
Proving functional correctness of
monadic programs using separation

logic

Version of December 2, 2022

Liam Clark

Proving functional correctness of
monadic programs using separation

logic

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Liam Clark
born in Amsterdam, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2022 Liam Clark.

Cover picture: Random maze.

Proving functional correctness of
monadic programs using separation

logic

Author: Liam Clark
Student id: 4303423
Email: lclark@student.tudelft.nl

Abstract

Interaction trees are an active development in representing effectful and impure pro-
grams in the Coq proof assistant. Examples of programs they can represent are programs
that use: mutable state, concurrency and general recursion. Besides representing these
programswe also want to reason about and verify these programs using separation logic.
That is the purpose of this thesis. More technically speaking interaction trees are newway
to do shallow embeddings in the Coq proof assistant. They are a coinductive variant of
the free monad and comewith the usual constructions of events and event handlers. The
aim of interaction trees is to represent impure programs and potentially non-terminating
programs in their environment. Interaction trees are, in contrast to relational operational
semantics, executable by interpretation or program extraction. Interaction trees come
with a framework for reasoning about their behavior based on equivalency up to weak
bisimulation. An open problem is to reason about interaction trees utilizing a separation
logic rather than weak bisimulation. We developed Pothos as a solution to this problem.
Pothos has an Iris based concurrent separation logic for interaction trees. We address
the problem in a non-extensible setting, with mutable state, non-termination and concur-
rency as our chosen effects. Pothos inherits all the executable properties from interaction
trees and includes a novel relation of Iris’s step-index with coinductive types. We have
proven our logic to be sound and include a case study of a spin lock library. The case
study shows that our logic is both non-trivial and can utilize the standard Iris patterns
for concurrency.

Thesis Committee:

Chair: Prof. dr. A.E. Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. J.G.H. Cockx, Faculty EEMCS, TU Delft
Committee Member: Dr. R.J. Krebbers, Radboud University Nijmegen

lclark@student.tudelft.nl

Preface

When I started with my computer science degree in Delft. It felt like coming home to some-
thing I was meant to do all along. I had a fierce passion for the field. Somewhere along the
way, sadly, I had definitely lost my passion and that feeling. Working through this thesis,
with ups and downs, through good times and through bad times, that has been replaced. A
quiet contentment in its place. I am happy with the work I have done and I hope that anyone
reading this may enjoy it.

I would like to deeply thank my supervisor Robbert Krebbers for his patience and guid-
ance during this thesis project. I am thankful for all the time you gave to this project. I would
like to thank the entire committee for their feedback. Most of all I would like to thank my
father for giving me the opportunity to undergo my degree and for always believing in me.
To wrap this up, I will give you my personal philosophy during this thesis:

Even bad repetitions build towards good results

Liam Clark
Delft, the Netherlands

December 2, 2022

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 State monad 5
2.1 The state monad definition . 5
2.2 State monad Hoare logic . 7
2.3 State monad Hoare logic verification . 9
2.4 State monad weakest precondition . 9
2.5 State monad weakest precondition verification 10
2.6 State monad adequacy . 11

3 Delay monad 13
3.1 Delay monad definition . 13
3.2 The later modality . 16
3.3 Delay monad weakest preconditions inference rules 16
3.4 Delay monad verification . 17
3.5 Delay monad adequacy . 18

4 Interaction trees 21
4.1 Interaction trees definition . 21
4.2 Interaction trees weakest preconditions . 25
4.3 Interaction trees interpreter . 26
4.4 Interaction trees adequacy . 27

5 Pothos model 29
5.1 State weakest precondition model . 29
5.2 Delay weakest precondition model . 32
5.3 Itree weakest precondition model . 32

6 Case study: Concurrency 37
6.1 The program . 37
6.2 Spin-lock library . 38
6.3 Ghost state . 39
6.4 Withdraw specifications . 40

v

CONTENTS

6.5 Driver program . 41

7 Related work 43
7.1 Interaction trees . 43
7.2 Dijkstra Monads Forever . 44
7.3 Predicate transformers . 44
7.4 SteelCore . 45
7.5 Fcsl . 45
7.6 A Separation Logic for Effect Handlers . 46
7.7 Perennial . 46

8 Conclusion and future work 47

Bibliography 49

vi

List of Figures

2.1 Single cell operations . 6
2.2 Heap operations . 6
2.3 State monad Hoare logic . 8
2.4 State monad weakest preconditions . 10

3.1 Delay monad weakest preconditions . 17

4.1 Interaction trees weakest preconditions . 25

5.1 Rules for the fancy update modality . 34
5.2 The inductively defined command predicate. 36

vii

Chapter 1

Introduction

This thesis is a journey through the world of software verification. Software verification can
be seen as a trade-off between trust, certainty and cost. We all have pieces of our code bases
on which we want to enforce some degree of correctness, but how much are we willing to
pay for that? Of course the exact same thing could be said about software testing. Testing
and verification are two sides of the same coin. Software testing generally operates at a much
lower level of cost and at the same time a much lower level of certainty. In software testing
we run the code through a concrete set of values. We aim to pick a good representation of
examples, to give us confidence that our code is correct for more general cases.

One view of verification is to prove that a program upholds a mathematical specification.
Therefore verification is a two step process. We have to create a specification then show our
program obeys it. Verification will generally give us more certainty at a much higher cost.
Testing and verification also share common obstacles, a program that is difficult to test will
likely be difficult to verify also. Specifically programs that contain any of the following effects:
mutable state, concurrency and non-termination / non-determinsm.

Mutable state complicates the testing process, because we must first bring the program
into the right state and ensure that we clean up all state (to not interfere with further test
runs). When doing verification, mutable state can invalidate properties about memory that
we have proven. Concurrency introduces non-determinsm into the execution order, which
can introduce flakiness into a test suite. Concurrency also complicates verification, since
specifications now need to hold for all possible execution orders. If we have non-termination
we can get test cases that take forever, we either need to cut them off or decide they loop and
remove them. Verifying programs with non-termination becomes more difficult because
our logic now needs to deal with infinite executions. We cannot simply avoid these three
effects, because they are essential for many applications. Instead we attempt to improve our
verification tools to handle them.

For any verification system there are a lot of choices to make and the first choice is how
much we want to interact with the verification system. There are fully automatic systems
like Infer (Calcagno and Distefano 2011), systems that just require annotations on the source
code like: Smallfoot (Berdine, Calcagno, and O’Hearn 2005), Verifast (Jacobs, Smans, and
Piessens 2010), Viper (Müller, Schwerhoff, and Summers 2016) and Vercors (Blom andHuis-
man 2014) or fully interactive proof assistants. Examples of proof assistant are: Isabelle (Nip-
kow, Paulson, and Wenzel 2002) Agda (Norell 2008), F-star (Swamy, Hritcu, et al. 2016) and
Coq (Coq-development-team 2000b). We will be using the Coq proof assistant in this thesis.
Proof assistants in general are interactive programs that aid people in the construction of
formal proofs. Proof assistants allow a user to pose their mathematical definitions and the-
orems, they then aid the user in proving their theorems by ensuring the proofs are correct
and (usually) providing some means of proof automation. In general there is a trade-off be-
tween automatization and power between the before mentioned verification tools, as more

1

1. INTRODUCTION

input is given by the user stronger guarantees become achievable. Infer for example is fully
automatic and can give a guarantee of memory safety, but not for all memory safe programs.
The annotated automatic tools can offer functional correctness guarantees, but for a smaller
class of programs than a fully interactive proof assistant could. The proof assistants give the
largest possibilities for verifying full functional correctness of programs, but the downside
is that they require a high level of precision to use (the before mentioned costs). Examples
of these verification projects are: a fully verified C compiler CompCert (Leroy 2009), a fully
verified microkernel sel4 (Klein et al. 2009) and a proof of the rust language safety claims
RustBelt (Jung, Jourdan, et al. 2018).

To perform verification within a proof assistant we need a representation of our program-
ing language and a program logic to reason about that language. To define our language
inside our proof assistant we have the choice between shallow and deep embeddings (Wild-
moser and Nipkow 2004) of our language. A shallow embedding shares features with the
host language, that is in a shallow embedding we will directly use certain constructs of the
proof assistant to define language constructs. Examples of this are: name binding and data
types. Any record defined in Coq is immediately available as a value in our shallow embed-
ding. A shallow embedding also comes with the added benefit that the type checker can
check parts of our program. A deep embedding on the other hand gives an explicit model
of the language’s syntax and then gives an explicit semantics for this syntax. A deep embed-
ding will give us more flexibility in defining our language semantics, since we are not tied
to choices made by the host language. This flexibility comes at the cost of having to define
muchmore ourselves. Shallow embeddings are often amonad (Wadler 1992). Monads were
introduced to capture the semantics of computation and are therefore a popular choice for
embeddings.

The challenge for a shallow embedding is to capture our before mentioned effects of:
mutable state, concurrency and non-termination; inside the proof assistant. The Interaction
trees (Xia et al. 2020) framework is an active development for creating shallow embeddings
in the Coq proof assistant. To cite the authors own description: ”Interaction trees” (itrees)
are a general-purpose data structure for representing the behaviors of recursive programs
that interact with their environments”. Interaction trees take the form of a coinductive vari-
ant of the free-er monad (Kiselyov and Ishii 2015). Their coinductive nature is what allows
them to model recursion and facilitate non-termination. Interaction trees have their own
framework for reasoning about program refinement based on bisimilarity (which we discus
in section 7.1), but an open challenge (and the goal of this thesis) is the development of
Pothos: a separation logic for interaction trees.

There are many styles of verification, all with a rich tradition behind them. Since we are
interested in programs with mutable state, a good starting point in history is the program
logic: Hoare logic (Hoare 1969). Hoare logic was one of the first developments for the veri-
fication of stateful programs. Hoare logic is an inference system for programs and their pre-
and postconditions, this means we have rules that link an atomic piece of source code to pre-
and postconditions. We can then chain these rules together in a derivation to create proofs
of specifications for entire programs. The way Hoare logic deals with state is by tracking
changes in the state of the program inside of the pre- and postconditions. However when
Hoare logic is applied to larger programs the information about the state of the programwill
blow up considerably. This is due to the fact that Hoare logic has a global view of the state,
meaning we also have to specify state that is irrelevant to the procedure we are specifying.
As our programs grow larger there is more and more irrelevant state that we have to specify.

Separation logic (O’Hearn, Reynolds, and Yang 2001; Reynolds 2002) was developed as
an improvement on top of Hoare logic, to tackle exactly the problem of state blow up. The
core idea about separation logic is to only have to specify the parts of the state that change,

2

assuming everything else stays the same if it is not mentioned. This principle is called local
reasoning and makes separation logic scale to projects such as Rustbelt (Jung, Jourdan, et al.
2018). Separation logic achieves local reasoning by making its statements aware of the heap
and supporting the partitioning of the heap. The partitioning creates isolated pieces of heap
that are easier to reason about. A split in the heap is created by the separating conjunction
(written as ˚) and it is where the logic gets its name.

When Hoare logic and separation logic were developed for single threaded, sequential
programs. The separation logic principle of local reasoning also works well for concur-
rent programs, which led to the development of concurrent separation logic (O’Hearn 2004;
O’Hearn 2007). All the state that is non-shared can be reasoned about locally and does not
have to be mentioned in the parts of the program that are concurrent. Only the concurrent
parts have to deal with the difficulties of concurrency.

With interaction trees as our first building block we can now introduce our second build-
ing block, namely the concurrent separation logic we will be using: ”Iris a framework for
higher-order concurrent separation logic which has been implemented in the Coq proof as-
sistant” (Jung, Krebbers, et al. 2018). Iris brings together a lot of sophisticated program
verification techniques such as: Invariants, higher-order ghost state for named propositions,
Löb induction for reasoning about recursion and higher-order logic for giving modular spec-
ifications. Iris is also step-indexed to make both Löb induction and higher-order ghost state
possible. Iris is a stand alone logical framework providing building blocks for creating pro-
gram logics, rather than a program logic for a specific language. This flexibility allows it to
be used as the foundation of other verification projects such as: Perrenial a verifier for the
go programming language (Chajed et al. 2019) and Actris a separation logic for message-
passing programs (Hinrichsen, Bengtson, and Krebbers 2020). These applications of Iris are
all done with deep embeddings. Iris also comes with its own deeply embedded language:
Heaplang. The flexibility and verification features of Iris is what makes a suitable building
block for Pothos.

There is one more trade-off to consider for Pothos, whether we want to build an intrinsic
or an extrinsic logic. The trade-off iswhether the program know about its specification or not.
The first option is an intrinsic model, here the program stores the proof for its specification,
therefore writing the program and verifying it become one single activity. On the other hand
we have the extrinsic model, here we can first write the program, then verify it later. The big
difference is the workflow these models give, with an intrinsic model we have to think about
the specification as we write our program. This can make programming and verifying feel
as a more united activity. In the extrinsic model we have the benefit that we can express our
entire program, before we have to deal with its specification.

We can now properly define Pothos:

Pothos is an external separation logic for shallowly embedded programs using interaction
trees and Iris.

Finally there are other developments that do full functional correctness utilizing separation
logic such as: SteelCore (Swamy, Rastogi, et al. 2020), Iris and FCSL (Sergey, Nanevski, and
Banerjee 2015). We can organize these projects by the design choices they made and place
Pothos in their context.

Intrinsic Extrinsic
Shallow SteelCore Pothos / FCSL
Deep ˆ Iris

Contributions Our contributions are:

3

1. INTRODUCTION

• We develop a shallowly embedded language based on interaction trees supporting:
mutable state, non-termination and concurrency. For this language we build an exter-
nal Iris based verification system. We do so to show that separation based reasoning is
feasible for interaction trees with the effect environment limited to these three effects.

• At the same time we develop Iris based logics for the state and delay monad. These
together with the logic for interaction trees display what Iris looks like in a shallow
setting.

• We have a novel relation between step indexing and coinductive types to facilitate non-
termination in a shallow embedding.

• We have formalized all of Pothos to prove our logics sound and adequate. The formal-
ization of Pothos is available on Github (https://github.com/LiamClark/weakest-pre)
and Zenodo (https://doi.org/10.5281/zenodo.7339476)

• We do a case study of a spin lock library and an application of that library to show that
our logic is both non-trivial and can utilize the standard Iris patterns for concurrency.

This thesis is then structured in the following way:

Chapter 2 to 4 First a series of chapters that will progressively build up our expression
language and logical system. We explore three monads: the state monad, the delay monad
and interaction trees. Each monad has its own chapter. We will progressively incorporate
the following language features:

• State. Since our goal is to create a separation logic for our expression language it must
be able to express computations that have multiple mutable cells of state.

• Non-termination. We consider non-termination for two reasons. First it allows us to
write algorithms that are not structurally recursive. Secondly non-termination is also
required for implementing locking primitives. Namely it allows us to spin in an infinite
loop whilst waiting to acquire a lock.

• Concurrency. Concurrency is the final goal for Pothos. We need an expression lan-
guage that allows programmers to write concurrent programs. We need to do this in a
manner that gives us usable semantics for the separation logic.

Each of these chapters follows a similar recipe: We give their definition and operations as
Coq code. We give an example program in this expression language and present the high-
level rules of our logic. Then we perform verification of the example program. Finally we
present an adequacy theorem for the logic we developed in that chapter.

Chapter 5 In chapter 5 we cover the underlying semantics to our logics to explain how they
are built on top of Iris, to improve confidence in the soundness of our logics and introduce
the final Iris concepts required for chapter 6.

Chapter 6 chapter 6 is the final showcase of all that was built during this thesis. We ver-
ify a program with concurrent threads and spin-locks written in our interaction trees based
language. To show our language is non-trivial and can use the standard Iris constructs for
verification.

