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Knowledge of the ultimate strength of ships is important,
particularly in determining the appropriate margins of safety or
the probable risk of failure under the loads acting on the vessel.
The behavior of panels and grillages when subjected only to lateral
loads is understood sufficiently well as to allow reasonable predic-
tions to be made concerning their strength. However, the same has
not been true with compressive loads, much less with combined
compressive and lateral or normal loads.

By ovrdesign of these ship components the uncertainty can
be reduced to ari acceptably conservative level. An interest in
optimization and energy conservation prompted the Ship Structure
Committee to undertake a study project that would review all data
on the strength of welded steel cross-stiffened plating under
various loading conditions and then develop analytical procedures
for predicting such strength, implementing more cost effective
margins of safety.

This report contains the results of that study. Comments on
this report, or suggestions for other projects in the ship structure
area, will be welcomed.

Sincerely,

W. M. BFRT
Rear Admiral, U.S. Coast Guard
Chairman, Ship Structure Committee
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ABSTRACT

The existing methods of predicting the behavior and ultimate strength of ship
gross panels were evaluated, examined and in some instances, further developed.
The assumptions, approximations, and deficiencies in each method were identified
with the objective of determining the range of validity of each. The methods were
classified in five broad categories with respect to their theoretical bases.
Comparisons and correlations were conducted between the results of the different
methods when applied to identical gross panels under biaxial edge compresson and
lateral pressure. Based on the identification of the assumptions and approxima-
tions in each method, and on the conducted comparisons and correlations, some
expressions and procedures were selected, discussed, and extended. Lack of ade-
quate procedures in certain areas were pointed out particularly when the collapse loads
and mechanisms involve coupling between several modes of failure, and a biaxial
loading condition exists in combination with lateral pressure. In some instances
no clear measure of the relative reliability of the different procedures can be
ascertained and a firm evidence of the "exact' solution is not available. A two-

phase test program was recommended with immediate objectives and final goals
outlined. An extensive bibliography is appended to this report.
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1. INTRODUCTION AND OBJECTIVE

Shipbuilding history throughout the world has been, and still is, largely de-
pendent on experience and empiricism. Requirements for the design of the structural
elements in ships have been developed on the basis of empirical data and past
"successful' designs. In some cases these data have been refined and confirmed by
theoretical analysis, but in many cases no analytical procedures were available
during the course of their development.

In the last decade, however, the demand for new and more efficient modes of
marine transportation and for other ocean engineering activities has forced naval
architects and civil engineers to search for general and reliable methods of
analysis which would provide the necessary correlation between the sea loads acting
on the structure and its dimensions. Recognition has been given to the fact that
it is not sufficient to define a "successful" ship as one which has not failed
(since it could be grossly over-designed), and that requirements based purely on
experience might not always be safely extrapolated to new configurations and larger
ship types. In short, the need exists more than ever to provide structural effi-
ciency combined with safety in withstanding the sea loads.

The "basic structural element" or the "building block" in ships and many other
marine structures consists of a plate reinforced with stiffeners. This plate-
stiffener combination is usually subjected to loads normal to its own plane due to
water pressure, cargo loads, deck loads, etc. In addition, inplane forces induced
from the overall bending and twisting of the ship act at the boundaries of such
stiffened gross panels. In general, the inpiane forces can take the form of
tensile, compressive, or shear loads, and some of them may occur simultaneously on
all four boundaries of the gross panel. The panel itself can be stiffened in one
or both directions, and the stiffeners extending in each direction are usually
similar.

Beyond certain values, the inplane compressive and shear loads may cause
instability of the gross panel which, together with the normal loads, will induce
large deflections. Under such conditions, geometric non-linearities will be
present and therefore, non-linear analysis has to be conducted in any analytical
method used for the prediction of the behavior of the panel in the post-buckling
range. Prior to failure o-f the panel, large deformations will also take place due
to material non-linearities in the inelastic range; therefore, analytical pro-
cedures suitable for the prediction of the ultimate strength of the gross panel
should take into account such material non-linearities. The gross panel may fail
in one of several modes depending on the stiffeners' spacing, their geometric
properties, the plate thickness, initial deformations, and the welding characteris-
tics. Tripping of the stiffeners, local failure due to instability of the plate
elements of the stiffeners, plate failure between the stiffeners and failure of
the cross-stiffened panel as a whole are some possible modes of failure.

In general, plate buckling does not necessarily mean immediate failure since
membrane stresses will develop as deflection becomes large and, together with
bending stresses, will resist the external loads. Initial deformation and
deflections due to welding, fabrication imperfections and presence of camber may
have a rather distinct effect on the panel behavior when the inpiane loads are in
range of their critical values for buckling. Their effect, however, is less
pronounced if these loads are much larger than the critical values.
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It is difficult to determine the boundary conditions of the gross panel which
describe exactly the conditions in the actual ship. Nevertheless, in order to
predict analytically the behavior and the ultimate strength of the gross panel
specific information about the restraints of the support is useful . A wide variety
of support conditions may exist in the actual ship. However, from possible
symmetry or antisymrnetry of the structural configuration or the loading, certain
combinations of boundary conditions are more useful than others.

The objective of this study is to select, from existing methods, reliable
analytical procedures for examining the behavior and predicting the ultimate
strength of welded cross-stiffened panels under combined lateral and biaxial loads.
The procedures should cover the wide range of parameters describing the geometric
configurations and loading conditions encountered frequently in ship structures
and should be capable of predicting the onset of non-linear behavior and the
probable initial mode of failure. Recommendations are to be made as to the
adequacy of the procedures and possible experimental programs for verifications
are to be suggested.
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2. METHODS OF GROSS PANEL ANALYSES

An important first step in the selection of appropriate methodology for the
analysis of gross panel strength is to conduct a complete and up-to-date survey
of the existing methods. It seems appropriate then to classify the available
methods with respect to their theoretical basis, as for example, methods based
on finite element technique, equivalent orthotropic plates, grillages and inter-
secting beam-columns, etc. The basic assumptions and approximations made in each
of these methods are then clearly identified and examined. The range of validity
of such assumptions are also evaluated in order to estimate bounds on the relevant
design parameters beyond which such assumptions are invalid.

In the literature survey, two aspects were considered:

Methods related to evaluating and examining the gross panel
behavior under lateral and fnplane loads including methods
of estimating the critical buckling loads.

Methods related to failure analysis and failure modes which
may be used for predicting the ultimate strength of the
gross panel.

Based on the conducted survey, the methods examined can be classified under
five broad categories which, in some cases, may overlap. The five categories
are: (a) orthotropic plate analysis, (b) energy and plastic methods of analyses,
(c) grillages and intersecting beams, (d) finite element method, and (e) beam-column
analysis. Each of these is discussed separately as follows.

A. Orthotropic Plate Analysis

In this method the actual plate stiffener combination is idealized by an
equivalent orthotropic plate. The degree of approximation involved depends to a
great extent on the number of stiffeners in each direction and the uniformity of
the gross stiffened panel.

An orthotropic plate may be defined as a homogeneous plate whose elastic
properties are different in the two orthogonal directions in the plane of the plate.
The constitutive relations can be written in the form of:

where

L{G

\
TEx Ex\. Oxi

i
ay

= i - xVy EyVx E O

Txy O O G(lxVy)

(i)

Ex\)y Ey\)x
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If the thickness of the rectangular orthotropic plate is small relative to its
other dimensions (a,b/h>40) so that both the normal stress GZ and the effect of
shear deflection can be disregarded, then the governing differential equations
including the non-linear terms in the sense of von Kârmn [l]* for the large deflec-
tion behavior of the plate are derived in reference [2] and are given by:

D
4W 9 fl = rl(v 2F 2w 2F a2w 2_2F 2w

X 'XYax2y2
Liy j\A,J) xy xy

J + 2J 4F
+ -

Xx4 XYx2y2 Y4 'xy'
2w

x2 2

wherewis the deflection function; F is the Airys stress function; D, Dy and

are rigidity coefficients; and J, J, and are compliance coefficients given

by:

Eh3 Ey3
2D

4Gh3

DX l2(1vy) ; D
= 12(1_Vx\)y) Xy 12 + + vyD

JX =
y = ; 2J = - Xy - yx (3)

Equations similar to the above have been derived in reference 113] for the case

of orthotropic plates with small initial deflection. The two fourth-order partial-

differential equations (2) describe the behavior of the plate in the post-buckling

range as well as in the pre-buckling range. Equations (2) reduce to von Krmn's
fundamental equations [1] for large deflection of isotropic plates when Ex = E = E,

and =
= y are substitued in the expressions of the coefficients D, Dy Dxy

x' J, and

The two partial differential equations (2) require a total of sixteen boundary

conditions, eight of these are specified conditions of either edge loads or edge

displacements, the other eight specify the support conditions.

Sometimes, the exact solutions for the boundary value problem are hard to

obtain. Several approximate methods can be applied, such as Galerkin's method

and the finite difference method. In the Galerkin method, one considers the

governing differential equation of the form:

L(w) = C in R (4)

*Numbers in brackets designate references at the end of the report.

(2)
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Assuming w can be expressed in the approximate form:

= E a..(x,y) i = 1.. .n (5)

then from the weighted residual concept, the following condition must be
satisfied:

JR (L() - C) dR = O i = l...n (6)

This leads to a total of n simultaneous equations to be solved for the n unknowns
a.

The Galerkin method is in principle equivalent to the Ritz method which is
based on the calculus of variation. But indeed, in the Galerkin formulation
no reference is made to variational problems. Moreover, the Galerkin method can
be applied to a broad class of problems phrased in terms of integral equations.

The Galerkin method as well as the method of variation for approximation of
boundary value problems consider analytical expressions for the approximation
functions. When the boundary values are not easily given by simple analytical
expression, it is difficult to make a choice of the coordinate functions j(x,y).
In this case, the finite difference method can be applied. The finite difference
method gives numerical values for unknown functions at a set of discrete points
instead of the analytical expression defined over the whole region. It reduces
the given analytical boundary-value problem to a problem of difference equations.
Usually this method leads to consideration of a system of large numbers of alge-
braic equations in many unknowns.

In reference [2], equations (2) are solved under two sets of support conditions:
(a) all edges clamped, and (b) two edges simply supported and other edges clamped.
The behavior of the orthotropic plate is examined and distributions of deflection,
membrane stress, bending moments, etc., along the plate centerlines are presented
(no initial deflection). In reference [3] non-dimensional design curves of the
center deflection, the critical load, the effective width, and the bending moment
are presented for different values of uniaxial compressive load, lateral load,
initial deflection, and the virtual aspect ratio of the plate. Some examples of
the use of the design curves are given in which the results are compared for
different initial deflections and boundary conditions. In both references [2] and
[3] geometric non-linearities are considered in the problem formulation and thus
the results are suitable for investigating the plate behavior in the post-buckling
range

Other design curves based on orthotropic plate analysis were introduced in
the original work of Schade [4,5]. In these references the deflection was
assumed small compared to the plate thickness (wmax/h < 0.5) and the design charts
presented are suitable for examining the plate behavior in the pre-buckling range.
Schultz [6] examined the stability problem of orthotropic plates and presented
design charts for the calculation of the critical loads. In reference [7],
additional design charts are given for plates under lateral and uniaxial inplane
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loads within the scope of the linearized (second order) theory. The buckling

loads are also given for four different sets of boundary conditions. Smith and

Faulkner [8], Roren and Hansen [9], Soper [10], Ames [11], Ando [12] among others
[13,14,15] used the orthotropic plate theory for the analysis of ship stiffened

plates.

