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Probabilistic Estimation of Primary Ship-Induced
Wave Heights at Estuary Groins Using a Nonparametric
Bayesian Network

Sargol Memar, Ph.D."; Bas Hofland, Ph.D.; Elisa Ragno, Ph.D.%; Gregor Melling, Ph.D.*;
Oswaldo Morales-Napoles, Ph.D.%; Patricia Mares Nasarre, Ph.D.%; and Sebastiaan N. Jonkman, Ph.D.”

Abstract: Rock groins in the Elbe Estuary are constructed to maintain proper water levels for navigation and for embankment erosion pro-
tection. At certain localities, significant damages to rock groins have been observed due to the primary ship-generated waves. Primary waves
are generated along the ship’s hull and then propagate toward the river banks and groin fields, appearing in the interaction with the structures
as a turbulent overflow phenomenon. Eventually, this overflowing may cause damages mainly to the crest and leeward side of the groins.
Since this overflowing is the most pronounced with large primary waves at certain water levels, the estimation of the probabilities of extreme
primary waves is a key element for a safe and reliable design of groins. For this goal, nonparametric Bayesian networks (NPBNs) are used
here to infer the probability distribution function of the extreme primary wave heights at the tip of a groin in the Elbe Estuary. Results dem-
onstrate the suitability of the NPBN in their prediction. The model framework allows the designer to predict the probabilities of primary ship-
generated waves at groins when the information of ship dimensions, nautical parameters, and waterway geometry is available. These prob-
abilities can later be used for design purposes for current and future conditions. DOI: 10.1061/JWPEDS.WWENG-2063. © 2025 American

Society of Civil Engineers.

Introduction

During the last two decades, significant damages to rock infrastruc-
tures such as groins have been witnessed along the lower Elbe Es-
tuary, at Juelssand (Germany). The principal reason is the local and
temporal alteration of the hydrodynamic regime due to vessel nav-
igation, which is associated with the generation of primary
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ship-induced wave loads (Melling et al. 2021). The primary ship-
generated waves may lead to damages to the river near-bank and
bank protections (Fleit et al. 2019). Besides, the development of
container fleets has enabled the transit of ever large vessels in the
Estuary for the last 25 years (Melling et al. 2021). Ultralarge con-
tainer vessels in shallow and confined waterways increase the hy-
drodynamic impact of the ship wave load system along the
shoreline (Dempwolff et al. 2022). Hence, for designing rock
groins in tidal estuaries, a solution is required to improve their
safety and reliability. Accordingly, the estimation of the probabili-
ties of extreme ship-generated primary wave height is a key ele-
ment. The probabilities of extreme primary wave height can be
used for the design of groins given a return period of interest and
for reliability analysis and maintenance scheduling.

The prediction and characterization of ship wave loads in rivers
and estuaries have been investigated from different perspectives.
For instance, Memar et al. (2021) performed a stochastic character-
ization of ship speed through water, primary wave height, and draw-
down at the tip of a groin at Elbe Estuary via extreme value analysis
(EVA) and copula modeling. Numerical methods have also been
successfully applied to simulate primary ship wave loads (Kocha-
nowski and Kastens 2022; Almstrom et al. 2021; Bellafiore et al.
2018). In addition to numerical modeling, several empirical equa-
tions for the calculation of the ship-generated wave loads have
been established for individual ship passages based on field mea-
surements (Ravens and Thomas 2006; Parnell et al. 2016; Huang
et al. 2023).

However, these models have practical limitations due to specific
regional features of measured data. Moreover, to attain reliable re-
sults in a specific study site, more calibration data are required.
Generally, empirical and numerical models are deterministic and
are based on individual ship passages and typically model cases
for which the input values are known and the outcome is observed.
In addition, numerical models are time-consuming and computa-
tionally expensive. Therefore, these methods do not quantify the
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probabilities of ship-generated waves; a full range of possible out-
comes for the primary waves cannot be calculated. Consequently,
existing approaches may lead to under- or overestimation of the pri-
mary wave height. To address these issues, this study aims to quan-
tify a multivariate probability distribution function of the
ship-generated waves observed at a prototype groin in order to
used it for future design assessments.