4

https://github.com/LiamClark/weakest-pre
https://doi.org/10.5281/zenodo.7339476

Chapter 2

State monad

Ourfirst candidate is the statemonad,modified to allow for failure. This chapter is structured
in the following way: We first give the state monad definition and operation as Coq code
(section 2.1). We then introduce the basics of separation logic (subsection 2.2.1). We use this
separation logic to create a Hoare logic for our state monad (section 2.2). The Hoare logic
will be used to verify a state monad example program (section 2.3). Then we repeat the last
two steps but use weakest precondition rather than Hoare triples (section 2.4, section 2.5).
Finally we give an adequacy theorem for our weakest preconditions (section 2.6).

2.1 The state monad definition
The definition we use is like the canonical state monad, but the result tuple is wrapped in
the option type.

Record state (ST A: Type): Type :=
State {

runState: ST -> option (A * ST)
}.

It has an implementation of the monad type class, but we implement this as two separate
type classes in Coq.

Instance mret_state ST: MRet (state ST) :=
λ (A: Type) (a: A), State $ λ s, Some (a, s).

Instance mbind_state ST: MBind (state ST) :=
λ (A: Type) (B: Type)
(f: A -> state ST B)
(ma: state ST A), State $

λ st => match runState ma st with
| Some (x, st') => runState (f x) st'
| None => None
end.

The instance for MRet successfully returns the given value with the state unchanged. The
MBind instance takes an input state st, then runs the first computation ma and extracts its result.
If ma succeeded we can run the computation f x. So MBind creates a composite computation
from ma and a continuation f. We introduce the standard notation for bind: ma >>= f reads
as mbind f ma.

5

2. STATE MONAD

We define two sets of operations on top of the state monad. The first is the usual set of
operations for operating on a single cell of state in Figure 2.1. On top of that we introduce
operations that can work with a heap of cells in Figure 2.2.

Definition getS {ST}: state ST ST :=
State $ λ st, Some (st, st).

Definition putS {ST} (x: ST): state ST () :=
State $ λ st, Some (tt, x).

Definition fail {ST A}: state ST A :=
State $ λ st, None.

Definition ret_fail {ST A} (m: option A): state ST A :=
match m with
| Some x => mret x
| None => fail
end.

Figure 2.1: Single cell operations

First are the two standard operations for get and put (here getS and putS). Then we have
two non-standard operations. The fail operation exposes unconditional failure. Lastly the
ret_fail operation allows us to lift a value that may have failed (option A) into our monad,
either returning a value if it was present or failing if there was not. Now we have the heap
operations:

Definition modifyS' {A} (n: nat)
(f: gmap nat A -> gmap nat A): state (gmap nat A) () :=
State $ λ st, if decide (is_Some (st !! n)) then Some (tt, f st) else None.

Definition get {A} (n: nat): state (gmap nat A) A :=
getS >>= λ st, ret_fail $ lookup n st.

Definition put {A} (n: nat) (x : A) : state (gmap nat A) unit :=
modifyS' n <[n := x]>.

Definition alloc (v: V) : state V A nat :=
modifyS $ λ st,

let l := fresh $ dom (gset nat) st
in (l, <[l:= v]> st).

Definition free {A} (n: nat): state (gmap nat A) unit :=
modifyS' n (delete n).

Figure 2.2: Heap operations

Our heaps are finite partial functions from natural numbers to values of type: A. For the
representation we use the type gmap nat A from stdpp (Iris-development-team 2022), with
natural numbers as adresses and values of generic type A. All the heap operationswork in the

6

2.2. State monad Hoare logic

followingway: first retrieve the entire heap from the statemonad, then perform an operation
on a single cell in the heap. The modifyS' function is specifically important since it makes
operations on empty cells fail. The get operation looks up a single cell by address in the
heap. The put operation modifies one cell by updating an entry at a certain address. The
alloc operation finds the first free address in the heap and inserts a value at this address,
returning the address that was selected. The free operations deletes a cell at the specified
address. Note that put and free both fail if the location was not present in the map before
hand, meaning we can only write and free previously allocated locations.

2.2 State monad Hoare logic
Nowwith our state monad established we can focus on the verification side. We first present
a minimal subset of the Iris (Jung, Krebbers, et al. 2018) separation logic. Then we present a
Hoare logic (Hoare 1969) for our state monad. Finally we show an equivalent system using
weakest preconditions.

2.2.1 Introduction to separation logic
In this section we give a intuition for separation logic as it is present in Iris. Iris introduces
iProp as the type of propositions to represent our separation assertions. An iProp can be seen
as a predicate over a heap. An example of this is the points-to connective l ÞÑ v : iProp. This
describes a heap which must contain a location l that points to a value v, it may also contain
other locations. The main connective regarding heaps is the separating conjunction which
is written as P ˚ Q. The idea is that ˚ separates the heap into two disjoint parts, meaning if
we have ownership over a location that ownership is exclusive. Lastly there is the separating
implication or wand, written as P ´̊ Q, this can be read as we can give up P to obtain Q. A
big part of Iris is left out here, namely that an iProp is also step-indexed. We elaborate the
extra features of Iris in Chapter 3. We now present the basic separation logic rules:

True ˚ P %$ P P ˚ Q $ Q ˚ P (P ˚ Q) ˚ R $ P ˚ (Q ˚ R)

˚-MONO
P1 $ Q1 P2 $ Q2

P1 ˚ P2 $ Q1 ˚ Q2

´̊ -INTRO
P ˚ Q $ R

P $ Q ´̊ R

´̊ -ELIM
P $ Q ´̊ R

P ˚ Q $ R

The first rule states that a proposition proves itself and can have True added or removed.
The next two rules state that ˚ is commutative and associative. Then we have the ˚-MONO rule
which allows us to split our context to prove both sub-propositions of the ˚ separately. Finally
we have the rules for ´̊ . the introduction should be familiar, but note that Q is introduced
with the ˚ instead of the normal conjunction ^. Finally we have our elimination rule for ´̊

which can be used to derive the more standard elimination rule (P ˚ (P ´̊ Q) $ Q) as such:

P ´̊ Q $ P ´̊ Q

(P ´̊ Q) ˚ P $ Q

P ˚ (P ´̊ Q) $ Q
˚-COMMUTATIVE
´̊ -ELIM

With our basic separation logic in place we will now establish a Hoare logic on top of it in
the next section.

7

2. STATE MONAD

2.2.2 Hoare logic basics
The main connective of Hoare logic is the Hoare triple. A Hoare triple consists of a precondi-
tion for a program, a program and a postcondition for that program. Wewrite a Hoare triple
as such:

tP u e tw.Qu

Here e is a program and P is the precondition and Q is the postcondition. This can be read
as: if P holds before we run e then e is safe and after e has run,Qwill hold. More specifically
P and Q are iProps. The Hoare triple itself is also an iProp and its type is:

iProp -> state (gmap nat S) A -> (A -> iProp) -> iProp

We now give the standard rules for separation logic based Hoare triples adapted for state
monad based language in Figure 2.3:

HOARE-S-BIND
tP u e tQu @x, tQxu f x tRu

tP u e>>=f tRu

HOARE-S-SEQ
tP u e1 tw.Qu tQu e2 tRu

tP u e1 ; ; e2 tRu

HOARE-S-RET
tTrueu (mret x) tw.w = xu

HOARE-S-GET
tl ÞÑ vu (get l) tw.w = v ˚ l ÞÑ vu

HOARE-S-PUT
tl ÞÑ vu (put l v1)

␣

w.w = () ˚ l ÞÑ v1
(

HOARE-S-ALLOC
tTrueu (alloc v) tl.l ÞÑ vu

HOARE-S-FREE
tl ÞÑ vu (free l) tw.w = ()u

HOARE-S-FRAME
tP u e tw.Qu

tP ˚ Ru e tw.Q ˚ Ru

Figure 2.3: State monad Hoare logic

First we have the HOARE-S-BIND rule that states if we have a Hoare triple for the continuation
f for which the precondition matches the postcondition of our program e we can compose
the triples. The HOARE-S-SEQ follows from HOARE-S-BIND automatically by discarding the result
of e1. The rule HOARE-S-RET states that if we return a value, our program terminates with that
value. Finally we have rules for the four heap operations:

• The rule HOARE-S-GET states that if we own a cell at location l we can read it and obtain
the value contained at l.

• The rule HOARE-S-PUT states that if we own a cell at location l we are allowed to update
that cell to any value of our choosing. This makes sense since the points to connective
gives us exclusive ownership.

• The rule HOARE-S-ALLOC states we can allocate a value on the heap and obtain its address
as the return value.

• The rule HOARE-S-FREE states that if we own a cell of the heap, we can remove that value
from the heap.

8

2.3. State monad Hoare logic verification

2.3 State monad Hoare logic verification
In this section we apply the Hoare logic we established on a program by giving a proof out-
line. We will consider the following program:

Definition prog_swap (l k: nat): state (gmap nat nat) unit :=
x <- get l ;
y <- get k ;
put l y ;; put k x.

or equivalently

Definition prog_swap' (l k: nat): state (gmap nat nat) unit :=
get l >>= λ x,
get k >>= λ y,

put l y >>= λ _, put k x.

For this program we want to prove the following specification:

tl ÞÑ v ˚ k ÞÑ wu prog_swap l k tl ÞÑ w ˚ k ÞÑ vu

Our precondition states that we own two locations l and k that point to values v andw respec-
tively. Then in the postcondition we still own the same two locations, but the values pointed
to have been swapped around.

We give an outline the proof for this program. Note that in this proof outline we implic-
itly apply the HOARE-S-BIND rule after every line:

Definition prog_swap (l k: nat): state (gmap nat nat) unit :=
tl ÞÑ v ˚ k ÞÑ wu

x <- get l ; (HOARE-S-GET)
tl ÞÑ v ˚ k ÞÑ w ˚ (x = v)u
y <- get k ; (HOARE-S-GET)
tl ÞÑ v ˚ k ÞÑ w ˚ (x = v) ˚ (y = w)u
put l y ;; (HOARE-S-PUT)
tl ÞÑ w ˚ k ÞÑ w ˚ (x = v) ˚ (y = w)u
put k x. (HOARE-S-PUT)
tl ÞÑ w ˚ k ÞÑ vu

2.4 State monad weakest precondition
Having seen the Hoare logic for the state monad in action we now present the less intuitive,
but more flexible weakest preconditions formulation of the same inference rules. We will
use this style for the remainder of the document. The weakest precondition connective is
written as such: wps e tΦu, here e is a program andΦ a postcondition. The intuitive semantics
behind theweakest precondition connective is that it is the weakest precondition, for which e
is safe and e terminates with Φ. It is like taking a Hoare triple and removing its precondition.
The removal of the precondition is also reflected in the type of the weakest precondition
connective: state (gmap nat S) A -> (A -> iProp) -> iProp. We canmake the connection

9

2. STATE MONAD

to the Hoare triple more concrete by relating the two constructs as follows 1:

tP u e tQu fi P $ wps e tQu

Here we have recovered the full Hoare triple by means of entailment. We have a valid Hoare
triple if the precondition P , entails the precondition constructed by the weakest precondi-
tion connective. We now give the inference rules for the weakest precondition connective in
Figure 2.4:

wps e tx. wps (f x) tΦuu $ wps (e>>=f) tΦu (WP-S-BIND)
Φ x $ wps (mret x) tΦu (WP-S-RET)

l ÞÑ v ˚ (l ÞÑ v ´̊ Φ v) $ wps (get l) tΦu (WP-S-GET)
l ÞÑ v ˚ (l ÞÑ v1 ´̊ Φ ()) $ wps (put l v1) tΦu (WP-S-PUT)

@l. l ÞÑ v ´̊ Φ l $ wps (alloc v) tΦu (WP-S-ALLOC)
l ÞÑ v ˚ Φ () $ wps (free l) tΦu (WP-S-FREE)

Figure 2.4: State monad weakest preconditions

All the wp-rules presented here had a corresponding Hoare rule, therefore we explain how
to read the rules compared to their Hoare counterpart. The first change is that we swapped
frombar judgments towards turnstile judgments. Secondly the precondition hasmoved from
the Hoare triple to the left side of the turnstile. This is the reason we now use the turnstile
judgement, we need the Iris context to contain our precondition.

The last difference is that all the postconditions are left abstract and set to Φ. We do
this because it makes the application of these inference rules easier when we do proofs with
them. Let us look at the example of the WP-S-GET rule. In the Hoare version we had this
postcondition: w.w = v ˚ l ÞÑ v in the weakest pre version it becomes: l ÞÑ v ´̊ Φ v We can
see that any requirements on the heap, that we had in the Hoare version, are used to imply
the postconditionΦ. The requirements of the return value are present in the argument given
to Φ, here namely Φ v. A similar translation is done for all the other rules.

Lastly we no longer require a frame rule on the level of weakest preconditions like with
HOARE-S-FRAME, the Iris context takes care of this on its own.

2.5 State monad weakest precondition verification
We nowwant to verify the same program swap as seen in section 2.3. First we need to change
the specification from aHoare triple to aweakest precondition. We can take the precondition
and simply use the wand to connect it to the weakest precondition as such: (l ÞÑ v ˚ k ÞÑ

w) ´̊ wps (swap l k) tl ÞÑ w ˚ k ÞÑ vu. In our derivationwewill already have introduced the
precondition into the context. Before we can give the whole derivation tree we establish a
few shorthands for readability. The first being the way we manipulate the branching of the
WP-S-GET and WP-S-PUT rules. We call these the resource-shuffle for get and put:

1This definition restricts the nesting of Hoare triples because they themselves are no longer iProps. Enabling
that nesting requires an extra modality (the persistence modality d) to make it sound. See “Iris from the ground
up: A modular foundation for higher-order concurrent separation logic” (Jung, Krebbers, et al. 2018) for the
proper definition.

10

2.6. State monad adequacy

l ÞÑ v $ l ÞÑ v

P ˚ l ÞÑ v $ Φ v

P $ l ÞÑ v ´̊ Φ v
´̊ -INTRO

l ÞÑ v ˚ P $ l ÞÑ v ˚ (l ÞÑ v ´̊ Φ v)

l ÞÑ v ˚ P $ wps (get l) tΦu
WP-S-GET

˚-MONO

l ÞÑ v $ l ÞÑ v

P ˚ l ÞÑ v1 $ Φ ()

P $ l ÞÑ v1 ´̊ Φ ()
´̊ -INTRO

l ÞÑ v ˚ P $ l ÞÑ v ˚ (l ÞÑ v1 ´̊ Φ ())

l ÞÑ v ˚ P $ wps (put l v1) tΦu
WP-S-PUT

˚-MONO

The point of the shorthand is to eliminate the branching going when proving we have access
to the location for aWP-S-GET,WP-S-PUT orWP-S-FREE rule. Secondlywe can optimize the reduction
of the post condition. The predicates in the post condition are actually the same functions
as the functions in our programs. For example we often have programs with the following
shape: wps (get l >>= λx, f x) tΦu. An operation with a continuation formed with the
bind operator. We then apply the bind rule which introduces a binder in the post condition.
The binder is then applied to the lambda in the program: wps (get l) tz.wps ((λx, f x) z) tΦuu.
This can be simplified by performing the function application in the program of the post con-
dition. We then obtain: wps (get l) tz.wps (f z) tΦuu. At the end of the resource-shuffle we
can see a value being applied to the entire post condition. This is what fills in our binder
z, with the value actually on the heap v. We then unify this to obtain our final expression:
wps (f v) tΦu. In the following derivations these simplifications will be done in the same
fashion. Finally for the longer lines in the derivation tree we shorten the post condition to:
post fi l ÞÑ w ˚ k ÞÑ v

l ÞÑ w ˚ k ÞÑ v $ l ÞÑ w ˚ k ÞÑ v UNFOLD POST
l ÞÑ w ˚ k ÞÑ v $ post RESOURCE-SHUFFLE-PUT

k ÞÑ w ˚ l ÞÑ w $ wps (put k v) tpostu RESOURCE-SHUFFLE-PUT
l ÞÑ v ˚ k ÞÑ w $ wps (put l w) t_.wps (put k v) tpostuu WP-S-BIND

l ÞÑ v ˚ k ÞÑ w $

wps (put l w >>= λ _, put k v) tpostu RESOURCE-SHUFFLE-GET
k ÞÑ w ˚ l ÞÑ v $

wps (get k) tz.wps (put l z >>= λ _, put k v) tpostuu WP-S-BIND
k ÞÑ w ˚ l ÞÑ v $

wps (get k >>= λ y, put l y >>= λ _, put k v) tpostu RSRC-SHUFFLE-GET
l ÞÑ v ˚ k ÞÑ w $

wps (get l) tz.wps (get k >>= λ y, put l y >>= λ _, put k z) tpostuu WP-S-BIND
l ÞÑ v ˚ k ÞÑ w $

wps (get l >>= λ x, get k >>= λ y, put l y >>= λ _, put k x) tpostu

2.6 State monad adequacy
Throughout this chapter we have seen programs in the state monad and verified these pro-
grams. We have not executed any programs, nor have we related our verification to the
execution of our programs. This is exactly what we will address now.

