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Estimation of Time-Varying Human Manual
Control Behaviour in Preview Tracking Tasks
Using a Dual Extended Kalman Filter

Casper Vertregt, Author Daan M. Pool, Kasper van der El and Max Mulder, Supervisors

Abstract—This research applied a Dual Extended Kalman
Filter (DEKF) to time-varying human operator (HO) parameter
estimation in preview tracking tasks. The preview time parameter
was of particular interest, as the amount of preview can be highly
variable in practical situations. The filter was centered around a
linear cybernetic HO model with six identifiable parameters for
single-integrator and eight for double-integrator control tasks.
The DEKF was applied to a range of time-varying simulations,
both remnant-free as well as with realistic remnant based on
an experimentally identified first-order model. In addition, the
tests were validated using existing experimental tracking data.
By keeping the HO physical limitation parameters constant (i.e.
neuromuscular parameters wp,s and (s and time delay T,),
good estimation results were obtained, particularly for tracking
of SI systems. General guidelines for the sensitive tuning process
of the filter are proposed. The presence of coloured remnant
noise in double-integrator tracking was found to greatly affect
the quality of the estimates. Future versions of the filter should
explicitly include models of remnant noise, to reduce its sensitivity
and ease the tuning process. The obtained algorithm is applicable
to single sets of measurement data without a priori assumptions
on time-variance or the need for averaging. With some additional
development, this makes the DEKF a suitable candidate for
practical applications, such as driver monitoring and advanced
driver assistance systems in the automotive industry.

Index Terms—Manual control, parameter estimation, preview
time, Dual Extended Kalman Filter (DEKF).

I. INTRODUCTION

UMAN controllers are known to adapt continuously
to variable circumstances [1]. Factors triggering these
conscious and subconscious behavioural changes could for
example be changing controlled element (CE) dynamics, envi-
ronmental conditions or variable mental and physical state of
the operator [2]. Understanding this time-varying behaviour is
one of the major challenges within the field of cybernetics [3].
Knowledge of how humans use time-variance in their control
of systems is, for example, applicable in the development
of Advanced Driver Assistance Systems (ADAS) [4]. Haptic
feedback systems could support the changing behaviour that
the driver exhibits, while the state and performance of the
driver is monitored real-time [5].
For such a system to work, robust and accurate time-varying
estimation of the driver’s response dynamics is required.
Driving is a common example of a preview control task [6].

The authors are with the Section Control & Simulation, Department of
Control & Operations, Faculty of Aerospace Engineering, Delft University
of Technology, Delft, The Netherlands (e-mail: c.vertregt@student.tudelft.nl;
{d.m.pool, k.vanderel, m.mulder } @tudelft.nl)

In a preview control task, a human operator (HO) steers a
controlled element to follow a predefined target signal as
closely as possible. Through different senses, humans can not
only observe the current CE state, but they also enable us
to anticipate events some time in the future [7]. In the case
of driving, the target (the road) and the sources of preview
information (primarily vision) are clearly identifiable.

To build up to a system that can contribute to ADAS or
haptic feedback, it is essential to include the human response
to preview. The amount of preview information that is avail-
able to or used by human controllers is typically expressed
in terms of time, distance or gaze angle relative to a point
on the target ahead [8]. In this research, preview time will
be consistently used to express preview. Available preview is
often restricted, due to for example obstacles, terrain, weather,
lighting or other environmental conditions [9]. Research has
shown that limited preview influences the behaviour of human
controllers [9]. Since the sources of preview limitations are
inherently time-varying, the operator’s behaviour should be
identified varying over time as well.

Classical system identification for human operators is usu-
ally performed in the frequency domain [2], [10]. There
have been studies that successfully incorporate time-varying
behaviour in a Linear Parameter Varying (LPV) model as
function of grip force, by applying frequency domain iden-
tification to local linear time-invariant (LTIT) models [11]. For
true time-varying estimation, however, without the need for
experiments correlating external measurements to parameter
variations, frequency domain methods are not directly suited.

Predictor-Based Subspace Identification was applied for pa-
rameter estimation of time-varying LPV-models in single axis
compensatory tracking tasks [12]. Also, a method based on
Maximum Likelihood Estimation (MLE) has been successfully
applied in a dual-axis control experiment with commercial
pilots [13]. Both of these methods were successful, but do
require prescribed scheduling functions for the type and shape
of time-variance.

Several techniques that require no a priori assumptions
on or measurements of parameter variance have been tested
for human control as well. Zaal and Sweet applied a two-
step method based on wavelets transforms [14]. Although
this method showed quick convergence for idealised tracking
behaviour without remnant, convergence declined for simula-
tions with significant remnant power. Estimation using auto-
regressive models with exogenous inputs (ARX-models) was
shown to be more robust to remnant noise, both on simu-
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lated as well as experimental tracking data. The method was
reasonably successful in the detection of operator adaptation
in a compensatory tracking experiment [15]. However, ARX
estimation has so far been unable to incorporate variations in
time shifts and delay parameters, which form an essential part
of preview tracking [15].

Finally, Kalman filters have been a prevalent choice for
HO parameter estimation [16]-[21]. There are generally two
options for simultaneous state and parameter estimation using
Kalman filters. In joint estimation, parameters are augmented
to the state vector. The resulting, typically nonlinear system
is then filtered with a nonlinear Kalman filter adaptation. The
most elemental of these, the extended Kalman filter (EKF),
worked for computer generated control signals, but diverged
when applied to experimentally measured human control data
[16]. The addition of a recursive delay identifier with bicubic
interpolation, together with a parameter smoother, did improve
the quality of concurrent identification of linear parameters
and delay time [17]. Another type of Kalman filter, the
Unscented Kalman Filter (UKF) has been applied successfully
to compensatory tracking tasks [18] and pilot control inputs
of simulated flights [19].

The second option is dual estimation [22]. The state and
parameter vectors are split across separate filters, that run
concurrent to each other. Splitting the filter in two concurrent
elements increases its tracking robustness and speed, which
in turn improves the convergence of the filter [22]. A Dual
Extended Kalman Filter (DEKF) was applied to both simulated
and experimental compensatory HO tracking data with notable
results [20]. The algorithm was remarkably accurate for dif-
ferent types of time-variance. Moreover, it allowed for the
inclusion of a time delay by means of a Padé approximation,
making it a suitable candidate for time-varying parameter
estimation in preview tracking tasks. A comparative study
between dual and joint versions of the extended and unscented
Kalman filter in driving field tests showed similar promising
results [21].

This research aims to estimate time-varying HO parameters
in preview tracking tasks, with particular focus on the preview
time. Dual estimation based on extended Kalman filters is
used to achieve this. Four questions are central throughout
this research:

1) Can time-varying HO parameters in preview control

tasks be estimated with a Dual Extended Kalman Filter?

2) How should the DEKF be initialised and tuned to
achieve good estimation performance?

3) How do differences in HO behaviour when tracking
single or double integrator CE dynamics affect the
DEKF’s estimation performance?

4) What are the effects of remnant noise on the estimation
performance of the DEKF?

The paper is structured as follows. Section II gives a
general description of preview tracking tasks and the model
that is used to describe human operator behaviour. Section
IIT follows up with the details of the DEKF as used in this
research. The main analysis of filter performance is done using
computer simulations, that allow for controlled testing with
HO realism by means of remnant noise and time-variance.

Section IV explains how these simulations were constructed
and the methodology behind the evaluation order. Section V
then shows the most important results. In Section VI the DEKF
is applied to actual experimental data for validation. Finally,
a discussion of results and the main conclusions can be found
in Sections VII and VIII, respectively.

II. PREVIEW TRACKING TASK

A realistic preview control task, such as car driving, in-
troduces a large number of variables simultaneously. Previ-
ous research has shown that, for example, road layout and
perspective [23]-[25], multi-loop feedback signals [26] and
vestibular motion cues [27] all have an impact on human
control behaviour. This makes it difficult to apply a novel
algorithm under controlled conditions. Instead, the DEKF
is initially applied to human control behaviour in preview
tracking tasks [28]. A diagram of a preview tracking task is
depicted in Fig. 1. In its simplest form, the target signal f;
and current system state y are presented to the HO visually
by means of symbols on a screen, as shown in Fig. 1. Preview
information is made available with a line, indicating the target
signal for some time in the future. The controlled element in
a tracking task commonly has simplified dynamics, such as a
single-integrator (SI) or double-integrator (DI) [2].

A model for human control in preview tracking tasks was
experimentally identified by Van der El er al. [10]. This
cybernetic preview model is particularly suited for time-
varying parameter estimation because of its parameters, which
are physically interpretable. This means that their nominal
values and limits in normal human behaviour have been
tested extensively. The investigated experimental conditions
include the effects of system dynamics [29], forcing function
bandwidth [30], available preview information [9] and gaze
tracking with spacial occlusions [31]. Moreover, the model
also been tested for the transition from an abstract preview
tracking task towards realistic more driving conditions, by
means of experiments with linear perspective [25], vestibular
feedback [27] and multi-loop feedback in realistic driving
scenarios [26].

A. Quasi-Linear Operator Model

The quasi-linear, cybernetic model for human operators in
preview tracking tasks was formulated as an extension to
the established crossover model for compensatory tracking
[2]. Instead of tracking the true error between the forcing
function and the current system state, compensatory tracking
is performed based on an internally calculated error e*(t), see
Fig. 1. For the simulations and estimation, the simplest version
of the original model is used is this research, without the near
viewpoint response [10]. As originally noted, the use of near
view is restricted to higher frequencies, not all operators show
this type of behaviour and its contributions to the overall model
are small [10].

The HO model, shown in Fig. 1 consists of four elements [10]:
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HOf HOS* g Hnms > Hdelay > HCE _><>7H
n(t) + L+
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Fig. 1. Control diagram of a preview tracking task [10]. The yellow circle indicates the viewpoint that the HO uses for control (not visible during the task)

1) Preview filter: The previewed target signal is low-pass
filtered by the HO, since the highest frequency oscillations
cannot be accurately followed. This filter, see (1), is char-
acterised by preview gain Ky and time constant 7j y. For
the purpose of this research, the time constant is rewritten
as a break frequency wjp ; = 1/T; ;. Subtracting the filtered
target f;;(t) from the current output y(t) results in the
aforementioned e*(t).

Ky

Ho, ) = 15 7w =

Wy, f
Tns+jw M
For SI controlled element dynamics, wy, ¢ is kept at a constant
value beyond the forcing function bandwidth, since the target
is not low-pass filtered in the case of SI control [9]. This
effectively reduces the filter to a simple gain K.

2) HO equalization: It was experimentally demonstrated
that operators adjust their dynamics such that the open loop
response from e* to y approximates a single integrator [10].
This finding is in accordance with the crossover model for
compensatory tracking [2]. For a CE with SI dynamics, the
HO will thus control with a single gain K,. In order to control
DI dynamics, the HO introduces lead control, by means of
a lead time 77, .. For the purpose of estimation, it is more
convenient to write this lead control with an additional gain
(K, = K, T, ), in order to reduce parameter couplings.

Ho,, (jw) = Kp(1 + T cjw) = Kp + Ky jw )

3) Neuromuscular limitations: Human control actions are
limited by the neuromuscular system, typically modeled as
a second-order system, characterised by neuromuscular fre-
quency wyy,s and neuromuscular damping Cuyys:

2

nms

(jW)Q + 2Cnmsansj‘"’Y + w,?ms

. w
Hnmx(]w) =

3)

4) Visual time delay: Finally, human controllers exhibit a
processing delay in their control behaviour (7,). For time-
varying simulations and Kalman filter estimation, it is however
not possible to use the conventional exponential expression
of the delay (see (4)). Instead, delays are modeled with a
Padé approximation to obtain a fractional transfer function (m
indicates the order of the approximation) [32]:

m r—j)! . .
Y st (—Tdw)’
m r—k)! .

k=0 %(Tvﬂd)k

Hdelay(jw) = e_T'ij ~

4)

B. Operator Remnant

The preview model presented above is quasi-linear, mean-
ing that the nonlinear human control behaviour is linearised
around an operating point. The unexplained behaviour that
remains is known as the remnant (n(t)). Recently, human
remnant in preview tracking tasks was experimentally mea-
sured and modeled [33]. The research demonstrated that white
noise passed through a first-order low pass filter (H,,, see 5)
provides adequate accuracy as a remnant model in pursuit and
preview tracking. The noise source is located in the feedback
loop of system output y. This first-order remnant model was
originally proposed for compensatory tracking by [34], and is
characterised by break frequency wy, and remnant gain K,,:

Ky

Hy(jw) = o 4w

)
The remnant gain K, is used to scale the power contribution
of remnant in HO input (u,,) relative to the total signal (u),
according to remnant power ratio P, (see (6)), calculated by
means of the power-spectral density function (PSD) [33].

2

au,n
2 (6)

P, =

In their review, Van der El et al. concluded that the remnant
power ratio is relatively invariant to changes in preview time
and display configuration [33]. It does vary as a function of CE
dynamics, target bandwidth and tracking task type. Moreover,
the break frequency wy, , was shown to only vary as a function
of CE dynamics.

III. THE DUAL EXTENDED KALMAN FILTER

The problem of estimating the parameters of the HO model
of Fig. 1 based on measured f;, u and y is a concurrent
state and parameter estimation problem. System states as well
as model parameters have to be estimated simultaneously. In
this research, a Dual Extended Kalman Filter is applied. The
principle of a dual filter is to divide states and parameters
over two separate filters [22]. The state filter (indicated with
subscript s throughout this article) estimates the states of the
system, while the parameter filter (indicated with subscript
p) estimates the unknown parameter values of the human
operator. These filters run concurrently and use each other’s
results in the process. Splitting the filter in two concurrent
elements improves its convergence, robustness and speed [22].
The dual estimation technique, applied to human preview
control is illustrated in Fig. 2.
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Fig. 2. The Dual Extended Kalman Filter in preview tracking tasks: state and parameter filter with limitations (after [20])

Human Operator Model

fe(t+7a) fe(t+75) fer@) o+ ex(t)

Hop

f

Ho,.

Fig. 3. Isolated HO model

A. Filter Implementation

The isolated human operator model that forms the basis
of the Kalman filter estimation, is depicted in Fig. 3. Two
input signals feed into the model, the target signal f; and
the feedback of CE output, y. The model’s only output is
the (modeled) HO stick input u. Here, these signals are all
considered as discrete measurements, sampled at 100 Hz. Note
from Fig. 3 that the model starts with a delay (}) that
transforms the anticipated target, shifted 7, seconds ahead, into
the previewed target, 74 seconds ahead, through an identifiable
(positive) delay. This step is explained in Section III-B.

For use within the DEKF, the HO model of Fig. 3 is
transformed into a state-space form. This requires both delay
blocks H;? and Hgeray to be expressed as a fractional transfer
function by means of a Padé approximation, (4). The result is
a non-linear state-space expression for the state filter:

(7
®)

()

flxs(t), 0(t>7 fe(t + 7a), y(t)) + 'ws<t)
(t) = g(xs

(x(1),0(t)) + v(t)

with state vector €5 = (251, ..., %59, Kp, K,|T consisting of
canonical states, augmented with the HO equalisation gains.
The number of canonical states depends on the Padé order for
77 and 7,. Third-order approximations are used for both de-
lays, leading to nine canonical states. For the delays considered
(0.1 up to 1 s), this order is the minimum that results in close
approximation for the frequency range of the signals involved.
The full nonlinear equations f and g are listed in App. A. The
equalisation gains are placed in the state filter, since they only
appear in the output equation g (see App. A) [20]. (¢) is the
parameter vector, estimated by the parameter filter. The zero
mean Gaussian process and measurement noises are indicated
by ws(t) (with 11x11 covariance matrix @) and v(t) (with
variance R), respectively.

The parameter filter state-space equations are given by:

0(t) = wy(t)
a(t) = g(zs(t), 0(t)) + v(t)

with 6 = [u}nms,CnmJ,TU,Kf,UJb,f,T}(]T. Similar to the com-
pensatory case, the dynamics of the parameters are modeled
as a "random walk”, driven by zero mean white process noise
wp, With a 6x6 covariance matrix @), [20].

The discrete-time filter equations of the state and parameter
filters are divided in six steps (see Fig. 2). The prediction
and correction steps are exactly as used in the DEKF for
the compensatory case [20]. The limitation steps are added
in this research, and will be explained in Section III-C. The
mathematics of this six-step algorithm can be expressed as
follows:

1) Parameter prediction:

(€))
10)

0, =6, (11)
P, = (I)pykflpgqu’;,kq + Pp,klepPZ,kq (12)
2) State prediction:
t e =at o+ @ 0L foren, v AL (13)
P = @s,kflpsfk,lq)zk,l + Fs,kﬂQs,kFST,k,l (14)
3) State correction:
Sek=GexPGLL +R (15)
T = up — g(z 4, 0 ) (16)
Kok =P ,GLS0L (17
ah=x, g+ Kogrk (18)
Pl = (I = Ko 1 Gon) Py (I = Koo Go) "+
) ’ Ks?kRszk (19)
4) State limitation:
at, =ab, - DLy(DxDL) T (Daral), — dor) (20)
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5) Parameter correction:

Sy = G, (Cp) " + R e
Kpr = P, (GF) TS5, (22)
0 =0, + K, (23)
P;k = (I — Kpk g),lk)Pp_,k(I — Kpk tp(),tk)T+ 24)
KpxRK])
6) Parameter limitation:
52_ = 92— - Dg,k(Dp.,kD;ﬂ,k)il(Dp,kglj - dp,k) (25)

The following symbols appear in these equations:

k, the discrete time step
At, the time step
D, —1,Pp r—1, discrete transition matrices, with

> _ Of(®s, 0y, fr 4N, Y1)
s,k—1 — O

—pt
ws*ws,k—l

(s py,k—1, discrete input identity matrices

G 9g(xs, 0y )
0xs _
ms:ms,k
tot __ dg(ms_’k’e)
e N
0=6,

Pys py k» the state and parameter covariance matrices
Q{s,p}, the process noise covariance matrices

K5 py,k, the Kalman gains

71, the filter innovation

Dy py ks Qs py. i, cOnstraint matrices (see Section III-C)

Not all parameters of parameter vector 6 appear explicitly
in the output equation, g. Therefore, the calculation of total
derivative of g with respect to the parameter vector, indicated
by g’fk, is necessary [20]. The steps required to calculate this
derivative are given in App. A.

To reduce the problem dimension and improve estimation
performance, parameters can be kept constant during estima-
tion. In such case, the parameter is removed from either xg
or 6. Furthermore, symbolic occurrences in state and output
functions f and g are replaced by the a priori assumed
numerical value. As a result, the parameter is also removed
from any Jacobians calculated during estimation.

B. Anticipation Time

One of the challenges in identifying preview tracking, is
the preview time parameter 7y itself. By responding to the
target ahead, HO preview control models essentially include
a negative time delay, which makes the system non-causal.
To solve this issue, a new reference for the timing of signals
is defined by means of an anticipation time 7,, graphically
illustrated in Fig. 4. This redefined reference must lie ahead
of the previewed viewpoint that people use in their tracking.

Follower

o]
a4

Fig. 4. Preview time (), anticipation time (7,) & apparent time delay (TJ’}).
Viewpoint and annotations are indicative and not visible to the operator.

The deterministic target of the preview tracking task is
anticipated by 7, seconds (or N, = 7,/At samples). As a
result, the preview time 7y, defined positive for a negative
delay, can be estimated as a normal apparent time delay (T;;)
relative to the new reference:

Hj(jw) = e (Te7m0Iw = e~ THIw (26)

The anticipation time 7, thus defines the upper bound for
the preview time. If 7y would surpass 7,, the apparent delay
T}‘» would become negative, leading to an unstable model and
divergence of the filter.

C. Parameter Limits

With a lot of free states and parameters to be estimated, the
estimation process is sensitive to divergence when the solution
space of parameter values is completely unbounded [16], [20].
Especially a sign inversion of most parameters can cause the
estimation to become unstable or produce unrealistic results.
As noted before, however, the parameters in the cybernetic
preview model have been studied extensively. This knowledge
can be augmented to the filtering process by means of applying
linear inequality constraints on the parameters.

The aim of these constraints is merely to keep the estimated
parameters within reasonable limits, avoiding divergence in
the estimation process. Their values are chosen well beyond
values observed for operators in earlier tracking experiments,
however, to include possible other solutions [9]. The limit
values are listed in Table I.

TABLE I
HO PARAMETER LIMIT VALUES

Single Integrator Double Integrator

Parameter
Lower Upper Lower Upper
Ky [-] 0.2 2.5 0.2 2.5
wp, ¢ [rad/s] n/a n/a 0.1 10
7-; [s] 0.1 Ta — 0.1 0.1 Tq — 0.1
Kp [-] 0.2 2.5 0.05 1
Ky [-] n/a n/a 0.05 1.5
Wnms [rad/s] 6 15 6 15
Cams [-] 0.1 0.8 0.1 0.8
Ty [S] 0.1 0.8 0.1 0.8
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The constraints are implemented using an estimate pro-
jection, as proposed in [35]. This additional step in the
state and parameter correction checks whether the corrected
parameters in a:j’k and 0,;" exceed their imposed limits. If so,
sets of constraint matrices D}, and constraint vectors dj, are
constructed that express the applicable parameter boundaries:

27)
(28)

Ds,km::k = ds,k:
Dp,kal—: = dp,k

With these matrices, either a::: & (20) or 0:‘ (25) are mapped
to their respective limits.

D. Filter Initialization

The Kalman filter has a number of settings that may affect
estimation accuracy. These are:

« the initial state and parameter values x5 and 6o,

« the initial state covariance matrices Ps o and P, (the

pair P, P, is collectively indicated by P),

« the process noise covariance matrices (), and ), (simi-

larly, the pair Qs, @), is indicated by (), and

« the measurement noise variance R.

In the first phases of testing, the states and parameters are
initialised by their actual values. Researching the sensitivity
to initialisation offset for the parameters in xs o and 8y is left
for future work. The diagonal elements of P, and @, (and
Py and Q) ;. for augmented parameters) are initialised relative
to initial parameter values. These factors are optimized using
experiment simulations, which will be explained in Subsection
IV-F. At first, the matrices P and () are initialised as per
the example of [20]. For P with values on the diagonals
of 0.1 for all canonical states, 10 for the HO gains and
neuromuscular frequency, and 1 for the other HO parameters.
For (), percentages of the initial parameter values are used,
100% for gains and 10% for other parameters.

For systems that are expected to have approximately con-
stant Gaussian process and measurement noise, the matrices ()
and R are typically kept constant over time. For the application
of human identification, however, the source of the noise
(remnant), is inherently coloured and much more difficult to
quantify. This coloured characteristic is not explicitly taken
into account in the HO model that forms the basis of the filter.
Instead, the example of Popovici et al. is followed, namely to
adjust the filter to coloured remnant by making matrices Qs j
and Ry, time-varying [20].

To achieve this, the process noise ()5 of the canonical
state derivative associated with the error signal (i&s.), is
made proportional to the retrospective variance of the error
signal (29). In the model presented in App. A, Z,,. is the
fifth canonical state derivative &, 5. A retrospective time of 5
seconds (or, equivalently, a retrospective amount of samples
Nretro = tretro/ At = 500) and a reference value of 0.4 for q>
are selected, as reported by [20].

Qs,k(s.cs,e) = qZJi(k—Nretrn:k) (29)

Note that unlike the compensatory system, the error signal is
not the last state in the canonical order, since it is not the

input to the HO model shown in Fig. 3. The noise term is
therefore inserted at the correct location in the @);-matrix. For
the example in Appendix A, this is at the equation for &, 5.
Also note that for preview systems, the signal should, strictly
speaking, be the internally calculated error e* (Fig. 1). This
signal is, however, not explicitly available, so the variance of
the actual error e(t) = f;(¢) — y(t) is used instead.

The process noise covariance (()-values) of all other canon-
ical states is assumed to be 0. The -values of the parameters
are invariant, and proportional to the initialisation value.
Popovici et al. used a factor of 1 for gains and 0.1 for all other
parameters [20]. Initially, these factors were copied, however,
these values are optimized for the preview case in the second
stage of the simulation analysis in Section IV.

The measurement noise is made proportional to the ret-
rospective variance of the input signal u, comparable to the
process noise earlier.

R = r%;i( ke Nework) (30)

In their review for compensatory tracking, Popovici et al.
reported a value of 72 = 0.7 used for simulated data and
r2 = 4 used for experimental data [20]. In general, the same
values were found to work for the preview case as well. For
simulated preview tracking data with remnant noise of double-
integrator CE dynamics, the value of r? = 4 was found to
achieve better results, since more resilience to the presence of
strong remnant noise was incorporated.

IV. SIMULATED BATCH ESTIMATIONS: METHOD
A. Preview simulations

With computer simulations of tracking experiments, the
DEKF was systematically tested, as it could be subjected to
a wide range of conditions. Filter performance can be accu-
rately determined, since the true parameter values are known.
Simulated data were generated using the block diagram of Fig.
1 as a linear parameter varying (LPV) model. A fifth order
Padé approximation is used to incorporate the time delay in
the LPV model. A run-in time of 60 s is added to the 120
s measurement, adding up to a total of 180 s. The closed-
loop block diagram is transformed into a set of state-space
equations in controllable canonical form (31). The discrete
state transition matrices are used to go to the next time step
(32). The output is calculated with equation (33).

i‘sim = Asim(g(t))wsim + Bsimusim (31)
Tsim,k = Poim kTsim,k + VsimUsim, & (32)
Ysim,k = Csim,kmsim,k: + Dsimusim,k (33)

In these equations, the state vector xg, is composed of
N, canonical states: Tgm = [71,...,2n,]7. The number of
canonical states for the simulations is larger than for the
DEKF’s HO model because it incorporates the full closed
loop preview model of Fig 1, including the CE. Its exact
number depends on the CE dynamics. The matrices @, 5, and
W are the discrete versions of Agn,(0g) and Byjpn,. Similarly,
Csimk = Csim(0k). The external input wugy, consists of the
previewed target signal, the remnant noise and the disturbance
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signal: wgm k. = [fi[kyf], n[k], fa[k]]*. The output g, consists
of the HO input signal u(t) and the CE output y(t).