To achieve this goal, initially, the weekly extreme primary wave
heights that may lead to damages to the groin were selected using
the EVA method. EVA allows inferring events that have not been
observed yet. Afterward, a nonparametric Bayesian network
(NPBN) was used to estimate the extreme primary wave height
at the tip of the groin when the information of ship dimensions,
nautical parameters, waterway geometry, and water level depres-
sion along the ship hull is known. The NPBN is used to assign
probabilities to different extreme primary wave events. The proba-
bilities of extreme primary wave height can be used for future de-
sign conditions and assessment purposes.

NPBNSs are graphical tools for statistical inference in which the
joint probability distribution of the variables of interest is deter-
mined via bivariate pieces of dependence (Hanea et al. 2006),
namely, bivariate copulas (Nelsen 2007). In recent years, NPBNs
have increasingly been implemented in numerous applications
within the civil engineering field due to their numerous advantages.
Their computational time is limited, and the uncertainties are em-
bedded in the model. In addition, it allows for the random genera-
tion of samples from dependent variables and for making
inferences for the variables in the network. Some applications in
the civil engineering field are flood risk modeling (Paprotny and
Morales-Napoles 2017), traffic load modeling (Morales-Napoles
and Steenbergen 2015; Mendoza-Lugo et al. 2022), or water re-
sources management (Ragno et al. 2021). Moreover, extensive re-
search can be found in the literature on the use of probabilistic
models based on bivariate copulas for seawaves modeling (Antao
and Guedes Soares 2014; Jaeger and Morales-Napoles 2017; Leon-
taris et al. 2016), highlighting the advantages of these approaches to
model their stochastic behavior. Recently, NPBNs have also been
proposed to this end in studies to predict the hydrodynamic forces
from waves and current loads (Alves et al. 2021) or describe the un-
certainty of extreme wind and wave loads (Mares-Nasarre et al.
2023). Alves et al. (2021) concluded that stronger forces were ob-
tained when considering the dependence between the variables,
making the use of these models key for structure design. Mares-
Nasarre et al. (2023) further assessed the performance of NPBNs
to describe the joint probability of extreme wave storms, obtaining
a good performance. With all the aforementioned, in this research,
we propose the application of NPBNs to model the multivariate un-
certainty of extreme primary ship-generated waves.

The paper is organized as follows. First, in the “Physics of Ship-
Generated Waves” section, the generation of primary ship-
generated wave loads is described. Second, the theoretical frame-
work of Bayesian networks (BNs) is presented in the “Probabilistic
Graphical Models: Bayesian Networks” section. Later, the case
study groin and data measurements are described in the “Case
Study and Data Collection” section. After that, in the “NPBN
Model for Ship-Generated Wave Loads” section, the built models,
their assessment, the final model, and its application are presented.
The results are discussed in the “Discussion” section, and finally,
the paper ends with conclusions and remarks.