Running statemonad programs is quite straightforward, since the statemonad is a record
wrapper around a function. To run a state monad program, we take the function out of the

11

2. STATE MONAD

record and call it. Given a program e of type state (gmap nat S) A and an initial heap σ of
type gmap nat S then we can run our program as follows:

runState e σ

We can now state the following adequacy theorem:

Theorem 1 Let Ψ be a first-order predicate (rather than a separation logic assertion). If True $

wps e tΨu then there exists a value x and a heap st1 such that: runState e st = Some (x, st') and
Ψ x hold.

Note the fact that having a valid weakest precondition is sufficient to imply that the program
terminates with a Some (successfully), therefore we have total-correctness. The predicateΨ is
not a separation logic assertion but a first-order predicate, this means (a) Ψ can not contain
anything regarding our heap and (b) that we can see Ψ as specification of our program in a
regular logic (outside of the Iris context), for example a Coq Prop.

We have now learned all there is about the state monad.

12

Chapter 3

Delay monad

In this chapter we explore a monad for our second requirement: non-termination. We will
be looking at the delay monad (Capretta 2005). We first give its definition (section 3.1) and
show what programs can be written in the delay monad. Then we want to give weakest
preconditions inference rules to verify these programs (section 3.3). The new rules require an
extension of the separation logic constructs we have seen so far, therefore we show those first
(section 3.2). We then show the verification of a program that never terminates (section 3.4).
Finally we give an adequacy statement for our weakest preconditions (section 3.5).

3.1 Delay monad definition
The delay monad is a coinductive type. Formally an inductive type is the least fixpoint of
a recursive type equation, whereas a coinductive type is the greatest fixpoint of a recursive
type equation. This means that a value of a coinductive type can have an infinite amount of
nested constructors. The definition of the delay monad is:

CoInductive delay (A: Type): Type :=
| Answer: A -> delay A
| Think: delay A -> delay A.

We distinguish two different classes of values of the delay monad. We can have a finite num-
ber of Thinks ending in an Answer. This value represents a computation that succeeds after
some amount of computational steps. The other option is an infinite amount of Thinks, rep-
resenting a divergent computation. We can express corecursive computations using Coq’s
Cofixpoints, here we can make corecursive calls without upholding the termination checker
as long as we uphold Coq’s guardedness condition (Coq-development-team 2000a). The
guardedness condition exists to avoid logical inconsistencies. The condition requires every
corecursive invocation to be wrapped in a constructor of the coinductive type that we are
returning. For the delay monad the idea is as follows: if we make a recursive call, then we
wrap the result in a Think constructor. In the base case we return our final result packaged
in the Answer constructor. Coincidentally the Answer constructor matches the type signature
of mret. We can see this machinery in action while we show the monad instance for delay.

Definition bind_delay {A B} (f: A -> delay B): delay A -> delay B :=
cofix go (ma : delay A): delay B :=
match ma with
| Answer x => f x
| Think ma' => Think (go ma')
end.

13

3. DELAY MONAD

Instance mret_delay : MRet delay := λ _ x, Answer x.

Instance mbind_delay : MBind delay :=
λ _ _ f ma, bind_delay f ma.

We can reason about bind_delay for terminating and divergent computations. In the termi-
nating case we apply our continuation f to the answer at the bottom of the stack of Think
nodes. Then wrap an equal amount of Think nodes around the result of the continuation. If
the value ma is a divergent computation, then bind_delay it self diverges. We endlessly spin
in the Think branch.

We can also check bind_delay to see if it upholds our guardedness condition. We can see
this happen in the Think case of bind_delay. Here we want to obtain a value of type delay B
by recursively converting the sub-computation ma'. This is allowed because it is surrounded
by the Think constructor.

In bind_delay there is an inner cofix, rather than having the top level definition as a CoFix-
point. This is required to make callers of bind_delay pass the guardedness condition, for
example the function iter in the next section. The reason this matters is that: Coq will first
try and normalize a definition before checking for guards and having more arguments fixed
means Coq can normalize more.

There is a problem with the delay monad displayed by Chlipala (2013). The following
program is not accepted by Coq:

CoFixpoint fib (n: nat): delay nat :=
match n with
| 0 => Answer 1
| 1 => Answer 1
| _ => n1 <- fib (pred n) ;

n2 <- fib (pred (pred n)) ;
Answer (n1 + n2)

end.

The problem is the guardedness condition, namely we defined bind as a function and not
a constructor, therefore it does not guard a recursive call. If bind is not a guard then we
can not use the result of a recursive call to make another. The work of Xia et al. (2020) is a
sophisticated solution to writing corecursive programs without restrictions of the guarded-
ness condition, which we will see in chapter 4. For now we borrow a few of their iteration
combinators and show them in the simpler delay setting.

Delay monad combinators

The first combinator is the iter combinator:

CoFixpoint iter {A B} (f: A -> delay (A + B)) : A -> delay B :=
λ x, ab <- f x ;

match ab with
| inl a => Think (iter f a)
| inr b => Answer b
end.

We have a function f which represents a loop body that we want to execute multiple times.
The function f returns a coproduct of A or B, using this f can signal whether its computation
is done by yielding a B, or needs another iteration by yielding an A. We start the loop with an
initial state of type A which is passed into the first execution of f. We match on the result of

14

3.1. Delay monad definition

f, if f requires another iteration we run it again with the result of type A the prior execution
yielded. This gives us a functional style of state passing between iterations.

We can run an extra iteration of the function f by recursing iter and guarding it with the
Think constructor. If the function f returns a value of type B our computation is done.

The benefit of the iter combinator is that it handles all the guardedness concerns for any
loop we want to write. The iter looping combinator is quite the natural fit once we add our
state effect into the mix in chapter 4. It would be nicer to have access to full general recursion,
but a looping combinator is a fair comprise. We now give the example of computing the
Fibonacci sequence in the delay monad:

(* fib' is our loop body.
st is the state that we use between iterations of our computation.
its components are: (n, x, y) where
n is the number of Fibonacci numbers we still need to create,
once we reach 0 we yield our result.
x is the current Fibonacci number
y is the next Fibonacci number *)

Definition fib' (st: nat * nat * nat): delay ((nat * nat * nat) + nat) :=
match st with
|(0, x, y) => Answer $ inr $ x
|(S n, x, y) => Answer $ inl (n, y, x + y)
end.

(* applying our loop combinator to the loop body, then call it with an initial state *)
Definition fib (n: nat): delay nat := delaystate.iter fib' (n, 0, 1).

The example here follows the Fibonacci with an accumulator style, or can be reminiscent of
an imperative implementation. There are a few delay specific elements that we will explain.
First wematch on the loop condition n. The zero branch returns an inrwith our final answer.
Recall from the definition of iter that an inr breaks the loop and yields the final result. The
S n branch instead returns an inl where our state gets updated for the next iteration of the
loop. The next iteration will have n one lower and our Fibonacci numbers shifted up in the
sequence. Finally we need to return a value in the delay monad. Because this is required
by the type signature of iter, however no recursive computation steps are taken in our loop
body. Thus we can simply return our computation with the Answer constructor. Leaving all
the necessary Think constructors up to iter.

The second looping combinator is called loop its definition is as follows:

Definition loop {A B C} (f: C + A -> delay (C + B)): A -> delay B :=
λ a,
iter (λ ca: C + A,

f ca >>= λ cb: C + B,
match cb with
| inl c => Answer $ inl $ inl c
| inr b => Answer $ inr b
end

)
(inr a).

The loop combinator gives us a bit more flexibility in what state is passed between loop it-
erations. This is achieved with the new type parameter C. The state between iterations does
not have to be of type A, but can instead be of type C which is only present in the loop body

15

3. DELAY MONAD

f. The iter and loop combinators are interderivable and equally expressive. The loop com-
binator is included here mostly for completeness and from now on we will prefer the iter
combinator.

3.2 The later modality
Before we can present a weakest preconditions calculus for the delay monad, we need to
expand our separation logic. We add the later modality (written Ź) (Nakano 2000; Appel
et al. 2007) which is commonly used in Iris-based logics to reason about general recursive
functions. In subsection 2.2.1 we gave the intuition for iProp as predicates over heaps, we
have to expand this for the later modality. The new intuition is that an iProp is a predicate
over a heap and a natural number representing the current step of computation (heap Ñ

nat Ñ Prop). If P is an iProp then ŹP will hold at the next step of computation. The later
modality advances us through these steps of computation, requiring the iProp to hold at the
next step of computation. We now present its rules:

Ź-DIST
Ź(P ˚ Q) %$ ŹP ˚ ŹQ

LÖB
ŹP $ P

True $ P

Ź-MONO
P $ Q

ŹP $ ŹQ

Ź-INTRO
P $ ŹP

Later-dist This rule states that the Ź modality distributes over the separating conjunction
(˚).

Löb-induction The LÖB rule is our main tool to reason about potentially non-terminating
programs. It states that to prove any P we can gain a hypothesis of ŹP to prove it. This is
logically consistent because of the Ź modality guarding P . The main application of this rule
is reasoning about our loop combinators. We use the LÖB rule to gain an induction hypothesis
about the next iteration of the loop. While reasoning about the first iteration of the loop we
will proceed to the next step of computation. This will allow us to remove the Ź guarding
our induction hypothesis using the next rule.

Later-mono The Ź-MONO rule states that if both the antecedent and consequent are guarded
by a Ź thenwe can remove it from both sides. Intuitively thismake sense, if everything holds
at the next step of computation, we can just go there and drop the Ź guard. Note that this
rule is the only way to remove a later guard from any of our hypotheses.

Later-intro The Ź-INTRO rule states that we are free to advance our consequent to next step
of computation.

We will now present our newweakest preconditions rules that will utilize the later modality.

3.3 Delay monad weakest preconditions inference rules
With our new expression language in place we now present its corresponding weakest pre-
conditions calculus in Figure 3.1. The type of our weakest precondition connective is: delay
A -> (A -> iProp) -> iProp. The main difference here is that our expressions no longer
contain any state, thus all the rules regarding heap operations are no longer applicable. The
rules for the heap operations will be reintroduced in chapter 4. We now cover the new rules.

16

3.4. Delay monad verification

wpd e tx. wpd (f x) tΦuu $ wpd (e>>=f) tΦu WP-D-BIND

Φ x $ wpd (mret x) tΦu WP-D-RET

Ź wpd e tΦu $ wpd (Think e) tΦu WP-D-THINK

WP-D-ITER

wpd (f x)

$

&

%

w.

 Ź wpd (iter f x1) tΦu if w = inl x1

Φ y if w = inr y

,.
-

$ wpd (iter f x) tΦu

Figure 3.1: Delay monad weakest preconditions

Wp-think The WP-D-THINK rule shows howwe tie the step indexes of Iris to the delay monad.
Namely we see every Think constructor as one step of computation. This means that every
corecursive call or loop iteration we make, is one step of computation. The way that WP-D-
THINK states this is that we can remove an outer Think constructor, by proving the weakest
precondition for the inner program, at the next step of computation.

Wp-iter The WP-D-ITER rule has four parts.

1. In the consequent we can see that we are reasoning about the entire loop. The post
condition should then hold when the loop is completely done.

2. In the antecedent in the outer weakest precondition we see a single execution of f x.
Here we are reasoning about a single loop iteration. What happens here is that we split
the loop in its first iteration and the rest of the loop.

3. The first part of our postcondition is if the loop execution ended up returning an inl
x1. If we recall our definition of the iter combinator, this means the loop body requests
another iteration. Herewe do something similar to theWP-D-BIND rule, we nest aweakest
precondition that needs to hold for the rest of the loop. However that will be at our next
step of computation, because to go to the next iteration we will always step through
a Think constructor by definition of iter. Normally we discharge this nested weakest
precondition by means of an induction hypothesis obtained from Löb induction. The
later that is in front of the weakest preconditionwill allows to strip the later guard from
the induction hypothesis by means of Ź-MONO.

4. The second part of our postcondition is if the loop returned an inr y, this means the
loop is done terminating with final answer y. This means we show that the postcondi-
tion Φ holds for y.

3.4 Delay monad verification
In this section we will show an application of the weakest pre rules of the delay monad by
verifying the following program:

Definition loop_body {A}: unit -> delay A :=
delaystate.iter (λ x, mret $ inl ()).

17

3. DELAY MONAD

Definition loop_prog {A}: delay A :=
loop_body ().

This program simply loops forever, which should make sense if we recall the definition of
iter. The iter function requests another iteration for an inl. We always return an inl hence
we have an infinite loop.

We give it the following specification:

$ wpd loop_prog t_.Falseu

If we have a specification with the postcondition set to false, then that means we are prov-
ing the program never terminates. If the program would terminate, then the postcondition
should hold. The postcondition is false and will never hold, hence the program should not
terminate if this specification is provable. The equivalent Hoare triple for our specification
would be: tTrueu loop_prog t_.Falseu. We now give the proof:

wpd iter (mret $ inl ()) () t_.Falseu $

wpd iter (mret $ inl ()) () t_.Falseu UNFOLD-PROGRAM
wpd loop_prog t_.Falseu $ wpd (loop_body ()) t_.Falseu

Ź-MONO
Ź wpd loop_prog t_.Falseu $ Ź wpd (loop_body ()) t_.Falseu WP-D-RET

Ź wpd loop_prog t_.Falseu $

wpd (mret $ inl ())
"

w.

[
Ź wpd (loop_body x) t_.Falseu if w = inl x
(_.False) y if w = inr y

]*
WP-D-ITER

Ź wpd loop_prog t_.Falseu $ wpd loop_prog t_.Falseu
LÖB

$ wpd loop_prog t_.Falseu

The first step in the proof is to use the LÖB rule, to obtain an induction hypothesis to reason
about the final iterations of the loop. Secondly we use the WP-D-ITER rule to split the loop
into its first iteration and its final iterations. We know the loop body does nothing except
request the next loop iteration by returning an inl (). We can propagate this information
to the postcondition using the WP-D-RET rule, this picks the inl branch of the postcondition
introduced by the WP-D-ITER rule. We then need to show that the further iterations of the loop
still do nothing, but at the next step of computation. This is exactly our induction hypothesis.
We could finish the proof here, but we demonstrate the usage of the Ź-MONO rule to show
how to strip the later modality from our induction hypothesis. Removing the later modality
from the induction hypothesis is often required in other proofs.

3.5 Delay monad adequacy
Running a delay monad program is slightly more complicated than a state monad program.
We want to obtain the value in the Answer constructor (if there is one). To reach the Answer
constructor we have to peel of a possibly infinite number of Think constructors. One way of
dealing with this is by creating a fuel-based evaluator (Siek 2012; Owens et al. 2016) for the
delay monad, which reports a failure if it did not reach an answer before running out of fuel.
We define the evaluator as follows:

Fixpoint eval_delay {A} (n: nat) (ma: delay A): option A :=
match n with
| O => None
| S n' => match ma with

| Answer x => Some x

18

3.5. Delay monad adequacy

| Think ma' => eval_delay n' ma'
end

end.