Finally, the parameter vector 6 contains all the pa-
rameters in the HO model blocks of Fig. 1: 8 =
(K ps Ky Wams s Camss Tw, K, wp,£]T. Note that for the simula-
tions the preview time 7 is not part of 6. It is instead used
to select the correct sample k¢ from the forcing function f;
to use in the input vector Usim,k:

5 (t)
At

kf=k+ N;(t)=k+ (34)

B. Forcing Functions and Controlled Element

As shown in Fig. 1, in preview tracking tasks both a target
and a disturbance signal are typically used. Here, a multi-
sine target signal f; is used, as defined in (35), that appears
quasi-random to a human operator [2]. The amplitude and
frequency compositions (A4; and w;, respectively) of the high-
bandwidth signals from [30] (4 rad/s) are used. By tuning
the phase offsets ¢;, ten equivalent realisations were created
according to the method presented in [30]. The high-bandwidth
signal is selected for two reasons. Firstly, HOs are observed
to express lower remnant power for a higher target bandwidth
[33]. A second reason is that high-bandwidth signals increase
the observability of the preview shift.

In conjunction with the target, a disturbance signal f; is
injected at the system output (see Fig. 1). This signal has
a comparable bandwidth to the target and is used to split
the preview and compensatory dynamics in the identification
process [10]. The disturbance is a multi-sine signal built up
of frequencies adjacent to those in the target. Again, the pa-
rameters of [30] are used to create ten equivalent realisations.

10

F#) =" Aisin (wit + ¢;) (35)
i=1

Two types of CE dynamics are used, also according to

[30], that remain constant throughout a tracking run. The first

simulates SI dynamics, according to Hcg(jw) = 1.5/(jw).

The second is a double integrator, Hcg(jw) = 5/(jw)?.

C. Time-variance

Time-varying behaviour is simulated by means of the
LPV model introduced in Section IV-A. The scheduled time-
variance that is applied to the HO parameter values (0(t))
within the model structure results in time-varying behaviour.
The linear structure of the HO model remains unaltered
throughout each simulation, as well as the CE dynamics and
remnant parameters. Constant parameter values 8, = 6 result
in a completely linear simulation.

Similar to previous research, an exponential sigmoid func-
tion is used to model a smooth step change in HO parameter
values, symmetrical around time 7' [12], [13], [15], [36].
Earlier work uses maximum rate of change G to express
the time window in which the transition takes place. This
parameter is rewritten to explicitly show the transition time
for 99% of the transition (AT):

Hend - 90 _
1+e-CGG-1T)

eend - 90

e 2 12%99 (T—t)

B(t) = 6o + 6o + (36)

D. Remnant settings

Although a remnant model is not explicitly included in the
filter description, the simulated signals do include remnant
noise to make them as close to real human tracking behaviour
as possible. The remnant signal n(t) is formed by a first-order
model, fed by Gaussian white noise as outlined in Subsection
II-B. The remnant parameters (k,, and wy, ) are kept constant
throughout each simulation, since they are not influenced by
varying preview time [33]. The break frequency wy, is set
depending on the controlled element, namely wy, , = 10 rad/s
for SI and wy, ,, = 0.01 rad/s for DI system dynamics [33].

The remnant power ratio P,, depends on several simulation
conditions and is also selected in accordance with [33]. For
the selected 4 rad/s-bandwidth target signal, the experimentally
measured remnant power ratio is 35% and 55% for SI and
DI dynamics, respectively. The corresponding gain in our
computer simulations, K, is found by means of an itera-
tive process, that calculates the remnant power ratio through
spectral analysis [33] for a time-invariant HO simulation.
Therefore, the gain selection is done with linear simulations,
using the mean parameter values. It would be more correct
to adjust the remnant characteristics along with HO time-
variance. However, since relatively small amounts of remnant
time-variance occur for the scenarios considered in this paper,
this is left for future work.

E. Performance metrics

Different performance metrics are used to assess the quality
of the DEKF estimation result. These metrics are calculated
for the measurement time of 120 s only, so the run-in time is
used for the filter to converge.

1) Relative Parameter Bias: The mean relative parameter
bias indicates whether a parameter is systematically over- or
underestimated, or not.

2) NRMSE: For non-zero-mean parameter values, the nor-
malised rms error (NRMSE) is used, specifying the relative
deviation of the estimated parameter 6 relative to the mean
true simulated parameter value:

N,
. 1 1 meas R . . 2
NRMSE(0) = i\ Vo ; (H(z) - Htrue(l)) (37

3) Variance Accounted For: After the estimation is com-
pleted, the HO model output @ can be resimulated using
the isolated model and the identified parameter values. The
resulting ’estimated’ signal 4 can be compared with the true
simulated HO input signal (u) by calculating the Variance
Accounted For (VAF):

Nmem — -~ 2
VAF = (1 _ k=1 ;‘(k) (k)| ) x 100%  (38)
iy u?(k)

Aside from the VAF of the entire 120 s measurement window,
the 10-second moving VAF was used to show the progression
of the estimation performance throughout a tracking run.
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F. Simulation Batches

To test the DEKF algorithm, computer simulations with
different control task types, CE dynamics, HO time-variance
and remnant levels are performed. Every simulation with
specific settings is repeatedly executed, using different pairs of
target and disturbance forcing functions. In case of simulations
with remnant, each of these forcing function realisations
is simulated with a number of remnant realisations. These
collections of equivalent simulations will be called simulation
batches and are used to increase the statistical power of the
performance analysis.

Different experiment batches are divided over three steps:

1) Remnant-free feasibility batches: The first group of
batches was used to show the theoretical estimation potential
of the algorithm for HO identification in preview tracking tasks
on remnant-free HO data. Simultaneously, these batches test
the correct implementation of the algorithm. It is of particular
interest whether the preview time 7; can be estimated as an
apparent time delay (T;), and whether the two delays can be
estimated simultaneously with Padé approximations.

This group consists of four distinct simulation batches
without remnant, with time-varying K, for compensatory
tracking and time-varying 77 for preview tracking. They vary
from each other by means of

o a compensatory/preview task, and

o for SI/DI dynamics.

Each of these experiment batches was executed for a batch
size of 10 target/disturbance pairs, resulting in total in 40
simulations. Since no remnant is simulated for this group,
no additional remnant realisations are used. For the preview
estimations, anticipation times of 7, = 0.9 s for SI dynamics
and 7, = 1.5 s for DI dynamics are used, both 0.3 s larger
than the highest simulated preview time.

Fig. 5 shows the effect that a variance in 77 has on the HO
input signal u. In this example, 77 varies sigmoidally from 0.6
s to 0.3 s with a transition time of 20 s, centered around 7" =
50 s. The result of this adaptation is that the HO anticipates
the target less, which causes the stick inputs to lag behind.
As a second result, the error signal e* will become larger,
increasing the amplitude of oscillations in wu.

Constant 77 Varying 77 ‘

Fig. 5. The effect of time-variance in HO preview (7) on input signal u: a
comparison between constant 7y = 0.6 s and sigmoidal variance from 0.6 s
to 0.3 s, centered around ¢ = 50 s (AT = 20 s, noise-free simulation data).

2) Initialisation optimization: It was noted in [20] that
Kalman filter estimation of human control is sensitive to
settings and initial conditions and prone to divergence. Hence,
a thorough investigation was performed into which settings are

suited to obtain good filter performance for preview tracking.
The filter has several settings that can be tuned to influence its
performance. These are s 0, 8o, Ps 0, Pp,0, @s, @p and R, as
described in Subsection III-D. That subsection also discussed
the initialization of P, and @), for the canonical states, as
well as the time-variance introduced in Qs and R. s o and 8¢
are set at their ideal values, i.e. their actual simulated values.

The diagonal process noise variances in ); and Q, of
HO parameters were set in [20] as a percentage of their
initialisation value: Q,[0] = ggfy. For the preview case, these
percentages are determined with an optimization procedure.
Per parameter, six simulations were used: three realisation
sets of forcing functions and realistic remnant power for both
SI and DI dynamics (35% or 55%, respectively). In these
simulations, the value of the parameter under investigation was
varied within their feasible range according to [9], while all
others did not vary. An indication for the optimal setting was
found by minimizing the NRMSE of the parameter in question:

3
¢0,0pt = Arg min Z NRMSE (6sim|q0) (39)
q0€(0,1] G—y

The optimization was performed for both SI and DI dynamics
with MATLAB’s fmincon function, using the interior-point
algorithm. The percentages proposed by [20] were taken as
initial conditions. During the estimations in the optimization
process, only the gain parameters and the parameter under
investigation were estimated. The others were kept constant at
their simulated values. Gain parameters were allowed to vary
to give the model freedom to adapt to remnant noise.

Because the objective function requires three estimations per
function evaluation and multiple evaluations for each iteration
step, the optimization is rather time-consuming. Therefore, the
number of iterations per optimization was limited to six. At
that point, the objective function improved minimally.

3) Performance batches: The goal of the performance
batches is to find the DEKF’s estimation performance in
different experiment scenarios. This group again consists of
four batches, with five forcing function sets, each tested
with 20 remnant realisations, resulting in 100 simulations per
batch in total. Each of these batches is tested with the tuned
initialisation settings for P and @ from the previous step. The
batches are formed by preview simulations with

o SI/DI CE dynamics, and
o a remnant power that is half of/the full realistic ratio
(17.5%/35% for SI, 27.5%/55% for DI dynamics).

From these batches, the filter performance as a function of
CE dynamics and remnant can be analysed. The anticipation
times of 7, = 0.9 s for SI dynamics and 7, = 1.5 s for DI
dynamics are identical to those used in the feasibility batches.

V. SIMULATED BATCH ESTIMATIONS: RESULTS
A. Remnant-free feasibility batches

The estimation results of the remnant-free feasibility simu-
lations are summarized in Table II. Estimated parameter traces
for the compensatory and preview tasks with DI dynamics are
shown in Fig. 6.



MASTER OF SCIENCE THESIS, 2 JUNE 2020

0.4

(=]

0.6 0.55
g 0.35
_ 0.3 _ 0.5 é — 0.5 ‘/"H-’_““%—vh_““_"h_
= 04 2 g 2 0.45¢ 03—
<02 B 8 |5 S .
‘ 03. 37 0.4
0.25
oMM 02 6 0.35
50 0 50 100 50 0 50 100 50 0 50 100 S50 0 50 100 50 0 50 100
t [s] t [s] t [s] t [s] t [s]
| Simulated value Estimate (mean) Estimate (1'ange)|
(2)
17
y 1 ,K
- 1.2 N
- =09 \ —_ \\ -
= T \ =05
%705 50° \H_f’ e U
07 0.8 \—:|
0 0.6 0!
50 0 50 100 50 0 50 100 50 0 50 100 50 0 50 100
1.5 10 0.6
] 9 os it 0.35
W 8 — — E_ '\ d = 0.3 e “_J
= . - g 2
0-5I ; ~" o4 w
7 0.25
0 6 0.3 0.2
50 0 50 100 50 0 50 100 50 0 50 100 50 0 50 100
(®)

Fig. 6. Remnant-free feasibility batches (N = 10): (a) Compensatory tracking,

TABLE II
FEASIBILITY BATCH ESTIMATION RESULTS

DI dynamics, varying K and (b) Preview tracking, DI dynamics, varying 7

Slight deviations are visible for physical limitation parameters

Comp., SI, K, var.

Comp., DI, K, var.

Parameter
Rel. Bias NRMSE Rel. Bias NRMSE
Ky -0.008 0.016 -0.002 0.026
Ky — — -0.022 0.020
Wnms -0.018 0.016 -0.071 0.059
Crms +0.176 0.145 +0.071 0.059
Tv -0.039 0.033 -0.044 0.036
VAF 99.6% 99.3%
Parameter Previe.w, SL, 7 var. Previe.w, DI, 77 var.
Rel. Bias NRMSE Rel. Bias NRMSE
Ky -0.023 0.063 -0.048 0.130
Wy, f — — -0.111 0.122
T +0.312 0.252 +0.093 0.109
K, -0.073 0.093 -0.028 0.167
Ky — — -0.029 0.063
Whms -0.017 0.034 -0.057 0.051
Crms +0.338 0.352 +0.029 0.114
Tv +0.142 0.189 +0.007 0.067
VAF 94.0% 96.9%

Fig. 6 shows that without remnant noise, the algorithm ex-
hibits promising convergence for all cases. For compensatory
tracking, the estimation is nearly perfect. All parameters can
be estimated with high accuracy, and the time-variance of K,
has hardly any observable effect on the other identified values.

Wamss Cums and T, even before the time-variance takes place.
This indicates that the observability of their exact value in the
available time-signals is limited and they can exchange their
values slightly. These trends are also reflected in the results in
Table II. Moreover, control at higher frequencies is typically
much stronger for a double integrator CE than for a single
integrator [10]. (s was therefore significantly less observable
for the SI case, as indicated by the relative bias and NRMSE.

In the preview batches, the DEKF algorithm can also
estimate all parameters, including both delays. However, from
the linear, remnant-free simulations, it becomes clear that
parameters are much more interdependent. The estimation
error induced by preview time variations clearly affects the
other estimated parameters as well. In and just after the
region of time-variance, the spread in the estimates of all
parameters can be observed to increase drastically. They can
not all simultaneously be uniquely identified from the available
signals (f;, v and y). As a result, the VAF locally dips
during the estimation process (see Fig. 7), which in turn
causes the overall VAF to be a few percent lower than for
the compensatory case (see Table II).

Moreover, parameters Wy, Cums and 7, show the same gen-
eral deviation trends that were observed for the compensatory
feasibility batch. Finally, parameter estimates of K, touch the
imposed lower limit on several occasions. This illustrates how
limits provide an effective way to ensure estimates stay within
a feasible range.
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Fig. 7. 10 second retrospective moving VAF for a typical preview DI
feasibility estimation. Parameter estimate errors around the 7y transition
region cause the VAF to drop temporarily.

B. Initialisation optimization

1) State and parameter covariance: For the initialisation
of a Kalman filter, Ps o and P, ¢ are typically set rather large.
These matrices are updated with each iteration of the filter,
and normally converge in mere time steps. The initialisation
proposed in [20] was to have diagonal values of 0.1 for
canonical states, 10 for gains and neuromuscular frequency
and 1 for other parameters. These high values for especially
the gains and wy,; caused major parameter volatility in our
case in the early stages of filtering, clearly visible as the first
jump of K, and K, in Fig. 6a. Instead, the parameter variance
was initialised based on a percentage of the initial parameter
value (comparable to process noise covariance @): P, =
diag([(p9Bo)?]). For w,, this factor py was set to 0.1, for
all parameters, a factor of py = 0.5 was selected. Assigning a
more proportionate initial variance to the parameters success-
fully reduced the erratic initial parameter estimates.

2) Process noise covariance: The diagonal values of @,
(and Q4 for augmented parameters) are initialised as a percent-
age of the initial parameter value. For compensatory tracking,
[20] used a factor of 1.0 (100%) for gains, and 0.1 (10%)
for the other HO parameters. As illustrated by Fig. 8a, the
estimated values were highly inconsistent with these settings.

Using the optimization described in Subsection IV-F, Q-
initialisation percentages gy suitable for the preview problem
were found. This resulted in settings of 5% for gains and
delays, and 2.5% for the frequency and damping parameters.

The improvement of the new parameters is reflected in both
the reduced fluctuations of the typical parameter estimate in
a single run, as well as the narrower range of the estimation
batch, as illustrated in Fig. 8b. At the same time, these settings
did allow for the identification of parameter variance.

C. Performance batches

1) Parameter observability: With the new tuning, the al-
gorithm was tested on preview simulations with remnant to
mimic realistic behaviour. The results of the first test, with all
parameters free in the estimation, are summarized in Table III.

The parameter interdependence that was already observed
in the feasibility batches affects the estimation with remnant
noise to a much greater extent. With significant noise levels,
the two time delays could not be separated accurately any
more. Instead, an exchange of delay time was observed
between T; and T, that already starts before the parameter
variation (Fig. 9). Note that, since 7; and T]? are related
through a sign inversion, a drop in 7, is compensated with an
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Fig. 8. Illustrative result of the initialisation optimisation: estimation of Kr
with (a) the old setting g = 100% and (b) the new setting g = 5% (SI
dynamics, P, = 35%)

TABLE III
ESTIMATION PERFORMANCE: ALL PARAMETERS

SL, 7 var., Pn: 35% DL, 7 var., Pp: 55%

Parameter . .
Rel. Bias NRMSE Rel. Bias NRMSE
Ky +0.042 0.077 -0.079 0.199
Wy, f — - +0.128 0.193
T -0.125 0.214 +0.263 0.239
Ky +0.032 0.106 -0.699 0.581
Ky - - -0.154 0.179
Wrms +0.000 0.079 +0.169 0.152
Coms +0.992 0.848 +0.035 0.141
Ty -0.354 0.328 +0.469 0.414
VAF 17.8% 40.3%
0.8 0.7
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0.6 Estimate (mean)
o Estimate (range)
[ e —
N 05
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Fig. 9. Exchange of time delay between (a) 77 and (b) 7, (SI, P, = 35%)

increasing 77 and thus a decreasing 7. Due to this exchange,
which causes the other parameters to be off as well, the overall
performance of the estimation is very low, as expressed by the
VAF (17.8%, see Table II). The fluctuating parameter estimates
caused by the remnant noise and parameter couplings result in
spikes in the resimulated HO input @ (Fig. 10). These in turn
locally lead to extremely low VAF values that significantly
influence the overall average.

With all parameters estimated simultaneously, it also be-
comes clear that the observability of the neuromuscular pa-
rameters is limited for the current simulation scenario (i.e.
forcing function). Particularly in the SI case, wy,s and Cups
could drift without greatly affecting the filter output. The
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performance batches were therefore repeated while keeping 7,
Wams and (s constant at their simulated values. This resulted
in a significant performance improvement, see Table IV. The
improved preview time estimation with constant parameters
(compared to Fig. 9) is shown in Fig. 11a.
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Fig. 10. 10-second retrospective moving VAF for a typical SI estimation with
all parameters. Parameter estimate errors create local spikes in identified HO
input signal, causing low overall VAF values
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Fig. 11. Estimation of time-varying preview time 7 with constant 7,: a
comparison between (a) SI (P, = 35%) and (b) DI dynamics (P,, = 55%).
Detail (c) of the SI case highlights the lag in the estimation

2) Effects of System Dynamics: Substantial differences are
found in estimation performance depending on the scenario’s
CE dynamics. Most obviously, the results differ in the observ-
ability of certain parameters. The dominant equalization gains,
K, for SI and K, for DI, have comparable NRMSE results
(Table 1IV). For DI systems, it can be noted that even with a
gain K, at only a fraction of its true value, the VAF is still
very high. This leads to the conclusion that for DI dynamics
K, does not contribute enough to the output of the HO model,
1, to make its changes observable under significant remnant.

Another interesting difference is present for the preview
time 7;. On average, the identification of time-variance in 7y
is clearly sharper for SI dynamics, with a spread of approx-
imately 0.1 s each way (Fig. 11a). The estimation does lag
approximately 15 s on average behind the true parameter time

TABLE IV
PERFORMANCE COMPARISON: CE DYNAMICS (CONSTANT Wyns> Cumss Tv)

SL, 7 var., Pp 35% DL, 74 var, P 55%

Parameter . .
Rel. Bias NRMSE Rel. Bias NRMSE

Ky -0.016 0.055 -0.181 0.218
Wp, f — — +0.142 0.167
T +0.056 0.124 +0.072 0.130
Ky -0.050 0.069 -0.638 0.543
Ky - - -0.059 0.084
VAF 90.3% 76.4%

shift, as shown in Fig. 11c. For double integrator dynamics,
the estimate shows a much slower detection of the parameter
change and a wider spread of roughly 0.2 s (see Fig. 11b).
In general, the better parameter observability for SI dynamics
leads to a higher overall VAF of 90.3% compared to the 76.4%
for the DI case (Table IV).

Keeping certain parameters constant is shown to influence,
and potentially improve, the estimation results of the other
parameters. This raises the question whether keeping all pa-
rameters, aside from one, constant at their true value allows for
even more accurate tracking of the one remaining parameter.
The results of a test where the DEKF only estimates 7 are
presented in Fig. 12. For the SI case, this seems to have
the desired effect, see Fig. 12a. The spread of the individual
estimates is reduced, especially around the parameter transition
region. Also, the lag in the estimation behind the actual
parameter step is significantly lower.

For the DI case, however, the opposite is true. A look at
the individual estimates that resulted in the median VAF gives
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Fig. 12. Estimation of time-varying preview time 7 with all other parameters
constant: a comparison between (a) SI (Pp, : 35%, wy,y, : 10 rad/s) and (b)
DI dynamics (Py : 55%, wp , : 10 rad/s). Resimulated HO input @ of the
DI case in (c) illustrates the dependence on coloured remnant noise
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Fig. 13. Effects of remnant on parameter estimation in a preview tracking task for (a) SI and (b) DI dynamics with time-varying 7

insight into why this is the case (Figs. 12b and 12c). Because
of the low remnant break frequency (wy., = 0.01 rad/s) for
DI dynamics, the overall result of the estimate is severely
impacted by the coloured properties of the remnant. For SI
dynamics, the break frequency is higher than the bandwidth
of the target (wy , = 10 rad/s). This implies that the remnant
noise has a stronger resemblance to white noise, which makes
it easier for the DEKF to filter out.

3) Effects of Remnant Power: The effects of remnant on the
estimation results for all parameters simultaneously are shown
in Fig. 13. Clearly, remnant has a direct effect on the spread in
the parameter estimates. The range and the underlying param-
eter variability increase with remnant power, as expected. The
step from half to full remnant power additionally increases
the estimation spread. As a result, the estimation accuracy of
parameters is also lower. The delay exchange that was noted
earlier, most clearly for SI estimation (Fig. 9), becomes more
evident as the noise levels increase.

Secondly, with the presence of remnant, the extent to which
parameter estimates affect each other is less obvious. The
relatively small variance observed for the remnant-free feasi-
bility simulations that was caused by parameter interference, is
almost entirely overshadowed by the higher parameter variance
resulting from remnant noise.

VI. EXPERIMENTAL VALIDATION

The DEKEF algorithm was applied to the experimental track-
ing data of [9] for validation. In this experiment, the effects of
limited preview on HO tracking behaviour were measured for
single- and double-integrator dynamics under steady (time-
invariant) task conditions. In total, the tracking experiment
was performed for eight different conditions for the amount of
available preview, ranging from 0 to 2 s. Each experiment run
was repeated five times per participant using different target
signal realisations. Eight participants took part in the study,
resulting in 40 available tracking experiments per condition.
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Note that the experiment was designed to invoke constant
behaviour, to study the differences between preview time
conditions using LTI identification. The estimated parameter
time traces are therefore expected to be relatively constant.
Unfortunately, there has not yet been a preview tracking task
experiment into the effects of time-varying preview.

In the original research, it was concluded that there is a limit
to the amount of preview operators will use [9]. Available
information beyond this critical preview time does not con-
tribute anymore to improvement in tracking performance. For
SI systems, the critical preview time lies around 0.6 seconds
for DI systems this threshold lies around 1.15 seconds [9].
Here, a comparison with the LTI estimation results of two
experiment conditions is made. The conditions with 0.5 s and
1.0 s of available preview respectively, were selected for the
SI case, while conditions with 0.5 s and 1.66 s of preview
were selected for the DI dynamics. The first of each set is
picked to see if the DEKF also identifies a preview time close
to the available 0.5 seconds, while adhering to this upper limit
in available information. The second preview time condition
is used to see whether the DEKF finds the same reported
upper limit in preview time in the tracking signals, while more
information was available to the operators.

For this experimental evaluation, the DEKF was initialised
with the LTI identified parameter values for x5 o and 8. Also,
parameters Wyus, Cums» To Were kept constant at their LTI-
identified values. For the experimental batches, it was found
that even tighter initialisation of () was necessary to restrict
excessive parameter variance. The factors ¢, and gx for the
apparent time delay 7} and the HO gains were adjusted from
0.05 to 0.01. As reported by [20], 72> = 4 was used for the
measurement noise variance R. The anticipation times are set
to 7, = 0.9 s and 7, = 1.1 s for the low available preview and
high available preview SI cases, respectively. These settings
ensured ample estimation space for the DEKF, but prevented
T; from becoming excessively large, which would reduce the
Padé approximation’s accuracy. Similarly, settings of 7, = 1.1
s and 7, = 1.8 s are used for the DI cases.

A. Single Integrator Dynamics

Results of the estimations for the SI dynamics conditions
are summarized in Fig. 14. Several observations stand out
from these results. First, the estimate of preview time 7y
generally adhered to the limitations that were expected. The
estimated preview time surpassed the available preview by
more than 0.05 s on just two occasions. When this happened,
the estimated preview time would find its way back to feasible
values and it never exceeded 0.6 s. Also, the critical preview
time of 0.6 s that was identified in the original research [9], is
observable in the time-varying DEKF estimates of the second
condition, with the exception of four outliers that match the
LTI estimate.

