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preface 
 
The idea of deriving analytical and structural information from geometrical complex design with relative 
simple design tools was one that was at the base of defining the research question during the early phases 
of the graduation period, starting in September of 2009. Ultimately, the research focussed an approach 
actually reversely to this initial idea by concentrating on using analytical and structural logic to inform the 
design process with the aid of digital design tools. 
 
Generally, defining architectural characteristics with an analytical approach is of increasing interest and 
importance with the emergence of more complex shapes in the building industry. This also means that 
embedding structural, manufacturing and construction aspects early on in the design process is of interest. 
This interest largely relates to notions of surface rationalisation and a design approach with which initial 
design sketches can be transferred to rationalised designs which focus on a strong integration with 
manufacturability and constructability.  
 
In order to exemplify this, the design of the Chesa Futura in Sankt Moritz, Switzerland by Foster and 
Partners is discussed. From the initial design sketch, there were many possible approaches for surfacing 
techniques defining the seemingly freeform design. The key to controlling the form was to make use of a 
polar grid association. Generally, the polar grid is a well applicable way of locating elements, such as 
windows, whose positions are based on a radial geometry. The geometric definition was based on four 
sectors and a number of subdivisions within each sector. This provided flexibility and control as well as a 
convenient coding and referencing system1 and additionally, based on this definition, parametric relations 
were defined, providing smooth transitions between the sections, Figure P1.  
 
The example of the Chesa Futura project shows how a logic of radial geometry within a parametric 
environment is used to generate plans and sections and as such defines a globally rationalised surface 
definition. 
 
 
 

 
  

                                                 
1 Lenz, Chesa Futura 
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Fig. P1.  From sketch design to geometric description based on parametric radial rationalisation of the Chesa Futura in Sankt Moritz, 

Switzerland by Foster and Partners [http://www.daapspace.daap.uc.edu, March 2011] 
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This thesis focuses on discussions related to definitions of digital rationalised surface geometry. As such, it 
is an integral part of the graduation project of the research group Computation & Performance of the 
department of Building Technology of the Delft University of Technology, Faculty of Architecture. 
 
The thesis describes the research and background studies in rational design methods and parametric 
descriptions of surface definitions and describes a design approach based on digital design tools which 
allow for the analysis and generation of developable surfaces. The .gha assembly which allow access to 
these tools in Grasshopper for Rhinoceros is provided including a installation manual, see Appendix C. 
 
The content of the research is presented on 8 April 2011. 
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summary 
 
general introduction  
Over the last decades, the advances in digital surface modelling seemingly grew ahead of possibilities to 
follow the design intention in analysis and construction. This especially in relation to the control over the 
geometry and the costs of fabrication and assembly of non-standard elements. The lack of control over the 
geometry, in relation to both structural analysis and construction, in some cases proves to be a hurdle in 
realising a design. And although the current state of technology allows computation-driven design 
processes to incorporate tools and machines that automatically fabricate structural elements, formwork 
and building components, the costs of employing digital fabrication are not always exceeded by the profit. 
As such, geometrically complex design can put the relationship between design and realisation under 
pressure when manufacturing and construction methods cannot  follow the envisioned design or when they 
result in a disproportionate increase of costs. 
 
One general aspect in reducing the complexity of translation from modelling to construction is the 
rationalisation of geometry informed by manufacturing and construction characteristics. Two world 
renowned structures have been used to present notions of form and surface rationalisation. Firstly, the 
design process of the Sydney Opera House shows how the initial designed forms needed to be rationalised 
into spherical elements simply to be describable using contemporary drafting and engineering methods and 
to positively affect the constructability of the structure. Secondly, the Guggenheim Museum of Bilbao is 
presented as an exemplary project for the design of architectural surface geometry based on the principles 
of single-curved surfaces, also known as developable surfaces. Related to the surface descriptions of these 
projects, it is exemplified that rationalisation can greatly simplify the surface definition of a design, 
positively affecting the engineering and construction of a design. This, ideally, whilst still allowing for a vast 
design freedom. 
 
Based on the above, this thesis tries to provide an answer to the question of how restrictive design 
conditions of rational surfaces be taken into account within a parametric environment to inform the design 
process which is focussed on the translation from design to realisation. As such, the goal is to embed the 
use of digital tools in a design process which on one hand deals with the boundary conditions related to 
rational surface description and on the other hand provides the designer possibilities in choosing 
parameters allowing for a design freedom within these restrictions. 
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rationalisation of surface definitions 
Along with the digital possibilities in fabrication and construction, focusing on decreasing the complexity of 
the design by rationalising surface definitions can narrow the gap between digital modelling, fabrication 
and construction. Shaping the geometry based on rational surface classes, such as developable surfaces, 
allows designers to influence the buildability along with positively affecting the level of complexity in 
structural analysis. Shelden denotes that rationalisation serves as the resolution of rules of constructability 
into project geometry2. In this sense, rationalisation may allow for full and precise control over the 
structural dimensions, may avoid having to deal with limitations in CAD/CAM machinery and related 
software and may force a design to be constructed out of elements from a limited number of moulds.  
 
parametric definitions of developable surfaces 
In the field of surface rationalisation, developable surfaces play a specific role as they allow for expressing 
an overall sculptural appearance in R3 space while being conform definitions of single-curvature 
geometries. In the words of Huffman: “Developable surfaces offer a complexity that is midway between a 
completely general surface and a plane surface”. 
Developable surfaces have the advantage that they can be made from flat surface material, such as metal 
sheeting. It follows from this and the definitions  above that on one hand, developable surfaces are more 
difficult to generate than standard Euclidean planar shapes and are also constrained compared to freeform 
surfaces. On the other hand, their strict definition allows them to be defined parametrically based on either 
theoretical formulas or on vector mathematical operations related to their structure of surface generators. 
As such, balancing between complexity and simplicity, rationalising by means of parametrically defining 
developable surfaces may provide a strong asset to the designer taking constructability into account and 
possibly making complex shapes and structures more cost efficient. 
 
The surface generators which define the geometry of developable surfaces are generally denoted as 
rulings. As such, being a subset of the ruled surface class, the parametric representation of a developable 
surface is equal to that of a ruled surface 
 

 

( , ) ( ) ( )u v u v u S C a

 

        
 
However, the additional restraint for a ruled surface to be developable is denoted by 
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2 Shelden, Digital surface representation and the constructability of Gehry’s architecture 
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As architectural complex geometric definitions are generally not based on differentiable parametric 
equations, this research shifted its focus from a theoretical approach to a discrete differential geometry 
approach; approximating the fundamental properties, clarifying the structure of the smooth geometry. 
Whereas global differential geometry studies the influence of the local properties on the behaviour of 
the entire surface, a discrete approach relates to an extrinsically perspective, regarding the embedding in 
Euclidian space. As such, the combining of general intrinsic differential methods with discrete geometrical 
operations forms the base of the digital generation of developables as it provides for the generation of 
discretely defined rulings. Subsequently, the rulings are used as input information to generate smooth 
developable surfaces, which are in essence approximations of surfaces based on differential geometry. 
Where the limit goes to a zero distance between subsequent discrete rulings, the approximation is 
equivalent to the surface based on differential geometry. As such, definitions to define developables 
surfaces are relatively simple as the condition for developability can be geometrically described by 
regarding the rulings of the surface and their individual set of normal vectors which need to be parallel. 
 
tool development and implementation 
The design approach of parametric modelling of developable surfaces proposed in this research is 
deployed via a digital toolbox developed for Grasshopper, a parametric plug-in of the 3D modelling software 
Rhinoceros. The toolbox contains various algorithmic methods categorised in three toolbox ‘compartments’. 
The algorithmic methods, or tools, allow for surface analysis and modelling and support the designer in the 
search for geometrically rationalised surfaces which answer to the initial ideas of the design. As such, the 
toolbox provides ‘hints’ to guide the generation of surfaces towards the constructible geometry of 
developable surfaces. This holds that the tools may suggest alterations of the design input and do generate 
surfaces based on the input, however they cannot be categorised as design tools. This in a sense that the 
toolbox provides the outcome of a predefined logic within a restricted workflow and therefore lacks the 
essentials of a set of design tools, which allow for a more creative process. 
 
The development of the architectural developable toolbox tried to follow the Grasshopper framework setup 
in providing  relatively simple components which perform basic operations. As such, the user is provided a 
new set of components which allow for a similar approach in utilisation as the standard Grasshopper 
components. Firstly, the input parameters are limited in number and generally do not require specific 
definitions or operations prior to providing data. Secondly, the surface definition components output is 
primarily focussed on two types of data; 1) the lofted surface defining a developable surface and 2) the 
rulings on which the developable surface is based on.  
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concluding remarks 
This thesis presents the implementation of a rational design approach, which is exemplified by deploying a 
digital toolbox of components, supporting the design process focussed on analysing and generating 
developable surfaces and demonstrates how the restrictive design conditions of developable surfaces can 
be taken into account within a parametric environment. As such, it is exemplified how parametric rational 
designing provides for an active attitude towards creating geometric surface constructions which are based 
on a set of principles generated for the purpose of increasing manufacturability and constructability. 
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 1 introduction and project description 
 
definitions of complexity in architecture 
The digital driven building typology of the last decades has not received a name on which everyone – in 
various disciplines – agrees. By some, blob architecture is considered an outdated terminology and using 
the term free form architecture is often in direct conflict with the defined rules on which digital designs are 
based. Defining the descriptive geometric design as complex might be dependent on skills or on discipline 
which makes the meaning of complex geometry a suggestive one. For instance, modelling a perfect sphere 
is no problem, building it is a totally different issue. Without directly advocating for the use of the 
terminology of complex architecture, this however does point out the quintessence of this research. The 
distinction whether a geometric description is complex or not is particularly important from an analysis and 
construction technology viewpoint in relation with the digital means of modelling this geometry. 
 
digital fabrication and rationalisation of design 
In building design, there is a general relationship among the development of tools for representing design 
information, the development of technologies for making complexly shaped members and the specific 
kinds of architectural design that were enabled by the relationships that existed at a specific point in 
time3. However, over the last decades, this relationship is put under pressure as the advances in digital 
modelling in some instances have surpassed the possibilities to follow the design intention in analysis and 
construction. This may lead to geometry which, although digitally specified, is difficult to set out on site and 
may result in a disproportionate increase of the costs of fabrication and assembly of non-standard 
elements. This is visually expressed by the diagram in Figure 1.1, abstractly denoting the discrepancy 
between the possible level of geometric complexity in architectural design and the possibilities in handling 
geometric complexity in construction.  
 
However, after the first generation of digital design processes employing digital design tools for the 
development of new forms and relationships, new processes were and are emerging. Instead of modelling 
complex – here meaning sometimes nearly unbuildable – shapes, new design tools were developed that 
calibrate the digital with reality on the construction site. Parallel to this, digital fabrication tools were added 
to the design process. This does, however, require new approaches in design of buildings. As Lisa Iwamoto 
states: “as with all tools of production, the very techniques that open the investigations to new methods of 
production have their own sets of constraints and gear particular ways of working”4. 
 

                                                 
3 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 
4 Iwamoto, Digital fabrications – Architectural and material techniques 
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Fig. 1.1.  Capabilities in geometric complexity of various disciplines: architectural design, structural design, construction, façade 

engineering and MEP engineering: current situation with large discrepancies in dealing with geometric complexity. 
  
Nonetheless, the current state of technology allows computationally driven design processes to 
incorporate tools and machines that automatically fabricate structural elements, formwork and building 
components, if not now, then in the near future, Figure 1.2. However, currently, costs of employing digital 
fabrication are not always exceeded by the profits, since the relation between digital design and 
manufacturing and construction has not yet come to a mature growth. As Schodek puts it: “the marriage 
between […] digital design and engineering environments […] and sophisticated numerically controlled 
production machines […] has yet to be culminated”5. Additionally, the lack of control over the geometry, in 
relation to structural analysis, may prove to be a big hurdle in realising a design.  

                                                 
5 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 
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Fig. 1.2.  Capabilities in geometric complexity of various disciplines: architectural design, structural design, construction, façade 

engineering and MEP engineering: increasing deployment of digital developments in construction 
 
Although the building industry is catching up with the deployment of numerically controlled machines and 
CAM software, currently, discrepancies between disciplines exist in the capabilities of handling complex 
geometry. Therefore, along with the digital possibilities in fabrication and construction, focusing on 
decreasing the complexity of the design by rationalising surface definitions can narrow the gap between 
digital modelling and fabrication and construction. Shaping the geometry based on for instance rational 
surface classes such as developable surfaces, allows designers to greatly influence the buildability along 
with positively affecting the level of complexity in structural analysis. As such, the discrepancies in various 
disciplines in handling complex geometry might be partially resolved by diminishing the complexity by 
rationalising the geometry, Figure 1.3. 
 
  



Computation & Performance 

6 
 

 
Fig. 1.3.  Capabilities in geometric complexity of various disciplines: architectural design, structural design, construction, façade 

engineering and MEP engineering: decrease of geometric complexity by rationalisation of design 
 
formulation of the objectives of the MSc thesis 
Based on the discussion above, one of the main questions of the research is how can rationalisation 
strategies, which incorporate notions of structural design, manufacturability and constructability, inform a 
design process which is focussed on the translation from design to realisation. One such strategy is related 
to design based on a subset of rationalised surface classes, comprising for instance surfaces of revolution, 
ruled surfaces and translational surfaces, which posses different positive characteristics related to surface 
definitions for engineering and construction. As such, an initial objective is to present the advantages and 
shortcomings in geometric modelling of these surface types and their relation with construction principles 
and to discuss their architectural qualities and the accompanying descriptive freedom. To already 
exemplify this, the Chesa Futura project, described in the preface, shows how a surface of revolution 
positively improves control over the form, however, the resulting double curved surface poses additional 
difficulties in construction. 
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In this research, it is suggested that a design approach incorporating pre-rationalised surface definitions 
may be well implemented in a (digital) design process when custom developed tools related to these 
surface definitions are available to the designer. This especially, when these tools allow for the definition 
of the logic and restrictions defined by the surface definitions on one hand, and for a certain freedom by 
denoting design parameters on the other hand. As such, the general objective of this research is to 
present a set of digital parametric tools that can be employed in a rational design approach with which 
initial design ideas can be transferred to rationalised designs with the focus on utilising the characteristics 
of rational surface classes. 
 
In order to present a coherent set of such tools related to a single type of the rational surface classes, the 
research in the rational surface classes converges to an in-depth research of the description of ruled 
surfaces and specifically on one of its subsets called developable surfaces. In order to support the 
suggested design approach based on pre-rationalisation, the development of the toolbox containing 
methods focussing on analysis and modelling of developable surfaces serves as a proof of concept rather 
than the exposition of fully functional and general applicable tools. Nonetheless, describing the individual 
functionality of the digital tools forms an important part in this thesis. 
 
contents of the report 
This thesis summarises the background research firstly by explaining the notion of rationalisation on the 
basis of two well-known precedents, secondly by describing the ways of presenting rational surface classes 
and polyhedral surfaces in architecture and their mathematical background. Chapter 2 focuses on the 
presence of rationalisation and rationalised surface geometry in architecture and setting boundary 
conditions for the implementation of rationalised surfaces in design. Chapter 3 deals with the general 
mathematical descriptions of rational surfaces and their metrical properties. Subsequently, Chapter 4 and 
Chapter 5 present the results of an in-depth research in developable surfaces, which are exemplary for 
potentially positive results of using a rational design approach. Design methodologies of developables in 
general and the design process which incorporates custom developed parametric components are 
described in Chapters 6 and 7. These chapters, therefore, focus mainly on the functionality and usability of 
a parametric rationalisation design approach for developable surfaces, which lies at the core of this 
research. In the final chapter, the research results will be discussed and the outcome will be concluded 
with concluding remarks and a reflection. 



Computation & Performance 

8 
 



  parametric modelling of architectural developables 

9 
 

2 rationalised surface constructions for architectural purposes 
 
Basically, rationalisation in the building industry comes in various forms. One basic example is rationalising 
through standardising to limit complexity and cost of manufacturing. Steel I-profile beams, for instance, 
generally follow certain predefined – or rationalised – rules on which the design is based, Figure 2.1. 
 
This research is focused on rational design in the sense of incorporating knowledge and boundary 
conditions from engineering and construction in architectural design. On one hand, rationalisation can be 
seen as dealing with the solving of design problems in relation to construction in a later stage of the 
design process, or in other words, post rationalisation. On the other hand, designs can be pre-rationalised, 
where an active attitude towards geometric design is employed in which design characteristics are based 
on a set of principles generated for the purpose of increasing manufacturability and constructability. Figure 
2.2 shows the abstract directions of these two forms of rationalisation in the design process. 
 
Two world renowned examples are discussed in Section 2.1 in order to exemplify methods of 
rationalisation. Subsequently, Section 2.2 presents a concise overview of generic modelling and 
construction principles of surface design. Section 2.3 deals with the architectural and structural 
implications of extruded surfaces, surfaces of revolution, ruled  surfaces and translational meshes, 
instances that fall under the common denominator of rational surface classes. 
 
 

2.1 introduction: precedents in rationalised architecture 
 
form rationalisation: Sydney Opera House – Jørn Utzon 
Initially, no definite geometry for the shells of the Sydney Opera House had been established and the 
geometric sketch design was being described by Ove Arup as follows: “the structure has a somewhat 
unusual shape, which was determined more by architectural than by structural considerations6.”However, 
finally it has been designed and constructed within the constraints of a strong geometric discipline which 
dominates the form of the Opera House structure: four shells, made up of two half-shells symmetrical about 
the central axis of each hall they cover. The form rationalisation proved to be the solution to making the 
building buildable. This was made possible by rethinking the problems that had arisen with the initial 
geometric design7. As a result, the solution was depended on the new rationalised geometric definition and 
the inherent description of how to construct the shells. 

                                                 
6 Arup, The evolution and design of the concourse at the Sydney Opera House 
7 Sydney Opera House Trust, Sydney Opera House, Utzon design principles 

 

 
Fig. 2.1. Top: The first HE1000B at the Differdange rolling mill, 

Luxembourg [image courtesy of Arbed Luxembourg] 
Bottom: Profile data for various HE profiles  
[http://www.sections.arcelor.com, January 2010] 
 

 
 Fig. 2.2. Pre-rationalisation and post rationalisation in architecture, 

engineering and construction 
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The complexity of Utzon’s concept of sketched curved shell surfaces, see Figure 2.3, was simplified through 
a seven-year design development phase. From 1957 until 1963, twelve shell solutions were considered, 
with each successive form becoming more rationalised and structural elements more repetitive. Ultimately, 
the complex curved surfaces were abandoned in favour of describing the shells with a standardised 
curvature of a sphere, defining sail-shaped sections from a 75 metre diameter sphere with a post-
tensioned precast concrete rib structure8. 

 
Fig. 2.3.  From sketch design to geometric description of the shell structures [http://www.visit.heritage.nsw.gov.au, November 

2008] and [http://www.utzonoperahouse.com, November 2009] 
  
This lead to a common denominator; the same spherical surface to deal with, with a similar curvature 
throughout. This made it possible to standardise formwork and to precast the concrete-shells in smaller 
pieces and assemble these pieces on location. 
 
Also the glass enclosures, see Figure 2.4, right, are compositions derived from basic geometric elements; a 
cylinder intersecting an upper cone and a lower cone. These enclosures were described in a series of 
faceted planes, with intersection points fully described in three axes displacements, with individual panels 
identified with corner points. By adjusting key displacement points within the glass wall, variations of 
geometry could be explored via subroutines to calculate the coordinates of all key structural glass 
surfaces9.  

                                                 
8 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 
9 ibid. 
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Although the roof geometry was substantially standardised, the large variation of the roof tile configuration 
needed a rationalisation method as well. Ultimately, six standard tiles were highly repetitive, while the tiles 
on the panel edges changed dependent on their location, Figure 2.4. The panel sizes were limited to 19.5 
square metre for ease of handling. Within each chevron shaped panel, the square tiles were identical, with 
edge tiles custom-cut to fit each edge condition10. 
 

 
 
Fig. 2.4.  Precast spherical element principles of the tiles and with the glass enclosures on the right11 
 
In conclusion, of the resolutions to make this project buildable, the major one was the implementation of 
the structural rationalisation which led to a new geometric description of roof for the concert halls. Utzon’s 
proposal was a shell structure, but generated problems because from his sketches it was impossible to 
calculate a regular geometry for it12. Based on the post rationalisation principles, the building ultimately 
proved to be buildable, although blowing off the project or severely altering the design was not far off during 
various stages. 
 
surface rationalisation: Guggenheim Museum Bilbao – Gehry Partners 
When Frank Gehry won the competition to design the Guggenheim Museum in Bilbao, Spain in 1991, his 
office was in the midst of changing from a traditional practice to a digitally adapted one. For his projects, 
Gehry wanted better control of the entire process from design through construction. The winning 

                                                 
10 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 
11 Sydney Opera House Trust, Sydney Opera House, Utzon design principles 
12 Szalapaj, Contemporary architecture and the digital design process 
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competition model was accompanied with watercoloured rendered plan, section and elevation drawings 
that were made using traditional methods, as was most of the early design development for the project. As 
a result, most of the early development of the museum’s complex three-dimensional form was tediously 
drawn by hand. It was not until the final design model was complete that the computer was extensively 
used13. Connecting the sketches with the computational models, Figure 2.5, Gehry made use of paper 
models. 

 

 
Fig. 2.5.  From sketch design to digital model [http://images.allmoviephoto.com,May 2010] and [http://www.arch.mcgill.ca, May 

2010] 
 
As is usually the case in design, this process was iterative and nonlinear. The physical models were reverse-
engineered using a digitiser to take coordinates off the paper model’s surface and to import it into a 3D 
digital environment. The design subsequently moved back and forth between physical and digital surface 
models – physical models for aesthetics, digital models for ‘system fit’14. 
 
 
 
 

                                                 
13 Lindsey, Digital Gehry – Material resistance, digital construction 
14 Iwamoto, Digital fabrications – Architectural and material techniques 
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Fig. 2.6.  Digitising sequence of the Guggenheim Museum; a series of points are generated by scanning physical models and are 

subsequently developed into surfaces. A wireframe model is extruded and a check model is milled to ensure accuracy15 
 
In the process of reverse engineering, a pattern of points, called a point cloud, is distilled from a scanned 
physical model and is then interpreted by conversion software to produce a close approximation of the 
model’s geometry, Figure 2.6. Typically, the patterns of scanned points are used to generate surface profile 
NURBS curves, which are then used to generate lofted NURBS surfaces16. 
 
The digital model became the dimensional reference that allowed the working drawings to be developed 
and later helped to coordinate the construction of the project. Instead of a ‘simple’ loft of the generated 
curve profiles, the architecture of the museum is based on the use of developable surfaces for form finding 
and the efficient cladding of substructures (more on developable surfaces in the subsequent chapters). 
Gehry’s office used the Gaussian analysis to determine the areas of excessive curvature, as there are limits 
as to how much the sheets of metal could be bent in one direction. This analysis was also used in the 
Experience Music Project in Seattle to determine which of the apparently double curved surface patches 
could be converted into developable ones and which ones need to be complexly shaped17. And although no 
two elements of the structure for the 24.000 square metre building are the same, the rationalisation step 
of creating developable surfaces entailed that all of the titanium cladding panels were supplied flat and 
only four panel sizes were used for cladding 80 percent of the surface. 

                                                 
15 Lindsey, Digital Gehry – Material resistance, digital construction 
16 Kolarevic, Architecture in the Digital Age – Design and Manufacturing 
17 ibid. 
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comparing the Sydney Opera House and the Guggenheim Museum of Bilbao 
In ‘Digital design and manufacturing’, Schodek writes: “the Sydney Opera House illustrates pioneering 
applications of computer aided geometric design for manufacturing in architecture. Digital modelling 
facilitated a detailed layout of building assemblies and many digital component models of concrete ribs, 
precast roof tiles, glass panels and steel structures that were generated to produce full-size patterns for 
fabrication18”. Kolarevic calls the Guggenheim Museum probably the best known example that captures the 
zeitgeist of the digital information revolution […] since it challenges not only how buildings are designed, 
but also how they are manufactured and constructed19. Clearly, the influence of both presented examples 
of rationalised structures on the building practice is great. Nonetheless, the process of realisation of the 
design and the structure itself differs to large extends. This can be summarised by two important 
characteristics of an architectural design process. 
 