First we match on n to check if we still have fuel remaining, if not the evaluation terminates
with a failure. If we do have fuel left over we pattern match on ma and if it is an Answer
then evaluation terminates with that value. In the case of a Think constructor we make a
recursive call with our fuel n decreased. The evaluation now always terminates, because it is
structurally recursive on n.

We can now start formulating our adequacy theorem for the delaymonad. The adequacy
theorem for the state monad from section 2.6 was a total-correctness statement. Now that we
have introduced the option of non-termination we change to partial-correctness.

Theorem 2 Let Ψ be a first-order predicate (rather than a separation logic assertion). If True $

wpd e tΨu and eval_delay n e = Some x then Ψ x holds.

In contrast to the previous adequacy theorem our adequacy theorem for the delay monad
gives us partial-correctness. We have to do this because we now allow for never terminating
programs. For the state monad having a valid weakest precondition was enough to ensure
termination. For the delay monad this is simply not true as we have seen in Section 3.4.
There we had a valid weakest precondition for a program that looped forever. If a program
never terminates there is very little we can say about its postcondition. Therefore we add
the requirement that the program terminates as our second assumption, giving us partial-
correctness.

With the delay monad thoroughly explored we can now turn our attention to interaction
trees.

19

Chapter 4

Interaction trees

In this chapter we consider interaction trees (Xia et al. 2020) as our third and final candi-
date for our expression language. The authors relate interaction trees to the free-er monad
(Kiselyov and Ishii 2015), namely Interaction trees can be seen as a coinductive variant of
the free-er monad. Interaction trees can utilize a similar technique as described in “Turing-
Completeness Totally Free” (McBride 2015). Interaction trees help us achieve all three of our
desired characteristics, namely they give us:

1. A way to express non-terminating computations through their coinductive nature.

2. A way to interpret concurrent computations because they can be suspended naturally.

3. A way to include effectful operations for state and concurrency.

This chapter is structured in the following way: We first give the definition of interaction
trees and their operations as Coq code (section 4.1). We choose the environment we will
use for our expression language (subsection 4.1.2). We then give a weakest precondition for
interaction trees and show some example programs (section 4.2). We show an outline of the
interpreter we use for interaction trees (section 4.3). Finally we state our adequacy theorem
for interaction trees (section 4.4).

4.1 Interaction trees definition
Interaction trees are defined as follows 1 :

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Answer: R -> itree E R
| Think: itree E R -> itree E R
| Fork: itree E () -> itree E R -> itree E R
| Vis: forall {A: Type}, E A -> (A -> itree E R) -> itree E R.

The first thing to notice is the fact that the type is defined as a CoInductive type. The type
itree has two type variables. The type variable E represents the environment of available
effects and the type variable R represent the type of the value this itree computes. We now
cover all the constructors:

1There are three differences between the definition given here and that of Xia et al. (2020). First there is the
inclusion of the Fork constructor. Secondly the Answer and Think constructors are renamed to make the names
consistent with their delay monad counterparts. Finally the definition we use is always defined by constructors
(the positive form), while Xia et al. (2020) eventually switches to a definition using destructors (the negative
form).

21

4. INTERACTION TREES

Answer The Answer constructor is there to return a value, it is exactly the same as in the
free-er monad and the delay monad from chapter 3.

Think The Think constructor comes directly from the delay monad (Capretta 2005). It
allows for non-terminating computations without triggering any effects.

Fork The Fork constructor takes two arguments. The first argument is a sub-expression
that returns the unit value. This will be the thread that gets forked-off, hence we do not
want it to return a meaningful value. The second argument is a sub-expression with which
the main thread continues, this does return a meaningful value. Technically speaking the
Fork constructor could have been defined as part of the environment envE in subsection 4.1.2,
leaving our definition of interaction trees closer to the original definition. However when
we include Fork as a constructor, then all recursive occurrences of itree are now present in
a single inductive type. Having all the recursive occurrences in a single type allows us to
avoid doing tricky nested induction / coinduction in proofs.

Vis The Vis constructor takes three arguments, a type variable A, a command e and a con-
tinuation k. The command e is an effect to execute in the environment, for example mutating
a heap cell. The command e has type: E A. The type variable A represents the type of value
that the execution of the effect returns. For example if we execute an effect to retrieve a heap
cell of type nat for that command A will become nat. This way the return value of the effect
can depend on the value of the command executed.

The continuation k resumes the computation with the result of the effect. The type of k
is: A -> itree E R, it takes in the result of the effect (of type A) and returns the rest of the
computation (of type itree E R). One way of thinking about this is as follows: We are build-
ing a computation with effects E and return type R (also known as itree E R). In the case of
the Vis constructor we do this by executing an effect E with return value A. We then convert
the return value of type A into the desired type itree E R through the extra computation
represented by k.

Finallywe need to adjust our intuition of when a computational step is taken. In chapter 3
the Think constructors took a step, which is still the case. Additionally, the Fork and Vis
constructors will also perform a step.

4.1.1 Generic interaction trees operations
In this section we cover operations on interaction trees that work for any environment E.
We first show that interaction trees form a monad. Then we present and expand upon the
iteration combinators from chapter 3. We give the monad instances for interaction trees:

Instance itree_bind {E}: MBind (itree E) :=
λ (R S: Type) (k: R -> itree E S),
cofix go (u : itree E R): itree E S :=

match u with
| Answer r => k r
| Think e => Think (go e)
| Fork ef e => Fork ef (go e)
| Vis cmd k => Vis cmd (λ x, go (k x))
end.

Instance itree_mret {E}: MRet (itree E) :=
λ _ x, Answer x.

22

4.1. Interaction trees definition

The monad instance for itree works similarly to the monad instance for the delay monad.
The intuition for this monad instance is that our continuation k gets applied throughout the
tree to the value in an Answer node if it exists. In code this means we want to convert every
occurrence of the type variable R with S by means of k. In the Answer branch this means
applying k to the value r, to convert it. In the other two branches it means corecursively
converting the entire subtree. To convert the subtree we have our cofixpoint go of type itree
E R -> itree E S.

The Think branch is still straightforward, we apply go to the nested itree and satisfy the
guardedness condition by wrapping the result back into a Think constructor.

A very similar thing happens for the Fork branch. We can safely ignore the forked-off
thread and apply go to the nested itree.

In the Vis branch we still want to apply go to the nested subtree, but the subtree takes on
a different form. The subtree is formed by the continuation k stored in the Vis constructor,
therefore we do not have a value of itree E R to convert until we execute the continuation.
The solution is to create a new Vis node with a continuation that applies go to the result of
the original continuation k. Since we are creating a new Vis node the guardedness condition
is also satisfied.

Finally we have the iteration combinators as given by Xia et al.:

CoFixpoint iter {E A B} (f: A -> itree E (A + B)) : A -> itree E B :=
λ a, ab <- f a ;

match ab with
| inl a => Think (iter f a)
| inr b => Answer b
end.

Definition loop {E A B C} (f: (C + A) -> itree E (C + B)): A -> itree E B :=
λ a,
iter (λ ca,

cb <- f ca ;
match cb with
| inl c => mret (inl (inl c))
| inr b => mret (inr b)
end

)
(inr a).

Both of these are exactly identical to the ones presented in chapter 3. There is a third recursion
operator that is possible on interaction trees which will be discussed in chapter 7.

4.1.2 The environment
To have interaction trees work as our expression language we need to consider the environ-
ment we want to use them in. Working with an abstract or open environment brings along
complications when creating a weakest precondition for interaction trees. We work around
this by choosing a fixed environment. We discuss the complications in chapter 7, for now
we want two things from this environment: mutable state and concurrency. Therefore we
add an operation for each of the heap operations from chapter 2. For concurrency we require
two things: A way to start new threads and some form of communication between threads.
We already have the first with our Fork constructor, thus we add an operation for compare
and exchange (closely related to the perhaps more familiar compare and swap) and all our
requirements are met.

23

4. INTERACTION TREES

We give the entire definition of the environment we will be using:

Definition loc := nat.

Variant envE (V : Type): Type -> Type :=
|GetE: loc -> envE V V
|PutE: loc -> V -> envE V ()
|AllocE: V -> envE V loc
|FreeE: loc -> envE V ()
|CmpXchgE: loc -> V -> V -> envE V (V * bool)
|FailE: forall R, envE V R.

Our type envE has a type parameter V for the type of values on the heap and a type index to
indicate the return value of the command. Let us recall that we want to use envE for the type
variable E of type Type -> Type in itree. For the types to match we have to fix the type of V.
We can now define our expressions to be: interaction trees modified with a fork primitive in
the closed envE environment supporting values of type V.

Definition expr (V: Type) := itree (envE V).

We explain each of the constructors of envE in order:

Get The GetE constructor takes a loc as input, corresponding to the heap location it will
look up the value with. Then in the return type we see that it specifies that if a GetE effect is
performed it will return a value of type V.

Put The PutE constructor takes a loc and a new value to store at the specified loc. When a
PutE operation is performed it returns a value of unit type.

Alloc The AllocE constructor takes a value of type V to allocate in a new memory location.
When a AllocE operation is performed it returns the loc at which the value was allocated.

Free The FreeE constructor takes a loc to specify what cell to free. When a FreeE operation
is performed it returns the unit type after freeing the cell.

Fail The FailE constructor takes no arguments and can return any value to the computation.
There is now way to actually implement this in our evaluator, meaning that after seeing a
FailE the entire computation stops. The promise of any return value will always be unmet.

Compare and exchange The CmpXchgE constructor is there to atomically compare and ex-
change a value with a value on the heap. The CmpXchgE constructor takes three arguments:
A loc l to specify at what heap location we want to perform this swap and two values of
type V which we refer to as v1 and v2. The compare and exchange operation then proceeds
as follows: It then retrieves the value vh at location l, compares if vh is equal to v1 and if it
is equal store v2 at l. Finally the operation returns (vh, true). In the case that vh was not
equal to v1 the operation stores nothing and just returns (vh, false). We return the value
vh so the caller can try again using vh as the new v1. The boolean in the return value is there
so that the caller can tell whether the heap was successfully updated.

We now have the problem that calling these operations is rather involved. First we need to
create a Vis node then pass in the operation and manually give the continuation. To make
this simpler we define a helper function for all our operations:

24

4.2. Interaction trees weakest preconditions

Definition get {V} (l: loc): expr V V := Vis (GetE l) Answer.
Definition put {V} (l: loc) (v: V): expr V () := Vis (PutE l v) Answer .
Definition alloc {V} (v: V): expr V loc := Vis (AllocE v) Answer.
Definition free {V} (l: loc): expr V () := Vis (FreeE l) Answer.
Definition fork {V} (e: expr V ()): expr V () := Fork e (Answer ()).
Definition fail {V R}: expr V R := Vis FailE Answer.
Definition cmpXchg {V} (l: loc) (v1 v2: V): expr V (V * bool) :=

Vis (CmpXchgE l v1 v2) Answer.

All these functions encapsulate the creation of the Vis constructor and use Answer as the con-
tinuation. This gives us the freedom to write the actual continuation using the bind operator.

4.2 Interaction trees weakest preconditions
In this section we present the weakest precondition inference rules for reasoning about sin-
gle threaded itree programs. These will be expanded in chapter 5 to include the rules for
multithreaded programs. The rules should essentially be the union of rules from chapter 2
and chapter 3 with new additions for fork and cmpXchg and can be found in Figure 4.1. There
is no rule for the fail operation, because the fail operation crashes our program, therefore
would always violate the safety property of our weakest precondition connective. Ultimately
this means any program that might call fail, is not verifiable.

We introduce a new weakest precondition connective for itrees: wpi e tΦu. We give a
simplified type for the connective that works in a single-threaded setting of type: expr V R
-> (R -> iProp) -> iProp

wpi e tx. wpi (f x) tΦuu $ wpi (e>>=f) tΦu WP-I-BIND

Φ x $ wpi (mret x) tΦu WP-I-RET

Ź wpi e tΦu $ wpi (Think e) tΦu WP-I-THINK

Ź l ÞÑ v ˚ Ź(l ÞÑ v ´̊ Φ v) $ wpi (get l) tΦu WP-I-GET

Ź l ÞÑ v ˚ Ź(l ÞÑ v1 ´̊ Φ ()) $ wpi (put l v1) tΦu WP-I-PUT

Ź(@l. l ÞÑ v ´̊ Φ l) $ wpi (alloc v) tΦu WP-I-ALLOC

Ź l ÞÑ v ˚ Φ () $ wpi (free l) tΦu WP-I-FREE

Ź wpi e t_.Trueu ˚ Φ () $ wpi (fork e) tΦu WP-I-FORK

Ź l ÞÑ v1 ˚ Ź(l ÞÑ v2 ´̊ Φ (v1,True)) $ wpi (cmpXchg l v1 v2) tΦu WP-I-CMPXCHG-SUC

v1 ‰ v3 ˚ Ź l ÞÑ v1˚

Ź(l ÞÑ v1 ´̊ Φ (v1,False)) $ wpi (cmpXchg l v3 v2) tΦu WP-I-CMPXCHG-FAIL

WP-I-ITER

wpi (f x)

$

&

%

w.

 Ź wpi (iter f x1) tΦu if w = inl x1

Φ y if w = inr y

,.
-

$ wpi (iter f x) tΦu

Figure 4.1: Interaction trees weakest preconditions

25

4. INTERACTION TREES

There is a new element to the familiar WP-I-GET, WP-I-PUT, WP-I-ALLOC and WP-I-FREE, the heap
requirements have a later in front of them. This reflects the fact that all of these perform a
computational step, since they are defined using the Vis constructor. The rules as they were
in chapter 2 are derivable from the new versions.

We now explain the three new rules:

wp-i-fork The fork rule requires two things. It requires a complete weakest precondition
derivation for the expression we are forking, with the trivial postcondition True. This post-
condition makes sense because the forked-off thread has no way to return a value in the end
anyways. Besides having to take care of the forked-off thread, we also need to prove the
postcondition for the current thread and finish its own derivation.

wp-i-cmpXchg-suc The WP-I-CMPXCHG-SUC rule is the case where the value (v1) we expect to
be on the heap, is actually there and the exchange happens. We need to prove however that
v1 is truly at location l, this is the reason we have the Ź l ÞÑ v1 hypothesis. The later modality
is there because cmpXchg performs a computational step. We obtain new information to prove
the postcondition, namely that location l now points to v2, because the exchange happened.
Finally the post condition should hold for the return value that v1 was indeed on the heap,
and True because an exchange happened.

wp-i-cmpXchg-fail The WP-I-CMPXCHG-FAIL rule is a counterpart to the previous rule, where
no exchange happens. We need to still own location l, but also have proof that the value
there is different from the value we are expecting to be there. This is done by the first two
hypotheses. In our postcondition we get back ownership of location l but with the value un-
changed, because the exchange did not occur. The postcondition needs to hold for the value
that was actually there (v1) and False because no exchange occurred.

We finish this chapter by showing our previous programs are now expressible as itree
programs. The same specs for these programs are also verifiable by similar proofs as in
section 2.5 and section 3.4, since we have the exact same proof rules for itrees.

Definition prog_swap (l k: nat): expr nat unit :=
x <- itree.get l ;
y <- itree.get k ;
itree.put l y ;; itree.put k x.

Definition loop_body {A}: unit -> expr nat A :=
itree.iter (λ x, mret $ inl ()).

Definition loop_prog {A}: expr nat A :=
loop_body ().

We leave the more interesting interaction trees programs for chapter 6.

4.3 Interaction trees interpreter
We need an evaluator for our expressions before we can state our adequacy theorem. An
evaluator for our expressions needs:

• Access to mutable state.

