-
tion is valid for ice streams and outlet glaciers where both
vertical shear and horizontal plane stresses are important.
Advanced ISMs developed in recent years solve the Stokes
equations or various higher-order approximations (Pattyn
et al., 2008; Schoof and Hindmarsh, 2010). Among the mod-
els that solve Stokes or higher-order equations, or other-
wise combine features of the SIA and SSA, are the Parallel
Ice Sheet Model (PISM; Bueler and Brown, 2009; Winkel-
mann et al., 2011), the Ice Sheet System Model (ISSM;
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Larour et al., 2012), the Penn State Model (Pollard and De-
Conto, 2012), BISICLES (Cornford et al., 2013), Elmer-
Ice (Gagliardini et al., 2013), and MPAS-Albany Land Ice
(MALI; Tezaur et al., 2015; Hoffman et al., 2018). Higher-
order models have performed well for standard test cases
(Pattyn et al., 2008; Pattyn et al., 2012) and have been ap-
plied to many scientific problems.

Here, we describe and evaluate the Community Ice
Sheet Model (CISM) version 2.1, a higher-order model that
evolved from the Glimmer model (Rutt et al., 2009). The cur-
rent name reflects the model’s evolution as a component of
the Community Earth System Model (CESM; Hurrell et al.,
2013). Like Glimmer, CISM is written mainly in Fortran 90
and its extensions, to maximize efficiency and to simplify
coupling to climate models. Glimmer, however, is a serial
SIA model, whereas CISM is a parallel model that solves not
only the SIA but also higher-order Stokes approximations.

CISM development was guided by the following goals:

– The model should be well documented and easy to in-
stall and run on a variety of platforms, ranging from lap-
tops to local clusters to high-performance supercomput-
ers.

– It should solve a range of Stokes approximations, in-
cluding the SIA, SSA, and higher-order approxima-
tions. Velocity solvers for these approximations are in-
cluded in a new dynamical core called Glissade. (The
dynamical core, or “dycore”, is the part of the model
that solves equations for conservation of mass, energy,
and momentum.)

– It should remain backward-compatible with Glimmer,
allowing continued use of the older Glide SIA dycore.

– It should be well verified for standard test cases such
as the Ice Sheet Model Intercomparison Project for
Higher-Order Models (ISMIP-HOM) (Pattyn et al.,
2008), with a user-friendly verification framework.

– It should run efficiently – supporting whole-ice-sheet
applications even on small platforms – and should scale
to hundreds of processor cores, enabling century- to
millennial-scale simulations with higher-order solvers
at grid resolutions of ∼ 5 km or finer.

– It should support not only stand-alone ice sheet simu-
lations but also coupled applications in which fields are
exchanged with a global climate or Earth system model
(CESM in particular).

– It should support simulations of the Greenland ice sheet,
a scientific focus of CESM. Support for Antarctic appli-
cations is deferred to future model releases and publica-
tions.

– The code should be open-source, with periodic public
releases.

Many of these features were present in CISM v.2.0, which
was released in 2014 (Price et al., 2015).

Changes between versions 2.0 and 2.1 have been made
primarily to support robust, accurate, and efficient Green-
land ice sheet simulations, both as a stand-alone model and
in CESM. These changes include a depth-integrated higher-
order velocity solver (Sect. 3.1.4), new parameterizations of
basal sliding (Sect. 3.4), iceberg calving (Sect. 3.5), and sub-
ice-shelf melting (Sect. 3.6), a new build-and-test structure
(Sect. 4.6), and many improvements in model numerics.

We begin with an overview of CISM, including the core
model and its testing and coupling infrastructure (Sect. 2).
We then describe the model dynamics and physics, focusing
on the new Glissade dycore (Sect. 3). To verify the model,
we present results from standard test cases (Sect. 4). We then
present results from long spin-ups of the Greenland ice sheet,
with and without floating ice shelves (Sect. 5). Finally, we
summarize the model results and suggest directions for future
work (Sect. 6).

2 Model overview

CISM is a numerical model – a collection of software li-
braries, utilities, and drivers – used to simulate ice sheet
evolution. It is modular in design and is coded mainly in
standard-compliant Fortran 90/95. CISM consists of several
components:

cism_driver is the high-level driver (i.e., the executable)
that is used to run the stand-alone model in all config-
urations, including idealized test cases with simplified
climate forcing, as well as model runs with realistic ge-
ometry and climate forcing data.

Glide is the serial dycore based on shallow-ice dynamics.
Glide solves the governing conservation equations and
computes ice velocities, internal ice temperature, and
ice geometry evolution. Apart from minor changes, this
is the same dycore used in Glimmer and described by
Rutt et al. (2009). It will not be discussed further here.

Glissade is the dycore that solves higher-order approxima-
tions of the Stokes equations for ice flow. Glissade, un-
like Glide, is fully parallel in order to take advantage
of multiprocessor, high-performance architectures. It is
described in detail in Sect. 3.

Glint is the original climate model interface for Glimmer.
Glint allows the core ice sheet model to be coupled to
a global climate model or any other source of time-
varying climate data on a lat–long grid. Glint computes
the surface mass balance (SMB) on the ice sheet grid
using a positive-degree-day (PDD) scheme.

Glad is a lightweight climate model interface that has re-
placed Glint in CESM. The CESM coupler supports
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remapping and downscaling between general land-
surface grids and ice sheet grids, and thus is able to send
CISM an SMB that is already downscaled. The Glad in-
terface simply sends and receives fields on the ice sheet
grid, accumulating and averaging as needed based on
the ice dynamic time step and the coupling interval.

Test cases are provided for the Glide and Glissade dynam-
ical cores. These are used to confirm that the model is
working as expected and to provide a range of simple
model configurations from which new users can learn
about model options and create their own configura-
tions. CISM test cases are described in Sect. 4.

Shared code consists of modules shared by different parts
of the code. Examples include modules for defining de-
rived types, physical constants, and model parameters,
and modules that parse CISM configuration files and
handle data input/output (I/O).

In order to reduce development effort, CISM runs on a
structured rectangular grid and thus lacks the flexibility of
models that run on variable-resolution or adaptive meshes
(e.g., ISSM and BISICLES). Although CISM includes sev-
eral common Stokes approximations, it does not solve the
more complex “full Stokes” equations (Pattyn et al., 2008).

CISM is distributed as source code and therefore requires
a reasonably complete build environment to compile the
model. For UNIX- and LINUX-based systems, the CMake
(http://www.cmake.org/, last access: 20 January 2019) sys-
tem is used to build the model. Sample build scripts for
a number of standard architectures are included, as are
working build scripts for a number of high-performance-
computing architectures including Cheyenne (NCAR Com-
putational and Information Systems Laboratory), Titan (Oak
Ridge Leadership Computing Facility), Edison (National En-
ergy Research Scientific Computing Center), and Cartesius
(the Dutch national supercomputer).

The source code can be obtained by downloading a re-
leased version from the CISM website or by cloning the
code from a public git repository; see Sect. . In either case,
a Fortran 90 compiler is required. Other software dependen-
cies include the NetCDF library (https://www.unidata.ucar.
edu/software/netcdf/, last access: 20 January 2019) (used for
data I/O) and a Python (http://www.python.org, last access:
20 January 2019) distribution (used to analyze dependencies
and to automatically generate parts of the code) with sev-
eral specific Python modules. Parallel builds require Mes-
sage Passing Interface (MPI), and users desiring access to
Trilinos packages (Heroux et al., 2005) will need to build
Trilinos and then link it to CISM. Finally, CMake and Gnu
Make are needed to compile the code and link to the vari-
ous third-party libraries. The CISM documentation contains
detailed instructions for downloading and building the code.

CISM is run by specifying the names of the executable
(usually cism_driver) and a configuration file. Typically, the

configuration file includes the input and output filenames, the
grid dimensions, the time step and length of the run, the dy-
core (Glide or Glissade), and various options and parameter
values appropriate for a given application. If not set in the
config file, each option or parameter takes a default value.
Supported options are described in the model documentation.

Multiple input, forcing, and output files can be specified,
containing any subset of a large number of global scalars and
fields (1-D, 2-D, and 3-D). If a given field is “loadable” and
is present in the input file, it is read automatically at startup;
otherwise, it is set to a default value. Loadable fields in-
clude the initial ice thickness and temperature, bedrock to-
pography, surface mass balance, surface air temperature, and
geothermal heat flux. Forcing files are input files that are
read at every time step (not just at initialization) so that time-
dependent forcing can be applied during a simulation.

Each output file includes a user-chosen set of variables
(listed in the configuration file) and can contain multiple time
slices, written at any frequency. A special kind of I/O file is
the restart file, which includes all the fields needed to restart
the model exactly. Whatever configuration options are cho-
sen, model results are exactly reproducible (i.e., bit for bit)
for a given computer platform and processor count, regard-
less of how many times a simulation is stopped and restarted.

Some basic information is sent to standard output during
the run, and more verbose output is written at regular inter-
vals to a log file. The log file lists the options and parame-
ter values chosen for the run and also notes the simulation
time when CISM reads or writes I/O. In addition, the log
file includes diagnostic information about the global state of
the model (e.g., the total ice area and volume, total surface
and basal mass balance, and maximum surface and basal ice
speeds), along with vertical profiles of ice speed and temper-
ature for a user-chosen grid point.

CISM2.1 has been implemented in CESM version 2.0, re-
leased in June 2018. Earlier versions of CESM supported
one-way forcing of the Greenland ice sheet (using SIA dy-
namics) by the SMB computed in CESM’s land model (Lip-
scomb et al., 2013). CESM2.0 extends this capability by sup-
porting conservative, interactive coupling between ice sheets
and the land and atmosphere. Coupling of ice sheets with
the ocean is not yet supported but is under development.
CESM2.0 does not have an interactive Antarctic ice sheet,
in part because of the many scientific and technical issues as-
sociated with ice sheet–ocean coupling. However, CISM2.1
includes many of the features needed to simulate marine
ice sheets, and a developmental model version (including
a grounding-line parameterization to be included in a near-
future code release) has been used for Antarctic simulations.

3 Model dynamics and physics

CISM includes a parallel, higher-order dynamical core called
Glissade, which solves equations for conservation of mo-
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mentum (i.e., an appropriate approximation of Stokes flow),
mass, and internal energy. Glissade numerics differ substan-
tially from Glide numerics:

– Velocity: Glide solves the SIA only, but Glissade can
solve several Stokes approximations, including the SIA,
SSA, a depth-integrated higher-order approximation
based on Goldberg (2011), and a 3-D higher-order ap-
proximation based on Blatter (1995) and Pattyn (2003).
Glide uses finite differences, whereas the Glissade ve-
locity solvers use finite-element methods.

– Temperature: To evolve the ice temperature, Glide
solves a prognostic equation that incorporates horizon-
tal advection as well as vertical heat diffusion and in-
ternal dissipation. In Glissade, temperature advection is
handled by the transport scheme, and a separate module
solves for vertical diffusion and internal dissipation in
each column.

– Mass and tracer transport: Glide solves an implicit
diffusion equation for mass transport, incorporating
shallow-ice velocities. Glissade solves explicit equa-
tions for horizontal transport of mass (i.e., ice thick-
ness) and tracers (e.g., ice temperature) using either an
incremental remapping scheme (Lipscomb and Hunke,
2004) or a simpler first-order upwind scheme. Hori-
zontal transport is followed by vertical remapping to
terrain-following sigma coordinates.

Glissade numerics are described in detail below.

3.1 Velocity solvers

Glissade computes the ice velocity by solving approximate
Stokes equations, given the surface elevation, ice thick-
ness, ice temperature, and relevant boundary conditions. Sec-
tion 3.1.1 describes the solution method for the Blatter–
Pattyn (BP; Blatter, 1995; Pattyn, 2003) approximation,
which is the most sophisticated and accurate solver in CISM.
Subsequent sections discuss simpler approximations.

3.1.1 Blatter–Pattyn approximation

The basic equations of the Blatter–Pattyn approximation are

∂
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, (1)

where u and v are the components of horizontal velocity, η
is the effective viscosity, ρi is the density of ice (assumed

Table 1. Model variables defined in the text.

Variables Definition

A Temperature-dependent rate factor
B Surface mass balance
Bb Basal mass balance
b Ice sheet bed elevation
c Lateral calving rate
Fd Diffusive heat flux
Fg Geothermal heat flux
Ff Frictional heat flux
H Ice thickness
Heff Effective thickness at calving front
Hf Flotation thickness
N Effective pressure
P0 Full overburden pressure
p Pressure at lateral boundaries
s Surface elevation
T Ice temperature
Tf Ice temperature at floating lower surface
Tpmp Pressure melting point temperature
T ? Absolute temperature corrected for Tpmp
u Horizontal ice velocity component
ub Basal u
v Horizontal ice velocity component
vb Basal v
W Water depth
β Basal traction parameter
βeff Effective basal traction parameter (DIVA)
η Effective viscosity
ε̇e Effective strain rate
ε̇ij Strain rate tensor
σ Vertical sigma coordinate
τb Basal shear stress
τ ij Deviatoric stress tensor
τe Effective stress
τc Yield stress
τec Effective calving stress
8 Rate of internal heating
φ Till friction angle

constant), g is gravitational acceleration, s is the surface ele-
vation, and x,y,z are 3-D Cartesian coordinates. These and
other variables and parameters used in CISM are listed in Ta-
bles 1 and 2 for reference. In each equation, the three terms
on the left-hand side (LHS) describe gradients of longitudinal
stress, lateral shear stress, and vertical shear stress, respec-
tively, and the right-hand side (RHS) gives the gravitational
driving force. The longitudinal and lateral shear stresses to-
gether are sometimes called membrane stresses (Hindmarsh,
2006). Neglecting membrane stress gradients leads to the
much simpler SIA, and neglecting vertical shear stress gradi-
ents leads to the SSA.

The equations are discretized on a structured 3-D mesh. In
the map plane, the mesh consists of rectangular cells, each
with four vertices. The nz vertical levels of the mesh are
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Table 2. Model constant and parameter values used for simulations described in the text. The calving and sub-shelf melting parameters are
used only for simulations with ice shelves; other parameters are used for all Greenland simulations.