The first is the management of the design process itself. There are many examples of good architecture 
that arose out of unmanaged projects and even out of badly managed projects. The Sydney Opera House is 
one of them. Frank Gehry, however, has a reputation for building on time and within budget, even for large, 
complex and innovative structures. In comparison with the Sydney Opera House, point by point the 
approach was exactly opposite. In Sydney, the original budget of seven million Australian dollars was not a 
real but a political budget. The Labour government of New South Wales, the main proponent of the Opera 
House, wanted the project approved and construction started before elections in March 1959 and before 
either drawings or funds were fully available. If one principal cause can be identified for the troubles and 
the cost overrun of 1400% of the opera building, this is it20. According to Gehry, continuing relationships 
with the individual building trades is an important ingredient in keeping within budgets, especially since 
various designs by Gehry would not have been possible without the local steel and shipbuilding industry21, 
and the political and business interests must be kept at arm’s length from the design process.  
 
The second design characteristic in which the Opera House and the Guggenheim differ, and more related to 
the theme of this research, is the employment of rationalisation of the surface geometry in relation with the 
computational modelling of these surfaces. In the late 1950s and early 1960s, the design team of the 
Opera House did not have access to advanced design technology and computing power which was 
available to Gehry around the turn of the century. As described above, consequently, Utzon and Arup had 
great difficulties finding a practical way of building the curved concrete shells. The years of experimentation 

                                                 
18 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 
19 Kolarevic, Architecture in the Digital Age – Design and Manufacturing 
20 Flyvbjerg, Design by deception: The politics of megaproject approval 
21 Kolarevic, Architecture in the Digital Age – Design and Manufacturing 
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translated into years of delay, which again translated into cost overruns. The simplification of the surface 
shells form allowed exact calculation and the use of prefabricated elements, reducing costs to more 
acceptable levels. Nonetheless, based on the rationalised geometric descriptions, an early example of 
parametric modelling was evident in the algorithmic relationship established between the shell and glass 
geometries. It allowed for multiple changes in the design development of form and structure. As the design 
evolved, the computer produced key dimensions and component templates that were transferred onto 
working drawings and schedules. The surface modelling of the shell geometries and the glazing were also 
translated into various dependent structural geometries that were offset from the surface to describe the 
post-tensioned concrete structures and the steel glazing supports and were thus controlled by the surface 
geometry22. 
Gehry’s initial sketches and models for the Guggenheim Museum in Bilbao were more daring in their use of 
freeform curved surfaces than Utzon’s, but now accurate modelling was no longer a problem. Gehry’s office 
employed CATIA, an advanced CAD system mostly used, until then, in aerospace and automobile design, 
see Figure 2.7. As a result, Gehry could employ visualisation software to create, almost instantly, whatever 
views he needed. He could also use rapid prototyping tools to produce physical models automatically. But 
most important, the digital model provided the data needed for the precision in documentation which Gehry 
says is crucial for estimating and controlling costs correctly and thus keeping architectural design at a 
desired distance from controversy and political debate. Still, also for the Guggenheim Museum and other 
projects by Gehry Partners, rationalisation of surface geometry proved to increase the buildability of the 
design. Gehry and his associates on one hand have pioneered the use of digital design models that greatly 
facilitate production of the data needed for arriving at accurate budgets. On the other hand, making use of 
rationalised surface geometry contributed greatly to the explanation of how the Guggenheim Museum was 
built on time and within budget. 
 
 

2.2 generic principles of surface modelling and construction 
Although the surfaces of the Sydney Opera House and the Guggenheim Museum in Bilbao are visually 
complex, the applied rationalisation methods lightened the complexity of the fabrication of elements and 
the assembly onsite. These projects exemplify that construction (as also analysis) principles may benefit 
greatly from rationalisation in architectural design. This section focuses on the general characteristics of 
surfaces and discusses some points of attention in modelling and constructing them. 
 
 
 

                                                 
22 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 

 
 Fig. 2.7. Screenshot of the Guggenheim Museum in Bilbao in CATIA 

[www.dac.dk, May 2010] 
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2.2.1 general surface properties 
In general, geometric modelling of surfaces deals with two major aspects. Whereas the visual 
representation focuses on aesthetically appealing surface constructions and representation of forms, the 
analytical representation refers to mathematical descriptions and analysis of geometric properties in 
relationship to the forms. Subsequently, according to Mortenson, geometric modelling is also closely linked 
to the assembly of these forms into complex objects23. 
The two aspects of geometric modelling of surface forms and the assembly of them (both digital as onsite) 
can be circumscribed by three surface properties: 

 surface curvature 
 continuity between surfaces and 
 offset properties 

 
surface curvature 
Certain curved shapes, such as hyperbolic paraboloids exhibit membrane action, wherein internal forces 
are efficiently transmitted through the surface in an in-plane manner. However, membrane action depends 
on the existence of particular combinations of surface shapes and types of loading conditions24. In other 
words, curvature does not automatically equals structural efficiency and no direct implications based on 
curvature analysis can be made without structural analysis. This research does not focus on the structural 
analysis or optimisation of surface geometry, however, it does exploit positive characteristics of 
rationalised surface versus non-rationalised descriptions in relation with geometric curvature analysis. In 
this respect, especially the distinction between surfaces of zero and non-zero Gaussian curvature is of 
importance. Mathematically, the concept of curvature relates to a measure of the amount of bending of a 
curve or surface at a point on this curve or surface. The curvature κ at a point on a surface takes on a 
variety of values as the plane through the normal varies. As κ varies, it achieves a minimum and a 
maximum (which are in perpendicular directions) known as the principal curvatures25. The Gaussian 
curvature is the product of these principal curvatures. 
 
Generally, surfaces of zero Gaussian curvature, known as developable surfaces, contain positive 
characteristics in relation of fabrication and construction. However, the principal curvature in the non-zero 
direction cannot be neglected since the fabrication of elements is of course restricted to material 
properties such as flexibility. For a more in-depth description of the Gaussian curvature analysis methods, 
reference is made to Section 3.2 or http://mathworld.wolfram.com/GaussianCurvature.html. 

                                                 
23 Mortenson, Geometric Modeling 
24 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 
25 Wolfram Mathworld, Curvature 
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continuity between surfaces 
When combining two or more single curves into one composite curve, the continuity conditions at the joints 
are determined by the geometrical relationship of the control points adjacent to the joints26. Joining the 
segments at a common point so that their first n derivatives are equal at that point creates a condition of 
the nth order continuity. There are two kinds of continuity; geometric continuity (denoted as Gn) and 
parametric continuity (denoted as Cn)27. The least restrictive form of the nth order continuity is the 
geometric continuity; C1 continuity implies G1 continuity, however, the inverse is not necessarily true. 
 
To exemplify the distinction, consider two curve segments, curve01 and curve02, with tangent vectors at 

respectively their end and begin point, 
01

(1)up  and 
02

(0)up , see Figure 2.8. When these curves are blended 
by another curve between these points, the composite curve is said to be a G1 curve when the tangent 
vector of the blend curve at the joints is in the same direction. They only need to be scalar multiples of each 
other and point in the same or directly opposite direction. If the magnitude would be the same as well, or in 

other words if 
01 04

(1) (0)u up p  and 
02 04

(0) (1)u up p , the curve would have been a C1 curve (a curve with first 
order parametric continuity).  
 
There are different levels of continuity. If two curve segments are simply joined together at respective end 
points, the resulting curve is said to have G0 or C0 continuity, i.e. positional continuity at the join. Usually, 
this is far from satisfactory. If the tangent vectors at the joint for both curves point in the same direction, i.e. 
their geometric slopes are equal, then G1 or C1 continuity exists at the joint, similar to the example given 
above. The curve is visually continuous (smooth) but may have a discontinuity in the parameterisation28. G2 
or C2 continuity exists if at the joining point the second derivative is parallel to the tangent vector at the 
joining point. 
 
For n = 0, 1 and2 the characteristics of G/Cn parametric continuous curves are summed up below. 
 
G/C0 –  positional continuity holds whenever the end positions of two curves or surfaces are coincidental. 

The curves or surfaces may still meet at an angle, giving rise to a sharp corner or edge and 
causing broken highlights. 

                                                 
26 Watt, 3D Computer Graphic 
27 Mortenson, Geometric Modeling 
28 Piegl, The NURBS Book 

 Fig. 2.8. Blending a curve between two existing curves with G1 
continuity (middle) and C1 continuity (bottom) 
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G/C1 –  tangential continuity requires the end vectors of the curves or surfaces to be parallel, ruling out 
sharp edges. Because highlights falling on a tangentially continuous edge are always continuous 
and thus look natural, this level of continuity can often be sufficient. 

G/C2 –  curvature continuity further requires the end vectors to be of the same direction and length and 
rate of length change. Highlights falling on a curvature-continuous edge do not display any 
change, causing the two surfaces to appear as one. This can be visually recognised as ‘perfectly 
smooth’29. 

 
Since it is very difficult to visualise the difference between C4, C3 and even C2 continuity, high order 
continuity is usually not needed. However, for applications that depend on the fairness or smoothness of a 
curve, especially those that depend on a smooth transition of reflected light, e.g., automobile bodies, G1 or 
even G2 continuity might not be adequate, see Figure 2.9. For these applications, at least C2 continuity is 
required to achieve the desired result30. 
 
Since the definition of geometric continuity for surfaces is much more complex to deal with and since the 
scale of buildings is relatively large, usually G1 continuity is found to be adequate in architectural design. 
For two surface patches with a common boundary curve it holds that they are of continuity G1 if they have a 
single continuously varying tangent plane along that boundary curve31. Obviously, obtaining this, including 
the restrictions for rationalised surface constructions poses major challenges in the design process. 

 
Fig. 2.9. Zebra analysis of two connected surfaces in Rhinoceros 4.0 with G0, G1, and G2 continuity [www.rhino3D.com, May 2010] 
 

                                                 
29 Wikipedia, Geometric continuity 
30 Watt, 3D computer graphics 
31 Farin, Curves and surfaces for CAGD 
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offset properties 
In order to define distances between surfaces, for instance in modelling the top and bottom surface of a 
concrete shell, usually offset methods are used. Mathematically, for every surface there are two dual 
surfaces at a distance d. However, the formula for defining the offsets does not generally yield to the 
parameterisation of the same type as the original surface. For instance, see Figure 2.10; the generated 
inward offset surface is not defined by the same parametric definition as the original surface which shows 
that, unlike for a spherical surface, the offset of freeform surfaces generally cannot be described by the 
same parametric definition. 
 
The discrepancy in parametric surface definition for surfaces and their offsets is the most clear when a 
sufficiently large negative distance d is chosen. However, in many cases in architecture, the dimensions of 
the surface patches are large in relation to the offset distance which makes it not too problematic that 
offsets are not of the same type. Nonetheless, when rationalised surface constructions are used, it may be 
desired that their offsets are of the same rationalisation class. Also this proves to be a complex matter to 
achieve. There do exist theoretical approximate methods to find the offset surfaces, but these are 
restrictive in usage. One generic method is the rationalisation of the designed geometry into spherical 
surfaces or with the help of defining curves as polynomial arcs which can be used to define rationalised 
geometry, see Section 2.2.3. 
 

2.2.2 construction principles of geometric complex surfaces 
Construction principles of surfaces can largely be influenced by the amount of curvature, the level of 
continuity and the description of their offset surfaces. Coarsely seen, there are three different 
manufacturing processes that exist; processes based on material removal, material deformation and 
casting based on moulds. Many of these processes have been used long before the use of any kind of 
computer technologies; they basically only have been adapted to newer control approaches32. 
An important factor in surface construction principles is the consideration of whether the surface serves as 
a load-bearing or non-load-bearing function, and if not, how the surface relates to a supporting primary 
structural system. In relation to that, it needs to be considered whether there are both external and 
internal surface definitions to the building volume or whether the external surface inherently defines both 
the external shape and the internal building volume as well. Materials such as reinforced concrete can 
serve as both structure and enclosure for instance. When there are both external and internal surface 

                                                 
32 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design  

 
Fig. 2.10. The generation of an offset surface (red) of a NURBS surface 

(grey). Both surfaces are defined by different parameterisa-
tions 
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definitions, choices are extended since structural elements can be incorporated within the space between 
surfaces33. 
A well-known example of a seemingly geometrically complex design is the Einstein Tower in Potsdam, 
designed by Erich Mendelsohn and built from 1920 to 1921, Figure 2.11. This design is of special interest 
since the relation between the initial design sketch and the intended method of construction – a 
monolithic concrete structure – could not be made in that time. Instead, it had to be built of brick, forming 
the load-bearing structure, with non-load-bearing thick layers of plaster on its interior and exterior faces to 
define surface continuity34.  

 
 
Fig. 2.11.  Sketch of the Einsteinturm by Erich Mendelsohn [http://www.aip.de, June 2008] and a photograph of the tower 

[http://almale.blogia.com, June 2008], the only photograph with Albert Einstein standing on the tower named after him. 
 
Another reference to pre-digital surface construction is the work of Antoni Gaudí. He faced the situation of 
having to provide a rational and transmittable description of highly complex shaped structures. Originally, 
for the Casa Milà and the Park Güell, masons literally sculpted forms sketched by the architect and under 
his close supervision. In the Sagrada Família, this personalised method failed to be feasible because of 
the sheer size and complexity of the project. During the period from 1914 till 1926 in which he worked on 
the Sagrada Família, Gaudí developed a set of rules that masons could follow. He generated the geometry 
of the principal architectural elements on the basis of ruled surfaces. These generally doubly curved 
surfaces can be formed by sweeping a straight line between two edge curves. The presence of straight-line 

                                                 
33 ibid. 
34 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 
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generators greatly eased the work of masons, much of which could then be done without the direct 
supervision of Gaudí35. 
Currently, when discussing the construction of complex geometric structures, often reference is made to 
numerical controlled technology where fabrication instructions are given to machines via numerical codes. 
Computer numerical controlled (CNC) applications are for instance deployed for mass customisation of 
discrete elements or for the milling of complex shaped moulds by removing material from a stock shape to 
produce the desired object. An example of the latter application for an actual architectural object is ‘The 
Amazing Whale Jaw’, a bus station in Hoofddorp, The Netherlands by NIO Architects, Figure 2.12. 
 
 

 
 
Fig. 2.12. Design, fabrication, assembly and final structure of ‘The Amazing Whale Jaw’ [http://architettura.supereva.com, April 

2010] 
 
Usually, this type of manufacturing is deployed when coordinates on site are not easy to set out. And 
although the use CNC milled foam moulds is increasing, currently manufacturing costs are usually larger 
then for conventional methods for moulding as are environmental costs. 
 
CNC applications can also be used for more traditional construction methods. For the EPFL Rolex Learning 
Center in Lausanne, Switzerland, the contractor poured concrete over wooden formwork of more than 
10.000 m2. Due to the complexity in the shape of the shells a specific formwork solution was required. For 
that purpose, besides the architectural geometric model, a construction model was made36. 
                                                 
35 ibid. 
36Architectenweb Magazine, Rolex Learning Centre - SANAA 
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The smoothly curved surfaces were constructed in combination with mass-customised scaffolding 
components, using nearly 1,500 individual wooden boxes from CNC-cut individual cleats that were 
positioned on exact locations using adjustable scaffolding and GPS37, Figure 2.13. 
 
 

 
 
Fig. 2.13. A digital visualisation of the plans for all of the 1,500 formwork tables consisting of  almost 10,000 CNC-cut individual 

cleats [http://www.designtoproduction.ch, May 2010], the construction site [http://genevalunch.com, May 2010] and the 
finished concrete shells [http://davidgarciastudiomap.blogspot.com, May 2010] 

 
The given examples in this subsection are continuously smooth surfaces which are constructed based on 
the afore mentioned processes of material removal, material deformation or casting. Generally, surfaces 
can be made directly from a single material that is more or less homogeneous and continuously smooth, 
built up in a series of layers that have been moulded or deformed or built up as a series of smaller 
aggregated panels that in turn may be individually homogeneous or layered38. Besides continuous and 
smooth surfaces, surfaces can also be made up of thin bendable strips that provide surfaces that appear 
continuous and smooth or made of a series of faceted planar faces, Figure 2.14. In order to define the 
three different surface types varying control elements are needed, especially if the surface types have to 
follow a rational description. 
 

2.2.3 control elements in surface modelling 
When applying rationalisation methods, the geometry is restricted to certain rules. These rules generally 
are applicable to geometric objects; points, curves and surfaces. On one hand, when a designer models an 
object, usually the points on the object would not be thought of as a triple of coordinates, but rather in 
functional terms; as a corner, the midpoint between two other points, a centre point, etc. In parametric 

                                                 
37 designtoproduction, EPFL Learning Center, Lausanne 2008 
38 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 

 
Fig. 2.14. Three primary approaches of making surfaces with 

compound curvatures out of rigid materials 
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and associative modelling, the associations between these objects play an important role in the definition 
of the geometry. On the other hand, the objects need to be defined in mathematical terms, the language 
that lends it to computer implementation. A first step toward a mathematical description is the definition 
of a coordinate system in which objects are described. Theoretically, the coordinate system should not 
affect any properties of the object itself since the interest is not in the relationship to some arbitrary 
coordinate system39. This subsection touches upon a number of geometric objects that form the control 
elements in describing rationalised geometry. They are the elements that are needed to control the 
definition and qualities of rationalised geometry. 
 
points and vectors 
Points may be used to give a reference value, describe locations on a curve or surface, or may be used as 
control values to describe a curve or surface40. Points are locations usually defined in the Cartesian space 
and can be represented by vectors – quantities with magnitude and direction. A vector associates the 
distance and direction of a point from the origin of the Cartesian coordinate system. Considers the two 
vectors v in Figure 2.15. In essence, they are exactly the same, whereas the points they connect are 
different since they occupy different positions relative to the coordinate axes. Basically, for every two 
points p01 and p02, there is a unique vector v that points from p01 to p02. On the other hand, given a vector 
v, there are infinitely many pairs of points p01, p0241. 
 

reference points 
The most frequently used reference point is the origin point of the chosen coordinate system, usually 
denoted by (x,y,z) = (0,0,0) in the Cartesian coordinate system. As mentioned before, locations of other 
points can be defined by means of vector representations. These points can then be used as reference 
points themselves of course. Consider for instance the centre point of an arc segment. A reference point 
may also imply certain characteristic values on curves or surfaces. From a point on a surface, a normal 
vector to that surface can be distilled. 
 
 
 

                                                 
39 Farin, Curves and surfaces for CAGD 
40 Hardy, Mathematical tools in computer graphics with C# implementations 
41 Farin, Curves and surfaces for CAGD 

 
 
Fig. 2.15. Point-vector relations; different point sets but similar vectors 
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interpolation points 
The simplest form of using interpolation points is by drawing a polyline through those points after defining 
the order of them. However, when the points are used to define freeform curves, every point needs 
additional input. Since there are infinitely many different interpolation curves that pass through the same 
set of points, the curve tangents at the interpolation points have to be given as well42. 
 

vertices 
From a point set P on a surface a polygon mesh can be described. The polygons are described by a set of 
faces F where each element of F is a set of edges that describe that face. The edges are simply described 
by [p01, p02] where p01, p02 P. This means that points only store positional information. In a parametric 
system where face edges are based on their association with points, the set of faces F stores only 
connectivity information43. 
 

control points 
When points are used to locally control the surface shape they are defined as control points. The control 
points still only contain positional information. The resulting surface, however, is based on a relatively 
complex description. As a result, interesting questions arise when a Cartesian point set needs to be 
mapped on a surface defined by control points. 
For instance, a non-uniform rational B-spline [NURBS] surface of degree (u, v) with control points pi,j, i = 
0,…,k, j = 0,…,l, weights wi,j, i = 0,…,k, j = 0,…,l, is defined by 
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    (Eq. 2.1) 

 
where Ni,k and Nj,l are the B-spline basis functions44. 
 

                                                 
42 Pottmann, Architectural geometry 
43 Hardy, Mathematical tools in computer graphics with C# implementations 
44 Wolfram Mathworld, NURBS Surface 
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point cloud 
Point clouds – patterns of points – are the result  of digitising models, also known as reverse engineering. 
The point cloud is created from the physical model through scanning, see Figure 2.16, and is then 
interpreted by conversion software to produce a close approximation of the model’s geometry. A digitiser 
creates a correspondence between physical points and virtual points from which the geometry of an object 
can be described45. 
As mentioned before, Gehry uses reverse engineering as a medium for translation in a process that takes 
as its input the geometry of the physical model and produces as its output the digitally-encoded control 
information which is used to drive various fabrication machines46. See also Figure 2.6. 
 
curves – types and geometry 
Curve representations are specified by points and are based on interpolation or approximation for 
respectively data (or interpolation) points or control points. Basically, a curve is not much more than the 
connection of one-dimensional series of points. But curves, obviously, do contain more information than 
just the coordinates provided by the points on the curve. The curve length and the local normal and 
tangent are examples of this. Additionally, depending on the method of description of the curve, other 
types of information, such as the ‘unit speed’ reparameterisation, is added (see Section 3.2 for a 
description of the parametric representation which allows for the unit speed reparameterisation). 
 
Below, two curve types and two curve geometry types are discussed which are widely used in the 
description of rational surface classes. 
 

surface profiles 
Whereas curves are one-dimensional series of points, surfaces can be considered as a two-dimensional 
object in space based on specific associations between curves. Translational surfaces (see Section 2.3.2 
for more information), for instance, are generated by moving a curve along another curve according to a 
specified way. The curves that define the surface profiles are called a directrix and generatrix. Consider for 
instance the generation of the hyperbolic paraboloid in Figure 2.17. One parabola, the generatrix, is copied 
over the second parabola, the directrix, to create the surface geometry. 
 

                                                 
45 Lindsey, Digital Gehry – Material resistance, digital construction 
46 Kolarevic, Architecture in the Digital Age – Design and Manufacturing 

 
Fig. 2.17. A possible generation of a hyperbolic paraboloid, or HP 

surface, based on the translation of a parabolic generatrix 
over a parabolic directrix 

 

 
 Fig. 2.16. Point cloud of a digitised Moai made by a team of AutoDesk 

experts in 2007. The team was tasked with creating and 
using 3D digital models to better visualise and analyse how 
development plans will impact residents and resources 
[http://www.acronymonline.org, May 2010] 
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The surface profiles themselves can take any desired shape. However, in order to generate rationalised 
surfaces, the surface profiles have to follow specific rules dictated by the type of the surface 
rationalisation method. 
 

generators 
A special type of generatrix is the contour generator or ruling. In Subsection 2.2.2 it was already mentioned 
that Antoni Gaudí informed his masons of the possibilities of creating double curved surfaces with these 
rulings. Generators can be straight lines that move along a directrix or a line joining curve points on 
directrices corresponding to the same parameter value. 
When the rulings follow specific geometric rules, a subclass of ruled surfaces can be generated, called 
developable surfaces, see also the texts on Frank Gehry, Section 2.1. Both ruled and developable surfaces 
play an important role in the rationalisation of surface geometry. These surface types are described and 
explained in greater detail in part02 of this thesis. 
 

straight curves 
The straight line is the simplest of curves in geometric modelling. Concerning construction, straight 
structural elements are preferred above bent or curved elements in relation to costs and analysis, hence 
the beneficial characteristics of a ruled surface. As a result, straight curves are widely used in geometric 
modelling. Straight curves are also frequently used to define axes for rotational surfaces, as directrix for 
extrusion surfaces and as face edges in polygonal surfaces. 
 

radial curves 
For complex curves, rationalisations based on the radial geometry of circles can be deployed to 
approximate these curve, Figure 2.18. Radial curves are also often used as the generative element of a 
design. Consider for instance the International Terminal at Waterloo Station in London, Great Britain. The 
design by Grimshaw and Partners consists of parametrically configured arches, defined by two arcs with 
different radii. Similarly, many surface constructions are based on the radial geometry of spheres, cones, 
cylinders and tori, of which the afore mentioned Sydney Opera House is one. 
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 Fig. 2.18. Approximation of some freeform curves on a Porsche 911 Turbo [http://www.dieselstation.com, January 2010]. It must be 

noted that the complexity of the geometric description of curves and surfaces, both in modelling as in fabrication, in the 
automotive industry is more advanced than in the building industry, partly because of the possibilities of mass-production, 
making this example a little presumptuous 
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2.3 architectural features of rationalised surfaces constructions 
Section 2.1 showed examples of two architectural designs where rationalisation methods were embedded 
in the design process or even formed the driving force of the geometric description of the surface 
construction. This section discusses the architectural qualities of rationalised surface classes and their 
advantages and shortcomings in geometric modelling and construction. The focus is on three types of 
surface construction; surfaces of revolution, ruled surfaces and translational surfaces. 
 