The overall filter performance is compared by means of the
average and estimation spread in the 10-second retrospective
moving VAF (Fig. 15). It is obvious that for a tracking task
that is designed to invoke constant behaviour, LTI estimation
outperforms the time-varying approach. Especially on average,
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the LTI method shows an estimation performance that is
consistently better than the DEKF.

This validation with experimental results shows that the
algorithm is promising for application in real-time systems.
Generally, the estimates agree with those found by means of
LTI identification. What it shows as well, is that the algorithm
still needs to be improved before it is robust enough to be
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Fig. 16. Time-varying estimation of experimental preview tracking data for (a) 0.5s and (b) 1.66s of available preview (DI dynamics). The goal of the
experiment was to invoke invariant behaviour, so relatively little time-variance is expected

applied online. First, for the condition with 1.0s preview, the
estimated preview time was very low on a large number of
runs, which is not realistic when taking the LTI estimates
and the original conclusions about critical preview time into
consideration [9]. Also, the filter showed poor convergence
in the initial stages on four out of the available 40 runs with
ample preview. Finally, the estimate of equalization gain K, is
structurally lower than found with LTI estimation. The lower
VAF values for the DEKF estimates compared to their LTI
counterparts suggest that there is potential to improve these
results with the available signals.

B. Double Integrator Dynamics

Results for DI controlled element dynamics are summarized
in Fig. 16. The first thing that stands out, is the preview time
estimated for the case with 7, = 0.5 s (Fig. 16a). In this
condition, the available preview is limiting the information
used by the operator. Much more so than for the SI case does
the DEKF estimate a preview time that is not available to the
HO. As Fig. 16a shows, this was also the case for the LTI
estimates. Since the preview time is to be estimated from a
sample shift between time signals, and because the HO also
generates lead by observing the system output, it seems logical

that the preview time limit is not perfectly observable. The
estimate exceeded 0.65 s for a prolonged amount of time on
four individual runs, with one clear outlier. On the contrary, the
estimated preview time dips below 0.4 s in only two estimation
runs. This supports the finding of [9] that all available preview
is used by the HO.

For the condition with ample available preview information
(7p = 1.66 s), the estimation generally adheres to the critical
preview time of 1.15 s. The preview time estimates for
one subject that, according to the LTI estimation, did use
more preview than the critical limit, trend downwards, away
from the unavailable preview boundary. The estimates of the
other parameters are also generally in line with the results
from the LTI estimation, with the exception of the far view
break frequency wy y. The DEKF estimates this parameter
significantly lower.

The overall estimation performance is expressed by the 10-
second retrospective VAF in Fig. 17. It can be seen that the
DEKF’s results are pretty much equivalent to those obtained
with LTT estimation. This was to be expected from the param-
eter values that are close to equal. To control a system with
double-integrator dynamics, lead is introduced, which causes
the control input to have more power in the higher frequency
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regions [2], [10]. This results in better observability of the
parameter values, and a notable improvement in the overall
performance of the DEKF for tracking tasks with DI dynamics.

VII. DISCUSSION
A. Results Discussion

This research explored the potential for time-varying pa-
rameter estimation in preview tracking tasks using a Dual
Extended Kalman Filter (DEKF). This filter was centered
around a linear cybernetic HO model obtained using LTI
identification on experimental tracking data [10]. The com-
plexity of this model was kept as low as possible to maximize
observability, resulting in six identifiable parameters for tasks
with SI dynamics and eight for DI dynamics. The parameter
values are estimated, based on two model input signals (the
tracking target and the system output feedback), together with
one model output for state and parameter corrections (the HO
input signal u). Compared to prior work [20], the DEKF was
augmented with parameter boundaries, that kept the parame-
ters within their documented feasible range [9]. The preview
time parameter was of particular interest, as the amount of
preview can be highly variable in practical situations. Preview
time was estimated by means of anticipating the target signal
ahead of both current state as well as any potential preview.

The filter was applied to a range of time-varying simula-
tions, first completely remnant-free. The remnant-free simu-
lations show that the DEKF with parameter limits has the
potential to estimate preview tracking parameters. Using a
time-shifted anticipated” target signal, a time-varying preview
time could be successfully identified as a normal (positive)
delay parameter. However, even for ideal linear behaviour,
interference was observed between the different parameters.
This suggests that the observability of individual parameter
values based on the available input and output signals is
at times minimal. As a result, the estimated time-variance
in the preview time was observed to lag behind the true
parameter transition. Besides, it took tens of seconds for the
other parameters to converge back to their true values.

This interference problem was, however, partly resolved.
From the obtained results, an exchange in delay value was
observed between 7, and 7. Therefore, keeping 7, constant
greatly enhances the estimate of 7. In practical applications,
the effects of this simplification are expected to be minimal,
as fluctuations in 7, are likely only within about a tenth of a
second [9]. Any offset that is present in the estimate of 7, adds
to the estimate of 7 due to the delay exchange. These expected
additional fluctuations of 7 fall within the fluctuations that are
currently observed already.

For more realistic simulations, remnant noise was included
as low-pass filtered Gaussian white noise, with its source
located at the feedback of the system output y [33]. Despite
the remnant’s coloured characteristics, it is accounted for by
means of zero-mean Gaussian white noise terms at the ap-
propriate location in both the state and output equations [20].
The assumed variance, represented by covariance matrices ()
and R, was varied proportional to the tracking error e and the
HO input signal u. This gave the filter some resilience to the
remnant of a human in a closed-loop task that appears in both
the input and output signals of the filter.

Explicitly including the coloured characteristics of remnant
noise was found to be a major field of improvement for the
current filter implementation. The results of the estimation
for only 7y (Fig. 12) highlight the importance of accurate
inclusion of the remnant in the DEKF model. Especially for
the DI case, where the coloured characteristics of remnant
are more pronounced as a result of the lower remnant break
frequency, the current DEKF is unable to accurately estimate
parameter values and filtering the coloured noise from the
available signals.

By setting the physical limitation parameters (Wymss Cumss
Tp) constant, acceptable results were obtained on average,
particularly for simulated SI tracking. However, these results
were not always replicable for individual estimation runs.
It should be noted that for quality of the estimation result,
there is a clear distinction between the NRMSE of individual
parameters and the VAF of the entire filter’s output. Poor
tracking quality of individual parameters (low NRMSE) while
simultaneously maintaining good quality of the output of the
filter (high VAF) suggests that the model can provide a good
fit from the observed signals with multiple configurations of
parameters. In such case, the precise values of individual
parameters are simply not observable in those signals.

Nevertheless, the significant parameter deviations and fluc-
tuations in estimations as a result of remnant noise did in fact
result in low values for the VAF, both locally and globally.
This means that a critical attitude should be adopted to any
observed local time-variance, when using the filter as a tool
in a posteriori analysis of observed tracking behaviour. Only
larger trends were in some cases shown to truly reflect be-
havioural adaptation. What this also implies is that the current
implementation is not yet sufficient for real-time human-in-
the-loop applications. For the filter to form the basis of online
driver monitoring or especially haptic feedback systems, a
more reliable, consistent and robust estimation performance
is required.

Another element that greatly influences the quality of the
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estimation outcome, is the initialisation of the filter. This
research provides a number of guidelines to tuning the filter
for various experimental conditions. The revised initialisation
for matrices P, and P, lowered the observed spikes during
the converge phase at start-up of the filter. The initialisation
percentages for parameters gy in (), and ), control the level
of fluctuations in the estimated parameter traces, together
with measurement variance factor r2. In general, lowering
qo or increasing r? has the effect of increasing sensitivity
to parameter adaptation, with the side-effect of higher steady
state variance observed in the estimates. The reverse is also
true, if the level of parameter fluctuations is to be reduced.

Despite many efforts to develop more specific guidelines,
the tuning of all covariance matrices for both filters remains
a time-consuming process. Repeated attention was required
when changing experiment variables, such as parameter time-
variance, CE dynamics and especially simulated remnant in-
clusion or experimental data. Again, explicit incorporation of
the remnant model might provide a solution for this hurdle.
The statistical and coloured properties of remnant have been
studied for various conditions [33]. These findings could give
applicable directions for the settings of the filter.

B. Further Research

This research was a promising first step in the application of
a Dual Extended Kalman Filter for the purpose of time-varying
HO parameter estimation. The research provides evidence
for its viability and as such serves as a proof of concept.
A validation of the algorithm on experimental data showed
that the DEKF can be successfully applied to experimental
human tracking behaviour. However, further improvements are
necessary for implementation in practical applications.

1) Development of the algorithm: Especially the analysis
on simulated tracking data shows that there is still room for
improvement in estimation performance. There are several
areas where the current implementation can be further devel-
oped. First of all, the knowledge of remnant characteristics
is currently not explicitly implemented in the DEKF’s system
description. The remnant model, that has been experimentally
shown to accurately represent human remnant, could however
be incorporated [33]. This might not only improve the estima-
tion performance, but could also enable estimation of time-
varying remnant characteristics, i.e., power (K,) and break
frequency (wp,,). Additionally, making the remnant noise
time-varying based on the instantaneous HO parameters and
system dynamics would make for more realistic simulations.

Secondly, the observability Gramian can serve as an explicit
measure to indicate how observable trends in the individ-
ual parameters are also locally, i.e. around parameter time-
variations [37]. In conjunction with the incorporation of a
remnant model, this metric could quantify the improvement
that this or other developments make.

Thirdly, the initialisation of the filter could use more at-
tention. Ideally, further testing can result in a general set of
heuristic rules for filter tuning based on different experiment
conditions. These include CE dynamics, target signal charac-
teristics and remnant power (or true experimental test data).

Also, different measurement covariance matrices R could be
used for the state and parameter filter.

Finally, the implementation of parameter limits can perhaps
be improved. Enforcing these limits with Kalman gain projec-
tion rather than estimate projection was attempted [35]. Since
this method also updates the state and parameter covariance
based on the imposed limits, this could potentially reduce the
effect of a parameter sticking to its limit, instead of returning
to more feasible solution space. A forgetting factor, commonly
used to diminish ongoing recursive effects over time, could be
part of an improved solution [15], [17].

2) Other algorithms: This research showed that it is gen-
erally possible to estimate time-varying parameters in preview
tracking tasks. This includes preview time, by anticipating
the deterministic target signal and estimating preview as a
delay parameter. The presented procedure could be used to test
other promising algorithms. Primary candidates are different
types of Kalman Filters, for example the (D)UKF. This filter
potentially improves performance when the modeled system
is highly nonlinear because it does not require a linearisation
step [38]. Also, it has already been successfully applied to
experimental human control data [18], [19], [21].

3) Continued research: The current recursive estimator, or
improved future versions, could be subjected to more elaborate
testing. Most notably, the simulated time-variance used in
this study to test the DEKF’s potential was rather limited,
and the experiment used for validation did not promote any
time-varying behaviour. More extensive time-variance could
be simulated by changing CE dynamics over time [13], [15],
[20]. This induces time-variance in different parameters simul-
taneously, forming a very interesting test case.

Since the filter showed promising convergence for exper-
imental data, a dedicated experiment that actively promotes
time-varying preview tracking behaviour is an important next
step. This could be achieved through the aforementioned
variable CE dynamics, varying the available preview, or
constructing a forcing function with variable properties. In
its current implementation, the filter is suited for real-time
parameter identification. This means that the filter can not only
be applied a posteriori, but also online during a human-in-
the-loop experiment. Setups with driver monitoring or haptic
feedback, based on the estimated behaviour are thus among
the possibilities, even in realistic driving scenarios.

VIII. CONCLUSION

This research implemented a Dual Extended Kalman Filter
for the purpose of estimating time-varying human control
in preview tracking tasks. For the first time, adaptations in
preview time were successfully observed using a linear HO
model, purely based on the previewed target signal and the
input and output of the controlled element. With the use of
an apparent time delay, relative to a reference in the target
signal ahead of the viewpoint of the operator, this preview time
was estimated. The explicit use of parameter limits keeps all
parameters within their documented, feasible range to avoid
filter divergence.

Major improvements in estimation performance were
achieved by keeping certain parameters constant. This was
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found to eliminate interference between parameters due to
their limited observability in the available signals. The most
notable interference was the exchange of time delay between
the apparent preview delay 7} and the visual delay 7.

For the current filter implementation, remnant noise with
strongly coloured characteristics was found to have a great
influence on the quality of the estimates. Earlier research
suggests that this coloured remnant is particularly present
when controlling a system with DI dynamics. Explicitly in-
corporating a remnant model in the HO model in the DEKF
could provide a solution.

A second weakness of the current filter is its sensitivity to
tuning and initialisation. Despite attempts to develop specific
tuning instructions, only general guidelines for the filter’s
various settings were found. Some testing was still required
between runs of varying experimental conditions to come to
acceptable results.

The major strength of the presented DEKEF, is that it allows
for real-time application, without any a priori scheduling of
parameter variations. Validation using experimental tracking
data confirmed that the algorithm is a viable method for
concurrent state and parameter estimation in preview tracking
tasks. With additional development to improve estimation
quality, the algorithm has the potential to form the basis in
advanced systems that can monitor and assist human operators.
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APPENDIX A
STATE-SPACE SYSTEM OF THE HO PREVIEW MODEL
This appendix details the nonlinear state-space equations that were used in the DEKF, analogous to Appendix A of [20]
that applied a DEKF to compensatory tracking. The model behind these equations is depicted in Fig. 18. The formation of the
state-space equations was explained in Subsection III-A. In order to convert the (exponential) apparent preview delay (77) and
visual time delay (7,) from Fig. 18 to state-space, they were represented by a third order Padé approximation (see Subsection
II-A). Neuromuscular parameters wy,,s and (s are referred to as w,, and ¢, to save space in the already lengthy equations.

Human Operator Model
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Fig. 18. Isolated block diagram of the HO in preview tracking tasks with parameters (far view response only) [10]
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In accordance with the research for compensatory tracking by Popovici et al. , the total derivative Gg”k is used for the correction
step of the parameter filter [20]. This derivative is calculated as follows:

dg(z, 4, 0)
= e
0=6;
dg(x_ ,,0 og(x_,,0 5, 07 dx
g( s,k ) _ g( s,k ) n 0g(xs,0,,) k (48)
de B 00 B Oz _de
0=0;, 0=0, =T ),
dms_,k; o 8f(w::k_17 ft,a,k—hyk—la 9) + o dw:_,k—l (49)
o 00 TR e
0=6;
dx:k—l deg g dg(x g p_q1,0)
0 - g Bew 6 oo (50)

1

Equation 49 is slightly different than originally published in [20]. After the original formulation caused divergence of the
filter, it was established after consulting the authors that the discrete transition matrix ®;3_q1 should be used. The three

. . dz} S
parameters from the previous time-step (k — 1) used to compute z‘yg‘l are all initialised as 0 [20].
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Introduction

Vehicles of all different sorts on land, water and through the air have enabled humans to explore the world
and even outer space for centuries, making us move quicker and further than otherwise possible. In the
act of steering a vehicle, McRuer et al. (1977) distinguished a hierarchy of three levels: navigation, guidance
and control. Navigation determines how to arrive at our destination from the given start point. It involves
choosing the route or course to follow, as well as regularly checking current position and progress. On a more
detailed level, the trajectory specific to the current road has to be selected. Based on conditions such as the
road ahead, environmental conditions (e.g. rain or mist) and traffic, the human operator (HO) chooses the
path to follow. This process is known as guidance. Finally, the correct control inputs have to be given to the
vehicle, such that it tracks the intended path and is stable to external disturbances.

Since vehicles and control tasks have become such a prominent aspect of our daily lives, they are a popular
topic of study. There have been ample attempts to describe HO behaviour in technical terms, a field known
as cybernetics. One of the properties of human behaviour that we currently have limited understanding of,
though, is time-variance and adaptability (Mulder et al., 2018). There have been studies into time-variance
for compensatory control, the most basic type of control task. But research for the more realistic preview
situation is missing.

This thesis aims to fill that gap, by finding a method that can estimate parameters of established preview
models in a time-varying fashion. Understanding how human operators combine sensory information, ex-
perience and knowledge into their actions does not only add to the state-of-the-art in cybernetics research.
It could prove an invaluable source of inspiration for monitoring human performance, as well as assistance
and automation (Popovici et al., 2017).

This preliminary thesis report describes the steps taken so far towards the development and testing of this es-
timation method. The report is structured as follows. First, a literature review of suitable, established preview
models, as well as time-varying estimation methods suited for preview tracking was performed in Chapter 2.
The subsequent formulation of global and detailed research questions can be found in Chapter 3. Chapter 4
describes how simulation software, capable of simulating realistic, time-varying human control behaviour,
was constructed. Thereafter, Chapter 5 explains how the estimation algorithm was implemented such that
it could be tested for different simulated runs and experimental data sets. During the preliminary phase of
the research, a set of simulations was created to test the potential of promising methods. These benchmark
simulations, together with the estimation results of the most promising candidate method, can be found in
Chapter 6. The most important observations to be taken away from this benchmark are also discussed in that
chapter. Finally, Chapter 7 concludes the preliminary phase of this research, and gives an outline for further
research.
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Literature Review

To gain insight in the current state-of-the-art in in the fields of preview tracking and time-varying parameter
estimation, a literature survey was conducted. The first subsection is devoted to models that have so far been
constructed for preview tracking and more realistic (preview) steering tasks. This is followed by Section 2.2,
where time-varying estimation techniques are reviewed that could be used for the case of preview steering.

2.1. Human operator models in preview tracking tasks

This section aims to provide an overview of previous efforts to explain or model human control behaviour,
with a focus specifically on preview control. One of the first to recognise preview control as the abstract equiv-
alent of many of our daily activities was Sheridan (1966). In his paper, he develops 3 different model types
that "characterize constrained preview control better than conventional transfer function techniques.". From
there onward, many have made an effort to model human preview control behaviour and current research
can often still be categorised as one or a combination of Sheridan’s approaches (Van der El et al., 2016). An
example is the model proposed by MacAdam (1981) who, continuing on Sheridan’s third approach, uses op-
timal control to predict and continuously update the path that human controllers choose in a lane keeping
task.

In general, two approaches to human control research can be recognised. The first line of research initially
isolates the sequence from human perception and processing of information towards the resulting action.
Subsequently, the empirical model structure of a quasi-linear controller is composed based on these findings
and clever reasoning. The parameters that are left to be tuned, to distinguish the behavioural differences be-
tween participants or test conditions, are then fitted with mathematical optimisation.

A second line of research takes a fundamentally different approach. Instead of starting at the (sub)conscious
thought process, traditional black box system identification techniques are applied to derive the transfer
function of human control. The input-output relations of the human controller are directly constructed from
the mathematical relation between target input signals and the resulting steering action. How humans arrive
at this behaviour from their perceptive cues is then attempted to be captured in a meaningful model struc-
ture. Again, the human operator is assumed to be quasi-linear. This approach is also known as cybernetics.

The first subsection looks broadly at how researchers have studied human control. It explains how the human
controller was isolated from the complete system. Moreover, it looks at what sets aside preview control from
other forms of control and how humans utilise this preview information. Two subsections then continue
with the previously mentioned main research lines. Subsection 2.1.2 traces human perception towards con-
structing empirical control models. This is followed by Subsection 2.1.3, where the models identified with a
cybernetic approach are reviewed. Finally, Subsection 2.1.4 examines previous efforts to model the remnant,
formed by control behaviour that remains unexplained by the quasi-linear model.
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2.1.1. Studying human control

The eventual path traced by a vehicle is the result of a complex process. McRuer and Jex (1967) theorized
that is influenced by not only experience, mental and physical state of the driver, but also the vehicle (model)
itself and the environment. In order to study control, experiments are therefore typically executed in simula-
tion where the circumstances can be made repeatable for different drivers and test conditions. This holds for
example for lighting, weather, traffic and most notably the target path to be tracked. Different pathways have
been used depending on the type of experiment or model identification technique. They vary from sequences
of real-life segments of road or even existing racing tracks (Sentouh et al., 2009) via artificial tracks with con-
stant curvature corners (Donges, 1978) to much more abstract roads formed by a sum of sines (Van der El
et al., 2016). This last variation is particularly convenient for identification in the frequency domain.

Furthermore, to isolate human control more clearly, system dynamics are typically simplified. Especially
in relatively abstract scenarios, the system is often reduced to simple gain, single integrator or double inte-
grator dynamics (McRuer and Jex, 1967). More realistic simulations usually employ more elaborate models,
for example experiments that involve simulated car driving (Sentouh et al., 2009).

Simulating the environment allows to precisely set the cues available to the human senses, or to limit the
degrees of freedom open for control. For a start, experiments are often executed in a fixed-base simulator, re-
moving vestibular cues. Secondly, as Sheridan (1966) already suggested, many historical steering experiments
have a forced pace, rather than being self-paced. This removes throttle as one of the degrees of freedom. The
combination of these limitations allows the researcher to look at visual steering, specifically.

A main focal point of research has been to find out how humans use the visual information from preview
for the guidance and control parts of steering. This has resulted in the abstract distinction between com-
pensatory, pursuit and preview control tasks, based on the visual information available to the operator (Fig-
ure 2.1). In a compensatory control task, the only information shown to the operator, is the error between the
target signal and the current system state. A pursuit tracking task, on the contrary, explicitly shows the target
signal for the current time step, as well as the system state. Finally, a preview tracking task shows the current
system position and the current and future target for some time ahead in the form of a 'spaghetti’ track, a
winding road or, in a more practical real life case, a cane. Pursuit tracking is in other words simply preview
tracking with 0 seconds of preview information.

Compensatory Pursuit Preview
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Figure 2.1: Compensatory, pursuit & preview tracking tasks (reproduced & extended from Wasicko et al. (1966))

2.1.2. Two-level driving models

Already early in the development of driver control models, human perception and understanding of the con-
trol task at hand have been a logical start point. McRuer et al. (1977) observed that the control task of driving
has features of a compensatory, pursuit and precognitive nature. The balance between these features shifts
for different maneuvers that make up driving. Compensatory control is used for changes in vehicle dynamics
and disturbance rejection. Pursuit and preview steering on the other hand, are essential for path following.
And finally, drivers use precognitive behaviour for standard maneuvers such as rapid lane changes. These
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theories were verified by McRuer et al. with simulated experiments for the different tasks.

As mentioned in the introduction of this chapter, the act of steering a vehicle can alternatively be broken
down into the levels of navigation, guidance and control. The first is only involved with global trip prepara-
tion and monitoring, and is nowadays mostly taken out of our hands with the arrival of satellite navigation.
The latter two, however, are still crucial during manual control of a vehicle. Both these aspects of steering re-
quire the immediate and continued attention of a driver, to respond to changing conditions or disturbances.

This shift of attention from (immediate) disturbance rejection to (slightly longer term) path following has
lead to the development of so-called two-point models. An early well known model in accordance with this
logic, was developed by Donges (1978). By combining the phases of guidance and control (or "stabilization”
as Donges calls it), he arrives at a quasi-linear controller for his artificial track with a series of 24 constant
curvature turns.

A few notable experiments to uncover how humans use visual information for steering have been conducted
afterwards. Godthelp (1986) used visual occlusions to show that humans can also successfully steer through
corners when their visual feedback is temporarily withdrawn. And in line with Donges’ model, Land and Lee
(1994) showed that humans do indeed continuously shift their gaze as they are driving. We move our eyes to
a tangent point of a curve 1-2 seconds ahead, and keep following this point until the curve has passed. They
theorised that this helps us estimate curvature, without any specific reference to absolute distance.

A year later, Land and Horwood (1995) used partial visual occlusion (slits) to demonstrate that drivers can
achieve good performance in curve negotiation with two snippets of information. The best performance was
obtained with the first strip lying a few meters in front of the vehicle, and the other just under a second further
up the road. This supports the idea that we combine anticipatory feed-forward steering for guidance with our
lateral position on the road for control.

Following these insights, a few models have been proposed that are nowadays widely established. But how
humans precisely extract and use the information from a previewed track is still debated, as outlined in the
introduction of Salvucci and Gray (2004). It is argued that that humans are shown to merely use the near and
far road information to steer a vehicle, but not what information exactly. Humans are demonstrably bad at
inferring road curvature as Donges suggested, and can successfully navigate without enough information for
the use of optical flow. The review therefore concludes that, although there is much empirical support for
two-point models, "none of the models explicitly defines perceptually plausible sources of 'near’ and 'far’ visual
information that is used by the driver". The proposed model is therefore a PI controller purely based on two
viewpoints. Different examples for these cues are given, such as the horizon, a turn’s apex or a car ahead. The
model is then shown to result in realistic behaviour for some frequent practical scenarios: curve negotiation,
corrective steering and lane changing.

Later research has included explicit models of human sensorimotor dynamics and cognition on simulated
driving, such as by Sentouh et al. (2009) and Lappi and Mole (2018).

2.1.3. Cybernetic approach

The models presented in the previous section have a structure that relates to the perception and processing of
information in human control. However, these empirical models often have physically meaningless param-
eters that are difficult to interpret. A fundamentally different approach to identifying control behaviour has
simultaneously been developed under the name of cybernetics. The main approach here is to view the human
operator as a black box element in the entire closed-loop system. With precise knowledge of the surrounding
dynamics, the operator’s transfer function from input to output can be deduced. The goal of the cybernetic
approach is to arrive at a comprehensive system description from this transfer function, with a meaningful
structure and parameters.