Parameters Value Units Definition

g 9.81 ms−2 Gravitational acceleration
ci 2009 Jkg−1 K−1 Specific heat of ice
ki 2.1 Wm−1 K−1 Thermal conductivity of ice
L 335 Jkg−1 Latent heat of melting
ρi 917 kgm−3 Ice density
ρo 1026 kgm−3 Ocean water density
ρw 1000 kgm−3 Fresh water density
n 3 – Glen flaw low exponent
q 0.5 – Exponent for pseudo-plastic sliding
u0 100 myr−1 Velocity scale for pseudo-plastic sliding
φmax 40 ◦ Maximum bed angle for pseudo-plastic sliding
φmin 5 ◦ Minimum bed angle for pseudo-plastic sliding
bmax 700 m Upper bed limit for pseudo-plastic sliding
bmin −700 m Lower bed limit for pseudo-plastic sliding
δ 0.02 – Minimum effective pressure relative to overburden
Cd 0.001 myr−1 Till drainage rate
Wmax 2 m Maximum till water depth
N0 1000 Pa Reference effective pressure
e0 0.69 – Void ratio at reference effective pressure
CC 0.12 – Till compressibility
τc 106 Pa Yield stress for cliff limiting
kτ 0.0025 myr−1 Pa−1 Empirical constant for calving
w2 25 – Empirical constant for calving
Hmin

c 75 m Minimum thickness for calving
tc 1 years Calving timescale
z0 −200 m Neutral elevation for sub-shelf melting
Bmax

frz 3 myr−1 Maximum sub-shelf freezing rate
zmax

frz −100 myr−1 Elevation for maximum sub-shelf freezing
Bmax

mlt 100 myr−1 Maximum sub-shelf melting rate
zmax

frz −500 myr−1 Elevation for maximum sub-shelf melting
H0 20 m Length scale for reducing melt in shallow cavities

based on a terrain-following sigma coordinate system, with
σ = (s− z)/H , where H is the ice thickness. Each cell layer
is treated as a 3-D hexahedral element with eight nodes. (In
other words, cells and vertices are defined to lie in the map
plane, whereas elements and nodes live in 3-D space.) Scalar
2-D fields such as H and s are defined at cell centers, and
3-D scalars such as the ice temperature T lie at the centers
of elements. Gradients of 2-D scalars (e.g., the surface slope
∇s) live at vertices. The velocity components u and v are
3-D fields defined at nodes.

For problems on multiple processors, a cell or vertex (and
the associated elements and nodes in its column) may be
either locally owned or part of a computational halo. Each
processor is responsible for computing u and v at its lo-
cally owned nodes. Any cell that contains one or more lo-
cally owned nodes and has H exceeding a threshold thick-
ness (typically 1 m) is considered dynamically active, as are

the elements in its column. Likewise, any vertex of an active
cell is active, as are the nodes in its column.

The effective viscosity η is defined in each active element
by

η ≡
1
2
A
−1
n ε̇

1−n
n

e , (2)

where A is the temperature-dependent rate factor in Glen’s
flow law (Glen, 1955), and ε̇e is the effective strain rate, given
in the BP approximation by

ε̇2
e = ε̇

2
xx + ε̇

2
yy + ε̇xx ε̇yy + ε̇

2
xy + ε̇

2
xz+ ε̇

2
yz, (3)

where the components of the symmetric strain rate tensor are

ε̇ij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (4)

The rate factor A is given by an Arrhenius relationship:

A(T ∗)= ae−Q/RT
∗

, (5)
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where T ∗ is the absolute temperature corrected for the
dependence of the melting point on pressure (T ∗ = T +
8.7× 10−4(s− z), with T in Kelvin), a is a temperature-
independent material constant from Paterson and Budd
(1982), Q is the activation energy for creep, and R is the
universal gas constant.

The coupled partial differential equations (PDEs) (1) are
discretized using the finite-element method (e.g., Hughes,
2000; Huebner et al., 2001). This method is more often ap-
plied to unstructured grids but was chosen for CISM’s rect-
angular grid because of its robustness and natural treatment
of boundary conditions (Dukowicz et al., 2010). The PDEs,
with appropriate boundary conditions, are converted to a sys-
tem of algebraic equations by dividing the full domain into
subdomains (i.e., hexahedral elements), representing the ve-
locity solution on each element, and integrating over ele-
ments. The solution is approximated as a sum over trilinear
basis functions ϕ. Each active node is associated with a basis
function whose value is ϕ = 1 at that node, with ϕ = 0 at all
other nodes. The solution at a point within an element can be
expanded in terms of basis functions and nodal values:

u(x,y,z)=
∑
n

ϕn(x,y,z)un,

v(x,y,z)=
∑
n

ϕn(x,y,z)vn, (6)

where the sum is over the nodes of the element; un and vn are
nodal values of the solution; and ϕn varies smoothly between
0 and 1 within the element.

Glissade’s finite-element scheme is formally equivalent to
that described by Perego et al. (2012). Equation (1) can be
written as

−∇ · (2ηε̇1)=−ρig
∂s

∂x
,

−∇ · (2ηε̇2)=−ρig
∂s

∂y
, (7)

where

ε̇1 =

2ε̇xx + ε̇yy
ε̇xy
ε̇xz

 , ε̇2 =

 ε̇xy
ε̇xx + 2ε̇yy

ε̇yz

 . (8)

Following Perego et al. (2012), these equations can be rewrit-
ten in weak form. This is done by multiplying Eq. (7) by the
basis functions and integrating over the domain, using inte-
gration by parts to eliminate the second derivative:∫
�

2ηε̇1(u,v) · ∇ϕ1 d�+
∫
0B

βuϕ1 d0+
∫
0L

pn1ϕ1 d0

+

∫
�

ρig
∂s
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ϕ1 d�= 0,

∫
�

2ηε̇2(u,v) · ∇ϕ2 d�+
∫
0B

βuϕ2 d0+
∫
0L

pn2ϕ2 d0

+

∫
�

ρig
∂s

∂y
ϕ2 d�= 0, (9)

where� represents the domain volume,0B denotes the lower
boundary, 0L denotes the lateral boundary (e.g., the calving
front of an ice shelf), β is a basal traction parameter, p is the
pressure at the lateral boundary, and n1 and n2 are compo-
nents of the normal to 0L. These equations can also be ob-
tained from a variational principle as described by Dukowicz
et al. (2010). The four terms in Eq. (9) represent internal ice
stresses, basal friction, lateral pressure, and the gravitational
driving force, respectively.

At the basal boundary, we assume a friction law of the
form

τ b = βub, (10)

where τ b is the basal shear stress, ub = (ub,vb) is the basal
velocity, and β is a non-negative friction parameter that is
defined at each vertex and can vary spatially. For some basal
sliding laws (see Sect. 3.4), β depends on the basal velocity.

The lateral pressure p applies at marine-terminating
boundaries. The net pressure is equal to the pressure directed
outward from the ice toward the ocean by the ice, minus the
(smaller) pressure directed inward from the ocean by the hy-
drostatic water pressure. The outward pressure is found by
integrating ρig(s− z)dz from (s−H) to s and then dividing
by H ; it is given by

pout =
ρigH

2
. (11)

The inward pressure is found by integrating ρogzdz (where
ρo is the seawater pressure) from (s−H) to 0 and then di-
viding by (H − s); it is given by

pin =
ρog(s−H)

2

2H
. (12)

Assuming hydrostatic balance (i.e., a floating margin), we
have s−H = (ρi/ρo)H , in which case Eqs. (11) and (12)
can be combined to give the net pressure

p =
ρigH

2

(
1−

ρi

ρw

)
, (13)

directed from the ice to the ocean. However, Eqs. (11) and
(12) are used in the code because they are valid at both
grounded and floating marine margins. They are combined
to give the net pressure p = pout−pin that is integrated over
vertical cliff faces 0L in Eq. (9).

The gravitational forcing terms require evaluating the gra-
dients ∂s/∂x and ∂s/∂y at each active vertex. For vertex
(i,j) (which lies at the upper right corner of cell (i,j)),
these are computed using a second-order-accurate centered
approximation:

∂s

∂x
(i,j)=
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s(i+ 1,j + 1)+ s(i+ 1,j)− s(i,j + 1)− s(i,j)
21x

, (14)

and similarly for ∂s/∂y. This is equivalent to computing
∂s/∂x at the edge midpoints adjacent to the vertex in the y
direction, and then averaging the two edge gradients to the
vertex. In some cases (e.g., near steep margins), Eq. (14) can
lead to checkerboard noise (i.e., 2-D patterns of alternating
positive and negative deviations in s at the grid scale), be-
cause centered averaging of s permits a computational mode.
To damp this noise, Glissade also supports upstream gradient
calculations that do not have this computational mode but are
formally less accurate.

Equation (14) is ambiguous at the ice margin, where at
least one of the four cells neighboring a vertex is ice-free.
One option is to include all cells, including ice-free cells,
in the gradient. This approach works reasonably well (albeit
with numerical errors; see, e.g., Van den Berg et al., 2006)
for land-based ice but can give large gradients and exces-
sive ice speeds at floating shelf margins. A second option
is to include only ice-covered cells in the gradient. For ex-
ample, suppose cells (i,j) and (i,j + 1) have ice, but cells
(i+ 1,j) and (i+ 1,j + 1) are ice-free. Then, lacking the
required information to compute x gradients at the adjacent
edges, we would set ∂s/∂x = 0. With a y gradient available
at one adjacent edge, we would have ∂s/∂y = (s(i,j + 1)−
s(i,j))/(21y). This option works well at shelf margins but
tends to underestimate gradients at land margins. A third, hy-
brid option is to compute a gradient at edges where either
(1) both adjacent cells are ice-covered or (2) one cell is ice-
covered and lies higher in elevation than a neighboring ice-
free land cell. Thus, gradients are set to zero at edges where
an ice-covered cell (either grounded or floating) lies above
ice-free ocean, or where an ice-covered land cell lies below
ice-free land (i.e., a nunatak). Since this option works well
for both land and shelf margins, it is the default.

Given T , s, H , and an initial guess for u and v, the prob-
lem is to solve Eq. (1) for u and v at each active node. This
problem can be written as

Ax = b, (15)

or more fully,[
Auu Auv
Avu Avv

][
u

v

]
=

[
bu
bv

]
. (16)

In Glissade, A is always symmetric and positive definite.
Since A depends (through η and possibly β) on u and v,

the problem is nonlinear and must be solved iteratively. For
each nonlinear iteration, Glissade computes the 3-D η field
based on the current guess for the velocity field and solves a
linear problem of the form (16). Then, η is updated and the
process is repeated until the solution converges to within a
given tolerance. This procedure is known as Picard iteration.

Appendix A describes how the terms in Eq. (9) are
summed over elements and assembled into the matrix A and

vector b. Section 3.1.5 discusses solution methods for the in-
ner linear problem and the outer nonlinear problem.

3.1.2 Shallow-ice approximation

The shallow-ice equations follow from the Blatter–Pattyn
equations if membrane stresses are neglected. The SIA
analogs of Eq. (1) are

∂

∂z

(
η
∂u

∂z

)
= ρig

∂s

∂x
,

∂

∂z

(
η
∂v

∂z

)
= ρig

∂s

∂y
. (17)

The SIA could be considered a special case of the Blatter–
Pattyn equations and solved using the same finite-element
methods, ignoring the horizontal stresses. With these meth-
ods, however, each ice column cannot be solved indepen-
dently, because each node is linked to its horizontal neigh-
bors by terms that arise during element assembly. As a result,
a finite-element-based SIA solver is not very efficient.

Instead, Glissade has an efficient local SIA solver. The
solver is local in the sense that u and v in each column are
found independently of u and v in other columns. It resem-
bles Glide’s SIA solver as described by Payne and Dongel-
mans (1997) and Rutt et al. (2009), except that Glide incor-
porates the velocity solution in a diffusion equation for ice
thickness, whereas Glissade’s SIA solver computes u and
v only, with thickness evolution handled separately as de-
scribed in Sect. 3.3.

For small problems that can run on one processor, there is
no particular advantage to using Glissade’s local SIA solver
in place of Glide. Glide’s implicit thickness solver permits a
longer time step and thus is more efficient for problems run
in serial. For whole-ice-sheet problems, however, Glissade’s
parallel solver can hold more data in memory and may have
faster throughput, simply because it can run on tens to hun-
dreds of processors.

3.1.3 Shallow-shelf approximation

The SSA equations can be derived by vertically integrating
the BP equations, given the assumption of small basal shear
stress and vertically uniform velocity. The shallow-shelf ana-
log of Eq. (1) is

∂

∂x

[
2η̄H

(
2
∂u

∂x
+
∂v

∂y

)]
+
∂

∂y

[
η̄H

(
∂u

∂y
+
∂v

∂x

)]
= ρigH

∂s

∂x
,

∂

∂y

[
2η̄H

(
2
∂v

∂y
+
∂u

∂x

)]
+
∂

∂x

[
η̄H

(
∂u

∂y
+
∂v

∂x

)]
= ρigH

∂s

∂y
, (18)

where η̄ is the vertically averaged effective viscosity, and u
and v are vertically averaged velocity components. The SSA
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equations in weak form resemble Eqs. (8) and (9) but with-
out the vertical shear terms. Thus, the SSA matrix and RHS
can be assembled using the methods described in Sect. 3.1.1
and Appendix A, using 2-D rectangular (instead of 3-D hex-
ahedral) elements and omitting the vertical shear terms. The
effective viscosity is defined as in Eq. (2) but with a vertically
averaged flow factor and with Eq. (3) replaced by

ε̇2
e = ε̇

2
xx + ε̇

2
yy + ε̇xx ε̇yy + ε̇

2
xy . (19)

The element matrices are 2-D analogs of Eqs. (A3)–(A6),
with vertical derivatives excluded.

3.1.4 Depth-integrated-viscosity approximation

Goldberg (2011) derived a higher-order stress approximation
that in most cases is similar in accuracy to BP but is much
cheaper to solve, because (as with the SSA) the matrix sys-
tem is assembled and solved in two dimensions. Since the
stress balance equations use a depth-integrated effective vis-
cosity in place of a vertically varying viscosity, we refer to
this scheme as a depth-integrated-viscosity approximation,
or DIVA. Arthern and Williams (2017) used a similar model,
also based on Goldberg (2011), to simulate ice flow in the
Amundsen Sea sector of West Antarctica. To our knowl-
edge, CISM is the first model to adapt this scheme for mul-
timillennial whole-ice-sheet simulations. Here, we summa-
rize the DIVA stress balance and describe Glissade’s solution
method. Section 4.2 compares DIVA results to BP results for
the ISMIP-HOM experiments (Pattyn et al., 2008).