• A thread-pool to store forked threads.

26

4.4. Interaction trees adequacy

• A scheduler to make the interleaving of threads non-trivial.

• Fuel to ensure termination.

Therefore our top level definition is:

(*
cmp: The EqDecision type class is there to be able to

compare values on the heap for CasE.
n : The fuel to ensure termination.
s : The co-inductive scheduler to allow for interleaving of threads.
e : The program to run.

*)
Definition run_program {V R} {cmp: EqDecision V} (n: nat)

(s: scheduler V R) (e: expr V R): error R.

The implementation (which can be found online 2) of our interpreter translates all the com-
mands in our program e into operations of a state monad with a thread-pool. We then ask
the scheduler s what thread should take a step. We then retrieve this thread t from our
thread-pool allow it to process one atomic operation then store the resulting expression back
in our thread-pool. At the end we check if our main thread has terminated yet, if so the en-
tire program stops. The entire implementation can be found in the formalization. The two
interesting aspects of the interpreter for adequacy are the scheduler and the error type. The
scheduler is defined as:

CoInductive scheduler V R := Scheduler {
schedule: list (thread V R) * heap V -> nat * scheduler V R

}.

A way to think about this is as a stream nat where each value depends on the state of the
thread-pool and heap at that point of execution of the program. Lastly the error type is
defined as:

Inductive error (A: Type): Type :=
| Here (a: A)
| ProgErr
| EvalErr.

The error type is similar to option type, but has two distinct modes of failure. For the ade-
quacy theorem we need to know if the program failed because we ran out of fuel, or because
an operation in the program itself failed. We want to rule out the program errors and allow
the errors that occurred in evaluation. We will now state our adequacy statement in the next
section.

4.4 Interaction trees adequacy
With the top level definition for our interaction trees interpreter established we can now give
an adequacy theorem for interaction trees.

Theorem 3 Let Ψ be a first-order predicate (rather than a separation logic assertion). If True $

wpiE e tΨu and let r be the result of run_program n s e then Ψ x holds if r is Here x, or False holds
if r is ProgErr, or finally True should hold if r is EvalErr

2https://github.com/LiamClark/weakest-pre/blob/cmp-swp/theories/program_logic/evaluation.v

27

https://github.com/LiamClark/weakest-pre/blob/cmp-swp/theories/program_logic/evaluation.v

4. INTERACTION TREES

This gives us partial-correctness in regards to running out of fuel. The theorem gives us
memory safety, because we need to prove False if the execution results in a EvalErr. That
means a valid weakest precondition derivation rules out all memory issues. Now that we
have seen interaction trees in the single-threaded setting, we move to extending our logic for
the concurrent setting.

28

Chapter 5

Pothos model

In this chapter we provide the semantic basis for all previously seen weakest precondition
inference systems. This is done by giving a definition for theweakest precondition connective
in terms of the Iris separation logic. All the previously seen inference rules can be derived
from these definitions for the weakest precondition connective, meaning they are no longer
axiomatic. Simultaneously the adequacy theorems interface with this definition rather than
having toworkwith thewhole set of inference rules. There are establishedmodality patterns
in Iris (Jung, Krebbers, et al. 2018, Sections 6.3 and 7.3) that we can use to accommodate
different language features in our expression language. This includes the later modality and
the new update modalities we will introduce in this chapter. None of these patterns are
new, but our application of these patterns to shallowly embedded (coinductive) monadic
languages is novel. Especially the interplay between the later modality and the co-inductive
types.

We also lay some groundwork for the verification of multi-threaded programs by intro-
ducing invariants and the fancy update modality This chapter covers all this in the following
order:

• The basic update modality, model of the heap and the weakest precondition definition
for the state monad in section 5.1.

• The Iris fixpoint operator and the weakest precondition definition for the delay monad
in section 5.2.

• Invariants, the fancy update modality and the weakest precondition definition for in-
teraction trees in section 5.3.

At the end of this chapter we should have increased confidence our inference systems are
sound and that our adequacy theorems give us memory safety for our programs.

5.1 State weakest precondition model
The language feature we need to accommodate for our weakest precondition definition for
the state monad is mutable state. Iris is parametric in regard to separation logic resources,
which means we have to model our concept of a heap and the (ÞÑ) points to connective. We
do this in the standard Iris way (Jung, Krebbers, et al. 2018, Section 6.3.2). We only give the
top level definitions here, but the full definitions can be found in the Coq implementation.
Up until this point we have assumed that Iris knows about our heap and can reason about
it from the get go, this is not actually the case. Rather than making assumptions about how
the heap works, Iris allows the user to make Iris aware of what their definition of the heap
is. Let us recall that the heap of state monad was defined as: σ : gmap nat A. We interpret
this map σ into an iProp by means of the state-interpretation predicate: SI(σ) : gmap nat A

29

5. POTHOS MODEL

-> iProp. We will leave the SI predicate opaque and see it as representing ownership of the
heap. The definition of SI also allows for the definition of a points-to connective. To perform
updates to the heapwe require the basic updatemodality, which allows updates to all sorts of
resources in Iris. Wenowproceed byfirst introducing thismodality, presenting the definition
of weakest precondition connective for state in subsection 5.1.2 and finally explain our top
level usage of the SI predicate.

5.1.1 Basic update modality

The basic update modality allows us to perform updates to the Iris version of the heap. Jung,
Krebbers, et al. (2018) gives the following intuition for the basic updatemodality: The update
modality ˙|⇛P provides away to talk about the resources we could own after we update what
we do own. When performing a proof this means that: as long as our conclusion is guarded
by a ˙|⇛ we can remove a guard from our hypotheses. When we are done removing guards,
we are always free to remove the guard from our conclusion. The basic update modality has
the following rules:

UPD-INTRO
P $ ˙|⇛P

UPD-TRANS
˙|⇛P $ ˙|⇛ ˙|⇛P

UPD-MONO
P $ Q

˙|⇛P $ ˙|⇛Q

UPD-FRAME
Q ˚ ˙|⇛P $ ˙|⇛(Q ˚ P)

• The UPD-INTRO rule allows us to introduce the basic update modality. In essence this
means we say we do not need to do any further updates and we can remove the guard
from our conclusion.

• The UPD-TRANS rule allows us to join two basic update modalities into one. Performing
two updates after each other is the same as performing one bigger update.

• The UPD-MONO rule allows us to remove the basic update modality guard from one of
our hypothesis, much like the Ź-MONO rule.

• The UPD-FRAME rule gives us the ability to include more resources to our update.

As an example of these rules we prove a derived rule that might fit intuition better. The rule
is:

UPD-DERIV
P ˚ Q $ ˙|⇛R

(˙|⇛P) ˚ Q $ ˙|⇛R

The UPD-DERIV rule strips a basic update modality from a hypothesis if we have a basic update
modality guarding our conclusion. The guard on the conclusion is not removed, meaning
we can keep applying the rule to remove guards from all hypotheses.

We now give the derivation of the UPD-DERIV rule:

UPD-FRAME
SEP-COMM

(˙|⇛P) ˚ Q $ ˙|⇛(P ˚ Q)

P ˚ Q $ ˙|⇛R UPD-MONO
˙|⇛(P ˚ Q) $ ˙|⇛ ˙|⇛R

$-TRANS
(˙|⇛P) ˚ Q $ ˙|⇛ ˙|⇛R

UPD-TRANS
˙|⇛ ˙|⇛R $ ˙|⇛R

$-TRANS
(˙|⇛P) ˚ Q $ ˙|⇛R

30

5.1. State weakest precondition model

5.1.2 State weakest precondition model
We now present the definition of weakest precondition connective for state:

wps e tΦu fi@σ,SI(σ) ´̊
˙|⇛Da σ1, runState e σ = Some (a, σ1)

˚ SI(σ1)
˚ Φ a

Theweakest precondition for state uses a big-step style semantics, meaningwe run the entire
computation and reason about the result it produces. Before we can run the program the
state monad requires a heap (of type gmap nat A), this is present in our definition as σ. We
tie σ to Iris with the before mentioned SI predicate: For now this reads as: we have exclusive
ownership of the entire heap σ.

Now we can run the computation using σ, we then require the computation to succeed
with a return value a and a final heap σ1. Because we require the computation to succeed this
definition gives us memory safety (any invalid memory access would return a None). The
second clause keeps track of the fact that we now own a new heap, allowing us to keep track
of the heap as it progresses though our computation. The third clause requires the program
to terminate with a value for with the postcondition holds giving us correctness.

The last ingredient in the definition is the basic updatemodality just before the existential-
quantifier. The standard Irisway to enable updates to the heap is to place it between receiving
ownership of the old heap and having to provide ownership of the new heap. This pattern
makes the weakest precondition rules for get, put, alloc and free derivable. We can see the
reason for this in the following Lemmas regarding the SI predicate (we assume them here,
but they are all derivable within Iris). The derivation for the weakest precondition version
of these simply lift these Lemmas to the weakest precondition level.

SI σ ´̊ l ÞÑ v ´̊ (σ !! n = Some v) SI-GET

SI σ ´̊ l ÞÑ v ´̊ ˙|⇛SI (<[l := w]>σ) ˚ l ÞÑ w SI-PUT

SI σ ´̊ l ÞÑ v ´̊ ˙|⇛SI (delete(σ, l)) SI-FREE

SI σ ´̊ ˙|⇛SI (<[k := v]>σ) ˚ l ÞÑ v SI-ALLOC

where k is the first unused key in σ

• The SI-GET lemma is the only one without a basic update modality, because retrieving
an element from the heap does not alter the heap. It does tie together the points-to
connective with our heap. If we own a location we also know it is present in our heap.

• The SI-PUT lemma allows us to write to a location we own, reflecting this change in the
heap and in the newpoints-to connective obtained. Note that this lemma and all further
lemmas are guarded by a basic update modality.

• The SI-FREE lemma is similar to SI-PUT, but rather than updating the heap it removes from
the heap. note that it does not giving ownership of the location back.

• Finally the SI-ALLOC lemma gives us ownership of a new location and updates the heap
accordingly.

We can now also see why the ˙|⇛ is required in the weakest precondition definition for state.
We need it to perform updates to our model of the heap, which we require for the derivation
of our weakest precondition inference rules.

31

5. POTHOS MODEL

5.2 Delay weakest precondition model
Next is the definition of weakest precondition for the delay monad. The language feature we
need to accommodate is non-termination, thismeans our definition forweakest precondition
has a case distinction whether the program is finished or not. To handle the non-termination
we change the formulation of our weakest precondition to use a small-step semantics style,
compared to the big-step style seen in subsection 5.1.2. The standard Iris pattern here is to
recursively apply the weakest precondition guarded by the later modality. Since the delay
monad does not incorporate a heap, the basic update modality and other machinery seen in
section subsection 5.1.2 is absent here. We now give the definition:

wpd e tΦu fi

"

Φ x if e = Answer x
Ź wpd e1 tΦu if e = Think e1

*

The first thing to see is the before mentioned case distinction in the definition. If we see an
Answer constructor we know our program has terminated and we simply require the post-
condition to hold for the value returned. The more interesting case is if we see a Think con-
structor, because now our program might not terminate. Iris can deal with this by means of
a guarded fixpoint operator (Jung, Krebbers, et al. 2018, Section 5.6), this operator allows re-
cursive occurrences as long as they are guarded by the Ź modality. The recursive occurrence
of: Ź wpd e tΦu is actually handled by the fixpoint operator. The usage of the Ź modality
to guard the recursive occurrence corresponds with our notion of computational step from
section 3.3, namely that every time we encounter a Think constructor this takes us to the
next step of computation. With this definition we can require the postcondition to hold for
terminating programs, encode our notion of computational steps and gracefully allow for
partial-correctness of non-terminating programs.

5.3 Itree weakest precondition model
We now turn to the last weakest precondition definition, the one for interaction trees. The
language features we need to accommodate are mutable state, non-termination and concur-
rency. For the mutable state and non-termination we combine the techniques from the pre-
vious sections. We have more work to do for concurrency, namely our weakest precondition
inference rules do not support concurrency (yet). We require knowledge of more Iris con-
structs before we can add inference rules for concurrency. The flaw with our weakest pre-
condition inference rules is that they do not support concurrent programs that communicate.
The way to support sharing across threads in Iris is by means of invariants. To work with in-
variants in Iris we need to work with the fancy update modality rather than the basic update
modality we saw in subsection 5.1.2. For the rules we have seen so far we could give a defini-
tion for the weakest precondition for interaction trees using just the basic update modality,
but in chapter 6 we want to use invariants for our verification. To make this all align: we first
explain invariants and the fancy update modality, give a definition for weakest precondition
using the fancy update modality and finally expand the inference rules for interaction trees
to make use of the new machinery.

5.3.1 Invariants
An invariant is a property that holds at all times. Each thread may assume the invariant
holds before it executes, also we must ensure the invariants still hold after execution of a
computational step. In Iris this means we can register an iProp as an invariant, Iris then
keeps track of all established invariants and enforces that they always hold. To keep track
of all the invariants, they are registered in a namespace. We now give the connective for

32

5.3. Itree weakest precondition model

establishing a proposition P with name N as an invariant: P
N . The rules for invariants

are present in Figure 5.1. The INV-DUP rule is what allows the invariant to be shared across
threads, namely we can duplicate the invariant. Whenever a new thread spawns, we can
duplicate the invariant and both threads can obtain their own copy.

The main rule we will use in verifications is the following WP-I-INV:

WP-I-INV
ŹP $ wpiEzN e tw.ŹP ˚ Φ wu atomic(e) N Ď E

P
N

$ wpiE e tΦu

The rule allows to access an invariant around one atomic expression as long as we give back
the invariant afterwards. The subscript on the weakest precondition connective is called a
mask and will be covered in subsection 5.3.2. The WP-I-INV rule can be derived from INV-ACCESS
and WP-ATOMIC.

5.3.2 Fancy update modality

The final piece of machinery we introduce for working with invariants is the fancy update
modality. We use the fancy update modality as a basic update modality, but with the abil-
ity to access invariants. The fancy update modality is written as: |⇛E1 E2 . The superscripts
are called masks, they are sets of names of invariants that are currently available. Thus we
can read a |⇛E1 E2 modality as: we could have resources P after performing an update that
changes the set of available invariants from E1 to E2. The masks on the fancy update modal-
ity do not actually contain the invariant they are simply tokens to ensure the proper use of
invariants (for example preventing opening the same invariant twice).

The first four rules in Figure 5.1 are updated versions of the rules for the basic update
modality. The FUPD-INTRO rule gives us a way to introduce the fancy update modality if the
incoming mask is the same as the outgoing mask. In similar fashion the FUPD-TRANS rule
allows composition of fancy update modalities if the outgoing mask of the first, matches the
incoming mask of the second. The FUPD-MONO has nothing new going on, and then finally the
FUPD-FRAME does two things. It allows other iProps to enter under then fancy update modality
and allows widening of the mask through Ef . The FUPD-BUPD is there to degrade a fancy
update modality into a normal update in case where the is not required. Finally we have
three new rules.

Inv-alloc and inv-dup If wewant to allocate an iProp P as an invariant, then P should hold.
Then INV-DUP states that if we have P as an invariant we can obtain copies of it.

Inv-access The INV-ACCESS rule is what all the newly introduced machinery is for. It reads as
follows: If we have an invariant P

N and the name N is still available in our mask then, we
can perform a fancy update that removes the nameN from ourmask. After the fancy update
we gain access to the payload of the invariant: P at the next step of computation. We also
gain a second iProp: (ŹP ´̊ |⇛EzN E True) this states that if we give up the invariant payload
we obtain a fancy update modality that we can eliminate that re-establishes the name N in
the mask.