2.3.1 rationalised surface classes in architecture 
Many surface definitions can be categorised in multiple rationalised surface classes. Consider for instance 
an open cylinder, Figure 2.19. Examples described in the following texts, therefore, are not necessarily 
restricted to the rationalised surface construction which is being discussed. 
 

surfaces of revolution in architecture 
A spherical surface is exemplary for the description of surfaces of revolution as the surface is simply 
generated by revolving a half circle about an axis over 360 degrees, Figure 2.20. The profile curve can take 
any shape in order to create other surfaces of revolution, however, it is recommended that planar 
meridians curves are used rather than arbitrary spatial curves, since they are symmetric to the rotational 
axis47. When the profile start and end point do not intersect with the axis, the resulting surface is open. 
However, when the meridian curves intersect the rotational axis at an angle different from a right angle, a 
singular point is obtained on the rotational surface which can become very critical in the subsequent design 
process48. It is also possible to use closed profile curves to describe surfaces of revolution, as is the case in 
the generation of tori, where a circle is revolved around an axis. 
 
The shape and location of the surface thus depends on the location and direction of the generator and the 
type and location of the profile relative to the generator. Based on this relatively small amount of data to 
describe surfaces of revolution, they contain various advantageous characteristics, amongst which the 
relatively straightforward setting out of reference points and points on the surface on site and the fact that 
offsets of surfaces of revolution are generally easier to describe than for other types of surfaces, Figure 
2.21.  
 

                                                 
47 Pottmann, Architectural geometry 
48 ibid. 

Fig. 2.19. Three methods of surface descriptions for an open cylinder. 
From left to right: surface of revolution, ruled surface and 
translational surface 

 

 
 

Fig. 2.20. A spherical surface constructed by revolving a radial curve 
(half circle) over 360 degrees about an axis, the generator 
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Because of these positive characteristics, surfaces of revolution are frequently used in architectural design 
where they are used to approximate initial design intentions or where they are the leading geometric 
descriptive force. Especially surfaces that are based on circular profile curves – see the spherical surfaces 
of the Sydney Opera House, the arc based surfaces of the Chesa Futura in St Moritz, Switzerland by Foster 
and the toroidal shapes of the TGV train station in Avignon, France by Arep – are well known. 
 
A negative issue that needs to be dealt with in the design of surfaces of revolution is that they might be 
hard to construct when circular or arbitrarily curve profiles are used, Figure 2.22. This also relates to the 
fact that spherical surfaces are nondevelopable. The complexity in construction is greatly reduced when for 
instance straight lines can be used to shape the surface and to define structural elements. 

 
 

Fig. 2.22.  Possible construction principles of spherical surfaces. From left to right: parallel strips, double curved segments and 
approximation as a polyhedral surface (an icosahedral geodesic sphere). The far right: the unfolded geodesic sphere49 

 

ruled surfaces in architecture 
Definitions of rules surfaces are based on the sweeping motion of a straight line, resulting in surfaces that 
contain straight-line generators. But the definition by straight lines is not only beneficial to the construction 
of the surface itself, it also allows for easy incorporation of straight structural elements, such as beams, 
making ruled surfaces well applicable for architectural purposes. 
 
 

                                                 
49 Szalapaj, Contemporary architecture and the digital design process 

 
 Fig. 2.21. Normal vectors of the surface of revolution and its offset 

intersect with the rotational axis making the description of 
offset surface relatively easy 
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Several possibilities exist for defining the motion of a line generating a ruled surface. Pottmann et al50. 
describe two methods for ruled surface generation, Figure 2.23: 

- ruled surfaces by moving a straight line along a directrix curve 
- ruled surfaces by connecting corresponding points of two generating curves 

 

 
 
Fig. 2.23.  Two methods for generating ruled surfaces. Left: moving a straight line along a directrix curve. Right: connecting 

corresponding points of two generating curves 
 
An example in architecture where the use of rulings is strongly expressed is the HtwoOexpo fresh water 
pavilion on the Neeltje Jans Island, The Netherlands by NOX, Figure 2.24. Similar to the design of the salt-
water pavilion by Kas Oosterhuis, the fresh water pavilion design was largely based on digital design 
methods, however construction followed a more traditional approach. This is expressed by the form itself 
which is shaped by the fluid deformation of fourteen ellipses spaced out over a length of more than 65 
meters51 and substructure of the covering steel sheeting that was supported by the relatively 
straightforward construction principle of straight beams which span between these ellipses. These beams 
followed the translation of a straight line over the elliptic curve profiles, resulting in the ruled surface that 
defined the final shape of the building. 
 
Depending on the definition of the sweeping motion of the straight line, different subclasses of ruled 
surfaces exist, each with their advantages, but also with restrictions to the architectural descriptive 
language. Two of these subclasses are extruded surfaces and developable surfaces. 

                                                 
50 Pottmann, Architectural geometry 
51 Jodidio, Architecture NOW!  

Fig. 2.24. Top: the exterior surface of the Htwo0expo pavilion 
 Bottom: beam structure supporting the steel sheeting 
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extruded surfaces 
An extruded surface is obtained when a spatial generating curve is translated in the direction of a straight 
trajectory line52, also called the sweep vector. This makes an extrusion a special case of a lofted surface, 
see also Section 2.3.3), which is a basic ruled surface generated by interpolating two curves. Extruded 
surfaces can also be classified as sub classes of translational surfaces, with the restriction that the path 
curve is a straight line. 
 
This makes extruded surfaces rather restrictive in the possible surface configurations. Parallel extrusions 
of a smooth curve generates a cylinder surface, whereas a central extrusion generates a cone surface, 
Figure 2.25, which are also two basic typologies of developable surfaces. 
 

developable surfaces 
David Huffman states in his paper ‘Curvature and creases: A primer on paper’ that a developable surface 
offers a complexity that is in a very real sense exactly midway between that of a completely general 
surface and that of a plane surface. Consequently, developable surfaces constitute a class that might be 
ideally suited to be both richer than that of plane surfaces and more tractable analytically than that of 
totally arbitrary surfaces53. To support this quote, it can be noted that it is unlikely that one can say much 
of practical value about surfaces of complete generality. Usually, no two neighbouring points on an 
arbitrary surfaces have the same tangent plane. On a developable surface, all points on a given isoline 
embedded in the surface have the same tangent plane, i.e. the neighbourhood of a point on a developable 
surface can be characterised by a single parameter family of tangent planes. 
 
As mentioned before, heavily touching upon this duality between complexity and analytical description is 
the architecture of Frank Gehry, see also Section 2.1. Multiple designs by Gehry’s office follow the visual 
complexity of arbitrarily shaped surfaces, Figure 2.26, in combination with the strict geometrical rules of 
developable surfaces. 

                                                 
52 Marsh, Applied geometry for computer graphics and CAD 
53 Huffman, Curvature and creases: A primer on paper 

Fig. 2.25. Parallel and central extrusion of a open freeform curve 
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Fig. 2.26. Gehry’s way of designing according to the makers of The Simpsons. Left: the ‘real’ Frank Gehry 

[http://www.metropolismag.com, April 2010]. Middle: screenshot from the Simpsons episode featuring Frank Gehry as a 
cartoon character [http://www.yangsquare.com, April 2010]. Right: the Starwood hotel in Elciego, Spain  

 [http://www.starwoodhotels.com, April 2010] 
 
Similar to general ruled surfaces and as mentioned above, developable surfaces contain sets of straight 
lines which simplifies construction of these surfaces. Additionally, developable surfaces have the 
advantage that they can be made from flat surface material, such as metal sheeting. As such, next to 
plane surfaces, they can be categorised in three basic types: cylinders, cones (which, as mentioned before, 
can be classified as extruded surfaces as well) and tangent surfaces of space curves54.  
Regarding the latter type, consider the problem of creating a surface based on two curves in space. An 
infinite number of surfaces, including ruled surfaces, can be found to span the curves, but a developable 
surface is unique. Consider the following; a point on a surface denotes a plane which is tangent to the 
surface at that point. Generally, for ruled surfaces different points on the same generator have different 
tangent planes; the tangent planes rotate around the generator55, Figure 2.27. Such rulings are called 
non-torsal generators. Developable surfaces contain exclusively rulings where a single tangent plane 
touches the surface along the entire line. These rulings are called torsal generators, Figure 2.28. 
However, not every set of two arbitrary curves can be used to generate a developable surface. For design 
purposes that adopt developable surfaces it is needed to generate the input curves based on specific 
rules. Nolan describes it as follows: Rulings reflect the character of the curves they span. If the boundary 
curves are fair, the locus of rulings defining a developable surface between them will also be fair and 
continuous. The problem is thus reduced to one of finding a fair representation for the boundary curves56. 

                                                 
54 Pottmann, Architectural geometry 
55 ibid. 
56 Nolan, Computer-aided design of developable hull surfaces 

Fig. 2.28. Developable surface with torsal generators. The surface 
tangent planes of the generators lie in one plane, indicating 
that for each generator there is a single plane tangent to the 
surface along the entire generator 

 

 
 
Fig. 2.27. Rotating tangent planes on a non-torsal generator for a ruled 

surface 
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Following from the geometric and algorithmic prerequisites, developable surfaces have zero Gaussian 
curvature. The other way around, surfaces having zero Gaussian curvature by definition contain embedded 
‘generating’ lines in at least one direction. Another special characteristic of developable surfaces is that 
they can be mapped isometrically (i.e. mapping between surfaces that preserve the length of any curve) 
onto a plane. As a result, the planar isometric image of a developable surface is the planar unfolding of the 
surface57. 
 
To exemplify this, regard the mapping of a sphere onto a plane. Since a sphere is a nondevelopable 
surface, there is no unambiguous way in which a sphere can be mapped to a planar rectangle outline. As a 
result, multiple methods for projecting the earth’s surface onto a planar map exist. 
 
Generally, the earth’s surface – approximately a sphere – is mapped via the Mercator projection, Figure 
2.30. This is a cylindrical projection, meaning that it is a projection in which lines of longitude (meridians) 
are mapped to equally spaced parallel lines and circles of latitude are mapped to parallel lines with 
arbitrary mathematically spaced separations58. 
When unfolding the earth’s surface, the map is stretched out in east-west direction in an increasing degree 
away from the equator, Figure 2.29. In the Mercator map, this is accompanied by a corresponding north-
south stretching keeping the direction and shapes of land masses accurate, but sizes distorted. In other 
words, being a conformal projection, the Mercator projection preserves angles around all locations, 
however scale varies from place to place, distorting the size of geographical objects59. 
 
In order to determine the x and y coordinates of a point on a Mercator map from its latitude φ and 
longitude λ the following mathematical equations need to be applied 
 

 

0x λ λ 

 

        (Eq. 2.2) 
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       (Eq. 2.3) 

 
These equations place the x-axis of the projection on the equator and the y-axis at longitude λ0. 

                                                 
57 Pottmann, Architectural geometry 
58 Wolfram Mathworld, Cylindrical projection 
59 Design IntelligenceS, Concepts as tools 
 

 
 

Fig. 2.29. Visualisation of the stretching of a cylindrical projection from 
pole to pole 
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Fig. 2.30.  Left: The Mercator projection of the earth’s surface Right: The Gall-Peters projection, known for the cylindrical equal-area 

projection*60[http://designintelligences.wordpress.com, March 2010] 
 
For the projection from a Mercator map back to a spherical surface the inverses of equations 2.2 and 2.3 
are needed. 
 

 

0λ x λ 

 

        (Eq. 2.4) 
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       (Eq. 2.5) 

 
With these equations, the earth’s land masses can be placed on a spherical surface based on points lying 
on the continental outlines of a Mercator map. In Rhino’s Grasshopper, points that subdivide the 
continental outlines on a plane – which are modelled in Rhino, based on a background image of a Mercator 
map – can be transposed to points that describe the outlines on a spherical surface via these equations. 
Figure 2.31 shows the resulting image when these points are interpolated by curves which form the 
enclosing boundaries of the earth’s land masses. 

                                                 
*Each type of projection creates different perceptions of the world. The Mercator projection distorts the sizes of the earth’s land 
masses to a greater extent when farther away from the equator, for instance ‘enlarging’ North America and Europe. We accept this 
kind of mapping basically because we are used to it. A more honest projection in relation to sizes – not shapes – is the Gall-Petersen 
projection which preserves the surface area of the continents, showing that Africa actually is 14 times larger than Greenland. 
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Fig. 2.31. Left: outline of the earth’s land masses based on the Mercator projection. Middle: projection of points on the outline onto 

a spherical surface. Right: representation of the continents by trimming the spherical surface with the continental outline 
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2.3.2 polyhedral surfaces in architecture 
Apart from imposing constraints to the geometric description of surfaces via mathematical definitions, a 
geometric complex design can be rationalised using meshes. Meshes are frequently used in digital 
animation where subdivision surfaces are used which are generated by a simple refinement rule for 
meshes and which is applied iteratively till the surface is considered smooth enough and use a secondary, 
more complex algorithm to approximate curvature. Also in engineering, where Finite Element Models (FEM) 
are being used for simulations and analysis, meshes are of importance. In architecture, meshes are used 
to rationalise surfaces, both complex and noncomplex, and subdivide them in usually planar faces, straight 
edges and vertices, Figure 2.32. These types of surfaces are generally called polyhedra or polyhedral 
surfaces. 
 

 
 
Fig. 2.32. ‘Meshed’ surfaces in architecture. Prada store in Tokyo by Herzog & De Meuron [http://liaoyusheng.com, May 2010] and 

the Cockpit of the Acoustic Barrier by ONL [http://www.miwian.nl, May 2010] 
 

polyhedral surfaces and polyhedra 
Polyhedral surfaces – also piecewise-planar surfaces – are generally simple approximants to more 
complex surfaces and are used to subdivide complex shapes into individual components, often steel bars 
and glass panels. In other words, meshing and subdivision techniques break the surface into ‘tiles’. Hence, 
a polyhedral surface or subdivided mesh is also called a tessellated surface. When evaluating tessellation 
strategies, if the aim is to calibrate the initial form with a structural system, the size and resolution of the 
faces are best determined relative to the overall geometry and design intention and with regard to the final 
building materials and construction processes. 
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In the building industry, usually three, four or six sided regular polygons are used; equilateral triangles, 
squares (quadrilaterals) and hexagons. The characteristics of these polygons are well known. They are 
symmetrical, equilateral (having sides of equal length), equiangular (having equal angles) and they can be 
inscribed by a circle61. 
 
Early examples of subdividing surfaces into smaller components in architecture are mosaics of walls and 
floors of buildings of ancient Rome and those of the Byzantine Empire or the Islamic architecture. Overall 
patterns were typically achieved by assembling many small pieces into a coherent design based on 
sophisticated mathematics. Consider for instance girih patterns found on many walls of medieval Islamic 
buildings. Harvard and Princeton University researchers believe that the girih appear to show an advanced 
geometry, called decagonal quasicrystal geometry, that was not developed in the west until the 1970s. 
Figure 2.33 shows a Girih pattern of a decorated arch in the Sultan’s Loge of the Ottoman-era Green 
Mosque in Bursa, Turkey, which was completed in 142462. On the right side of the figure, the five non-
regular, but equilateral polygons — a hexagon, a bowtie, a decagon, a rhombus and a pentagon – are 
highlighted in a random combination of tiles. When closely looked at, it becomes clear that not the joints 
between the tiles form the pattern, but that the girih lines that are interconnected over the tiles give 
expression to the shape on the decorated arch. Despite their non-periodic nature, the resulting 
configurations are not chaotic. Rather, they fit together in a way that is predictable but difficult for the brain 
to perceive. 
 
Buckminster Fuller’s geodesic domes are more recent examples of the smooth surface approximation via 
tessellation. In Fuller’s pursuit of lightness and engineered efficiency, the spherical shape is redefined as a 
pattern of triangles or hexagons with every strut, opening and joint being identical. While this uniformity 
contributes to ready constructability and overall material efficiency, it is unrelenting in terms of form. 
Today, the need for standardising structural elements is less relevant since digital fabrication allows for 
the design with nonstandard units (mass customised) to approximate these surfaces and as such, digital 
technologies have revitalised the interest in patterning and tessellation because they afford greater 
variation and modulation through nonstandard manufacturing63. Much of the costs of tessellated 
structures goes into node connections and the curvature of the mesh faces. 
 
 

                                                 
61 Blackwell, Geometry in architecture 
62 Saudi Aramco World, The tiles of infinity 
63 Iwamoto, Digital fabrications – Architectural and material techniques 

 
Fig. 2.33. Left: a decorated arch in the Sultan’s Loge of the Ottoman-

era Green Mosque in Bursa showing a girih pattern based on 
specific allocation of girih tiles.  
[http://www.saudiaramcoworld.com, May 2010] 
Right: a random combination of girih tiles with the base 
equilateral polygons highlighted 
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Since flat panels are less expensive than (double) curved panels, triangular meshes are the governing type 
for the discretisation of complex surfaces. Generally, triangular meshes have been used in architecture 
whenever surfaces cannot be easily planarised in another way, and as such are frequently adopted, since 
triangle faces are always planar. But, twice as many triangles as quads are needed to represent the same 
shape64. When economics are governing, the focus usually is on quadrangular meshes with planar faces. 
This mainly because they tend to have less weight and can be constructed with geometrically optimised 
nodes in the supporting beam layout. However, the geometry of such meshes is more difficult than that of 
triangle meshes65. In order to arrange for the design with planar quadrangular meshes on complex 
surfaces, surfaces can be modelled based on specific rules. Amongst others, translational surface follow 
such a set of certain rules. 
 

translational surfaces in architecture 
The extruded surfaces that were discussed in the previous subsection can be generalised to translational 
swept surfaces which are obtained by translating a generating curve (generatrix) along a trajectory curve 
(directrix)66. These translational surfaces embed the specific rules needed to generate planar 
quadrangular faces on double curved surfaces. However, since both input curves may be arbitrarily 
shaped, the resulting surface may well have high global curvature67.  
 
Since a translational surface contains two sets of section curves that are congruent with the profile curves 
(meaning that the section curves can only be generated by transformation of the profile curves by an 
isometry68, i.e. a combination of translations, rotations and reflections), this method does not allow any 
arbitrary surface shape to be created. Nonetheless a large variety of surface forms is possible, especially if 
a surface has one strong direction. 
 
The translational surface method is based on the mathematical principle that two parallel vectors in space 
always define a planar surface. The vectors and the connection between their points of origin and end 
points make up the four edges of the quadrangular surface. However, a planar surface may also be 
defined by two vectors not running parallel to each other, but do lie in the same plane. 

                                                 
64 Pottmann, Architectural Geometry 
65 ibid. 
66 Marsh, Applied geometry for computer graphics and CAD 
67 Farin, Curves and surfaces for CAGD 
68 Wolfram Mathworld, Congruent 
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To exemplify this, regard a quadrangular mesh with a sectional curve C01 in one direction and its individual 
sections being the lateral edges of the mesh faces and another sectional curve C02 in a different direction 
with its individual sections being the longitudinal edges of the mesh faces, Figure 2.34. For translational 
surfaces, both the lateral (direction of blue vectors) and the longitudinal (direction of green vectors) edges 
of a row of meshes form parallel vectors. Subdividing the directrix and the generatrix equally, results in a 
grid with constant bar length and planar mesh. If, for example, one parabola translates against another 
parabola perpendicular to it, the result will be an elliptical paraboloid with an elliptic layout curve. Two 
identical parabolas generate a rotational paraboloid with a circular layout curve. A directrix curving 
anticlastically to the generatrix results in a hyperbolic paraboloid, which can also be formed by two 
systems of linear generatrices69. Figure 2.35 shows an example based on arbitrarily shaped curve profiles 
to generated a planar mesh structure. 
 
 

 
 
Fig. 2.35. Translational surface based on arbitrarily shaped curve profiles 
 
 

                                                 
69 Pottmann, Architectural Geometry 

 
 Fig. 2.34. Generation of a translational surface; the translation of 

curve C02 along C01 or vice versa 
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When only the lateral or longitudinal edges of a row of meshes form parallel vectors, a special type of the 
general translation surfaces is generated; the scale-trans surface. A restriction is that the profile curve that 
is translated is planar itself. In Figure 2.36, a scale-trans surface patch is presented where the section 
curves in the lateral direction are scaled, respectively with a scale factor of 0.75 and 0.825. Due to the 
scaling of the lateral section curves, the longitudinal edges of the faces are not parallel any more.  
 
The scaling of any sectional curve yields a new curve with parallel edges in the scaling direction. The base 
point of the scaling operation may be chosen at random. In other words, the scaling causes each lateral 
edge vector of the sectional curve to lengthen or shorten by the same factor, while maintaining its 
direction. The longitudinal edges are determined by the line between the points of origin and the end 
points of the respective lateral edge vectors. The next row of meshes will be created following the same 
principle with the shape of the new sectional curve depending on the scaling factor, where it is also 
possible to translate the centre of scaling of the sectional curves along the directrix. Figure 2.37 shows a 
scale-trans surface, generated by a scaled translation of a open circular-like curve along an arbitrarily 
directrix. 
 

 
 
Fig. 2.37. Trans-scale surface based on a scaled translation of a open circular-like curve and an arbitrarily directrix 
 

 
Fig. 2.36. A scale-trans surface patch with parallel face edge vectors in 

only one direction 
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Translational surfaces and scale-trans-surfaces have frequently been used by the engineers of Schlaich, 
Bergermann and Partners. In Leicht Weit – Light structures, Schlaich states that the aim behind creating 
geometric surfaces with translational surfaces and scale-trans-surfaces is to produce meshes in which all 
four joints are on one and the same level to ensure that they can be covered economically with planar glass 
panels70. Two examples are shown in Figure 2.38. 
 
 

 
 
Fig. 2.38. Left: the Hippo House at the Berlin Zoo, Berlin, Germany. Right: the Hauptbahnhof Berlin, Berlin, Germany 

[both from http://www.sbp.de, May 2010] 
 
In conclusion, this research does neither focus on meshing strategies of complex geometry, nor does it 
research new methods of meshing or subdivision or look for optimal solutions to known mesh strategies. 
Firstly, because meshing itself is a fully new topic in relation to the generation of rationalised surface 
classes. And secondly, because meshing strategies are more based on post rationalisation, whereas the 
main goal is to incorporate pre-rationalisation design methods. 
 
2.3.3 methods of surface generation based on motion 
Although these surface are not classified as  rationalised surfaces, some surface descriptions based on 
generation by motion are closely linked to rationalised surface classes which are discussed above. Below, 
some of these methods of surface generation which are based on motion of curves are discussed briefly. 
                                                 
70 Schlaich, Leicht Weit – Light Structures 
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sweeping 
Sweeping is a frequently used method in architectural design to create freeform surfaces. Generally, sweep 
representations of surfaces are based on the notion of moving a curve along a path. The relatively 
constrained geometry of a sweep shape means that only a small data set is needed to specify the shape71. 
  
Sweep representations correspond to various surface classes. Three rational surface classes that are 
based on 3D sweeping motions are surfaces of revolution, translational surfaces and ruled surfaces, in 
particular extruded surfaces. A standard rotational sweep is defined by rotating a planar curve about an 
axis. The standard translational sweep and extrusion are defined by respectively moving a straight line 
along an arbitrary curve normal to the plane of the curve and moving an arbitrary curve along a straight 
line. When the shape of the curve being swept does not change, a linear sweep representation is 
generated. 
 
A general sweeps is one whose generating curve, the generator, follows some arbitrary curved path, the 
director curve, and which itself may change size, shape and orientation. The parametric generalisation of a 
sweep surface is  
 

 

1 1 2 2 3 3( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...u v u f v u f v u f v u    S C u u u

 

   (Eq. 2.6) 
 
where C(u) is the curve along which a set of coordinate system  frames (u1(u), u2(u), u3(u),…) is swept. 
Within these coordinate system frames, the curve f(v) = (f1(v), f2(v), f3(v),…) determines the shape of the 
curves over the directrix C(u), Figure 2.39. 
 
Depending on the characteristics of the components in Equation 2.6, a surface of revolution, translational 
surface or extruded surface is generated. It is also possible to describe a sweep surface based on the 
space curve C(u) and a transformation matrix dependent of v. The transformation must include translation 
and/or rotation and may also include scaling, shearing, etc72. 
 
A problem with the sweep method is that it may result in surfaces which are non-homogeneous. This occurs 
when a curve is swept in a specific direction, resulting in dangling edges, Figure 2.40. Another example that 
produces a similar problem is the rotational sweep of a generator curve passing through the axis of 
rotation, producing a surface with a singularity which is usually unacceptable for architectural design. 

                                                 
71 Mortenson, Geometric modeling 
72 Salomon, Computer graphics and geometric modelling 
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Fig. 2.39.  Sweeping a curve f(v) along a framed curve c(u) creating a sweep surface S(u,v) 
  
skinning and lofting 
Skinning and lofting are operations of constructing a surface that interpolates a number of user specified 
section curves, Ci(t)73. Generally, these curves are sections in the v direction of the surface to be 
constructed, with the u direction as the blending direction74.  There is an infinite number of surfaces 
passing through these curves. Although approximation across the section curves can be used, skinning 
methods usually interpolate through the Ci(t) with the result that these curves are the isoparametric curves 
on the resulting skinned surface. In order to generate a skinning or lofted surface the i = N + 1 curves must 
be linearly interpolated.  
 