Dukowicz et al. (2010) showed that the Blatter–Pattyn
equations (Eq. 1) and associated boundary conditions can be
derived by taking the first variation of a functional and set-
ting it to zero. The functional includes terms that depend on
the effective strain rate (Eq. 3), which can be written as

ε̇2
BP = u

2
x + v

2
y + uxvy +

1
4

(
uy + vx

)2
+

1
4
u2
z +

1
4
v2
z , (20)

where ux denotes the partial derivative ∂u/∂x, and similarly
for other derivatives. Goldberg (2011) derived an alternate set
of equations using a similar functional but with the horizontal
velocity gradients in the effective strain rate replaced by their
vertical averages:

ε̇2
DIVA = ū

2
x + v̄

2
y + ūx v̄y +

1
4

(
ūy + v̄x

)2
+

1
4
u2
z +

1
4
v2
z , (21)

where

ū=
1
H

s∫
b

u(z)dz, v̄ =
1
H

s∫
b

v(z)dz. (22)

The resulting equations of motion, analogous to Eq. (1), are

1
H

∂

∂x

[
2η̄H

(
2
∂ū

∂x
+
∂v̄

∂y

)]
+

1
H

∂

∂y

[
η̄H

(
∂ū

∂y
+
∂v̄

∂x

)]

+
∂

∂z

(
η
∂u

∂z

)
= ρig

∂s

∂x
,

1
H

∂

∂y

[
2η̄H

(
2
∂v̄

∂y
+
∂ū

∂x

)]
+

1
H

∂

∂x

[
η̄H

(
∂ū

∂y
+
∂v̄

∂x

)]
+
∂

∂z

(
η
∂v

∂z

)
= ρig

∂s

∂y
, (23)

where the depth-integrated effective viscosity is given by

η̄ =
1
H

s∫
b

η(z)dz. (24)

The vertical shear terms still contain η(z).
Since the horizontal stress terms are depth-independent,

Eq. (23) can be integrated in the vertical to give

∂

∂x

[
2η̄H

(
2
∂ū

∂x
+
∂v̄

∂y

)]
+
∂

∂y

[
η̄H

(
∂ū

∂y
+
∂v̄

∂x

)]
−βub

= ρigH
∂s

∂x
,

∂

∂y

[
2η̄H

(
2
∂v̄

∂y
+
∂ū

∂x

)]
+
∂

∂x

[
η̄H

(
∂ū

∂y
+
∂v̄

∂x

)]
−βvb

= ρigH
∂s

∂y
, (25)

where the boundary conditions at b and s have been used to
evaluate the vertical stress terms, with a sliding law of the
form Eq. (10). Equation (25) is equivalent to the SSA stress
balance (Eq. 18), except for the addition of basal stress terms.
Thus, the methods used to assemble and solve the SSA equa-
tions can be applied to the DIVA equations to find the mean
velocity components ū and v̄.

In order to solve Eq. (25), however, the basal stress terms
must be rewritten in terms of ū and v̄. Following Goldberg
(2011), we show how this is done for the x component of
velocity; the y component is analogous. The x component of
Eq. (25) can be rearranged and divided by H :

βub

H
=

1
H

∂

∂x

(
2Hη̄

(
2
∂ū

∂x
+
∂v̄

∂y

))
+

1
H

∂

∂y

(
Hη̄

(
∂ū

∂y
+
∂v̄

∂x

))
− ρig

∂s

∂x
. (26)

From Eq. (23), the RHS of Eq. (26) is just −(ηuz)z, giving

βub

H
=−

∂

∂z

(
η
∂u

∂z

)
. (27)

Integrating Eq. (27) from z to the surface s gives

η
∂u

∂z
=
βub (s− z)

H
. (28)

Dividing by η and integrating from b to z gives u(z) in terms
of ub and η(z):

u(z)= ub+
βub

H

z∫
b

(
s− z′

)
η(z′)

dz′. (29)
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Following Arthern et al. (2015), we can define some useful
integrals Fn as

Fn ≡

s∫
b

1
η

(
s− z

H

)n
dz. (30)

In this notation, the surface velocity is related to the bed ve-
locity by

us = ub (1+βF1) . (31)

Integrating u(z) from the bed to the surface gives the depth-
averaged mean velocity ū:

ū= ub (1+βF2) . (32)

We can think of F2 as a depth-integrated inverse viscosity.
The less viscous the ice, the greater the value of F2, and the
greater the difference between ū and ub.

Given Eq. (32), we can replace βub and βvb in Eq. (25)
with βeffū and βeffv̄, respectively, where

βeff =
β

1+βF2
. (33)

For a frozen bed (ub = vb = 0, with nonzero basal stress τbx),
the βub term on the RHS of Eq. (29) is replaced by τbx , lead-
ing to

ū= τbxF2. (34)

Then, the basal stress terms in Eq. (25) can be replaced by
βfrz

eff ū and βfrz
eff v̄, where

βfrz
eff =

1
F2
. (35)

With these substitutions, Eq. (25) can be written in terms of
mean velocities ū and v̄ and is fully analogous to the SSA.

In order to compute η̄, the effective viscosity η(z) must
be evaluated at each level. We use Eq. (2) with the effective
strain rate (Eq. 21). The horizontal terms in ε̇2

DIVA are found
using the mean velocities from the previous iteration. The
vertical shear terms are computed using Eq. (28):

uz(z)=
τbx(s− z)

η(z)H
, vz(z)=

τby(s− z)

η(z)H
, (36)

where both η(z) and τ b are from the previous iteration.
The DIVA solution procedure can be summarized as fol-

lows:

1. Starting with the current guess for the velocity field
(u,v), assemble the DIVA solution matrix in analogy
to the SSA solution matrix, with the following DIVA-
specific computations:

– Compute η(z) using Eqs. (2), (21), and (36), and
integrate to find the depth-averaged η̄.

– Evaluate numerically the vertical integrals in
Eqs. (29) and (30).

– Interpolate F2 to vertices and compute βeff.

2. Solve the matrix system for ū and v̄.

3. Given (ū, v̄) at each vertex, use Eq. (32) to find (ub,vb),
and then use Eq. (29) to find u(z) at each level.

4. Iterate to convergence.

The code is initialized with (u,v)= 0 everywhere, and there-
after each iterated solution starts with (u,v) from the previ-
ous time step.

DIVA assumes that horizontal gradients of membrane
stresses are vertically uniform. It is less accurate than the
BP approximation in regions of slow sliding and rough bed
topography, where the horizontal gradients of membrane
stresses vary strongly with height, and may also be less accu-
rate where vertical temperature gradients are large. The accu-
racy of DIVA compared to BP is discussed in Sect. 4.2 with
reference to the ISMIP-HOM benchmark experiments.

3.1.5 Solving the matrix system

After assembling the matrices and right-hand side vectors for
the chosen approximation (SSA, DIVA, or BP), we solve the
linear problem of Eq. (16). Glissade supports three kinds of
solvers: (1) a native Fortran preconditioned conjugate gradi-
ent (PCG) solver, (2) links to Trilinos solver libraries, and
(3) links to the Sparse Linear Algebra Package (SLAP).

The native PCG solver works directly with the assembled
matrices (Auu, Auv , Avu, and Avv) and the right-hand-side
vectors (bu and bv). Instead of converting to a sparse matrix
format such as compressed row storage, Glissade maintains
these matrices and vectors as structured rectangular arrays
with i and j indices, so that they can be handled by CISM’s
halo update routines. Each node location (i,j) (in 2-D) or
(i,j,k) (in 3-D) corresponds to a row of the matrix, and an
additional index m ranges over the neighboring nodes that
can have nonzero terms in the columns of that row. The max-
imum number of nonzero terms per row is 9 in 2-D and 27 in
3-D.

The matrices and RHS vectors are passed to either a “stan-
dard” PCG solver (Shewchuk, 1994) or a Chronopoulos–
Gear PCG solver (Chronopoulos, 1986; Chronopoulos and
Gear, 1989). The PCG algorithm includes two dot prod-
ucts (each requiring a global sum), one matrix–vector prod-
uct, and one preconditioning step per iteration. For small
problems, the dominant computational cost is the matrix–
vector product. For large problems, however, the global
sums become increasingly expensive. In this case, the
Chronopoulos–Gear solver is more efficient than the stan-
dard solver, because it rearranges operations such that both
global sums are done with a single MPI call.

www.geosci-model-dev.net/12/387/2019/ Geosci. Model Dev., 12, 387–424, 2019



396 W. H. Lipscomb et al.: Community Ice Sheet Model

As described by Shewchuk (1994), the convergence rate
of the PCG method depends on the effectiveness of the pre-
conditioner (i.e., a matrix M which approximates A and can
be inverted efficiently). Glissade’s native PCG solver has two
preconditioning options:

– diagonal preconditioning, in which M consists of the
diagonal terms of A and is trivial to invert, and

– shallow-ice-based preconditioning (for the BP approx-
imation only). In this case, M includes only the terms
in A that link a given node to itself and its neighbors
above and below. Thus, M is tridiagonal and can be in-
verted efficiently. This preconditioner works well when
the physics is dominated by vertical shear but not as
well when membrane stresses are important. Since the
preconditioner is local (it consists of independent col-
umn solves), it scales well for large problems.

The Trilinos solver (Heroux et al., 2005) uses C++ pack-
ages developed at Sandia National Laboratories. As de-
scribed by Evans et al. (2012), an earlier version of CISM’s
higher-order dycore, known as Glam, was parallelized and
linked to Trilinos. The Trilinos links developed for Glam
were then adapted for Glissade’s SSA, DIVA, and BP
solvers. The CISM documentation gives instructions for
building and linking to Trilinos and choosing appropriate
solver settings.

SLAP is a set of Fortran routines for solving sparse sys-
tems of linear equations. SLAP was part of Glimmer and
is used to solve for thickness evolution and temperature ad-
vection in Glide. It can also be used to solve higher-order
systems in Glissade, using either GMRES or a biconjugate
gradient solver. The SLAP solver, however, is a serial code
unsuited for large problems.

The default linear solver is native PCG using the
Chronopoulos–Gear algorithm. Although it has been found
to run efficiently on platforms ranging from laptops to super-
computers, its preconditioning options are limited, so con-
vergence can be slow for problems with dominant membrane
stresses (e.g., large marine ice sheets). SLAP solvers are gen-
erally robust and efficient but are limited to one processor.
Trilinos contains many solver options, but in tests to date –
using a generalized minimal residual (GMRES) solver with
incomplete lower–upper (ILU) preconditioning – it has been
found to be slower than the native PCG solver because of the
extra cost of setting up Trilinos data structures, and possibly
the slower performance of C++ compared to Fortran for the
solver.

The linear solver is wrapped by a nonlinear solver that
does Picard iteration. Following each iteration, a new global
matrix is assembled, using the latest velocity solution to com-
pute the effective viscosity. Glissade then computes the new
residual, r = b−Ax. If the l2 norm of the residual, defined as
√
(r,r), is smaller than a prescribed tolerance threshold, the

nonlinear system of equations is considered solved. Other-

wise, the linear solver is called again, until the solution con-
verges or the maximum number of nonlinear iterations (typ-
ically 100) is reached. The number of nonlinear iterations
per solve – and optionally, the number of linear iterations per
nonlinear iteration – is written to standard output. In the event
of non-convergence, a warning message is written to output,
but the run continues. In some cases, convergence may im-
prove later in the simulation, or solutions may be deemed
sufficiently accurate even when not fully converged.

3.2 Temperature solver

The thermal evolution of the ice sheet is given by

∂T

∂t
=

ki

ρici
∇

2T −u ·∇T −w
∂T

∂z
+

8

ρici
, (37)

where T is the temperature in ◦C, u= (u,v) is the horizon-
tal velocity, w is the vertical velocity, ki is the thermal con-
ductivity of ice, ci is the specific heat of ice, ρi is the ice
density, and 8 is the rate of heating due to internal defor-
mation and dissipation. This equation describes the conser-
vation of internal energy under horizontal and vertical dif-
fusion (the first term on the RHS), horizontal and vertical
advection (the second and third terms, respectively), and in-
ternal heat dissipation (the last term). Unlike Glide, which
solves this equation in a single calculation, Glissade divides
the temperature evolution into separate advection and diffu-
sion/dissipation components. The temperature module uses
finite-difference methods to solve for vertical diffusion and
internal dissipation in each ice column:

∂T

∂t
=
ki

ρic

∂2T

∂z2 +
8

ρici
, (38)

as described in this section. The advective part of Eq. (37) is
described in Sect. 3.3. Horizontal diffusion is assumed to be
negligible compared to vertical diffusion, giving∇2T ' ∂2T

∂z2 .
In Glissade’s vertical discretization of temperature, T is

located at the midpoints of the (nz−1) layers, staggered rel-
ative to the velocity. This staggering makes it easier to con-
serve internal energy under transport, where the internal en-
ergy in an ice column is equal to the sum over layers of
ρiciT1z, with layer thickness 1z. The upper surface skin
temperature is denoted by T0 and the lower surface skin tem-
perature by Tnz, giving a total of nz+ 1 temperature values
in each column.

The following sections describe how the terms in Eq. (38)
are computed, how the boundary conditions are specified,
and how the equation is solved.

3.2.1 Vertical diffusion

Glissade uses a vertical σ coordinate, with σ ≡ (s− z)/H .
Thus, the vertical diffusion terms can be written as

∂2T

∂z2 =
1
H 2

∂2T

∂σ 2 . (39)
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The central difference formulas for first derivatives at the up-
per and lower interfaces of layer k are

∂T

∂σ

∣∣∣∣
σk

=
Tk − Tk−1

σ̃k − σ̃k−1
,

∂T

∂σ

∣∣∣∣
σk+1

=
Tk+1− Tk

σ̃k+1− σ̃k
, (40)

where σ̃k is the value of σ at the midpoint of layer k, halfway
between σk and σk+1. The second partial derivative, defined
at the midpoint of layer k, is

∂2T

∂σ 2

∣∣∣∣
σ̃k

=

∂T
∂σ

∣∣
σk+1
−

∂T
∂σ

∣∣
σk

σk+1− σk
. (41)

Inserting Eq. (40) into (41), we obtain the vertical diffusion
term:

∂2T

∂σ 2

∣∣∣∣
σ̃k

=
Tk−1

(̃σk − σ̃k−1)(σk+1− σk)

−Tk

(
1

(̃σk − σ̃k−1)(σk+1− σk)
+

1
(̃σk+1− σ̃k)(σk+1− σk)

)
+

Tk+1

(̃σk+1− σ̃k)(σk+1− σk)
. (42)

3.2.2 Heat dissipation

In higher-order models, the internal heating rate8 in Eq. (38)
is given by the tensor product of strain rate and stress:

8= ε̇ij τij , (43)

where τij is the deviatoric stress tensor. The effective stress
(cf. Eq. 3) is defined by

τ 2
e =

1
2
τij τij . (44)

The stress tensor is related to the strain rate and the effective
viscosity by

τij = 2ηε̇ij . (45)

Dividing each side of Eq. (45) by 2η, substituting in Eq. (43),
and using Eq. (44) gives

8=
τ 2

e
η
. (46)

Both terms on the RHS of Eq. (46) are available to the tem-
perature solver, since the higher-order velocity solver com-
putes η during matrix assembly and diagnoses τe from η and
ε̇ij at the end of the calculation.