33

5. POTHOS MODEL

FUPD-INTRO
P $ |⇛E E P

FUPD-TRANS
|⇛E1 E2 |⇛E2 E3P $ |⇛E1 E3P

FUPD-MONO
P $ Q

|⇛E1 E2P $ |⇛E1 E2Q

FUPD-FRAME
Q ˚ |⇛E1 E2P $ |⇛E1ZEf E2ZEf (Q ˚ P)

FUPD-BUPD
˙|⇛P $ |⇛E E P

INV-ALLOC
ŹP $ |⇛E E P

N

INV-ACCESS
N Ď E

P
N

$ |⇛E EzN (ŹP ˚ (ŹP ´̊ |⇛EzN E True))

INV-DUP
P

N
$ P

N
˚ P

N

WP-ATOMIC
|⇛E1 E2 wpiE2

e
!

|⇛E2 E1Φ
)

atomic(e)
wpiE1

e tΦu

Figure 5.1: Rules for the fancy update modality

That leaves one question, how do we eliminate a fancy update modality? We give a de-
rived rule for this with its derivation:

FUPD-CHANGE-MASK
R ˚ P $ |⇛E2 E3Q

R ˚ |⇛E1 E2P $ |⇛E1 E3Q

R ˚ P $ |⇛E2 E3Q
FUPD-MONO

|⇛E1 E2 (R ˚ P) $ |⇛E1 E2 |⇛E2 E3Q
$-TRANS FUPD-FRAME

R ˚ |⇛E1 E2P $ |⇛E1 E2 |⇛E2 E3Q
$-TRANS FUPD-TRANS

R ˚ |⇛E1 E2P $ |⇛E1 E3Q

The final insight required is that if the rest of our proof is guarded by a fancy updatemodality
with different masks, we can not progress past this fancy update modality with the FUPD-
INTRO rule, until the two mask match. Thus what the second half of the INV-ACCESS rule really
achieves is away to progress to the next part of the proof, by re-establishing the rightmasks if
we give up the invariant. Ensuring that the invariant is only opened for one atomic operation.

wp-atomic Themasks around WP-ATOMIC allows us to access an invariant around the expres-
sion e, as long as we restore the mask properly in the post condition. Meaning the invariant
can not stay open for longer than the single expression.

5.3.3 Itree weakest precondition definition
The weakest precondition definition for interaction trees is given in two parts: the defini-
tion itself and a helper predicate to constrain the heap for each of our operations from our
environment. The definition is as follows:

wpiE e tΦu fi

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

|⇛E EΦ x if e = Answer x

|⇛E H
Ź |⇛H E wpiE e1 tΦu if e = Think e1

|⇛E H
Ź |⇛H E (wpiE e1 tΦu ˚ wpiJ ef t_.Trueu) if e = Fork ef e1

@σ,SI(σ) ´̊ |⇛E H
Ź |⇛H E

Dσ1 v,

CP(c, σ, σ1, v) ˚ SI(σ1) ˚ wpiE (k v) tΦu if e = Vis c k

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

34

5.3. Itree weakest precondition model

The common thing across all these definitions is the standard Iris pattern of modalities:
|⇛E H

Ź |⇛H E . The fancy update modalities are there to allow reasoning disregarding in-
variants for one operation, as long as we restore them at the end. The later modality in the
middle is there to state that these operations take a step of computation as seen in section 5.2.
Finally there is also added value of having updatemodalities on both sides of the latermodal-
ity. The two modalities do not commute and just having one makes it impossible to derive
all the weakest precondition rules that affect the heap.

Answer and Think The first two cases should be straightforward at this point. If we en-
counter an Answer constructor, then the postcondition should hold for the value inside the
Answer constructor. This is exactly as it was in wpd. The case for the Think constructor is
similar to the one we saw in wpd, however the modalities guarding the recursion have been
expanded. First we only had a later modality, nowwe have the entire pattern of fancy update
modalities and a later modality.

Fork The Fork constructor starts off with the modality pattern and then does a binary re-
cursion. Requiring a weakest precondition for our current thread (this is the one for which
our postcondition: Φ should hold) and aweakest precondition for the forked-off thread. The
weakest precondition for the forked-off thread has the postcondition True because it does not
return a value, furthermore it has a mask with all invariants labelled as available. The choice
of the J mask works, because the soonest the forked-off thread can start running is at the
next step of computation.

Vis The case for the Vis constructor has to deal with operations that affect the heap. There-
fore we re-introduce the machinery seen in wps. We take in an SI(σ) and have SI hold for an
updated heap σ1. We also require there to be a weakest precondition for the continuation k.
The final ingredient is the command predicate (command predicate). The command predi-
cate constraints the value returned for every command in our environment, at the same time
it also puts constraints on the heap for the command to execute successfully. The definition
of the predicate will be covered next.

5.3.4 Command predicate
The command predicate is a ”normal” predicate rather than an iProp. The command pred-
icate is defined in Figure 5.2. The predicate has four parameters: The command, the heap
before execution of the command (σ), the heap after execution of the command (σ1) and the
value fed into the continuation (v). Since the command predicate is not an iProp it works
directly with the maps that represent our heap rather than the interpretation of them into
Iris (SI).

GetE For the GetE case we simply require the direct lookup of l in σ to succeed with the
return value v. We also record the fact that the GetE operation does not change the heap by
requiring σ and σ1 to be equal.

PutE In the PutE case we require the location we are writing to to already be present in σ.
We then relate σ1 to σ by performing the exact same put operation directly on the map itself.

AllocE In the AllocE case we have a location l that we will eventually yield to the continu-
ation. We require l to be fresh in σ, more specifically it should be the lowest unused key in
σ. We then perform this allocation on σ in similar fashion as PutE.

35

5. POTHOS MODEL

σ!!l = Some v σ1 = σ

CP (GetE l) σ σ1 v

l P σ σ1 = <[l := v']>σ
CP (PutE l v1) σ σ1 _

fresh(σ, l) σ1 = <[l := v]>σ
CP (AllocE v) σ σ1 l

l P σ σ1 = delete(σ, l)
CP (FreeE l) σ σ1 _

σ!!l = Some v1 vret = v1 σ1 = <[l := v2]>σ
CP (CpmXchgE l v1 v2) σ σ1 vret true

σ!!l = Some x vret = x σ = σ1 x ‰ v1

CP (CpmXchgE l v1 v2) σ σ1 vret false

Figure 5.2: The inductively defined command predicate.

FreeE The FreeE case is quite straightforward, the location are freeing must be present in
the old heap. We require the new heap to be equal to σ with a delete operation performed
on it.

CmpXchgE There are two cases present for the CmpXchgE command, depending onwhether
the operation succeeds or fails. This can be seen as the last argument to command predicate
with true indicating success and false indicating failure. To re-iterate v1 is the valuewe expect
to be at location l already and v2 is the value we want to put at location l. Finally we also
always return the value that was on the heap at location l before the operation as vret.

• In the success case the lookup of l in σ must be equal to v1 (otherwise the operation
would not be a success). Therefore we can constrain the return value vret to be equal
to v1. Since this is the successful case where the update to the heap is performed we
update σ in the same way as for PutE.

• In case of failure the lookup of l in σ should still succeed, but with a value that is not
equal to v1. This alsomeanswe cannot perform a CmpXchgE operation on an unallocated
location. We constrain vret to be equal to the value that was at location l. Finally the
heap should remain unchanged therefore σ1 should be equal to σ.

36

Chapter 6

Case study: Concurrency

We now apply all that we have established in our previous chapters to our final example, the
verification of a multi-threaded program. The program will be an interaction trees program,
using invariants and spin-locks. We will introduce one last Iris concept called ghost-state to
reason about the resources within the invariant. This case study serves three purposes:

• To show the expressiveness of our interaction trees based expression language.

• To show our program logic is non-trivial.

• That the standard Iris patterns for concurrent programs work for our program logic.

The program we will be verifying is a bank account that multiple threads will withdraw
from. The withdrawing is therefore guarded by a spin-lock to make sure no thread-races
occur. Finally in the case of overdraft the program will crash, therefore our verification will
also prove that no overdraft ever happens.

In this chapterwe first give the source code of the programwewant to verify (section 6.1).
Then we give the implementation and specifications of our spin-lock library (section 6.2).
After the spin-lock library we introduce our new Iris concept: ghost-state (section 6.3). We
give specs for the helper functions of our programs and outline their proofs (section 6.4).
Finally we give a spec for the whole program and give an outline of its proof (section 6.5).

6.1 The program
Before we can write our program we need to figure out the type of values we want on our
heap. In this example we need natural numbers to represent the bank balance. Besides that
we need two states for our lock: Locked and Unlocked. Our heap cell definition therefore is:

Variant cell :=
|Locked
|UnLocked
|Value (n: nat).

We now give the top level program:

Definition as_value (c: cell): expr cell nat :=
match c with
| Locked => itree.fail
| UnLocked => itree.fail
| Value n => mret n

37

6. CASE STUDY: CONCURRENCY

end.

Definition withdraw (amount: nat) (balanceLoc: loc): expr cell bool :=
balanceCell <- get balanceLoc ;
balance <- as_value balanceCell ;
if (amount <=? balance)
then put balanceLoc (Value (balance - amount)) ;; mret true
else mret false.

Definition withdraw_locked (amount: nat) (lockLoc: loc)
(balanceLoc: loc): expr cell () :=
acquire lockLoc ;;
b <- withdraw amount balanceLoc ;
if b : bool then release lockLoc else itree.fail.

Definition bank_prog: expr cell () :=
balanceLoc <- alloc (Value 100) ;
lockLoc <- new_lock ;
fork (
withdraw_locked 5 lockLoc balanceLoc ;;
withdraw_locked 25 lockLoc balanceLoc

) ;;
withdraw_locked 20 lockLoc balanceLoc ;;
withdraw_locked 2 lockLoc balanceLoc ;;
withdraw_locked 10 lockLoc balanceLoc ;;
mret tt.

The code has three layers, first we have withdraw which removes an amount from a cell at a
location balanceLoc if the balance is sufficient. On top of withdrawwe have withdraw_locked
which combines the withdraw operation with a lock from our spin-lock library, making the
operation thread-safe. Note that if the balance is insufficient we exit the entire program by
calling fail. Finally our third layer bank_prog allocates an initial balance and lock. It forks-off
a thread and both threads withdraw form the balance through the lock multiple times.

6.2 Spin-lock library
We can now give definitions for our spin-lock. The public api will have three top level con-
structs: new_lock, acquire and release.

Definition new_lock: expr cell loc :=
alloc UnLocked.

Definition try_acquire (l: loc): expr cell bool :=
snd <$> cmpXchg l UnLocked Locked.

Definition acquire (l: loc): expr cell () :=
itree.iter
(λ _, try_acquire l >>= λ (b : bool), if b then mret $ inr $ ()

else mret $ inl $ ()
)
tt.

38

6.3. Ghost state

Definition release (l: loc): expr cell () :=
put l UnLocked.

The try_acquire function is the heart of the spin-lock, it uses the CmpXChg operation on the
location of our lock and expects an Unlocked to be present at that heap location. If that is
correct, we actually acquire the lock and write Locked to the heap and returing a boolean
whether or not our exchange suceeded. The writing of Locked prevents the try_acquire
operation from any other thread from succeeding.

The spin part of our spin-lock is in acquirewhich applies our iteration-combintaor to the
try_acquire operation. Meaning the thread will hang until we acquire the lock. Finally we
have the release operation, which simply overwrites the lock with the Unlocked value.

Now that we have established the definitions for spin-locks, we give specifications for
them:

R ´̊ (@l, is_lock(l, R) ´̊ Φ l) ´̊ wpiJ new_lock tΦu

is_lock(l, R) ´̊ (R ´̊ Φ ()) ´̊ wpiJ acquire l tΦu

is_lock(l, R) ´̊ R ´̊ Φ () ´̊ wpiJ release l tΦu

These specifications read as follows:

• To allocate a lock we need to give it the payload R we want to store it in. The new_lock
operation will then initialize a lock at a new location l. In the postcondition we recieve
the newly allocated location and the fact that there is a lock there withR as the payload.

• To acquire a lock we first need to show there is a lock at location l , when we acquire it
we gain access to the payload R, that was stored inside the lock, in the postcondition.

• Finally to release a lock we need to show that there is a lock at location l and give up
the payload to store it back into the lock.

We can now give the definition for is_lock:

lock_inv(l, R) fi D(c : cell), l ÞÑ c ˚

 True if c = Locked
R if c = UnLocked
False if c = Value _


is_lock(l, R) fi lock_inv(l, R)

L

First we have lock_inv which requires ownership of location l to some cell c. Then there is a
case distinction for each possible value that c could be. If the cell is UnLocked we store the
payloadR. If the cell is Lockedwe store nothing (True) since we have given up the payload to
the threadwhich acquired the lock. Finally wewant to rule out that the cell c can be anything
else thus for the case Value n we store False to rule it out.

On top of that is_lock wraps lock_inv by registering it in Iris as an invariant, note that this
makes the knowledge that there is a lock sharable across threads. But the payload will only
ever be accessed by one thread at the same time, by acquiring and releasing the lock. The L
is a namespace dedicated to the invariants of locks.

6.3 Ghost state
We now introduce the ghost state required for our verification, we give a top level abstraction
for this and do not cover any of the internals. The construct we will use here is the authorita-
tive camera on natural numbers (Jung, Krebbers, et al. 2018, Section 6.3.2). The authoritative

39

6. CASE STUDY: CONCURRENCY

camera has two constructs, the first expresses knowledge about the whole (written ‚). Then
there is the idea of fractional ownership, meaning a part of the whole (this is written as ˝).
We will use the ‚ to represent ownership of the entire initial bank balance. We will split this
into fragments ˝ for each withdrawal made.

This leaves us with the following rules for our ghost state:
AUTH-FRAG-LT
‚m

γ
´̊ ˝n

γ
´̊ m ď n

FRAG-SPLIT
˝(n+m)

γ
´̊ ˝n

γ
˚ ˝m

γ
AUTH-FRAG-DEDUCT
‚n

γ
´̊ ˝m

γ
´̊ ‚(n ´ m)

γ

AUTH-FRAG-ALLOC
@n, ˙|⇛Dγ, ‚n ˚ ˝n

γ

These rules in order state the following:

• If we have ownership of the whole and ownership of a fragment, the value in the frag-
ment is always less than equal than the full thing. We will use this rule to proof that
the withdrawal we are making can never overdraft the account.

• If we have a fragment of a sumof two numberswe can always split it into two fragments
one for each part of the sum.

• If we give up ownership of a fraction, we can update our knowledge of the whole to
decrease by the size of the fraction.

• Finally we can allocate ghost state for any number n and get the full ownership for n
and fractional ownership of n.

6.4 Withdraw specifications
Now we can turn our attention to the actual program we want to verify. Let us look at the
specs for withdraw and withdraw_locked

m ď n ´̊ l ÞÑ Value n ´̊ (l ÞÑ (Value (n ´ m)) ´̊ Φ true) ´̊ wpiJ withdraw m tΦu

lock_payload(l) fi Dn. ‚n
γ

˚ l ÞÑ (Value n)

is_lock(llock, lock_payload(lbal)) ´̊ ˝m
γ

´̊ Φ () ´̊ wpiJ withdraw_locked m llock lbal tΦu

First we have the specification for withdraw. The specification requires proof that the amount
we withdraw is less than the current balance, therefore ruling out overdrafts. The specifica-
tion requires ownership of the balance location and then returns ownershipwith the reduced
balance in the postcondition. Since we have ruled out overdrafts withdraw always returns
true for which our postcondition should hold.

We establish lock_payload as the payload we will store within the lock invariant. The pay-
load owns the location of our balance, but it does not know what our balance is. Alongside
the balance it has full ownership of the ghost state representing the balance.