Physics of Ship-Generated Waves

When a ship travels across a waterway, it displays the water for-
ward, causing a static pressure rise and the creation of a bow
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wave at the front of the ship. Because of the inertia of motion,
the water does not instantly return to equilibrium. This results in
fluctuations in the water surface and a swift decline in static pres-
sure along the ship’s hull. This appears as a water level depression
termed drawdown or Bernoulli wave. The static pressure increases
again near the stern of the ship and creates a stern wave behind the
ship [Fig. 1(a)] (Sorensen 1997). The pressure changes along the
ship’s hull are referred to as the primary wave load system, in
which the difference between the minimum point of drawdown
and maximum point of the stern wave is termed primary wave
height H, (m) and the difference between the minimum point of
the drawdown and the ambient water level is termed drawdown
Z, (m) [Fig. 1(a)] (Bhowmik et al. 1981). Primary wave loads im-
pact the banks and bank protections of confined and shallow water-
ways (Sorensen 1997). The stern wave can appear as an
overflowing over the bank protections such as groins, leading to
damage to these structures. The characteristics of ship wave
loads, such as primary wave height, drawdown, and wave period,
depend upon the hydrodynamic field, waterway morphology, and
ship properties (Sorensen 1997; Maynord 2005). In shallow and re-
stricted waterways, ultralarge container ships with large immersed
cross-sectional areas can induce significant primary ship wave
loads. The long-period primary wave load magnitude increases to-
ward the inner waterways as the channel cross section decreases,
resulting in a greater blockage and a bigger potential for a large pri-
mary wave height. The passing distance from a sailing ship to the
river shore or shore protection is another important parameter that
influences the magnitude of the primary ship-induced wave load
system. The smaller the passing distance, the larger the ship
wave loads. To describe the channel blockage, the term blockage
factor is used, which is a ratio of the immersed cross-sectional
area of the ship and the cross-sectional area of the waterway. How-
ever, since the Elbe Estuary is not narrow, to account for the dis-
tance of the ship centerline from the groin tip, the partial
blockage factor nT =A4y,/A,, was introduced by Melling et al.
(2021), which is the ratio of the ship’s immersed cross section
from the ship centerline A4y, to the waterway’s cross-sectional
area from the ship centerline 4., [Fig. 1(b)]. The partial blockage
factor is a function of ship draft, ship width, waterway water
level, and the distance of the ship centerline and water cross section
from the groin tip. By increasing ship speed through water, larger
drawdown and primary wave height are generated. However,
ships have to adjust their speed to reduce squat and avoid touching
the bottom. In shallower water depths, larger ship waves are gener-
ated. Considering a certain type of ship passing by a certain channel
cross section, when the water depth is low, the partial blockage fac-
tor is higher compared to when the water depth is high, resulting in
a larger drawdown and primary wave height. However, the largest
draft ships travel when the tidal water levels allow them. Large
ships have trouble maneuvering at less than approximately 10
knots, since they need sufficient pressure on the rudder. Another
factor that has been used to determine the ship-generated wave
height is the depth Froude number, which is defined as U/+/(gh),
where U is the ship speed and 4 is the water depth of the waterway.
For instance, Huang et al. (2023) performed a sensitivity analysis to
determine its impact on ship-generated waves. It should be noted
that the depth Froude number is based on two of the previously dis-
cussed variables: the ship speed and the water depth.

The insights into the physics of ship wave generation, i.e., the
influence of each variable on the primary ship-generated waves,
and the relationship between variables, described in this section,
are used to create the Bayesian Network models, in the “NPBN
Model for Ship Wave Loads” section. In the NPBNs, the influence
of ship draft, ship width, Estuary water level, and passing distance
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Fig. 1. (a) Primary ship-induced wave loads system; (b) definition of the partial blockage factor (d is the distance of ship from the groin tip, # is the
river depth, W, is the ship width, and D, is the ship draft); (c) location of the investigated site at Juelssand with the pilot study groin (image data ©
2021 Google); and (d) groin field and damage to groins (image courtesy of the Federal Waterways Engineering and Research Institute).

from the ship centerline to the groin tip is addressed using the par-
tial blockage factor variable.

Probabilistic Graphical Models: Bayesian Networks

Bayesian Network

BNs have been identified as an efficient tool for modeling high-
dimensional uncertain domains (Aguilera et al. 2011). A BN is
composed of a directed acyclic graph (DAG) containing nodes
and arcs. The nodes represent random variables, whereas the arcs
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determine the probabilistic relationship between connected nodes
(Neil et al. 2000). The direct predecessors of a node are termed par-
ents, and the direct successors are named children. A graphical rep-
resentation of BNs enables visualizing the relationships between
variables (Hanea et al. 2015). A BN encodes the probability den-
sity, or mass function, on a set of random variables
X =1{X,...X,} given a set of conditional independence state-
ments in the DAG coupled with a set of conditional probability
functions. It, therefore, enables the representation of a high-
dimensional probability distribution function on set X. The condi-
tional independence statements of the network are specified with
criteria that are focused on the following possible network pieces
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for three random variables {Xj, X5, X3} (Morales-Napoles and
Steenbergen 2015). Considering Fig. 2, BN1 indicates that X; is
conditionally independent of X3 given the information of X,
(X1 L X3 ]X,); however, X; and X3 are not marginally independent
(X1 L X3). For Bayesian network 2, the criterion is similar to that of
Network 1, i.e., stating (X; L X3 | X3); however, (X L X3) margin-
ally. Finally, BN3, determines that X; is conditionally dependent
on X3 when the information of X, is available (X; L X3 | X3) but
marginally independent (X; L X3), which is indicated by the ab-
sence of an arc between them. The aforementioned criteria imply
that every random variable is independent of its ancestors given
its parent. Thus, if every node of the network is associated with a
conditional probability density function of that node given its par-
ents fy, | pa(X;), the joint density can be written as follows:

S %, x0) = [ [ paoe (i | Xpacx) (&)
i=1

where pa(X;)=a set of parent nodes X;. For a node without parents,
pa(X;) = @; thus, fx, | pa(X;) = fx..