In particular, orthotropic plates subjected to lateral load and biaxial edge

compression and edge shear have been examined in references [13] and [14]. In

these references some non-dimensional design charts are presented giving the center

deflection, critical buckling load, effective width, and bending moment in the

stiffened plating. Some examples of application illustrating the use of the

charts are also presented.

In the application of the orthotropic plate theory, the rigidity and compli-
ance coefficientare conceived as applying to a homogeneous orthotropic plate of
constant thickness which is equivalent to the actual plate-stiffener combination.
The term equivalent requires careful definition, since the orthotropic plate
obviously cannot be equivalent to the actual stiffened plate in every respect.
The stiffeners in either direction are assumed to be equally stiff and equally
spaced, with spacing small enough that the structure may be considered quite fully
effective. So the validity of representing the gross panel by an equivalent
orthotropic plate depends to a great extent on the number of stiffeners in each
direction, their spacing, and how identical they are as far as their stiffness
characteristics are concerned. Such an approximation becomes critical when the
number of stiffeners is small.

From experiments conducted at Stanford University [16] the authors indicated

that, orthotropic plate theory and experiments have shown a different degree of

correlation depending on the boundary conditions and type of stiffeners used. The

correlation varies between good for the case of a plate simply supported all

around to less satisfactory for the case of a plate fixed all around. It is also

found that, under any specific case of boundary condition, the correlation with

theory is better when the nuner of stiffeners in each direction is increased.

Additional comparisons were made by C. Smith in reference [15]. The results

showed that for uniform simply supported grillages, the orthotropic plate solution

gives very accurate results even when gross panels have, as few as three longitudinal

and three transverse beams. For other boundary conditions, the orthotropic plate

analysis gave less accurate results. See ref. [15] for details on the manner of loading.

On the basis of these comparisons [15,16], it appears that the application of

the orthotropic plate theory to ship gross panels should be restricted to stiffened

plates with more than three stiffeners in each direction. In addition, stiffeners

in each direction should be similar, i.e., uniform gross panel.

B. Energy and Plastic Methods of Analyses

Exact solution of the governing differential equations of stiffened plates

often presents a difficult analytical problem and can be solved in closed form only

in some special cases. The introduction of the concept of strain energy allowed

for considerable development of structural analysis methods. One formulation of

the strain energy is the standard type of variational principle which constitutes

a very powerful approach to numerical methods such as the finite element method.

*See Section 3 and reference [14] for the definition and the approximate
determination of the rigidity and compliance coefficients.
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Widely used methods such as principles of virtual forces and displacements, minimum
potential energy, limit analysis, and shake-down analysis may be also classified
under energy methods.

In the method of stationary potential energy, the stiffeners and the plate
are forced to deflect together and the final deflection shape is such that the
total potential energy of the system is minimal. The final deflection shape is
assumed to be in the form of a series with finite numbers of terms for approxi-
mation:

w(x,y) = a1f1(x,y) + a2f2(x,y) + .. (7)

where the functions f1, f2, ... are the bases of the function w(x,y) and the
coefficients al, a, ... are the generalized coordinates. Using the minimum potential
energy principle, a set of simultaneous equations are obtained with the coefficients
a as unknowns. When the determinant of this simultaneous equation is put equal
to zero, an equation for determining the critical loading for instability problems
will be obtained. For large deflection problems these equations are non-linear in
the parameters a and numerical methods may be used in the solution.

This type of analysis becomes cumbersome if the plate is stiffened with a large
number of stiffeners. The deflection function can be chosen only for some special
cases. For these reasons, this method seems not to be often chosen directly to
solve practical problems. But the concept of this method is very important in
application to the numerical methods such as in the formulation of element stiff-
nesses used in the finite element method.

As mentioned earlier, the energy methods can also provide a powerful tool in
the orthotropic plate solutions. For example, in reference [17] the energy method,
together with Lagrangian multipliers, is used to solve the stability problems of
orthotropic plates under various boundary conditions. The theoretical results
presented compared favorably with those from tests and literature.

In the limit analysis, the gross panel can be idealized as a framework of
beams which are made of material with an elastic-perfectly plastic moment-
curvature relation. Small strains are usually assumed and the applied loads are
assumed to be proportional, i.e., all loads are increased gradually to their
final values in constant ratio. On these bases, lower and upper bound theorems
of the plastic limit load or the "collapse" load were advanced by Drucker,
Greenberg, and Prager in references [18,19]. The upper bound theorem simply states
that the structure will collapse if there is any compatible pattern of plastic
deformation for which the rate at which the external forces do work exceeds the
rate of internal dissipation. This theorem, which gives the "unsafe" values of
the collapse load postulates that if a compatible path of failure exists, the
structure will collapse. The lower bound theorem states that, if an equilibrium
distribution of stress can be formed which balances the applied load and is every-
where below yield or at yield, the structure will not collapse or will be just at
the point of collapse. This theorem, which gives the "safe" values or the
conservative limit of the collapse load, reaffirms that the material will adjust
itself to carry the applied load when possible. The limit load itself is the
minimum upper bound or the maximum lower bound. The exact limit load, however,
can be rarely determined for complex gross panels and thus, the lower and upper
bound theorems provide a valuable means to bracket its value.
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In the limit analysis, the loads acting on a structure are not permitted to

change their direction or ratio of their magnitudes. These conditions are not

satisfied in ari actual ship structure where loads are in general cyclic and random

in nature. A suitable means for estimating the limit load under their repeated

loading condition is the use of shakedown analysis. A safe limit to use may be

one at which the progressive or alternating plastic deformation is limited and the

response of the material becomes essentially elastic, i.e., the shakedown load.

If the structure does not shakedown, plastic flow will continue to take place

during each cycle of load application leading eventually to failure. The shake-

down analysis, however, does not provide any information on the number of load

cycles required for the structure to reach a shakedown state.

Bleich, H. [20], Symonds and Prager [21], and Koiter [22] developed and

advanced a lower and upper bound theorem of the shakedown load. It was indicated

that, if shakedown is not reached failure can be either through "incremental

collapse" where a definite amount of plastic deformation recurs always in the

same direction or "alternating plasticity" where plastic flow occurs at certain

sections alternately in the opposite directions.

The application of limit and shakedown analyses to ship gross panels and

structures has been rather limited. In reference [23] elastic and plastic limit

analyses of a web frame of a tanker are presented and the collapse mechanisms

and the corresponding collapse pressures are estimated. In reference [24] limit

and shakedown analyses are presented for some ship frames and grillages.

Additional application and correlation with experiments for stiffened plates and

grillages under lateral load only are given in [25] and [26].

C. Grillages and Intersecting Beams

In this category the gross stiffened panel is treated as a system of discrete

intersecting beams (plane frame) with loads perpendicular and in the plane of the

grillage. Each beam is assumed to consist of the stiffener plus a portion of the

plate over which the stress can be assumed uniform with a value equal to the

maximum value, i.e., the effective breadth. The torsional rigidity of the plate

and Poisson's ratio effects on the overall behavior of the gross panel are thus

ignored in this type of analysis. The model, however, allows for different
stiffener sizes and spacings within each set of parallel stiffeners. Although in

ship gross panels the stiffener spacings are usually equal, the allowance for

different stiffener sizes is undoubtedly desirable. The model also imposes no

restrictions on the number of stiffeners in each direction or any irregularities

in the boundaries.

The validity of representing the gross panel by a grillage (plane frame)

becomes particularly critical when the flexural rigidities of the stiffeners are

small in comparison with the plate stiffness. However, for ratios of the stiffener's

rigidity per unit width to the plate stiffness larger than about 60, i.e.,

EI/bD>60, this grillage approximation seems to be suitable.

In the general method of grillage analysis, a set of governing differential

equations can be formulated for all the discrete stiffeners using beam theory. The

set can be solved under the appropriate consistent conditions at the intersection

points and the boundary conditions. Usually, in ship grillages, it is assumed that
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the external lateral loads act on the transverse stiffeners and the longitudinal

I

stiffeners are acted upon by the forces (reactions) at the intersection points in
r order to simplify the problem. A large system of simultaneous algebraic equations

will result and, for all but the smallest grillages, this type of analysis
requires the use of digital computers if the general method of analysis is used [15].

Several simplified methods have been introduced to reduce the amount of
computation involved in the elastic analysis of grillages [27, 28, 29, 30]. In

references [27] and [28] certain matrix transformations were used to uncouple the
deflection equations thus considerably simplifying the computation. In reference
[29] the stability problem and critical loads of rectangular grillages whose edges
are elastically restrained against rotation have been treated. A method for
treating some inelastic effects is also presented which is based on a plasticity
reduction factor incorporated only in the x-direction according to Faulkner [31].
Plots of selected coefficients are given to allow the use of the method in manual
analysis. In reference [30] explicit formulas and tables are presented for the edge
moments and interaction forces which allow for analyzing the beam eleménts of a
grillage under lateral load only using simple beam theory.

Faulkner in reference [31] used the discrete beam equations to determine the
buckling stresses for biaxially compressed grillages having opposite boundaries
equally elastically constrained against rotation. He extended the solution to the
more general case where the opposite edges are unequally restrained through
certain approximations. The reference also includes a discussion of the inelastic
effects in flat yield material and a suggested treatment for strain hardening. In

references [32] and [33] approximate formulations for the compressive strength
of welded grillages is presented with emphasis given to the effect of residual
welding stresses on strength. Both uniaxial and biaxial compression are considered.

Kondo [34] and Rutledge and Ostapenko [35] presented a grillage analysis in
which the transverse stiffeners were assumed to be infinitely rigid. The portion
between two adjacent transversesis then analyzed as longitudinally stiffened panels.
The ultimate strength was then computed for such panels under lateral and uniaxial
loads. In reference [36] Parsanejad and Ostapenko extended this type of analysis
and the transverse stiffeners each with an assumed effective plate portion are
treated according to small deflection elastic-plastic beam theory. The longitudi-
nally stiffened panel is treated as a series of beam-columns each consisting of a

plate of width equal to the spacing of the longitudinal stiffeners and the longi-
tudinal stiffener itself. Each longitudinal beam is then assumed to act as if it
were a part of longitudinally stiffened panel with an infinite number of identical
stiffeners. The effect of residual stresses is included assuming that their
distribution does not vary along the length. Stresses produced by
bending of the plate between stiffeners are considered to have a negligible effect
on the inplane plate behavior and the average stress in the plate (small b/h)
remains constant in the post-buckling range and equal to the buckling stress.
The plate components of the stiffeners are so proportioned that the ultimate
strength of the grillage is reached before local buckling takes place. The
ultimate capacity is determined by incrementing the loads using a computer program
to solve the resulting non-linear simultaneous equations. Comparison of the method
with some available test results is presented in the report. The limitations
imposed by some of the many assumptions made in these analyses can be restricting
particularly in the post-buckling range.



D. Finite Element Method

Here the gross-panel behavior is simulated by approximating it with that of
a model composed of elements in which the displacement field is restricted to
preselected displacement patterns or "shape functions". The general deformation
of the model is then specified by the magnitudes of the generalized coordinates
associated with the shape function. The general deformation can be determined by
the energy method or Galerkin method, and is then interpreted as an approximation
to the general deformation of the gross panel. The degree of approximatiDn
involved in this type of analysis to represent the conditions in the gross panel
depends primarily on the set of shape functions selected and the compatibility
conditions imposed along the boundaries of the elements. It also depends on the

accuracy of the numerical computation.