Arguably the most well-known research in the field of human control following these principles is the work
from McRuer and Jex (1967). Their research resulted in the crossover model for compensatory tracking, that
has become the standard. It forms a basis upon which notable other models are built. The first attempt to
model preview tracking using an experimental, cybernetic approach rather than "empirically” or "theoreti-
cally” was by Ito and Ito (1975). They find that preview control can be modeled as an extension to McRuer
and Jex’s compensatory model, with a preprocessing function that optimizes the control action based on the
available preview information.
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Figure 2.2: Crossover model for compensatory tracking, augmented with neuromuscular limitations (McRuer and Jex, 1967)

Building on this idea, Van der El et al. (2016) have identified a more explicit model for preview tracking (Fig-
ure 2.3). Again, the resulting model is shaped as an extension to McRuer and Jex (1967)’s crossover model.
However, instead of tracking the actual error between the forcing function and the current system state, com-
pensatory tracking is performed based on some internally calculated error (e* (t)). This signal is deduced by
the HO by filtering the previewed trajectory using a low-pass preview filter (Hop,) to filtered far-view forcing
function ;,(f(t)‘ It is subsequently compared to the current state y(t) to form e*(¢). A review of the param-
eters in this model can be found in Section 4.1. The model has been tested in a wide range of experimental
conditions, from abstract one-dimensional tracking tasks, via more realistic tracking with different amounts
of linear perspective and multiple feedback cues to full simulations of car driving on a realistic road (Van der
El, 2018).
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Figure 2.3: Block diagram of a human operator model in preview tracking tasks (Van der El et al., 2016)

Compared to two-level driver models, the cybernetic model identified by Van der El et al. has several major
advantages regarding the main goal of this thesis, i.e. online-time-varying parameter estimation:
1. The model structure is simple and intuitive, incorporating preview tracking as an extension to McRuer’s
crossover model for compensatory tracking.
2. The model is a minimal realisation, meaning that all parameters can be identified uniquely.
The parameters in the model are physically interpretable, with well-documented human limits.
4. The model is validated for a wide range of experimental conditions (such as system dynamics, amounts
of preview, forcing functions, perspective and task realism) and parameter’s sensitivities to changes in
experiment conditions have been studied.

w

2.1.4. Remnant modeling

The quasi-linear models highlighted thus far explain the linear part of the input-output relation of the ob-
served signals. The remainder of the HO input signal that is not covered by the model is known as remnant.
The remnant is theorised to consist of time-varying behaviour, pure noise and nonlinear behaviour (Van der
El et al., 2019a). Despite attempts to explain (part of) this unmodeled behaviour, such as by Popovici et al.
(2016), remnant still remains largely unexplained. For the generation of realistic HO signals to test identifica-
tion methods on, it is however vital to include an accurate remnant.

Two factors are important for quantitative remnant simulations: the remnant model and the remnant
power. Levison et al. (1969) conducted a study for compensatory models (such as McRuer’s crossover model)
with conclusions regarding both these aspects. The research showed that a first order model can give an ad-
equate description of the remnant’s colored spectrum (Equation (2.1)). This model only incorporates two
additional parameters, namely a remnant gain K, and either a time constant(7;) or break frequency (wy,,).
Moreover, the remnant power ratio (Equation (2.2), also referred to as noise ratio or constant of proportional-
ity) is proportional to (input) signal variance and independent of input parameters or system dynamics.
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In previous work into time-varying identification of compensatory control, higher order models were also
used. Higher order models were tested by Van Grootheest et al. (2018) in combination with ARX model iden-
tification. Equation (2.3) shows the similarity with the first order model, where m indicates the order of the
model.

m Kr

e 2.3)

Finally, the third order model of Equation (2.4) was proposed by Zaal et al. (2009) and also used for time-
varying ARX identification of compensatory tracking by Plaetinck et al. (2018).
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The remnant power ratio, as referred to above, is the relative amount of remnant, compared to the power
of the input signal. The gain K, part of all the remnant models presented above, basically provides the knob
to tune remnant power. Because the remnant injects into the closed loop system, this gain K; has to be found
iteratively. The remnant signal itself, however, can simply be simulated by passing Gaussian white noise
through the remnant filter model.

Recently, remnant for preview tracking specifically was quantitatively reviewed by Van der El et al. (2019a).
They concluded that the remnant power does depend on CE dynamics, target bandwidth and tracking task
type. However, remnant is shown to be relatively invariant to changes in preview time and display configura-
tion. Moreover, the research demonstrated that Levison et al.’s first order model provides adequate accuracy
for pursuit and preview tracking. Also, the break frequency wy, , was shown to only depend on CE dynamics.
For this research, Levison et al.’s first order model will be used to simulate remnant. The specific values used
for the remnant parameters can be found in Table 6.1.

What is thus far unclear, is how the remnant might be affected by the current research. After all, this es-
timation method is expected to identify time-varying behaviour, which is one of the hypothesised causes of
remnant. Part of the remnant could therefore possibly be omitted after time-varying identification, resulting
in a difference in remnant model and power. Since time-varying behaviour is only one of multiple contribu-
tors to remnant, however, and since the current method is expected to identify only part of this time-varying
behaviour, it is deemed fair to assume that existing remnant models will stay valid.

2.2. Online, time-varying parameter estimation in human control

The models describing human control behaviour that were reviewed in the previous chapter all have one
important characteristic in common. In order to identify the parameters of the quasi-linear models, they
assume constant behaviour of the operator throughout an experiment run. However, humans are known
to be self-learning controllers that continuously adapt their behaviour (Mulder et al., 2018; Young, 1969). It
is therefore of interest to study this adaptive side of human control. Several methods, applied to models
differing in shape and complexity, have been investigated in the past with varying success.

This section presents an overview of the most notable advances that have been made in the field of time-
varying HO identification. Subsection 2.2.1 lists the studies using different types of Kalman Filters. Subsec-
tion 2.2.3 subsequently reviews other methods that have been studied. Subsection 2.2.4 finally presents a
trade-off of the reviewed methods for the case of preview tasks.

2.2.1. Time varying identification with Kalman Filters

The linear Kalman Filter is an optimal Linear Quadratic Estimator (LQE) that can be applied to linear systems.
It was derived by Kalman (1960). Many alterations to the linear Kalman Filter exist, to make it suitable for
all kinds of nonlinear applications. At the time that Kalman Filters were still a relative novelty, Schiess and
Roland (1975) already tried an Extended Kalman Filter (EKF) on identification of McRuer and Jex’s crossover
model for compensatory tracking. Success was limited, as it proved difficult to estimate parameters for data
with realistic amounts of remnant.
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Different kinds of Kalman Filters have since been prevalent choices for the identification of time-varying
human operators. Boer and Kenyon (1998) revisited the EKF, but in order to obtain satisfactory results, sev-
eral elements were added. The algorithm is augmented with a recursive delay identifier (RDI) with bicubic
interpolation improve success on concurrent identification of linear parameters and delay time. Moreover,
to improve parameter estimates, a smoother was applied to the filter output.

Mandal and Gu (2016) and Rojer et al. (2019) continued the exploration of Kalman Filters with the suc-
cessful application of the Unscented KF (UKF) to flight simulations and compensatory tracking.

The application of Kalman filters in human control identification is far from limited to more abstract
tracking task experiments. You et al. (2017) have for example applied several filter types on extensive field
test driving experiments. Both the EKF as well as the UKF have been applied, each of them in a joint filter
as well as in a split dual filter configuration. More information on dual estimation can be found in Subsec-
tion 2.2.2. The driver model that was used, is the two-point model with sensorimotor dynamics by Sentouh
et al. (2009). This model contains 12 identifiable parameters. The two-point model structure was reviewed
earlier in this chapter, in Subsection 2.1.2. With their effort, they successfully identified gradual variations in
driver dynamics over time. Moreover, they could compare experienced to novice drivers.

2.2.2. The Dual Extended Kalman Filter
Popovici et al. (2017) applied the Dual Extended Kalman Filter (DEKF) to both simulated and experimental
data with notable success. The Dual Extended Kalman Filter was conceived by Nelson and Stear (1976). The
principle of dual filtering is that the (fast-varying) system states and (relatively slow-varying or constant) HO
parameters are each placed in a separate, dedicated filter. These filters run concurrently, allowing for simul-
taneous estimation of states and parameters. The main advantage of this technique over joint estimation,
though, is that the size of the covariance matrices is reduced. This enhances the likelihood of convergence.
Applied to compensatory tracking, the system behind the state filter is the crossover model (Figure 2.2).
The model takes tracking error e(#) as external input signal. It is transformed to a state-space equation of
controllable canonical form. In order to include the exponential time delay in this format, a Padé approxima-
tion of third order is used (for more information, see Subsection 4.1.3). The total set of parameters is split up
in a state vector and a parameter vector. The first consists of five canonical states and two HO equalisation
gains: x5 = [xsyl,...,xsﬁ,Kp,KU]T. The parameter vector then contains the neuromuscular parameters and
time delay: 0 = [, {, T ] T The filter works as depicted in Figure 2.4.
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Figure 2.4: DEKF for compensatory tracking (from Popovici et al. (2017))

Together with Gaussian process noise wg(t), the state equation of the state filter can be expressed as Equa-
tion (2.5). The full nonlinear function f can be found in Appendix A of Popovici et al. (2017). Equation (2.6)
describes the state equation of the parameter filter. The parameters are generally assumed constant and only
driven by a random walk. Thus, their variance is completely captured by (Gaussian) process noise wy/(z).
Finally, the output equation for both filters is given in Equation (2.7), where v(#) indicates the Gaussian mea-
surement noise of the system. Again, the full function g can be found in Popovici et al. (2017), Appendix A.

Xs(1) = f(xs(2),e(1),0(1) + we(1) (2.5)
0(t)=wy,(1) (2.6)
u(r) = glxs(1),0(0) + v(1) 2.7
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Any type of Kalman Filter uses several vectors and matrices in its (discrete time) filtering equations. For the
DEKF applied to compensatory tracking, this means that the concurrent state and parameter filters have their
own versions of the following vectors and matrices at each discrete time step k:

* 7x1 state vector Xg i = [Xs1,..., Xs,5, Kp, Kyl T and 3x1 parameter vector Oy = [wy, {5, Ty] T

* 7x7 state covariance matrix Py ; and 3x3 parameter covariance matrix Py, i

* 7x7 state process noise cov. matrix Qg ; of ws and 3x3 parameter process noise cov. matrix Q, of w,

¢ 1x1 measurement noise covariance Ry of v (shared by both filters)
For systems that are expected to have approximately constant Gaussian process and measurement noise,
matrices Q and R are typically kept constant over time. For the application of human identification, how-
ever, this is not necessarily the case. In their implementation of the filter, Popovici et al. have therefore built
time-variance into matrices Qs x and R. The state process noise of final canonical state x5 is taken to be pro-
portional to the variance of the tracking error of the last five seconds with scaling factor g> (Equation (2.8)).
For all other states and parameters, the process noise is kept constant. Similarly, measurement noise covari-
ance Ry is taken proportional to the variance of the HO input signal u of the last 5 seconds (Equation (2.9)).

Qs,kzdiag([o 00 ¢%0% 4 samn Kpo Kv,o]) (2.8)

_ 2.2
Ry =170 _5/a1:10) (2.9)

With the DEKF as presented, simultaneous estimation of all HO parameters proved to be possible for both
simulated as well as experimental tracking data. It was noted, though, that converge proved challenging and
highly dependent on the initialisation parameters of the filter.

2.2.3. Other identification methods

Also aside from Kalman Filters, various methods have been tested on time-varying human operator data. One
that has been given attention recently is identification based on recursive ARX models. Van Grootheest et al.
(2018) finetuned the implementation and Plaetinck et al. (2018) went on to apply these methods experimen-
tally. The method was shown to detect and estimate time-varying behaviour with reasonable success. ARX
models do however have a fixed model structure, meaning that an additional step is necessary to transform
the acquired parameter values back to the ones from a corresponding cybernetic model. Moreover, they were
found to be unfit for estimating human time delay (Plaetinck et al., 2018).

Secondly, Maximum Likelihood Estimation (MLE) was used by Zaal et al. (2009) to identify parameter
variations in multi-axis compensatory tracking. This method was later also applied in a dual-axis control ex-
periment with commercial pilot operators by Zaal (2016). In similar but single-axis compensatory tracking
simulations, Duarte et al. (2017) tested Predictor-Based Subspace Identification on Linear Parameter Varying
models. Both of these methods were successful, but do require a priori assumed scheduling functions for the
type and shape of time-variance.

Another way to employ LPV models in human control, was explored by Pronker et al. (2017). In this research,
a set of LTI models was constructed for different experiment conditions. Rather than researching parameter
variations over time, the research resulted in an interpolated LPV model set as a function of driver grip force.
The LPV model was composed of a set of gains, first order, and second order subsystems in observable form.
The interpolation was done with polynomial interpolation of order 2, yielding fit results of well over 90% at
the tested conditions.

Each individual LTT model is first fitted using spectral analysis techniques. Applying this method to the
time-varying case is therefore only possible for complete passages of the forcing function(s). This means that,
compared to the original experimental setup of for example Van der El et al. (2016), the forcing functions
should be shortened considerably and run longer than its fundamental period. After the first fundamental
period, enough data is available each time step to fit an LTI model. These LTI models can subsequently be
interpolated with polynomials to find a time-varying LPV progression.

Alternatively, stepping away from spectral analysis would drop the long experiment run-in. However, the
identification of the LTI models for interpolation then requires one of the other (recursive) algorithms evalu-
ated above. The polynomial interpolation would then serve the purpose of a smoother.

Finally, wavelets were tested by Zaal and Sweet (2011). Although this method showed quick convergence
for idealised tracking behaviour, convergence declined for simulations with significant remnant power.
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2.2.4. Method tradeoff
This subsection compares the identification methods presented above, to select the most promising candi-
date. In order to choose a method suitable for preview tracking tasks, four trade-off criteria are used:
¢ It must be possible to estimate delay parameters. Time delays introduce major non-linearities in the
model and are therefore difficult to identify. In compensatory tracking, the delay parameter has had
particular attention (Boer and Kenyon, 1998; Plaetinck et al., 2018). The preview model of Van der El

et al. (2016) does not only contain a delay, but also at least one preview time (i.e. a 'negative’ delay).

¢ The identification method must be able to converge under (significant amounts of) remnant noise.

¢ Identification should ideally be possible online. This means that the computations necessary for con-
vergence can be executed within a real-time time frame. Moreover, the identification should not require

any a priori assumptions on the variations to be detected. Finally, the method must be able to provide

a parameter update every time step, limiting the usability of spectral methods.

* Ideally, the method can estimate parameters in the Van der El model directly, without the need of con-

version afterwards.

Table 2.1 summarizes the performance of each of the algorithms in the previous subsections, based on these
criteria. From this trade-off, it becomes clear that Kalman Filters are a promising candidate for time-varying
parameter estimation in preview tracking tasks. Because of its good converge properties, the DEKF is the
filter that will be given a first attempt.

Table 2.1: Trade-off of different time-varying identification methods

Estimates time

Converges with

Online / no

Direct estimation

ID method .
delays remnant scheduling of parameters
. . | Convergence
UKEF (Rojer et al., 2019) Yes, Ymh. Padé depends on initial
approximation -
conditions
EKF with RDI (Boer Delay 1§ es.tlmated Convergence. N The EKF output. is
and Kenyon, 1998) as a spline interpo- | depends on initial | smoothed, causing
’ lated sample shift conditions identification delay
DEKF (Popovici et al, | Yes, with Pade | Conversence
L depends on initial
2017) approximation L
conditions
Recursive ARX (Plaet- L Parameters
. No estimation of
inck et al., 2018; Van delavs possible calculated from
Grootheest et al., 2018) ysp ARX structure
MLE (Zaal, 2016; Zaal Only best fit of As-
etal., 2009) sumed Parameter
v Variation (APV)
LPV PBSID (Duarte PBS.ID dges not A pl‘lOl‘.l assumed Requn‘es. parame-
etal, 2017) easily estimate a scheduling func- | ter retrieval after
N time-varying delay tion required identification
Polyn'omlal LPVinter- After 1 FoFu period,
polation (Pronker et al., or onlv as smoother
2017) v
Parameters

Wavel Zaal Vi iti

avelets (Zaal and ery sensitive to obtained from

Sweet, 2011)

remnant noise

frequency response




Research Questions & Approach

Preview steering is a very frequent type of control task in the daily life of many. However, from the literature
survey summarised in the previous chapters, it becomes clear that research into time-varying identification
of preview tracking behaviour is very limited. This thesis aims to change that, by developing a method that
can estimate the parameters governing preview tracking in a time-varying manner.

From the literature survey, a suitable model that describes preview tracking for different scenarios and
that fits in with other existing literature, is the model by Van der El et al. (2016). This model is a realisation
of minimal order, meaning that the parameters can be identified uniquely. Moreover, the parameters in the
model are physically interpretable, with well documented human limits for different conditions. This means
that there is enough knowledge available to tune, restrict or refine the algorithm(s) used for estimation.

The first promising candidate for estimation is the Dual Extended Kalman Filter (DEKF) as applied to
compensatory tracking by Popovici et al. (2017). This algorithm has shown to have the capabilities of esti-
mating delay parameters, which form a vital part of preview tracking. Moreover, the method has good con-
vergence properties, being successfully applied to real human data. The research objective thus becomes:

The research goal is to contribute to the identification and understanding of time-varying, adaptive human
control behaviour in preview tracking tasks by applying the Dual Extended Kalman Filter to simulated and
experimentally acquired data for time-varying and online parameter identification of Van der El's quasi-linear
human operator model.

3.1. Research questions

This objective leads to the formulation of a number of research questions. The main research question is
presented below, followed by a number of more detailed sub-questions that are categorised, leading the way
to some intermediate milestones in the research:

Can the parameters of Van der El's model for human control behaviour in a preview tracking task be estimated
in a time-varying, online manner using a Dual Extended Kalman Filter, including the preview time and time
delay parameters?

1. Regarding the simulation of a time-varying human operator:
(a) How can a simulation be set up, such that it can produce realistic, artificial, time-varying human
preview control behaviour?
(b) How should remnant noise be included in the simulation?
(c) How can the simulation be validated, to guarantee that it produces correct results?

2. Regarding convergence & sensitivity of the parameter estimation
(a) How many and which parameters of preview tracking can be estimated simultaneously?
(b) How can the preview time parameter be estimated, being a negative time delay?
(c) Isit possible to estimate the preview time parameter using a DEKF?
(d) Isitpossible to estimate both preview time as well as time delay?
(e) How sensitive is the algorithm to changes in initial conditions?
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3. Regarding performance of the parameter estimation
(a) What metric can be used to measure the accuracy of the parameter estimation?
(b) Isit possible to estimate constant behaviour accurately?
(c) How accurately can time-varying behaviour be estimated?
(d) What can be done to improve the parameter fit of the algorithm?
(e) Can the most accurate method be applied online? Both in terms of computational structure as
well as computational speed.

4. Regarding experimental validation of the parameter estimation method
(a) What type of experiment should provide the data to find out whether the algorithm works on
actual human tracking data?
(b) Does the algorithm work on experimental tracking data?
(c) Does human tracking show time-varying behaviour for a constant task?
(d) Can behavioural changes be identified for variable tracking tasks using the algorithm?

3.2. Research outline
In order to answer these questions sequentially, a research outline has been set up, consisting of 4 steps:

1. Simulate time-varying human tracking behaviour

2. Implement, test and refine suitable estimation methods

3. Improve performance and analyse sensitivity of successful method(s)
4. Apply thoroughly tested method(s) to experimental data

As mentioned in the introduction of this report, Chapter 4 covers the setup of time-varying HO simulations
and Chapter 5 subsequently details the implementation of the DEKF. Subsequently, the preliminary research
was carried out. A few standard sets of simulation data were generated to get a first impression of the esti-
mation performance and to initially tune its settings. These benchmark simulations contain both constant
as well as time-varying behaviour. The results of some initial estimation runs on the benchmark simulations
can be found in Chapter 6. The most important points to take from these experiments for the continuation
of the research follow in that same chapter. Finally, plans are formulated for tuning the filter to improve the
performance. This is done using more elaborate simulations that stretch the boundaries of the parameter
envelope and introduce additional forcing functions and remnant realisations. Also, the scrutinised method
will lastly be tested on actual experimental control data. The execution of these last steps is outside the scope
of the preliminary thesis and will be investigated later during this research. A more detailed discussion on
how to approach future steps is given in Chapter 7.



Simulation of Human Tracking Behaviour

The execution of a human-in-the-loop experiment is a time-consuming process, taken up by the design of a
proper experiment, finding the participants, taking the measurements and analysing the resulting data. As
reviewed in Section 2.1, previous research has resulted in many mathematical models that approximate hu-
man behaviour in a preview tracking task. Moreover the models allow for testing of estimation algorithms
with known input parameters and outside of the boundaries of normal human behaviour. Therefore, the
DEKEF as described in Subsection 2.2.2 was first applied to sets of simulated test data.

The procedure to simulate human behaviour was implemented in MATLAB and is divided in 3 stages. A
schematic overview of the entire flow for the HO simulation is depicted in Figure 4.1. During the first, ini-
tialization stage (in blue), the settings for the simulation, the tracking task and HO model are selected. This
is followed by the generation stage (in yellow), in which the simulated HO data is obtained. Finally, the sim-
ulation is ended in the processing stage (in green), where the data is stored and visualised if requested. The
following 3 subsections will describe the operations behind these phases in more detail. The final section of
this chapter explains how the simulations were verified. The entire simulation and estimation code is set up
in an Object Oriented coding structure.
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Figure 4.1: Flowchart of Human Operator simulations
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38 4. Simulation of Human Tracking Behaviour

4.1. Simulation initialization

In the first stage of simulation, the settings for different components of the process are selected and the nec-
essary preparations are done.

4.1.1. Initialisation steps
To start with, the type of task and HO block diagram structure (compensatory or preview, with or without
near view response) and the controlled element (single or double integrator) are selected in step S1.1. The
specific CE dynamics are taken in accordance with the original research source of the forcing function, and
can be found in Table 6.1.

Subsequently, the forcing function is selected in step S1.2, together with the time step and the experiment
measurement time window. The forcing functions (both target and disturbance) all consist of a sum of sines:

Ny
f(=) Ajsinw;t+¢; (4.1)
i=1

These target signals are pseudorandom, meaning that they appear random to the operator. However, clas-
sical (spectral) system identification techniques can be used on the signals in other to retrieve the operator’s
dynamics and transfer function (Van der El, 2018, p.31). During the preliminary phase, the broadband forcing
functions from the bandwidth experiment of Van der El et al. (2019b) were used. Five equivalent realisations
were available for the target, all paired with the same realisation for the disturbance signal. The signal also de-
fines the run time of the experiment, being the inverse of the fundamental frequency of the multi-sine signals.
An additional setting, though is the run-in time. This is additional time added before the actual simulation
measurement time, used to resolve the initial transient response of the HO simulation.

Step S1.3 sets the order for the effective time delay (z,). The time delay is modeled with a Padé approxi-
mation, described in more detail in Subsection 4.1.3. Subsequently, a specific class object for the simulation
is created in step S1.4. By building the code in an Object Oriented structure, all settings of the simulations
(and later also estimations) are available at any moment, making analysis easier and more structured.

Step S1.5 in the initialization stage is the selection of HO parameters. The full set of parameters can be viewed
in Figure 4.2, a more detailed version of van der El et al.’s model that was explained in Subsection 2.1.3. There
are at most four major blocks with parameters, depending on the model selection in step S1.1. For compen-
satory tracking tasks, only the two blocks in the closed loop are used. The first is the HO equalisation block,
with visual gain K}, and lead gain K, (=K, Ty ¢, with T} . the lead time constant). The second describes the
HO limitations, with neuromuscular frequency w,, neuromuscular damping ¢, and visual time delay 7.

For preview tracking with only the far view response, the lower left far view block is added. This introduces
three additional parameters: far view gain Ky, far view break frequency wy, y and far view preview time 7 ¢. If
near view is included in the model, the near view gain K}, and near view preview time 7,, form the final two of
in total ten model parameters. These parameters are defined all as time series, to accommodate simulation
of time-varying human operators.
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Figure 4.2: Block diagram with HO parameters in preview, pursuit and compensatory tracking tasks (Van der El et al., 2016)

Finally, in step S1.6, the remnant parameters are set. As outlined in Subsection 2.1.4, a first order model,
fed by Gaussian white noise is used to model the remnant. Break frequency wj, , will be set depending on CE
dynamics, in accordance with (Van der El et al., 2019a). The remnant power differs per simulation and the
gain is found through an iterative process, based on this remnant power. A more elaborate explanation of this
iterative procedure is given in Section 4.2. An overview of the settings used in each simulation can be found
in Table 6.1.



4.2. HO data generation 39

4.1.2. HO parameter time-variance
Different ways to make the parameters time varying have are implemented. To simulate gradual adaptation
of a parameter in time, an exponential sigmoid function was used. This is in line with earlier research (Duarte
etal., 2017; Plaetinck et al., 2018; Zaal, 2016) This sigmoid function depends on 4 parameters: the start value,
the final value after transition, the point of inflection of the transition (midpoint, Tifect) and the duration
spanning 99% of the transition (A Tipgect). This sigmoid function has the shape of Equation (4.2). Note that
this formula is slightly different to the one used in previous research (Duarte et al., 2017; Plaetinck et al., 2018;
Zaal, 2016). The exponent is rewritten to explicitly reveal the 99% transition time, rather than only the more
abstract maximum slope G. The full derivation of this formula, as well as the relation between AT;j, f10c; and
G, is given in Appendix A.
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Secondly, parameters can be made time-varying with a sinusoidal shape, as was done by Popovici et al.
(2017). They depend on the mean value (i), amplitude (A), period (T, in seconds) and phase (¢, in seconds)
according to:

(=
Ypar =+ A-sin 271—T (4.3)

4.1.3. Padé approximation
The simulations and estimations in this research are executed in the time domain to allow for scheduled
time-variance of parameters. This requires a (non-linear) state-space formulation of the system, to which an
ODE solver can be applied.