3.2.3 Boundary conditions

The temperature T0 at the upper boundary is set to
min(Tair,0), where the surface air temperature Tair is usu-
ally specified from data or passed from a climate model. The
diffusive heat flux at the upper boundary (defined as positive
up) is

F
top
d =

ki

H

T1− T0

σ̃1
, (47)

where the denominator contains just one term because σ0 =

0.
The lower ice boundary is more complex. For grounded

ice, there are three heat sources and sinks. First, the diffusive
flux from the bottom surface to the ice interior (positive up)
is

F bot
d =

ki

H

Tnz− Tnz−1

1− σ̃nz−1
. (48)

Second, there is a geothermal heat flux Fg which can be pre-
scribed as a constant (∼ 0.05 W m−2) or read from an input
file. Finally, there is a frictional heat flux associated with
basal sliding, given by

Ff = τ b ·ub, (49)

where τ b and ub are 2-D vectors of basal shear stress and
basal velocity, respectively. With a friction law given by
Eq. (10), this becomes

Ff = β(u
2
b+ v

2
b). (50)

If the basal temperature Tnz < Tpmp (where Tpmp is the
pressure melting point temperature), then the fluxes at the
lower boundary must balance:

Fg+Ff = F
bot
d . (51)

In other words, the energy supplied by geothermal heating
and sliding friction is equal to the energy removed by vertical
diffusion. If, on the other hand, Tnz = Tpmp, then the net flux
is nonzero and is used to melt or freeze ice at the boundary:

Mb =
Fg+Ff−F

bot
d

ρiL
, (52)

where Mb is the melt rate and L is the latent heat of melt-
ing. Melting generates basal water, which may either stay
in place, flow downstream (possibly replaced by water from
upstream), or simply disappear from the system, depending
on the basal water parameterization. While basal water is
present, Tnz is held at Tpmp.

For floating ice, the basal boundary condition is simpler;
Tnz is set to the freezing temperature Tf of seawater, taken as
a linear function of depth based on the pressure-dependent
melting point of seawater. Optionally, a melt rate can be pre-
scribed at the lower surface (Sect. 3.6).
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3.2.4 Vertical temperature solution

Equation (38) can be discretized for layer k as

T n+1
k − T nk

1t
=

ki

ρiciH 2

[
akT

n+1
k−1 − (ak + bk)T

n+1
k + bkT

n+1
k+1

]
+
8k

ρici
, (53)

where the coefficients ak and bk are inferred from Eq. (42),
and n is the current time level. The vertical diffusion terms
are evaluated at the new time level, making the discretization
backward Euler (i.e., fully implicit) in time. Equation (53)
can be rewritten as

−αkT
n+1
k−1 + (1+αk +βk)T

n+1
k −βkT

n+1
k+1

= T nk +
8k1t

ρici
, (54)

where

αk =
kiak1t

ρiciH 2 , βk =
kibk1t

ρiciH 2 . (55)

At the lower surface, we have either a temperature bound-
ary condition (Tnz = Tpmp for grounded ice, or Tnz = Tf for
floating ice) or a flux boundary condition:

Ff+Fg−
ki

H

T n+1
nz − T

n+1
nz−1

1− σ̃nz−1
= 0, (56)

which can be rearranged to give

−T n+1
nz−1+ T

n+1
nz =

(
Ff+Fg

)
H (1− σ̃nz−1)

ki
. (57)

In each ice column, the above equations form a tridiagonal
system that is solved for Tk in each layer.

Occasionally, the solution Tk can exceed Tpmp for a given
layer. If so, we set Tk = Tpmp and use the extra energy to melt
ice internally. This melt is assumed to drain immediately to
the bed. If Eq. (52) applies, we compute Mb and adjust the
basal water depth. When the basal water goes to zero, Tnz
is set to the temperature of the lowest layer (less than Tpmp
at the bed), so that the flux boundary condition will apply
during the next time step.

3.3 Mass and tracer transport

The transport equation for ice thickness H can be written as

∂H

∂t
+∇ · (HU)= B, (58)

where U is the vertically averaged 2-D velocity and B is
the total surface mass balance. This equation describes the
conservation of ice volume under horizontal transport. With
the assumption of uniform density, volume conservation is

equivalent to mass conservation. There is a similar conserva-
tion equation for the internal energy in each ice layer:

∂(hT )

∂t
+∇ · (hT u)= 0, (59)

where h is the layer thickness, T is the temperature (located
at the layer midpoint), and u is the layer-average horizon-
tal velocity. (Vertical diffusion and internal dissipation are
handled separately as described in Sect. 3.2.) If other tracers
are present, their transport is described by conservation equa-
tions of the same form as Eq. (59). Glissade solves Eqs. (58)
and (59) in a coordinated way, one layer at a time. All trac-
ers, including temperature, are advected using the same al-
gorithm.

Glissade has two horizontal transport schemes: a first-
order upwind scheme and a more accurate incremental
remapping (IR) scheme (Dukowicz and Baumgardner, 2000;
Lipscomb and Hunke, 2004). The IR scheme is the default.
This scheme was first implemented in the Los Alamos sea
ice model, CICE, and has been adapted for CISM. Since the
scheme is fairly complex, we give a summary in Sect. 3.3.1
and refer the reader to the earlier publications for details.

After horizontal transport, the mass balance is applied at
the top and bottom ice surfaces. The new vertical layers gen-
erally do not have the desired spacing in σ coordinates. For
this reason, a vertical remapping scheme is applied to trans-
fer ice volume, internal energy, and other conserved quanti-
ties between adjacent layers, thus restoring each column to
the desired σ coordinates while conserving mass and energy.
(This is a common feature of arbitrary Lagrangian–Eulerian
(ALE) methods.) Internal energy divided by mass gives the
new layer temperatures, and similarly for other tracers.

3.3.1 Incremental remapping

The incremental remapping scheme has several desirable fea-
tures:

– It conserves the quantities being transported (including
mass and internal energy).

– It is non-oscillatory; that is, it does not create spurious
ripples in the transported fields.

– It preserves tracer monotonicity. That is, it does not cre-
ate new extrema in tracers such as temperature; the val-
ues at time n+ 1 are bounded by the values at time n.
Thus, T never rises above the melting point under ad-
vection.

– It is second-order accurate in space and therefore is less
diffusive than first-order schemes. The accuracy may be
reduced locally to first order to preserve monotonicity.

– It is efficient for large numbers of tracers. Much of the
work is geometrical and is performed only once per cell
edge instead of being repeated for each field being trans-
ported.
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The model’s upwind scheme, like IR, is conservative, non-
oscillatory, and monotonicity preserving, but because it is
first order it is highly diffusive.

The IR time step is limited by the requirement that trajec-
tories projected backward from grid cell corners are confined
to the four surrounding cells; this is what is meant by incre-
mental as opposed to general remapping. This requirement
leads to an advective Courant–Friedrichs–Lewy (CFL) con-
dition,

max|u|1t
1x

≤ 1. (60)

The remapping algorithm can be summarized as follows:

1. Given mean values of the ice thickness and tracer fields
in each grid cell, construct linear approximations of
these fields that preserve the mean. Limit the field gra-
dients to preserve monotonicity.

2. Given ice velocities at grid cell vertices, identify depar-
ture regions for the fluxes across each cell edge. Divide
these departure regions into triangles and compute the
coordinates of the triangle vertices.

3. Integrate the thickness and tracer fields over the depar-
ture triangles to obtain the mass and energy transported
across each cell edge.

4. Given this transport, update the state variables.

These steps are carried out for each of nz−1 ice layers, where
nz is the number of velocity levels.

3.3.2 CFL checks

As mentioned above, the time step for explicit mass trans-
port is limited by the advective CFL condition (Eq. 60). For
ice flow parallel to ∇s, ice thickness evolution is diffusive,
giving rise to a diffusive CFL condition (Bueler, 2009):

(maxD)1t ≤ 0.51x2, (61)

where D is the ice flow diffusivity. Flow governed by the
shallow-ice approximation is subject to this diffusive CFL.
The stability of Glissade’s BP, DIVA, and SSA solvers, how-
ever, is limited by Eq. (60) in practice; Eq. (61) is too re-
strictive. For this reason, Glissade checks for advective CFL
violations at each time step. Optionally, the transport equa-
tion can be adaptively subcycled within a time step to satisfy
advective CFL. This can prevent the model from crashing,
though possibly with a loss of accuracy.

3.4 Basal sliding

Glissade assumes a basal friction law of the form Eq. (10).
If β were independent of velocity, then Eq. (10) would be a
simple linear sliding law. Allowing β to depend on velocity
allows more complex and physically realistic sliding laws.
The following options are supported in CISM:

– Spatially uniform β, possibly a large value that makes
sliding negligible.

– No sliding, enforced by a Dirichlet boundary condition
(ub = 0) during finite-element assembly.

– A 2-D β field specified from an external file. Typically,
β is chosen at each vertex to optimize the fit to observed
surface velocity.

– β is set to a large value where the bed is frozen (Tb <

Tpmp) and a lower value where the bed is thawed (Tb =

Tpmp).

– Power-law sliding, based on the sliding relation of
Weertman (1957). Basal velocity is given by

ub = kτ
p

bN
−q , (62)

where N is the effective pressure (the difference be-
tween the ice overburden pressure P0 = ρigH and the
basal water pressure pw) and k is an empirical constant.
This can be rearranged to give

τ b = k
−1/pNq/pu

1/p
b . (63)

– Plastic sliding, in which the bed deforms with a speci-
fied till yield stress.

– Coulomb friction as described by Schoof (2005), with
notation and default values from Pimentel et al. (2010).
The form of the sliding law is

τ b = C|u|
1
n
−1u

(
Nn

κ |u| +Nn

) 1
n

, (64)

where C is a constant, κ =mmax/(λmaxAb),mmax is the
maximum bed obstacle slope, λmax is the wavelength of
bedrock bumps, and Ab is a basal flow-law parameter.
Equation (64) has two asymptotic behaviors. In the inte-
rior, where the ice is thick and slow-moving, κ |u| �Nn

and the basal friction is independent of N :

τ b ≈ C|u|
1
n
−1u. (65)

The Coulomb-friction limit, where the ice is thin and
fast-moving, we have κ |u| �Nn, giving

τ b ≈
C

κ
1
n

N
u

|u|
. (66)

– Pseudo-plastic sliding, as described by Schoof and
Hindmarsh (2010) and Aschwanden et al. (2013) and
implemented in PISM. The basal friction law is

τ b =−τc
ub

|ub|
1−qu

q

0
, (67)
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where τc is the yield stress, q is a pseudo-plastic ex-
ponent, and u0 is a threshold speed. This law incor-
porates linear (q = 1), plastic (q = 0), and power-law
(0< q < 1) behavior in a single expression. The yield
stress is given by τc = tan(φ)N , where φ is a friction
angle that can vary with bed elevation, resulting in a
lower yield stress at lower elevations. This scheme has
been shown to give a realistic velocity field for most of
the Greenland ice sheet with tuning of just a few param-
eters, instead of adjusting a basal friction parameter in
every grid cell (Aschwanden et al., 2016).

The power-law, Coulomb-friction and pseudo-plastic slid-
ing laws give lower basal friction and faster sliding as the ef-
fective pressure N decreases from the overburden pressure.
CISM offers several options for computing N at the bed:

– N = ρigH , the full overburden pressure. That is, the
water pressure pw = 0 at the bed.

– N is reduced as the basal water depth increases, reach-
ing a small fraction of overburden pressure (typically
δ = 0.02) when the water depth reaches a prescribed
threshold.

– Following Leguy et al. (2014), N is reduced where the
bed is below sea level, to account for partial or full con-
nectivity of the basal water system to the ocean. The
effective pressure is given by

N = ρigH

(
1−

Hf

H

)p
, (68)

where Hf =max(0,−ρob/ρi) is the flotation thickness,
ρo is seawater density, b is the bed elevation (negative
below sea level), and 0≤ p ≤ 1. For p = 0, there is
no connectivity and N is the full overburden pressure.
For p = 1, there is full connectivity, and the basal wa-
ter pressure is equal to the ocean pressure at the same
depth.

Glissade does not yet support sophisticated subglacial hy-
drology. (The model of Hoffman and Price (2014) was imple-
mented in serial in an earlier version of CISM but is not cur-
rently supported.) The following (non-conserving) options
are available for handling basal meltwater:

– All basal water immediately drains.

– Basal water depth is set to a constant everywhere, to
force T = Tpmp.

– Basal water depth is computed using a local till model,
as described by Bueler and van Pelt (2015). In this
model, water depth W evolves according to

∂W

∂t
=
−Bb

ρw
−Cd, (69)

where W is the water depth (capped at Wmax), Bb is
the basal mass balance (negative for melting), ρw is the
density of water, and Cd is a fixed drainage rate. The
effective pressure N is related to water depth by

N =min

[
P0,N0

(
δP0

N0

)W/Wmax

10(e0/Cc)(1−W/Wmax)

]
, (70)

where e0 is the void ratio at reference effective pressure
N0, Cc is the till compressibility, and δ is a scalar be-
tween 0 and 1. Default values of these terms are taken
from Bueler and van Pelt (2015). The effect of Eq. (70)
is to drive N from P0 down to δP0 as W increases from
0 to Wmax.

3.5 Iceberg calving

Glissade supports several schemes for calving ice at marine
margins. Two of these are very simple: (1) calve all float-
ing ice and (2) calve ice where the bedrock (either the cur-
rent bedrock or the bedrock toward which a viscous astheno-
sphere is relaxing) lies below a prescribed elevation. In addi-
tion, Glissade includes several new calving schemes: mask-
based calving, thickness-based calving, and eigencalving.

With mask-based calving, any floating ice that forms in
cells defined by a calving mask is assumed to calve instantly.
By default, the mask is based on the initial ice extent. Float-
ing ice calves in all cells that are initially ice-free ocean, and
thus the calving front cannot advance (but it can retreat). Al-
ternatively, users can define a calving mask that is read at
initialization.

Thickness-based calving is designed to remove floating ice
that is thinner than a user-defined thickness, Hmin

c . As dis-
cussed by Albrecht et al. (2011), accurate thickness-based
calving requires a subgrid-scale parameterization of the calv-
ing front. Suppose, for example, that Hmin

c = 100 m, and an
ice shelf with a calving front thicker than 100 m is advanc-
ing. During the next time step, ice is transported to grid cells
just downstream of the initial calving front. Typically, these
cells have H <Hmin

c . If this thin ice immediately calves, the
calving front cannot advance.