Application of the principle of minimum potential energy to the approximating
structure results in a reduction of the problem to one of solving a set of
simultaneous equations relating nodal forces and displacements. The general
equilibrium equation for the approximating structure can be expressed in the form:

[Kf] {} + A[Kg] {A} = P} (8)

where tA} and {P} are the displacements and applied loads at the nodes. [Kf] is

the conventional flexure stiffness matrix, [Kq] is the geometric stiffness matrix
which is solely dependent on geometric parameters and introduces the parameters which
model the stability problem. Letting {P} = O and [Kf] + X[Kg] = O, one can

determine the eigenvalues X and the associated buckling modes {A}. Usually a
great number of degrees of freedom will be involved in the eigenvalue problem,
therefore careful consideration must be given to the method of solution. If

geometric non-linearities are present (e.g., large deflections) higher order terms
of the derivatives of the displacements are considered in formulating the stiffness
matrices. The incremental model can be used which is based upon the treatment of
the loading as a sequence of steps with linearization of the analysis within each
step. In the plastic range, either the incremental theory or the total strain
theory of plasticity can be applied to obtain the stiffness matrices. Generally,

the von Mises yield criterion is upheld and maintained. Also, iterative and step-
by-step procedures for solution of the complete system is required.

In representing the gross panel by the finite element technique, two discretized
models can be generated. The gross panel can be either represented by (1) bending
and stretching plate elements together with beam elements modeling the stiffeners,
or (2) orthotropic plate elements which reflect the difference in gross panel
properties in the perpendicular directions. In general, the finite element method
is well established for predicting the behavior of the gross panel in the linear
elastic range and for the linear stability analysis for determining the buckling
loads and the corresponding mode shapes. It is, however, less developed for the
plastic-buckling analysis and the determination of the collapse loads and local

instability.

It is not the intention to give a complete survey of the development and
application of the finite element method in this report as the number of publications

in this area is enormous. An excellent source for such development survey is

presented in reference [37]. However, a few papers which have direct relevance

to this work will be briefly discussed.

lo



11

Probably the first paper in the naval architecture field in which the finite
element analysis is used in ship structure is due to Paulling [38]. Since then,
the number of publications has been increasing very rapidly and classification
societies (e.g., ABS [39]) use for such a technique has been also growing steadily.

Recently, the treatment of instability and non-linear problems (geometric and
material non-linearities) has drawn considerable interest [40, 41, 42, 43]. In

reference [40] Kavlie and Clough developed a program for the analysis of stiffened
plates under combined inplane and lateral loads. A computer program listing is
given and a few examples of bending and buckling of stiffened plates are presented.
In reference [41] a finite element method for the plastic buckling of unstiffened
plates is presented. Terazawa, et al., advanced a finite element method [42] for
the elastic-plastic buckling of plates with stiffeners. The material is assumed
to be elastic-perfectly plastic and the moment curvature relationship is obtained
in the plastic region using the incremental theory and the total strain theory of
plasticity.* In reference [43] an efficient computational procedure for the finite
element elastic-plastic analysis was developed. The model is based on separating
the elastic parts of the structure and eliminating it from the non-linear solution
process, thus reducing the computation time. Additional recent advances in the
use of finite element methods for predicting the ultimate collapse behavior is
given in references [44] and [45].

E. Beam-Column Analysis

In this method a single 'beam' of the gross panel consisting of a single
stiffener and the effective breadth of plating is analyzed. The beam is considered
to be subjected to lateral line load and axial load. The torsional rigidity of
the gross panel, the Poisson's ratio effect and the effect of the intersecting
beams are all neglected in this type of analysis. The latter effect is, sometimes,
incorporated in the analysis by locating springs at the intersection points. This

method of analysis is popular among designers because it is relatively simple and
less time consuming. The degree of accuracy, however, becomes critical
particularly in the presence of biaxial loading conditions and when the plate
stiffness is relatively large compared to the stiffener's rigidity.

A bibliography which emanated from the evaluation, classification, and
examination of methods of gross panel analyses is given in Appendix I. The
bibliography is classified, more or less, in a manner similar to the methods
discussed with additional "general" and "experiments" sections. Another bibli-
ography for the ultimate load of box structures and primary and secondary structures
has been compiled and evaluated by Stavovy [46].

Upon the completion of the detailed evaluation and classification of the
method of gross panel analysis it was apparent that no single method or a general
theory exists that is always superior for all gross panels of different proportions
(plate and stiffeners), loading conditions, extent of deformation (large, small),
and which can predict exactly the lowest failure mode under a wide variety of load
combinations. This immediately pointed towards the significance of the broadly
based method of evaluation and its importance in the final recommendations.

*The moment curvature relations in reference [42] were based on the relations
between stress increments and strain increments as furnished by the incremental
theory of plasticity, and also, on the stress-strain relations as given by the
total strain theory of plasticity for comparison.



3. COMPARISONS AND CORRELATIONS

A. Comparisons Between the Different Methods of Gross Panel Analysis

Several methods among those evaluated in Section 2 of this report were applied
to the same gross panel configuration and loading condition in order to assess their
results comparatively. A general loading which consists of biaxial compressive
inplane loads in the x- and y-directions and lateral pressure is considered to
act on the stiffened panel. Due to the limitation of the two finite element
programs used (STRUDL and SOLID SAP), only the behavior in the linear range (pre-
buckling) was examined. The non-linear behavior of the panel can be predicted,
however, from the charts presented in [14]. Additional comparisons using plastic

limit analysis are given in sub-section B.

The methods used to predict the behavior of the panel under the described
loads are:

(1) Orthotropic Plate Analysis. Two types of analyses were
conducted.

First Order Analysis*

Second Order Analysis**

(2) Finite Element Analysis using ICES-STRUDL II [47] program
(Integrated Civil Engineering System--Structural Design Language)

(3) Finite Elnent Analysis using "SOLID SAP' [48] program. Two

types of analyses were conducted.

The gross panel discretized using beam elements
to simulate stiffeners and plate elements to
simulate the plate behavior.

The gross panel discretized using orthotropic
plate elements.

(4) Grillage analysis of a system of discrete intersecting beams.

(5) Beam-column analysis using beam theory.

The gross panel considered is shown in Figure 1 with dimensions and number of

stiffeners indicated. The panel is simply supported at the two long edges and
fixed at the other edges. The stiffener's dimensions and properties are shc'wn in

Figures 2 and 3 for the long and short stiffeners respectively. The material is

assumed to be steel with E = 30X106 p.s.i. and = 0.3. The effective breacth
of plating, the neutral axes, moments of inertia, section moduli, etc., were
computed for the stiffeners in each direction and used in determining the rigidity
coefficients for the orthotropic plate analyses and the grillage analysis.

For the orthotropic plate analyses, the design charts presented in reference

[14] were used. Several parameters had to be computed for approximating the

12

*The inplane and bending loads are assumed to be decoupled.

**The effect of the inplane loads on deflection and bending stress is included.
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stiffened plate by an equivalent* orthotropic plate. All nomenclature used here
to represent the coefficients of the stiffened plate and the equivalent orthotropic
plate are the same as in [14] (see also the list of nomenclature). A summary of

the computational results are given in the following. (See reference [14]).

D
E 'x = 30X1 06X7.970

- 2.189X1 lb-in (9)
s(l-2) 12(1_0.32)

4.44
hx

= 12
- 0.37 in

E ly 30X106X20.815
- 4.287X107 lb-in

Dy = S(1-2) = 16(l0.32)

h = 0.37
Y 16

The thickness of the equivalent orthotropic plate is:

hx + hy
h

= 2
- 0.37 in (13)

2hxhy
h

= hx + h
- 0.37 in (14)

The non-dimensional geometry parameters are:

L
4D 4j

y 96 ¡4.287X107
p = - V 2.189 X107

n
Ipx

Ipy -

- IxIy

Jh h Jhx by
y = (l-i-v)

h
h

in

6.515X16.367
- 0.80

7.970X20.815 -

(12)

= 0.676 (15)

= 1.3
I0.37X0.37 03/0.37X0.37

= 1.627 (18)
0.25 0.37

*Equivalence between the orthotropic and the stiffened plate can Thply equal strain
energy or equal rigidity. See ref. III-5 of the bibliography.



The non-dimensional load parameters are:

Q* = lateral load = i

Nx* = inplane compressive load in the x-direction 0.2

= inpiane compressive load in the y-direction = 0.4

The corresponding dimensional loads are as follows:

Q*DYh
- 1.94 p.s.i.

N *
¿Dx

X [2
= 4,689.4 pounds per inch

* = 5,996.4 pounds per inchN NY
B2

The charts in [14] were entered using the above computed parameters and the
bending stress, membrane stress, etc., were determined by interpolation and are
shown in Table 1.

ICES STRUDL II [47] was used next to determine the stresses in the gross panel
under the same loading condition. Only one quarter of the gross panel was

discretized with symmetry conditions applied at the appropriate locations. For

the lateral load analysis the gross panel was considered as superposition of a
plate in bending plus a plane grid made by the stiffener. Rectangular bending
elements were used of the type defined in STRUDL as BPR [47] "Bending elate
ectangle". The stiffeners were modeled as beam elements of prismatic cross sections

under bending and torsion. Due to the presence of the inplane loads the "stretching'
degrees of freedom, i.e., plane stress and truss action were also incorporated.
Figure 4 shows the finite element mesh used, the syrririetry conditions and the

boundary conditions. Table 1 shows the computed stresses.

Additional computation was made using the finite element program "SOLID SAP".

Two kinds of discretized models were used. First, beam and plate elements were
assembled to model the gross panel in a similar manner as used in the ICES STRUDL

program. Then orthotropic plate elements were used to model the gross panel. The
properties of the orthotropic plate elements are the same as obtained for the use

with the design charts [14].

The gross panel was modeled next as a grillage or a system of discrete inter-

secting beams. Each beam consists of the stiffener plus the effective br'eadth of
plating as described earlier. Additional results based on simple beam-column
analysis were obtained and both results are shown in Table 1.

16
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The percentage difference in the total stress (membrane plus bending) of the
different methods of analysis taken with respect to ICES STRUDL results is shown
in the last column of Table 1. As expected,the simple beam results are the most
conservative with a difference of about 15% above STRUDL results. The first and
second order orthotropic plate analyses, using charts presented in [14] gave close
results to the SOLID SAP finite element analysis, using orthotropic plate elements.
The difference between these results is of the order of 2%. The grillage analysis

gave close results to the finite element calculations (2% difference). The same

computer program was used for both calculations and the difference is only in the
manner of representing the gross panel. In general, the difference between the
results of the different methods of analyses is within the engineering limits of

accuracy.

The ranges over which the methods of gross panel analysis can be used are

categorized as follows:

Linear elastic behavior (first order theory): In this range the limita-

tion includes small deflection relative to the plate thickness and the requirement
that the stresses remain within the linear elastic range, i.e., Hookes's Law

applies. In addition, the effect of shear deformation is neglected, i.e.,
Kirchhoff's assumption is upheld. The first of these limitations is satisfied
when the ratio of the maximum deflection to the plate thickness "h" is less than

0.50. The last condition is satisfied when the plate thickness is small relative
to the other dimensions "a" and "b" of the plate (a,b/h>40). Finally, the direct
stress in the direction perpendicular to the plane of the plate is considered
negligible so that the problem may be treated as a two-dimensional instead of a
three-dimensiona' problem in elasticity. This assumption is again satisfied when
plate thickness is small relative to the other dimensions of the plate. The

bending and membrane stresses are considered to be uncoupled if inpiane tensile
or compressive loads are present, in addition to the lateral load.

Elastic buckling (second order linearized analysis): The effect of the
external inplane loads on the equilibrium equations is considered in this type of
analysis, thus coupling the membrane and bending stresses. The deflection, however,

is still assumed to be small relative to the plate thickness (w/h<O.5). All other

limitations stated under (1) above are still upheld. In the absence of lateral
loads, the solution of the resulting linearized differential equation provides a
set of homogenous linear algebraic equations. For a non-trivial solution, the
determinant must equal to zero (buckling criterion). This gives a solution in
the form of discrete values (eigenvalues) from which the buckling loads are
determined. The smallest of these gives the critical buckling load.