Nonparametric Bayesian Network

The ship wave load model was constructed using an NPBN which
is a variant of the BN introduced by Kurowicka and Cooke (2005)
and extended by Hanea et al. (2006). In the NPBN, the nodes are
specified by invertible marginal distributions and the arcs between
the connected nodes are quantified by the (conditional) rank corre-
lation coefficient realized by bivariate normal copula (Kurowicka
and Cooke 2005). NPBNs are extensively used for statistical infer-
ences in which the joint probability distribution of the variables of
interest is determined via bivariate dependence (Hanea et al. 2015).

The theory of NPBN is centered around bivariate copulas. The
bivariate copula or copula of two continuous random variables, X;
and X; (i # j), is the function C so that their joint cumulative distri-
butlon function is given as Fy, x,(x;, x;) = Co(Fx,(x;), Fx,(x;)) (Nel-
sen 2007; Sklar 1959), where Fy x,(Xi) and Fi (X)) are the marginal
cumulative distribution functions of Varlables X; and X;, respec-
tively. The one-parameter copula Cy is indexed by the vector of pa-
rameter €, which describes the relationship between the copula and
the measures of association between variables, such as Spearman
(1904)’s rank correlation (r) or Kendall’s tau.

The rank correlation of random variables .X; and X; is equal to
the Pearson product-moment correlation p computed with their cor-
responding cumulative distribution functions Fy; and Fy; as
follows:

Fry = P(Fx (%), Fy(x)) @

In NPBNSs, bivariate normal copulas are implemented to de-
scribe the dependence structure between pairs of variables.
Hence, the combination of bivariate normal copulas provides the
overall dependence structure between all the variables. The normal
copula is parameterized by rank correlation; thereby, zero correla-
tions indicate independence. By applying the copula function, the
underlying multivariate distribution function is separated from its
marginal distributions, which provides high flexibility in presenting
the dependence structure of multivariate random variables. Hanea
et al. (2006) presented a protocol based on the normal copula as-
sumption to compute the joint distribution function of » random
variables {Xj,...X,} having invertible marginal distributions
{F1,...Fy}.

For each node of a DAG, specified by variable X;, the variable X;
is transformed into a standard normal variable Y; with the
transformation  function  ¥; = ¢ '(Fi(X;)), where ¢! s
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Fig. 2. Illustration of the conditional independence statements of the
Bayesian network.

the univariate standard normal distribution. The quantity
p(X;, Xj) =2 sin((x/6)r(X;, X))) is assigned to each arc of the net-
work. Thus a unique joint normal distribution and a unique corre-
lation matrix R are obtained. Afterward, the R based on partial
correlation is computed recursively. Finally, by sampling from
the joint normal distribution function of a set of variables V;,
with correlation matrix R, and then transforming them back to
their original units via X; = F~'(¢(Y;)), the joint distribution of
original variables X; and their dependence are determined. Addi-
tionally, one of the properties of NPBNs is their ability to make
probabilistic inferences of a system characteristic (e.g., output)
by conditioning on the known characteristics of the system (Kuro-
wicka and Cooke 2002). In this case, the calculated conditioned
joint probability distribution function has a smaller dimension com-
pared to the unconditioned network. In this study, to construct the
ship wave load model, we used the NPBN based on normal copula
assumption implemented in the MATLAB (version 2020) toolbox
BANSHEE (Paprotny et al. 2020).