 

1
( , ) (1 ) ( ) ( )i iu v v u v u


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0 ≤ u,v ≤ 1 i = 0,1,2,…,N-1   (Eq. 2.7) 
 

                                                 
 Sources in literature are contradictory in denoting the difference between skinning and lofting. Marsh states that some authors 
reserve the term lofting to mean a skinning operation where the interpolating surfaces satisfy specified derivative conditions along the 
section curves. Other sources, such as Piegl, state that skinning is simply a newer term for lofting. According to Davies, the latter 
terminology derives from the days when ships were built of wood. Since drawings had to be produced to scale, the attics (or lofts) of 
buildings were used to accommodate the large size drawings. 
73 Marsh, Applied geometry for computer graphics and CAD 
74 Piegl, The NURBS book 

 
 
Fig. 2.40. Due to the coinciding direction of the sweep and a part of 

the curve, the surface becomes non-homogeneous 
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For two curves, with a fixed t = t*, then S(u*,v) is the line connecting the two points C0(t*) and C1(t*) and 
which passes through each point on this surface75. Consider the following examples: 
 
example01 
Two non-parallel straight curves in parametric representation, 
 

 

0
( ) ( , 0,0)t tC  

1
( ) ( , ,1)t t tC  

 
The surface (Figure 2.41, left) is then defined by 
 

 

0 1
( , ) (1 ) ( ) ( )u v v u v u  S C C  

 

( , ) ( , , )u v u uv vS  
 
example02 (after Salomon76) 
Two quadratic curves in parametric representation, 
 

 

0
( ) (2 1, 2 ( 1),0)t t t t   C  

1
( ) (2 1, 4 ( 1),1)t t t t  C  

 
The surface (Figure 2.41, right) is then defined by 
 

 

( , ) (2 1, 2 ( 1)(1 ), )u v u u u v v   S  
 
General skinning surfaces can be achieved by replacing the blending functions (1 - u) and u in Equation 2.7 
by continuous functions f0(t) and f1(t) that satisfy f0(0) = f1(1) = 1 and f0(1) = f1(0) = 0.  
 
As will be discussed in part02, developable surfaces are based on the same premises as skinned and 
lofted surfaces. However, since developable surfaces cannot be created from just any two curves, results 
can be unpredictable. In other words, the loft methods are sensitive to the makeup of the curves being 
lofted. In general, it is best if they are as simple as possible and have the same parameterisation. 

                                                 
75 Goldman, Pyramid algorithms 
76 Salomon, Computer graphics and geometric modelling 

 
Fig. 2.41. Two skinned surfaces based on straight section curves (left) 

and quadratic section curves (right) 
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2.4 epilogue: research in parametric modelling of developable surfaces 
As mentioned before, many of the previously discussed rationalised surface definitions can be categorised 
in different rational surface classes. For instance, different parametric equations of surfaces of revolution, 
ruled surfaces (including extruded and developable surfaces) and translational surfaces can result in an 
open cylindrical surface. With respect to this and by incorporating certain prerequisites, developable 
surface may contain specific characteristics that follow from the definitions of surfaces of revolution, 
extruded surfaces and translational surfaces. Developable surfaces are also surfaces of revolution when a 
straight curve profile is rotated around the generatrix, resulting in cylindrical or conical surfaces depending 
on the direction of the curve profile. Also, when curve profiles are extruded or translated along a straight 
directrix, the resulting surface is by definition a developable, and therefore a ruled surface. 
 
More importantly, developable surfaces contain a number of characteristics that make them well applicable 
for architectural and structural purposes, such as the possibility to generate smooth discrete surfaces that 
are aesthetically appealing and the advantages in relation to structural layouts and manufacturing. In 
particular, developable surfaces offer definitions of single-curvature geometries with an overall sculptural 
appearance in 3  space and are structured for constructability within specific design constraints. However, 
they remain difficult to model, particularly for non-expert users since using existing tools requires significant 
geometric expertise and time77. 
 
Therefore, the focus of this research lies on the parametric geometric description of developable surfaces, 
and how these descriptions can be used in architectural design. The next chapter deals with the general 
parametric and mathematic description of rational surface classes. Subsequently, the focus directs towards 
the description of developables and their parametric and mathematical description. As such these chapters 
form the base of the digital toolbox which will be discussed in part03. 
 

                                                 
77 Rose, Developable surfaces from arbitrary sketched boundaries 
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3 parametric mathematical description of surface properties 
 
The mathematical development of differential geometry and related general theories provide the needed 
theoretical basis for understanding surfaces properties. The mathematical formulations, however, usually 
do not find their way to designers in an explicit manner. Generally, digital design applications, such as 
Bentley’s Microstation and McNeel’s Rhinoceros account for the representation of complex geometric 
shapes, leaving the mathematical description hidden for the designer’s eye. This chapter deals with 
elementary differential geometry and mathematical descriptions which support the parametric design of 
the afore presented surface classes. 
 
 

3.1 introduction: general aspects of parametric description 
Although the design process is generally considered to be cyclical, the process of developing a conceptual 
design into a tangible structure involves specific sequential steps that need to be taken. When it is not 
possible to record these steps taken in the design process, revision of a design can become an arduous 
task. Digital design environments with hierarchically based structures have been developed that allow the 
design history to be recorded and listed in relation with parameters and associations. And since there is a 
general need to be able to quickly alter certain design characteristics of a shape, from basic dimensions to 
a more detailed level, parametric and associative computational methods are increasingly used to reduce 
time spent on remodelling a design. From this point of view, computation can be seen as a process of 
reducing labour intensive, repetitive processes into relatively simple expressions of code. 
However, computational design is more than a time-saving instance in a design process. In the current 
practice, design is increasingly about showing logic, clarity of process and creating purpose and 
flexibility78. 
A family of parametric variations all stem from the same characteristic shape but vary in dimension or 
shape from one to another; they are all instances of the same design79, Figure 3.1. Based on these 
descriptions, computation is a linking factor between parametric associative modelling and performance 
based architecture. Or put in the words of Branko Kolarevic; 
 

‘One of the most profound aspects of contemporary architecture is […] the new 
found ability to generate construction information directly from design 
information through the new processes of digital design and production’80 

                                                 
78 Meada, Design by Numbers 
79 Schodek, Digital design and manufacturing: CAD/CAM applications in architecture and design 
80 Kolarevic, Architecture in the Digital Age 

 
 

Fig. 3.1. 100 Contemporary boomerang designs  
 [http://www.seblester.co.uk, November 2009] 
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In every design process, changes in the constraints or the design variables resolve in a new set of possible 
solutions which can be translated back to the design. If the design process is set up with parametric and 
associative constraints and variables, the design can benefit from an exploration of the design space while 
maintaining the inherent logic. In general, not the design of a specific shape is generated with parametric 
and associative modelling, but a set of principles encoded as a sequence of parametric equations and 
associations. As a result, multiple variations of a design can be presented when parameters and 
associative connections are varied, which can subsequently be examined on performance, where the 
performance gives feedback between the design and the systems it is embedded in and focuses on what 
the process is able to generate, Figure 3.2. 
 
Greg Lynn states in Animate Form that it is important for any parameter-based design that there be both 
the unfolding of an internal system and the infolding of contextual information fields81. If these contextual 
information fields do not provide the appropriate conditions for a parametric and associative model or tool 
development, when relations of parameters are not well defined or when a design model contains too little 
or too many parameters, making use of parametric and associative modelling can lead to an inefficient 
design process. 
 
To conclude this, during this research project the goals are set out to describe the geometric definition of 
rationalised surfaces parametrically, which also implies that the context in which these surfaces are 
generated need to be defined parametrically as well. In the tool development presented later in this 
research, the control elements as described in Section 2.2.3 form the conditional parameters and so are 
the surface properties, such as curvature, continuity and offsetting possibilities. These context parameters 
should allow for the definition of rationalised surfaces which subsequently can be examined for their 
architectural performance in relation to the initial design intentions. 
 
Before going into detail concerning the parametric descriptions of the surface properties and surface 
classes, the next subsection introduces general aspects of parametric descriptions. 
 
 
 
 
 
 
 

                                                 
81 Lynn, Animate Form 

 
 

Fig. 3.2. Performance based design leading to different designs for 
different goals [images from various sites] 
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parametric equation forms 
Defining geometry of for instance space curves or space surfaces can be based on different descriptions. 
Space curves are one-dimensional objects in three dimensions which can be described mathematically 
either in Cartesian form, by two equations, for example for (x,y,z) 

3  
 

 

2 2,y x xz y 

 

        (Eq. 3.1) 
 

 

2 2 2 , tan
z y

x y a
b x

  

 

       (Eq. 3.2) 

 
or by parameterisations, for example, for t 

1  
 

 

2 3( )  ( ( ), ( ), ( )) ( , , )t x t y t z t t t t C

 

      (Eq. 3.3) 
 

 

( )  ( ( ), ( ), ( )) ( cos , sin , )t x t y t z t a t a t bt C

 

     (Eq. 3.4) 
 
where Equation 3.4 describes a spatial helix curve. 
 
The Cartesian description simply gives a shape in space while the parametric description also includes a 
direction and a rate of evolution as t increases82. 
 
Obviously, also space surfaces – two dimensional objects in three-dimensional space – can be described 
mathematically in either Cartesian form or parametric form. In Cartesian form, the surface is described by a 
single equation in three space variables (x,y,z) 

3  in either an explicit form (z = f(x,y)) or an implicit form 
(f(x,y,z)=0). In the parametric form, surfaces are described by three equations for the coordinates (x,y,z) in 
terms of two parameters (u,v).  
 
As an example, in parametric form, a standard helicoid is represented by 
 

 

( , )  ( ( , ), ( , ), ( , )) ( cos , sin , )u v x u v y u v z u v v u v u bu S

 

   (Eq. 3.5) 
 

                                                 
82 Davies, An introduction to computational geometry for curves and surfaces 
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The x(u,v) and y(u,v) coordinate functions describe the planar circular curve, where the domain of v denotes 
the width of the strip that is swept with a helical motion. In other words, the lower and upper boundary of 
the domain of v determine the radii of the inner and outer helix. For every point between these boundary 
curves, there is a helix contained in the helicoid which passes through that point. 
 
Figure 3.3 shows a helicoid generated with the following parametric domains: 
 u  =  [0,4π] 
 v  =  [5,20] 
 b  =  2.5 
  
parametric curve and surface descriptions 
Following the description in the example of the helicoid, the following representation and definitions for 
curves and surfaces are used throughout the thesis:  
 
parametric curves 
C(t) = (x(t),y(t),z(t)) parametric curve 
C(t) parameterisation of C 
x(t), y(t) and z(t) coordinate functions 
t curve parameter (or variable) 
NC(t) normal vector to C 
TC(t) tangent vector to C 
 
parametric surfaces 
S(u,v) = (x(u,v),y(u,v),z(u,v)) parametric surface 
S(u,v) parameterisation of S 
x(u,v),y(u,v),z(u,v) coordinate functions 
u, v surface parameters (or variables) 
NS(u,v) normal vector to S 
TS(u,v) tangent vector to S  
 

                                                 
For more exiting shapes, the parametric representation of what is called the generating curve C(t) = (x(t),y(t),z(t)) = (t,0,0) for the 
general form can be changed to for instance a circular shape with C(t) = (x(t),y(t),z(t)) = (cost,0,sint) for generating tube like screw 
surfaces. 

Fig. 3.3. Parametrically defined helicoid 
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3.2 parametric description of surface properties 
  

3.2.1 parametric equations of surface properties 
One advantage of parametrically defined geometry is that local properties, such as direction and normals 
can be derived as long as their mathematical formulations can be derived. Based on differential geometry, 
which is concerned with those properties of surfaces which depend on their behaviour in a neighbourhood 
of a point, the parametric descriptions of the surface normal, tangent plane and other surface properties 
at a point can be given. These properties are generally very useful for geometric analysis and modelling 
purposes. 
 
surface normal and tangent plane 
First, consider a planar curve C(t) = (x(t),y(t)) and suppose P and Q are points with coordinates (x(t),y(t)) 
and (x(t+dt),y(t+dt))83, Figure 3.4. When dt 0, the following equation will give the tangent vector of the 
curve; ( ) '( ) ( '( ), '( ))t t x t y t T C . The unit tangent vector is defined as 
 

 
2 2 2 2

'( ) '( )ˆ( ) ,
'( ) '( ) '( ) '( )

x t y tt
x t y t x t y t

 
     

T

 

     (Eq. 3.6) 

 
If the tangent vector is rotated over an angle of π/2 (in an anticlockwise direction in Figure 3.4), then the 
normal vector ' '( ) ( ( ), ( ))t y t x t N . The unit normal vector for a curve is defined as 
 

 
2 2 2 2

'( ) '( )ˆ( ) ,
'( ) '( ) '( ) '( )

y t x tt
x t y t x t y t

 
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N

 

     (Eq. 3.7) 

 
A tangent line to a curve upon a surface is called a tangent line to a regular surface at the point of contact. 
It is evident that there are an infinite number of tangent lines to a surface at a point. All of these lines lie in 
a plane, which is called the tangent plane of the surface at the point84. The tangent plane can be defined by 
the parametric tangent vectors in u and v direction at the point under consideration, Figure 3.5. These 

                                                 
83 Marsh, Applied geometry for computer graphics and CAD 
Roughly speaking, a regular surface is obtained by taking pieces of a plane, deforming them, and arranging them in such a way that 
the resulting figure has no sharp points, edges or self-intersections and so that it makes sense to speak of a tangent plane at points of 
the figure [Do Carmo, Differential geometry of curves and surfaces]. 
84 Eisenhart, A treatise on the differential geometry of curves and surfaces 

Fig. 3.4. Tangent and normal to a parametric curve 

Fig. 3.5. Tangent plane and normal to a parametric surface 
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tangent vectors can be derived by taking the first partial derivative of the surface definition for respectively 
(u,0) and 0,v) where the cross product of these vectors is a normal vector to the tangent plane. 
 

 

( , ) ( ,0) (0, )u vu v u v N T T

 

       (Eq. 3.8) 
 
As will be discussed in detail later, tangent planes and surface normal vectors play an important role in the 
modelling and analysis of developable surfaces. Related to that, also the curvature description plays an 
important role in the analysis of developable surfaces. 
 
surface curvature 
In literature, the definition of the curvature of surfaces is frequently explained by introducing the definition 
of the curvature of planar curves. Multiple methods to derive and approximate the curvature of 2D curves 
can be adopted. Deriving the tangent angle at specific points and determining the radius of the osculating 
circle are two of them. A third method follows from calculating the derivatives of the curve. When a 
parametric equation of a curve is given with curve C(t) = (x(t),y(t)), the signed curvature is 
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      (Eq. 3.9) 

 
For a space curve, the curvature is described with the following equation 
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 
 (Eq. 3.10) 

 
When a space curve lies on a surface embedded in three dimensions, different measures of the surface 
curvature, taking into account the surface's normal vector, are available. These are the geodesic 
curvature, geodesic torsion and normal curvature. The geodesic curvature, κg, is the curvature of the curve 
projected onto the surface's tangent plane. The geodesic torsion (or relative torsion), τr, measures the rate 
of change of the surface normal around the curve's tangent85 or in other words it describes how a surface 
twists about a curve on the surface. However, when talking about the curvature of a surface, usually the 
normal curvature is meant.  To explain the normal curvature of a surface, consider a point on the surface. 
The tangent vector to the surface in an arbitrary direction, i.e. T(u,v), together with the normal, i.e. N(u,v), 

                                                 
85 Wikipedia, Curvature 
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at that point of the surface define a normal plane of the surface at that same point. The normal curvature 
in the direction of the tangent vector, κn, is the curvature at the point under consideration of the plane 
curve defined by the intersection of the normal plane and the surface. Regarding all possible tangent 
vectors, then the maximum and minimum values of the normal curvature at a point are called the principal 
curvatures, κ1 and κ286, Figure 3.6. Based on these principal curvatures, the Gaussian curvature can be 
determined since it is equal to the product of the principal curvatures, κ1κ2. Determining the direction and 
value of the principal curvatures is primarily based on derivatives of surface curves and the surface itself.  
 
example 
Consider a hyperbolic paraboloid. The surface is generically described by the following parametric equation 
 

 

( , ) ( , , )u v u v uvS

 

        (Eq. 3.11) 
 
When additional variables for shape distortion are added, the parameterisation becomes 
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       (Eq. 3.12) 
 
Following from this equation, the partial derivatives of equation can be derived 
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86 Wikipedia, Curvature 

 

Fig. 3.6. Normal planes containing the curve tangents in the principal 
directions and the normal to the surface at a specific point  
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In order to derive the curvature of the surface the first fundamental form of the surface needs to be divided 
by the second. These expressions are respectively  
 

 

2 2 2( ) 2 ( )ds E du Fdudv G dv          (Eq. 3.13) 
 

 

2 2 2cos ( ) 2 ( )κ φds L du Mdudv N dv         (Eq. 3.14) 
 
from which follows, with φ = 0, the angle between the principal normal a curve on the surface and the 
normal of the surface 
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To solve this equation, the coefficients of the first and second fundamental forms need to be derived. For a 
hyperbolic paraboloid, the coefficients of the first fundamental form are given by 
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       (Eq. 3.16) 
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       (Eq. 3.17) 

 

 

2 2( , ) 0 ( )G u v b cu
v v

 
    
 
S S

       (Eq. 3.18) 

 
The coefficients of the second fundamental form implement the unit normal vector, which can be written as 
 

 

( )

( , ) ( )

cb v
u v ac u

u v
ab

 
          

 

S S
N        (Eq. 3.19) 

 
2 2 2 2 2

( )
1ˆ( , ) ( )

( ) ( ) ( )

cb v
u v ac u

cb v ac u ab ab

 
      
 

N      (Eq. 3.20) 



  parametric modelling of architectural developables 

55 
 

The coefficients of the second fundamental form for the hyperbolic paraboloid are then given by 
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The principal curvatures, following from Equation 3.15, are the roots of 
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When κ is a polynomial of degree 2, then 
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can be used to compute the values of the principal curvatures, from which follows the equation to calculate 
the Gaussian curvature 
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For a hyperbolic paraboloid without variable values, this reads 
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For the hyperbolic paraboloid with variable values, it follows that 
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The equations are based on the descriptions of Hardy and Steeb87. 
 

Given the shape variables 
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, the hyperbolic paraboloid has a Gaussian curvature at (u,v) = 

(0.5,0.25) of -0.208. The same result is given by Rhino’s Gaussian curvature analysis, Figure 3.7.  
 
Over the whole surface, the Gaussian curvature has a negative sign – an intrinsic property of a ruled 
surface –, indicating that κ1 and κ2 are of opposite sign. A point on the surface is then called a hyperbolic 
point of the surface, also known as a saddle point. When the principal curvatures of a surface are both 
positive and negative, then points on the surface are elliptic points. For surfaces with vanishing Gaussian 
curvature, i.e. one of the principal curvatures is zero, points are called parabolic points. At a parabolic 
point, the Gaussian curvature is zero, but one of the principal curvatures is not zero. In planar points all 
principal curvatures are zero88. 
 
 

                                                 
87 Hardy, Mathematical tools in computer graphics with C# implementations 
88 Do Carmo, Differential geometry of curves and surfaces 

 

Fig. 3.7. Curvature analysis of a hyperbolic paraboloid; a double ruled 
surface. Following from mathematical equations the 
Gaussian curvature at (u,v) = (0.5,0.25) is -0.21. Below, the 
principal curvature directions are given. 
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Most surfaces are not composed entirely of one type of Gaussian curvature89. For example, a torus 
contains three types of Gaussian curvature. The parabolic points are on two circles in two horizontal 
planes that touch the top and the bottom of the torus. The elliptic points are on the outside part of the 
torus with normal facing outward, delimited by the two parabolic circles. The hyperbolic points are on the 
inside part of the torus with normal facing inward90, Figure 3.8. 
 
As mentioned before, the distinction between surfaces of zero and non-zero Gaussian curvature is of 
importance, especially in relation to designing with developable surfaces. In Section 4.2, it is shown how 
the Gaussian map can be used to denote the curvature of surfaces. 
  
continuity between surfaces 
As discussed before, surface continuity denotes how surfaces meet at a shared edge. In order to maintain 
both positional and tangential continuity while deformed, the surfaces should have matching 
parameterisation along the shared edge. So the issue is how to modify the edge where two surfaces meet 
without breaking their continuity. If one selects a minimum of four vertices between the two surfaces, 
specifically the two points where they touch, and one vertex in from the edge on each surface, as long as 
those four points are transformed as a unit, the edge will not lose its tangential continuity at the location of 
the connection91. In other words, between two surfaces whose edges meet, there exists G0 continuity by 
definition and this can be extrapolated by moving inward from the shared edge to the surfaces. If the 
control points on the second control lattice away from the ones that just met are co-planar, then there 
exists G1 continuity, etcetera. As mentioned before, since the scale of buildings is relatively large, usually 
G1 continuity is found to be adequate in architectural design. 
 
Analytically deriving the geometric continuity at points where parametrically defined surfaces meet is 
difficult. However, the following applies based on the text above; geometrically checking for G1 continuity 
between surfaces in a 3D modelling environment at a point P, they have to have the same normal 
directions and hence the same tangent planes. The converse is also true: if two surfaces meet at a point P 
and have common surface normals at P, then the surfaces meet with G1 continuity92. 
 
Due to the complexity in surface continuity, especially in relation to ruled and developable surfaces, issues 
may be resolved geometrically. This will be exemplified in Chapter 6. 

                                                 
89 Farin, The essentials of CAGD 
90 Penn Engineering, CIS700 – emerging technologies 
91 The Gnomon Workshop, Surface continuity tip 
92 Marsh, Applied geometry for computer graphics and CAD 

 
 
Fig. 3.8. Curvature analysis of a torus, showing the three types of 

Gaussian curvature classes 
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offsetting properties 
To illustrate the definition of offset surfaces, an analogy to the definition of an offset curve is usually 
presented. For every planar curve C(t) there are two dual curves at a distance d from this curve. 
Mathematically, these offset curves are computed as follows. Let C(t) = (x(t),y(t)) be a parametric 
representation of a planar curve. The unit normal vector field N(t) and its offset curve Cd(t) are given by 
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     (Eq. 3.28) 

and 
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       (Eq. 3.29) 
 
Because of the square root in the denominator of Equation 3.28, a polynomial or rational parameterisation 
of C(t) will in general not yield to a polynomial or rational parameterisation of the offset. Consider the 
parabolic curve C(t) = (x(t),y(t)) = (t,t²). The derivatives, needed to calculate the normal vector field N(t) are 
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which shows that offset curve is not a parabola, although the original curve is. This is visualised in Figure 
3.9 where two offsets are given, d and -2d.  
 
Pottmann defines an offset of a smooth surface as follows; on each surface normal, two points are marked 
that are at a constant distance d from the surface S(u,v). The set of all these points forms the offset 
surface Sd. The original surface and the offset surface share their surface normals and their tangent 
planes in corresponding points are parallel93. Analogous to the planar curve case, the offset surface can 
be calculated by  
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       (Eq. 3.31) 
 
 

                                                 
93 Pottmann, Architectural geometry 

Fig. 3.9. Offsets of a parabola at offset distance d = d (left)  
and d = -2d (right) 
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3.2.2 isometric description of surfaces 
As mentioned before, a curve is a mapping from an interval – usually t = [0,1] – to its image in three 
dimensional space. The parameter t is frequently considered analogous to time. The first derivatives of the 
mapping functions at particular values of t may then be considered at the velocity vector at t. Obviously, 
geometrically, this derivative with respect to t is the tangent of the space curve. The length or magnitude of 
the velocity vector denotes the curvature. To explain this, the parameter t of curves – the equivalent of the 
u and v parameter for surfaces – is considered.  
 
Firstly, reference is made to the work of Pierre Bézier who started with the principle that any point P(t) on a 
curve segment must be given by a parametric function of the following form 
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where the vectors Pi represent the n+1 vertices of a characteristic polygon, where n is the degree of the 
Bézier curve. These vertices are the control points. fi are the basis functions describing the Bézier curve. 
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     (Eq. 3.33) 

 
with the binomial coefficient function 
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       (Eq. 3.34) 

 
The open polygon formed by the control points in Figure 3.10 serves two functions: it establishes the initial 
shape of the curve and then furnishes a framework for altering the curve. For any Bézier curve, each control 
point Pi is ‘weighted’ by its associated basis function. When t = 0, P0 is given a weight of 1.0, and P1 
through Pn a weight of zero. Less weight is given to P0 and more to each succeeding Pi as t increases, 
reaching a maximum weight for each Pi when t becomes i/n. Then all other weights decay gradually to 0 as 
the weight of Pn reaches 1 when t = 1. In other words, a shift occurs in the influence of each point (each 

                                                 
 This text is partially copied from the final report ‘architectural designing based on analytical  NURBS modelling’ – part01 by the 
author for the AR0055 Mediated Discourse course under the supervision of dr. ir. R.M.F. Stouffs. For more information on geometric 
modelling with Bézier, B-Splines and NURBS curves, reference is made to this report. 