In the presence of lateral loads, the criteria for determining the buckling
loads is obtained by setting the resulting deflection solution equal to infinity,
i.e., by setting the denominator of the equation equal to zero.* A similar
procedure is used when the effect of initial deflection of the plate is included
in problem formulation.

The energy method (instead of the direct solution of the linearized differ-
ential equation) may be also used for determining the buckling loads. An

expression for the total strain energy can be formulated and equated to the work

done by the external loads. Minimizing the resulting equation with respect to

*The resulting critical load in this case is the same as that determined when the
lateral load is not present.
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the unknown coefficients in the assumed deflection surface provide a set of homo-
geneous algebraic equations. From these equations the buckling loads are
determined by setting the determinant equal to zero.

In Section 4 of this report some collected and some developed formulations
of the buckling loads under a variety of loading combinations and stiffeners and
plate properties are presented and further discussed. Interaction curves have
been developed which give the critical combination of the biaxial loads for
various aspect ratio of the gross panel and various ratios of stiffener's flexural
rigidity to the plate flexural rigidity.

(3) Inelastic buckling: One of the limitations in item 2 above (elastic
buckling) is that the stresses must remain within the linear elastic range. This
is the case for slender plates and grillages, i.e., as long as the slenderness
ratio b/h is above a certain limit which depends on the material oroperties. For
structural steel of E = 30 x 106 p.s.i., 0.3, yield stress of about 34000 p.s.i. and
proportional limit of 30000 p.s.i., this limiting value of b/h is about 60 if the plate
is simply supported and compressed in one direction only. For b/h lower than this
value experiments have shown that the yield stress becomes a limiting value.

Under biaxial compression, the limiting value of b/h depends on the ratio of
the x- and y-compressive loads. For a structural steel of the same properties used
above and for a simply supported square plate subjected to biaxial compressive
stress in one direction equal to three times the compressive stress in the other
direction, the limiting value of b/h is about 64.

Beyond the proportional limit of the material the modulus of elasticity E
ceases to be constant. In the range between the proportional limit and the yield
stress it is usual to use in the mathematical formulation of the problem the
tangent modulus

Et = instead of the elastic modulus E. This is done at a selected

number of stress point between the proportional limit and the yield stress and the
corresponding tangent modulus is determined from the stress-strain relation of
the material. Based on these values of G and Et the corresponding values of b/h
are determined and plotted versus the critical stress.

If the compression test diagram for the stress-strain relation is not available,
an analytic expression representing it may be utilized. The formula for the tangent
modulus can be then obtained by differentiation. If the material has a well defined
yield point such as structural steel, the following expression for the tangent
modulus may be used:

E - - E

GypG
t - dc - GypkG

This expression gives Et = O at G = G and Et = E = elastic modulus for a = O.
"k" is a parameter which depends on the niarial properties. The value k = 1

corresponds to Hooke's Law, i.e., o = E s. The value of k for structural steel may
be taken between 0.96 to 0.99.

(22)
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Non-linear analysis including large deflection and post-buckling behavior:
In the previous categories, the effect of the deflection (or its derivatives) on
the strain components of the middle plane of the plate was ignored. This is
valid as long as the deflection remains small and the middle plane of the plate
remains unstretched. When the deflection becomes large compared to plate thickness
(as is the case when the plate buckles), the effect of the deflection on the
strain components must be included. These strain-displacement relations can be
then combined with the stress-strain relations and with the use of Airy's stress
function, a fourth order partial differential equation representing the compati-
bility of displacements can be obtained, the "compatibility" equation . The

equilibrium in direction perpendicular to the plane of the plate provides the
second fourth order partial differential equation; the "equilibrium" equation.
These two coupled equations can be then solved for the deflection and the stress

function. The membrane and bending stresses can be determined from the stress
function and deflection, respectively.

This analysis has been used to develop design charts for gross stiffened
panels under combined biaxial inplane loads and lateral loads [14].

Failure analysis (non-linear): The material non-linearities in the
failure range of the gross panel must be considered. Two distinct types of
approximate analysis may be used. If the lateral load acting on the gross panel
is combined with small compressive biaxial loads, limit analysis may be used to

estimate the ultimate strength of the panel. On the other hand, if the compressive
biaxial loads are dominant then several modes of failure are possible. The lowest

of these modes depends primarily on the relative flexural rigidity of the plate
to that of the stiffeners and the stiffenerst torsional rigidity. The failure modes

include failure of plates between stiffeners, failure of longitudinal stiffeners
under pure buckling, torsional-buckling (tripping) of longitudinal stiffeners, or

failure of the grillage as a whole. These failure modes are discussed in detail

later in this section.

B. Comparison with Experiments

Comparisons between experimental measurements and analytical results were
considered next. Unfortunately, the scarcity of the experimental data on stiffened
panels under biaxial compressive loads and lateral pressure limited the scope of

the comparison. Ship Structure Committee Report SSC-223 [49] provided some infor-

mation in this regard. Reference [50] provided also some good additional experi-

mental data. This reference, however, gives experimental results of a series of
tests on full-scale welded steel grillages under uniaxial compressive loads
combined in some cases with lateral pressure. A recent experimental study, not
iet published on stiffened panels under biaxial loads is being carried out in the

Civil Engineering Department at the Imperial College, London. A recent Det norske

Ventas report [9] and other recent correspondence [51,52] indicated also the
scarcity of experimental results on stiffened panels under biaxial compressive
inplane loads and lateral pressure.

Most of the experimental work on stiffened panels is carried to the ultimate

strength of the panel. For the purpose of comparisons, several analytical methods
for prediction of the ultimate strength of ship grillages were examined [14, 24, 25,
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26, 31, 34, 36, 42]. In particular, plastic limit analysis of grillages was given
considerable attention. The plating was considered as effective flange to the
stiffeners, i.e., grillage representation. The usual assumption of neglecting the
influence of the shear force on the formation of the plastic hinges was made [24].
The torsional rigidity of the stiffeners of typical ship gross panel is usually
small and its effect on this particular mode of failure of the gross panel as a
whole is also small.* An upper bound of the collapse load can be then established
by choosing a one-parameter deformation pattern and equating the rate of internal
energy dissipation to the rate of external work. The correct collapse mechanism
is the one which gives the lowest upper bound. This type of limit analysis cari be
employed if the inplane compressive forces are relatively small and the collapse
is primarily due to large lateral pressure. In this case the inpiane loads tend
to reduce the magnitude of the plastic moment, but no instability (buckling) is
assumed to take place. An interaction relationship of bending and inplane loads
can be used to determine the effect of the inpiane force on the plastic modulus,
as given later in this section.

Simplified plastic limit analysis based on the above assumptions was developed in
this study on the bases of the work presented in refs. [12,19,24,25,26] for the case
when the lateral load is combined with small biaxial inplane loads. The resulting
governing equations for the ultimate lateral pressure are:

ultimate
Pc(n'--l) (23)

where is given by: (1) For fixed end transverse stiffeners,

= 8(m'+1)2 (Mte + Mtc) + (m'+l)
C

m'(m+2) L2 L

= 8(Mte + Mt) + (m'+l)
Rc rn = odd

L2 L

(2) For simply supported transverse stiffeners,

PC
8(m'+1)2 (m'+l)

- m'(m'+2)L2
Mtc

+ L
Rc rn = even (26)

rn = even (24)

(25)

PC

8Mtc + (m'+l)
Rc

L

m' = odd (27)

*The stiffeners may trigger, however, the other modes of failure such as trioping,
or local buckling which may lead to failure.



The values of the interaction forces between the longitudinal and transverse
stiffeners "RC' are given by:

(1) For fixed end longitudinal stiffeners,

R
8(n'+l)(Mle + Mlc)

n' = even (28)
c

n'(n'+2) B

o r

8(Mle + Mic)

(n'+l) B

23

(2) For simply supported longitudinal stiffeners,

8(n'+l) Mlc
R = n'(n'+2) B fl = even (30)

or

R
8Mlc

n' = odd (31)
C

(n'+l) B

where,

uitimate = ultimate uniform pressure

R = interaction forces between longitudinal and transverse
sti ffeners

Mte = plastic moment of transverse stiffener at ends

= plastic moment of transverse stiffener at center

Mle = plastic moment of longitudinal stiffener at ends

= plastic moment of longitudinal stiffener at center

B = length of longitudinal stiffeners

L = length of transverse stiffener

m = number of longitudinal stiffeners

n' = number of transverse stiffeners

When only lateral pressure is present then Mle = Mi and Mte Mtc and one

may replace Mle + Mi and Mte + Mt with 2Ml and 2Mt, respectively, in the above
formulas. M1 and Mt are the piasfic moments for the longitudinal and transverse
stiffeners, respectively.

n' = odd (29)
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For the case of a stiffener with a web-section area i and a flange area AF
attached to a plate of area A and subjected to lateral load only, the plastic
moment is given by:

Mplastic = [SF + SW + s] yp S yp (32)

in which SF, SW, and S are the contribution of the flange, web, and plate,
respectively, to the pastic modulus S, as defined by (32). SF Sw and S can
be determined in the usual manner as, for example, given in reference [53].
Figure 5 shows the formulas for determining their values as obtained from [53].

When the section is subjected to combined inpiane and lateral loadings, the
plastic modulus S is reduced to S-2, where is the moment about the equal area
axis (E.A.A.) of the area between the equal area axis and the plastic neutral
axis (P.N.A.). The position of the latter axis is defined by g1, as given by the

formulas shown in Figure 6 obtained from reference [53].

When both the equal area axis and the plastic neutral axis lie in the web or
in the plate, the modified plastic modulus S' due to axial force can be reduced to
the following simple forms:

A2)2
=

w

SI = S (A2)2
4

The first of these equations is for the case when both axes lie in the web and

the second for the case when they lie in the plating. "a" is the squash load ratio
defined as the mean axial stress over the yield stress and "s' and "t" are the
plate breadth and web thickness, respectively. (See Figure 6,)

Limit analysis becomes complicated if the inpiane forces contribute appreciably
to the collapse failure of the grillage particularly if arbitrary shapes of
stiffener cross sections are considered. For large inplane forces, it is seen that
the grillage stability problem (or local buckling) will become more important, i.e.,
stability conditions rather than limit analysis would be governing in this case.

The developed procedure described above was applied to three gross panels.
The first of these is shown in Figure 1. It is identical to the one considered
in the previous behavior analyses using several methods. The second and third

gross panels have the same dimensions and stiffener characteristics as grillages

numbered lb and 4b of reference [50]. The experimental collapse loads for these
grillages are 15 p.s.i. lateral pressure with 12.1 t.s.i. average uniaxial
compressive stress for grillage "lb"; and 8 p.s.i. lateral pressure with 13.5 t.s.i.
average compressive stress for grillage "4b". The results of the limit analysis
together with the dimensions of the three gross panels are shown in Table 2. All

edges are simply supported for gross panels 2 and 3. Other comparisons between
limit analysis and experiments without the presence of inpiane loads are available
in the literature [25, 26] and are favorable.
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CASE (i) CASE (ii)

AF + Aw A < AF Aw

EQUAL AREA
AXIS

FIGURE 5 - MEMBER UNDER BENDING MOMENT ONLY, REF. [53]

CASE (i) CASE (ii)

C1

a

(Ap - A1 - AF)/2Ap (A + AF - Ap)I2A

c12 - + 1/2

g C1t C1d

5E AF(d + g + 1/2tF) AF(d - g + tE)

Sw Aw( d + g) AwdC2

Sp AptpC2 Ap(g + tp)

tE AF tE

Aw

d
w
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FORMULAS FOR CALCULATING POSITION OF THE PLASTIC NEUTRAL AXIS.