The lock_payload is then used by the specification for withdraw_locked, which requires a
lock at location llock with payload lock_payload for location lbal. The final argument is frac-
tional ownership of the amount m we are going to withdraw. We want to use the spec for
withdraw to prove the spec for withdraw_locked. All of these come together in the proof in the
following way: First we access the payload to gain ownership of lbal and the full ownership
of our ghost state n. We can then combine our two pieces of ghost state with AUTH-FRAG-LT
to gain proof that m ď n. This makes it possible to apply the withdraw spec. After which
we can update our payload using AUTH-FRAG-DEDUCT. Then we can restore the payload for the
updated balance and give it back to the lock with the release spec.

40

6.5. Driver program

6.5 Driver program
The last step in completing our verification is verifying the driver program. We want to give
it the following specification:

True $ wpiJ bank_prog tx.x = ttu

The specification guarantees our program executes without memory issues and no overdraft
occurs. The proof is structured as follows,wefirst allocate full and fractional ghost ownership
for our entire balance of 100 by means of: AUTH-FRAG-ALLOC. We then allocate our balance and
lock, using the ownership of the balance and our full ghost ownership as the payload for the
lock. Leaving the fractional ownership in our context, to be split up amongst the threadswith
FRAG-SPLIT and every time a withdrawal needs to be made. Finally we split the verification to
the two threads using WP-I-FORK and repeatedly apply the spec for withdraw_locked to finish
the proof. The full verification can be found in the formalization. We have now seen the
application of a fair share of Iris constructs to our interaction trees language.

41

Chapter 7

Related work

We start out by looking at the verification possibilities of the interaction trees (Xia et al. 2020)
development first and compare it to the Iris based verification of Pothos. Staying with inter-
action trees we cover Dijkstra Monads Forever (Silver and Zdancewic 2021) as they develop
a program logic for interaction trees. As mentioned in the introduction there are a lot of
existing projects that allow for formal reasoning about effectful programs in a shallowly em-
bedded language. Of these projects we will cover: SteelCore (Swamy, Rastogi, et al. 2020),
Predicate transformer (Swierstra and Baanen 2019) and fine grained concurrent separation
logic (Sergey, Nanevski, and Banerjee 2015). There are two more related projects we cover
that are not shallow embeddings, but are related to Pothos through the separation logic as-
pect. The projects are: Goose & Perennial (Chajed et al. 2019) and A Separation Logic for
Effect Handlers (Vilhena and Pottier 2021).

We will cover interaction trees first (section 7.1) since it will introduce information re-
quired for the comparison with other shallowly embedded projects. We cover Dijkstra mon-
ads forever next (section 7.2) because they are so closely related to interaction trees . We
cover the three shallowly embedded projects projects next (section 7.3, section 7.4 and sec-
tion 7.5). We then cover a separation logic for algebraic effects (section 7.6) as it relates to Iris
and is an avenue for future work for Pothos. Finally we cover Perrenial (section 7.7) which
relates closely to Iris but is a bit further removed from Pothos.

7.1 Interaction trees
We have used interaction trees extensively throughout this thesis, however we have only
used weakest preconditions to reason about them. The interaction trees library has its own
framework for reasoning about interaction trees programs. Their framework is based upon
the principle of weak bisimulation and is generic in the effects used. Bisimulation is a no-
tion of equivalency based on an external view of two programs. In the case of interaction
trees, this means we only look at the commands issued to the environment. Two programs
are bisimilar iff they execute the same Vis commands. Two programs that take a different
amount of recursive steps in issuing these commands (meaning a different amount of Think
nodes) are still considered bisimilar. There is a rich set of laws for interaction trees programs
based on bisimulation. Sadly the notion of bisimulation does not give us the following prop-
erty when relating it with our Iris based reasoning: e – e' Ñ wpi e tQu Ñ wpi e1 tQu. If we
have a weakest pre for a program e and we know another program e1 is bisimilar to our orig-
inal program e, then that does not guarantee there is a valid weakest pre for e1. The issue is
that in our system Think nodes are meaningful, because they relate directly to the step index.
Removing them is therefore not possible and therefore the above property is false.

Interaction trees also include a recursion combinator (called mrec) based on representing
recursive calls as an effect. It is a rich combinator and a evolution of “Turing- Completeness

43

7. RELATED WORK

Totally Free” (McBride 2015). The original approach is to represent recursive calls as an
effect in the free-er monad. That is the commands will be exactly the input of the function
and the response the output, meaning we have an oracle for our function. Our function
is a description of what the recursion should look like rather than a performance of this
computation. The tying of the recursive knot happens when we interpret the entire function
(program). A fuel based evaluator will replace the effect call with the body of our function
once for every level of fuel we have. Tying the recursive knot is at evaluation time means we
can only have one recursive point within our entire program.

The interaction trees mrec improves upon the original idea by adding mutual recursion
and multiple points of recursion. This is possible because interaction trees themselves are
coinductive, meaning the handler can occur within the program rather than during execu-
tion. Giving us access to multiple points of general recursion when we desire so. The signa-
ture for the recursion oracle is placed within a single effect to be handled, rather than on the
entire set of commands. The issue with using mrec in Pothos is that we used a closed effect
environment. Since the recursion is represented by an effect it naturally requires the effect
environment to be extensible. Providing a definition of a weakest precondition connective
for an extensible free monad is challenging and out of scope for this thesis.

7.2 Dijkstra Monads Forever
Dijkstra monads (Swamy, Weinberger, et al. 2013; Maillard et al. 2019) are a development for
the verification of effectful programs (and they are deeply related to the F-star proof assis-
tant). The idea is to have a monad model an effect (known as the base monad M) and have a
companion monad to carry specifications (the specification monad W) for the computational
monad M. The specification monads are all based on the continuation monad specialized to
propositions: (A -> Prop) -> Prop. A Dijkstra monad is then the combination of these two
monads and anmonadmorphism h. Values of the Dijkstra monadwill then be computations
M that uphold the specification given by the specificationmonad W, with the specification aris-
ing from the translation of the computation throughmonadmorphism h. This gives Dijkstra
monads the same extensibility as predicate transformers (section 7.3), however they go one
step further and provide constructions to translate both the free monad and algebraic effects
into their monad morphism setting. They have also applied this construction for extensible
specifications to interaction trees (Silver and Zdancewic 2021). Dijkstra monads therefore
seem to provide an alternative to the extensible reasoning of section 7.6, however they never
address the use of separation logic in their reasoning.

7.3 Predicate transformers
Predicate transformers (Swierstra and Baanen 2019) are another interesting development in
the area of effectful verification. They provide a closely related language embedding and a
extensible reasoning framework based on predicate transformers. We compare their solution
to ours on three aspects: non-termination, effects and verification style. Their language is a
(inductive) free-er monad (Kiselyov and Ishii 2015). This means they have no access to non-
termination by themeans of coinduction, instead they use the approach ofMcBride (McBride
2015) as discussed in section 7.1. This means predicate transformers have access to (one
point of) general recursion, whereas Pothos has the looping combinators from the interaction
trees framework. Here predicate transformers have the edge over Pothos currently, but if the
environment could be opened in the future we have access to a more flexible form of general
recursion.

Predicate transformers give weakest pre semantics to effects on a per effect basis, making
theirmodelmore extensible than ours. They cando thismore easily since they do not address

44

7.4. SteelCore

a notion of separation, this makes their reasoning slightly weaker than ours and makes it
easier to get the flexibility in terms of effects.

7.4 SteelCore
SteelCore on the whole is a very similar project. Their language is shallowly embedded, they
allow for separation based reasoning and non-termination. SteelCore is implemented in the
F-star proof assistant (Swamy, Hritcu, et al. 2016) and takes advantage of F-star specific fea-
tures, that are not available in Coq. In comparison to Pothos, SteelCore has a similar model
for their language based on a free monad, however they do not use the free monad structure
to achieve non-termination. Instead they rely on the built-in effect Dv in F-star. The Dv effect
allows for general recursion within the language of F-star. F-star disallows any use of the
Dv effect in proofs, this keeps the logic sound and allows for easy access to turing complete
programs. The way SteelCore uses the Dv effect is in their signature for bind which looks
something like: ctree a -> (a -> Dv (ctree b)) -> ctree bwhere ctree (command tree)
is their type of free monad. That means that every time two values of type ctree are sequen-
tially composed we have access to general recursion. The general recursion is also accessible
in a much more convenient manner than the combinator based approach in Pothos. Their
interpreter for their command trees also lives in the Dv effect, simply passing on the general
recursion, until it is finally dealt with by F-star itself. SteelCore’s ctree type is an intrinsic
language, meaning that it directly carries the separation logic proofs.

Finally a big advantage of SteelCore over Pothos is their access to heterogenous heaps.
SteelCore gives the programmer typed references (that may differ in type) into this heap,
this feature is once again built on top of a built-in effect of F-star called MST (Ahman et al.
2018). The name MST stands for monotonic state, meaning that the heap cells have to evolve
in a monotone fashion. An basic example of this would be attaching a type to the heap cell
and have all values be of this type. The problem with applying this work to Pothos, is that it
requires a Hoare type theory (such as F-star) or program logic while defining the language.
Whereas Pothos tries to be extrinsic and leaves the inclusion of pre and post conditions until
the end. Another approach could be the approach used by (Poulsen et al. 2018). Theymodel
monotone state using monads, threading information through the interpreter.

7.5 Fcsl
Fine grained concurrent separation logic (Sergey, Nanevski, and Banerjee 2015) is a devel-
opment to utilize separation logic in a fine grained situations in comparison to the coarse
grained concurrency done before. Coarse grained here means critical / exclusive sections
(locks), whereas fine grained concurrency would be ”lock-free” data structures. Algorithms
that use atomic operations to co-operate without the need of locking. Their model for tack-
ling this problem is by introducing concurrent state transfer protocols that they all concurroids.
They sample the state space into three parts: self, joint and other. This way we know what
state we can touch and what state others are dealing with for us. In Iris user defined ghost-
state is able to address fine grained concurrency. FCSL can be seen as a direct competitor to
Iris, but with a slightly more biased model. With no access to impredicative invariants, be-
cause they do not use step indexing. In FCSL much of the separation of heaps is taken care
off by the concurroids, therefore most reasoning is done inside the regular Coq logic. This
can be an advantage and a disadvantage, reasoning in the regular Coq logic is more familiar
to users. But not everything can be done it, if a user does need to drop down to the level of
separation logic that is easier to do in Iris.

On the language side of things FCSL has a shallowly embedded language, with a fixed-
point combinator for non-termination. Their fixed-point combinator is based on domain-

45

7. RELATED WORK

theory and the approximation of the denotational semantics of the program represented as
sets of trees. Gaining access to non-termination in this fashion comes at a cost, namely there
are proof obligations that programs are monotone in respect to this approximation. We de-
cided we wanted to avoid such proof obligations in Pothos, hence we went with the coin-
ductive approach. FCSL does provide a lot of built-in constructs for which the monotonicity
requirement is already proven, therefore shielding the user of this proof obligation in many
cases, but not all cases.

7.6 A Separation Logic for Effect Handlers
Developing solutions for the before mentioned limitation of not being extensible in the ef-
fects environment is a strain of research on its own. We briefly explore one development in
this area and list the problems including it in Pothos. A Separation Logic for Effect Handlers
(Vilhena and Pottier 2021) build an extensible separation logic for effects on top of Iris. They
develop a notion of protocols between programs and handlers, for each effect one should
create an appropriate protocol. Their definition for their weakest precondition connective
is then generic in effects since it operates on these protocols. Their development is a deeply
embedded language, with a direct implementation of algebraic effects that only has one-shot
continuations. The deep embedding and one-shot continuations are essential for ensuring
their logic has a bind rule. They have two bind rules one for ”neutral” contexts (pieces of
programs that do not include handlers) and a bind rule that works for handlers. This syntac-
tic check would need to be translated to our shallow setting for interaction trees Finally the
one-shot continuations are required for the soundness of the logic, since amulti invocation of
continuations makes certain state assertions fail. The handlers given in the interaction trees
framework do not give any one-shot guarantees and would also have to be adapted.

7.7 Perennial
Perennial and Goose (Chajed et al. 2019) are a tools for the verification of fault tolerant sys-
tems. Their verification is built on top of Iris and adds adds reasoning about fault tolerance.
Their choice of language is completely different from ours. The programmer writes in a sub-
set of the go programming language (Goose), which is translated into a deeply embedded
Coq representation of that subset. The deep embedding is then given a formal semantics
and the semantics are linked to Iris to do the verification. To increase confidence in this
translation they have also developedWaddle (Gibson 2020). Waddle is a verified interpreter
/ test framework for Goose and Go programs. Although their interpreter does not include
concurrency, it creates trust in their semantics. The interpreter has also been ported to Iris’s
own deeply embedded language Heaplang. Bringing Heaplang closer to Pothos in terms of
executability.

It is interesting to see where we get the executional properties from and how it relates to
an adequacy theorem. Pothos specifies its semantics directly in an interpreter for interaction
trees and our adequacy lemma directly relates to this interpreter. Being able to do so directly
is one of the benefits of our shallow embedding. Perennial on the other hand has a three step
process. They have their deeply embedded language and a relationally specified semantics
for that language. With the two of those they can prove their separation logic sound in respect
to their semantics. They then require an extra step to prove their interpreter correct in respect
to their semantics. Making this a longer process, but for a much more realistic language.

46

Chapter 8

Conclusion and future work

Let us first summarize what we have seen in all our chapters. We have seen Iris interact with
three different monads finishing with interaction trees. We have seen our basic weakest pre-
condition calculus for the state monad, we have experimented with non-termination and the
later modality (Ź) in the delay monad setting, where we saw step indexing and introduced
weakest precondition rules for the interaction trees based non-termination combinators. Fi-
nally we joined Iris and interaction trees to implement concurrency and gave the semantic
basis for our logics in terms of Iris.

The first we can take away is that we now knowwhat Iris looks like in a shallowly embed-
ded setting. Further more we now know how to combine the features of Iris with these mon-
ads and how the combination of the two enables reasoning about these effects. Especially
how to use Iris’s step indexing together with coinductive types to enable non-termination in
a shallow embedding.

Looking at it from the perspective of interaction trees, we know Iris based separation logic
reasoning is possible for interaction trees in this restricted effect environment. Additionally
we can confidently say that our logic can handle the standard Iris patterns for verifying con-
current programs, since we displayed them in our case study, giving us some confidence our
logic is in fact useful. For all logics presented in this thesis we know our rules are sound,
because they are derivable within Iris. We also know our definition of our weakest precon-
dition connective are adequate for our languages due to the adequacy theorems presented
in the thesis here and the fact that those theorems have been proven in our formalization.

Future work Pothos currently has two big limitations, the fact that the environment is
closed and the homogenous heap. To creating a definition for a weakest precondition con-
nective with an open effect environment there is the work of Vilhena and Pottier (2021) (as
covered in section 7.6). Adapting their techniques is a substantial amount of work due to
the requirement that continuations need to be one shot, the syntactic checks and the fact that
their development is a deep embedding.

To address the homogenous heap, there are two approaches that could be adopted to
create a heterogenous heap. First we have the work of Ahman et al. (2018) (as covered in
section 7.4). They give a model for monotonic state and build references on top of this. The
direct adaptation of this is difficult within Coq as it requires either a Hoare type theory (like
F-star) or needs to be built on top of Iris’s program logic. If we build it on top of Iris then our
language always knows about its verification and has to be intrinsic. Another option would
include the approach taken by Poulsen et al. (2018). They model monotone state using mon-
ads, threading information through the interpreter. This seems more directly applicable,
however it requires substantial work overhauling our interpreter. Their technique also uti-
lizes information about the name binding environment that is unavailable in our interpreter.

In conclusion there are possibilities to improve Pothos but they are non-trivial.

47

Bibliography

Ahman, Danel et al. (2018). “Recalling awitness: foundations and applications of monotonic
state”. In: Proc. ACMProgram. Lang. 2.POPL, 65:1–65:30. DOI: 10.1145/3158153. URL: https:
//doi.org/10.1145/3158153.