 
Fig. 3.10. A Bézier curve with four control points 
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polygon vertex) as the parametric variable moves through its range from 0 to 1. This implies that changing 
the position of control point Pi has the greatest influence on the curve’s shape at and near the parameter 
value i/n. It is therefore important to consider the distinction between the parametric, functionally derived 
qualities of a curve on one hand (i.e. for example the time and speed analogy) and the purely spatial 
properties on the other hand94. With this in mind, it must be noted that by way of progression to discussing 
the purely geometric properties of a curve, it needs to be considered that specific parameterisation of the 
curve does not uniquely describe the curve in space. Rather, there are a potentially unlimited number of 
parameterisations which can describe the same path through space. Exemplifying this with the time 
analogy, a given path in space may be traversed by any number of speeds and variations of speeds along 
the path. In other words, the specific choice of a parametric space and mapping function has a large 
implication on the ‘experience’ of the curve. 
 
The influence of the control points is best supported by the geometric construction of a Bézier curve. The 
curve can be created as the locus of points produced by a simple recursive geometric construction derived 
from the work by De Casteljau, which basically corresponds to the parametric function of the Bézier curve. 
 
The construction of a second degree Bézier curve is as follows95; Given any three points A, B, and C, the 
sides AB and BC of an open polygon can be drawn. For successive values of t in the closed interval [0,1] on 
these lines, points D and E  can be constructed so that AD/AB = BE/BC = t. Finally, on DE point F can be 
constructed so that DF/DE = t. F is then the point that describes the Bézier curve at the t value – see Figure 
3.11, top. This process can be applied to find Bézier curves of other degrees (see Figure 3.11, middle and 
bottom for n=3 and n=4 respectively) and to curves of which control points are not constrained to a plane. 
 
In relation to the above, an isoparametric curve (isocurve) can be described as a curve of constant u- or v-
value on a surface96. When two parametric curves with the same parametric domain [0,1]t   are lofted, 
the direction of one family of isoparametric curves is determined by the vector between the points on the 
curves with the same parameter t. These isoparametric curves define the rulings of the ruled surface. For 
surfaces, usually the parameter t is related to the u parameter. Therefore, in the case of the surface in 
Figure 3.12, the rulings of the lofted surface are formed by isoparametric curves of constant u value. 
 

                                                 
94 Shelden, Digital surface representation and the constructability of Gehry’s architecture 
95 Mortenson, Geometric Modeling 
96 Rhino3D, Glossary 

 
 
Fig. 3.11. Quadratic, cubic, and quartic Bézier curves with the 

geometrically constructed interpolation points for 
respectively t = 0.5, t = 0.725 and t = 0.3 
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Fig. 3.12. Lofted surface over two Bézier curves of different degree, but with a corresponding parametric domain 
 
Subsequently, a surface in three dimensional space is defined through a mapping from 2  coordinate 
parameters to 3  coordinates. By convention, this is usually from u and v to x, y, z. The 2  specification 
is referred to as its parametric space definition, and its mapping into 3  as a surface in world space. 
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3.3 epilogue: theoretic parametric surfaces 
The intrinsic equations and properties of a surface are subject of differential geometry are relatively 
complex; fundamental forms and derivations are generally left for theory books dealing with the topic of 
differential geometry of curves and surfaces. However, from the given parameterisation, surface properties, 
such as the mean and Gaussian curvature, can be computed. Therefore, in their general form, surfaces are 
presented in a parametric form. Also, based on parametric equations, theoretical surfaces that are self-
intersecting or non-oriented can be generated, whereas this might not be possible with implicit non-
parametric descriptions. Take for instance the Klein bottle, which can be describe parametrically as 
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   (Eq. 3.35) 

 
but physically can only be realised in four dimensions, since it must pass through itself without the 
presence of a hole97. 
 
This chapter provided a brief onset to the description of parametric properties of surfaces by introducing a 
general theoretical discourse in surface properties. The next chapter deals with parametric description of 
developable surfaces, also to provide a common base to start working from. After Chapter 4, the switch is 
made towards a more practical approach by means of discrete differential geometry, introducing vector 
mathematics in order to compute rulings used to generate developable surfaces. 
 
 
 
 

                                                 
97 Wolfram Mathworld, Klein bottle 

 

Fig. 3.13. Gluing up a Klein bottle [http://www.arch.columbia.edu, 
January 2011] 
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part02 – digital developables 
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4 analytical characteristics of developable surfaces 
 
As with all the rational surface classes, developable surfaces embed specific geometric characteristics. The 
possibilities in architectural design to employ these characteristics are closely related to the restrictive 
boundary conditions to which developable surfaces have to comply. 
Chapter 3 presented the elementary differential geometric description of surfaces in general. Before 
addressing the discrete differential geometry of developable surfaces and their relation with vector 
mathematics, this chapter will focus on the elementary differential geometry in relation to a parametric 
description of developable surfaces and presents and in-depth research on the surface properties of 
developable surfaces. 
 
 

4.1 introduction: theoretical discourse of developable surfaces 
 
generic theory on ruled and developable surfaces 
As noted in Chapter 2, ruled surfaces are both simple and fundamental to surface design and are of 
considerable importance in particular for the design of rationalised surfaces in architecture and structural 
design98. Generally, ruled surface follow the problem of defining a surface between two given space curves 
and a family of straight line segments. The input curves C1(t) and C2(t) have ideally the same degree and 
are parameterised over the same interval, usually the interval [0,1], Figure 4.1. If all pairs of points on the 
input curves are joined at the parameter value t by a straight line segments, a ruled surface strip 
connecting the curves is obtained. 
 
In mathematical form this reads; 
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 where u is equal to t     (Eq. 4.1) 

 
There are other methods to generate ruled surfaces as will be presented in parametric form in the following 
section, but in general, ruled surfaces follow the notion of linear interpolation; every isoparametric curve – 
a curve over the surface with a constant u value – is a straight line segment. As denoted before, generally, 
the tangent plane at a point on a ruling varies as the point moves over the ruling and as such the family of 
tangent planes define a double curved surface. Because ruled surfaces appear to be straight in one 

                                                 
98 Farin, Curves and surfaces for computer aided design 

Fig. 4.1. Two ruled surfaces based on the same boundary curves; 
based on equal parametric length segments (top) and on 
redistributed t values (bottom) 

 



Computation & Performance 

68 
 

'direction' they are easily mistaken for developable surfaces when they are in fact double curved. The 
double curvature is always expressed as a negative Gaussian curvature in all their surface points, excluding 
the subset of developable surfaces. This is proven by the fact that the normal curvature of any curve in a 
surface at a point P is a weighted average of the two principal curvatures of the surface at P99: 
 

 

2 2
1 2cos sinNκ κ θ κ θ 

 

      (Eq. 4.2) 
 
where θ is the angle with the first principal direction, cos2θ and sin2θ have the domain [0,1] and cos2θ + 
sin2θ = 1. Since through every point on a ruled surface runs a curve that has normal curvature of 0 (the 
generator), this implies the two principal curvatures do not have the same sign at P and the Gaussian 
curvature is not positive there. 
 
Only for a surface of zero Gaussian curvature it holds that it characterises developability. However, practical 
developability is obstructed by self-intersections of a surface. It is possible to show that the only regular 
geodesically complete developable surfaces are planes and cylinders, where geodesic completeness 
means that geodesics can be extended arbitrarily100. If, for example, for the definition of a tangent surface 
(see below) tangents of the input curve in both directions are taken, the surface is self-intersecting at this 
curve which is called the curve of regression, see Section 4.3.2. Obviously, also a cone shows a self-
intersecting point at the apex when rulings are extended. Basically, if the generators do not intersect 
anywhere, but in the curve of regression or a cone’s apex, then the surface is developable. 
 
typologies of developable surfaces 
Above, without explicitly addressing them, three basic typologies of the developable surface class are 
presented; cylinders, cones and tangential developables, Figure 4.2. If the definition of developable 
surfaces is not restricted to a sufficient smoothness, the class of these surfaces is too large to be useful. It 
then includes all possible ways of arranging crumpled paper in space101.  
 
cylindrical and conical developables 
A cylinder and a cone are ruled surfaces where the generators are respectively parallel to a fixed direction 
or passing through a single point. As such, methods using conic and cylindrical surfaces are relatively 

                                                 
99 Wolfram Mathworld, Euler curvature formula 
100 Pottmann, Computational line geometry 
101 ibid. 

 Fig. 4.2. Three basic types of developable surfaces. From top to 
bottom: cylindrical, conical and tangent surface 
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restricting in varying between various shapes and generally more difficult to use102. However, one of their 
main advantage is that they can be easily subdivided in flat panels; rectangular shapes for cylindrical 
surfaces and triangular shapes for conical surfaces. 
 
tangent surfaces or tangential developables 
A tangent surface is a surface spanning between rulings which are the tangent lines of a space curve, 
which is then called the curve or edge of regression. The correspondence between space curves and their 
tangent planes is one-to-one. And as such, the entire tangent surface is determined by means of its edge of 
regression103. A result of Euler states that most developable surfaces can be obtained as a tangent 
developable with the exceptions of generalised cones and cylinders and the plane104. 
 
 

4.2 parametric description of developable surfaces 
 

4.2.1 parametric equations of ruled surfaces 
Before discussing the parametric description of developable surfaces, first parametric equations of ruled 
surfaces are presented. 
 
As mentioned before, Pottmann et al. describe two types of ruled surfaces: 

- ruled surfaces by moving a straight line along a directrix curve 
- ruled surfaces by connecting corresponding points of two generating curves 

 
The parametric representation of the first type is 
 

 

( , ) ( ) ( )u v u v u S C a

 

       (Eq. 4.3) 
 
where C(u) is the parametric representation of the directrix curve, also called the base curve, and the 
generator a(u) describes the continuously changing unit direction vector of the moving straight line 
segment, also called the ruling105. A given point on the directrix curve with the parameter value u thus 
denotes the position of the moving line segment and the value v gives the particular point along this line.   
 

                                                 
102 Nolan, Computer-aided design of developable hull surfaces 
103 Glaeser, Developable surfaces in contemporary architecture 
104 Wikipedia, Tangent developable 
105 Pottmann, Architectural geometry 
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For the second type, the ruled surface is formed from two spatial curves, CA(u) and CB(u), where two points 
on each curve, generally corresponding to the same parameter value u, are joined by a line. Depending on 
the parameterisation of the two directrices, different ruled surfaces can then be generated. 
 
The equation describing this type of ruled surface is 
 

 

( , ) (1 ) ( ) ( )A Bu v v u v u  S C C

 

      (Eq. 4.4) 
 
where CA(u) and CB(u) are the parametric representations of the directrices. This equation is closely related 
to Equation 4.1. Obviously, the equations of the two representations for ruled surfaces are identical when 
C(u) = CA(u) and a(u) = CB(u) - CA(u). Also note the resemblance with Equation 2.7. In general, there is 
virtually no restriction to the input curves other than having to be defined over the same parameter interval, 
usually [0,1]106. 
 
The simplest examples of ruled surfaces are planar surfaces, cylindrical surfaces and conical surfaces. 
When the direction vector is constant, a(u) = a, the rulings are all parallel and a cylindrical ruled surface is 
generated. A conical ruled surface results from choosing a constant position vector, c(u) = c. 
 
example 
In the example of a Möbius strip, there are no two generating curves to generate a ruled surface with. A 
circle C(u) is used as the directrix and a set of rulings is swept over this curve with a constant rotation about 
C(u). When the generator arrives again at the starting point and the rotation about the circle is one half turn 
a standard Möbius strip is generated. Therefore, a Möbius strip is an example of the type; ruled surfaces by 
moving a straight line along a directrix curve. 
 
The parametric representation of the directrix and generator are respectively 
 

 

( ) ( cos( ), sin( ), 0)u r u r uC        (Eq. 4.5) 
 

 

( ) (cos( / 2) cos( ), cos( / 2) sin( ), sin( / 2))u u u u u ua

 

    (Eq. 4.6) 
 
 

                                                 
106 Farin, Curves and surfaces for CAGD 

Fig. 4.3. Parametrically defined Möbius strip 



  parametric modelling of architectural developables 

71 
 

Combining these equations and multiplying the generator with the desired width of the strip the parametric 
representation of a Möbius strip is 
 

 

( , ) cos( ) cos( / 2) cos( )x u v r u v u u 

 

      

 

( , ) sin( ) cos( / 2) sin( )y u v r u v u u 

 

     (Eq. 4.7) 

 

( , ) sin( / 2)z u v v u

 

      
 
with the domains u = [0,2π] and v = [-½width of strip, ½width of strip]. The point in Figure 4.3 shows the 
location of S(u,v) = S (1.75π,-3.5) = (16.4,-16.4,-1.3). 
 
Essentially, a ruled surface is completely determined by a base curve and the direction of the generators at 
their points of meeting with the curve107 which by definitions are geodesics. 
 

4.2.2 parametric equations of developable surfaces 
Since developable surfaces are a subclass of ruled surfaces, they can be described by the mathematical 
equations of ruled surfaces. However, they are subject to some restrictions. To find the condition for a ruled 
surface to be developable, consider the general Equation 4.2 with parameter values u and u + du which 
denote two adjacent rulings108 
 

 

( , ) ( ) ( )u v u v u S C a

 

( du, ) ( du) ( du)S u v u v u    C a  
 
Consider the triple scalar product  
 

 

[ ( du) ( )] [ ( ) ( du)]u u u u    C C a a

 

     (Eq. 4.8) 
 
By definition, the three vectors C(u + du) - C(u), a(u) and a(u + du) are all in the plane of the two rulings, 
Figure 4.4. If the rulings intersect, such as in Figure 4.4. as with a cone, then the vector a(u) x a(u + du) is 
orthogonal to the plane of the two rulings and so the triple scalar product of Equation 4.8 has a zero value. 
If the rulings are parallel as with a cylinder, then a(u) x a(u + du) = 0 and again the triple scalar product has 
a zero value.   

                                                 
107 Eisenhart, A treatise on the differential geometry of curves and surfaces 
 On a sphere, the geodesics are great circles, like the equator. In a plane, the geodesics are straight lines. As such, the generators of 
developable surfaces are straight lines as well. Basically, geodesics preserve a direction on a surface. 
108 Davies, An introduction to computational geometry for curves and surfaces 

Fig. 4.4. Vectors for determining the developable condition of a ruled 
surface 
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Since the coplanar rulings either intersect or are parallel, it follows that the condition for the two rulings to 
be coplanar is that 
 

 

[ ( du) ( )] [ ( ) ( du)] 0u u u u     C C a a

 

     
 
If the limit value for du is taken, the required condition for a ruled surface to be developable is obtained 
 

 

( ) ( ( ) ( )) 0u u u  C a a
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(Eq. 4.9)  
 
 

4.3 generic geometric properties and analysis of developable surfaces 
 

4.3.1 curvature, offset and continuity analysis for developable surfaces 
 
Gaussian curvature properties 
As mentioned before, the Gaussian curvature of developable surfaces is zero. Carl Friedrich Gauss 
developed the approach of spherical mapping to determine curvature of surfaces. The Gaussian spherical 
mapping, or normal mapping, uses the mapping from a surface onto a unit sphere in a way that the surface 
unit normal vectors are seen as coordinate vectors of points from the centre of the sphere, thus 
representing a point on the unit sphere. The Gaussian spherical map can be defined globally if and only if 
the surface is orientable, i.e. for instance Möbius strips cannot be mapped. The area of the image of the 
Gauss map is called the total curvature and is equivalent to the surface integral of the Gaussian 
curvature109. In other words, the local area distortion of the from the original surface to the Gaussian 
spherical map is a measure for the Gaussian curvature. 
 
Following from the fact that the Gaussian curvature of developable surfaces is zero, their Gaussian 
spherical map is one-dimensional; the area of the image is zero. In other words, the Gaussian spherical 
map of a developable surface is a curve (or a point in case of a planar surface), because all points of the 
same ruling have the same tangent plane and therefore have parallel normals and the same Gaussian 
mapping point110, Figure 4.5. Reversely, if the normal map is a single curve, then the directrix of the surface 
is a single continuous curve111. 

                                                 
109 Wikipedia, Gauss map 
110 Pottmann, Architectural geometry 
111 Rose, Developable surfaces from arbitrary sketched boundaries 

Fig. 4.5. Gaussian spherical image of a tangent developable surface. 
Top: the Gaussian mapping point of the parallel normals 
along a ruling. Bottom: the Gaussian mapping curve of the 
normals along an isocurve in the direction of the directrix 
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offsetting properties 
For surfaces, consider a curve C(t) contained in the surface and the spheres of radius d whose centres are 
contained by the curve. The envelope of these spheres is the pipe with axis C(t) and radius d. If the original 
surface is a ruled surface with rulings C(u), then its offset is the envelope of the one-parameter family of 
cylinders with radius d and axis C(u), which again is a ruled surface112. 
 
For the three basic types of developable surfaces the following holds true; the offsets of cylinders are 
cylinders again. For a cone, consider a sphere with radius d whose centre coincides with the cone’s vertex. 
The two-sided offset surface of a cone at distance d is in general composed of a developable surface of 
two component which touch the sphere. The complete offset of a tangent surface of a space curve 
consists of a developable surface113.  
 
In general it holds that because all points on a ruling of a developable surface have the same tangent 
plane, the corresponding points of an offset surface at distance d lie on a straight line at this distance. The 
tangent plane of the offset surface is parallel to the original tangent plane. Thus, the offset surface is also 
a developable surface as its rulings and tangent planes are at distance d to the corresponding rulings and 
tangent planes of the original surface114.  
 
continuity properties 
Due to the fact that there always is a single tangent plane along each generator, in some cases it is 
possible to connect developable surfaces with each other115. To properly connect the two adjacent patches, 
a shared surface generator should be correctly aligned and the surface normals of each patch at that 
boundary should be parallel, Figure 4.6. This connection then has a G1 continuity.  
If developable surface patches are joined along an edge which is not parallel to the surface generators then 
only a G0 continuous connection is possible. 

                                                 
112 Pottmann, Computational line geometry 
113 ibid. 
114 Pottmann, Architectural geometry 
115 Glaeser, Developable surfaces in contemporary architecture  
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Fig. 4.6. G1 continuous connections between four types of developable surfaces and their Gaussian spherical map 
 

4.3.2 geometric properties of the curve of regression 
As mentioned before, with the exception of the plane, cylinder, and cone, every developable surface in 
three-dimensional Euclidean space is the tangential developable of a certain curve. Intuitively, it is a curve 
along which the surface needs to be folded during the process of developing into the plane116. This curve is 
called the curve of regression; along it, the tangent developable consists of two sheets corresponding 
respectively to the positive and negative tangent vectors. These tangents are obviously tangent to one 
another as well along the curve, and thus form a sharp edge117, Figure 4.7. The curve of regression and 
similar infeasible conditions on developable surfaces frequently crop up, both in modelling activities and 
numerical solutions to the generation of these surfaces118. This for instance in disallowing the developable 
surface to be extended smoothly beyond this boundary.  

                                                 
116 Wikipedia, Tangential developable 
117 Eisenhart, A treatise on the differential geometry of curves and surfaces 
118 Shelden, Digital surface representation and the constructability of Gehry’s architecture 
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Therefore, it is of interest to investigate the nature of the developable near this curve, in particular, since 
the surface is shown to be singular here which cannot be overcome by a change of surface parameters119. 
In Section 6.2.1, the curve of regression is discussed in more detail and it is explained how it can be 
generated from a given developable surface. 
 
 

4.4 epilogue: utilisation of parametric differentials 
Parametric equations for ruled and developable surfaces are not frequently employed in architectural 
design. Especially, since most designers work with NURBS based geometry in 3D software which do not 
present  the intrinsic differential methods for generation and analysis of curves and surfaces. Nonetheless, 
deriving these equations essentially leads to a better understanding of the intrinsic surface structure, also 
in relation with the parametric equations of surface properties. It is shown in this chapter that the 
complexity of the parametric equations of developable surfaces are corresponding to the relative 
straightforward geometric properties of this type of surfaces; presenting the parametric description of a 
developable surface as a restricted equation of the general class of ruled surfaces. 
This chapter also introduced the Gaussian mapping method; a method to visualise a surface property – the 
Gaussian curvature – by means of geometrical operations. Essentially, this method is still based on 
differentially derived properties, such as deriving the surface normals. Subsequently, however, the 
Gaussian spherical map is generated by geometrically mapping a discrete number of surface normal 
vectors on to the unit sphere, after which the resulting points on the sphere are interpolated. 
 
Combining the general intrinsic differential methods – and knowing how these methods work – with 
discrete geometrical operations forms the base of the digital generation of developable surfaces and 
component development as described in the subsequent chapters. Firstly, the step from differential 
geometry to discrete differential geometry and vector mathematics is described. Secondly, the combined 
methods are employed in the parametric modelling of architectural developables. 
 

                                                 
119 Stoker, Differential geometry 

 
 

Fig. 4.7. Two sheets of the tangent developable surface of a circular 
helical curve. This curve is the cuspidal edge of the two 
sheets 
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5 digital generation and modelling of developable surfaces 
 
In Section 3.2, it was stated that one advantage of parametrically defined curves and surfaces is that their 
local properties, such as normal direction and curvature can be derived relatively easily as long as their 
mathematical formulations can be derived. However, since double curved surfaces in architectural design 
are generally not directly based on parametric surface descriptions – with various exceptions such as 
hyperbolic paraboloids –, the presented formulas in the previous chapters are not well applicable in design.  
 
The following chapters focus on discrete differential geometry in order to generate discrete elements for the 
development of surfaces. This chapter is firstly introduced with presenting three general typologies of 
methods for modelling developable surfaces. Subsequently, definitions for discrete differential geometry 
are given related to the research and a developability condition in relation to the discrete description of 
rulings is given based on vector mathematics. 
 
 

5.1 introduction: approach of design with developable surfaces 
Various examples exist of methods to generate developable surfaces either via approximation or direct 
modelling. Rose et al. provide a review of some of these methods for modelling developable surfaces. 
Without going into detail of specific techniques or algorithms, below a coarse overview of these methods is 
given. 
 
developable approximation 
Given an existing nondevelopable surface, a large number of methods originating from different theoretical 
and practical fields aim at approximating it with one or more developable surface patches based on for 
instance combining conical surfaces, the generation of (triangular) strips or deforming double curved 
surfaces to approximate developable surfaces. 
 
Generally speaking, the approximation approach is highly restricted, as the methods can only succeed if the 
original input surfaces already have fairly small Gaussian curvature. Moreover, in most cases the final 
result is not analytically developable. This can be problematic in manufacturing setups, where the surfaces 
need to be realised from actual planar patterns. In these setups the distortion caused by using unfolded 
patterns from approximate developables can be quite significant120. 
 
 

                                                 
120 Rose, Developable surfaces from arbitrary sketched boundaries 
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direct modelling 
Most existing methods for modelling developable surfaces require the user to clearly specify the ruling 
direction for the surface. In a discrete setup for modelling developable surfaces, the input is based on 
polyline directrices and the output is a developable strip where each interior edge approximates a ruling 
connecting the two directrices, Figure 5.1. 
Another direct modelling method is the highly time consuming alternative presented by some of the 
commercial modelling tools which first design a planar pattern for the surface and then deform it into the 
desired shape using bending and physical simulation. An example of this is given in Section 6.3.2 where a 
digital paper strip is modelled, which allows for instance for rolling up the strip. 
 
The methods used in this research and are as well categorised in methods for modelling developables 
either via developable approximation or direct modelling. Rose et al. present one other method as well; 
sketch-based modelling. 
 
sketch-based modelling 
In their paper Developable surfaces from arbitrary sketched boundaries, Rose et al. describe a sketch-
based system for modelling general developable surfaces by using an interface from which users can 
sketch the boundaries of each surface patch as a 3D polyline. They adopt a sketching framework for 
modelling of developable surfaces and use it to obtain the 3D boundaries of the modelled surfaces121. For 
the functionality of this method, reference is made to the paper. 
 
 

5.2 discrete differential geometry of developables 
Both in approximation methods and direct modelling, generating developables surfaces based on discrete 
differential geometry will reduce complexity in designing these surfaces in relation to methods based on 
differential geometry. 
In order to understand the distinction between differential geometry and discrete differential geometry, 
consider the following. Roughly speaking, classical differential geometry is the study of local properties of 
curves and surfaces; properties which depend only on the behaviour of the curve or surface in the 
neighbourhood of a point. Global differential geometry studies the influence of the local properties on the 
behaviour of the entire curve or surface122. Based on mathematical equations, in an intrinsic, explicit and 
implicit or parametric manner, derivatives are used to calculate these local properties, such as normal and 
tangent directions and curvature. 