Unfortunately, the exponential formulation of a time delay only exists in the frequency domain. In order
to express this delay in the time domain, a Padé approximation is used. With the approximation, the time
delay is written as a (fractional) transfer function, that can be transformed to a state space representation.

The Padé approximation, or Padé approximant, is a rational power series function approximator. In general,
the approximant P of order m/n (or if m = n, simply of order m) has the shape:
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With equal orders of the numerator and denominator, the Padé approximation is specifically suitable

to model time delays as rational transfer functions. Firstly because the exponential function’s power series

representation is well suited for the Padé form. An secondly, because the amount of poles is equal to the

amount of zeros. This prevents the transfer function from becoming improper (7zeros > Bpoles), Which is an

issue you do have with the normal power series form of the exponential delay. An expression for exponential
time delay transfer functions, modeled as Padé approximation of order m, was given by Silva et al. (2001):
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As is clear from its name, the Padé approximation can never replicate the full effect of a time delay. How
good of an approximation it is, is visible by comparing Bode diagrams of both transfer functions. Where the
exponential delay drops off in phase with increasing frequency, the approximant levels off at some point.
With decreasing delay or with increasing order, the approximation will follow this drop for longer.

4.2. HO data generation

When all the settings for the simulation are applied, it is time to obtain the data. The first step S2.1 in the gen-
eration phase, is checking whether this specific simulation has already been performed. If this is the case, the
data is loaded (step S3.1b). Otherwise the remnant gain is found (step S2.2) and the simulation is performed
to generate the HO steering input (z) and resulting system output (y) and error (e) signals (step S2.3). These
steps are clarified in more detail in Subsection 4.2.1. Subsection 4.2.2 explains how the transformation from
block diagram to state-space system (S2.3b) was performed.



40 4. Simulation of Human Tracking Behaviour

4.2.1. Executing the simulation

As mentioned before, the remnant gain is found through iteratively simulating the system in an optimization
loop. By adjusting the remnant gain each iteration, and comparing the resulting remnant power to the re-
quired power, the required gain is found. Executing a time-varying simulation takes a considerable amount
of time, so finding the gain with the full simulation iteratively is not feasible.

Instead, the gain selection is done with linear (1sim) simulations. If the system has any time-varying HO
parameters, 1sim is not directly possible. The time-varying parameters are in that case approximated. For
sigmoidal or sinusoidal parameters, the mean value is used to determine the required remnant gain. After
the actual time-varying simulation, the remnant power is checked once again. If it deviates too much (more
than 5%) from the desired power ratio, the gain is adjusted and the simulation is repeated.

At the heart of the time-varying simulations is the crossover model for compensatory tracking (McRuer and
Jex, 1967). For preview tracking, the model identified by Van der El et al. (2016), depicted in Figure 4.2, is used
(see also Subsection 2.1.3). This block diagram is transformed into a set of symbolic transfer functions (S2.3a)
(multiple since we have a MIMO system).

These transfer functions are then multiplied out and subsequently converted into a state-space system in
controllable canonical form. Converting the MIMO transfer functions into a single state-space system is not
directly trivial. Subsection 4.2.2 elaborates on how this step was performed. The state and output equations
are each written to automatically generated MATLAB function files (S2.3b). Note that the output equation
produces two different signals, namely the HO stick input u« and the CE output y.

With these functions prepared, the simulation loop is started. For each time step, the HO parameters are
extracted from their time series. Subsequently, the MATLAB function of the state equation is evaluated for
one time step using ode54 in step S2.3c. The inputs to this function are the forcing function, the old state and
the HO parameters. The output equation is then used to convert the updated state to the u and y signal values
(step S2.3d). Steps S2.3c and S2.3d are repeated for each time step, until the total simulation is completed.
Finally, the error signal e = y — f; is computed, and the results are appended to the Simulation object.

The result is a discrete time simulation. Time-varying behaviour is simulated by means of a Linear Pa-
rameter Varying model (LPV). The block diagram of the model remains unchanged compared to the linear
structure originally identified by Van der El et al. (2016). Scheduled time-variance in the (originally constant)
parameters of the model makes the HO time-varying.

4.2.2. Constructing a MIMO state-space system

An important step in the simulation is the conversion from a set of transfer functions to a single MIMO state-
space system. For a single (SISO) transfer function, a simple conversion can be applied to controllable canon-
ical form. The transformation from Equation (4.6) to the system of Equation (4.7) illustrates this conversion
for a third order, strictly proper system. As shown, the denominator of the original transfer function deter-
mines the dynamics (A-matrix) of the state-space, while the numerator appears in the C matrix. To illustrate
the newly formed canonical state-space, the block diagram is also included in Figure 4.3.
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Now consider the slightly more complicated example of Figure 4.4 (compensatory tracking). As we can see,
all the inputs feed into the same closed loop system. Moreover, the outputs are also directly taken from this
closed loop. With 2 inputs and 2 outputs, this system has 4 transfer functions each with the structure %.
So for example, the transfer function from input 2 (n(#)) to output 2 (y(#)) looks like:
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Figure 4.3: Example block diagram of a strictly proper, third order controllable canonical form (Equation (4.7))
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Figure 4.4: Block diagram of a compensatory tracking MIMO system

Looking more closely, one can note that the denominator will be the same for each of the 4 transfer functions,
since the closed loop remains identical. Therefore, the A matrix that can be used for the resulting state-
space system can be kept identical to the A matrix one would get for a single transfer function. One can also
realise that the different inputs can simply be added as different columns in the B matrix. This results in a
superposition of responses to each of the two individual inputs (Equation (4.9)).
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Next we have to look at the output equation. Since all the internal canonical states (x) are equal (identical A-
matrices), and since we are dealing with linear models, the output equations originating from the same inputs
can simply be added together according to the principle of superposition. Also, for each of the two outputs,
the superimposed equations can simply be stacked underneath each other, resulting in Equation (4.10). Since
the transfer from 7 to u is a direct feedthrough, this transfer function adds a nonzero element in the D-matrix.
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Finally, we have alook at the block diagram for preview tracking (Figure 4.5). Note that the near view response,
shown in Figure 4.2, is taken out for now, but can be added according to the same logic if required. The main
difference with the previous example, is that not all inputs feed into the same closed loop anymore. The first
input (f;) has dynamics before entering the loop. This means that the closed loop part of the transfer function
is not equal to the other transfer functions, and thus the internal canonical states will be different.

There are two ways to overcome this issue. The first is simpler, resulting in a larger, non-minimal real-
isation of the system. The other is more clever and does result in a minimal realisation. Since a minimal
realisation is not required for the simulation, the easier method is opted here. For the estimation, however,
it is necessary to have a minimal realisation of the HO system, in order to lower the amount of states to be
estimated. Making a minimal realisation HO model is therefore described in Subsection 5.2.1.
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Figure 4.5: Block diagram of a preview tracking MIMO system (from Van der El et al. (2016))

A,

The easiest way to end up with one state-space system, in this case, is by creating the state-space for each
input individually and appending them together. In the process of appending, a distinction is made between
transfer function sets for the different inputs and outputs. The equations from one input to the different
outputs do end up with the same canonical states (x), because all the outputs are directly connected to the
same closed loop. Put differently, the denominator (1 + CL) is always identical from one input to different
outputs. Thus the A-matrix for each of the transfer functions of a given input are equal. The B-matrices are
equal anyway, because of the nature of the controllable canonical form. The resulting state-space system can
be found in Equations (4.11) and (4.12).
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4.3. Processing

After the time traces are generated, the results can be put to use in the processing stage. Newly generated time
traces are saved or old data is loaded in step S3.1. When saving the data, the properties of the simulation are
added to the SimLogbook. The logbook is a MATLAB struct object, which can be printed as a CSV file. It
summarizes the setup information of all simulations that have already been generated for easy reference. The
Simulation object is now completed. Optionally, the simulation results can be visualised in multiple formats
(i.e. time domain and frequency domain plots). The signals can now serve as the input to an Estimation.

4.4. Code verification

The final section of this simulation chapter explains how the simulation code is verified. These verification
methods are mostly a byproduct of early, unsuccessful simulation attempts. A detailed breakdown about
where these attempts went wrong, can be found in Appendix B. In general, the verification is done in two
distinct, independent ways:

1. Linear (time-invariant) simulations can simply be verified by running an 1sim command on the same
system as the one constructed in simulation step S2.3a. After all, for constant parameter values, the
time-varying LPV simulation simply reduces to a linear system.

2. Time-varying simulations with SI system dynamics are verified by a Simulink model. Unfortunately,
the Simulink model does not always converge for simulations with DI dynamics.

Together, these verification methods cover all linear and some time-varying simulations. Only time-varying,
DI simulations cannot be verified. However, the DI dynamics and the time-varying parameters are verified
independently with methods 1 and 2, respectively. Moreover, the current implementation was also verified
for a time-varying DI case using the method of Appendix B.2. Therefore, the verification is deemed complete.



Parameter Estimation in Preview Tracking

The main goal of this research is to identify the parameters in Van der El et al.’s human operator model for
preview tracking from simulated and experimental tracking data. The simulations developed in the previous
chapter are merely to generate artificial human control data. The data can be used to develop and test meth-
ods for estimation in a more controlled manner. This chapter will explain how the estimation methods are
implemented for this research.

The general outline of the estimation procedure is sketched in Figure 5.1. Initially, this follows a similar
outline to the Simulations, with the three phases of initialization, identification and processing. Each of these
phases is elaborately described in the following three sections. Important elements in the estimation pro-
cedure are the concept of suspension time, the deriviation of a minimal order HO model and an alteration
to the original DEKF algorithm. These topics therefore have dedicated subsections (Subsections 5.1.2, 5.2.1
and 5.2.2, respectively).
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Figure 5.1: Flowchart of Human Operator parameter estimation

5.1. Estimation initialisation
In the first, initialization phase of estimation (in blue), all the settings of the estimation are applied.

5.1.1. Initialisation steps

The initialisation of the estimation consists of 5 steps. First, the data source and the estimation method are
selected (step E1.1). Secondly, the orders of the Padé approximations to be used for effective time delay and
apparent time delay are specified in step E1.2. Apparent time delay is the result of a mathematical trick that
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44 5. Parameter Estimation in Preview Tracking

makes it possible to estimate preview time (a negative time delay) as a normal positive delay. This is more
elaborately explained in Subsection 5.1.2. The Padé approximation was already explained in Subsection 4.1.3.

With this information, the Estimation class object is constructed in step E1.3. In the next step E1.4, the
states that are to be kept constant during estimation are specified, together with their value. Finally, the
initialization parameters of the estimation procedures are set in E1.5. These are for example initial HO pa-
rameter guesses or initial covariance matrices (P, Q & R, see Subsection 2.2.2).

5.1.2. Suspension time

One of the challenges in identifying preview tracking, is the preview element itself. By definition, preview
looks out into the future of the forcing function signal. This makes the system non-causal and introduces
a negative time delay. Inserting this negative delay in a Padé approximation causes the system to become
divergent.

To solve this issue, a mathematical trick is used, that has been named suspension time. A new reference for
the timing of signals is defined, that lies somewhat in the future. This moment must be ahead of the preview
time that people use in their tracking. This is graphically illustrated in Figure 5.2, where the forcing function
runs into the display from top to bottom. The new reference line as well as the viewpoint of the operator are
indicated.

Viewpoint

Follower
O

Figure 5.2: Preview time (7 p) suspension time (75) & apparent time delay (T;)

Another way of thinking about this, is that the start point of measurement time is simply redefined. The
clock has already started running, but the visual forcing function signal (and optionally motion cues) are
suspended for 75 seconds. For the experiment, this does not make a difference. The experiment shifts 7
seconds on our experiment timeline.

Mathematically, however, this has the effect of an artificial time delay being applied to all forcing function
and disturbance signals. The result of this mathematical trick is that the preview time 7, which is normally
a negative delay, can be estimated as a positive apparent time delay (T;) relative to the new reference. The
suspension time, apparent time delay and preview time (defined positive for a negative delay) are related
according to:

T*

p=Ts—Tp (5.1)

From Equation (5.1), it becomes obvious that the suspension time defines the upper bound for the pre-
view time. If 7, would surpass 7, the apparent delay would become negative. This in turn results in instabil-
ities and divergence of the system.

As mentioned in Subsection 4.1.3, a Padé approximation becomes more accurate with higher order or
with a lower time delay. For a given order, it is thus favourable to minimize T; by choosing the suspension
time as close as possible to the preview time. On the contrary, a small apparent time delay limits the freedom
during the estimation of T; (and thus 7). The resulting balance of high approximation accuracy versus
ample estimation space is one to watch very closely in the process of identifying HO behaviour.
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5.2. Parameter identification

With the data loaded and the settings for estimation applied, the filter algorithm can do its work. The al-
gorithm subject in this thesis, the Dual Extended Kalman Filter, was explained in Subsection 2.2.2. Kalman
filters require a model of the system at hand, in this case the isolated human operator (the grey box of Fig-
ure 4.2).

First, a symbolic transfer function of this model is formulated in step E2.2a. Subsequently, the transfer
function is transformed into nonlinear state-space form (step E2.2b). To maximize the likelihood of conver-
gence during the estimation process, it is vital that the system description is a minimal realisation. Subsec-
tion 5.2.1 explains how a minimal realisation state-space of the HO preview model was obtained. The final
nonlinear state space equations can be found in Appendix C.

As explained in Subsection 2.2.2, the DEKEF splits the problem, separating the states from the parameters. The
parameters that appear in the denominator of the HO transfer function end up in the state equation (see Sub-
section 4.2.2). The parameters in Figure 4.2, that only appear in the numerator (and thus only in the output
equation) get augmented in the state filter (K¢, K, Ky (, Ky,)). The other parameters form a separate parameter
vector, that forms the basis of the parameter filter. This results in the following state and parameter vector for
the far-view only preview model, respectively: x5 = [Xs1,..., Xs9, Ky, Ky, K] T 9= [wn,Cn, T,,,wbyf,‘r;] T Note
that the preview system has nine canonical states that capture the internal dynamics.

The DEKF algorithm was very clearly described by Popovici et al. (2017) in Equations (6)-(15) and (42)-
(45). This procedure was strictly followed. The main steps are depicted in the detail box of Figure 5.1. Note
that the recursive steps E2.2c-E2.2e are in accordance with Figure 2.4 of the original implementation. During
the first tests of the filter however, Equation (44) of the original algorithm was found to cause divergence.
This equation was therefore rederived. A detailed breakdown of the problem, and the rederived solution can
be found in Subsection 5.2.2. With this updated equation in place, the filter was found to be functional as
intended.

5.2.1. Constructing a minimal realisation of the HO model
The Kalman Filters used for estimation rely on a system model to work. The model is used to compute control
action predictions from the current state and a forcing function update. To reduce the amount of states that
need to be estimated alongside the parameters, it is of utmost importance to isolate a minimal order repre-
sentation of the human operator model. The basic procedure is the same as described in Subsection 4.2.2:

1. Separate transfer functions for each IO pair are formulated that together describe the entire system

2. Each TF is transformed to a state-space system

3. The different systems are either merged or appended to form one state-space model
This construction was assisted by combining MATLAB and Simulink to verify the result. For the construction
of a minimal order state-space for other, more complicated block diagrams, this procedure might be useful.
It is described in detail in Appendix D

Ideal Human Operator

L | Rt LGN ] 2 !
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—

Figure 5.3: Isolated block diagram of the HO in preview tracking tasks, far view only (Van der El et al., 2016)

Figure 5.3 shows the block diagram of the HO model, with as additional block the effects of suspension
time (1) and apparent time delay (1 ;) as explained in Subsection 5.1.2. Firstly, it can be noted that the ide-
alised model is a MISO system. The remnant input and the disturbance signal lie outside of this isolated HO
model. However, the target signal as well as the system state output of the previous time step do both appear
as inputs to the model. The model has only one output: the theoretical HO stick input ().

Secondly, the model is open loop, so no integration on top of the orders of dynamics of the separate blocks
is added. Finally, both inputs insert at different points into the model. This means that part of the dynamics
applies to all signals (equalization and neuromuscular dynamics) and part of the dynamics is applied only to
the forcing function (preview dynamics).

A minimal order model can be constructed by splitting up the system at the summation point (Figure 5.4).
Two simple open-loop systems then emerge, that can each be transformed into a state-space representation.
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Figure 5.4: Split version of the isolated block diagram of the HO in preview tracking tasks, far view only (Van der El et al., 2016)

The first part is a simple SISO-system, the second system has two inputs (do keep note of the minus sign for
the feedback signal input y). Since the canonical form ensures that the realisation for each of the two parts
is minimal, and because the two parts on either side of the split are independent, the resulting description is
also of minimal order. Merging these two systems can be done by making use of a property of the controllable
canonical form. In this system type, the canonical states start in order at the output of the system and move
their way up the integrations towards the input of the system. This is visualised by the block diagram in
Figure 4.3 for the example used earlier.

Equations (5.2) and (5.3) illustrate what the combined state-space system looks like. The states and state
matrix of the first system are thus appended below the second system, propagating the newly added canon-
ical states of the preview system (x;) below the ones from neuromuscular dynamics and equalisation (x;.
Besides, the output equation of system 1 is appended to the last row of the first system in the state equation.
The error of this system (the derivative of the first canonical state), is thus equal to the sum of the newly in-
troduced input —y and the output of the previous part. Finally, the output equation of the combined system
is simply equal to the output of the second part, with some added columns in the C-matrix to make up for
the additional states. For this research, the addition of the near view response, or further extensions such as
for car driving, were not yet implemented. However, using similar steps such as described here and in Sub-
section 4.2.2, this should be relatively straightforward. The full state-space equations as they were derived
according to this procedure, can be found in C.

- Ay
= e + ff‘ (5.2)
- y
- A
a=|["C -] 0 |x+| 00 ] ’;‘] (5.3)

5.2.2. DEKEF state derivative correction

In the original application of the filter, the Jacobian of output function g with respect to the parameter vector
(Gp) is replaced by a total derivative formulation (G,t,m) (Popovici et al., 2017, Egs. (42)-(45)). This is done to
include states that only appear in the denominator of the transfer function, and thus only in the state equa-
tion, explicitly in the evaluation of this Jacobian. During initial testing, however, it was found that Equation
(44) diverges in just a few time steps:

dx;k _ af(x;k_l’ek—lve) 0f(x;:k_lrek—1!0) dx+

n s,k—1
deo 00 ox* de
s,k—1

(44, Popovici et al. (2017))

After examining of the units of the vectors and matrices in the equation, it was found that the representa-
tion as presented in the paper could not be correct. Note that during differentiation, the units of a quantity
get divided by the units of the quantity that is being differentiated with. For example differentiating distance
with respect to time results in a unit transformation from [m] to [m/s]. As can be seen in Equation (5.4), the
right hand side of the equation has an additional division by seconds. This is caused by the evaluation of
function f resulting in time derivative x with units [x]/s.
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Therefore, Equation (44) was rederived in Equation (5.5) by calculating the total derivative of the Taylor ex-
pansion of Equation (8) for X o usinga chain rule for differentiating the function evaluation term. Note that
the equation looks very similar to the original Equation (44), but that the multiplication with time step At
prevents the matrix from diverging. Also, the units of right hand side and left hand side do match in Equa-
tion (5.5).

(5.4)

K= xh [ e BN (& Popovicietal GOID)
A%y dxii_, + Of x5y ex-1,0) L O xs ex-1,0) ) At (5.5)
a9~ do o6 0%s -t % |

029; x-‘_xs,k—l

With this updated equation in place of the original Equation (44), the filter was found to converge.

5.3. Processing
Finally, the results of the estimation process are compiled, analysed and refined during processing. First, a
check is performed to see if the parameters have converged and whether they are correct (step E3.1). Check-
ing for convergence is done by checking that the resulting parameter traces contain no Inf or NaN values.
Convergence thus does not say anything about the quality of the solution yet. This is done by a second
check. For a nonzero original parameter value, the normalised root mean squared error (NRMSE) must be
smaller than a certain threshold. By default, this threshold is set to 25% to account for some oscillation of the
estimated parameter around the real value.

1 1 Nmeas ) )
NRMSE = — Z (OpekE (D) — Opue (D)2 < 0.25 (5.6)
true meas j=(

For values that are zero, it is not possible to make a relative comparison, since that would involve dividing
by 0. Therefore, for these parameters, or the ones very close to zero (| ﬁ| < 0.05) the criterion becomes that the
root mean squared error (RMSE) should not exceed this threshold of 0.05 (see Equation (5.7)). Checking for
correct values is of course only possible if the data source is a simulation and not an experiment, such that
the correct value 0;,,, is available.

1 Nmeas
RMSE:\J )" (Opekp(i) — Oyrue (D)2 < 0.05 (5.7)
meas ;—=(

If the estimation is carried out for the first time, the results can be saved and logged for future reference
in step E3.2. Step E3.3 then gives the option to plot the time traces, followed by a few steps with some more
advanced analysis. The further analysis is still in development for the final research. The ideas for additional
analysis steps can be found in Section 7.1.






Preliminary Results

The previous chapters have described the selection and implementation of preview models in time-varying
simulation and estimation. With those tools, the core research of this thesis was executed. As indicated in
the research outline in Section 3.2, the first tests are performed using benchmark simulations. How these are
precisely set up is discussed in Section 6.1, together with some samples of the simulation results. The follow-
ing Section 6.2 the provides the details of the estimation settings that are applied to the different simulations.
Section 6.3 shows the results of the benchmark estimations with the DEKE

The preliminary results are subsequently used to assess how promising the DEKF is for identifying time-
varying parameters in preview tracking. These observations are identified in Section 6.4. The final section of
this chapter, Section 6.5, will discuss the areas that still need attention going forward.

6.1. Benchmark simulations

The general goal of the benchmark simulations is to test whether the selected algorithm(s) are suitable for
time-varying identification of preview parameters. Eight simulations (Table 6.1), building up in complexity
and realism, systematically assess the algorithm’s potential for identification. Of the simulations indicated in
blue in this table, a representative sample is shown below.
¢ Sim 1 is a simulation of compensatory tracking used to verify the results of Popovici et al. (2017). A
double integrator is used to allow for the use of all 5 HO parameters. The forcing function, system
dynamics and parameter values are taken from the same sources as the other simulations. The equal-
ization gains are lowered slightly, though, to make the simulation more stable. Moreover, remnant with
the power ratio and break frequency reported by Popovici (30%, 3 rad/s) are included.
* Sim 2 is the simulation that forms the baseline of this benchmark. It is a far-view-only preview simula-
tion according to the model from Van der El et al. (2016) with SI dynamics.

— As found by Van der El et al. (2016) and later research, the contribution of the near view response
is very limited. Excluding it reduces the estimation problem to its minimal size.

— Similarly, SI dynamics make estimation convergence more likely, since it omits one parameter
(Ky). Besides, the loop is more stable to parameter variances than for the DI case.

— The parameter values are taken from the theoretical optimized values in Van der El et al. (2018),
as well as the CE transfer functions.

— The forcing function is taken from Van der El et al. (2019b), to have multiple equivalent reali-
sations and a matching disturbance signal readily available. The widest bandwidth (4 rad/s) is
chosen for the forcing functions, to include as much information in the signals as possible and
thus invoke the clearest parameters for estimation. The runs have a measurement time of 120s.
To this time, 60s of run-in time is added, to minimize transient simulation responses.

— The time-delay (7,) is included as a fourth order Padé approximation, one order higher than used
in the estimation process by Popovici et al. (2017). As explained in Subsection 5.1.2, a Padé approx-
imation becomes more accurate with lower delay or higher order. Therefore, with a higher order
approximant, the simulation will definitely encompass the estimation’s precision. Choosing one
order higher still limits the computational complexity and thus time. Also, this will hopefully pre-
vent the algorithm from estimating delays too easily from simulated data, since the approximation
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in the estimation matches the simulated delay too closely. Note that especially for a fourth order
approximation, the phase of the time delay’s frequency response only starts deviating beyond the
bandwidth of the forcing function.
— This simulation is free of any remnant injection.
e Sim 3 introduces time-varying behaviour in the main parameter of interest, preview time 7,. In all
other aspects,the simulation is equal to Sim 2.
¢ Sim 4 adds remnant to the baseline simulation, according to the first-order model of Levison et al.
(1969). The remnant power ratio is taken relatively low at 15%. This percentage is taken as a compro-
mise between adding realistic noise content and not slimming down the changes of convergence too
much. Later on during this research, in the sensitivity simulations, more realistic amounts of remnant
will be injected to determine the limits of the estimation algorithm(s).

Sim 5 combines the time-variance of Sim 3 (sigmoidal 7 ), with the remnant power ratio of Sim 4.
Sim 6 applies the same settings of Sim 5 to a different target realisation.
Sim 7 adds more time-variance by means of a second sigmoidal parameter: equalization gain K.

The final Sim 8 is a simulation with DI dynamics, introducing also the last parameter K, and more un-
stable system dynamics. The parameter values are adjusted to the double integrator system. Again, this
simulation has 15% remnant and sigmoidal 7 f.