FOR A MEMBER SUBJECTED TO BENDING AND AN AXIAL LOAD THE
DISTANCE OF THE PLASTIC NEUTRAL AXIS FROM THE WEB-SIDE OF THE
PLATING IS DEFINED BY g1, WHICH CAN BE CALCULATED FROM FORMULA
(1), (2) or (3) BELOW, WHICHEVER IS APPROPRIATE. IN ALL CASES
FORMULA (1) SHOULD BE EVALUATED FIRST.

i1=2 {AF+A_ApAn]

IF FORMULA (1) GIVES A NEGATIVE VALUE FOR g, THEN
THE PLASTIC NEUTRAL AXIS LIES IN THE PLATING,
AND FORMULA (2) SHOULD BE USED.

(2) g1= [-AF-±]

(1)

IF FORMULA (1) GIVES g1 > d, THEN THE PLASTIC
NEUTRAL AXIS LIES IN THE FLANGE, AND FORMULA (3)
SHOULD BE USED.

ig1=[Ap_A_AR]+d
£

g1

WHERE: A=A+AW+Ap
H = THE SQUASH LOAD RATIO WHICH IS EQUAL TO THE

NEAN AXIAL STRESS OVER THE YIELD STRESS.

NOTE: THE UPPER SIGN PRECEDING AH SHOULD BE USED WHEN THE STRESS DUE TO THE
AXIAL LOAD ALONE IS OF THE SANE KIND (TENSILE OF COMPRESSIVE) AS THAT IN THE
FLANGE DUE TO THE BENDING MOMENT. THE LOWER SIGN
APPLIES WHEN THESE STRESSES ARE OF OPPOSITE KINDS. A. = 6 IN2

EXAMPLE: 1/2"

= MOMENT OF
SHADED AREA
ABOUT E.A.A.

g,= 8" g

4

FIGURE 6 - MEMBER UNDER BENDING AND
AXIAL LOAD, REF. [53].

= 9 IN2

P.N.A.

Aw = 5 IN2
E.A.A.
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As was mentioned earlier, if the inplane loads are sufficiently small to cause
no local or overall instability, the ultimate strength and the collapse mechanism
can be determined using the simplified procedure developed above. Alternatively,
if the loads acting on the gross panel did not increase proportionally shakedown
analysis is more suitable. In this case if the shakedown load is exceeded, plastic
flow will continue during each cycle of load application leading eventually to
failure either by: (1) alternating plasticity, or (2) incremental collapse.

If the inplane loads are dominant then the stability and post-buckling
behavior become the governing considerations rather than the limit analysis.
Several possible modes of failure may arise [50] in this case. These are:

Plate failure between stiffeners: In this collapse mode, the ultimate
strength of the plate is exceeded before extensive yield occurs in the stiffeners,
i.e., the ultimate load for the stiffened panel is reached before stiffeners
failure occur. Reliable estimates can be made of the ultimate strength of iso-
tropic (unstiffened) plates under uniaxial compression. (See expressions in the
next section.) Some interaction relations between compression and lateral loads
are also available.

Flexural buckling of stiffeners: In this collapse mode failure occurs
by column-like flexural buckling of stiffeners and plating between transverse web
frames. Because of the initial deformation of the stiffeners and the direction
of the lateral load, buckling often occurs towards the stiffeners. But buckling
may also occur towards the unstiffened side of the plate and in this case, flexural
buckling may be coupled with sideway tripping of the stiffeners.

Two mechanisms leading to the flexural buckling of stiffeners mode of
failure are possible. The plate between stiffeners may first buckle leading to
a reduction in the total effectiveness of the stiffeners' rigidity and to
column-buckling. The second mechanism postulates that column-buckling may first
occur with fully effective plating if the stiffeners are very flexible.

When column-buckling is purely flexural this failure mode can be investigated
using inelastic column analysis based on (a) numerical solutions using beam-column
elastic-plastic relations or (b) incremental finite element method.

Tripping of stiffeners (Lateral-torsional buckling): This mode of
failure is likely to occur in flexurally stiff longitudinals which have low lateral
torsional rigidity. It may be coupled with the flexural mode if buckling occurs

towards the plating.

Some elastic analysis exists of torsional buckling coupled with flexure, e.g.,
by F. Bleich [54], but no satisfactory method seems to exist for inelastic
tripping of stiffeners welded to continuous plating and for the predictioi of the

inelastic collapse strength.

Overall gross panel buckling: This collapse mode involves the overall
gross panel buckling over its entire length with bending of both transverse and

longitudinal stiffeners. Two mechanisms leading to this failure mode are possible:
(a) reduced plating stiffness due to buckling between stiffeners, and (b) local
stiffeners tripping.
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For uniform gross panel buckling loads and modes the entire gross panel
under uniaxial compression can be estimated from orthotropic plate formulas
[3, 6, 7, 14, 15]. This analysis was further developed to include gross panel
buckling under biaxial load. Design charts were developed showing the combination
of critical loads for various aspect ratios and rigidities of both the plate and
stiffeners. These charts are presented in the next section of the report with
examples showing their use.

In very slender gross panels for which the elastic buckling stress is well

below the yield point a significant post-buckling reserve may exist. The ultimate

strength in this case can be estimated using the von Krmn effective width technique.
Some curves are shown in reference 114] which give the effective width of the
panel which can be used in an iterative manner to estimate the ultimate strength

under this failure mode.



4. RECOMMENDATIONS AND DISCUSSION

In the first part of this section some suitable expressions for estimating
the buckling loads of gross panels are recommended and discussed. Some interaction
relations between the biaxial compressive loads are developed and presented with
examples of applications given in Appendix II. In the second part of the section
some recommendations are made for methods of evaluating the gross panel behavior
and methods for estimating its ultimate strength indicating areas of lack of
reliable procedures. A test program is discussed in the final section with goals
and objectives outlined.

A. Expressions for Estimating the Critical Buckling Loads
in Gross Panels

(1) Elastic Buckling

(a) Plating between stiffeners (isotropic plates): For sinply
supported plates under uniaxial compression, the critical stress °xcr is given by
the usual expression [54, 55]:

Gxcr k (35)

where

k = (m + ]_ 2)2

m b2

Eh3

l2(l_2)

h is the plate thickness, b and a are the plate breadth and length between stiffeners,
and m is the number of half waves in which the plate buckles. For other boundary
conditions, the coefficient k is given in many books as for example [54, 55, 56].

For plates under biaxial compression the critical buckling combination
of the inpiane stresses o and can be determined from [55]:

°x m2 + G fl2 = O (m2 + 2

b2 b2
(38)

where

30

-

a2h

D is given by equation (37).

(39)



31

Equation (38) reduces to equations (35) and (36) when y., = O and
n = 1, i.e., uniaxial load conditions. Values of m and n (number of ialf waves
in which the plate buckles in the x- and y-directions, respectively) should be
chosen such that the smallest values and will result. The following in-
equalities can be used in this regard.

If Gx lies within the following limits, the values

m = 1, n = i should be used in calculating the
critical value of

Ge(l - 4 ) < < cy(5 + 2
b2 b2

If the value of G is larger than the upper limit
of inequality (40 and lies between the following
limits then the values n = i, m = i (where i = 2,

3,4) must be used in determining the critical
value of Gy.

ae(2i2 - 2i + i + 2 ) < < G(2i2 + 2i + i + 2
b

If the value of G is smaller than the lower limit
of inequality (40L then the values m = i, n = i

(i = 2, 3, ---) must be used in determining the
critical value of Gy if the following 'inequality
holds.

GeE] - i2(i-i)2 a4
> G > GeE] - i2(i+i)2 ]

b4 b4

As an example, consider the case where the plate aspect ratio - = 0.3
and let the compressive stress Gx = O.2Ge. Since OEX is smaller than the b

lower bound of inequality (40), we must use the general inequality (42) which is
satisfied by taking i = 3. Thus form = 1 and n 3, equation (38) gives

Gx+9Gy Ge(i
+g)2

b2

from which the critical compressive stress is,

= 3.8 Ge

(b) Flexural buckling of stiffeners: The critical stress "Gcr" for

the fiexural buckling of a simply supported stiffener with an effective breadth of
plating may be estimated from the usual Euler formula with shear deformation
included [50, 54, 55 56]:
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Ti2E1
Gcr =

L

Aa2 7f2 EI

+ a2s

in which I is the effective moment of inertia of the stiffener with the attached
plating, a is the length of the longitudinal stiffener between the transverse
girders, A is the total cross section area and As is the effective shear area.
For other boundary conditions, reference can be made to [54, 55, 56].

Lateral-torsional buckling of stiffeners (tripping): The
critical stress er can be approximately estimated from a formulation due to
Bleich [54]:

°cr =

(a/re)2
(44)

where a is the stiffener length and re is the effective radius of gyration. The
effective radius of gyration for a variety of stiffener shapes and for stiffeners
which can rotate with or without restraint around the enforced axis of rotation
(intersection line with the plate) can be obtained from curves and expressions
given in reference [54]. Other possible formulations such as discussed in [57] using
folded-plate analysis can be used to estimate the tripping critical load.

Overall grillage buckling: This buckling mode can be estimated
from orthotropic plate analysis if the number of stiffeners in each direction
exceeds three.* For gross panels under uniaxial compression the critical buckling
load is given by [58]:

0xcr = k
TT2V/DXDY

hxB2

where k is given by different expressions depending on the boundary conditions [58].

For simply supported gross panels.

k=
m2

For gross panels with both loaded edges simply
supported and both other edges fixed.

k = + 2.Sn + 5
m2

*For gross panels with three stiffeners or less, the critical buckling loads
can be determined from references [56] or [55].

(43)

(45)
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(iii) For gross panels with both loaded edges fixed
and both other edges simply supported.

k= 2+S (48)

where 5 is a parameter that has to satisfy the
transcendental equation [58]:

tan
cm =

tanm
2

where

fl =2
[

- 624]

= :2 [
+ 2]

Thus for a given value of p; which satisfies
equation (49) must be determined and used in
conjunction with equations (48) and (45) to
determine the critical buckling load.

Equations (45) and (46) reduce to equations (35) and (36) when isotropic
material properties are used. For gross panels of other boundary conditions
reference [6] and [59] can be used to determine the factor k in equation (45).

For simply supported gross panels subjected to biaxial edge compression,
the critical combination of the edge stresses c and G of the overall grillage
buckling was developed using the energy method (see Ap'endix II). The resulting
critical combination is governed by the following equation:

m2 + n2 = + 2 m2n2 + p2n4 (50)

Symbols used in equations (45) to (50) are defined as follows:

Dxy
n

= JDxDy

*
t,D2'Ix0

, * ir2 JDxDy
Gy

(49)

p=
4/Dy



34

Dx and D are the flexural rigidities per unit width [14, 5C].

Dxy twisting rigidity per unit width [14, 50].

h, h average cross sectional areas per unit width of effective
plaUng and stiffeners in the x- and y-directions, respectively.

B gross panel breadth in the y-direction.

L gross panel length in the x-direction.

nl,n number of half waves in which the gross panel buckles in the
x- and y-directions, respectively.

For the approximate evaluation of the rigidity coefficients Dx, D and
Dxy of an actual plate-stiffener combination reference should be made to [4, 5, 7,

10, 14].

Equation (50) reduces to (38) when isotropic material properties are
used. In equation (so) the values of m and n should be chosen such that the smallest
values o and result. For this purpose some interaction curves have been devel-
oped [60] which assist in determining values of m and n to be used in (so) for
different values of p, n S and .Y- . Figures 7 to 14 show such interaction curves.