Glissade avoids this problem using an approach similar to
that of Albrecht et al. (2011). Floating cells adjacent to ice-
free ocean are identified as calving-front (CF) cells. For each
CF cell, an effective thickness Heff is determined as the min-
imum thickness of adjacent ice-filled cells not at the CF. CF
cells with H <Heff are deemed to be partially filled. For ex-
ample, a cell with H = 50 m and Heff = 100 m is considered
to be half-filled with 100 m ice. It is dynamically inactive and
thus cannot transport ice downstream. It can thicken, how-
ever, as ice is transported from active cells upstream. Once
the ice in this cell thickens to H ≥Heff, it becomes dynami-
cally active. The downstream cells, previously ice-free, then
become inactive CF cells and can thicken in turn. In this way,
the calving front can advance. Similarly, the calving front
can retreat when an inactive CF cell becomes ice-free; its up-
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stream neighbor, formerly an active cell in the shelf interior,
becomes an inactive CF cell.

Thickness-based calving is applied not to CF cells with
H <Hmin

c but rather to cells with Heff <H
min
c . In other

words, the CF thickness is inferred from the active cells just
interior to the CF. Where Heff <H

min
c , the effective rate of

thickness change is given by

dHeff

dt
=−

(
Hmin

c −Heff
)

tc
, (71)

where tc is a calving timescale. This effective rate is con-
verted to dH/dt (i.e., the rate of ice volume change per unit
cell area) as

dH
dt
=min(H/Heff,1)

dHeff

dt
. (72)

Glissade’s eigencalving scheme is related to the method
described by Levermann et al. (2012) but differs in the de-
tails. In the method of Levermann et al. (2012), the lateral
calving rate is proportional to the product of the two eigen-
values of the horizontal strain rate tensor, provided that both
eigenvalues are positive. This scheme was tested in CISM but
found to give noisy, erratic results. Instead, we compute the
lateral calving rate c as

c = kτ τec, (73)

where kτ is an empirical constant with units of m yr−1 Pa−1,
and τec is an effective calving stress defined by

τ 2
ec =max(τ1,0)2+w2max(τ2,0)2. (74)

Here, τ1 and τ2 are the eigenvalues of the 2-D horizontal de-
viatoric stress tensor, and w2 is an empirical constant. The
stresses τ1 and τ2 are positive when the ice is in tension;
τ1 corresponds to along-flow tension and τ2 to across-flow
tension. These stresses are computed for dynamically active
cells and then are extrapolated to inactive neighbors. When
w2 > 1, across-flow tension drives calving more effectively
than does along-flow tension, as is the case for the calving
law of Levermann et al. (2012). Equation (74) is analogous
to Eq. (6) in Morlighem et al. (2016) (in a calving law for
Greenland’s Store Gletscher) but with stress replacing strain
rate and with a weighting term added.

Using Eqs. (73) and (74), we can compute a lateral calving
rate c for each CF cell. The lateral calving rate is converted
to a rate of volume change using

dH
dt
=−

Heffc
√
1x1y

, (75)

where 1x and 1y are the grid cell dimensions. Typically,
CISM is run with 1x =1y, but this is not a model require-
ment.

Eigencalving, when applied on its own, can allow very thin
ice to persist at the calving front where stresses are small. For

this reason, the eigencalving algorithm is automatically fol-
lowed by thickness-based calving as described above, with
Hmin

c set to a value large enough to remove thin ice, where
present, but not so large as to be the dominant driver of calv-
ing.

An additional option related to calving is iceberg removal.
An iceberg is defined as a connected region where every cell
is floating and has no connection to grounded ice. Icebergs
can be present in initial data sets and also can arise during
simulations, depending on the calving scheme. Finding the
velocity for such a region is an ill-posed problem, so it is
best to remove icebergs as soon as they occur. This is done
by first marking all the grounded ice cells, and then using a
parallel flood-fill algorithm to mark every floating cell that is
connected to a grounded cell. (That is, one could travel from
a grounded cell to a given floating cell along a path at least
one cell wide, without leaving the ice sheet.) Any unmarked
floating cells then calve immediately.

Another option is to limit the thickness of ice cliffs, de-
fined as grounded marine-based cells adjacent to ice-free
ocean. Bassis and Walker (2012) pointed out that there is an
upper thickness limit for marine-terminating cliffs of outlet
glaciers. If the ice cliff sits more than∼ 100 m out of the wa-
ter, the longitudinal stresses exceed the yield strength, and
the ice will fail. The maximum stable thickness at the termi-
nus is given by

Hmax =
τc

ρig
+

√(
τc

ρig

)2

+
ρo

ρi
d2, (76)

where τc ∼ 1 MPa is the depth-averaged shear strength, d is
the ocean depth, and ρi and ρo are densities of ice and seawa-
ter. When cliff limiting is enabled in CISM, marine-grounded
cells adjacent to ice-free ocean are limited toH ≤Hmax, with
any excess thickness added to the calving flux. This thinning
mechanism does not trigger the rapid ice sheet retreat seen by
Pollard et al. (2015) in Antarctic simulations that combined
cliff failure with hydrofracture. CISM2.1 does not simulate
hydrofracture or lateral cliff retreat.

3.6 Sub-shelf melting

By default, melting beneath ice shelves is set to zero. The fol-
lowing simple options may be enabled for simulations with
marine ice:

– Sub-shelf melting is set to a constant value for all float-
ing ice.

– CISM reads in a 2-D field of basal melt rates and applies
the prescribed rates to floating ice.

– Sub-shelf melting is prescribed as for the Marine Ice
Sheet Model Intercomparison Project (MISMIP+) Ice1
experiments described by Asay-Davis et al. (2016). In
this parameterization, the melt rate is set to zero above a
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reference elevation z0, then increases linearly as a func-
tion of depth. In shallow sub-shelf cavities, the melt rate
is reduced to zero over a characteristic length scale H0.
The depth dependence is motivated by observations of
temperature increasing with depth in polar regions but
is not necessarily a realistic treatment of melting near
grounding lines.

– The sub-shelf melt rate is a piecewise linear function of
depth. Above a reference elevation z0 there is freezing,
and below z0 there is melting. Above z0, the freezing
rate increases linearly from 0 to Bmax

frz at zmax
frz ; above

zmax
frz , it is capped at Bmax

frz . Similarly, below z0, the melt
rate increases linearly from 0 to Bmax

mlt at zmax
mlt ; below

zmax
mlt , it is capped at Bmax

mlt . In shallow cavities, the melt
rate is reduced to zero over a scale H0 as for MISMIP+.
Like the MISMIP+ parameterization, this is an ad hoc
scheme that should be used with caution. More realistic
treatments of sub-shelf melting are being actively devel-
oped in the ocean and ice modeling communities (Asay-
Davis et al., 2017).

Sub-shelf melting is applied only to cells that are floating
based on the criterion b <−(ρi/ρo)H , where b is bed el-
evation (negative below sea level) and H is ice thickness.
In partly filled cells at the calving front, basal melt is ap-
plied to the effective thickness Heff rather than the grid cell
mean thickness H (see Sect. 3.5). For example, a melt rate
of 10 m yr−1 applied to a cell that is 10 % full would reduce
H at a rate of only 1 m yr−1. Basal melting for grounded ice,
including marine-based ice, is described in Sect. 3.2.3.

3.7 Isostasy

Isostatic adjustment is handled as in Rutt et al. (2009), with
several options for the lithosphere and underlying astheno-
sphere. The lithosphere can be described as either local
(i.e., floating on the asthenosphere) or elastic (taking flex-
ural rigidity into account). The asthenosphere is either fluid
(reaching isostatic equilibrium instantaneously) or relaxing
(responding to the load on an exponential timescale of sev-
eral thousand years). The default, when isostasy is active, is
an elastic lithosphere and relaxing asthenosphere.

In the elastic lithosphere calculation, data from many grid
cells must be summed to compute the load in each location.
For parallel runs, this is done by gathering data to one proces-
sor to compute the load and then distributing the result to the
local processors. This calculation scales poorly, but it is done
infrequently (every ∼ 100 model years) and therefore has a
minimal computational cost at grid resolutions of ∼ 5 km.

4 Model results: standard test cases

Test cases for CISM include (1) problems with analytic so-
lutions, (2) standard experiments without analytic solutions

but for which community benchmarks are available, and
(3) some CISM-specific experiments used for code devel-
opment and testing. These tests are organized in directories,
each of which includes a README file with instructions on
running the test. Most tests have Python scripts that are used
to set up the initial conditions and run the model, and some
tests have an additional Python script to analyze and plot the
output. Each test has a default configuration file, whose set-
tings can be adjusted manually to make changes (e.g., swap-
ping velocity solvers). Several tests are described below, with
plots generated by Python scripts included in the code re-
lease.

4.1 Halfar dome test

The Halfar test case describes the time evolution of a
parabolic dome of ice (Halfar, 1983; Bueler et al., 2005). For
a flat-bedded SIA problem without accumulation, this case
has an analytic solution for the time-varying ice thickness.
The SIA ice evolution equation can be written as

∂H

∂t
=∇ · (0H n+2

|∇H |n−1
∇H), (77)

where n is the exponent in the Glen flow law, commonly
taken as 3, and 0 = 2A(ρg)n/(n+ 2) is a positive constant.
For n= 3, the time-dependent solution is

H(t,r)=H0

(
t0

t

) 1
9

1−

((
t0

t

) 1
18 r

R0

) 4
3


3
7

, (78)

where

t0 =
1

180

(
7
4

)3 R4
0

H 7
0
, (79)

and H0 and R0 are the central dome height and dome radius,
respectively, at time t = t0. As the dome evolves, the ice mar-
gin advances and the thickness decreases. The test can be run
using either Glide or Glissade solvers.

Figure 1a–c show Halfar dome results for the Glide solver
withH0 = 500

√
2≈ 700 m,R0 = 15

√
2≈ 21 km, a grid res-

olution of 2 km, and a time step of 5 years. The three panels
show the modeled thickness, analytic thickness, and thick-
ness difference, respectively, at t = 200 years. Differences
are largest near the ice margin. The rms error in the solution
is 6.43 m, with a maximum absolute error of 32.8 m.

The bottom panels of Fig. 1 show Halfar results for the
Glissade SIA solver described in Sect. 3.1.2, with the same
grid and initial conditions and a time step of 1 year (Glis-
sade’s explicit transport solver requires a shorter time step
than Glide for numerical stability). The errors are larger than
for Glide; the rms error is 9.06 m and the maximum error is
34.2 m. Since Glissade’s SIA velocity solutions are very sim-
ilar to Glide’s for a given ice sheet geometry, the larger errors
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Figure 1. Results from the Halfar dome test using SIA solvers from Glide (a, b, c) and Glissade (d, e, f). (a, d) Modeled ice thickness. (b,
e) Analytic ice thickness. (c, f) Difference between modeled and analytic thickness.

can be attributed to the explicit transport solver (Sect. 3.3),
which is less accurate for this problem than Glide’s implicit
diffusion-based solver.

4.2 ISMIP-HOM tests

ISMIP-HOM, described by Pattyn et al. (2008), consists of
six experiments, labeled A through F, for higher-order ve-
locity solvers. CISM supports all six experiments, and here
we show results for experiments A and C. These two tests
are particularly useful for benchmarking higher-order mod-
els, since they gauge the accuracy of simulated 3-D flow over
a bed with large- and small-scale variations in basal topogra-
phy and friction.

Experiment A is a test for ice flow over a bumpy bed.
The domain is doubly periodic, and the bed topography is
sinusoidal in both the x and y directions, with an amplitude
of 500 m and wavelength L= 5, 10, 20, 40, 80, or 160 km.
The mean ice thickness is 1000 m, and the surface slopes
smoothly downward from left to right. The velocity field is
diagnosed from this geometry given a no-slip basal boundary
condition. Figure 2 shows the surface ice speed as a function
of x along the bump at y = L/4, computed using Glissade’s
BP solver. For L= 10 km or more, the solution agrees well

with the mean from the Stokes models in Pattyn et al. (2008).
At L= 5 km, the amplitude is too large (as is typical of BP
models), but the magnitude is close to the Stokes solution.

Figure 3 shows test A results using Glissade’s DIVA solver
(cf. Fig. 1 in Goldberg, 2011, which shows similar results
from a depth-integrated flowline solver). The DIVA solution
is much less accurate than the BP solution; the modeled ice
speed is greater than for the Stokes solution, with the relative
error increasing as L decreases. These errors are expected,
since a bumpy, frozen bed implies that the horizontal velocity
gradients are not well approximated (as DIVA assumes) by
their vertical averages. The DIVA solution is more accurate,
however, than the L1L2 scheme implemented by Perego et al.
(2012). The latter scheme does a 2-D matrix solve for the
basal velocity and then integrates upward, reducing to the
very inaccurate SIA when the basal velocity is zero. DIVA,
by solving for the 2-D mean velocity instead of the basal
velocity, is more accurate than the SIA.

Experiment C is a test for flow over a bed with variable
friction. The ice surface and mean thickness are as in exper-
iment A, but the bed is flat, with sinusoidal variations in the
basal friction parameter β. Figure 4 shows the surface speed
at y = L/4 for each of six wavelengths using the BP solver,
and Fig. 5 shows the surface speed using the DIVA solver (cf.
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Figure 2. Results for ISMIP-HOM experiment A (ice flow over a bumpy bed). Each plot shows the surface ice speed across the bump at
y = L/4 for a different length scale L. The solid black line shows output from Glissade’s BP velocity solver; the dotted red and blue lines
show output from full Stokes and first-order (i.e., higher-order) models, respectively, in Pattyn et al. (2008), and the red and blue shaded
regions show the corresponding standard deviations.

Fig. 2 from the depth-integrated flowline solver in Goldberg,
2011). For both BP and DIVA, the CISM results are similar
to the Stokes results at all wavelengths. There is a modest dif-
ference between BP and DIVA at L= 5 km, where the DIVA
velocity has a small variation across the domain, whereas the
BP and Stokes velocities are nearly uniform.

For both experiments A and C, the Glissade BP results are
nearly identical to those shown by Tezaur et al. (2015), who
used similar finite-element methods to assemble and solve
the BP equations.

4.3 Stream tests

CISM’s stream tests simulate flow over an idealized ice
stream underlain by subglacial till with a specified yield
stress distribution. For the two yield stress distributions spec-
ified in this test case, analytical solutions are available from
Raymond (2000) and Schoof (2006). For the Raymond test
case, the yield stress is given within the ice stream by a uni-
form value of 5.2 kPa (below the gravitational driving stress
of about 10 kPa), and outside the ice stream by a uniform
value of 70 kPa (much larger than the driving stress). That is,
the yield stress distribution is approximated by a step func-
tion. For the Schoof test case, the yield stress across the ice

stream varies continuously between about 45 kPa and 0. In
both cases, the basal properties and resulting velocity solu-
tions vary in the across-flow direction only and are symmet-
ric about the ice stream centerline.