Case Study and Data Collection

The studied groin field is located at Juelssand on the north shoreline
of the lower Elbe Estuary, across the main access to the port of
Hamburg [Fig. 1(c)]. In this location, considerable damage to the
groin field took place due to primary ship-induced wave loads.
Therefore, to assess the impact of ship wave loads from different
vessel types on the stability of the rock groins, two of the groins
were restored using optimized designs based on physical scale
model tests and a field study (Melling et al. 2021). The field mea-
surement campaign was carried out with an aim to record a suffi-
ciently long time series of load data on the rebuilt groins. The
pressure changes were measured from the mounted pressure sen-
sors (by Driesen and Kern and RBR with a sampling rate of 1
HZ) on the groins at its head, crest, foot, and root areas, which
are indicated by gray dots on the groin in Fig. 1(c). The pressure
changes are eventually converted to water levels. From the re-
corded water levels, the primary ship-induced wave loading com-
ponents, e.g., primary wave height and drawdown, are calculated.
The other source of data is the automatic identification system
(AIS) data set of vessel traffic. The AIS data set provides high-
temporal resolution information about vessel Maritime Mobile Ser-
vice Identity (MMSI or vessel identification number) and nautical
parameters, e.g., ship dimensions (such as ship width and ship
length), ship speed through water, ship draft, the passing distance
of the ship from the tip of the groin, and ship’s position. Over
4,500 ship passages were recorded in the time interval of the
field measurements from November 2017 to September 2019.
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Fig. 3. Time series plot of the measured primary wave height with the
specification of the maximum primary wave height within a week.

The extreme primary wave heights can contribute to significant
damages to estuarine infrastructures. Therefore, using the extreme
value analysis method, maximum values of H, for each week were
selected to create the probabilistic models (93 measurements),
while the other variables used in the models are the corresponding
events that occur at the same time (concomitant variables) and are
not necessarily extreme. As the measured data are available for al-
most 22 months (from November 2017 to September 2019), weekly
maxima data are selected in order to have sufficient measurements
to perform a reliable EVA and to create NPBN networks. In Fig. 3,
the measurements and the weekly maxima of extreme H, are de-
picted. The variables used in the NPBNs are described in more de-
tail in the “NPBN Model for Ship Wave Loads” section. In this
study, we used the measurements for the primary wave height
and drawdown at the tip of the groin to reduce the influence of
groin geometry on the estimated primary waves and ease the exten-
sion of the proposed NPBN to other infrastructures in the Elbe Es-
tuary. The maximum recorded primary wave height at the tip of the
groin is about 1.06 m. Additionally, this region is characterized by
the close ship passing distance (particularly for the seaward passing
ships) and significant wave load energy due to small distances be-
tween the shoreline and the navigation channel. The distance from
the edge of the waterway to the groin tip can be as short as 65 m.
The channel side slope is around 1:5. In addition, in this section
of the Elbe Estuary, ship speed is restricted (12 knots with a toler-
ance of 1knots) and typically vessels travel at their maximum
allowed speed.

NPBN Model for Ship Wave Loads

NPBN Orderings and Investigated Networks

The NPBN models are developed based on the AIS and load data
sets. A suitable network (DAG) was identified to represent the pri-
mary ship-induced wave loads as a system in which (H,,) is given
by the interaction between ship and waterway characteristics
such as ship speed through water (Vgip), ambient water level before
ship passage (RWS), partial blockage factor (n7'), and ship wave
characteristics such as drawdown (Za). Thus, the created NPBN
model consists of five continuous random variables: Vi, RWS,
nT, Z,, and H, (as an output) [Fig. 4(b)]. The characteristics of var-
iables of interest are given in Table 1. The measurements of ambi-
ent water levels RWS are 1.5 m above the reference surface geoid.