Yy*

Examples of application of equation (50) and the interaction curves to actual ship
grillages are given in Appendix II. Interpolation between the curves should not be
performed because of the non-linear relationship between the variables p, rj, ni, and n.

Instead equation (50) should be used after determining the values of m and n.

The critical buckling load of gross panels can be also determined on
the basis of discrete beam solution, i.e., grillage representation. Convenient
charts for estimating such loads for elastically supported gross panels are given
in reference [29].

It should be mentioned that, in general, plate buckling cannot be
observed in full-scale experiments. The transition from the pre-buckling into the
post-buckling range is usually not accompanied by a sudden increase in deflection
because of presence of initial deflections and plate imperfection. For p1tes under
uniaxial inplane and lateral loads reference [3] gives charts for the total deflection
Wt, effective width and plate bending moment including initial deflections. Figure
15 is a sample of these charts taken from reference [3]. It shows clearly that a
perfectly flat plate with no lateral load applied exhibits a theoretical bifurca-
tion point of equilibrium. It also shows that the sudden rate of increase of plate
deflection disappears with increasing initial deflection and lateral load. These

initial deflections need not be very large to obscure the bifurcation point. Figure

15 shows also that the order of magnitude of the final deflection (in the post-
buckling range) is almost independent of the initial deflection.
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(2) Inelastic Buckling

As was mentioned in Section 3, if the slenderness ratio decreases below
a certain limiting value wftich depends on the material properties, yielding
may occur prior to buckling. Experiments have shown in general that plates and
beams may buckle at any value of the slenderness ratio if the compressive stresses
reach the yield point of the material. Between the proportional limit and the
yield point the tangent modulus Et instead of E can be used in most of the preceding
elastic buckling formulations (equations 35 to 44) for predicting the inelastic
buckling loads. The tangent modulus is to be determined from a compression-test
diagram. In the absence of a compression-test diagram, the following expression
may be used for materials with well-defined yield point such as structural steel:

Et=E YP
Gyp - CG

a -a
(51)

Another formulation for the tangent modulus is given by Bleich [54].
in which °yp is the yield stress and the parameter c can be taken 0.96 to 0.99 for
structural steel. He proposed the use of a quadratic parabola in the form:

Et = E
(a - Gp) Gp

(G G) a
(52)

where Gp is the proportional limit of the material. Faulkner suggested [31], however,
that °p be taken as the structural rather than the material proportional limit.

For materials that exhibit pronounced strain-hardening, Ramberg-Osgood's
[61] three parameter relation may be used [31]. From this relation, the tangent
modulus is given by:

Et = E
+ nr

i

where a0 is the base stress when E5 = 0.7E and r is empirical constant derived from
curve fitting. Reference [62] gives typical values of a0 and nr for a variety of
material s.

B. Methods of Evaluating the Gross Panel Behavior and its
Ultimate Strength

(1) Linear and Linearized Elastic Behavior

In this range, the different existing methods of examining the behavior of
gross panels seem to be reliable and adequate. Based on the comparisons made in
Section 3, the difference in the results of applying the various methods of analysis

38

(53)
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(see Table 1) to a gross panel subjected to biaxial inplane and lateral loads fall
within reasonable limits of engineering accuracy. In particular the finite element
analysis [47, 48], orthotropic plate analysis [4, 5, 6, 7, 15] and grillage analysis
[47, 48, 27, 29, 30] are suitable; each subject to certain limitations as discussed
in Sections 2 and 3. The finite element method provides accurate geometric repre-
sentation of the gross panel but requires more time and effort than the other two
methods particularly if the latter methods are presented by design charts such as
given in [4, 5, 6, 7, 29, 30].

(2) Non-linear Large Deflection Behavior

It is well knownthat buckling of ship gross panels as a whole may occur,
in some cases, at rather low values of inpiane compressive loads while the plating
between the stiffeners sustain adequate (larger) buckling loads. This condition
can be, generally, found in deck fields adjacent to hatch openings of transversely

framed ships with lengths of 350 feet or more [67], and in bottom plating [70]. It

has been indicated theoretically and experimentally [14, 66, 67] that, for slender
gross panels, the buckling load of the gross panel as a whole can be exceeded by
a certain amount without danger to the structure.*

Although the transition from the linear to the non-linear large-deflection
behavior is usually characterized by the elastic buckling loads as given under
"A' of this section, in some cases, however, the geometric non-linearities arise
due to the action of large lateral pressure on the gross panel even though the
biaxial inplane loads may be well below their critical value. In either case the
effect of deflection (or its derivatives) on the strain-displacement relations
must be considered in the analysis.

In the finite element method this requirement led to the formulation of
the geometric stiffness matrix in addition to the usual axial-flexure linear
stiffness matrix. The approaches to the solution of the non-linear governing
equations can be achieved using either a direct iterative method (e.g., Newton-
Raphson procedure), or an incremental model in which the loading is treated as a
sequence of steps, with linearization of the analysis within each step. Computer
programs which have evolved from such consideration are discussed in [42, 63, 64,
65].

Considerations of post-buckling behavior and large deflections can be also
evaluated using orthotropic plate analysis. Some behavior analysis of plates under
combined lateral pressure and uniaxial edge compression is given in [2]. Design
charts for stiffened and unstiffened plates, with and without initial deformation,
subjected to uniaxial inplane load and lateral pressure are presented in [3]. For

*Some computations in reference [67] showed, as an example, for a deck gross panel
of Mariner type vessels having a plate thickness of 1.125 inches and a frame spacing
of 30 inches, the critical buckling load of plating between the stiffeners is equal
to the yield stress while the critical buckling load of the gross panel as a whole
with considerations of elastic restraint at the sides is only about 8,200 p.s.i.
The latter value is lower than the expected compressive load resulting from the
maximum sagging moment.
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stiffened and unstiffened plates, subjected to biaxial edge compression and lateral
loads, charts are presented in reference [14] for calculating the effective width,
center deflection, buckling loads and bending stresses in the post-buckling range.
Examples showing the application of such charts are also given in [14]. Additional
analysis and examples of application are given by Schultz in [66].

In examining the finite element method, the orthotropic plate analysis,
and the grillage analysis in the non-linear large-deflection range of gross panels
under biaxial compression and lateral loads, it was hoped to conclude that one or
the other method is consistently more reliable and adequate in all situations.
Unfortunately, no such statements can be made with a high degree of certainty since
the amount of available evidence is not substantial enough to support such a state-
ment. Each method has its own limitation as discussed in Section 3 of this report.
The finite element method provides a more accurate geometric representation of the
gross panel. The effort and time involved in the application, however, is much
larger than the other methods.

(3) Ultimate Strength and Failure Modes

In the ultimate strength analysis it is desirable and convenient to
distinguish between two cases as discussed in Section 3. The distinction between
the two cases depends on the relative magnitude and dominance of the inplane loads.
Such distinction is justified since the basic concepts and methods of approach are
quite different in the two cases as indicated below.

Small inplane loads: If the inplane loads are small compared
to their critical values (about 60% of their critical values), the limit and
shakedown analyses provide adequate approach for estimating the collapse lateral
load and the ultimate strength of the gross panels subject to the limitations
discussed in Section 3. Typically in the limit analysis of grillages the ele-
mentary collapse mechanism or the combination of elementary collapse mechanisms
which give the smallest ultimate load is the mechanism in which the panel will
collapse. This requires the consideration and evaluation of several colapse
mechanisms. A simplified method, however, has been extended to include biaxial
loading condition as discussed in Section 3-B. The governing equations (equation
23 to 34) presented and applied to three grillages in the same section can be
used for estimating the collapse load under these loading conditions.

Dominant inpiane loads: If the inplane loads are large, the
adequacy of existing methods of predicting the ultimate collapse load depends on
the particular mode of failure. Some experience has been gained in certain modes
of failure and, correspondingly, some expressions have evolved. In some other
modes of failure, however, the progress has been slow and either no well established
reliable procedure is available, or in some cases, no clear measure of the
relative reliability between the available procedures can be affirmed. In general,

if the collapse of the gross panel under biaxial compression and lateral pressure
occurs by coupling of more than one mode of failure, it is fair to state that no
procedure is available at the present time with a firm evidence of providing the
correct solution under all physical circumstances.

Some of the available expressions and procedures for the individual
failure modes are presented below. Recommending these expressions and procedures
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neither necessarily means that they can be applied with absolute confidence nor
that they are reliable in all situations. It only means that they are the most
suitable and promising existing methods.

(i) Failure of Plating Between Stiffeners

This mode of gross panel failure becomes particularly important
in transversely framed ships, especially in deck platings near hatch openings.
Provided that the slenderness ratio of the plate is large (see Section 2), it
is well known that plates, unlike beams, can carry loads beyond the critical
buckling load. The ultimate compressive load can be determined in this case
using von Kármn's concept which states that the load-carrying capacity of the
plate is exhausted when the edge stress approaches the yield point. Such consid-
erations lead to the following expression for a simply supported plate subjected
to uniaxial compression [55].

TV hPult = 2ChGyp
- J3(l2)

Gyp (54)

where Gyp is the yield stress of the material , "h' is the plate thickness and "2c"
is the effective width of plating, given in this case by:

2c= Tih I_L
J3(l2) \Iyp

Experiments are in satisfactory agreement with equation (54), (see
reference 55). A better agreement can be obtained by using in equation (55),
instead of the constant factor TrI/3(1...2) = 1.9 (for = 0.3" a factor K varying
with the non-dimensional parameter

I E . h Reference [55] gives the

VGyp b

experimental values of the factor K which decreases with increasing values of this
parameter.

For wide ship plating subjected to uniaxial compression only,
analytical values of the effective width "2c" can be obtained from curves presented
in [67]. When biaxial loading condition exists, the effective width can be deter-
mined from the charts presented in [14] and can be used in conjunction with equation
(54).

If the edges of the plate are kept straight during buckling and assuming
that failure of the plate occurs when the maximum shear stress reaches a value
equal to I G , the following expression for the ultimate load is given by

2

Timoshenko [55] for a simply supported square plate under uniaxial compression

= 2ah Gyp (0.434 + 0.566
Gyp

(56)

(55)
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where a is the plate length and cr is the critical buckling stress. Comparisons
between results of equations (54) and (56)together with test data are given in

reference [55]. The straight-edge condition seems to be more representative of
plating between stiffeners in ship gross panels.

The effect of the lateral pressure is unlikely to cause significant
loss in the plating compressive strength, particularly if the ultimate compressive
loads are much larger than their critical buckling value. Charts presented in
[3] and [14] show clearly such trends. Experimental data confirmed this conclu-
sion [50, 68]. Charts presented in [14] show also that a small inplane load in
the transverse direction has little effect on the effective width, particularly
if the inplane load in the longitudinal direction is much larger than the critical
buckling value. Reference [3] shows the effect of initial deflection on the
effective width for plates under lateral and uniaxial loads. In general, the
effect of the initial deflection is to decrease the effective width but such
effects become less pronounced as the inplane load becomes larger than its critical
value.

Becker and Calao [62] presented an interesting semi-emperical
approach to the determination of the ultimate strength under biaxial loading
conditions. In their approach the uniaxial strength data are utilized together
with interaction relations between the inplane stresses. To apply the procedure
properly for the biaxial strength prediction it is necessary to have a complete
background of data on the uniaxial strength. The experimental comparison with this
approach [62] is favorable.