Figures 6 and 7 compare model results to the analytic
Raymond and Schoof solutions, respectively. CISM is run
using the BP velocity solver at a grid resolution of 2 km.
(DIVA results, not shown, are nearly identical.) The top pan-
els show across-flow velocity profiles, and the bottom pan-
els show the prescribed yield stress and driving stress. In
both cases, there is excellent agreement between the modeled
and analytic solutions. For the Raymond test, this excellent
agreement requires a modified assembly procedure for basal
friction terms, as described in Sect. A2, to resolve the step
change in yield stress. With the standard finite-element pro-
cedure, there is some smoothing of the friction parameter β
over neighboring vertices, and the results at a given grid res-
olution are less accurate. For the Schoof test with a smooth
transition in yield stress, either assembly procedure works
well.

4.4 Shelf tests

CISM includes three shelf tests:
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Figure 3. Same as Fig. 2, except that the solid black line shows output from Glissade’s DIVA velocity solver. Vertical scales are adjusted
relative to Fig. 2 to show the full range of the model solution.

– The first is a confined-shelf test based on tests 3 and
4 from the Ice Shelf Model Intercomparison exercise
(Rommelaere, 1996). This test simulates the flow of a
500 m thick ice shelf within a rectangular embayment
that is confined on three sides. Figure 8 shows the 2-D
ice speed using Glissade’s SSA solver (Sect. 3.1.3) on
a 5 km mesh. As expected, the solution is nearly identi-
cal to those obtained with the DIVA and BP solvers (not
shown). No benchmark is available, but the Glissade so-
lutions are similar to the first-order (BP) solutions found
by Perego et al. (2012) and Tezaur et al. (2015) for the
same test.

– The second is a circular-shelf test that simulates the ra-
dially symmetric flow of a 1000 m thick ice shelf that is
pinned at one point in the center. The SSA solution (not
shown) is similar but not identical to the DIVA and BP
solutions, since the latter allow vertical shear above the
pinning point.

– The third test simulates the flow of the Ross Ice Shelf in
Antarctica under idealized conditions (e.g., a spatially
uniform flow-rate factor), as described by MacAyeal
et al. (1996). Figure 9, which is based on Figs. 1 and
2 of MacAyeal et al. (1996), shows the ice speed com-
puted by Glissade’s SSA solver on the 6.8 km finite-

difference grid used in that paper, compared to observed
ice speeds. The model velocities agree well with the
published velocities from the finite-element model in
Fig. 3a of MacAyeal et al. (1996) and, like the published
values, tend to be biased fast compared to observations.
As noted by MacAyeal et al. (1996), the model–data
agreement could be improved by allowing the flow-rate
factor to vary spatially. Results from the DIVA and BP
solvers (not shown) are nearly identical.

4.5 Dome test

CISM’s dome test has a simple configuration with a
parabolic, radially symmetric dome on a flat bed. It is a
general-purpose time-dependent problem that can be used to
test not just the velocity solver but also the transport and tem-
perature solvers and various physics options. There is no an-
alytic solution, but the test has proven useful for day-to-day
testing.

4.6 Build-and-test structure

To facilitate testing, CISM includes a build-and-test structure
(BATS) that can automatically build the model and then run
a set of regression tests, including the tests discussed above.
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Figure 4. Results for ISMIP-HOM experiment C (ice flow over a bed with variable basal friction). Each plot shows the surface ice speed
across the bump at y = L/4 for a different length scale L. The solid black line shows output from Glissade’s BP velocity solver; the dotted
red and blue lines show output from Stokes and first-order models, respectively, in Pattyn et al. (2008), and the red and blue shaded regions
show the corresponding standard deviations.

BATS allows users and developers to quickly generate a set
of regression tests for use with the Land Ice Verification and
Validation toolkit (LIVVkit; Kennedy et al., 2017). LIVVkit
is designed to provide robust and automated numerical ver-
ification, software verification, performance validation, and
physical validation analyses for ice sheet models. Instruc-
tions on using BATS and LIVV with CISM can be found
on the LIVV website (https://livvkit.github.io/Docs/, last ac-
cess: 20 January 2019).

5 Model results: Greenland ice sheet simulations

The CISM v2.0 release included the tests described in
Sect. 4 but did not support robust multimillennial simula-
tions of whole ice sheets. Recent work, included in CISM
v2.1, has made the model more efficient, reliable, and re-
alistic for Greenland ice sheet simulations. These improve-
ments support the use of CISM in CESM2.0 for century- to
millennial-scale Greenland simulations under paleoclimate
(e.g., Pliocene and Eemian), present-day, and future climate
conditions.

Coupled ice sheet–climate simulations can be problematic,
because ice sheets require 104 years or longer to equilibrate

with a given climate (Vizcaino, 2014), and because climate
is never truly constant on these timescales. If the initial ice
sheet conditions in a coupled simulation are not consistent
with the climate, then the transient adjustment can swamp
any climate change signal. One way to minimize the ad-
justment is to adjust selected model parameters (e.g., basal
traction coefficients or bed topography at each grid point)
to satisfy an optimization problem, reducing the mismatch
between model variables and observations. In this way, one
can generate ice sheet thickness and velocity fields consistent
with the SMB from a climate model (Perego et al., 2014).
The risk of this approach is that the model can be over-
tuned to present-day conditions that might not hold on long
timescales or in different climates. An alternate approach is
to spin up the ice sheet to equilibrium under forcing from a
climate model: e.g., steady pre-industrial forcing or forcing
spliced together from two or more climate time slices (Fyke
et al., 2014). Because of climate model biases, however, the
spun-up ice thickness and velocity can differ substantially
from modern observations.

Here, we take the second approach, spinning up the Green-
land ice sheet with surface forcing from the regional climate
model RACMO2.3p1 statistically downscaled to 1 km reso-
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Figure 5. Same as Fig. 4, except that the solid black line shows output from Glissade’s DIVA velocity solver.

lution (Noël et al., 2016). Since RACMO2 is run at high reso-
lution, is constrained by reanalysis at model boundaries, and
is well validated against observations, its SMB is more real-
istic than that of a global climate model. RACMO2 provides
the SMB only for the region included within its ice sheet
mask; outside this region, we prescribe a negative SMB. The
ice sheet is initialized with present-day extent and thick-
ness, and then is spun up for 50 000 years (long enough to
reach quasi-equilibrium) on a 4 km grid (the standard grid
for CESM ice sheet simulations).

We analyze two experiments. The first experiment uses a
“no-float” calving scheme, in which floating ice is assumed
to calve immediately. A similar configuration was used to ini-
tialize CISM for the initMIP-Greenland experiment (Goelzer
et al., 2018). The no-float assumption simplifies model setup
and analysis, while still simulating ice flow for the vast ma-
jority of the Greenland ice sheet. The second experiment uses
the eigencalving scheme described in Sect. 3.5, along with
the depth-dependent sub-shelf melting scheme of Sect. 3.6.
This simulation tests the model’s ability to generate robust,
stable ice shelves that at least roughly resemble Greenland’s
present-day ice shelves, including the floating shelf of Peter-
mann Glacier in northern Greenland and two floating termini
of the Northeast Greenland Ice Stream (NEGIS): Nioghalvf-
jerdsbræ (79 North Glacier) and Zachariae Isstrom.

Although the model has been configured to give results
that are reasonably realistic, these spin-ups should be viewed
primarily as a demonstration of CISM capabilities, not as sci-
entifically validated simulations. For example, model tuning
has likely compensated for biases in the forcing data. Gener-
ally speaking, model parameters should always be tested and
reviewed depending on the science application.

5.1 Simulation without ice shelves

The simulation without floating ice shelves is configured as
follows:

– The model is initialized with present-day ice sheet ge-
ometry. The ice thickness and bed topography are based
on the mass-conserving-bed method of Morlighem et al.
(2011, 2014).

– The SMB forcing over the Greenland ice sheet is
a 1958–2015 climatology from RACMO2.3p1 (Noël
et al., 2016). For ice-free regions where RACMO2 does
not compute an SMB, the SMB is arbitrarily set to
−4 m yr−1, thus limiting deviations from present-day
ice extent. The surface temperature is from the 20th cen-
tury RACMO2 climatology of Ettema et al. (2009).

– The basal geothermal heat flux is prescribed from
Shapiro and Ritzwoller (2004).
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Figure 6. Results from the Raymond stream test using Glissade’s BP velocity solver. (a) Across-flow surface and basal velocity (m yr−1) at
x = 15 km compared to the analytic solution. At most points, the analytic and simulated solutions are indistinguishable. (b) Prescribed yield
stress and gravitational driving stress (Pa).

– Where the SMB is negative, the initial temperature pro-
file in each column is linear, with T =min(Tair,0) at the
surface and T = Tpmp−5◦ at the bed. Where the SMB is
positive, the temperature is initialized to an analytic pro-
file based on a balance between vertical conduction and
cold advection (Cuffey and Paterson, 2010, Sect. 9.5.1).
This profile is relatively cold in the upper part of the ice
sheet.

– The 3-D velocity field is computed at 11 vertical levels
using the DIVA solver described in Sect. 3.1.4. Thick-
ness and tracer evolution are given by the incremen-
tal remapping scheme of Sect. 3.3, with a time step
dt = 0.2 years.

– The basal friction coefficient β is computed at each ver-
tex using a pseudo-plastic sliding law as described in
Sect. 3.4. This scheme has several parameters that can
be tuned to reduce effective pressure and increase slid-
ing in warm, low-elevation regions. Parameter values,
mostly following Aschwanden et al. (2016), are q = 0.5
and u0 = 100 m yr−1, with φ decreasing from 40 to 5◦

as the bed elevation decreases from 700 to −700 m.

– Effective pressure is a function of basal water depth as
computed by the local till model described in Sect. 3.4

with till parameters from Bueler and van Pelt (2015). In
particular, Wmax = 2 m, Cd = 1 mm yr−1, and δ = 0.02.

– Floating ice calves immediately, and marine cliff
heights are limited as described in Sect. 3.5.

– Some of the model physics is constrained to make the
simulation more robust. The surface gradients ∂s/∂x
and ∂s/∂y in the gravitational driving stress are limited
to a magnitude of 0.10 to prevent unrealistically large
ice speeds in coastal regions with steep topography, and
β is held to a minimum of 100 Pa m−1 yr for grounded
ice to prevent very fast sliding.

After 50 000 model years, the ice sheet extent and volume
have equilibrated to 1.63× 106 km2 and 2.97× 106 km3, re-
spectively, in close agreement with values of 1.67×106 km2

and 2.95×106 km3 in the observational data set (Morlighem
et al., 2014). The close agreement between observed and
modeled extent and volume depends, in part, on the nega-
tive SMB applied outside the RACMO2 ice sheet mask to
inhibit ice advance. We checked for equilibrium by compar-
ing thickness snapshots at 500-year intervals near the end of
the run. Thickness variations over the last 1000 years (not
shown) are less than 50 m everywhere on the ice sheet.
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Figure 7. Same as Fig. 6 but for the Schoof stream test with a smooth transition in yield stress. The analytic and simulated solutions are
virtually indistinguishable.

Figure 10 shows the surface ice speed at the end of the run,
compared to observations. In most of the ice sheet, the sim-
ulated ice flow is in good agreement with observations. The
model captures slow-flowing regions in the interior where the
bed is frozen, as well as fast-flowing outlet glaciers along the
margins. A major shortcoming of the simulation is its failure
to capture NEGIS, which in reality extends far into the north-
east interior but is simulated to be slower, shorter, and more
diffuse. Aschwanden et al. (2016), who ran PISM using the
pseudo-plastic basal sliding scheme adopted by CISM, ob-
tained similar results. While capturing complex outlet glacier
flow, both models have a poor representation of NEGIS, pos-
sibly due to a missing geothermal heat source or simplified
subglacial hydrology.

Figure 11 shows the difference between the final ice thick-
ness and the observed initial thickness. In most of the inte-
rior, the thickness errors are ∼ 100 m or less, with the main
exception being the upper part of NEGIS, where slow flow
correlates with a positive thickness bias of ∼ 200 m. Errors
are larger along the margins, with positive biases of up to
∼ 500 m in the southeast, where accumulation is large, and
negative biases of up to ∼ 500 m in the north and northwest,
where accumulation is lower and there is significant ablation
at the margins. Low thicknesses along the coast could result
from excessive marginal ablation in the SMB data set, insuf-
ficient basal friction, or a combination. High thickness in the

southeast could be attributed to positive accumulation biases
in the data set or too-slow flow in outlet glaciers, among other
factors.

Figure 12 illustrates the basal water state. The ice sheet
is shaded to indicate three regions: a frozen central region
(extending to parts of the northern and eastern margins) with
basal water depth W = 0; thawed coastal regions, especially
along the western margin and in major outlet glacier basins
where W is capped at 2 m; and intermediate regions where
0<W < 2 m. The color scheme in Fig. 12 was chosen for
comparison to Fig. 11 from MacGregor et al. (2015), who
presented a synthesis of Greenland’s basal state from ob-
servations and models. The agreement is generally excellent
(though the two results are not fully independent, since mod-
els similar to CISM were part of the synthesis). The largest
area of discrepancy is the upstream part of NEGIS, which is
thawed or uncertain in the synthesis but frozen in the model.

The intermediate regions in Fig. 12 have striped patterns
with century-scale temporal variability, consistent with the
band-like patterns in driving and basal shear stresses found
by Sergienko et al. (2014) in regions with rapid basal sliding.
Sergienko et al. (2014) attributed these patterns to instabili-
ties related to subglacial water. A more detailed investigation
would be needed to determine how robust these features are
in the model, and to what extent they are real features as op-
posed to numerical artifacts.
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Figure 8. Ice speed (m yr−1) for the confined-shelf test (based on tests 3 and 4 from the Ice Shelf Model Intercomparison exercise of
Rommelaere, 1996) using Glissade’s SSA velocity solver. The ice shelf is 500 m thick. The rectangular domain is open to the south and
confined on the other three sides.

Figure 9. Results of the Ross Ice Shelf test described by MacAyeal et al. (1996), computed using Glissade’s SSA solver. Panel (a), based
on Fig. 1 of MacAyeal et al. (1996), shows the vertically uniform ice speed (m yr−1). The circles indicate locations where ice speed was
measured by the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS); measured speeds are shaded with the same color scale as
the observations. Axis coordinates match the coordinates in MacAyeal et al. (1996). Panel (b), based on Fig. 2 of MacAyeal et al. (1996),
compares simulated to measured ice speeds at the RIGGS locations.
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Figure 10. Surface ice speed (m yr−1, log scale) for the Greenland ice sheet. (a) Observed speed (Joughin et al., 2010). (b) Simulated speed
at the end of a 50 kyr Greenland spin-up without floating ice shelves. The gray background shows ice-free regions. Figures 10–17 were
created using the NCAR Command Language (2017).