Network selection to create a dependence model, i.e., express-
ing the graph representing the physical framework to indicate the
relationships between variables involved in the generation of
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primary ship waves, into a DAG (probabilistic framework) by con-
necting the nodes with arcs was challenging due to a high number
of possible configurations for a DAG describing the set of random
variables. Based on our physical understanding of the ship-induced
wave generation (“Physics of Ship-Generated Waves” section) and
conditional independence statements for NPBN (“Nonparametric
Bayesian Networks” section), we tested eight networks (Table 2),
all of them with the same nodes but with different parent—child or-
derings and numbers of arcs [order of variables that determines the
(un)conditional correlations in the arcs]. It is identified that the first
node of the network can be either Vi, or RWS. Thus, two node
orderings were investigated: the first node ordering comprises the
following variables: Vi, (Node 1), RWS (Node 2), nT" (Node 3),
Z, (Node 4), and H, (Node 5) [Fig. 4(a)]. For the second node or-
dering, the location of Nodes 1 and 2 are substituted thus the order-
ing is created as RWS, Vi, nT, Z,, H,. For each node ordering,
four DAGs were constructed based on conditional independence
statements for the NPBN and the physical understanding of the
ship-generated wave system. For DAGl and DAG2, the arcs
from Vgip, RWS, and nT are directly connected to /,, showing
that /1, is unconditionally dependent on ship and waterway charac-
teristics. For DAG3 and DAG4, the arcs from Vg,ip, RWS, and nT’
are conditionally connected to /), through Z,, representing that H,
is conditionally dependent on ship and waterway characteristics.
Thus, given the value of Z,, H), is independent of the ship and wa-
terway characteristics in this configuration.

The joint probability distribution functions of the variables of
the DAGs were then quantified via the associated NPBN. Eventu-
ally, the variable of interest, i.c., the primary wave height, can be
inferred by conditioning on the remaining variables. The joint dis-
tribution function was determined following the procedure pre-
sented by Hanea et al. (2006) and is discussed in the previous
section. A normal copula was assumed for quantifying (condi-
tional) rank correlations. Furthermore, the marginal distributions
of the nodes of the networks were described via both empirical cu-
mulative distribution functions (ECDFs) and parametric probability
distribution functions. After performing a sensitivity check for the
marginal distributions, the parametric distributions were selected
because they allow for generating data beyond the range of obser-
vations. In the EVA method, the unseen data are inferred, and this
cannot be done by means of ECDF. In Appendix I, the exceedance
probability plots of the generated extreme primary wave heights
(2,000 samples) using empirical and parametric probability distri-
butions for DAG2 are shown (Fig. 9). The best-fit parametric dis-
tribution for every random variable was determined. The
following one-dimensional parametric distributions were fitted to
the variables: generalized extreme value (GEV), extreme value
(EV), normal, Weibull, gamma, inverse Gaussian, logistic, and
Rayleigh. The best-fitting probability distributions that described
the margins of the NPBN model were selected based on visual in-
spection and a goodness-of-fit test measure Akaike information cri-
terion (AIC) given as AIC =2K —21In(L), in which K is the
number of estimated parameters in the model and L is the maxi-
mum value of the likelihood function for the model (Akaike
1974). The 2K term of AIC is a penalty term for the number of pa-
rameters in the likelihood function. The model with the lowest AIC
score is expected to be the best model to fit the data while prevent-
ing overfitting. The plot of the cumulative distribution functions for
the extreme primary wave height for DAG2 is provided (Fig. 10
and Table 5). It was found that the Weibull distribution fitted the
best to the extreme primary wave height.

It has to be mentioned that, although in this study the parametric
margins were used, the term NPBN is used to be consistent with the
previous literature.
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Waterway
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Primary
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Ship Water level
characteristics depression
e.g. Ship speed along the ship’s
through water hull
(b) Physical framework

(DAG4)

-0.14

Probabilistic framework

Fig. 4. (a) DAGs of NPBN models for ship-induced wave loads system (sampling order 1); and (b) Physical and probabilistic frameworks for Primary
ship-generated wave loads system (probabilistic framework is created in Uninet Software).

Testing the NPBNs

To evaluate the performance of the networks as predictive models,
the data were split into 70% and 30% subdata sets for the purpose
of training and testing the models, respectively. Predictive model-
ing uses historical data to create, process, and validate models to
identify trends or patterns between data and predict future out-
comes. In this study, the diagnostic metrics Nash—Sutcliffe efficien-
cies (NSE) and Root Mean Square Error (RMSE) were used to
evaluate the performance of the models in predicting the primary
wave height in both the training and testing subsets.
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The NSE is calculated as

>, (OBS; — SIM;)?