Flexural Buckling of Longitudinal Stiffeners

In this mode of failure, the ultimate load carrying capacity of the
gross panel is governed by column-like flexural buckling of the longitudinal
stiffeners (together with the effective breadth of plating) between the transverse
stiffeners. If buckling is assumed to be purely flexural and under uniaxial and
lateral loading condition elasto-plastic finite element programs [42, 50] can be
useful in this regard. Alternatively, grillage representation and beam-column
elasto-plastic behavior such as adopted by Kondo [34] and Rutledge and Ostapenko
[35] can be used. Development of parametric studies, design charts, and simplified
design methods based on these approaches can be very useful for the usual design
work. For large values of b/h and under lateral pressure combined with uniaxial

load only Vojta and Ostapenko [69] presented such design nomographs.

In reference [46] Stavovy presents a simplified practical formulation
for the longitudinally stiffened panel (between transverse stiffeners) subjected
to edge compression only which can be easily used in design. Unfortunately no
similar formula exists for the case of biaxial inplane loads combined with lateral

pressure.

Tripping of Longitudinal Stiffeners

This mode of failure is usually a result of coupled flexural and

torsional modes of buckling. Some elastic buckling expressions obtained by Bleich
were presented in Section 4-A of this report; however, no satisfactory method seems
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to exist for the inelastic tripping of stiffeners welded to continuous plating and
for the prediction of the inelastic collapse strength. A detailed discussion of
this mode of failure is given in [50].

(iv) Overall Gross Panel Buckling

As was mentioned earlier in Section 4-B, slender gross panels have a
certain amount of post-buckling reserve, i.e., the buckling loads as given in
Section 4-A under "overall grillage buckling" can be exceeded by a certain amount
without danger to the structure. In a biaxial loading condition combined with
lateral pressure very few procedures are available for predicting the ultimate
strength of such gross panels.

Assuming that von Kármn's effective width concept holds in a similar
manner to that in the unstiffened plates, the design charts presented in reference
[14] can be used in an iterative manner to determine the effective width of the
gross panel and its ultimate strength. The effective width can be determined from
these charts for a variety of biaxial loading combinations together with lateral
pressure. The charts indicate, however, that the ultimate strength is very little
affected by the magnitude of the lateral load particularly if the edge loads are
much larger the critical buckling load. This observation is in agreement with recent
experimental results given in [50]. Also, according to these charts an inplane load
in the transverse direction has a small effect in the effective width if the inplane
load in the longitudinal direction is much larger than the critical value. No

experimental confirmation, however, exists of this latter observation.

The ultimate gross panel strength in this mode of failure can also be
predicted using expressions given by Faulkner [31] if biaxial loading conditions
exist but without lateral pressure. In his approach, Faulkner used a discrete
beam solution for gross panels with sides and ends elastically restrained against
rotation. The general biaxial elastic buckling solution given by equations (12)
and (13) of reference [31] may be used in conjunction with equations (33) and (34)
of that report to allow for the inelastic effects using the tangent modulus concept.
No allowance is made, however, in this approach to the non-linear large deformations
which make it more suitable for application to gross panels with heavy stiffeners.

If only uniaxial inplane load is present in conjunction with lateral
pressure, the method presented by Parsanejad and Ostapenko in reference [36] and
discussed in Section 3 of this report can be used for estimating the gross panel
ultimate strength. No design information for manual calculation is, however,
presented in the report [36].

Each of the three methods discussed above for predicting the overall
grillage mode of failure is suitable under a specific loading combination and
geometric characteristics. A need clearly exists for test data to evaluate
these methods and probably for further development of the underlying theory.



C. Test Program

It has been pointed out under "A" and "B" of this section that, in many
instances,the recommended expressions and procedures for estimating the behavior,
the critical buckling loads, the failure mechanisms and the collapse loads of
ship gross panels still are far from being completely well-established and
reliable in all physical situations, particularly if a biaxial loading condition
exists in combination with lateral pressure. It was also pointed out that in some
cases no clear measure of the relative reliability between the available procedures
can be ascertained and a firm evidence of the "exact" solution is not available.
Although test programs may not provide the ultimate answer to all the questions
discussed in the preceding sections, a well-developed program will, undoubtedly,
provide some insight into the problem and a possible measure of the relative
reliability of the recommended formulas and procedures. It is also envisioned
that such a test program will enhance and contribute to the progress of the under-
lying theories and analytical procedures. At the same time, improvement of
existing empirical formulas and development of new ones may evolve from the existing
experimental data together with the developed results. The need for such a test
program has been pointed out in many references [46, 9, 14, 50, 62], particularly
for biaxial loading conditions combined with lateral pressure.

The test program should be directed mainly towards fulfilling two objectives:

Verifying and calibrating*methods for predicting the non-linear
behavior of gross panels and estimating their collapse loads
and mechanisms. For the latter purpose at least one gross
panel should be designed in each of the collapse modes discussed
earlier. A direct comparison can be then made between
experimental results and the recommended analytical expressions
and procedures as given under "A'1 and "B" of this section,
and others if found suitable.

Examining grillages of dimensions and stiffness characteristics
similar to those existing in ships, thus testing the likelihood
of the different failure modes and the corresponding ultimate
load carrying capacity in actual ship structures.

The above objectives can be accomplished through a two-phase test program.

Phase I

This phase should be concerned primarily with fulfilling the elements of

objective (1) above. Gross panel models of scale approximately 1/4 or 1/5 should

be suitable in this regard. The plate thickness should be of the order of 0.10 in.

to 0.20 in. Several stiffeners in each direction should be used and end-bays should
be reinforced to avoid premature failure in these regions. A high quality of
fabrication and manufacture with minimum welding distortions should be sought. The

initial deformations and distortions should be thoroughly measured and recorded

before testing, particularly the profile of the platings between stiffeners. The

material properties from which the gross panel models are manufactured should be
determined by compression as well as tensile tests. The loading conditions on

the models should consist of:

44

*Analytical methods can be calibrated using test results in order to develop semi-

empirical formulations.
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Lateral pressure and uniaxial edge conipresion.

Lateral pressure and biaxial edge compression.

Biaxial edge compression.

In the biaxial compression tests (ii) and (iii) the transverse edge compression
should be of the order of magnitude of 20% to 40% of the longitudinal edge
compression.

The models should be loaded first elastically then into the elastic-plastic
region and finally to the plastic collapse. Measurements of deflections and
strains at selected locations in the plating between stiffeners and at the
stiffeners should be taken with the objective of verifying the recommended ana-
lytical expressions given under "A' and "B" and others if found suitable.
Whenever possible, the boundary conditions used in the derivation of the analytical
expressions should be adopted in the test program. Alternatively, if this
causes experimental difficulties, the analytical formulas should be rederived to
correspond to the experimental boundary conditions of the gross panel. The behavior

of the gross panel is indeed sensitive to the boundary conditions and the relia-
bility of the correlation depends to a large extent on achieving a one-to-one
correspondence in boundary conditions between the test and the analysis.

Several gross panel models should be designed and tested. At least one
should be designed to fail in each of the collapse modes discussed earlier. In

this regard the proportions of the lateral pressure to the edge compression should
be varied so that the distinction between lateral pressure collapse mechansims
and the ultimate compressive load mechanisms can be made and correlated with the
corresponding analytical expressions. The stages of development of each

mechanism should be observed and recorded.

An important part in fulfilling this phase objective is the subsequent analysis
of the test data and correlation with the analytical expressions and procedures.
Calibration of such analytical expressions should be made whenever necessary with
an objective of developing senii-emperical formulas. The effect of a transverse
compression of the order of 20% to 40% of the longitudinal compression on the
behavior and ultimate strengths of the models should be investigated from the
resulting experimental data.

The initial experimental work sponsored by the Ship Structure Committee [49,
68] fits and contributes to this phase.

Phase II

This is envisioned as a long-term phase which involves expensive experiments
on full-scale ship gross panels and is concerned mainly with satisfying objective
(2) stated above as a final goal. The details of this phase cannot be completely
outlined without examining the results of Phase I, or, at least a considerable
part of them. For example, whether or not a biaxial loading condition should be
incorporated in this phase testing program is dependent primarily on its effect
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on the gross panel behavior resulting from Phase I model experiments. However,
some general needs which actually complement Phase I program can be identified

at the present time. These are:

Examination of the effect of the residual stresses and weld-
induced distortions and strains in actual full scale gross

panels. This will require measurements of residual stresses
in the stiffeners and the platings.

Identification of the likelihood of the different failure
modes and the corresponding ultimate loads of the full
scale gross panels.

Further verification or modification of the analytical
or emperical expressions determined in Phase I.

It is envisioned that the extensive (but less expensive) test program of
Phase I would reduce the necessary testing in Phase II and the corresponding
cost to a reasonable limit.



5. GENERAL REMARKS

A Based on the analyses of the possible failure modes and the diversity of
failure mechanisms it is clear that, at the present time, there exists no
general theory which allows for the prediction and identification of all
possible failure modes under different loading combinations and different
geometric characteristics of the plate-stiffener combination. Such
theory, if and when developed, would likely be too complicated for
practical application and design work. Nor does there exist a reliable method
for estimating the gross panel collapse strength under biaxial and lateral
loading conditions when the collapse mechanism involves coupling between
several modes of failure. Some methods exist, however, which can be used
to estimate the buckling and ultimate collapse loads under some uncoupled
modes of failure as discussed in Section 4, In all cases, premature
failure of a local character such as weld and joint weakness is assumed
not to occur.

The available methods for estimating gross panel strength do not allow
for cumulative damage by fatigue and brittle fracture. When conditions
are conducive to such kinds of failure separate analyses must be conducted.

Because of the limitations on the control of the properties of steel, and
the limitations on fabrication of ship components, certain variability
will arise in the actual strength of apparently identical gross panels.
Uncertainties associated with the plate and stiffener rigidities and
dimensions, yield strength of the material, residual stresses, plate
fairness, manufacturing imperfections, etc. will contribute to such
variability. This points toward the need for statistical data collection
(full scale and model) and probabilistic methods of analysis.

Existing experimental data on gross panel strength should be compiled,
classified and stored in data banks as an important step in the
recommended test program. Such data should be analyzed and used in
conjunction with the new test data to verify the analytical methods and
modify or develop semi-analytical or emperical formulations as discussed
in Section 4. Dissemination of these data would also contribute to new
developments in theory.

In spite of the difficulties discussed above, the knowledge of the
ultimate load carrying capacity of ship gross panels is important. As

indicated in reference [53]: "Its value lies not so much in the fact
that it might lead to economies in structural weight and perhaps cost,
but more in the realism that knowledge of the limiting conditions,
beyond which a structure will fail to perform its function, is an essential

part of a rational design procecs."

47
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APPENDIX II

CRITICAL BUCKLING LOADS AND THEIR APPLICATION TO SHIP

GROSS PANELS UNDER BIAXIAL LOADING CONDITION

A simple procedure using the energy method can be used to determine the
buckling loads of an orthotropic plate compressed in two perpendicular directions.
If the work done by the compressive inpiane loads is less than the strain energy
due to bending and twisting of the plate, then the initial equilibrium of the flat

plate is stable. If the work done by the inplane loads on the plate is greater

than the total strain energy, the equilibrium of the plate becomes unstable and
buckling will occur in some mode. The critical values of the load at which
transition occurs from the stable to the unstable condition can be thus determined
by equating the work done by the inplane loads to the total strain energy. The work
done "T" by the external loads is given by:

BL
T = N ) + N ()j dxdy

2 f f[-
ID2w - 2w

o o

where and are inplane compressive loads per unit length in the x- and y-direc-

tions, respectively.