Table 6.1: Benchmark simulation settings (*sigmoidal set as (v1,v2, Tinq,Ainf), ©* sinusoidal set as (Mean,Amp,Period,Phase))

Sim Tas%dTime- CE type (tf) Target fignal Remnant model HO parameters
variance (Tsim+run-in) (parameters)
1 Compensatory, DI (He = 5 Bandwidth 4 %1, Levison (Pr(0.30), | K»(0.1),K,(1.5), wy(8),
Invariant s real. 1 (120+60s) K(1.44),wy(3)) (,(0.45),7,(0.3)
. rad 7£(0.6), Kr(1),w£(3.3),
2| e o | 1 ety | Bl K o
: {n(0.35),7,(0.26)
. Tf(sigm,O.?),O.G, 50,10)*
Prev. (far only), 15 Bandwidth 4 &<, Kr(1),w5(3.3),Kp(1.3),
3 75 varying SHHe =) real. 1 (120+60§) None Ki(O),wi(lO.S),
(n(0.35),7,(0.26)
4 Prev. (far only), SI (He = 15 Bandwidth 4 %1, Levison (P;(0.15), ;é((()l-'fig)),’ll(g}(&))):z ]; ((?1.3)5),
Invariant s real. 1 (120+60s) K(2.12),wp(3)) £1(0.35),7,(0.26)
7 p(sigm, 0.3, 0.6, 50, 10)*
5 Prev. (far only), SI (He = 18) Bandwidth 4 %i, Levison (Pr(0.15), | K¢(1),wr(3.3),K,(1.3),
Tf varying S real. 1 (120+60s) K(2.14),wy(3)) K,(0),w,(10.5),
(,,(0.35),7,(0.26)
Tf(sigm,0.3,0.6,50, 10)*
6 Prev. (far only), SI (He = 15) Bandwidth 4 %1, Levison (P(0.15), | K¢(1),w¢(3.3),Kp(1.3),
Tf varying s real. 2 (120+60s) K(2.13),wy(3)) K,(0),w,(10.5),
(n(0.35),7,(0.26)
Tr(sine,0.4,0.2,40,0)*"
7 Ere\I/é (far or'lly), SI (He = Lss) Barlldwidth 4 %1, I;;\;i?)(;n (Py 3(0.15), Ilg; gjé,culf é?;;?z))‘ésj 0.5)°
£ Kp varying real. 1 (120+60s) (2.02),wp(3)) K, (0),0,(10.5),
{n(0.35),7,(0.26)
7 (sigm,0.6,1.0,50,10)"
8 Prev. (far only), DI (He = 5) Bandwidth 4 “%d, Levison (P(0.15), | K¢(0.9),wr(1),
Tf varying s? real. 1 (120+60s) K(1.58),w(3)) K (0.24), K, (0.36),
wn(8),0,(0.45),7,(0.3)




6.1. Benchmark simulations

Below, representative samples of four of the benchmark simulations can be found. The simulations plotted

are numbers 1, 2, 5 and 8 from Table 6.1. This shows the differences between

¢ Compensatory and preview tracking (sim 1 vs sim 2)

¢ Time-varying and invariant behaviour (sim 2 vs sim 5)

¢ Simulations with and without remnant (sim 2 vs sim 5)
¢ Single and double integrator dynamics (sim 5 vs sim 8)

As was explained in Section 4.4, different ways of verification are available depending on the type of sim-
ulation. For invariant simulations, an 1sim simulation was executed as well. For SI system dynamics, a

Simulink implementation was used to verify the results.

sim000001 - DI, Invar, Remnant: levison (K, (1.440), ws (3.000),

P, (0.300))

——— TVsim output
Lsim output
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Figure 6.1: Benchmark simulation 1 (representative sample)
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Figure 6.2: Benchmark simulation 2 (representative sample)
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sim000005 - SI, TVar (77), Remnant: levison (K, (2.138), wy (3.000), P, (0.150))
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Figure 6.3: Benchmark simulation 5 (representa

sim000008 - DI, TVar (7), Remnant: levison (K, (1.579), w; (3.000), P, (0.150))
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Figure 6.4: Benchmark simulation 8 (representative sample)

6.2. Estimation settings

95 100

The primary candidate to test for time-varying estimation is the Dual Extended Kalman Filter (DEKF). As
explained in Figure 5.1/Section 5.1, several settings have to be applied. There are four major settings to tune:
¢ Which states and parameters to include in the estimation process and which to keep constant.
* Initial values of states (xs,0) & parameters (69). Both the ones being estimated and those kept constant.
* The covariance matrices of the states and parameters (Ps,, Pp0), the process noise (Qs,0, Qp,0) and the

measurement noise (Ryp).
e Suspension time 7.

As a starting point, the amount of variables kept constant during estimation is the main setting that was
varied. It reduces the complexity of the estimation. The other settings were taken as similar as possible to
how (Popovici et al., 2017) applied them successfully to compensatory tracking data. Table 6.2 summarizes
the estimations performed to scrutinize each benchmark simulation. As explained in Subsection 2.2.2, the
covariance matrices Qs and R are made variable, proportional to the variance of the error o2 and stick input
o2. The parameters g and r? are taken to be 0.4 and 0.7, respectively (Popovici et al., 2017). 0% and o2 are
updated with the last 5 seconds of measurement data as a rolling average value, and are initialised with the

first 5 seconds of data.
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Note that state vector x; first starts with a number of canonical states initialised with 0, resulting from the
system conversion described in Subsection 5.2.1 (5 for compensatory tracking and 9 for preview tracking).
Since the preview time 7 never exceeds 0.6s in the SI runs, the suspension time 7 is initially set to 1s for
sims 2-7 (with some exceptions). For the simulations with remnant, more margin was sometimes necessary
(see Est 5.1-5.5). For sim 7, 7 is therefore set to 1.25s. For sim 8, 7 is set to 1.5s.

The estimations marked in blue can be found in the next section. The rest is appended in Appendix E.

Table 6.2: Benchmark estimation settings (* D[---] indicates diagonal square matrix)

Est | Summary ﬁ::;i) pars. is:i‘:izllfzf;:;eter P initialization | Q initialization | R,
Compensatory, Tso = 10 (<) Py = D[0.1(x5), st’ozz Plo e,
i K,(0.1),K,(0.15)] ’ q° 0 Kp,0, Kyl 2 2
1.1 | Invariant, DI, | — P = w,@®) 10,10] Qpo = D’[O 1(‘0 reosy,
FoFu 1, P o - " | Ppo=D[10,1,1] | PO S0
orul, Pr 30% (,(045),7,03) | Tpo=PUOLI o0 07,0
X0 = [0 (x9, Qso = D[0 (x8),
Preview, K,(1.3),K,(0), Pgp = DI0.1(x9), | q*0% Kp0, Ky,
51 | Invariant, B Kyl 6o = | 10,10,10] K0l 252
’ SI, FoFu 1, [w,(10.5), Ppo =DI[10,1,1, | Qpo = DI[0.1wy,,
P, 0%, 7s=1s (n(0.35),7,(0.26), | 10,1] 0.1 ,0,0.17 0,
wb,f(3.33),r;(0.4)] O.Iwayo,().l‘[;yo]
Preview, x50 = [0 (x9, _ Qs0 = DI0 (x9),
Invariant, 0109, g a3, k,0, | Peo = DOICO 202 0 Ko |,
2.2 {n(0.35), _ | 10,10, 10] D 262
SI, FoFu 1, 0.26) Ke(D)] 6 = P, o~ D[0,1] Krol  Qpo =
P, 0%, 15=1s | U [wp,(3:33), T304 P07 PLD DI0.1wpy,0,0.17 5]
Preview, K, (0), x50 = [0 x9, Qso0 = DI0O (x8),
, ’ Pso = D[0.1(x9), ’

93 Invariant, w5 (10.5), Kp(1.3), K¢ (1)] 1(;’010] 010 4?03, Kp0, Ky 0] 252
™ | SI, FoFu 1, | {,(0.35), 0o = [wp,r(3.33), P’ — D[10,1] Qp0 = “
P, 0%, Ts=1s | 7,(0.26) 77(0.4)] po= 5% DI0.1wpy,0.17% ]
Preview, K, (0), Xs0 = [0 (x9, Qs0 = DI[0 (=9,

) ’ Pso = D[0.1(x9), ’

51 | Tr varying | ,(10.5), Kp(1.3), K (D] 18,010] o1 4°0%, Kpo, Kyl 252
) SI, FoFu 1, | {,(0.35), 0o = [wp,r(3.33), P, — D[10.1] Qpo = u
Py 0%, T5=1s | 7,(0.26) 77(0.7)] po = D[0.1wpy,0,0.177 ]

. K, (0),Kp(D),
P ,
Tre‘”eviarymg wn(10.5), X0 = [0 (<9, | Pgo = D[0.1x9, | Qso = DIO 8,
3.2 SIf FoFu 1. | {n(039), Kp(1.3)] 10] 4?05, Kp,o] r2o2
’ | 7,(0.26), 0o =[17(0.7)] P,o=DI[1] Qp,o =DI[0.17% ]
Py 0%, 75 =1s f P P ro
reemes wp, (3.33)
Preview, K, (0), X0 = [0 (x9, Qso = DI0 x9),
. Pso = D[0.1(x9),
il Invariant, wp(10.5), Ky (1.3), Kp(1)] 18’010] [0-1¢x9 4203, Kp0, Ky 0] 1252
: SI, FoFu 1, | {,(0.35), 0o = [wp,f(3.33), P’ — D[10,1] Qp,0 =
Py 15%, 73=1s | 7,(0.26) 77(04)] PO = D[0.1wpy,0,0.177 ]
Preview Ky (0), K (D),
Invariar;t 0, (10.5), x50 = [0 (x9, | Psp=D[0.1x9), | Qs0 = DIO (x8),
4.2 ’ {n(0.35), K, (1.3)] 10] q°0?%, Kyl r2o?
SL FoFu 1| = 026 80 = [7%(0.4)] P,o=D[1] Qpo = DI0.17% | !
P, 15%,15=1s 7»(0.26), 0= f. po = po = TUf0
wb,f(3.33)
X0 = [0 (x9, Qs0 = D[0 (x9),
Preview, Kj(1.3), Ky (0), P50 = D[0.1(x9, | 4°0% Kpo, Ko,
51 | Tr varying, | K¢ (D] 10,10,10] Ky ol 252
" | SI FoFu 1, P, 6o = [wn(10.5), | Ppo=D[10,1,1, | Qpo = D[0.1wp, u
15%, 75 = 1s (1(0.35),7,(0.26), | 10,1] 0.1¢1,0,0.17 0,

wp,(3.33), T; (0.7]

O.Iwhf,o,o.l‘[;’o]
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Table 6.3: Benchmark estimation settings (continued) (* D[---] indicates diagonal square matrix)
Const. pars. | State/Parameter P e el 1o .
Est | Summary (value) initialization P initialization | Q initialization Ry
Preview, K, (0), x50 = [0 (x9, _ Qs0 = DI[0 (=9,

5o | T vaning | @,005), | K08, K01 | 180 S POED got 6,0 k000 |,
) SI, FoFu 1, P, | {,(0.35), 0o = lwp,r(3.33), P’ — D[10,1] Qp0 = u
15%, 75 = 1s 7,(0.26) 77(0.7)] po = ’ D(0.1wpy,,0.175 ]
Preview, K, (0), Xs0 = [0 (x9, _ Qs0 = DI[0 (=9,

s | 77 vaning | 0,005, | K03,k m) | e S PO got 6,0 k000 |,
’ SI, FoFu 1, P, | {,(0.35), 0o = [wp,r(3.33), P’ — D[10,1] Qp0 = u
15%, 75 =1.25s | 7,(0.26) rjt (0.95)] po = ’ D[O.la)bfvo,O.lT;YO]

. Ky (0), K7 (1),
?e‘”eviar | @a(105), X0 = [0 (x9, | Pgo=DI0.1x9, | Qso = DIO (x8),
54 | o b 1y E' ((0.35), K,(1.3)] 10] 7%02, Kpy] r2o2
’ _ T 1,(0.26), B0 = [17(0.7)] P, =DI1] Qpo=DI0.17% ]
15%, 15 =1s oy £(3.33) Ve
b, f\9-
. KV(O)!Kf(l)r
Tprewe“";ar o | @n(105), x50 = [0 9, | Pgy=D[0.1x9, | Qs0 = D0 (x8,
55 | o cope i | €a(035), Kp(1.3)] 10] 7%0%, K ] ro?
’ ’ r —_ * _ — *
15%, 7, = 1255 Z)U(O.éﬁg)é) 6o = [77(0.95)] P, =DI1] Qpo=DI0.17% ]
b,f\9-
. K, (0),K(1.1)
P v f )
Tfe‘”e"“’;ar o | @n95), X0 = [0 (x9, | Pgo=D[0.1(x9, | Qso = DI0 (x9),
56 S{ FoFu 1y I% ¢n(04), Kp(1.3)] 10] g%, Kp] r’o?
’ ’ r — * _ — *
15%, 7, = 1.255 rv(o.é)), B0 = [77(0.95)] P,0=DI[1] Qpo =DI0.17% ]
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The figures below show a selection of the estimation results for the runs described in the previous section.
The full set can be found in Appendix E.
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6.4. Observations of the benchmark estimations

Using the preliminary results of the benchmark estimations as presented in Section 6.3, one can now assess
the DEKF applied to identifying time-varying parameters in preview tracking. This section will discuss the
observations that can be made from these results. The next section will then identify some areas that still
need attention going forward. A plan for these improvements can be found in the next chapter.

Most importantly, it can be concluded that the DEKEF is a promising candidate for at least partial parameter
estimation of preview tracking tasks. The benchmark estimations from 2.2 onwards (Figures 6.7 to 6.15) have
shown that the Dual Extended Kalman Filter has the capability to converge for preview tracking tasks, when
keeping the neuromuscular parameters and time delay constant. These parameters have well-documented
values and are believed to stay relatively constant anyway (Zaal, 2016). Although keeping them constant in a
time-varying estimation is suboptimal, it is not insurmountable.

Parameter estimation for both SI and DI system dynamics was shown to be possible. However, since the
response is much more sensitive to parameter changes, the identification results were typically better for SI
experiments.
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During the early tests of benchmarking, it was found that in the preview filter Ho,, one should estimate a
break frequency instead of a time constant. The time constant (7}, ¢) is represented by a very small numerical
value, that is very sensitive to minor changes. Moreover, it easily crosses to negative values, causing problems
in the estimation process. Using its inverse break frequency (wy, r) solves these issues, making the estimation
process much more robust.

It was also demonstrated that using a suspension time results in successful identification of preview time
(Tr)- This was visible for example in estimation 2.2 (Figure 6.7).

The DEKF has shown to be able to converge for simulations with remnant, for example in estimation 5.3
(Figure 6.9). Admittedly, the remnant power during benchmark was still relatively low. From the innovation,
it becomes obvious that the variance band of innovation for simulations without remnant was wide. This
means that the covariances of states (process noise) and of the HO input ('sensor’ noise) were assumed to be
fairly strong. In the case of simulations with remnant, the variance and actual innovation were already much
closer together.

Aside from remnant, the DEKF was also shown to be capable of tracking time-varying behaviour (see est.
3.1, Figure 6.8). This tracking becomes very accurate under ideal conditions (no remnant noise). Even track-
ing of multiple time-varying parameters simultaneously is possible, as proven by estimation 7.1 (Figure 6.14).
It was remarkable to see how accurate the DEKF could trace the sinusoidal preview time, even in the case of
a noisy simulation.

Finally, the DEKF has shown to be able to cope with assumed parameters that are not at their correct
value. In estimation 5.6 (Figure 6.12), all assumed parameters were deviated approximately 10% from their
actual value in simulation. This did not seem to significantly affect the quality of estimation, but analysis with
more extreme deviations should be applied to test this further.

6.5. Discussion & areas of improvement
Although the benchmark estimations were already reasonably successful in showing potential in parameter
estimation with a DEKF, they also identified numerous issues and weaknesses of the current implementation.

At least for the current algorithm and initialisation settings, estimating all parameters simultaneously
proves to be impossible. This even holds for the ideal scenario of estimation 2.1, with an SI system and no
remnant (Figure 6.6). Especially when estimating two time-delay parameters at once, at least one is shown to
diverge and break the entire estimation effort.

Secondly, the time traces are still relatively erratic. Refinements to the algorithm or its initialisation are
necessary. Especially in the case of simulations with remnant, large variations can be observed (e.g. estima-
tions 5.1, 7.1 and 8.1, Figures 6.9, 6.14 and 6.15). It seems that the algorithm tries to compensate remnant
noise by adjusting parameters, especially gains K, and K¢.

This volatility poses a problem in the identification of time-varying behaviour. This becomes very obvi-
ous in estimation 7.1. In the case of 7 r,the volatility is bounded enough to represent the actual parameter
variation relatively clearly. For K, however, the contrary is true. The variations are in this case so large, that
the sigmoidal step can hardly be recognised. Similarly, parameters Kf and wy, r can hardly still be recognised
as being constant from their identified time trace.

A third phenomenon was observed very clearly in estimation 6.1 (Figure 6.13). When the DEKF estimates
a sigmoidal parameter jump, its effects ripple through to other parameters as well. It could be the case that
this issue can be resolved similarly to the previous point. After all, both relate to the number of parameters
that can adapt in a single or a few time steps.

A final observation was made regarding the implemented suspension time. In a number of cases, the
estimated preview time overshot the suspension time (e.g., estimations 5.4 and 6.1). This in turn caused in-
stability and divergence of the estimation process. Increasing suspension time and thus adding more margin
resolved this issue, as shown by estimations 5.4 and 5.5 (Figures 6.10 and 6.11). As already described in Sub-
section 5.1.2, making the suspension time too large results in a loss of precision. Hence, the suspension time
remains a setting to tune carefully.






Conclusions & Recommendations for
Further Research

This research aims to identify time-varying, adaptive human control behaviour in preview tracking tasks. To
achieve this, Kalman filters are applied to the preview model of Van der El et al. (2016). The main advantage
of this model over others, is that its parameters have a physical meaning with well known values and limits
for human operators. It also consists of a realisation of minimal order, which ensures that the parameters can
be identified uniquely.

On the side of estimation with Kalman Filters, the Dual Extended Kalman Filter (DEKF) was a promising
candidate in particular, since it has been applied successfully to compensatory tracking under similar con-
ditions before by Popovici et al. (2017). The DEKEF is suited to estimate delay parameters, which form a vital
part of preview tracking. Moreover, the method has been successfully applied to real human data.

So far, a simulation framework has been set up, capable of simulating realistic, time-varying control be-
haviour in preview tracking tasks. The simulation incorporates remnant noise according to a first-order
model by Levison et al. (1969). Besides, the Dual Extended Kalman Filter was implemented to identify the
parameters of this tracking behaviour. To ensure maximum likelihood of convergence, the HO model was
specifically formulated as a minimal order state-space system.

With this software, a set of eight benchmark simulations were constructed. These build up systematically
to test the potential of the DEKF for increasing complexity and realism. It was shown that estimation using
the DEKF is possible for the preview model, excluding the neuromuscular parameters and the feedback time
delay. This is the case for simulations with both SI and DI dynamics, relatively low amounts of remnant, and
time-varying parameters.

By suspending the simulation for 7 seconds, effectively redefining the start time of measurement, the
preview time can successfully be estimated as a regular, non-negative delay parameter.

The complexity of the problem did have to be reduced by excluding a subset of parameters from the esti-
mation process. Parameters that were deemed suitable, are the neuromuscular parameters and the feedback
time delay. Earlier research suggests that these parameters are likely to stay constant for a given experiment,
as they describe the physical limitations of the human operator (Zaal, 2016). Especially taking out the feed-
back delay greatly improved the chances of convergence. Estimating two delay parameters simultaneously
proved to be too ambitious, at least with the settings as applied during benchmarking.

Looking back at the research questions of Chapter 3, questions 1a,b,c and 2b,c have so far been answered,
all with positive outcome. These questions cover the simulation of time-varying preview behaviour as well as
the potential of convergence using a DEKF for parameter estimation.

A partial or preliminary answer was found for questions 2a,d,e and 3b,c regarding the sensitivity of filter
initialisation and accuracy of the outcome. This does mean that, to find a satisfactory answer to these and
other remaining questions, additional research is still needed. The next section will outline what steps are still
to be taken as part of this thesis work. Thereafter, the final section of this report will be devoted to sketching
the outlines of the work that could follow after successful completion of this thesis.
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7.1. Proposed plans for research continuation

Moving forward from the benchmark phase, the main goal is to stretch the performance of parameter esti-
mation with the DEKF in preview tracking as far as possible. Several areas were identified that can still be
improved upon:

1. The time traces of the parameters should be as smooth as possible. This means that ideally, a clear

distinction can be made between time-constant and time-varying behaviour.

2. The estimation process should be robust, with minimal chance of diverging.

3. The effects of the identification of a time-varying parameter on the other parameters should be as min-

imal as possible.

4. The amount of remnant that is added to the HO input, should be increased to more realistic levels.

5. The number of parameters that can be identified simultaneously, should ideally be as high as possible.
Firstly, the steps to improve estimation results will be discussed in the next subsection. Thereafter, more
extensive research will be done using the sensitivity simulations, discussed in Subsection 7.1.2. Finally, the
tested method will be applied to experimental data. What data will be used is explained in Subsection 7.1.3.

7.1.1. Minimizing the parameter estimation error

The next step to take in this research, is to improve the match between the estimated parameters and their
actual values. In order to assess the quality of a parameter estimation, different metrics are proposed. A good
candidate is the normalised root mean square error (NRMSE). It is computed as in Equation (7.1), by taking
the RMS of the difference between actual parameter values 8y, and their estimated quantities Opgxr, and
dividing it by the mean true parameter. The lower this value, the closer the estimated parameter is to the
actual parameter value.

1 1 Nmeas
NRMSE = — Y (Opexe (i) = Orrue (1))? (7.1)

true Nmeas i=0

A second metric that can be used for the evaluation of an estimation, is the variance accounted for (VAF), also
used by Van der El et al. (2016). This value indicates how closely the outcome of the identified HO (#1) matches
the actual stick input u from a simulation or experiment. In order to compute the VAF, the simulation will be
repeated using the original target signals and the parameter traces as estimated by the DEKF.

3 Nmeas | () — (k)|
X

VAF=1|1- ~
X pmeas 112 (k)

100% (7.2)

Similarly, the VAF can also be calculated of the previous, resimulated HO stick input #, and a new simulation
with the original smooth parameter traces, but without any remnant noise. If this VAF ends up lower than the
one previously calculated, that would support the hypothesis that the erratic parameters estimated by the
DEKEF explain noisy HO stick inputs due to remnant.

To reduce the variance of the estimated parameters and increase the chances of convergence, there is a num-
ber of options to look into:

1. First and foremost the initialisation of the DEKF can be finetuned. The main parameter that regulates
the variance of the estimated parameters are process noise covariance matrices Qs and Q. Further-
more, the sensor noise matrix R, has an influence on the balance between previously identified param-
eter values and new incoming data.

2. To avoid divergence of the filter, limits to estimated parameters can be introduced in the DEKF. After
all for most parameters, human limits and capabilities have been extensively researched. Simon (2010)
has made an overview of several augmentations to Kalman Filters that can incorporate (soft or hard)
state constraints to parameters or update rates in various ways. This enables the user to exploit the
additional knowledge in favour of better filtering performance.

3. Finally, parameter traces could be smoothed afterwards. This option of a post-processing filter comes
with several considerations. First of all, it introduces the explicit assumption into the estimation pro-
cess that parameter changes are gradual. Secondly, post-processing comes with a trade-off. Either
smoothing introduces delay in estimation process, or the algorithm loses its real time applicability if
the delay is compensated for afterwards.
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7.1.2. Sensitivity simulations
Before moving to experimental human operator data, the DEKF will be scrutinised with an additional set of
simulations. These sensitivity simulations test a wider range of conditions and will therefore include
e more diversity in time-variance: different sinusoidal and sigmoidal variations,
* the same forcing functions shifted by phase, to rule out the effect of timing of time-varying behaviour
at a certain point in the target,
* more forcing function realisations (the realisations from the 4 rad/s bandwith case of Van der El et al.
(2019b) that have not yet been used),
¢ more remnant realisations and higher, more realistic remnant powers.
In the process of estimation, the limits and sensitivity of the DEKF initialisation will be researched.

7.1.3. Experimental data

As a final step, the fully tested method will be applied to actual experimental control data. There are no plans
for an extensive, dedicated experiment in the current thesis research. The main reason for this is the time
constraint. Properly designing, executing and analysing an experiment is a time-consuming process. The
thorough preparation that this requires, is an excellent topic for future research. There are however some
ideas on what this experiment might look like. These thoughts can be found in the next section.

Luckily, there is enough suitable data available from previous experiments to apply parameter estimation
using a DEKF on human operator data. A suitable candidate for supplying actual measurements is the re-
search done by Van der El et al. (2018). In this research, human operators were tested for multiple preview
times. Preview time is the parameter with the highest priority in the current thesis. Thus, using these ex-
periments allows for extensive testing of the accuracy of the DEKF for different preview scenarios. An added
benefit of using this research, is the fact that the constant parameters that were identified, are particularly well
backed up by a theoretical expectation. This means that the identified values can serve as a good reference.

Additionally, an explicit quantitative comparison with the results of Plaetinck et al. (2018) and Rojer et al.
(2019) could be made, using their experimental data.

7.2. Beyond this thesis

As expressed at the start of this thesis, the main goal of this research is to contribute to the identification and
understanding of time-varying, adaptive human control behaviour. With a working identification method,
there are numerous interesting leads for future research to follow up on.