As shown by Schoof and Hindmarsh (2010), depth-
integrated approximations like DIVA are computationally
much cheaper than BP while incurring only a small loss
of accuracy, mainly in slow-sliding regions. However, their
analysis did not consider the effects of vertically varying
temperature. In CISM simulations of real ice sheets, the
depth-integrated viscosity depends on the vertical tempera-
ture profile (see Eqs. 2 and 24), with dynamic effects that
are not included in idealized problems with a uniform tem-
perature or flow factor. To assess possible errors associ-
ated with the DIVA solver (taking BP to be “truth”), we
ran CISM for 10 000 years using the BP solver, with set-
tings and forcing otherwise identical to the DIVA run. Af-
ter 10 kyr, the ice sheet area and volume are 1.635×106 km2

and 2.991× 106 km3, respectively, for the BP run, compared
to 1.634×106 km2 and 2.993×106 km3 for DIVA. Figures 13
and 14 show differences in thickness and surface ice speed,
respectively, between the two runs. In the vast majority of
the ice sheet, thickness differences are less than 50 m, and
velocity differences are less than 20 m yr−1. In several out-
let glaciers, however – notably Humboldt Glacier in the
northwest – thickness differences exceed 100 m, and veloc-
ity differences are greater than 100 m yr−1. These differences
might merit further study. Some, although not all, of the
larger differences can be attributed to transient behavior. For

example, Humboldt Glacier is not fully equilibrated at 10 kyr,
and the two simulations could capture the glacier in different
phases.

Table 3 shows the cost of these runs on 144 and 288 cores
of NCAR’s Cheyenne supercomputer. On 144 cores, the
DIVA run without ice shelves completes 1350 model years
per wall-clock hour or 9.41 model years per core hour. Run-
ning on 288 cores, the throughput increases to 2480 model
years per wall-clock hour, at slightly reduced efficiency of
8.61 model years per core hour. With the BP solver and an
otherwise identical configuration (including 11 vertical ve-
locity levels), the throughput decreases by nearly a factor
of 50. Table 3 also shows the cost of DIVA runs with ice
shelves, which are described next. Although we have found
that solver convergence can be slower when floating ice is
present, the runs presented here have a similar cost with or
without ice shelves.

5.2 Simulation with ice shelves

The simulation with ice shelves is configured like the no-
shelf simulation but with these differences:

– No-float calving is replaced by the eigencalving scheme
of Sect. 3.5, with kτ = 0.0025 m yr−1 Pa−1 and w2 =

25. These parameters give a low calving rate for along-
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Table 3. Computational performance on NCAR’s Cheyenne supercomputer for various simulations: DIVA vs. BP solvers, with and without
floating ice shelves, and 144 vs. 288 processor cores.

Simulation No. of cores Model year/wall-clock hour Model year/core hour

DIVA without shelves 144 1350 9.41
DIVA without shelves 288 2480 8.61
BP without shelves 144 28.4 0.197
BP without shelves 288 54.0 0.188
DIVA with shelves 144 1330 9.26
DIVA with shelves 288 2590 8.98

Figure 11. Difference (m) between (1) simulated ice thickness at
the end of a 50 kyr Greenland spin-up without ice shelves and
(2) observed thickness from Morlighem et al. (2014). The observed
thickness is the model initial condition. The gray background shows
regions that are ice-free at both the beginning and end of the simu-
lation.

flow tensile stresses and a much higher rate for across-
flow stresses.

– Beneath floating ice, we apply the depth-dependent melt
rate of Sect. 3.6, with a basal mass balance b = 0 at
z=−200 m. The freezing rate is 3 m yr−1 above z=
−100 m, with a linear ramp between−200 and−100 m.
The melt rate is 100 m yr−1 below z=−500 m, with a

Figure 12. Basal water state at the end of a 50 kyr Greenland spin-
up. Red: fully saturated bed with basal water depthW capped at the
upper limit of 2 m. Light blue: partly saturated bed with 0<W <

2 m. Dark blue: frozen bed with W = 0. The color scale is based
on Fig. 11 of MacGregor et al. (2015). The gray background shows
ice-free regions.

linear ramp between−200 m and−500 m. The scale for
reducing melting in shallow cavities is H0 = 20 m.

Choi et al. (2017) used a similar combination of stress-based
calving and depth-dependent sub-shelf melting in ISSM to
simulate glacier evolution in the NEGIS region. For the
CISM simulations, calving and melting parameters were
tuned to improve agreement with Greenland’s observed ice
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Figure 13. Difference (m) in simulated ice thickness after 10 kyr
between (1) a run using the BP velocity solver and (2) a run using
the DIVA velocity solver and otherwise configured identically. The
gray background shows regions that are ice-free in both simulations.

shelves (or lack thereof). For example, higher values of kτ
were found to remove existing ice shelves in northern Green-
land. With the chosen value of kτ , lower values of w2 are
insufficient to calve long, unrealistic ice tongues along the
southeast coast. Similarly, sub-shelf freezing is needed near
the surface to prevent substantial calving-front retreat for
the Petermann and 79 North glaciers. While near-surface
freezing is physically plausible, basal freezing in the simu-
lation might be compensating for a negative SMB bias (Noël
et al., 2018) or excessive calving. A maximum melt rate of
100 m yr−1 exceeds inferred melt rates of ∼ 30 m yr−1 near
the grounding line (GL) of Petermann Glacier (Cai et al.,
2017), but smaller rates in the model permit unrealistic GL
advance. Simulated GL locations could differ, however, if the
model were run at different resolution or with a grounding-
line parameterization (Gladstone et al., 2010; Leguy et al.,
2014).

By the end of a 50 000-year simulation with ice shelves,
the total ice area and volume reach equilibrium values of
1.67×106 and 3.08×106 km2, respectively. The area agrees
closely with the observational data set, but the volume is high
by about 4 %. The floating area more than doubles compared

Figure 14. Difference (m yr−1) in simulated ice speed after 10 kyr
between (1) a run using the BP velocity solver and (2) a run using
the DIVA velocity solver and otherwise configured identically. The
gray background shows regions that are ice-free in both simulations.

to observations, from 3.7× 103 to 9.2× 103 km2. The addi-
tional floating ice is contained in many small shelves along
the coasts.

Figure 15 shows (for grounded ice) the thickness differ-
ence between the simulation and observations. Simulated
floating ice is shaded light green, and observed floating ice is
enclosed by black contours. The pattern of thickness errors is
generally similar to the run without ice shelves (Fig. 11), with
positive biases in the northeast interior and along the south-
east coast, and negative biases along the northern and north-
west margins. The run with shelves, however, has additional
positive biases in east central and west central Greenland,
upstream of large outlet glaciers such as Jakobshavn in the
west and Helheim and Kangerlussuaq in the southeast. The
basins that have thickened relative to the no-shelf simulation
generally have ice shelves at their termini, where no shelves
exist in reality. Although these shelves are small, they ap-
pear to provide buttressing that leads to thickening upstream.
Figure 16 shows the difference in surface ice speed between
the simulations with and without ice shelves. Differences are
largest in outlet glaciers with unrealistic floating termini. The
general pattern is of faster speeds near glacier termini in the
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Figure 15. Difference (m) between (1) simulated ice thickness at
the end of a 50 kyr Greenland spin-up with ice shelves and (2)
observed thickness from Morlighem et al. (2014). The observed
thickness is the model initial condition. The thickness difference
is shown for grounded ice only. Regions shaded light green are
floating at the end of the simulation, and black contours enclose
regions that are floating in observations. The three boxes indicate
floating regions highlighted in Fig. 17: Petermann Glacier (red), 79
North Glacier and Zachariae Isstrom (dark green), and Kangerlus-
suaq Glacier (dark blue). The gray background shows regions that
are ice-free at both the beginning and end of the simulation.

run with shelves (where ice can be much thicker than in the
no-shelf simulation), with slower speeds upstream.

Figure 17 shows closeups of three regions enclosed by
boxes in Fig. 15. These regions illustrate floating ice sim-
ulated in the vicinity of Petermann Glacier in the north-
west, 79 North Glacier/Zachariae Isstrom in the northeast,
and Kangerlussuaq Glacier in the southeast. The Petermann
simulation (Fig. 17a) is the most realistic, with modest re-
treat of both the grounding line and calving front, and a total
area similar to observations. As mentioned above, however,
both the CF and GL locations are sensitive to model param-
eters. The 79 North Glacier ice shelf (upper left of Fig. 17b)
shows modest GL retreat with somewhat larger CF retreat.
The simulated Zachariae shelf (lower right of Fig. 17b) sub-
stantially retreats; we found no combination of calving and

Figure 16. Difference (m yr−1) in simulated surface ice speed at the
end of 50 kyr Greenland spin-up runs with and without ice shelves.
Black contours enclose regions that are floating in the run with ice
shelves. The gray background shows regions that are ice-free in both
simulations.

basal melting/freezing parameters that maintains Zachariae
in its observed location. Figure 17c, showing Kangerlussuaq
Glacier, illustrates the model’s tendency to grow unobserved
shelves. While there is little floating ice in this region in re-
ality, there is a moderate-sized simulated shelf at the fjord
mouth, buttressing the glacier upstream.

These results demonstrate a modeling challenge for
Greenland: how to simulate existing ice shelves in north-
ern Greenland without permitting unrealistic shelves in other
regions. An eigencalving parameterization, suitably tuned,
can prevent shelves from extending into the open ocean,
but in enclosed bays there are unrealistic shelves with non-
negligible dynamic effects. We were unable to eliminate the
unobserved shelves in CISM without also removing observed
shelves. This result suggests that important calving or melt-
ing mechanisms could be missing in the model. For example,
Bassis and Ma (2015) suggested that basal melting, which is
spatially variable, is a major driver of crevassing and calving.
Lacking ocean forcing, the model does not simulate spatially
dependent basal melt rates.
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Figure 17. Close-ups of three regions with floating ice at the end of
a 50 kyr Greenland spin-up with ice shelves: Petermann Glacier (a),
79 North Glacier and Zachariae Isstrom (b), and Kangerlussuaq
Glacier (c). These regions are enclosed by boxes in Fig. 15. The
shaded color shows the bed topography (m). Black and green con-
tours enclose regions that are floating at the start and end of the sim-
ulation, respectively. Calving fronts are located at the north, north-
east, and southeast shelf boundaries, respectively, from top to bot-
tom; grounding lines are located at the south, southwest, and north-
west shelf boundaries, respectively.

Despite these biases, the results show that CISM is capa-
ble of simulating ice velocities broadly consistent with ob-
servations for both slow-flowing and fast-flowing parts of the
Greenland ice sheet, with reasonable computational costs for
multimillennial simulations with a higher-order Stokes ap-
proximation.

6 Conclusions

We have described CISM v2.1, which includes many innova-
tions to support robust, accurate, and efficient ice sheet sim-
ulations in both idealized and real-world applications. The
model incorporates a hierarchy of Stokes approximations,
including SIA, SSA, depth-integrated higher-order, and 3-D
higher-order. To solve the large elliptic systems associated
with membrane stresses, CISM has an efficient native Fortran
preconditioned conjugate gradient solver, along with links to
third-party solver libraries (Trilinos and SLAP). CISM also
adds test cases for higher-order models, including ISMIP-
HOM and various shelf and stream cases. For each velocity
solver and test case, we have verified that CISM solutions
are consistent with community benchmarks. That is, the so-
lutions are as accurate as expected given the simplifications
in the various approximations.

CISM’s structured rectangular grid has limitations; in par-
ticular, the grid cannot be refined selectively near ground-
ing lines and other regions requiring high resolution. On the
other hand, the structured grid lends itself to straightforward
algorithm development, debugging, creation of forcing data
sets, and analysis of results. CISM runs efficiently on a 4 km
Greenland grid, with throughput of ∼ 2000 model years per
wall-clock hour on NCAR’s Cheyenne supercomputer using
the depth-integrated higher-order solver. Performance im-
provements might be needed, however, to support whole-ice-
sheet simulations on grids as fine as 1 or 2 km.

CISM has participated in the initMIP-Greenland experi-
ments (Goelzer et al., 2018) for model initialization. When
spun up for 50 kyr with modern climate forcing and without
floating ice, CISM gives a steady-state simulation in good
agreement with the observed ice extent, volume, and velocity
structure of the Greenland ice sheet. The quality of the simu-
lation can be attributed, in part, to a higher-order solver that
simulates a realistic stress state in fast outlet glaciers, along
with a pseudo-plastic basal sliding law that enhances sliding
on thawed beds at low elevation. The simulation also bene-
fits from an accurate SMB (from the regional climate model
RACMO2), adjusted to inhibit ice sheet advance beyond
modern boundaries. When floating ice is allowed, CISM can
maintain ice shelves that resemble observed shelves in north-
ern Greenland, but the model also simulates many small
shelves that do not exist in reality.

CISM can be used for both stand-alone and coupled ice
sheet simulations. CISM v2.1 is the dynamic ice sheet com-
ponent of CESM2.0, released in June 2018. Compared to
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earlier CESM versions, CESM2.0 has more sophisticated
ice sheet dynamics and physics (as described here), along
with interactive coupling capabilities. These improvements
will support increasingly realistic simulations of coupled ice
sheet evolution.

Code availability. Source code for CISM v2.1 can be obtained
by downloading a released version from https://cism.github.io/
download.html (Hoffman et al., 2019) or by cloning the code from
the public git repository at https://github.com/CISM/cism (last ac-
cess: 20 January 2019). The CISM2.1 documentation, which in-
cludes detailed instructions for downloading and building the code,
can be found at https://cism.github.io/documentation.html (last ac-
cess: 20 January 2019).

Following the release of CESM2.0 in June 2018, new CISM de-
velopment was moved to the Earth System Modeling Community
Portal (ESCOMP). The latest code is available on the public git
repository at https://github.com/escomp/cism (Sacks and Lipscomb,
2019). Current documentation for CISM and for the land-ice im-
plementation in CESM can be found at http://www.cesm.ucar.edu/
models/cesm2/land-ice/ (last access: 20 January 2019). New devel-
opers are welcome.
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Appendix A: Matrix assembly for the Blatter–Pattyn
approximation

Here, we describe the assembly of the terms in Eq. (9) into
a global matrix A and vector b. The four terms in Eq. (9)
describe internal ice stresses, basal friction, lateral pressure,
and the gravitational driving force, respectively. We begin
with the internal stress term, which is the most complex.