The total strain energy U due to bending and twisting of the plate is given

B L
2 2
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For a simply supported rectangular plate the deflection surface w can be

expressed by:

nîry
w = amn sin sin

B
m=l n=l

*Notice
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Equating the total strain energy U to the work done T and substituting the
expression for w, the following expression results after carrying the required
differentiation and integration and utilizing the orthogonality properties of the
trignometric functions.

f

m2'rr2 fl21T2 m4ir4
+ 2D

m2 2 2 2
47r4n n

X
L2 ' B2 L4 xy L2 B2

+D
B4

L2B2
Multiplying both sides of the above equation by and using the

notation:

Dxy
n

- JDxDy

ir2IDxDy 2JDxDy
X - B2 Y - L2

one obtains,

2 m4 m2n2+p2n42= fl

Using the average cross sectional areas per unit width h and h in the
x- and y-directions, respectively, we get:

--m2+Y n2 = !!i+2nm2n2+p2n4
cx*

where

* = 2ftJXDY -

hB2 h

¿IDxDyYy*
hy L2 h

4

p
L

D

(

(y)
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hx Y h

Equation (V) is the same as equation (50).

APPLICATION

Example 1:

Consider a gross panel in the bottom structure of a 70,000 DWT tanker bounded
transversely and longitudinally by the transverse and longitudinal bulkheads,
respectively. Figure 16 shows the gross panel overall dimensions and typical cross
sections of the stiffeners. The rigidity coefficients of the gross panel were
determined according to reference [2]. The following values were obtained [60].

Dx = 8.104X10'0 lb-in

D = 1.653X10'0 lb-in

98.75
p -

n = 0.617

1.653
8.104 = 1.5

If an LBP/20" wave is used, the resulting full load draft yields approximately
a transverse load = 10,554 lb/in and a longitudinal hogging bending moment of
1,207,453 ft-ton. the latter value yields an inplane compressive load on the gross
panel = 34,070 lb/in. Thus, typically, the transverse inplane compression is
about 30% of the longitudinal compression.

n/8.lO4Xl. 653X1 ü10
Nx =

(532)2

= 2.572X105 lb/in
y

0.041=

= 1.276X106 lb/in
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Consider next a section of the gross panel of the 70,000 DWT tanker between

transverse web frames. Figure 17 shows a typical section dimension and stiffener

cross section. The following values were computed [60].

= 4.044X108 lb-in

D = 9.272X106 lb-in
y

p = 0.173

n = 0.73

1T214 044X9 272X107

= (118.5)2
- 43,036 lb/in

* = 8,541 lb/in

For a transverse inplane load ii = 10,554 lb/in due to an "Lpp/20" wave draft, the

ratio:
y

10,554
0.245

- 43,036

From equation (IV) is minimum when m=1, n=1 and is equal to the following.

69

From equation (IV), the smallest value of occurs when m=2 and n=l.

= 3.56 thus, (Nx)cr = 2030 tons/in

Example 2:

*
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and

and

= 34.66

xcr = 132 tons/in

Example 3:

Consider next a section between two longitudinals and two web frames. The
resulting isotropic plate has the following dimensions.

a = 118.5 in. b = 33.25 in.

E h3
- 9.272X106 lb. in.D =D =D=

x y 12 (l2)

a 118.5
15 = 3325

- 3.56

ri 1.0

- 6,517 lb/in

* =
= 82,773 lb/in

thus,

10,554

y

From equation (IV) the minimum critical load in the x-direction occurs when
m=3, n-1 and is equal to:

N
-= 3.94
*

71



from which,

°x)cr
= 145.6 tons/in

From the results of Examples 1, 2, and 3 it is seen that the lowest buckling
mode of the gross panel under biaxial loading conditions is that of the panel
between web frames.

72



UNCLASSIFIEDorti Clssiftcaio.
- DOCUMENT CONTROL DATA - R & D
.S,unlr tassiuicat,on nf Urto. soir of obstruCt nf ir,d,'.rm1' mn or,t: n r 0n'sr,'d oh,'rI tir.- oveeVIi rrp.rrI . classified)

C5'NATING ACTIVITY (Corprote OuthOt)

Mansour Engineering, Inc.
Berkeley, CA 94704

. NPONT SFCUUSITV C'IS,FICATION
UNCLASSIFIED

uyrRr I ÎLE

GROSS PANEL STRENGTH UNDER COMBINED LOADING

DESC RIP rl VE NOT ES (Type of report and inclusivE dates)
FINAL REPORT

AU T,-IQRISI (First name, middle jornal, last name)

Alaa

E.

REPORT OStE 7e. TOTAL NO 0E °AGES

72

7b. NO OP REPS

70
es. CONTRACT OR GRANT N0

N00024-7 5-C-4015
b. FROJEC T NO

SR-225
o.

d.

Sa. ORIGINATOR'S NEPORT NL1SIBERISI

Sb. OrNER REPOR r NO(S) (Any other numbers that may be assigned
this report)

D. DISTRIBUTION STATEMENT

Distribution of this document is unlimited

Ii SUPPLEMENTARY NOTES 12 SPONSORING S'r..ITARY ACTIVITY

Naval Ship Engineering Center

'quate

The existing methods of predicting the behavior and ultimate strength of ship
gross panels were evaluated, examined and in some instances, further developed.
The assumptions, approximations, and deficiencies in each method were identified
with the objective of determining the range of validity of each. The methods were
classified in five broad categories with respect to their theoretical bases.
Comparisons and correlations were conducted between the results of the different
methods when applied to identical gross panels under biaxial edge compression and
lateral pressure. Based on the identification of the assumptions and approxima-
tions in each method, and on the conducted comparisons and correlations, some
expressions and procedures were selected, discussed, and extended. Lack of ade-

procedures in certain areas were pointed out particularly when the collapse loads
and mechanisms involve coupling between several modes of failure, and a biaxial
loading condition exists in combination with lateral pressure. In some instances

no clear measure of the relative reliability of the different procedures can be
ascertained and a firm evidence of the 'exact" solution is not available. A two-

phase test program was recommended with immediate objectives and final goals
outlined. An extensive bibliography is appended to this report.

FORM (PAGE I

NOV 55 UNLIMITED
O IO 1. 807. 6 80 I Security Classi (1CV telo



W
he

n 
Y

ea
 K

so
w

M
ul

tip
ly

 b
y

T
. F

le
d

S
y.

h.
l

LE
N

G
T

H

In
in

ch
es

2.
5

ca
nh

irr
tr

e,
,

ft
fe

el
30

çn
nt

ar
se

ta
rs

C
te

yd
ya

rd
s

0.
9

m
ot

el
s

r"
m

l
m

ile
,

1.
6

ki
lc

,r
ie

te
ts

ki
r,

A
R

E
A

W
us

t. 
in

ch
,,

6.
5

sq
ua

re
 c

en
lim

et
er

,
cp

i2

ft2
sq

ua
re

 fu
el

0.
09

sq
ua

re
 m

et
er

s
ni

2

yd
2

sq
ua

re
 y

ut
id

e
0.

8
sq

ua
re

 m
ot

et
e

m
2

m
l2

W
us

t. 
m

i l
en

2.
6

sq
ua

re
 k

ilt
ne

et
er

,
ki

n2
ac

re
s

0.
4

he
ct

ar
es

h.

M
A

S
S

 lw
oi

qh
t(

F
ef

rr
en

he
it

5,
9

ut
te

r
C

el
si

us
iti

ni
pe

ta
tu

rn
su

bl
ra

cl
in

g
te

rt
gt

er
al

u,
.

32

1
2,

54
 e

.a
ct

iy
l. 

F
ur

 u
ne

n 
cr

5.
1 

cu
liu

irr
s,

ii 
di

t r
ul

e 
ilo

ta
 ir

iS
aC

in
i,

ie
 s

es
 M

iS
c.

 P
Itt

. 2
86

.
U

ni
S

 e
i C

oU
til

s 
do

l M
ed

su
ie

S
. t

in
C

o 
52

.2
5.

 5
0 

C
at

JI
ç.

q 
N

o.
 c

i 3
.1

02
86

.

IC

M
E

T
R

IC
 C

O
N

V
E

R
S

IO
N

 F
A

C
T

O
R

S

A
pp

ro
xi

m
at

e 
C

on
ve

es
io

ns
 to

 M
eu

ic
 M

ea
xu

re
s

A
pp

ro
xl

rr
ef

e 
C

on
ve

rs
io

ns
 fr

om
 M

et
ric

 M
ea

su
re

e

A
R

E
A

32
98

.6
21

2

ou
0

40
80

20
le

O
20

0

p

..0
i3

1 
iii

yi
fif

i i
i

ii
40

-2
0

0
20

41
3

60
80

lO
O

nc

o! p4 qt ga
i

ft3 od
i nc

0.
04

0.
4

in
C

he
s

in
3.

3
le

en
Ii

1 
.1

ya
ld

s
yd

0.
6

m
ua

s
m

l

ts
p

le
os

p0
00

s
5

m
ill

ili
te

rs
m

l

T
bs

p
ta

bl
es

po
oe

s
15

ty
ill

ili
fe

ts
iii

Il 
oc

flu
id

 m
in

ce
s

30
ifl

hl
lil

itt
irs

m
l

cu
ps

0.
24

lit
er

s
pl

pi
er

s
0.

47
hI

er
s

ql
qi

ae
rr

s
0.

90
lit

er
s

qu
I

ga
llo

ns
3.

8
lit

er
s

I
ti

cu
bi

C
 fe

el
0.

03
cu

bI
c 

et
at

S
«.

n,
3

vd
2

C
ub

ic
 s

ar
ds

0.
76

C
ub

ic
 n

,a
l.n

$
m

3

T
E

M
P

E
R

A
T

U
R

E
 (

ex
ac

t)

tr
iS

er
ill

ili
te

cs
0 

(1
3

flu
id

 o
un

ce
S

Ir
te

rs
2.

1
pi

ni
s

hI
er

s
f0

6
qu

ar
ts

t-
m

3
cu

bi
c 

m
et

er
s

35
C

ut
?&

 r
es

t

lit
er

s
0,

26
ga

lIo
ns

re
3

cu
bi

c 
m

al
er

s
1,

3
C

ub
iC

 y
ar

ds

as
T

E
M

P
E

R
A

T
U

R
E

 (
60

8c
l)

C
C

el
si

us
9S

 lO
en

F
 a

 Ir
r 

oc
he

 il

te
m

pe
re

ru
re

ad
d 

32
1

re
nf

lo
nr

al
ur

e

S
ym

bo
l

W
h.

n 
Y

ou
 K

ne
w

M
ul

tip
ly

 b
y

Jo
 F

rn
d

S
ym

6o
l

LE
N

G
T

H

cm
2

sq
ua

re
 c

el
iti

no
rr

er
s

0.
16

sq
ua

re
 in

ch
es

in
2

m
M

In
ar

e 
m

ot
or

s
1 

.2
sq

ua
re

 y
ar

ds
km

'
sq

ua
re

 k
il(

nr
et

e,
r,

0.
4

sq
ua

re
 m

ile
s

h,
S

oc
ia

le
s 

10
.0

00
 n

ii
2,

5

M
A

S
S

 (
w

«i
ttt

)

na

rr
,il

itr
rs

et
er

s
C

,fl
lil

fle
le

rs
m

eI
er

,

-s
m

ot
or

s
hi

e
bi

lc
yn

el
er

s

on
ou

nc
e,

28
jra

ln
s

g
g

gr
am

s
0,

03
5

ou
nc

es

Ib
po

un
ds

0.
45

ki
lo

ijr
ai

rr
s

kg
kg

ki
lo

gl
at

no
2.

2
pu

ni
nd

s
lb

sh
or

t t
oi

lS
0.

9
lu

tin
es

t
to

nt
in

es
 1

10
00

 b
i)I

.1
sf

Io
rI

 tu
ni

s

20
00

 Ib
I

e
V

O
 tU

 M
 E

V
O

 U
 M

E