                                                 
121 Rose, Developable surfaces from arbitrary sketched boundaries 
122 Do Carmo, Differential geometry of curves and surfaces 

 

Fig. 5.1. Approximated developable surface based on polyline 
directrices 
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Discrete differential geometry is an active mathematical terrain where differential geometry and discrete 
geometry meet and interact. It provides discrete equivalents of the geometric notions and methods of 
differential geometry. Generally, current interest in this field derives not only from its importance in pure 
mathematics, but also from its relevance for other fields such as computer graphics and design123. 
Discrete differential geometry initially arose from the observation that when a notion from smooth geometry 
– such as that of a developable surface – is discretised, the discrete objects may not merely be 
approximations of the smooth ones, but preserve or approximate the fundamental properties of the smooth 
equivalent and have special properties of their own, which makes them form a coherent entity by 
themselves124. Often such a discretisation clarifies the structures of the smooth theory and as such it might 
be claimed that the discrete theory is in a sense the more fundamental one: the smooth theory can always 
be recovered as a limit, while it is a nontrivial problem to find which discretisation has the desired 
properties. 
 
In the research of parametric modelling of architectural developables, discrete differential geometry plays 
an important role. It provides for the generation of discretely defined rulings. Subsequently, the rulings are 
used as input information to generate smooth developable surfaces, which are in essence approximations 
of surfaces based on differential geometry. Where the limit goes to a zero distance between subsequent 
discrete rulings, the approximation is equivalent to the surface based on differential geometry, as will also 
be pointed out in the next section. 
 
 

5.3 ruling vector mathematics for developable surfaces 
As rulings are straight elements with a direction, the relation with vector mathematics is evident. 
Additionally, the expression for developable surfaces lead to complex equations when reduced to a function 
of one variable, but the definition of developables is relatively simple in terms of vectors125. For these two 
reasons and in relation with the advantages mentioned above in using discrete differential geometry, 
rulings will be defined as vector at discrete locations. 
 

5.3.1 ruling vector description between two curves 
The choice for defining rulings as vectors is supported by the geometrical definition described by Nolan 
which is based on the determination of rulings between two curves where a plane is tangent to the surface 
along the full length of the ruling, Figure 5.2. 

                                                 
123 Bobenko, Discrete differential geometry 
124 ibid. 
125 Nolan, Computer-aided design of developable hull surfaces 
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Fig. 5.2. The ruling vector description and the tangent plane along this ruling  
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For a ruled surface, it holds that if two points, each one lying on a curve in the surface, can be found such 
that the tangents to the curves at these points lie in the same plane, they define the position and direction 
of a ruling R.  
With t1 and t2 being the points on respectively the first and second curve, T1 and T2 their tangent vectors at 
these points and R denoting the ruling vector, the normal vectors can be found for the plane determined 
by the ruling and the tangent vector as follows: 
 

 

1 1

2 2

 
 

N R T

N R T
        

(Eq. 5.1)  

 
R will be a ruling of a developable surface if N1 and N2 are parallel; that is, if these vectors are normal to 
the same plane. The condition for developability can then be described mathematically as  
 

 

1 2 0 N N

        

(Eq. 5.2)  
 
It will be clear that this condition is met for a plane, a cylinder and a cone, Figure 5.3. 
 

5.3.2 ruling vector directions for general developable surfaces 
Also for other ruling definitions, vector mathematics are well applicable in order to generate rulings that 
comply with the conditions for developability. Tangent vectors are used by default to generate a tangent 
developable surface from an input space curve. The vectors denote the start point of the semi-infinite 
rulings in the curve tangent direction and its inverse direction. Also for the definition of cylindrical and 
conical surface patches, the ruling directions serve as an input which are respectively parallel or 
intersecting in one point. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.3. Parallel normals of a planar, cylindrical and conical surface 
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5.4 epilogue: combining differential geometry with discrete vector mathematics 
In general, generating developables based on parametric equations hardly lends itself for architectural 
design. Nonetheless, the mathematical formulas of the previous chapters presented focal points for 
intrinsic surface properties which form the basis for a discrete differential geometry approach. This 
approach aims to preserve a selected structure when going from a continuous abstraction to a finite 
representation for computational purposes. For example, for a piecewise linear approximation of a surface, 
i.e. a mesh, one may define Gaussian curvature in such a way that important theorems are preserved in the 
discrete setting126. 
 
Essentially, a differential geometry approach focuses on the intrinsically perspective of a surface, reflecting 
the properties determined solely by the distance within the surface as measured along curves on the 
surface127. The discrete approach of, for instance defining rulings based on vector mathematics, relates to 
an extrinsically perspective, regarding the embedding in Euclidian space. But how does the combination of 
these approaches allow for a parametric design method for digital developables? One way is to utilise them 
in the development of custom tools that either directly model developable surfaces or approximate them 
based on nondevelopable input surfaces. 
 

                                                 
126 Cal Tech, Discrete differential geometry 
127 Wikipedia, differential geometry of surfaces 
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part03 – tool development and implementation 
 

 



Computation & Performance 

86 
 

 
 
 
 



  parametric modelling of architectural developables 

87 
 

6 tool development for the parametric developable design approach 
 
Part03 of this thesis focuses on the development and the description of the functionality of a design 
approach which encapsulates methods for parametric modelling of architectural developables. The 
presentation of this approach serves as an example of the general parametric rational design approach 
and it is shown how it adopts the previously discussed methods of direct modelling and approximation of 
developables as well as methods for the analysis of surfaces in relation to the properties of developables 
surfaces. The conceptual outline of the general approach is discussed in Section 6.1. Functional 
components containing the logic for the parametric analysis and modelling of developable surfaces are 
presented in Section 6.2. The final section of this chapter discusses the algorithms of the coded objects 
and the functionality on which these components are build. 

 
 

6.1 introduction: conceptual outline of the parametric rational design approach 
 

6.1.1 problem approach of parametric modelling of rational surfaces 
Implementing a design approach for a parametric environment allows for maintaining an intrinsic structure 
and logic of the construction of rational surfaces where the input parameters are, within the 
aforementioned boundaries, providing design freedom. From an architectural design perspective, the 
approach should be able to follow practical digital ways of designing; that is 1) from a design sketch from 
which parametric input is extracted to a rationalised digital 3D model, Figure 6.1, and 2) from a digital 
design model to an approximation of this design based on rationalisation principles, both followed by the 
processing of the rationalised model to manufacturable elements.  
 
The proposed design approach, as visualised in Figure 6.1, is primarily set out to define rational surface 
geometry based on parametric digital geometry extracted from design ideas. The approach incorporates 
and makes use of predefined logic defining boundary conditions of rational surface classes, amongst which 
developable surfaces, and ideally also contains definitions for principles for manufacturing and 
construction, for instance related to material properties. As such, it is envisioned that the approach is a 
parametric modelling primitive which provides for interactive rational modelling methods based on the 
generation and deformation of rational surfaces for both architectural purposes as well as manufacturing 
and construction purposes, and thus supporting the design process. Alternatively, the approach allows for 
incorporation of approximating rational surface geometry based on non-rational defined or for instance 
double curved surface geometry. 
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Concerning developable surfaces, their intrinsic structure provides for the advantageous properties of 
single-curve geometric objects, but as such are restricted to specific design constraints. And although 
developables are used frequently in various fields of industry, design taking these constraints into account 
proves to be difficult, especially if a sculptural appearance is pursued. In general it holds that the problem 
of defining rational complex geometry is not that of the surface description itself, but the problem relates to 
answering to boundary conditions. In other words, of most of the rationalisation methods, the input 
parameter definitions and the surface description are intrinsically not complex, but conforming  to the 
boundary conditions which follow from the surface type determines whether a rationalised surface 
structure can follow the design intent. Also for developable surfaces, the surface description is relatively 
simple, but the main question relates to how the restrictive design conditions of developable surfaces can 
be taken into account whilst allowing for a full descriptive design language and how the logic on which 
design with developable surfaces is based can be adopted by the designer. 

Fig. 6.1. Abstract visualisation of the parametric rational design approach [design sketch, left: http://plusmood.com/, March 2011] 
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6.1.2 functionality of the parametric developable design approach 
The proposed design approach for developable surfaces is deployed via a digital toolbox containing various 
algorithmic methods categorised in three toolbox ‘compartments’ which are based on the theory of discrete 
differential geometry and vector mathematics, Figure 6.2. The algorithmic methods, or tools, allow for 
surface analysis and modelling and support the designer in the search for geometrically rationalised 
surfaces to find an answer to the initial ideas of the design. As such, the toolbox provides ‘hints’ to guide 
the generation of surfaces towards the constructible geometry of developable surfaces. This holds that the 
tools may need alterations of the design input for them to generate surfaces based on the input, however 
they cannot be categorised as design tools. This in a sense that the toolbox provides the outcome of a 
predefined logic within a restricted workflow and therefore lacks the essentials of a set of design tools, 
which allow for a more creative process. 
 

 
 

Fig. 6.2. Conceptual outline of the parametric developable design methodology  
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6.2 development of parametric components for analysis and generation  
In this section, the general functionality of the components is described. In Subsection 6.2.1, the 
components are presented individually and Subsection 6.2.2 shows a number of validation test cases. 
 

6.2.1 component description and functionality 
As presented in Figure 6.2, the digital toolbox contains three compartments. The tools in these 
compartments focus on 1) the analysis of surfaces, 2) the generation of ruled and developable surfaces – 
subdivided in approximation and direct modelling sub-compartments – and 3) the patching of surfaces in 
manufacturable elements, Figure 6.3. Below, the functionality of the compartments are presented. 
 
The icons of the Grasshopper components display a letter indicating the type of outcome of the component: 
 A: analysis data 
 C: curve geometry R: ruled surface 
 D: developable surface P: surface patches 
 

 
 

Fig. 6.3. The Grasshopper component icons of the toolbox  
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analysis components 
The main goal of the analysis tools is to provide insight in the structure and geometry of surfaces in relation 
to the properties of developable surfaces, i.e. primarily the presence of straight rulings and the single 
curvature property. 
 
vector analysis 
In order to check the local conformity with the condition of developability, i.e. two normal vectors on a 
ruling need to be parallel, basic vector mathematical operations can be used. Whether the normals are 
parallel can be checked by taking the ruling and the tangent directions at the intersection points with the 
input curve under consideration. The normal vector can be distilled by calculating the cross products of 
these two vectors.  
 
Figure 6.4 shows six rulings from one point on the bottom curve to six points on the top curve. With the 
direction of these rulings and the tangent vectors at each point, the local normal vectors are distilled via 
the cross product and it can be checked whether the warp angle over the rulings is equal to zero. 
 

 
 
Fig. 6.4. Derivation of the normal vectors based on the tangent and ruling direction a specific locations 
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Although it may be presumed that the definition of the cross product is known, it is noted here that the 
cross product vector can be calculated with: 
 

 

 a b c

         

(Eq. 6.1)  
 
where a, b and c are vectors: 
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(Eq. 6.2)  

 
so that: 
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(Eq. 6.3)  

 
The vector angle is defined by the dot product and the length of the vectors under consideration 
 

 

cosθ a b a b

        

(Eq. 6.4)  
 
As such: 

 

arccosθ
 

  
 

a b
a b

        

(Eq. 6.5)  

 
where the scalar value of the dot product of two vectors is defined as: 
 

 

x x y y z za b a b a b   a b

       

(Eq. 6.6)  

 
When the vector angle θ is zero, the vectors are parallel and denote a ruling that complies with the 
developability condition. 
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The vector analysis component allows for the calculation of the cross product, dot product and vector angle 
of two sets of vectors and may, therefore, also provide a check of the outcome of other components which 
will be discussed below.  
 
surface analysis 
Recall the subsection in Section 3.2.1 on surface curvature. Here it is explained that the normal curvature, 
κn, is the curvature of the curve projected onto a plane which is defined by the curve's tangent T(u,v) and 
the surface normal N(u,v) at the point P(u,v). Regarding all possible tangent vectors at a point on the 
surface, then the maximum and minimum values of the normal curvature at a point are called the principal 
curvatures, κ1 and κ2128, Figure 6.5. 
 

 
 
Fig. 6.5. Derivation of the normal curvature in an arbitrary tangent direction 

                                                 
128 Wikipedia, Curvature 
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For a developable surface, the minimum value of the principal curvatures is zero, hence the Gaussian 
curvature, calculated with κ1κ2, is equal to zero as well. The surface analysis component determines the 
direction and value of the principal curvatures, primarily based on methods in the RhinoCommon SDK 
which calculates the derivatives of surface curves and the surface itself. 
 
The values of the principal curvatures are presented as lines at the point on the surface under 
consideration, where the length of the lines indicates the value of the curvature. Also, the surface is 
coloured – from dark purple to bright pink – where the minimal principal curvature lies under a certain 
tolerance value, giving a hint where the surface is locally almost single curved and near-developable 
patches can be recognised. When the surface is single curved within a tolerance along a straight line over 
the surface, a ruling is generated, visualising the structure of the developable patch.  
 
Figure 6.6 shows a distorted ruled surface, left, and the visual output of the surface analysis component, 
right. The latter gives an indication where the surface can be considered as developable within a certain 
range. Related to this, three rulings are generated perpendicular to the locally defined strongest curvature 
as indicated by the network of curvature lines. 
 

 
 
Fig. 6.6. Visualisation of the output of the surface analysis component 
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isometric mapping 
All surfaces with zero Gaussian curvature are rightfully called developable surface since they can be 
developed to the plane. This means that there is a one-to-one isometrically mapping of the surface to the 
plane in such a way that all curves that correspond in the mapping have equal lengths and the area of the 
development is equal to that of the developable surface. For surfaces which are nondevelopable there are 
multiple methods of developing them to the plane, however, each of these methods all have a discrepancy 
in the development related to the original surface. For instance, an isometric mapping of a double curved 
ruled surface, a nondevelopable surface, will preserve the length of the rulings, but the other curves and 
the area are not corresponding; also recall the difference in the mapping of the earth surface to the plane 
with the Mercator projection and the Gall-Petersen projection.  
 
The isometric mapping component projects rulings of the input surface to the plane, providing that the 
surface has rulings, or else the user will be notified that no development can be generated. Based on 
persevering the length of the rulings and the mutual angle and distances between subsequent rulings by 
vector mathematical operation, the development is generated, Figure 6.7. Also, the area of both the input 
surface and the development are provided by the component and compared numerically. 
 

 
 
Fig. 6.7. Visualisation of the output of the surface analysis component 
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curve of regression 
A ruled surface follows the notion of linear interpolation; every isoparametric curve – a curve over the 
surface with a constant u value – is a straight line segment. This follows directly from the parametric 
representation of a ruled surface 
 

 

( , ) ( ) ( )u v u v u S C a

 

       (Eq. 6.7) 
 
where a(u) is the direction vector of the rulings. 
 
If a space curve C(u) is a curve of regression of a ruled surface, then the rulings of the surface are tangent 
to this curve. As noted in Section 4.3.2, with the exception of the plane, cylinder and cone, every 
developable surface has a curve of regression. A possible way to obtain the curve of regression it to firstly 
develop the surface into the plane. Secondly, the image in the plane of the extended generators of the 
rulings of the surface needs to be considered, Figure 6.8, top. The pattern generated by these lines marks 
an additional curve which is called the envelope of the family of lines. Generally, this envelope of a one-
parameter family of lines is a curve that touches every member of the family tangentially129. Its inverse 
image under the development is the curve of regression130. Inversely, computing the development of a 
surface can also be based on generating the curve of regression and integrating the differential equation of 
curve C(u), parameterised over its arc length131. 
 
In order to surpass the relatively complex generation of the inverse image, the curve of regression can also 
be modelled directly by deriving the envelope of the semi-infinite rulings of the developable surface. A point 
on the envelope of the rulings of a developable surface is generated by the intersection of adjacent rulings 
with respect to the limit of the distance between these rulings going to zero.  
 
Taking  double curved ruled surfaces into account, these intersection points are only valid as 
approximations of interpolating points of a curve of regression when the distance between the rulings and 
the warping of the surface patch between the rulings is limited to certain tolerances. In other words, when a 
ruled surface is nondevelopable, the rulings do not intersect by definition and a theoretical curve of 
regression based on ruling intersections cannot not be distilled. 
 
 

                                                 
129 Wolfram Mathworld, Envelope 
130 Wikipedia, Tangential developable 
131 Pottmann, Computational line geometry 

 
 

Fig. 6.8. Top: The planar envelope curve of the set of rulings of the 
development.  
Bottom: The curve of regression of the discrete developable 
patch 
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As the component limits the number of rulings by taking a discrete set of rulings, the theoretical ruling 
intersections are not found. Therefore, the intersection points are approximated by the points where the 
semi-infinite rulings are the closest to each other. As such, an approximation of the curve of regression is 
distilled, Figure 6.8, bottom. That this set of points denotes the curve of regression is based on the fact that 
in the directions diverging from the curve of regression – the positive and negative tangent direction of the 
curve –, the distance between the rulings increases, except for planar and cylindrical surfaces. 
 
Figure 6.9 clarifies how the component generates the curve of regression. Firstly, for all rulings, it calculates 
the two closest points, each on one of the adjacent rulings under consideration which denote where the 
rulings are closest to each other – when the distance between the rulings is zero, these points coincide.  
For the first and last ruling, these points are added to the set of intersection points; presented in Figure 6.9 
with a circle around the point. Secondly, the intermediate intersection points are defined by taking the mid 
points between the closest points. The curve of regression then spans between the two points on the first 
and last ruling and is interpolating the intersection points. 
 
Subsequent intersection points denote a direction of the curve of regression if they are conform the 
definition  of developability; when this direction is, within certain tolerances, equal to the related ruling 
direction, the two points are part of the valid set of interpolation points of the curve of regression. 

 
 
Fig. 6.9. Visualisation of the output of the surface analysis component 
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surface generation components 
The set of surface generation toolbox compartment contain two approximation methods and six direct 
modelling methods to generate ruled and/or developable surfaces. The main goal of these components is 
to allow for the generation of various types of these surfaces based on different input parameters and 
boundary conditions.  
 
spline approximation 
When a double curved surface is remodelled to approximate a developable surface, there are various 
possibilities to base the approximation on. The search for an approximation can be based on for instance 
maintaining a global ruling direction, persevering a global shape or fix local definitions or conditions. 
Concerning the latter, the spline approximation component takes one of the curved edges of a double 
curved ruled surface and extracts the surface rulings at subdivision points of this curve. Subsequently, the 
rulings are rotated individually around the curve tangent directions at these points and as such define a 
new lofted surface, Figure 6.10. In order to find a set of rotated rulings which define an approximated 
developable surface, an optimisation algorithm can be applied in order to validate all rulings for their 
compliance to the conditions for developable surfaces, e.g. having a minimal warp angle between the top 
and bottom normal vector along the ruling.  
In Grasshopper, an evolutionary solver called Galapagos can be accessed. This component takes a number 
of numeric input values via sliders and requires a numeric parameter which serves as a fitness value. In the 
case of optimising the values of every single ruling rotation angle, the fitness value is equal to the summed 
warp angle of every ruling. Generally, when the initial rotation angles are set to zero for all rulings, the 
optimal solution will maintain a global ruling direction which does not divert much from the ruling directions 
of the input surface. As such, it is prevented that the surface definitions converges to a cylindrical surface. 
When the ruling directions of the first and last rulings are not added to the set of input values, and are 
therefore not part of the set of sliders for which an optimal value is searched, their direction remains equal 
to the direction of the straight edges of the input surface and the approximation has three coincidental 
edges with the input surface. Generally, disallowing rotation of the edge vectors does not yield to a 
developable surface, however results are better when only one edge direction is fixed to the edge direction 
of the input curve.  
 
To limit the genome size, the number of rulings needs to be limited and the step sizes in the allowable 
rotation domain are set to 0.01 rad. Increasing the number of rulings and decreasing the step size would 
generate a more accurately modelled developable surface, but will result in longer calculation time as well. 
Due to the fact that the component will only approximate an developable surface, it is advised to distil the 
edge curve of the approximated surface and use this approximated spline and the fixed curve on the other 
side of the surface as input curves for the ruling developable surface component, see below. 

 

 
Fig. 6.10. The figure shows how one ruling is rotated around the 

tangent vector at the starting point of the ruling vector on 
the fixed curved surface edge 
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connecting developables 
As mentioned before, each developable surface has a single tangent plane along each entire generating 
line making it possible to connect developable surfaces with each other with a G1 continuity at this line. To 
properly connect two adjacent developable surfaces, a shared surface generator should be correctly 
aligned and the surface normals of each patch at that boundary need to be parallel. When two separate 
patches, not necessarily with parallel edges, need to be connected by a third developable patch, both input 
patches should have straight edges on the side where they are connected and these edges need to comply 
with the rules of developability, i.e. are surface generators. 
 
Based on the tangent directions at the edges of the input surfaces, two space curves can be defined which 
generally allow for the definition of a developable surface between them. The tool, however, does allow for 
connection of any ruled surface, but double curved ruled surface patches will generally not yield in a fully 
defined connecting surface since the rulings at the end do not follow the conditions of developability. 
Figure 6.11 shows two tangent lines for both surface patches which define a plane which is equal to the 
tangent plane of the edge ruling. The two planes intersect each other in the dashed intersection line. The 
two mid control points of the space curves are then defined  by creating points on a line from the edge 
ruling end points to the intersection points at a certain t value. If the direction of these lines is opposite to 
the tangent vectors, then these points are mirrored over the edge ruling in the plane. Together with the two 
starting points of the tangent lines, these points define the space curve based on four control points 
defining another edge curve of the connecting developable.  
 
ruled surface 
In architectural design, ruled surfaces are generally modelled by connecting corresponding points of two 
space curves with straight lines. Generating ruled surfaces by transposing a ruling over a directrix curve 
based on parametrical input is applied less frequently. Nonetheless, this type of surface generation may 
serve as a starting point of designing with mathematical surfaces. 
 
By denoting the functions for the directrix curve C(u) and the direction vector a(u), the rulings of the ruled 
surface can be generated based on a set of input parameters u and v. The functions can easily be given by 
importing the parametric definitions for the (x,y,z) values of the directrix and the direction vector via the 
inbuilt Grasshopper panel component to an expression component with a single variable u. The parametric 
ruled surface component then combines these inputs together with the v value, generating the rulings and 
the lofted ruled surface, as exemplified in Figure 6.12 for a helicoid. 
 
 
 

 
Fig. 6.11. Construction of two space curves defining a developable 

surface patch connecting two input surface patches 
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paper strip 
As mentioned before, a developable surface is a special kind of surfaces that behave like paper if it is bent 
or twisted without tearing or stretching. The paper strip component generates a digital paper strip, based 
on an algorithm by Lorenz Lachauer as posted on his blog.  
 
The algorithm takes a starting direction for the first ruling which is perpendicular to the initial curvature 
direction. A third vector, being the cross product of these vectors, is denoted as the ruling rotation axis, 
Figure 6.13, left. 
 

 
 
Fig. 6.13. Visualisation of the algorithm of the vector mathematical definition of the ruling generation of a paper strip 
 
The right two diagrams in Figure 6.13 show how every next ruling direction is distilled by rotation operations 
over two axes; 1) the rotation of the curvature direction vector over the initial ruling direction by the related 
curvature angle and 2) the subsequent rotation over the ruling rotation axis over 90º - iso angle. For every 
segment this algorithm is recursively executed, resulting in a set of rulings defining the developable paper 
strip surface. 
 
By varying the width and length of the paper strip as well as the local curvature angle and iso angle, various 
paper strip configurations are possible. Obviously, this component is difficult to use as a design tool, but it 
serves its purpose by presenting a developable surface as a digital equivalent of a paper strip. 
 