Firstly, one can think of extending the research into the theoretical background of time-varying behaviour
in preview tracking tasks. The currently researched method could be employed to investigate how constant
human operators actually are under experiment conditions that are currently held for 'constant’. Testing this
explicitly would validate one of the major assumptions that has so far been common for research in the field
of cybernetics (Mulder et al., 2018).

Moreover, one could optimize the progression of one or more parameters over time in an experiment run,
exposing how much there is to gain when human operators vary things such as their preview time (7 7). This
is similar to what Van der El et al. (2018) did for compensatory tracking with constant parameters.

Secondly, this thesis could form the basis for a (range of) new experiment(s). A main topic of interest would
be to invoke time-varying behaviour and analyse how HO’s notice and adapt to these changing conditions.
Conditions to vary could for example be

» Forced preview. One could think of time-varying variations to an idealised tracking task such as Van der

El et al. (2018), or a realistic scenario (Land and Lee, 1994).

* Gradual CE transformation, such as used by Plaetinck et al. (2018) or Zaal (2016)
An experiment could also give insight in the process of acquiring a new skill. The progression from a novice to
an experienced operator, as well as the immediate differences in adaptability between skilled and unskilled
operators could be studied in more detail.

Thirdly, after ample testing, this method could form the basis for adaptive steering assistance, such as an
autopilot or haptic feedback. Finally, the approach of simulation and testing that was presented in this thesis
could also be applied to other algorithms for time-varying identification. As indicated in Section 2.2, there
are other promising methods, such as the UKF (Rojer et al., 2019), or LPV interpolation (Pronker et al., 2017).






Derivation of the Sigmoidal Parameter
Adaptation Formula

In previous research, a sigmoidal adaptation is often used to simulate or invoke time-varying systems or
behaviour (Plaetinck et al., 2018; Van Grootheest et al., 2018; Zaal, 2016). With a sigmoidal function, the point
in time at which the change occurs can be easily defined (7,), well as how gradual this change is. This last
factor is often expressed as the maximum rate of change (G in Equation (A.1)). However, for HO parameter
adaptations, it is deemed much more intuitive to express this rate of change as the time it takes to go through
this transition, AT.

0i2—-0i)

0:(D =00+~

(A.1)

The original Equation (A.1) is therefore slightly rewritten in order to have AT appear in the formula explicitly.
This derivation is started from the basic formula of a sigmoid function (Equation (A.2), top row). As Figure A.1
shows, this standard sigmoid ranges from 0 to 1, and is point-symmetric about (0, 0.5).

with transition percentage b and transition domain Ax

Figure A.1: Sigmoid function y =

1
1+e™*

To define the total transition domain Ax, one needs to know the x-value of a certain threshold a. The cor-
responding domain to go from 1 — a to a, Ax, can then be found by simply doubling this x-value because of
symmetry around the y-axis. At the same time, symmetry can also be used to rewrite the upper threshold a
to the percentage of the transition that falls within Ax (b, see Equation (A.3)). This starts with the realisation
that 1 — a is half the percentage that is not considered for the transition: (1 - b)/2.
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A. Derivation of the Sigmoidal Parameter Adaptation Formula

(A.3)
B b+1 _ b+1

1
Y e r l-a=
1 l1-a
e_x:——]_:— a=
a a A.2)
l-a a
x=-ln——=ln—— L2 _
a l1-a l—a
a b+1
Ax=2In—— =2In——
l1-a 1-b

2-2a 2-(b+1) 1-b

To make the change b within AT seconds, the original function needs to be scaled relative to the y-axis. Sub-
sequently, the new function is shifted along the ¢-axis to the correct transition point T,. Finally, the function
is scaled and shifted along the y-axis to arrive at the final expression for the required sigmoidal parameter.
This is done in Equation (A.4). By comparing the final result with the original equation, one can observe

btl

_ Ax _ 2
that G = AT — ﬁln 1-b
transition to occur within AT, we simply have to substitute b = 0.99.

1 1 1
y: — — = =
l1+e T+e 8!, (S
_ 1
y 1+e—§1n%(r—n)
0i>—06;1
—0i(0)=0;1+ = =0i1+
T pe BT '

for any given transition percentage b and transition time AT. So for 99% of the total

(A4)

0i2—0;1

l+e- ZlRIng (—T,)



Unsuccesstul Simulation Efforts

This appendix lists some failed attempts that were done to simulate time-varying tracking behaviour. The
methodology behind the code and reasons for failure or discontinuation are included for future reference
of students and researchers working on the current or similar code. Some elements of these efforts are still
present in the code, and are still used, for example for verification purposes.

B.1. Time-varying Simulink model

The first simulation effort was constructed by means of a time-varying Simulink model. Simulink has many
options for linear models with time-varying parameters, making it relatively easy to get a quick implementa-
tion.

This effort was unsuccessful because:

» Solving at required sample time instances: It proves to be difficult to precisely instruct Simulink to
output results at fixed time instances, which is a requirement for the subsequent parameter estimation.
When trying to solve for a fixed time step, the simulation would raise the following warning upon user
interruption: The specified buffer for 'Variable Transport Delay’ was too small. During simulation, the
buffer size was temporarily increased. Efforts to resolve this warning were not successful.

¢ The simulation does not converge for double integrator dynamics.

It might well be possible to solve both of these problems. However, since there was a desire to perhaps also
make the simulation available in Python in the future, working with Simul ink was discontinued. The code as
it stands now can be relatively easily translated to a full Python version. Moreover, implementing the actual
differential equations in MATLAB also increased the understanding of the problem and solution method.
This as opposed to making a 'black box’ Simulink model, that would be difficult to understand and debug
once it would produce inexplicable results.

B.2. Matlab 1sim simulation per time step

A second effort to simulate the nonlinear system, had a similar layout to the eventual (current) simulation.
During each time step, all parameters are kept constant, so the resulting system is in fact linear. Hence, its
dynamic response can be computed with a simple 1sim command for the duration of that time step. By
executing each subsequent time step, with the final state of the previous step as input conditions, the time
signals with varying parameters would emerge.

This effort was unsuccessful because:

e 1lsim startup time. 1sim is really quick at generating the response for long simulations of a constant
linear model. However, the function does have a considerable startup time. Having to start 1sim every
time step again, you do run into problems of extremely slow code progression.

Averification of the results for this method did show, however, that the resulting time traces are in fact correct.
This setup was therefore reiterated to the current method, where the model is solved in each time step with
ode45, using an automatically generated nonlinear state-space representation of the block diagram. By doing
it this way, the startup time for 1sim in each step is avoided, resulting in much better performance. For more
information, see Section 4.2.
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68 B. Unsuccessful Simulation Efforts

B.3. Code generation with readable parameters

The last iteration included a minor difference compared to the final layout. In this pipeline, the code also
auto-generated files with the differential equations, solved by ode45. The parameters inputs to the function
would be presented as two vectors though, one containing the parameter names and one containing their
values. This format follows the example of Daan Pool’s original MLE code. In the execution of the function,
each parameter name/value pair would be transformed into a variable using a for-loop. It was found that
evaluating this loop for each time step, resulted in code performance that was comparable to the 1sim code
described in the previous subsection.



State-Space System of HO Preview Model

This appendix details the nonlinear state-space equations that were used in the DEKF, analogous to Appendix
A of Popovici et al. (2017) that applied a DEKF to compensatory tracking. The model behind these equations
is depicted in Figure C.1. The formation of this model and the state-space equations was explained in Sec-
tion 5.2, particularly Subsection 5.2.1. Subsection 2.2.2 contains a more elaborate discussion of the DEKF. In
order to convert the (exponential) apparent preview delay (T;) and time delay (7,) from Figure C.1 to state-

space, a third order Padé approximation was used. For more information

Ideal Human Operator

, see Subsection 4.1.3.
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Figure C.1: Isolated block diagram of the HO in preview tracking tasks with parameters, far view only (Van der El et al., 2016)
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In this research, parameters were kept constant to reduce problem dimension and increase chances of con-
vergence. The parameter was then removed from x; or 8. Symbolic occurrences in the equations above were
replaced by the numerical value. Thus it was also removed from any Jacobians calculated during estimation.
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Using Simulink to Construct Minimal
Realisation State-Space Systems

In Subsection 5.2.1, some rules were established to convert simple MIMO block diagrams to a minimal re-
alisation state-space system. However, this might not always be obvious, especially for complicated block
diagrams. If finding a minimal realisation proves to be challenging, the procedure in MATLAB/Simulink
explained below might provide a helpful tool. In global terms, this procedure works as follows:
1. Make an abstract, simplified version of your block diagram in Simulink, keeping the structure of nodes
similar to the original diagram.
2. Populate each block with a second order transfer function, with unique prime coefficients. The highest
order of each denominator can get the coefficient 1.
. Use MATLAB’s 1inmod command to transform the block diagram into a sys-object.
4. Print the state space in the Command window and retrace the individual A—, B—, C — &D-matrices of
each block in the original Simulink diagram.
¢ If necessary, interchange states until they are in canonical order
5. Analyse the final result and think about if and how this is sensible (for example according to the logic
of Subsections 4.2.2 and 5.2.1)

w

Figure D.1 shows the result of steps 1 and 2 for a simplification of Figure 5.3. Notice how this block diagram ex-
actly copies the structure of Figure 5.3, except for the fact that directly adjacent blocks are merged. Moreover,
all the coefficient terms in the transfer functions are unique primes. This makes it possible to trace back each
coefficient in any state-space individually, by computing the prime factors of each value in the state-space
matrices (in this case, all coefficients appear individually).

[Pm| MISOtest v

11s+ 13 17s + 19
> £ +25+3 S+55+7

D,

Figure D.1: Simplified block diagram of Figure 5.3 for the retrieval of transfer function coefficients in a state-space system
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72 D. Using Simulink to Construct Minimal Realisation State-Space Systems

Equation (D.1) shows the result of the MATLAB command sys = linmod(’MISOtest’), made with MAT-
LAB release R2019b.

-5 -7 11 13 0 -1
B I I

0 0 -2 -3 1 0 D)

0 0 1 0 0 0

sys.c=|17 19 0 0], sys.dz[O 0]

It is easy to note that its contents match two stacked controllable canonical forms, if states x; & x» and
states x3 & x4 are interchanged. To do this, interchange rows 1 & 2 and rows 3 & 4 in matrices sys.a and
sys.b. Moreover, interchange columns 1 & 2 and columns 3 & 4 in matrices sys.a and sys.c. The final
result should look like Equation (D.2). This state-space structure is exactly identical to the one represented
by Equations (5.2) and (5.3), for which the logic behind it can be found in Subsection 5.2.1.

0o 1 0 0 0 0

-7 -5 13 11 b= 0 -1
sys.a=| o o o 1| svsP=lg 02)

0 0 -3 -2 1 0

sys.c=|19 17 0 O0f, sys.d= [0 0]



Complete Results of Benchmark

Estimations

This appendix displays the full time trace results of all benchmark estimations. A detailed description of these
estimations and its settings can be found in Section 6.2.
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Figure E.12: Benchmark estimation 5.4

Est5.5 - SI, TVar (7_f), Remnant: levison (wb (3.000), Kr (2.138), Pn (0.150))
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Figure E.13: Benchmark estimation 5.5
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Est5.6 - SI, TVar (7_f), Remnant: levison (wb (3.000), Kr (2.138), Pn (0.150))
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Figure E.14: Benchmark estimation 5.6

Est6.1 - SI, TVar (7_f), Remnant: levison (wb (3.000), Kr (2.134), Pn (0.150))
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Figure E.15: Benchmark estimation 6.1
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Est6.2 - SI, TVar (7_f), Remnant: levison (wb (3.000), Kr (2.134), Pn (0.150))
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Figure E.16: Benchmark estimation 6.2

Est7.1 - SI, TVar (K _p, 7_f), Remnant: levison (wb (3.000), Kr (2.016), Pn (0.152))
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Figure E.17: Benchmark estimation 7.1
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1
Original model value Original model value
DEKF estlmated value 0.5 — — = Assumed constant value
\ /P\ e
‘ ‘”“ ”Lk | < °
\m .v"y LM‘ \\,
| T ‘ -0.5
o
i y
-50 0 50 100 -50 0 50 100
t [s] t [s]
Original model value 1 Original model value
— — = Assumed constant value — — = Assumed constant value
0.5
=0
-0.5
-1
-50 0 50 100 -50 0 50 100
t [s] 6 [s]
— 2
Original model value
‘— — — Assumed constant value 00y
z
El Innovation
=1 St. dev. innov.
St. dev. innov.
-2
-50 0 50 100 -50 0 50 100
t [s] t [s]

/), Remnant: levison (wb (3.000), Kr (1.579), Pn (0.150))

2
— Original model value |l
DEKF estimated value ‘| ’ \
Tk E | NLJ ] \rw“
N N R AR ) b\k\ I
= e \»-v W \ h”J f'rlm’r VW
o i
H Original model value
DEKF estimated value
-1
-50 0 50 100
6 [s]
9
[ Original model value
[ 8.5 = = = Assumed constant value
.f =8
\ J 3 6
\ L‘h,ﬂJ("ll .
]"I"‘! 1 W‘ ”\ }*\f A §
Original model value 375
DEKF estimated value
7
-50 0 50 100 -50 0 50 100
t [s] t [s]
2
Original model value Innovation
= = = Assumed constant value o St. dev. innov.
g . St. dev. innov. |4, .
to0
ER
-2
-50 0 50 100 -50 0 50 100
t [s] 6 [s]

Figure E.19: Benchmark estimation 8.1
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Errata of the Preliminary Thesis Report

In the continuation of the research after the preliminary stage, new insights in the subject matter led to some
fairly substantial changes throughout the research approach. This appendix aims to list the most important
changes, that are not yet reflected in the Preliminary phase (Part II of this final report). In general, in case of
inconsistencies between the scientific article (Part I) and the body of the report (Part II), the article should
always be leading.

The following errata were located:

Section 4.1: the location of the remnant was changed from the u signal to the feedback of y (compare
Figure 4.2 to Fig. 1 in the article). This is in line with the remnant analysis for preview tracking tasks by
van der El et al. (2019a).

Subsection 4.2.1: The remnant gain calculation based on the power ratio is done using the PSD, as
explained in van der El et al. (2019a). This is also explained in the scientific article, Section IV-D.
Subsection 4.2.1: The way of computing time step updates in simulations was changed from using
MATLAB’s ode45 function to a discrete LPV model. How this works is described in Section IV-A of the
article.

Subsection 5.1.2: Suspension time in the preliminary phase was renamed to anticipation time, as this
was deemed more intuitive. A consistent explanation of the concept can be found in the article, Section
III-B.

Subsection 5.2.2: The implementation of the total derivative G;}C was changed back to the original

equation (Eq. (44) of Popovici et al. (2017)), after it was found that the second Jacobian, g—{s was to be
replaced by its discrete counterpart @, _;. The correct version of the algorithm can be found in the
scientific article, Section III-A and Appendix A.

As explained in Chapter 7, parameter limits were not yet implemented in the preliminary phase, but
only added to the algorithm in later stages. They are therefore not yet mentioned in Chapter 5.

There are some minor differences in notation in the report compared to the article. For example, sub-
script r is used for remnant in the preliminary report. In the article, the subscript n means remnant,
whereas the it typically means near view (not used in the article) or neuromuscular (nms in the article)
in the report.
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Complete Results of Estimations in the
Scientific Article

This appendix contains all the estimations that formed the basis of the scientific paper of this thesis (part
I). The estimation results show all parameters, including the constant ones. For each parameter, the mean
result, best result and worst result by NRMSE and the individual estimations are shown.

Moreover, a typical estimation, selected by means of the median VAF is identified from the batch results.
For this estimation, the resimulated HO input signal @ is shown, together with HO input u of the original
simulation, the remnant signal 7 and a 10-second retrospective VAF value that quantifies the quality of the fit
locally.
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90 G. Complete Results of Estimations in the Scientific Article

G.1. Feasibility phase
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Figure G.2: Feasibility 2: Compensatory, SI, Kj, varying, remnant-free
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Feasibility 3 (10 FoFu’s, each 1 remnants, BW 4 rad/s, DI, P, 0.0%) - Average parameter results (LDEKF)
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Feasibility 4 (10 FoFu’s, each 1 remnants, BW 4 rad/s, DI, P, 0.0%) - Average parameter results (LDEKF)
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G. Complete Results of Estimations in the Scientific Article

Feasibility 5 (10 FoFu’s, each 1 remnants, BW 4 rad/s, SI, P, 0.0%) - Average parameter results (LDEKF)
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Feasibility 6 (10 FoFu’s, each 1 remnants, BW 4 rad/s, SI, P, 0.0%) - Average parameter results (LDEKF)
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Figure G.6: Feasibility 6: Preview, SI, 7 ¢ varying, remnant-free
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Feasibility 7 (10 FoFu’s, each 1 remnants, BW 4 rad/s, DI, P, 0.0%) - Average parameter results (LDEKF)
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Figure G.7: Feasibility 7: Preview, DI, invariant, remnant-free
Feasibility 8 (10 FoFu’s, each 1 remnants, BW 4 rad/s, DI, P, 0.0%) - Average parameter results (LDEKF)
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G.2. Performance phase

G.2.1. All parameters

Performance 1 (all parameters) (5 FoFu’s, each 20 remnants, BW 4 rad/s SI, P, 35.0%) - Average parameter results (LDEKF)

16 16 08— 25
Siulated value Original model
24 Performance 1 (warst) . Assumed const; .
3 Performance 1 (best) h 155 06 .
Performance 1 (mean) -
=12 Performance l(m(hv) = = =15,
. T o A E 15 04 a8,
<k A . = Simulated value Moy
AL " 3 Performance 1 (worst) Performance 1 (worst)
145 02 Performance 1 (best) Performance 1 (best)
08 Performance 1 (mean) 05 Performance 1 (mean)
Performance 1 (indiv.) Performance 1 (indiv.)
06 14 0 0
50 0 50 50 0 50 100 -50 0 50 100 -50 0 50 100
t[s] t[s] t[s] t s
1 16 08 7 07
ulated value | Simulated value
14 Performance 1 (worst) 06 Performance 1 (worst)
05 Performance 1 (best) Performance 1 (best)
= Performance 1 (mean) Performance 1 (mean)
= g 12 Performance 1 (indiv.) Performance 1 (indiv.)
= 0 £ —— 2ul
= 2100 = Siuulated value
3 ' Performance 1 (worst)
05 | Performance 1 (best)
8 Performance 1 (mean)
Performance 1 (indiv.)
-1 6 > 0
50 0 50 100 50 0 50 100 -50 0 50 100
tls] tls] tls]
500%
0%
-500%
=
1000%
Stmlatcd HO Wput
Estimated HO input i (median . . A & A
Remnant noise (n(t)) - v ¥ v -1500%
VAF (10s window)
-2000%
120
Figure G.9: Performance 1: Preview, SI, 7 [ var, full remnant 35%
Performance 2 (all parameters) (5 FoFu’s, each 20 remnants, BW 4 rad/s, DI, P, 55.0%) - Average parameter results (LDEKF)
2 25 14 e} 04
Siulated value Simulated value Shulated value
Performance 2 (worst) Performance 2 (worst) Performance 2 (worst)
15 Performance 2 (best) 2 Performance 2 (best) 03 Performance 2 (best)
Performance 2 (mean) | = Performance 2 (mean) Performance 2 (mean)
o) Performance 2 (indiv.) | = Performance 2 (indiv.) - 2 (indiv.)
T W Eas 7 =
k " < = Simulated value
. T~ 3 Performance 2 (worst)
05 A 1 1 08 Performance 2 (best) 04
? Al Performance 2 (mean)
i ‘ J Performance 2 (indiv.)
0 05 06 0
50 0 50 100 50 0 50 100 50 0 50 50 0 100
ts) ts) ts)
06 14 08 : 08 v
Simulated value imulated value A nulated value 2
05 Performance 2 (worst) 07 Performance 2 (worst) [} 1 07 Performance 2 (worst) U
12 Performance 2 (hest) Performance 2 (best) Performance 2 (best) { v
= Performance 2 (mean) 06 Performance 2 (mean) i 06 Performance 2 (mean) [ | i
=2 Performance 2 (indiv.) tars] Performance 2 (indiv.) | . Performance 2 (indiv.) |
) E v o 2 - >
Siulated value J
Performance 2 (worst) | / q 5 I =
Performance 2 (best) | 8 [ — el
01 Performance 2 (mean) /
Performance 2 (indiv.)| -4 {
0 6
50 0 50 100 50 0 50 100
tls] tls]

100%
0%

-100% 2

Siulated HO input. / | f
Estimated HO input i (median VAF) ) -200%
Remnant noise (n(t))

VAF (10s window)

-300%
120

Figure G.10: Performance 2: Preview, DI, T £ var., full remnant 55%



G.2. Performance phase

95
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G.2.2. Constant Physical limitations
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G.2.3. Only preview time
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Code Documentation

In order to perform this research, MATLAB was used to simulate tracking tasks, estimate behavioural param-
eters and analyse the results. This appendix will give an overview of this MATLAB code, as an example or a
starting point for future research. The text is therefore meant for future users. N.B. Since the aim is to progress
the code in future research, any information found here may not completely reflect the current state of the code.
Moreover, this appendix is by no means complete, but merely meant to express the ideas behind the code setup
and structure. The code itself should always be annotated with ample comments to clarify its purpose.

The simulation and estimation software has an Object Oriented code structure. Most of the code is di-
vided in a number of Classes, with a hierarchical structure. In general, a class is an entity that has both Prop-
erties (MATLAB) (called Attributes in Python), as well as Methods attached to it. Properties are types of data
that hold information on the specific details of the class instance. Methods on the other hand, are functions
used to do something with these properties, for example plotting results.

This appendix gives an overview of the code structure, as well as the different classes, functions and scripts
that were used for this thesis. The governing structure of the classes is depicted in Figure H.1. The classes in
purple, constructed to contain sampled and timed data are described in Appendix H.1. The classes in blue,
that contain the actual Simulations, Experiments and Estimations, are described in Appendix H.2. The classes
in green, that are used to execute and evaluate batches of tracking runs, are further explained in Appendix H.3.
Finally, Appendix H.4 will detail some miscellaneous other utilities that are coded.

TrackingObject
TimeVector —> TimeSeries Simulation Experiment Estimation

T
, ’ N |

, , N
/ / \ I
/ / \ I
\ I
! HOparameter / ' |
i ' Batch | \
\ T \ ! |
N | \ / |
) ‘ A / ‘
S ! < B |
S~y ¢ v

BatchTimeSeries BatchSimulation BatchExperiment BatchEstimation

Figure H.1: Class hierarchy of MATLAB code

N.B. In Python, functions have a very flexible way of accepting arguments by means of required (normal)
arguments, keyword arguments (with a default value), optional arguments (xargs) and optional keyword
arguments (xxkwargs). Although MATLAB is more restrictive, the functionality of keyword arguments can be
mimicked as it is possible in MATLAB to provide only some of the listed input arguments. By providing a default
value for arguments that are further down the line (if nargin < ...), supplying the argument is optional,
making it similar to a keyword argument in Python. This structure is used often throughout the code.
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H.1. Timed data

All signals in the simulations and experiments of tracking tasks are discrete and sampled at a regular time
interval. Therefore, two main classes are constructed that bundle the available information. The first is the
TimeVector, that contains all relevant information about the timing of the data. The second is the TimeSeries
class, that couples these time labels to the correct sample values. Finally, the HOparameter class is a subclass
to TimeSeries that is used for the time-varying model parameters of LPV models.

H.1.1. TimeVector
The TimeVector class creates the applicable time labels for data samples. These are constructed based on four
separate inputs:
* Measurement time: indicates the time that is actually used for analysis. In preview tracking tasks, this
is typically 120 s (van der El et al., 2016).
* Time step: the time difference between consecutive samples.
¢ Run-in time: indicates the time that is used to obtain consistent HO or estimation performance.
¢ Anticipation time (renamed from suspension time): the amount of time margin used by the estimation
algorithm to estimate the preview time delay. The concept was explained in Subsection 5.1.2.
Based on these inputs, a unique time vector can be constructed. Apart from the aforementioned four
properties, the TimeVector class also lists some useful things such as the total summed time, the total number
of samples and fundamental frequency.

H.1.2. TimeSeries

The TimeSeries class provides the foundation of all timed signals in the code. This class couples the appropri-
ate values to the time labels given by the associated TimeVector. The easiest way to initialise an instance of a
TimeSeries is therefore with a TimeVector and a vector of values of the same total length.

Plotting Aside from time and values, the TimeSeries class also holds plot labels and properties. This makes
plotting different signals together very rapid. A quick plot of multiple TimeSeries can be made by using the
function plotTS on a primary TimeSeries, and providing the other TimeSeries to plot as optional arguments.
In order to plot TimeSeries data together in subplots, the function plotTSinAxis can be used by providing
the required target set of MATLAB Axes.

Analysis There are a number of built-in analysis tools in the TimeSeries class. These include for example
the minimum, maximum, mean, variance, VAE RMSE and NRMSE. Moreover, the auto-PSD is automatically
calculated from the measurement-time data and can be plotted easily with the function plotPSD. Again,
multiple TimeSeries can easily be plotted together by providing them as arguments.

Mathematical operations TimeSeries can be added, subtracted, multiplied or divided. These operations
are performed on the values of the class. A new TimeSeries instance is subsequently constructed, using the
TimeVector of the original TimeSeries and the newly calculated values.