A1 Internal ice stresses

The first term on the LHS of each component of Eq. (9) can
be rewritten in terms of velocity components:

x :

∫
�

2η
[
2 ∂u
∂x
+
∂v
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(A1)

where brackets denote row vectors and braces denote column
vectors. Glissade evaluates Eq. (A1) for each active element.
Hexahedral elements have eight nodes, with u and v to be
determined at each active node. Inserting the velocity expres-
sions (Eq. 6) into Eq. (A1), we obtain
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Each row or column vector has eight terms, one for each
node of the element. These terms can be evaluated to form
a set of four 8× 8 element matrices, denoted as Kuu, Kuv ,
Kvu, and Kvv . Each row of an element matrix is associated
with u or v at a given node. The columns in this row contain
terms linking the node to u or v at the other nodes of the same
element (with the diagonal term linking the node to itself).

In the x component of Eq. (A2), the terms that multiply uj
are given by∫
�

η

(
4
∂ϕi

∂x
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)
d�. (A3)

Letting i and j range from 1 to 8, Eq. (A3) gives the 64 terms
of the 8× 8 element matrix Kuu, which links the u value at
each node to the u values at all eight nodes. Similarly, the 64
terms of element matrix Kuv , which links u at each node to
v at each of the eight nodes, are given by∫
�

η
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Likewise, two 8× 8 matrices are associated with the y com-
ponent of Eq. (A2). The terms of Kvu are∫
�

η

(
2
∂ϕi

∂y

∂ϕj

∂x
+
∂ϕi

∂x

∂ϕj

∂y

)
d�, (A5)

and the terms of Kvv are∫
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Because of the symmetry of the underlying PDEs, Kuu and
Kvv are symmetric, and Kuv =KT

vu. The terms containing z
(i.e., the vertical shear stresses) appear only in Kuu and Kvv ,
whereas the terms containing x and y (i.e., the membrane
stresses) appear in all four element matrices.

In the weak form of the equations, each of the 64 coef-
ficients in each element matrix must be integrated over the
element. (Since ϕ varies over the element, the integrands in
Eqs. A3–A6 have a different value at each point.) The inte-
grals can be computed exactly by evaluating the integrand at
each of eight quadrature points and summing over quadrature
points.

We now specify the form of the basis functions and trans-
form these functions to the geometry of the element (which
is irregular in the vertical direction because of the sigma co-
ordinate). We can then evaluate the basis function derivatives
at quadrature points. Glissade uses trilinear basis functions
defined on a reference cube. This cube is centered at the
origin (0,0,0) in local reference coordinates (x̂, ŷ, ẑ). The
eight nodes of the reference cube are located at (x̂, ŷ, ẑ)=
(±1,±1,±1). By convention, nodes 1–4 are the nodes of the
lower face, proceeding counterclockwise from the southwest
corner (x̂, ŷ)= (−1,−1). Nodes 5–8 are the nodes of the up-
per face, also moving counterclockwise from the southwest
corner. Thus, we have

ϕ1 = (1− x̂)(1− ŷ)(1− ẑ)/8,
ϕ2 = (1+ x̂)(1− ŷ)(1− ẑ)/8,
ϕ3 = (1+ x̂)(1+ ŷ)(1− ẑ)/8,
ϕ4 = (1− x̂)(1+ ŷ)(1− ẑ)/8,
ϕ5 = (1− x̂)(1− ŷ)(1+ ẑ)/8,
ϕ6 = (1+ x̂)(1− ŷ)(1+ ẑ)/8,
ϕ7 = (1+ x̂)(1+ ŷ)(1+ ẑ)/8,
ϕ8 = (1− x̂)(1+ ŷ)(1+ ẑ)/8.

(A7)
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For each n, we have ϕn = 1 at node n, with ϕn = 0 at the
other nodes.

The integrands in Eqs. (A3)–(A6) are written in terms of
real Cartesian coordinates (x,y,z) rather than reference co-
ordinates (x̂, ŷ, ẑ). Spatial derivatives in real coordinates are
related to derivatives in reference coordinates by
∂ϕn
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∂ẑ
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 , (A8)

where [J ] is the Jacobian of the transformation between co-
ordinate systems. Given the finite-element expansion,

x =
∑
n

ϕnxn, (A9)

along with the spatial derivatives of ϕ at (x̂, ŷ, ẑ) (which are
easily derived from Eq. A7), we can compute [J (x̂, ŷ, ẑ)] as
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We then invert Eq. (A8) to obtain the basis function deriva-
tives in terms of (x,y,z):
∂ϕn
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∂ϕn
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]
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The LHS of Eq. (A11) contains the spatial derivatives
needed to evaluate Eqs. (A3)–(A6).

Equations (A3)–(A6) also contain the viscosity η, which
is computed at each quadrature point. In the BP approxima-
tion, η is given by Eq. (2); it is a function of the flow factor
A and the effective strain rate defined by Eq. (3). We ap-
proximate A by its value at the element center. The (squared)
effective strain rate ε̇2

e is evaluated at each quadrature point
by summing over strain-rate components. The x components
are given by

∂u

∂x
=

8∑
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∂ϕn

∂x
un,

∂v

∂x
=

8∑
n=1

∂ϕn

∂x
vn, (A12)

and similarly for the y and z components. The nodal veloci-
ties in Eq. (A12) are values from the previous iteration.

We now have the information needed to compute the in-
tegrands (A3)–(A6) at quadrature points. To integrate over a
hexahedron, we take a weighted sum of the values at each of
eight quadrature points. These points are located at reference
coordinates (x̂, ŷ, ẑ)= (±1/

√
3,±1/

√
3,±1/

√
3). To eval-

uate an integral of the form∫
�

η
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∂z

∂ϕj
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)
d� (A13)

over element volume�, we compute the sum over quadrature
points

8∑
p=1

wpηp

(
∂ϕi

∂z

∂ϕj

∂z

)
p

|Jp|, (A14)

where |J | is the determinant of the Jacobian (Eq. A10). For
this choice of quadrature points, each point has a weight
wp = 1.

The terms of the element matrices Kuu,Kuv,Kvu, and
Kvv are then inserted into the corresponding global matrices
Auu,Auv,Avu, and Avv . This is mostly a matter of bookkeep-
ing. For example, the first row of Kuu corresponds to a par-
ticular node of element (k, i,j) (specifically, the node with
indices (k−1, i−1,j−1), given the convention for number-
ing nodes within elements). This row corresponds to a row
of the global matrix Auu, and each of the eight terms in the
row of Kuu is associated with a column of Auu. Glissade de-
termines the correct column and adds the Kuu term to the
corresponding term in Auu. This process proceeds until the
code has looped over all the active elements and filled the
global matrices.

If written in full, each global matrix would have as many
rows and columns as there are active nodes. These matrices,
however, are sparse, with a maximum of 27 nonzero terms
per row (corresponding to a node and its 26 nearest neigh-
bors in a hexahedral lattice). Glissade therefore assembles
and stores arrays of dimension (27,nz,nx−1,ny−1), where
nx, ny, and nz are the grid dimensions. The 27 terms of the
first array dimension are arranged according to a geomet-
ric convention. For example, suppose we are filling columns
for the matrix row corresponding to node (k, i,j). Then,
by convention, index 1 refers to the node with coordinates
(k−1, i−1,j−1), index 14 refers to the node itself (i.e., the
diagonal term of the row), and index 27 refers to the node at
(k+1, i+1,j+1) (and similarly for the other indices). After
assembly, these arrays can be converted to the form required
by a particular linear solver.

The remaining assembly consists of evaluating the other
terms in Eq. (9) (i.e., the basal and lateral boundary condi-
tions and the gravitational forcing) and implementing Dirich-
let boundary conditions, if applicable. We consider these in
turn.
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A2 Basal boundary conditions

The basal boundary terms in Eq. (9) are

x :

∫
0B

βuϕ1d0,

y :

∫
0B

βvϕ2d0. (A15)

The basal face of each cell is a rectangle. To integrate over
a rectangle, we sum over four quadrature points lying at
(x̂, ŷ)= (±1/

√
3,±1/

√
3) in a reference square with cen-

ter (0,0) and vertices (±1,±1). This reference square is the
2-D analog of the reference cube discussed above. We define
four bilinear basis functions on the square (cf. Eq. A7):

ϕ1 = (1− x̂)(1− ŷ)/4,
ϕ2 = (1+ x̂)(1− ŷ)/4,
ϕ3 = (1+ x̂)(1+ ŷ)/4,
ϕ4 = (1− x̂)(1+ ŷ)/4.

(A16)

Given these basis functions and their spatial derivatives, we
can compute the Jacobian for the transformation between the
reference square and the rectangular cell face using the 2-D
versions of Eqs. (A10) and (A11):
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The integrand at a quadrature point has the form βϕiϕj ,
where the second ϕ term arises from the finite-element ex-
pansion of u at a quadrature point:

u=

4∑
n=1

unϕn. (A19)

We determine β at quadrature points from the values at cell
vertices:

β =

4∑
n=1

βnϕn. (A20)

The integral over a cell is then computed as a sum over
quadrature points:

4∑
p=1

wpβp(ϕiϕj )p|Jp|, (A21)

where wp = 1 for each point. This procedure yields a 4× 4
matrix describing the connections between each vertex and

its neighbors in the cell. Since the x term in Eq. (A15) con-
tains u but not v, and the y term contains v but not u, we
form 2-D matrices Kuu and Kvv , but not Kuv and Kvu. Each
term of Kuu is then inserted into the global matrix Auu, and
similarly for Kvv into Avv .

This assembly method tends to smooth the β field. If it is
desired to resolve sharp discontinuities in β, as in the stream
test problem of Sect. 4.3, Glissade supports a local assem-
bly method in which the basal friction at a particular vertex
depends on the value of β at that vertex alone.

A3 Lateral boundary conditions

The lateral boundary terms in Eq. (9) are

x :

∫
0L

pn1ϕ1 d0,

y :

∫
0L

pn2ϕ2 d0. (A22)

Since these terms are independent of u and v, they con-
tribute to the load vectors bu and bv on the right-hand side
of Eq. (16). They are integrated over the lateral faces of cells
(either grounded or floating) that border the ocean.

The lateral faces bordering the ocean are quadrilaterals
that can be mapped to a reference square. The integral over
each face is found by summing over four quadrature points.
Basis functions are given by Eq. (A16), and the Jacobian of
the reference square is found using Eq. (A17). The ice thick-
ness H at each quadrature point is evaluated using

H =

4∑
n=1

Hnϕn, (A23)

where theHn are nodal values interpolated from cell centers.
The integrands have the form pϕ, where p is the verti-

cally averaged net pressure normal to the ice edge, given by
Eq. (13). The integral of the pressure terms over a lateral face
is computed as a sum over quadrature points:

4∑
p=1
±wppp(ϕi)p|Jp|, (A24)

where the sign depends on the orientation of the face. The re-
sulting pressure terms are inserted into the load vector (either
bu or bv , depending on the orientation) in the rows associated
with each of the four nodes of the face.

A4 Gravitational driving stress

The gravitational forcing terms in Eq. (9) are

x :

∫
�

ρg
∂s

∂x
ϕ1 d�,
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y :

∫
�

ρg
∂s

∂y
ϕ2 d�. (A25)

To compute these terms, we evaluate ∂s/∂x and ∂s/∂y at
each active vertex, typically using Eq. (14) or its y analog.

The integrals in Eq. (A25) are over 3-D elements. Each
hexahedral element is mapped to a reference cube as de-
scribed above. Given ∂s/∂x at the vertices of a cell, the sur-
face slope terms at quadrature points are

∂s
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=
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(
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n
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∂s

∂y
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)
n

, (A26)

where the basis functions ϕ are given by Eq. (A7) and the
spatial derivatives are derived from Eqs. (A10) and (A11).
The integral of ρg ∂s

∂x
ϕ over an element is evaluated as a sum

over quadrature points:

8∑
p=1

wpρg

(
∂s

∂x

)
p
(ϕi)p|Jp|, (A27)

and similarly for the ∂s/∂y term. Glissade inserts these terms
into the load vectors bu and bv .

As described above for the assembly of β terms, this
method tends to smooth the surface elevation gradient field,
averaging neighbor values of ∂s/∂x and ∂s/∂y into the driv-
ing stress at each vertex. For problems with sharp variations
in surface gradients, we have found the solver to be more ro-
bust when the driving stress at each vertex depends on ∂s/∂x
and ∂s/∂y at that vertex alone. Thus, Glissade also supports
a local assembly method for the driving stress.

A5 Dirichlet boundary conditions

Once the matrix has been assembled, it may need to be ad-
justed for Dirichlet boundary conditions (i.e., prescribed ve-
locity values at certain nodes). A common Dirichlet condi-
tion is to set u= v = 0 at the bed to enforce a no-slip bound-
ary condition. (A no-slip condition can also be enforced by
setting the basal traction coefficient β to a large value, but
formally this is not a Dirichlet condition.) Also, it may be
desirable to set u and v to observed values at certain loca-
tions, as in the Ross Ice Shelf test case (Sect. 4.4).

Suppose that at node (k, i,j) we have u= uc and v = vc,
where uc and vc are prescribed values. Let nr be the row
of Auu associated with this node, and let nc range over the
columns with nonzero entries in this row. To enforce the
Dirichlet condition, we set Auu(nr,nc)= Avv(nr,nc)= 0
for all values of nc except nc = nr (the diagonal term);
we set Auu(nr,nr)= Avv(nr,nr)= 1. In addition, we set
Auv(nr,nc)= Avu(nr,nc)= 0 for all nc, since these two
matrices do not contain any terms on the diagonal of the full
global matrix (i.e., A in Eq. 15). On the right-hand side, we
set bu(nr)= uc and bv(nr)= vc. These operations convert
the matrix rows associated with node (k, i,j) to the equations

1 ·u= uc,1 ·v = vc, which clearly have the desired solutions
uc and vc.

A further step is needed to maintain matrix symmetry, as
required for the PCG solver. Consider the term Auu(nr,nc),
where nc is a column associated with a neighboring node.
We have already set Auu(nr,nc)= 0, so we need to set
Auu(nc,nr)= 0 to maintain symmetry. The Dirichlet con-
dition is u(nr)= uc. Thus, we can replace bu(nc) with
bu(nc)−Auu(nc,nr)uc and set Auu(nc,nr)= 0 without al-
tering the problem. We do this for all the terms in the columns
associated with node (k, i,j) (i.e., all the terms multiplied by
uc or vc in the matrix–vector product). Thus, both the rows
and the columns associated with node (k, i,j) are filled with
zeros, except for the diagonal term, and the full global matrix
remains symmetric.
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