                                                 
 http://eat-a-bug.blogspot.com – d.d Monday 16 August 2010 

 

 
Fig. 6.12. Parametrically defined helicoid based on the parametric 

ruled surface component 
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cylindrical surface 
Cylindrical surfaces can be generated by various operations; parallel extrusion and rotation of a generator 
around a parallel axis are two possible methods of defining this type of developable surfaces. Respectively, 
the extrusion direction and the direction of the generator define the orientation of the surface, where the 
shape of the sectional input – usually a closed circle – defines the shape of the surface. 
The standard Cylinder component in Grasshopper only allows for closed circular surfaces to be generated 
where the surface orientation is perpendicular to a predefined base plane. With the custom developed 
cylindrical surface tool it is possible to have any curve, planar and nonplanar, as input. Based on a user 
defined direction and height, a cylindrical surface is generated. 
 
conical surface 
Similar to a cylindrical surface, a conical surface can be generated by various operations and also for this 
developable surface type, the functionality of the custom developed component is enhanced in relation to 
the standard Grasshopper component. The conical surface component also allows for noncircular and 
nonplanar input of the sectional base curve. However, in lieu of the direction and height as input 
parameters, the conical surface takes a 3D point as input parameter, denoting the cone’s apex. 
 
tangent developable component 
Besides the plane, the cylindrical and conical surface, a tangent developable surface is one of the basic 
types of developable surfaces, mathematically described as 
 

 

( , ) ( ) ( )u v u v u S C C

 

       (Eq. 6.8) 
 
Geometrically, this implies that the vector direction at a value u of the space curve C(u) is equal to the 
tangent of C(u). Recall Section 3.2.1 where it was noted that equation of the tangent vector of a space 
curve is given by  
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      (Eq. 6.9) 
 
Since generally the input curve is not defined by a parametric equation, the functionality of the tangent 
developable component is based on the TangentAt() method of the RhinoCommon SDK which calculates 

the unit tangent vector ˆ( )uT  of the input curve at a given curve parameter. Similar to the conical surface 
component, the user denotes the length of the rulings for every discrete u value, giving a set of rulings 
which define the tangent developable surface, Figure 6.14. As such, this component is essentially the 
inverse of the curve of regression component. 

 

 

Fig. 6.14. Discrete definition of a tangent developable surface 
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ruled developable surface component 
According to Sun and Fiume, in developable surface modelling, the classic problem of constructing a 
continuous developable surface is in connecting two given space curves132. To ensure that rulings between 
space curves are also generators of a developable surface, the tangents at the intersection points of the 
rulings with the space curves need to be aligned so that the cross products between the ruling and the two 
tangents are co-linear133.  When no such set of two points can be distilled, the curves will not define a 
developable surface patch. In this case, either one curve or both curves must be altered to make the pair 
compatible in the sense of developability134.  
 
From a general perspective, it is not possible to construct a single developable surface patch from two 
arbitrary curves in space, nor are there a set of patches with tangent continuity which can. These patches 
will in general have a discontinuity in surface tangency at their joined ruling, resulting in a G0 continuous 
connection. However, when it is enforced to use singular and subsequent steps to find intersection points 
of a ruling with the input curves, a single developable surface patch can be generated at the cost of 
deviating from the original input curves between these points. When the step sizes are taken sufficiently 
small, the deviation can be limited to allowable values. 
 
There are several CAD applications which support the generation of developable surfaces between input 
edge curves also taking this deviation into account. Rather than developing the surface from defined 
cylindrical, conical or planar elements, usually algorithms are used approximating a developable surface 
based on discrete steps135. For instance, the Rhino Loft command allows for a developable loft which 
creates a developable surface or polysurface from each pair of curves. However, since the functionality of 
this command is limited, also a DevSrf plug-in has been developed, which is available via the Rhino Labs 
Tools website136. This plug-in displays the developable ruling lines between a pair of rails where the 
tangents at the ends of the ruling lines are co-planar within a twist tolerance. The approach used for the 
DevSrf plug-in follows the same routine as the mathematical vector approach by Nolan.  
 
 
 

                                                 
132 Sun, A technique for constructing developable surfaces 
133 Konesky, Computer aided design of developable surfaces 
134 Nolan, Computer-aided design of developable hull surfaces 
135 Shelden, Digital surface representation and the constructability of Gehry’s architecture 
136 McNeel Wiki, Rhino 4.0 labs tools 
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Rather than dealing with the complexities of multiple roots and domains resulting from expressing the 
ruling condition in one equation, Nolan adopted an approach with a search technique. Firstly, the 
boundaries of the surface are expressed by spline-approximating polynomials, given a set of points for each 
boundary. Secondly, rulings are computed at small intervals over the surface by an iterative process which 
searches the boundary curves for the line which satisfies the ruling definitions in terms of normal vectors137 
- Equation 6.10, which equals the definitions denoted in Section 5.3.1. 
 

 

1 2 1 2 sinθ N N N N

        

(Eq. 6.10) 
 
The approach was mainly successful for simple curve definitions and therefore for the generation of simple 
surfaces. The major problem was that rulings might either cross or fan out, yielding an unrealistic or non-
usable surface.  
 
The ruled developable surface component is able to overcome these problems. The algorithms used for this 
tool are similar to those used by Nolan as they generate the rulings of a developable surface by searching 
for a ruling direction which satisfies the vector approach such that the tangent and normal vectors at the 
start and end point of the rulings lie in a plane. However, the boundary curves are not remodelled as 
polynomials, but the curves are directly subdivided in discrete points based on a parametric subdivision 
method used in Grasshopper. As such, the algorithm shows the possibility of generating developable 
surfaces by deriving developable rulings. 
 
The following steps define the functionality of the tool: two space curves, defining the edges of the surface, 
serve as the input for the component, based on which a set of rulings is constructed under the constraint of 
developability. The algorithms follow two subsequent steps. Firstly, the base input curve is subdivided 
based on a user-defined number and the secondary curve is subdivided with a much higher subdivision 
density. Secondly, the algorithms loop through the first set of points, searching for points on the second 
curve where the ruling CB(u) - CA(u) complies with the developability condition, Figure 6.15.  
The tool does not allow for a ruling to be found with an end point on the second curve with a smaller index 
than the index of the last point on the second curve. As such, the generated rulings are a result of a 
directed search algorithm, stepping along both edge curves based on their initial directions. Therefore, it 
makes a difference which curve is taken as the base input curve, which is the second curve and what the 
direction of the curves is. 
 

                                                 
137 Nolan, Computer-aided design of developable hull surfaces 
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 Fig. 6.15. The search strategy of the method adopted by Nolan; a warped tangent plane is modified to a flat tangent plane by fixing 

one end of a ruling and finding the point of intersection with the other boundary curve that satisfies the ruling condition 



  parametric modelling of architectural developables 

105 
 

surface patching component 
 
surface patching 
Surface panels naturally introduce opportunities for introducing overlaps between individual sheets, slight 
discontinuities in the smoothness of the overall shape or the possibility of slight warping of the material 
sheet. Generally, these effects are not identifiable at the building scale level, see also Section 7.2.2. This 
potential relaxation of constraint conditions as design heads toward actual fabrication is of course 
beneficial to the design process and provides in essence a factor of safety in the schematic design of the 
project form138. 
 
The surface patching component takes the development of a developable surface as an input and maps a 
predefined pattern on to it. Figure 6.16 shows, a Guggenheim-like pattern with a shift of individual panels 
of half the width of the panel size based on the highlighted set of lines. This set of lines is firstly bounded by 
a bounding rectangle which denotes the translation of each patch based on the width and height of the 
rectangle. Multiplied by a scaling factor, the pattern is translated over another bounding rectangle defining 
the rectangular shape around the development. As such, a pattern of flat surface panels is defined which 
could be sent to a CNC machine for cutting the individual panels. 
 
Subsequently, the pattern on the development is reversely mapped to the initial developable surface, 
creating a surface pattern following the orientation of the pattern of the development. By rotating the 
development in the XY plane, the orientation of the pattern on the developable surface follows dynamically. 
As such, the tool enables to develop representations of sheet materials, which reflect fabrication 
constraints without imposing additional constraints resulting purely from limitations of the geometric 
representation itself. 
 
As the pattern potentially could be based on a large number of parameters and since desired output factors 
such as visual appearance or cutting loss during fabrication of the panels are largely influenced by the 
pattern definition, it is omitted to investigate other surface patching patterns further in this research as this 
might be a research on its own. Related to this, it might be of interest to research the possibilities to 
optimise panelisation of developables surfaces, for instance in relation to CNC operations, minimising 
cutting losses and material properties. 
 
 
 

                                                 
138 Shelden, Digital surface representation and the constructability of Gehry’s architecture 

 

 
 

 
 

Fig. 6.16. Mapping of a pattern from the development to a 
developable surface in R3.  Top image: Façade detail of the 
Guggenheim Museum in Bilbao. Photograph by Jorge 
Estevez Garcia  
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6.2.2 component test cases 
Although the components serve as a proof of concept, below, a number of basic tests are presented to 
verify the functionality of methods used by the components. Generally, the functionality and the derivation 
of the outcome of the components are dependent on vector mathematics and RhinoCommon SDK 
methods, see Section 6.3. Therefore, firstly, definitions related to vector mathematics are given. Secondly, 
if applicable, the outcome of the components is compared to the outcome of Rhino commands.  
 
Since basic vector operations are essential for the functionality of the tools, Figure 6.17 and Figure 6.18 
present Grasshopper definitions comparing the numeric output of the standard Grasshopper cross product, 
dot product and vector angle components with the custom developed VectorAnalysis component and show 
that their outcome is identical. 
 

 
 
Fig. 6.17. Comparison of the numeric output of the cross product and dot product of the standard Grasshopper component and the 

VectorAnalysis component 
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Fig. 6.18. Comparison of the numeric output of the vector angle of the standard Grasshopper component and the VectorAnalysis 

component 
 
The cross product, dot product and vector angle methods are used by a number components for which 
normal vectors of surface rulings are generated and/or checked, such as the SurfaceAnalysis and 
RulingDevelopable component. Related to this, these components take into account the value of the warp 
factor of the rulings, see also Section 7.2.2, in order to check local compliance with conditions of 
developability. The warp factor is defined as the warp angle between two normals at the end of the rulings 
divided by the  ruling length. In the aforementioned components, this warp factor is set against a tolerance 
value in order to determine the level of developability. 
 
Figure 6.19 shows the outcome of a validation test for the results of the RulingDevelopable component. 
The curves at the top of the figure indicate which input curves are used for this test. From left to right; 
arbitrary curves (2x), straight lines under an angle, edge curves extracted from a developable surface and 
circular curves extracted from a straight cylinder. The test aimed at graphically showing where the warp 
angle of a ruling has its minimal value. The rulings under consideration span from a point on the bottom 
curve at a t value of 0.5 to a discrete but high number of points on the top curve over a domain [0,1]. As 
such, it is obvious that for a cylinder, containing straight rulings, the warp angle is minimal at the t = 0.5 
value, as shown in the right graph of Figure 6.19. 
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Fig. 6.19. Graphical representation  of the location of the minimum warp factor value of a ruling between a set of two curves 

directing from a point on the bottom curve with a t value of 0.5 
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Figure 6.19 also shows that it might be possible that two values comply with a local minimal value, as 
indicated by the left graph. The RulingDevelopable component deals with this by generating a ruling to the 
first t value which is related to the minimal value, unless previously defined rulings are directed to a point 
on the top curve with a higher t value. Additionally, the graph related to the straight lines under an angle 
indicates that the minimum value is also at t = 0.5, but that this warp value is equal to the rotation angle 
between the curves. As such, although the ruling definitions are based on a set of discrete starting points, 
finding rulings conform to the global minimum warp appears to be valid. 
 
Figure 6.20 shows the geometry of the aforementioned developable surface patches as the outcome of the 
RulingDevelopable component related to the output of the Rhino curvature analysis command. The 
monochrome output is a result of the input parameters of the curvature range of the Rhino command  and 
indicates that the Gaussian curvature is indeed zero, or at least approximates this value.  
 

 
 
Fig. 6.20. Curvature analysis of the developable surfaces generated by the RulingDevelopable component  
 
Also the SplineApproximation component takes the warp angles of rulings into account in defining a 
developable surface based on a double curved ruled surface as they provide for the definition of the fitness 
function which drives the Galapagos evolutionary solver, Figure 6.21. Checking the output of this 
component shows that the number of segments, i.e. the number of rulings minus one, is of great influence 
to the level of developability. In this test case the input surface is subdivided by twenty rulings, individually 
rotated by parametrically defined angles which are the input parameters for the Galapagos component. As 
such, locally rules of developability are complied with, however, in between the rulings, the loft method 
generally creates a surface which is slightly off to that of a developable. Therefore, it is stressed out that the 
SplineApproximation component primarily serves its value in approximating the free curved edge. This 
curve and the initial fixed curve can then be used as input curves for the RulingDevelopable component to 
generated a better approximation of a theoretical developable surface. 
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Fig. 6.21. Screenshot of an evolutionary solver run with Galapagos based on the fitness function provided by the 

SplineApproximation component  
 
As rulings are mapped based on preserving angles and direction between adjacent ruling vectors, the 
IsoMapping component basically has its own validation output parameter as it numerically compares the 
area of the input surface with that of the development. Therefore, this component, as is its counterpart, the 
SurfacePatching component, is also primarily based on vector mathematics. 
 
Other components also do rely on vector operations, but incorporate RhinoCommon SDK functionality as 
well. For instance, in order to surpass to code the definitions of differential tangents of a NURBS input 
curve, the TangentAt() method is used at discrete locations along an input curve in order to define a 
tangent developable surface by the TangentDevelopable component.  
 
Related to the CurveOfRegression component it can be stated that the curve of regression is theoretically 
equal to the input curve of the TangentDevelopable component. Logically, the curve definitions are not 
identical, as the input curve generally is a modelled NURBS curve based on control points, whereas the 
curve of regression output is a curve interpolating a number of points which denote where the deviation 
from the warp angle of the input surface is less than a user defined allowable deviation angle, Figure 6.22. 
However, local coordinates and directions are, within this tolerance, in accordance with each other. 
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Fig. 6.22. Left: the input curve and its tangent developable surface. Right: the copied tangent developable surface and its curve of 

regression  
 
Similar to the CurveOfRegression component, the SurfaceCoupling component relies on RhinoCommon 
SDK methods related to intersections, e.g. PlanePlaneIntersection and LineLineIntersection. Ideally, these 
methods are coded by the developer, which would allow for better insight in their functionality. 
 
For the SurfaceCoupling component, it is of primary interest to define space curves, which function as input 
curves for the RulingDevelopable component, with tangent vectors at their end points which are identical to 
the tangents at the end points of the curved edge curves of the input surfaces. Figure 6.23 displays the 
tangent vectors and shows the numerical validation of their interrelated direction as the angle between 
them is equal to pi rad. 
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Fig. 6.23. Visualisation of the  tangent vectors at the common ruling between an input developable surface and a developable 

surface generated by the RulingDevelopable component 
 
 
Ultimately, Figure 6.24 shows definitions of three parametrically defined ruled surfaces of which only the 
cylinder is a developable surface. To the right of every surface, the parametric definition of the directrix 
curve and the vector in v direction is given. After the surfaces are reparameterised, the u and v domains are 
[0,1;0,1]. The points on the surfaces denote the location on the surface at (u,v) = (0,0.7) and serve as 
definitions for the validation of this component. 
 

 
 
Fig. 6.24. The surface visualisation and the parametric definition of a cylinder, Möbius strip and helicoid 
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6.3 component-oriented programming of the toolbox 
The components of the toolbox which support the design approach have been developed in the .NET plug-in 
RhinoCommon SDK in the C# language. The development code structure is based on inheritance of the 
Grasshopper.Kernel.GH_Component which is accessible by using the Grasshopper reference. In order to 
clarify the structure of code definitions, this section presents the development of the toolbox from a 
programming perspective, describing the sequence of methods of the code and its functionality. 
 

6.3.1 software specifications 
The tools have been developed as custom components for Grasshopper version 0.8.0004 in Rhinoceros 
4.0 SR8 based on the RhinoCommon SDK. The code has been generated in the Visual Studio 2008 
Professional Edition software development environment in the C# language. 
 

6.3.2 programming specifications of the toolbox 
In using the RhinoCommon SDK assembly reference, a large array of intrinsic Rhino objects and functions 
is available as a set of respectively object types and method members of the assembly classes. Although 
this allows the developer to build code based on predefined efficient algorithms, the functionality of these 
algorithms is not always directly clear, possibly resulting in unexpected output. Also, refactoring the base 
code in order to implement functionality to  other software or a stand-alone executable becomes more 
difficult. On one hand, ideally, geometric operations as defined in the SDK methods are coded by the 
developer allowing for direct implementation in other software or a stand-alone version of the toolbox. On 
the other hand however, when the functionality is understood and results are validated, calling these 
functions may shorten development time to a great extend. 
 
In certain occasions, intrinsic functionality of the toolbox has been rewritten or made part of an individual 
class in order to allow for other (types of) input and/or output, such as is the case for the basic vector 
mathematical operations. However, the code for toolbox components also still contains a number of Rhino 
methods, for instance in order to surpass having to define NURBS curve and surface definitions; e.g. a Loft 
method is used, taking rulings as input and generating a NURBS defined surface.  
 
 
 

                                                 
 http://www.rhino3d.com/ 
http://www.grasshopper3d.com/ 
http://www.rhino3d.com/5/rhinocommon/ 
http://www.microsoft.com/visualstudio/en-gb 
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Other SDK methods which have been implemented in the code include: 
 the Extract Isocurve method and ProjectCurve method 
 intersection methods, such as PointAt and LineLine intersections or PlanePlane intersections 
 geometry checking methods, such as ClosestPoint and IsLinear and 
 geometry characteristic definition methods, such as TangentAt and CurvatureAt 

 
In order to indicate their general functionality, most of the RhinoCommon SDK methods have been defined 
as methods in individual classes, categorised in a curve utility set of classes, a surface utility set of classes 
and a vector mathematics set of classes, see next section. 
 

6.3.3 coding structure of the toolbox components 
The RhinoCommon SDK allows the developer to define the custom components in an object oriented 
programming (OOP) environment in individual classes which inherit from the GH_Component class. This 
class defines four methods which respectively 1) register the input parameters, 2) register the output 
parameters, 3) solve the component logic and 4) return the unique Guid of the component. Additionally, in 
order to create a custom component, the user needs to provide a public, empty constructor which calls the 
base class constructor and may provide a location for the component icon to be displayed in Grasshopper.  
 
Figure 6.25 graphically represents the structure of the component in pseudo code and shows the three sets 
of the curve and surface utility classes and the vector mathematics classes which can be accessed from 
the component classes.  
 
For the full code definitions and related algorithms, reference is made to the ParametricDevelopable 
Solution file which is sent with this report. 
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  Fig. 6.25. Pseudo code definitions of a toolbox component  
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6.4 epilogue: specific component functionality 
Regarding the large set of components in Grasshopper, it becomes clear that they individually serve a small 
but specific goal; e.g. to calculate one number, to generate one geometric object, etc. As such, they allow to 
be used in different definitions. In other words, paradoxically, their specific nature provides for a general 
utilisation.  
 
The development of the architectural developable toolbox tried to follow the Grasshopper framework setup 
in providing  relatively simple components which perform basic operations. As such, the user is provided a 
new set of components which allow for a similar approach in utilisation as the standard Grasshopper 
components. Firstly, the input parameters are limited in number and generally do not require specific 
definitions or operations prior to providing data. Secondly, the surface definition components output is 
primarily focussed on two types of data; 1) the lofted surface defining a developable surface and 2) the 
rulings on which the developable surface is based on, Figure 6.26. This loft is based on the Loose loft 
option by which the surface control points are created at the same locations as the control points of the loft 
input curves, i.e. the end points of the rulings139. When rulings join in a single point, which for instance is 
possible with the conical surface component and the ruling developable component, the Loose loft option 
allows for the generation of a smooth surface. By taking a sufficient large number of rulings to generate the 
loft with, the discrepancies between the lofted surface and the theoretical developable intersecting are 
negligible.  
 

 
 
Fig. 6.26. Visualisation of the Grasshopper definition for the generation of a ruling developable surface  

                                                 
139 Rhino3D, Glossary 
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7 implementation of parametric developable surfaces 
 
From a digital perspective, the user needs to load the parametric developable assembly in Grasshopper 
and reference to its libraries in order to use the methods of the different tools. Implementing its 
functionality in the design process is the subsequent step to the development and validation of the 
individual components and finalising the installation of the software and deploying the toolbox. This chapter 
focuses on this next step in utilisation of the functionality of the tools, followed by a set of case studies 
exemplifying the possibilities of the toolbox. 
 

7.1 introduction: implementation of the toolbox in the design process 
One goal of the toolbox is to allow the user to use a set of functionalities to analyse and generate 
developable surfaces within the proposed design approach. These functionalities are set to provide 
assistance in analysis and modelling of developable surfaces in different stages of the design process 
between the initial sketch design and construction, Figure 7.1. 
 

 
 
Fig. 7.1. Schematic representation of the location of the digital modelling of developable surfaces in a design process 
 
The analysis tools are best used when digital models have been generated and which need to be analysed 
for conformance with conditions of developability. The surface modelling components may serve two 
possible approaches in the design process as a number of tools provide a more theoretical approach in 
surface definitions, such as the ruled surface component and the tangent development component, 
whereas other tools allow for a more ‘designed’ surface definition based on specific input. Finally, although 
underexposed in the whole research, panelisation forms an important step in the transformation from 
design to product especially related to surface rationalisation. When overall form geometries have been 
established, the surface patching component provides for a digital link between surface modelling and 
surface panel definitions. 
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As such, generally, each individual component can function as a specific tool at a specific moment in the 
design process. There are, however, components which are dependent on the functionality of other 
components. One example is the surface patching component which needs a development of a ruled 
surface as input parameter and therefore needs to be part of a larger Grasshopper definition, linking 
different components with each other. Either used as a single component or as part of a bigger definition, 
utilising the tools denote a virtual part of the design process supported by the parametric modelling of 
developables design approach. 
 

7.2 usability and functionality of the toolbox 
This section focuses on the exemplification of the usability and functionality of the toolbox when 
implemented in a design process. Firstly, the input and output parameters for each component are 
presented. Secondly, the relation with the practical definitions for developable surfaces are given based on 
tolerances defined by for instance material properties. 
 

7.2.1 input and output parameters 
As mentioned in the epilogue of the previous chapter, the component development aimed at a 
standardisation of inputs and outputs in order to present and identify the toolbox as a coherent set of tools. 
As such, the output of the direct modelling surface generating components is always a set of rulings and a 
lofted developable surface. Inputs are usually related to geometric typologies, such as curves and surfaces 
and numerical data, such as indices and tolerance parameters. In order to avoid having the user to 
parameterise the geometrical input, every input curve or surface is reparameterised to respectively a one-
dimensional domain [0,1] and a two-dimensional domain [0,1; 0,1] before processing them.  
 
On the next pages, the input and output parameters for each component are defined, including a 
description of these parameters and their relation with the functionality of the tool. It is indicated that the 
output of a number of component is dependent on an allowable tolerance. A deviation from the theoretical 
definition of developable surfaces can be considered when construction methods, dimensions and physical 
properties of materials allow for flexibility in relation with the condition for developability. In Section 7.2.2, 
definitions for the tolerance inputs are discussed. 
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Table 1. Analysis components input and output  

component  input output description 
    

 

 (list of) vector(s) 
 (list of) vector(s) 

 (list of) vector(s) 
 (list of) number(s) 
 (list of) number(s) 

The vector analysis component performs three basic vector mathematical 
operations, defining the cross product vector, the dot product value and the 
vector angle in radians the between two (sets of) vectors. 

    

 

 surface 
 integer 
 integer 
 double  
 double  
 double 

 list of lines 
 coloured mesh 
 list of lines 

The surface analysis component shows the network of principal curvature lines, 
where the lengths of the individual lines indicate the amount of local curvature. 
For visibility purposes the lines can be scaled by the scale factor. The UDensity 
and VDensity parameters define the density of the curvature network in u and v 
direction. The coloured mesh indicates regions of the smallest of the absolute 
values of k1 and k2 related to a curvature tolerance and the valid rulings 
indicate where rulings occur which are conform the condition of developability 
within the given warp tolerance. 

    

 

 surface 
 integer 
 

 surface 
 list of lines 
 string 
 

The isometric mapping component develops a ruled surface to the XY plane. The 
Segment parameter determines the number of rulings to base the development 
on. The Area output indicates the numerical difference in area between the input 
surface and the development. 

    

 

 surface 
 double 
 

 (list of) curve(s) 
 

The curve of regression component generates the curve of regression of an input 
surface. The input surface type is restricted to ruled surfaces and also excludes 
planar surfaces, cylinders and hyperbolic paraboloids as no curve of regression 
can be extracted from these and non-ruled double curved surfaces. The 
Deviation input parameters sets the allowable local angular deviation between a 
ruling of the surface and the tangent of the curve of regression at their near 
intersection point. 
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Table 2. Surface components input and output 
component input output description 

    

 

 surface 
 curve 
 list of doubles 
 integer 

 surface 
 list of lines 
 list of vectors 
 list of vectors 
 list of vectors 

The spline approximation component generates an approximated 
developable surface from an input ruled surface. The approximation is driven 
by one positional fixed curved edge of the input surface and an evolutionary 
algorithm which searches for the minimal value of the summed angles 
between the normal vectors. The number of sliders which serve as input for 
the rotation Angles parameter should be equal to the number of segments. 
The Segment parameter determines the number of rulings which the surface 
is based on. 