HOparameter The HOparameter class is a subclass of TimeSeries that is used to specify either the parame-
ter inputs to the LPV simulation, or the time-varying parameter traces that form the output of an Estimation.
The only additional information that the HOparameter contains, on top of normal TimeSeries, are the inputs
that form their simulated shape (especially for sines and sigmoidal parameters), as well as an easy way to
construct these standardised time-varying parameters.

H.2. Tracking Objects

Tracking tasks form the backbone of this research. They provide a controlled way of testing and analysing
human control behaviour. The input and output signals that describe the result of a tracking task can be
obtained by both computer simulation as well as an actual experiment. In essence, these instances should be
interchangeable. Moreover, this thesis research tries to extract time-varying HO parameters from the same
set of input and output signals by means of a DEKF.

Therefore, these three classes, Simulation, Experiment and Estimation, have a common superclass called
TrackingObject. This superclass contains the properties and methods that are shared. These include:
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¢ Properties with tracking task information: forcing functions, CE dynamics, time properties, etc.

* Properties and methods that list names of the applicable HO parameters and canonical states in the
state and parameter vectors xg (Xs) and 6 (Th)

¢ Methods for saving and loading the different instances (particularly Simulations and Estimations).
This will be explained in H.2.4.

H.2.1. Simulation

The Simulation class object handles the logic for tracking task simulations. How the simulations are set up
was already discussed in Section IV of the scientific paper and in Chapter 4, based on the flow diagram that is
copied in Figure H.2. This section couples the flow steps to their associated MATLAB functions, together with
pointers to specific locations where more information can be found if required. It is easiest to understand
this section while following along in the code.

S1.1 Select task, $1.3 Set time S1.5 Append HO S1.6 Append
HO structure & Sl §elect o delay Padé order Si?;;l‘iact:i?;sggg - parameters & add remnant model Legend
CE dynamics Bl e Ve & remnant model ) preview FoFu parameters
)

Initialisation
$3.1a Save
. N J
no Si';g:;im;ﬁe ?53 ExTcu'te results & make
g simulation logbook entry ) EE—
- - T~o Generation
- T~ $3.2 Finish $3.3 Plot .
$2.1 Does L Simulation N 0 Feed into N J
simulation 4 . simuhtilon estimation
data exist? e object results /)
Tl - Processing
$3.1b Load T~ N J

Y

signals

\
/

$2.3 Execute time-varying simulation

$2.3a Construct SRADD limsitor $2.3¢c Compute $2.3d Compule
symbolic TF to state- space & canonical states CuipUiEiznale
generate code (u, y and e)

Figure H.2: Flowchart of Human Operator simulations

S2.3e
Simulation
finished?

Initialisaton The code is structured such that the initialising the different settings is as apparent as possible.
A’main’-script with an example of how this is done, is PrevSim.m. The steps S1.1-S1.3 are listed stright away,
followed by the construction of the desired Simulation object using these settings (S1.4).

Subsequently, the HO parameters are defined by appending HOparameter class objects with the desired
shape to a struct. Note that the fieldnames of this struct must be identical to the parameters listed in the
parameter vector property (Sim.Th_names), in order for them to be recognised. The entire struct is appended
to the Simulation with the method Sim.addHOpars (step S1.5).

Similarly, the remnant model parameters are appended supplied in the form of a struct using the method
Sim.addRemnantPars. Note that the desired remnant power ratio P, should be provided (see Section II-B of
the scientific article, or Subsection 2.1.4). The calculateRemnantGain method that is automatically called
when appending the parameters will then automatically find the correct gain matching the remnant power
ratio (§2.2). This ratio is calculated using the PSD function as described by van der El et al. (2019a).

Data Generation The Simulation is now ready to generate data. This can simply be done by calling the
Sim.executeTVsim method, which contains the check of step S2.1 and subsequently executes all the sub-
steps S2.3a-e. Note that for verification purposes, a linear simulation can also be executed using 1sim and a
simulation with SI dynamics can also be executed using Simulink (see Section 4.4 and Appendix B for more
information). To execute these simulations as well, use the Sim.executeAll method.

The substeps S2.3a-e are spread out over different methods and functions. After a small sequence of
nested function calls (genCanonicalFiles and genTransferFunction), step S2.3ais performed by the sep-
arate function makeModelTF. This step is placed in a separate file, because it is shared by the Simulation and
Estimation classes. Since Simulations and Estimations run exactly the same code, errors based on version
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differences are avoided. Moreover, this way, the model can be easily swapped out for a different one, de-
pending on the needs of the user. For example, the model behind a Simulation/Estimation can be easily
replaced by a more advanced multi-loop car driving model without much effort. The only things that need to
be adapted are this makeModelTF file and the HO parameters that are appended to a TrackingObject with of
the 1istHOparameters method.

The transformation from transfer function to state-space system (S2.3b) is subsequently executed in the
continuation of the genCanonicalFiles function. This is done according to the logic explained in Subsec-
tion 4.2.2 for full system simulations and according to Subsection 5.2.1 for resimulations of the isolated HO
model. The state space system is subsequently transformed using a series of functions into a set of auto-
matically generated function files that can be evaluated for each time step of the simulation. All of these
functions form a seperate module, the SymbolicCanonical subfolder. This module is an adaptation of MLE
identification code by Daan Pool. To retain some of its original structure, is kept in a separate folder. And,
again, because it is shared between the Simulation and Estimation classes. The original module from Daan is
changed in some aspects to improve its useability. The eval statements are replaced as much as possible, to
make debugging easier. Moreover, some changes were implemented regarding the automatically generated
function files, drastically improving their speed of execution in the simulation process.

After generating the function files, the code returns to the executeTVsim method of the Simulation class,
where the simulation steps are executed. As outlined most clearly in Section IV-A of the scientific paper, this
is done by means of a discrete LPV model:

Xgim = Asim (0 (1)) Xsim + Bsim Usim (H.1)
Xsim, ke = Psim, kXsim, k + Wsim Usim, k (H.2)
Ysim,k = Csim,kxsim,k + Dgim Usim, i (H.3)

Processing After the simulation is completed, the data can be saved for future reference (S3.1a). The sim-
ulated signals are saved in a .mat-file and the elemental settings of the simulation that were specified in
initialisation steps S1.1-S1.6 are saved to the simLogbook in the Logbook folder. Alternatively, if a simula-
tion is already executed, the data can be loaded (S3.1b). In that case, the data is simply appended from the
logfile. Especially for large batches, this can save a considerable amount of time, as each time-varying sim-
ulation takes several seconds to complete but a fraction of that time to load. A more detailed description of
the saving and loading Simulation objects can be found in Appendix H.2.4.

With the data in place, the Simulation is finished. Its results can be plotted using the Sim.plotResults
method (S3.3). Moreover, the Simulation can serve as an input to an Estimation run.

H.2.2. Experiment
With the Experiment class, data from a previously executed experiment can be loaded in a similar format to a
Simulation. As such, the estimation algorithms that were tested using simulated data can be applied directly.
In this research, the preview time experiment by van der El et al. (2018) was used to evaluate the perfor-
mance of the DEKF on experimental tracking data. In this experiment, the effects of limited preview on HO
tracking behaviour were measured for single- and double-integrator dynamics under steady (time-invariant)
task conditions. In total, the tracking experiment was performed for eight different conditions for the amount
of available preview, ranging from 0 to 2 s. With the function createFromPreviewTimeExp the experiment
results are loaded with the input of the desired CE type (DI or SI), participant (1-8), condition number (1-8)
and run number (1-5).

H.2.3. Estimation

The Estimation class object handles the logic for HO parameter estimation from tracking task control be-
haviour. Similar to the Simulation class, the general estimation procedure was already discussed in Section
I1I of the scientific paper and in Chapter 5, based on the flow diagram that is copied in Figure H.3. This sec-
tion couples the flow steps to their associated MATLAB functions, together with pointers to specific locations
where more information can be found if required. It is easiest to understand this section while following
along in the code.

Initialisaton The code is structured such that the initialising the different settings is as easy as possible. A
"main’-script with an example of how this is done, is PrevEst .m. The steps E1.1-E1.3 are listed stright away;,
followed by the construction of the desired Estimation object using these settings (S1.4).
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Figure H.3: Flowchart of Human Operator parameter estimation

Afterwards, the HO parameters that need to be augmented to the state vector are listed by the user. The
method Est . augmentParameters subsequently moves them to the state vector. Note that the names should
match parameters listed in the parameter vector (Th_names), otherwise the parameter is not augmented (a
warning is thrown for each parameter that is not recognised). If an EKF or LEKF (limited EKF with parameter
limits) is selected in E1.1, all parameters are automatically augmented.

The constant parameters are provided as a struct with parameter names and their constant value, similar
to HO parameters and remnant parameters for Simulations. Again, the fieldnames of the struct must match
parameter names in the parameter vector (Th_names). The constant parameter struct is appended with the
Est.addConstantPars method.

In a similar fashion the parameter limits are applied (which were not yet in place in the preliminary phase,
but would have a separate step E1.5, pushing the current E1.5 to E1.6). The fields of the struct are now given
by 1 x 2-arrays with the lower and upper limits. If only one limit is to be provided, use NaN for the other.

Finally, the filter initialisation values are selected (E1.5). The specific variables to tune were described
in detail in Section III-D. The estimation is correctly initialised by means of the Est.initFilter method.
Covariance percentages for P and Q can be provided both for specific parameters, as well as for parameter
groups. So Qperc.X = 0.05 will apply an initialisation percentage of 5% to all HO gains (i.e. K¢, K, K, Ky).

Parameter identification With the filter initialised, it can now be executed. Again, this can be done with a
single command, Est . execute, that runs through all the steps E2.1 and E2.2a-E2.2f.

The first steps of the process are very similar to a Simulation. Through the same set of nested function
calls, the separate function makeModelTF is called to generate a symbolic transfer function (E2.2a). The Sym-
bolicCanonical module, by means of the genCanonicalFiles function, is then used to generate a symbolic
state-space description of the model, but this time the isolated HO model is used. Subsequently, auto-
generated function files are written for the state-space functions f and g, as well as the jacobians (E2.2b).
See the explanation at the Simulation class for more info. N.B. Strictly speaking, the genCanonicalFiles
function was already called as part of the initalisation process, because the exact amount of canonical states is
required for the initalisation of the state vector and state filter covariance matrices. These canonical states are
dependent on the exact model implementation. However, process-wise, the steps E2.2a and E2.2Db fit better with
the identification phase of the estimation

The Estimation object then calls the dekf_new_limits function, that executes the estimation (steps
E2.2c-E2.2f). Since it is quite a long algorithm, it is placed in a separate function to keep overview. This
function can be used for all types of extended Kalman filters, both dual and joint, and both with or without
applied limits. The function strictly follows the algorithm described in detail in Section III-A of the paper.
Note that the Limitation steps are not in Figure H.3, as they were not yet implemented in the Preliminary
phase. They can be through of as having a separate field between steps E2.2e and E2.2f.
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Processing The Estimation class has several Dependent properties that automatically assess the conver-
gence and performance of the different parameter estimates (E3.1). As described in Section 5.3, the conver-
gence is only determined based on the occurrance of NaN or Inf values, whereas the correctness is based
on an NRMSE-criterion. The Estimation data can be saved and loaded (E3.2), similar to a Simulation. More
details are given in Appendix H.2.4.
The Estimation is now complete, and can be analysed in various ways:
¢ A single estimated parameter trace, or all estimated parameters simultaneously, can be plotted using
the plotParameter and plotAl1Parameters methods (E3.4). The second can be tuned to include the
constant parameters, as well as the innovation of the Kalman filter throughout the estimation.
¢ The output of the HO model, the stick input signal «, can be resimulated using the estimated parame-
ter values (7). This signal can be compared to the u-signal of the original simulation by plotting both
together (the plotReSim method), by means of the overall VAF (VAFestimated) and a 10-second ret-
rospective VAF (movingVAFestimated, presented as a TimeSeries object). Similarly, this can be done
for the idealised u-signal, without added remnant noise, and the u-signal of the actual simulation
(movingVAFideal).
e The plotVAF method plots the resimulated (&) and original (u) stick input signals together with the
10-second retrospective VAF and the remnant noise signal .
* More analysis tools are available for Estimation batches. See Appendix H.3 for more information.

H.2.4. Logbook

The execution of simulations and estimations is a time-consuming process. Especially if large batches are
executed, the runtimes add up. To save time, it is possible to save and load previously executed Simulation
and Estimation runs with the LogBook module in the equally named folder.

Storing the entire class object would add up to large amounts of storage space. Moreover, version is-
sues arise in case the code is developed, potentially rendering a previously saved TrackingObject useless or
corrupted. Therefore, the minimal result signals of a TrackingObject are saved in a separate logfile, and the
settings of the Object are stored in a logbook. The logbook is a struct object with the settings of all logged
Simulations or Estimations. Each of these classes has a separate logbook, simLogbook and estLogbook,
respectively. They are auto-generated in the LogBook-folder and updated once an object is logged.

The logbook structs can be printed to a human readable CSV-file, such that the logged Simulations and
Estimations, together with their properties and most important results, can be inspected. This is done with
the printLogbook function in the module folder. The folder also contains some functions that prepare the
logbook for printing, or can assist in editing an existing logbook.

H.3. Batches

In order to assess the performance of the DEKF for a larger range of remnant and forcing function realisations,
so-called batches are used. The Batch superclass provides the framework to bundle different TrackingObjects,
as well as TimeSeries. A Batch of Simulations or Estimations has identical settings for each element (referred
to as ’childrer’). The only thing differentiating the children is the realisation of FoFu pair or remnant noise.

The Data property of a Batch that contains the children therefore structures them in an m x n array, where
m stands for the number of noise realisations and n stands for the number of forcing function realisations. In
case of actual experiment data, dimension m is used for the different participants, and » are their individual
runs (which can contain different forcing function realisations, depending on the experiment design).

For examples on how to employ Batches, the files PrevSimBatch (for simulations), PrevEstBatch (for
estimations on simulated batches) and PrevEstBatchExp (for estimations on experiment conditions) can
be reviewed.

The Batch superclass contains logic that can execute an operation on all Data elements, the foreach
function. The input to this function is a MATLAB function handle. An example is the getDataProperty
function, which simply returns a grid with the requested Property for each Data element.

Subclasses The Batch class is implemented for Simulations, Experiments and Estimations, as well as for
TimeSeries to ease the grouped analysis. Most of the Batch subclasses are not particularly complex. They
most importantly serve to group their children together, and make it easier to apply batch-wide analysis.
Examples of this can be found in the BatchTimeSeries class, that has functions to return interesting quantities
of the batch per time step, such as the mean, median, upper bound or standard deviation.
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The BatchEstimation class has some tools that can be used to analyse and compare different batches:

* several plotting functions can visualise the results of the entire batch: plotAl1AvgPars,
plotSelectAvgPars, plotAvgParameter. The first two take several optional arguments and addi-
tional batches can even be supplied for comparison in the same plot. Examples of these plots can be
found in the scientific paper of Part I and in Appendix G.

* The progression of parameter biases can be plotted with plotAl1ParBias

» the writeResultTable method can be used to generate a BKIgX-table that summarizes the batch re-
sults. Again, multiple batches can be supplied as variable arguments for side-by-side comparison.

H.4. Other utilities

H.4.1. Guided User Interface

The 'main’-scripts that contain the code instructions with settings for the specific simulation(s) or estima-
tion(s) to perform (i.e. PrevSimand PrevEst), are designed to provide as much overview as possible, while at
the same time being complete. They almost work as a guided user interface, where the programmer only has
to change some specific values to obtain and analyse the required results. This led to the idea that an actual
GUI might be useful, for starting users to get accustomed to the software, and for rapid testing of new ideas.
The GUI, renamed to Cassis (short for Casper’s Simulation Suite) by Tjeerd during a Preview-group meeting,
is a App wrapped around the code. It can be found in the GUI folder in the repository. It provides an intuitive
way to play around with the basic functionalities presented earlier this appendix. Not all functionalities of
the code are implemented in the GUI (yet). It merely serves as a starting point, more advanced and extensive
analyses should be performed by coding.

H.4.2. LPVmodel class

The LPVmodel class is a utility to rapidly simulate and analyse symbolic transfer function expressions of LPV
models. The class can be initialised symply from a string input, that will automatically be transformed into
a symbolic expression. Alternatively, an existing symbolic equation can be used to initialise a class instance.
This class was a recent development, and its functionalities are therefore still limited to quickly simulat-
ing one-dimensional transfer functions and plotting results. Future developments can for example include
MIMO systems or a 3D-bode plot, which visualises the progression of the system’s magnitude and phase re-
sponse as the parameters change value.

H.4.3. DEKEF initialisation optimization

To find suitable initialisation settings for the DEKF applied to preview tracking, an optimisation step was
used, described in Section IV-F-2 of the article in Part I. This optimization finds optimal parameter process
noise covariance initialisation settings, based on the NRMSE of the estimated parameter. The optimizeDEKFinit
script is used for this optimisation step. These optimisation runs can be logged in a separate CSV-logbook in

the LogBook module, by means of the add0ptim2Logbook function.

H.4.4. Forcing function generator

This research required multiple equivalent forcing function realisations. In order to generate these realisa-
tions, the MakeFoFu script is used (located in the Utilities folder). After choosing the required amount (V) of
forcing functions and the setting desired amplitude and frequency characteristics, a large number of equiva-
lent realisations are created using a random set of phase offsets. From these realisations, NV are selected based
on the desired crest factor, which is the ratio of the fofu’s maximum and root mean square.






Future Algorithm & Analysis Improvements

One of the main conclusions of this research, as presented in the scientific paper of Part I, was that the current
implementation of the DEKF can be and needs to be improved for the intended applications. This appendix
contains some preliminary ideas on how these improvements can be implemented.

N.B.: The information below is the result of short preliminary studies. Unfortunately, there was not enough
time to implement and test the ideas. As such, be mindful that it could still be incorrect or inconsistent.

I.1. Remnant model implementation

The most fundamental weakness of the current implementation, is the incorporation of remnant noise. Rem-
nant noise is not explicitly modeled, but accounted for by means of Gaussian white noise at the HO model’s
feedback input y and output u. The variance of this noise is adjusted to the variance of signals y a e, respec-
tively, by means of g2 and r?, as was explained in Subsection 2.2.2. For SI dynamics, this implementation was
shown to work relatively well, since the remnant noise is predominantly white in the target frequency region
(wp,r = 10 rad/s). For DI dynamics, however, the research showed that the more strongly coloured remnant
noise (wp,, = 0.01 rad/s) causes estimation problems as explained in Section V-C-2 of the article.

A solution to this problem could be to explicitly incorporate remnant noise in the HO model. This has
not been worked out yet, but some initial thoughts can already be laid out. The HO model with a first-order
remnant model, would look like Figure I.1. At this point, it is not clear whether the remnant model can be
successfully implemented while maintaining the open loop structure. Perhaps, the full closed loop model,
including the CE output feedback, should be used in order to integrate the feedback effect of remnant noise.

Human Operator Model
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Figure I.1: Isolated HO model with incorporated remnant noise model

The nonlinear model state-space equations would look similar to the ones presented in the article. How-
ever, the noise matrix G (see Equation (I.1)) will likely have much more significant role. In the original model,
this matrix was equal to the identity matrix (G = I), and ws = A (0, diag(Qy)). In the revised model, w,, be-
comes an element in ws and G should make the mathematical link between the internal states of the remnant
model H, and the canonical states in the closed loop of the HO model. Note that the nonlinear output func-
tion was renamed £ in order to avoid confusion (Equation (I.2)).

Xs(8) = f(x5(0),000), fr(t+74), (1) + Gws(1) (1.1)
u(t) = h(xs(2),0(1) + v(1) (L.2)
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I.2. Parameter limits: Kalman gain projection

In the scientific paper, parameter limits are enforced using estimation projection (Simon, 2010). A second
implementation of the parameter limitation was tried, using the principle of Kalman gain projection (Simon,
2010). The equations for this implementation, that replaces the the current state and parameter limitation
steps in the article, are given below. Using the constraint matrices, a modified Kalman gain K is computed
that maps either x;  (13) or 8] (16) to its feasible solution space. The main difference of mapping the esti-
mate through the Kalman gain, rather than directly, is that the respective covariance matrix correction P is
also mapped.

The idea behind using this rather than estimate projection is that P is also readjusted by applied limits,
since P is recursively updated with the Kalman gain. This in turn should is thought to make parameters 'stick’
less to their limits. As soon as a parameter meets its limit, it tends to stay there and not recover into feasible
solution space easily.

This however did not work entire as intended. The correction to the Kalman gain can sometimes be ex-
horbitantly high (@ > 10%°). This happens when the measurement error ry is extremely low, which is typically
the case for the initialisation stages of the filter. It has not been investigated whether this is merely an artifact
of simulated behaviour, or that this also shows up for experimental data.

Looking at (I.4) and (I.7), a significant parameter correction is only possible if the product of Ky is sig-
nificantly high. The Kalman gain thus has to compensate the small error when meeting a limit. Since the P
matrix update is calculated with I?k, this causes the elements in P to be enormous as well. And since P is
calculated recursively, it never really gets rid of the high values.

The covariance matrix P then becomes ill-conditioned for the remainder of the estimation as it recursively
updates. The estimated value can easily shoot from one limit to the other. It might be interesting to test this
again, but then with a forgetting factor, which is commonly used to diminish ongoing recursive effects over
time Boer and Kenyon (1998); Plaetinck et al. (2018).

State limitation with Kalman gain projection

Kok =Ko =Dy (Dsi D] )™ (D xl — ds i) (g S pr) ™' 1l Sox (1.3)
X=X+ Kok (1.4)
P! ==Kk G )Py (I - Kok Go )" + Kk RK] (1.5)

Parameter limitation with Kalman gain projection

Kpk =Ky =D, (DpiDy )~ (Dp k8 = dp i) (r S r) ' SO (1.6)
0; =0, + K, 1 L.7)
Py =U=KpiG)P, (1= KpiGip) T'+K, kRI?; . (L.8)

1.3. Observability Gramian

The research shows that the observability of certain HO parameters is limited. For example, the feasibility
batches in the paper showed that the parameters w;, {,, and 7, already start to drift from their true value in
the early, invariant stages of the simulation. The observability Gramian (sometimes Grammian) could serve
as an explicit measure to indicate how observable trends in the individual parameters are also locally, i.e.
around parameter time-variations Moszczynski et al. (2019). In conjunction with the incorporation of a rem-
nant model, this metric could quantify the improvement that this or other developments make.

The observability Gramian is basically the square of the observability matrix, as explained in the gradua-
tion thesis of Miletovi¢ (2014, Eq. 4.15). In general, the rank of the observability Gramian determines whether
a system is fully observable or not (Chen, 1998). Moreover, the observability Gramian can also provide in-
formation on the observability of individual states. The condition number of the Gramian, which is the ratio
of smallest and largest eigenvalue, can used to determine whether the Gramian is ill-conditioned and thus
whether the system contains poorly observable states Miletovi¢ (2014). Another research that uses the eigen-
values of the Gramian to find more information on the observability of states, is Moszczynski et al. (2019).
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The research by Qi et al. (2014) provides more information and references on how "the degree of observabil-
ity can be quantified by making use of a variety of different measures of the empirical observability Gramian".
These methods make use of the Gramian’s eigenvalues, trace, determinant and the aforementioned condition
number. How this works exactly was not yet looked into in further detail due to time constraints and left for
future work.

Note that there is a difference between the theoretical, infinite Gramian and an 'intermediate’ n-step Gramian.
The first is the theoretical concept, indicating the observability of initial states after an infinite observation
time (Chen, 1998). This Gramian is often computed using the Lyapunov equation, as this is a much more
computationally feasible compared to an infinite sum or integration.
The n-step Gramian, on the other hand, gives an indication of the initial states after n discrete observation
steps. As pointed out by Miletovi¢ (2014), for time-invariant discrete systems of the form:

Xir1 = Orxp + WViup + Ty (1.9)
Vi = Hixp + v (1.10)

the n-step Gramian Wy, can be calculated by:

n
Wo, =080, = Hf Hy+ Y (@) H] Hp(@p)* (L.11)
k=1
This means that, for time-varying systems, where the transition matrix varies per time step, the n-step
Gramian is found using:

n
Wo, =0r0,=H] Hy+ Y @] 0} - ol H Hy®p--- 0,0, (1.12)
k=1

Since the DEKF is a dual filter, observability Gramians can be calculated for both of the concurrent filters. For
the state filter @y = @, ;1 and Hi = G, and for the parameter filter ®; = @, 1 and Hy = G;}‘?;c. Note that
there is a difference in notation between the work of Miletovi¢ and this thesis. Miletovi¢ indicates the discrete
transition matrix ® from time step k — 1 to k with the final index k, whereas in the DEKF algorithm in the
scientific article, this same transition matrix is indicated by the initial index k — 1.

For the DEKF as presented in the scientific paper (see Section III-A of the paper in Part I for the detailed
notation), two types of n-step Gramians for each filter are expected to provide useful information:

1. One-step Gramian The first is the 1-step Gramian Wy at each time step k. This Gramian provides in-
fomation on the observability from one time step to the next, and is therefore the most likely candidate for
interesting results. The progression of Gramians over time could thus provide information on the progression
of the observability of individual parameters.

Wo k = ©] G{ G Dy (1.13)

2. n-step Gramian over the full measurement range A second option would be the n-step Gramian that is
calculated with the discrete transition matrices of all time steps within the measurement window. The run-in
time is left out, since this is used to make the filter converge. This Gramian could provide information on the
observability of the initial after the entire measurement window has past

Nmeas

Womeas = Y. @@ - ®p Hl Hy®p- 0P (1.14)
k=k¢=o
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