NSE = 1 — &2 >
S " (OBS; — OBS)

©)

where SIM and OBS = simulations and observation values, respec-
tively; and OBS mean of observation. Values of NSE > 0.8 indicate
a very good model performance (Moriasi et al. 2015), while
NSE < 0 suggests that the observations mean is a better predictor
compared to the model determined.
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Table 1. Characteristics of the variables of interest

Variable Unit

Vinip knots Ship speed through water
RWS mNHN + 1.5m  Ambient water level (before ship passage)

Description

nT — Partial blockage factor
Zy m Difference between ambient and minimum
water levels during a primary wave event
H, m Difference between the maximum and
minimum water levels during a primary wave
event

The RMSE is the standard deviation of the residuals (a measure
of how far the data points are from the best-fit line) and is used to
compare the prediction errors of different models. In other words,
RMSE is a measure of how well a regression line fits the data
points. The lower the RMSE, the better a model fits a data set.
The formula of RMSE is given according to the following
equation:

1 m
RMSE= |— IM; — OBS;)? 4
S \/m;(s OBS)) 4)

For both training and testing processes, for every ship passage
event, the extreme primary wave height is generated by condition-
ing on the remaining variables. This is, for each event, the NPBN
generates a conditional distribution function of the extreme primary
wave height given the variables of Vg,ip, RWS, nT, and Z,. From
the conditional distributions, the medians (50th percentile of a
data set) are taken as the simulated H, for a particular network
(DAG). Correspondingly, the Sth and 95th percentiles of the con-
ditional distributions are taken as the confidence intervals of the
simulated H,. Eventually, for all eight DAGs, the observed and
simulated (50th) extreme primary wave heights were compared
via diagnostic metrics NSE and RMSE (Table 2), calculated on
the testing subset. A statistical validation is presented in the Supple-
mental Material.

Network Selection

The best model among all created networks was selected based on
its performance in the estimation of extreme primary wave height
using statistical test metrics NSE and RMSE. For this purpose,
the observed and simulated (median values of the calculated condi-
tional distribution functions of ) extreme primary wave heights
were compared via diagnostic metrics. According to Table 2, all
networks offer high performances in the estimation of the extreme
primary wave height in the testing subset since values of NSE > 0.8
and low values of RMSE < 0.051 (m) are obtained. However, the
best model performance is associated with the second network

Table 2. Results of the test metrics for comparing the observed and
predicted extreme primary wave heights (f,) for different sampling
orders and DAGs in the testing subset

DAG NSE RMSE Node ordering

1 0915 0.044 Vi, RWS, nT, Z,, H,
2 0.918 0.043 Vi, RWS, nT, Z,, H,
3 0.884 0.051 Vi, RWS, nT, Z,, H,
4 0.904 0.047 Vi, RWS, nT, Z,, H,
5 0.908 0.0464 RWS, Vi, nT, Z,, H,
6 0.912 0.045 RWS, Vi, nT, Z,, H,
7 0.886 0.051 RWS, Vi, nT, Z,, H,
8 0.87 0.05 RWS, Vi, nT, Z,, H,
© ASCE
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(or DAG2) with the greatest NSE=0.918 and the smallest
RMSE = 0.043 (m) values among other networks. Thus, DAG2
was selected as the best NPBN model for representing the primary
ship-generated wave system. In Fig. 4(b), probabilistic framework
shows the NPBN model of DAG2 created in the uncertainty anal-
ysis software package Uninet (Cooke et al. 2007). The values on
the arcs represent the (conditional) rank correlation coefficients be-
tween pairs of the network. The variables drawdown and extreme
primary wave height are strongly correlated with ship speed
through water. Higher ship speeds result in larger water level de-
pressions and consequently larger stern waves. Positive correla-
tions between H,, Z,, and nT confirm that when vessels travel
toward inner waterways, bigger waves are generated. Ambient
water level before ship passage RWS is negatively correlated
with nT. This is consistent with reality, since the area of a river
cross section at the groin’s location becomes smaller in lower
water levels, resulting in bigger values of nT. In addition, negative
correlations between H,, Z,, and RWS demonstrate that in low
water levels, the water level depression and primary wave height
magnitudes are enlarged along the ship’s hull and in the vicinity
of shore protection or at the river banks. Eventually, the extreme
primary wave heights are associated with the largest drawdowns.
The primary wave height is directly connected to the water dis-
placement by the vessel including the return current and the asso-
ciated water level depression along the hull. Furthermore, the
NPBN rank correlation matrix should approximate the empirical
rank correlation matrix. These matrices are presented in the Supple-
mental Material in Tables S1-S4.