Appel, Andrew W. et al. (2007). “A very modal model of a modern, major, general type
system”. In: Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2007, Nice, France, January 17-19, 2007. Ed. by Martin Hof-
mann and Matthias Felleisen. ACM, pp. 109–122. DOI: 10.1145/1190216.1190235. URL:
https://doi.org/10.1145/1190216.1190235.

Berdine, Josh, Cristiano Calcagno, and Peter W. O’Hearn (2005). “Smallfoot: Modular Auto-
matic Assertion Checking with Separation Logic”. In: Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amsterdam, The Netherlands, November
1-4, 2005, Revised Lectures. Ed. by Frank S. de Boer et al. Vol. 4111. Lecture Notes in Com-
puter Science. Springer, pp. 115–137. DOI: 10.1007/11804192_6. URL: https://doi.org/
10.1007/11804192%5C_6.

Blom, Stefan andMarieke Huisman (2014). “The VerCors Tool for Verification of Concurrent
Programs”. In: FM 2014: Formal Methods - 19th International Symposium, Singapore, May
12-16, 2014. Proceedings. Ed. by Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun. Vol. 8442.
Lecture Notes in Computer Science. Springer, pp. 127–131. DOI: 10.1007/978- 3- 319-
06410-9_9. URL: https://doi.org/10.1007/978-3-319-06410-9%5C_9.

Calcagno, Cristiano and Dino Distefano (2011). “Infer: An Automatic Program Verifier for
Memory Safety of C Programs”. In:NASA Formal Methods - Third International Symposium,
NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings. Ed. by Mihaela Gheorghiu
Bobaru et al. Vol. 6617. Lecture Notes in Computer Science. Springer, pp. 459–465. DOI:
10.1007/978-3-642-20398-5_33. URL: https://doi.org/10.1007/978-3-642-20398-
5%5C_33.

Capretta, Venanzio (2005). “General recursion via coinductive types”. In: Log. Methods Com-
put. Sci. 1.2. DOI: 10.2168/LMCS-1(2:1)2005. URL: https://doi.org/10.2168/LMCS-1(2:
1)2005.

Chajed, Tej et al. (2019). “Verifying concurrent, crash-safe systems with Perennial”. In: Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville,
ON, Canada, October 27-30, 2019. Ed. by Tim Brecht and CareyWilliamson. ACM, pp. 243–
258. DOI: 10.1145/3341301.3359632. URL: https://doi.org/10.1145/3341301.3359632.

Chlipala, Adam (2013). Certified Programming with Dependent Types - A Pragmatic Introduction
to the Coq Proof Assistant. MIT Press. ISBN: 978-0-262-02665-9. URL: http://mitpress.mit.
edu/books/certified-programming-dependent-types.

Coq-development-team (2000a). Co-inductive types and co-recursive functions. URL: https://
coq.inria.fr/refman/language/core/coinductive.html (visited on 08/06/2021).

49

https://doi.org/10.1145/3158153
https://doi.org/10.1145/3158153
https://doi.org/10.1145/3158153
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11804192%5C_6
https://doi.org/10.1007/11804192%5C_6
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-319-06410-9%5C_9
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5%5C_33
https://doi.org/10.1007/978-3-642-20398-5%5C_33
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3341301.3359632
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
https://coq.inria.fr/refman/language/core/coinductive.html
https://coq.inria.fr/refman/language/core/coinductive.html

BIBLIOGRAPHY

Coq-development-team (2000b). The Coq proof assistant reference manual. URL: https://coq.
inria.fr/refman/ (visited on 08/13/2022).

Gibson, SydneyMarie (2020). “Waddle: A proven interpreter and test framework for a subset
of the Go semantics”. MA thesis. Massachusetts Institute Of Technology.

Hinrichsen, Jonas Kastberg, Jesper Bengtson, andRobbert Krebbers (2020). “Actris 2.0: Asyn-
chronous Session-Type Based Reasoning in Separation Logic”. In: CoRR abs/2010.15030.

Hoare, C. A. R. (1969). “AnAxiomatic Basis for Computer Programming”. In:Commun. ACM
12.10, pp. 576–580. DOI: 10.1145/363235.363259. URL: https://doi.org/10.1145/363235.
363259.

Iris-development-team(2022). STDPP,An extended ”Standard Library” for Coq.https://gitlab.mpi-
sws.org/iris/stdpp.

Jacobs, Bart, Jan Smans, and Frank Piessens (2010). “A Quick Tour of the VeriFast Program
Verifier”. In: Programming Languages and Systems - 8th Asian Symposium, APLAS 2010,
Shanghai, China,November 28 -December 1, 2010. Proceedings. Ed. byKazunoriUeda.Vol. 6461.
Lecture Notes in Computer Science. Springer, pp. 304–311. DOI: 10.1007/978- 3- 642-
17164-2_21. URL: https://doi.org/10.1007/978-3-642-17164-2%5C_21.

Jung, Ralf, Jacques-Henri Jourdan, et al. (2018). “RustBelt: securing the foundations of the
rust programming language”. In: Proc. ACM Program. Lang. 2.POPL, 66:1–66:34.

Jung, Ralf, Robbert Krebbers, et al. (2018). “Iris from the ground up: A modular foundation
for higher-order concurrent separation logic”. In: J. Funct. Program. 28, e20. DOI: 10.1017/
S0956796818000151. URL: https://doi.org/10.1017/S0956796818000151.

Kiselyov, Oleg and Hiromi Ishii (2015). “Freer monads, more extensible effects”. In: Proceed-
ings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada,
September 3-4, 2015. Ed. by Ben Lippmeier. ACM, pp. 94–105. DOI: 10 . 1145 / 2804302 .
2804319. URL: https://doi.org/10.1145/2804302.2804319.

Klein, Gerwin et al. (2009). “seL4: formal verification of an OS kernel”. In: SOSP. ACM,
pp. 207–220.

Leroy, Xavier (2009). “Formal verification of a realistic compiler”. In: Commun. ACM 52.7,
pp. 107–115.

Maillard, Kenji et al. (2019). “Dijkstra monads for all”. In: PACMPL 3.ICFP, 104:1–104:29. DOI:
10.1145/3341708. URL: https://doi.org/10.1145/3341708.

McBride, Conor (2015). “Turing-Completeness Totally Free”. In:Mathematics of Program Con-
struction - 12th International Conference, MPC 2015, Königswinter, Germany, June 29 - July
1, 2015. Proceedings. Ed. by Ralf Hinze and Janis Voigtländer. Vol. 9129. Lecture Notes in
Computer Science. Springer, pp. 257–275. DOI: 10.1007/978-3-319-19797-5_13. URL:
https://doi.org/10.1007/978-3-319-19797-5%5C_13.

Müller, Peter, Malte Schwerhoff, and Alexander J. Summers (2016). “Viper: A Verification
Infrastructure for Permission-Based Reasoning”. In: Verification, Model Checking, and Ab-
stract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg, FL, USA, Jan-
uary 17-19, 2016. Proceedings. Ed. by Barbara Jobstmann andK. RustanM. Leino. Vol. 9583.
Lecture Notes in Computer Science. Springer, pp. 41–62. DOI: 10.1007/978-3-662-49122-
5_2. URL: https://doi.org/10.1007/978-3-662-49122-5%5C_2.

Nakano, Hiroshi (2000). “A Modality for Recursion”. In: 15th Annual IEEE Symposium on
Logic in Computer Science, Santa Barbara, California, USA, June 26-29, 2000. IEEE Computer
Society, pp. 255–266. DOI: 10.1109/LICS.2000.855774. URL: https://doi.org/10.1109/
LICS.2000.855774.

Nipkow, Tobias, Lawrence C. Paulson, and Markus Wenzel (2002). Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer.
ISBN: 3-540-43376-7. DOI: 10.1007/3-540-45949-9. URL: https://doi.org/10.1007/3-540-
45949-9.

Norell, Ulf (2008). “Dependently Typed Programming in Agda”. In:Advanced Functional Pro-
gramming, 6th International School, AFP 2008, Heijen, The Netherlands, May 2008, Revised Lec-

50

https://coq.inria.fr/refman/
https://coq.inria.fr/refman/
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-642-17164-2%5C_21
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3341708
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1007/978-3-319-19797-5%5C_13
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5%5C_2
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

Bibliography

tures. Ed. by Pieter W. M. Koopman, Rinus Plasmeijer, and S. Doaitse Swierstra. Vol. 5832.
Lecture Notes in Computer Science. Springer, pp. 230–266. DOI: 10.1007/978- 3- 642-
04652-0_5. URL: https://doi.org/10.1007/978-3-642-04652-0%5C_5.

O’Hearn, Peter W. (2004). “Resources, Concurrency and Local Reasoning”. In: CONCUR
2004 - Concurrency Theory, 15th International Conference, London, UK, August 31 - Septem-
ber 3, 2004, Proceedings. Ed. by Philippa Gardner and Nobuko Yoshida. Vol. 3170. Lecture
Notes in Computer Science. Springer, pp. 49–67. DOI: 10.1007/978-3-540-28644-8_4.
URL: https://doi.org/10.1007/978-3-540-28644-8%5C_4.

— (2007). “Resources, concurrency, and local reasoning”. In: Theor. Comput. Sci. 375.1-3,
pp. 271–307. DOI: 10.1016/j.tcs.2006.12.035. URL: https://doi.org/10.1016/j.
tcs.2006.12.035.

O’Hearn, Peter W., John C. Reynolds, and Hongseok Yang (2001). “Local Reasoning about
Programs that Alter Data Structures”. In: Computer Science Logic, 15th International Work-
shop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13, 2001,
Proceedings. Ed. byLaurent Fribourg. Vol. 2142. LectureNotes inComputer Science. Springer,
pp. 1–19. DOI: 10.1007/3-540-44802-0_1. URL: https://doi.org/10.1007/3-540-44802-
0%5C_1.

Owens, Scott et al. (2016). “Functional Big-Step Semantics”. In: ESOP. Vol. 9632. Lecture
Notes in Computer Science. Springer, pp. 589–615.

Poulsen, Casper Bach et al. (2018). “Intrinsically-typed definitional interpreters for impera-
tive languages”. In: Proc. ACM Program. Lang. 2.POPL, 16:1–16:34. DOI: 10.1145/3158104.
URL: https://doi.org/10.1145/3158104.

Reynolds, John C. (2002). “Separation Logic: A Logic for Shared Mutable Data Structures”.
In: 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copen-
hagen, Denmark, Proceedings. IEEE Computer Society, pp. 55–74. DOI: 10.1109/LICS.2002.
1029817. URL: https://doi.org/10.1109/LICS.2002.1029817.

Sergey, Ilya, Aleksandar Nanevski, and Anindya Banerjee (2015). “Mechanized verification
of fine-grained concurrent programs”. In:Proceedings of the 36thACMSIGPLANConference
on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015.
Ed. by David Grove and Stephen M. Blackburn. ACM, pp. 77–87. DOI: 10.1145/2737924.
2737964. URL: https://doi.org/10.1145/2737924.2737964.

Siek, Jeremy G. (2012). Big-step, diverging or stuck? http://siek.blogspot.com/2012/07/big-
step-diverging-or-stuck.html.

Silver, Lucas and Steve Zdancewic (2021). “Dijkstra monads forever: termination-sensitive
specifications for interaction trees”. In: Proc. ACM Program. Lang. 5.POPL, pp. 1–28. DOI:
10.1145/3434307. URL: https://doi.org/10.1145/3434307.

Swamy, Nikhil, Catalin Hritcu, et al. (2016). “Dependent types and multi-monadic effects in
F”. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. Ed. by
Rastislav Bodıḱ and RupakMajumdar. ACM, pp. 256–270. DOI: 10.1145/2837614.2837655.
URL: https://doi.org/10.1145/2837614.2837655.

Swamy, Nikhil, Aseem Rastogi, et al. (2020). “SteelCore: an extensible concurrent separation
logic for effectful dependently typed programs”. In: Proc. ACM Program. Lang. 4.ICFP,
121:1–121:30. DOI: 10.1145/3409003. URL: https://doi.org/10.1145/3409003.

Swamy, Nikhil, Joel Weinberger, et al. (2013). “Verifying higher-order programs with the
dijkstra monad”. In: ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. Ed. by Hans-Juergen Boehm
and Cormac Flanagan. ACM, pp. 387–398. DOI: 10.1145/2491956.2491978. URL: https:
//doi.org/10.1145/2491956.2491978.

Swierstra, Wouter and Tim Baanen (2019). “A predicate transformer semantics for effects
(functional pearl)”. In: PACMPL 3.ICFP, 103:1–103:26. DOI: 10.1145/3341707. URL: https:
//doi.org/10.1145/3341707.

51

https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0%5C_5
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8%5C_4
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0%5C_1
https://doi.org/10.1007/3-540-44802-0%5C_1
https://doi.org/10.1145/3158104
https://doi.org/10.1145/3158104
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/3434307
https://doi.org/10.1145/3434307
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/3409003
https://doi.org/10.1145/3409003
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/3341707
https://doi.org/10.1145/3341707
https://doi.org/10.1145/3341707

BIBLIOGRAPHY

Vilhena, Paulo Emıĺio de and François Pottier (2021). “A separation logic for effect handlers”.
In: Proc. ACM Program. Lang. 5.POPL, pp. 1–28. DOI: 10.1145/3434314. URL: https://doi.
org/10.1145/3434314.

Wadler, Philip (1992). “Monads for functional programming”. In:ProgramDesign Calculi, Pro-
ceedings of the NATOAdvanced Study Institute on Program Design Calculi, Marktoberdorf, Ger-
many, July 28 - August 9, 1992. Ed. by Manfred Broy. Vol. 118. NATO ASI Series. Springer,
pp. 233–264. DOI: 10.1007/978-3-662-02880-3_8. URL: https://doi.org/10.1007/978-3-
662-02880-3%5C_8.

Wildmoser, Martin and Tobias Nipkow (2004). “Certifying Machine Code Safety: Shallow
Versus Deep Embedding”. In: Theorem Proving in Higher Order Logics, 17th International
Conference, TPHOLs 2004, Park City, Utah, USA, September 14-17, 2004, Proceedings. Ed. by
Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan. Vol. 3223. Lecture Notes in
Computer Science. Springer, pp. 305–320. DOI: 10.1007/978-3-540-30142-4_22. URL:
https://doi.org/10.1007/978-3-540-30142-4%5C_22.

Xia, Li-yao et al. (2020). “Interaction trees: representing recursive and impure programs in
Coq”. In: Proc. ACM Program. Lang. 4.POPL, 51:1–51:32. DOI: 10.1145/3371119. URL: https:
//doi.org/10.1145/3371119.

52

https://doi.org/10.1145/3434314
https://doi.org/10.1145/3434314
https://doi.org/10.1145/3434314
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3%5C_8
https://doi.org/10.1007/978-3-662-02880-3%5C_8
https://doi.org/10.1007/978-3-540-30142-4_22
https://doi.org/10.1007/978-3-540-30142-4%5C_22
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119

	Preface
	Contents
	List of Figures
	Introduction
	State monad
	The state monad definition
	State monad Hoare logic
	State monad Hoare logic verification
	State monad weakest precondition
	State monad weakest precondition verification
	State monad adequacy

	Delay monad
	Delay monad definition
	The later modality
	Delay monad weakest preconditions inference rules
	Delay monad verification
	Delay monad adequacy

	Interaction trees
	Interaction trees definition
	Interaction trees weakest preconditions
	Interaction trees interpreter
	Interaction trees adequacy

	Pothos model
	State weakest precondition model
	Delay weakest precondition model
	Itree weakest precondition model

	Case study: Concurrency
	The program
	Spin-lock library
	Ghost state
	Withdraw specifications
	Driver program

	Related work
	Interaction trees
	Dijkstra Monads Forever
	Predicate transformers
	SteelCore
	Fcsl
	A Separation Logic for Effect Handlers
	Perennial

	Conclusion and future work
	Bibliography