    

 

 surface 
 surface 
 integer 
 integer 

 curve 
 curve 

The surface coupling component generates two space curves that span 
between the edges of two input surfaces. Based on these output curves, a 
developable surface can be generated with the ruling developable 
component. The EdgeA and EdgeB parameters indicate the edge number of 
the input surfaces as denoted in Grasshopper or Rhino. 

    

 

 list of doubles 
 list of doubles 
 list of doubles 
 boolean 
 

 surface 
 list of lines 
 

The parametric ruled surface component generates a ruled surface based on 
parametric equations of the directrix and the vector direction. Both 
parameters are best supplied with the standard expression component of 
Grasshopper which can take as input a string denoting the parametric 
equations for the ruled surface and a list of u values. The VValues indicate 
the length of the ruling in the vector direction and the boolean TwoSided 
parameter determines whether the rulings are extended to the negative 
vector direction as well. 

    

 

 double 
 double 
 list of doubles 
 list of doubles 
 integer 
 

 surface 
 list of lines 
 

The paper strip component generates a digital paper strip with a user defined 
length and width. The IsoAngle and Curvature parameters determine 
respectively the rotation of a ruling over the normal at the centre of the ruling 
and the local rotation of the strip around the previous ruling. The Segment 
parameter determines the number of rulings which the surface is based on. 
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 curve 
 vector 
 double 
 integer 

 surface 
 list of lines 

The cylindrical surface component takes a space curve and extrudes it 
parallel in the given vector direction with the specified height. The Segment 
parameter determines the number of rulings which the surface is based on. 

    

 

 curve 
 point 
 double 
 integer 

 surface 
 list of lines 

The conical surface component takes a space curve and performs a central 
extrusion in the direction of the ConeApex over the given height. The segment 
parameter determines the number of rulings which the surface is based on. 

    

 

 curve 
 integer 
 double 
 double 
 

 surface 
 list of lines 
 

The tangent developable component generates a developable surface based 
on rulings that are tangent to an input space curve. The Length parameter 
determines the length of the tangent vectors. This length minus the 
CuttingLength parameter defines the length of the rulings. The Segment 
parameter determines the number of rulings which the surface is based on. 

    

 

 curve 
 curve 
 integer 
 double 
 

 surface 
 list of lines 
 

The ruling developable component generates a developable surface based 
on two input curves and a ruling search algorithm. The algorithm steps 
through a number of possible ruling locations, defined by the Segment 
parameter and returns a ruling if it complies with the condition of 
developability within the given warp tolerance. 

    
 
Table 3. Patching component input and output 
component  input output description 

    

 

 surface 
 surface 
 list of curves 
 double 

 curve 
 curve 
 list of curves 
 list of curves 

The surface patching component maps a predefined pattern, denoting the 
panel definition, on a developable surface. The Development surface input 
can be generated from the isometric mapping component. The Scale input 
scales the pattern definition. The output shows the bounding box of the 
pattern definition and the developed surface. The panel definitions are 
generated both for the development and the original surface. 
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7.2.2 practical tolerances for developable surfaces 
Many materials of construction have analogous constraints that at least qualitatively constrain full scale 
fabricated building elements to assume sheet like forms. The relationship between the material constrains 
of modelling materials in scale and the constraints of fabrication may only be approximate. However, for 
schematic design purposes, this approximate correspondence may be sufficient to guarantee the 
constructability of designed forms140. 
 
The class of developable surfaces is clearly quite constrained. While there is a broad class of shapes that 
may be constructed from a single-curved sheet positioned in space, there is certainly a much larger set of 
shapes, such as spheres, cars, Pixar’s digitally animated characters, that cannot be tightly covered by a 
developable surface. However, since many sheet materials allow for an elastic deformation, it is possible to 
deviated from a mathematically correct developable surface without introducing visible distortions. In case 
of developable surfaces, this deviation is related to the warp angle between two surface normals at the end 
of each ruling line, Figure 7.2. 
 
The maximum allowable warp angle for a physical sheet of a certain material is amongst others dependent 
on the distance between the normals, i.e. the length of the ruling, and the out of plane bending capacity. 
Since out of plane bending is not pure bending, calculating the capacity is much more difficult than for in 
plane bending. From a research in cold bent glass sheets, it followed that glass sheets display a double 
curvature for small deformations and a predominantly single curvature for large deformations141. Therefore, 
frequently, the maximum angle is based on a set of physical tests.  
 
Suppose that the maximum warp factor for a certain material of a certain thickness is 0.1rad/m, then this 
value could be used as an input value for the components which are dependent on the warp factor to 
determine the feasibility of the physical surface definition. Ideally, properties such as thickness, stiffness, 
brittleness and forming methods are combined in a tolerance component, feeding the parametric 
developable components with values for allowable tolerances. Besides the physical restrictions also visual 
restrictions could then be implemented in order to quantify the effect on the desired smooth appearance, 
which is an important factor in surface design. Finally, an important factor for defining the feasibility of 
transforming a digital design to a physical design, is the curvature value perpendicular to the ruling 
direction, i.e. the maximum curvature value. Fully incorporating such a component is outside the scope of 
this research, but nonetheless would be an important addition to the set of tools in the toolbox. 
 

                                                 
140 Shelden, Digital surface representation and the constructability of Gehry’s architecture 
141 Herwijnen, van, Cold bent glass sheets in façade structures 

 

Fig. 7.2. The definition of the warp angle of a ruling 



  parametric modelling of architectural developables 

125 
 

7.3 use case studies 
 
Next to the test studies discussed in Section 6.2.2, a set of three case studies related to actual built 
projects are presented below in order to demonstrate the functionality of the rational design approach. As 
the case studies are based on a given geometry, it might be suggested that the tools are used in a post 
rationalisation approach; rationalising the geometry in relation to construction principles after initial design 
stages of the design process. However essentially, the example case studies follow the approach based on 
extracting parametric geometry from a design – although be it, not a sketch design in the given examples – 
and the generation of rationalised digital 3D models based on this input, instead of deriving geometric 
approximations of the initial design.  
 
conical and cylindrical surfaces – modelling the Guggenheim Museum New York 
The Salomon R. Guggenheim New York case study exemplifies how the façade surface of the museum can 
be parametrically generated by means of the ConicalSurface and CylindricalSurface components, Figure 
6.3. These components allow for defining the geometry by changing the height of the rings as well as their 
diameter. Obviously, the geometric design could be based on a Grasshopper definition only taking 
standard components into account as well. Nonetheless, using the conical and cylindrical surface 
components allowed for a direct definition of the rings including the cylindrical elevator shaft. 
 

 
 

Fig. 7.3. Modelling the Guggenheim museum, New York by Frank Lloyd Wright with conical and cylindrical surfaces. Image left: 
http://new-york.world-guides.com, February 2011 
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ruling developable surface – modelling the roof edge of the ZVE 
The roof edge of the Zentrum für Virtuelles Engineering (ZVE) Fraunhofer Institute (Centre for Virtual 
Engineering) is defined by two edge curves of which the bottom curve is in plane with the vertical façade. 
The top curve is placed inwards in relation to the façade which results in a nondevelopable surface when a 
simple loft operation between the curves is used to model the roof edge geometry. 
 
The RulingDevelopable component is able to generate a developable surface between these curves, while 
allowing for parametrically remodelling of the top curve until the desired shape of the roof edge is defined, 
Figure 7.4. Locally, the mid section of the edge curves consists of two straight lines which are placed under 
an angle. As such, the only developable definition between the curves in this section is possible by 
modelling two triangles. Since in this example the bottom curve is defined as the input curve of the toolbox 
component, rulings are defined by subdivision points at equal parametric lengths along this curve. 
Therefore, one of the triangles is defined by two rulings, whereas the other is defined by a greater number 
of triangles. When the top and bottom curve are interchanged, the geometry of the triangles is unaltered, 
but the ruling definitions between the triangles is swapped. In either way, the component demonstrates 
that a single developable surface with smooth transitions between the triangles and from the triangles to 
the two other sections of the roof edge surface is possible. 
 

 
 

 
 
 

Fig. 7.4. Modelling the roof edge of the ZVE, Stuttgart by UNStudio with a ruling developable surface. Copyright left image: UNStudio 
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ruling developable surfaces – modelling the developable roof strips of the Kaohsiung Solar Stadium 
The Kaohsiung Solar Stadium roof is covered by almost nine thousand solar panels, claiming the record for 
largest solar-powered stadium in the world. This case study shows another example of using the 
RulingDevelopable component in the geometric design of developable surfaces. 
 
A Grasshopper definition takes a user defined horseshoe-shaped curve as the basic input. Although not 
fully following the final design geometry, this base curve is copied vertically and then copied inwards based 
on a single scaling factor. As such, the base shape of the stadium roof geometry is defined. Subsequently, 
the three curves are subdivided by a user defined number of points and connecting these points with a 
curve by shifting the second curve by n points and the third curve by 2xn curves generates the edges of 
the strips which serve as input curves for the RulingDevelopable component. As such, the developable 
strips locally follow a single curvature definition, whereas the global appearance is a double curved 
surface, Figure 7.5. 
 
 

 
 

  
 
Fig. 7.5. Modelling the Kaohsiung Solar Stadium by Toyo Ito with ruling developable surfaces. Image left: http://meydan-city.com, 

March 2011 
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7.4 epilogue: tool adopting design approach 
Concluding the tool development and implementation section of this thesis, a reference is made to the 
initial definition of discrepancies between handling of geometric complexity in design and construction. As 
indicated in the introduction chapter, over the last decades, the advances in digital modelling grew ahead 
of possibilities to follow the design intention in analysis and construction. Therefore, the relationship 
between development of computational tools and construction principles is frequently one that is relatively 
tensed, as computational power allows for extremely complex definitions of geometry, whereas 
construction principles generally ask for known and simple methods of manufacturing and construction. 
However, there seems to be a shift in design tool development, especially at engineering firms, where tools 
are developed indicating possible rationalisation methods related to the design or proposing simplified 
parametric structural models still relating to visually appealing shapes. One of the goals of this research 
was to present a number of simple tools which follows the approach related to this second  type of tools, 
decreasing geometric complexity of a design, driving it to a well constructible shape, without desecrating 
the initial design intentions, Figure 7.6. 
 

 
 
Fig. 7.6. Decreasing complexity, limiting the gap between design and  construction by implementing digital design processes  
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8 concluding remarks and reflection 
 
This chapter presents the conclusions of the research described in this thesis. The results of the research 
are discussed and a reflection on the process is presented in the first two sections. Subsequently, the 
conclusions are drawn up categorised in different subsections. Finally, recommendations are presented, 
indicating additional research subjects related to this thesis. 
 
 

8.1 discussion of the results 
 
Rationalising surface geometry may be regarded as fixing problems which may only be overcome by 
negatively influencing the initial design intention, e.g. diverting from designed surface geometry, subdivision 
of smooth surfaces, limiting areas of double curvature. Nonetheless, frequently post rationalisation may 
prove to be the solution to provide for analysis and construction of a complexly shaped project. However, 
when pre-rationalisation methods are taken into account at a moment in the design process when the 
geometry is not yet fully defined, embedding of analysis and construction principles may drive the design to 
geometric definitions which directly follow design intentions. 
 
As a rationalisation logic is embedded in the design process, there are obviously consequences to the 
descriptive language. However, this does not mean that design freedom is severely limited, especially when 
digital design parameters allow the designer to modify and alter the design within the logical boundary 
conditions of the rationalisation methods. As such, the digital rationalisation strongly relies on the 
derivation of (a limited number of) parameters and therefore it is of importance to identify the driving forces 
in deriving the parameters and how parameters may be altered when the initial parametric process fails to 
meet the design goals. 
 
The tools presented in this thesis serve as the blocks of logic translating the input parameters to 
rationalised surface definitions. Therefore, as the rationalisation logic is linked to a parametric 
environment, it can be defined and be related to a certain design freedom within the boundary conditions 
denoted by the logic. The toolbox presented in this thesis serves as a proof of concept of embedding 
definitions and logic of rationalisation methods and demonstrates how surface geometry can be analysed 
and generated related to these rationalisation methods. The tools do not form a full range of commercially 
deployable methods, as their functionality is not generically applicable and validation of their outcome was 
limited, but they do demonstrate where and how the blocks of logic can be embedded in the design 
process. 
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8.2 reflection on the process 
 
As mentioned in the preface, initially, objectives were set out to distil analysis and construction principles 
from complex geometry. However, these objectives reversely changed when the research focused on a less 
intangible subject of embedding logic to define rational geometry. Based on the general research in surface 
rationalisation methods, it became clear that embedding multiple methods in an in-depth research would 
negatively affect the quality of the research. Therefore a single surface class type was adopted in order to 
prove the concept of parametric digital modelling of rationalised surface geometry. 
 
Of the discussed rational surface classes, developable surfaces contain a number of characteristics that 
make them well applicable for architectural and structural purposes, such as the possibility to generate 
smooth discrete surfaces that are aesthetically appealing and the advantages in relation to structural 
layouts and manufacturing. In particular, developable surfaces offer definitions of single-curvature 
geometries with an overall sculptural appearance in 3  space and are structured for constructability within 
specific design constraints. However, they remain difficult to model, particularly for non-expert users since 
using existing tools requires significant geometric expertise and time142. Therefore, modelling of 
developable surfaces in architecture is usually focused on two basic types: cylindrical surfaces and conical 
surfaces. Another method of modelling developables is demonstrated by the work of Frank Gehry, who uses 
paper models and a reverse engineering process to digitally define single curved surfaces. These methods 
are either restrictive in design freedom or complex and hard to control, especially from a structural 
perspective. Based on this, objectives were set out to define methods for analysing and modelling of 
developable surfaces based on various definitions of input and as such to present a design approach 
taking the defined logic of developable surfaces into account. 
 
The research process of the graduation project proved to be difficult and the steps taken and the decisions 
made during this process may had shown a more fluent path under different circumstances. Also the 
progress and results in relation to the full development and employment of the toolbox could be better 
served, although, it is believed that the thesis together with the developed toolbox summarise the research 
in the parametric modelling of architectural developables into a coherent product. 

                                                 
142 Rose, Developable surfaces from arbitrary sketched boundaries 
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8.3 conclusions and recommendations 
 
conclusions on the parametric design approach for developable surfaces 
The design approach as proposed in this research illustrates how a toolbox can provide for the analysis and 
modelling of developable surfaces based on parametrical input. In the parametric approach used in this 
research developables are analysed and generated as an envelope of one parameter sets of tangent 
planes. This allowed to adopt discrete differential geometry and vector mathematics as the underlying 
theoretical base. Related to this approach, a number of conclusions can be drawn on the parametric design 
approach for developable surfaces: 
 
rationalisation and complexity in design 

 The distinction whether a geometric description is complex or not is particularly important from an 
analysis and construction technology viewpoint in relation with the digital means of modelling this 
geometry. As such, complex geometry does not directly have to be related to visual geometry, but is 
more related to surface definition and the relation with construction principles. 
 

 Therefore, along with the digital possibilities in fabrication and construction, focusing on 
decreasing the complexity of the design by rationalising surface definitions can narrow the gap 
between digital modelling and fabrication and construction. 
 

 Shaping the geometry based on rational surface classes such as developable surfaces, allows 
designers to greatly influence the buildability along with affecting the level of complexity in 
structural analysis. In this sense, rationalisation may allow for full and precise control over the 
structural dimensions, may avoid having to deal with limitations in CAD/CAM machinery and 
related software and may force a design to be constructed out of elements from a limited number 
of moulds. 
 

 In this research, it is suggested that a design approach incorporating pre-rationalised surface 
definitions, may be well implemented in a (digital) design process when custom developed tools 
related to these surface definitions are available to the designer. This especially, when these tools 
allow for the definition of the logic and restrictions defined by the surface definitions on one hand, 
and for a certain freedom in denoting design parameters on the other hand. 
 

 In general, the problem of defining rational complex geometry is not that of the surface description 
itself, but the problem of answering to boundary conditions. 
 



Computation & Performance 

136 
 

 
definition of the design approach and the digital toolbox 

 The design approach offers an approach to the analysis and modelling of rational surfaces, 
providing the designer with a set of parametric and associative tools which can be used in a design 
process focussing on generating rational geometry. The proposed design approach is deployed via 
a digital toolbox containing various algorithmic methods categorised in three toolbox 
‘compartments’ which are based on the theory of discrete differential geometry and vector 
mathematics. 
 

 This approach aims to preserve a selected structure when going from a continuous abstraction to a 
finite representation for computational purposes. 
 

 As such, the approach is a parametric modelling primitive which provides for interactive rational 
modelling methods based on the generation and deformation of developable surfaces for both 
architectural purposes as well as manufacturing and construction purposes, supporting the design 
process. 
 

 Implementing a design approach for a parametric environment allows for maintaining an intrinsic 
structure and logic of the construction of developables surfaces where the input parameters are, 
within the aforementioned boundaries, providing design freedom. 
 

 The digital toolbox has been developed containing three compartments related to 1) analysis, 2) 
modelling and 3) subdivision. As such, the toolbox offers the possibility to be utilised during various 
steps in the design process. 
 

 The tools of the design approach should be utilised at stages in the design process  where they are 
appropriate as the design approach tries to tie together the design intentions with the added value 
of a constructible definition of the design. This for instance means that a surface approximation 
method ideally is preceded by a surface analysis method. 
 

 The tools allow for surface analysis and modelling and support the designer in the search for 
geometrically rationalised surfaces that answer to the initial ideas of the design. As such, the 
toolbox provides ‘hints’ to guide the development of surfaces towards the constructible geometry 
of developable surfaces, however the tools cannot be categorised as design tools. This in a sense 
that the tools provide the outcome of a predefined logic within a restricted workflow and therefore 
lack the essentials of a set of design tools, which allow for a more creative process. 
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 Although it is possible to model free form surfaces and to approximate these with developable 
surfaces, this may lead to undesired deviations from the design intentions. As such, the tools 
perform best in a pre-rationalised design process with surface definitions that are related to the 
structure of developable surfaces. 
 

 The focus of the tools is primarily on the analysis and modelling of single surface patches and as 
such are generally less practical when implemented in a definition which is set up to generate a 
full design with. 
 

 The components follow the logic of generating developables whilst taking into account various 
input parameters, based on numerical data or curve and surface geometries. For most of the 
components, the number of segments can be indicated, relating to the discrete differential 
approach and allowing the user to specify the accuracy of the generated surface in relation to 
theoretical defined developable surfaces.  
 

 The approach can be seen as a parametric modelling primitive which provides for interactive 
rational modelling methods based on the generation and deformation of developable surfaces for 
both architectural purposes as well as manufacturing and construction purposes, supporting the 
design process. 
 

theoretical and practical assets of designing with developable surfaces 
 As with all the rational surface classes, developable surfaces embed specific geometric 

characteristics. The possibilities in architectural design to employ these characteristics are closely 
related to the restrictive boundary conditions to which developable surfaces have to comply. 
 

 The toolbox contains tools which implement various algorithms based on the practical theory of 
discrete differential geometry and vector mathematics. By discretising the defining parameters, the 
resulting surface are numerical approximations of theoretical developable surfaces. As such, a 
certain simplicity is disclosed in the theoretical geometric complexity. 
 

 As rulings are straight elements with a direction, the relation with vector mathematics is evident. 
Additionally, the expression for developable surfaces lead to complex equations when reduced to a 
function of one variable, but the definition of developables is relatively simple in terms of vectors. 
For these two reasons and in relation with the advantages mentioned above in using discrete 
differential geometry, rulings are defined based on vectors at discrete locations. 
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 Although the Gaussian curvature defines the theoretical relation of single curvature to double 
curvature, in practice merely denoting the Gaussian curvature of a surface does not fully extract 
the level of developability of a surface. This since a relatively low (but nonzero) curvature in one 
principal direction will flag the surface as nondevelopable, whereas the deviation may fall within 
material tolerance. 
 

 Since elasticity and flexibility of material allows for certain deviation from theoretical developable 
surfaces, tolerances are ideally based on material properties which can be defined as an input 
parameter. When construction methods associated with fabrication are considered by having the 
input directly related to physical constraints of materials, the impact of the geometric results on 
the rationalised design process is more apparent. 
 

 For most tools in the toolbox, numeric values of input parameters define the allowable tolerances 
or the number of surface defining rulings, allowing to manually defining the accuracy of the 
approximation, but also representing the relation with physical constraints. 
 

 Developable surfaces possess the intrinsic characteristic that surfaces panels can be fabricated 
from flat material which is then bent in one direction in the factory or on site. The curvature in the 
direction perpendicular to the ruling direction is an important factor in determining the feasibility of 
the design. However, since the research omitted an in-depth research of bending properties of 
materials, single curvature constraints are not embedded in the tools. 
 

development and programming aspects of the toolbox 
 The tools present a logic which is defined by the type of surface class and which becomes available 

to the user via a set of methods and functionalities embedded in the tools. 
 

 The code definitions of the components have been set up as individual classes per component and 
a set of general utility classes. Adding a functional component to the toolbox is therefore a matter 
of adding a new class. 
 

 The general utility classes confine a number or Rhino SDK methods, such as the Loft method. 
Embedding these methods in the code lowered the complexity of some of the algorithms. However, 
when the algorithmic methods need to be transposed to other software applications or a 
standalone version,  these methods have to be rewritten. 
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 In the component development, a standardisation of inputs and outputs is proposed in order to 
present and identify the toolbox as a coherent set of tools. The representation of the output of the 
surface modelling components is largely unified as two types of geometric definitions are provided; 
1) the rulings which are conform the conditions of developability and 2) the lofted developable 
surface based on these rulings.  

 
recommendations 
The research focussed on the development of custom components for the parametric analysis and 
modelling of developable surfaces. Not all ideas related to this topic could be research during the research 
process. Below, a number of recommendations for further research are presented: 
 

 Chapter 2 presented a set of surface rationalisation methods. For each of these methods a toolbox 
could be developed, expanding the possibilities of parametrically analysing and modelling to other 
types of surface rationalisation. 
 

 In the proposed methods of based on discrete differential geometry, surfaces are approximated 
instances of theoretical surface definitions. Another method is to define rational surface based on 
a more direct relation with NURBS definitions. 

 
 As mentioned before, adding an out of plane tolerance component together with a component 

which relates material properties with the single curvature value would be important additions to 
the current set of tools of the toolbox. 
  

 On several projects of Gehry Partners, including the Guggenheim Museum and the Experience 
Music Project, the primary steel system only approximated the design surface. The actual 
dimensional control system for these projects was achieved through an additional system between 
the primary structure and the finish surface enclosure. On the Guggenheim project, the 
dimensional control system is developed through a series of template curved tubes that are 
attached to the primary system. On the EMP project the form is achieved by a shaped panel system 
attached to the primary structural steel rib system by adjustable connections143. Related to this, it 
is mentioned that it is of interest to be able to design developable surfaces used as a monocoque 
enclosure, but also to define a primary structural system which aligns with the developable 
enclosure, for instance by making use of the ruling direction. 
 

                                                 
143 Shelden, Digital surface representation and the constructability of Gehry’s architecture 
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 Optimisation routines defined by the user could possibly influence the resulting outcome of 
components to a large extend, such as for instance in the surface patching component or in 
approximating a double curved ruled surface to a developable surface. 
 

 Partly just in the interest of adding a wow-factor to the research, but also of its possibilities in 
defining geometry, physically modelling designs with paper, scanning them with a 3D scanner and 
printing them to different scales with the help of a 3D laser cutter could be an eye-opener in 
modelling with developable surfaces. 

 
 

                                                 
 http://www.makerbot.com/ 
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appendix C. toolbox installation manual 
The tools have been developed as custom components for Grasshopper version 0.8.0004 in Rhinoceros 
4.0 SR8 based on the RhinoCommon SDK. 
For a successful installation of the toolbox, Grasshopper 0.8.0004 or newer should be installed. 
 
The following describes the installation procedure of the ParametricDevelopables toolbox. 
 

1. save the ParametricDevelopables.gha assembly to a folder on your local hard drive 
 

 
 

2. open Rhinoceros and start the Grasshopper plug-in by typing ‘Grasshopper’ in the command line 
 

3. Type ‘GrasshopperDeveloperSettings in the Rhinoceros command line. This will open the 
Grasshopper Developers setting menu, see image on the right. 
 

4. Click on ‘Add search path’ and make a reference to the folder which contains the 
ParametricDevelopables.gha, see right. 
 

5. Close the menu by clicking ‘OK’ and reopen Grasshopper. 
 

6. The ParametricDevelopables plug-in should now be correctly installed and a new tab is added to 
the Grasshopper ribbon, see below.  
 

 
 

                                                 
 http://www.rhino3d.com/ 
http://www.grasshopper3d.com/ 
http://www.rhino3d.com/5/rhinocommon/ 

 