Validation of the Selected Network

To validate the selected NPBN model (DAG2), five run simulations
were performed. Running multiple simulations allows us to vali-
date the accuracy of the models and assess the sensitivity of the re-
sults to changes in input parameters. For each simulation run,
initially, for every ship passage event, the extreme primary wave
height was generated by conditioning on the remaining variables.
Afterward, the median (50th percentile of a data set) of the simu-
lated H,, was compared with the observations (Fig. 5). In Fig. 5,
the observed weekly maxima primary wave height is compared
with the simulated values for the testing model in Runs 1, 2, and
4. It is apparent that most of the observed extreme primary wave
heights (for almost 85% of events) fall within the simulated confi-
dence intervals (5th and 95th), which affirms the strength of the
model in predicting the extreme primary wave height. The
confidence interval between the 5th and 95th is the 90th confidence
interval. It is a common practice in coastal engineering (Mares-
Nasarre et al. 2023). In fact, the NPBN provides with an estimation
of the distribution of H,,, and we typically use the median (50th per-
centile of a data set) as the estimator. However, the confidence in-
tervals give us more information about the uncertainty. The fact
that the observation is within the interval means that the provided
distribution by the NPBN is a good approximation; the observation
is likely to be a realization of the distribution. Furthermore, Table 3
shows the results of the diagnostic metrics for comparing the sim-
ulated and observed extreme primary wave heights for all five run
simulations in both training and testing subsets. Values of NSE
close to 1 indicate an excellent model performance, while low
RMSE values demonstrate the robustness of the model. In addition,
resulting values of NSE and RMSE for the training and testing sub-
sets are very close to each other, indicating that the model produces
a high level of performance for the unseen data (here testing data).
According to these outcomes, the NPBN model demonstrates its
suitability in the estimation of extreme primary wave height.
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Fig. 5. Comparison between the simulated extreme primary wave
heights from Runs 1,2, and 4 and observations for the test data (for
DAG?2). The shaded area represents the 5th and 95th confidence inter-
vals of the simulated extreme primary wave height.

Besides, the model was further validated by using the NPBN
model to infer the primary wave height when the information
about variables ambient water level before the ship passage event
(RWS) and ship speed through water (Vgy;p) is available (conditional
model). To do so, 2,000 samples were generated from the multivar-
iate distribution function of the NPBN. In Fig. 6, the exceedance
probability plots of the generated extreme primary wave heights
are compared with those of the generated extreme primary wave
height when the information about the RWS and Vg, is known.
For a constant ship speed through water, Vi, = 13 knots (which is
equal to almost 90% of the ship limit speed), two ambient
water levels were tested: RWS=177mNHN+ 1.5m and
RWS =2.37mNHN + 1.5 m. Considering an arbitrary value of the
extreme primary wave height equal to A, = 0.8 m, the probability
of the extreme primary wave height exceeding 0.8m,
p(H,>0.8m)=0.15 is smaller than the conditional probability
of the extreme primary wave height exceeding 0.8 m, given the
information Vg, and RWS [p(H, > 0.8 m | Vi, = 13 knots and
RWS =1.77mNHN + 1.5m)=0.17]. By increasing the water
level, the conditional exceedance probability of the extreme primary
wave height is decreased considerably [p(H, > 0.8 m | Vi, = 13 knots
and RWS =2.37mNHN + 1.5m) = 0.06]. The results are consis-
tent with reality since the critical situations (the largest primary
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Table 3. Test metrics results for comparison between the observed and
predicted extreme primary wave heights (/,) for the training and testing
subsets of the DAG2

Training subset Testing subset

Simulation NSE RMSE NSE RMSE
Run 1 0.918 0.044 0.95 0.029
Run 2 0.917 0.047 0.93 0.037
Run 3 0.908 0.046 0.731 0.09

Run 4 0.941 0.041 0.887 0.048
Run 5 0.928 0.043 0.89 0.048

wave heights) correspond to low water levels and vice versa.
Thus, the model proves its applicability in simulating the primary
wave height.

Example of Model Application

The developed NPBN model can be used to further investigate the
influence of variables on the primary wave height. In Fig. 7, the sen-
sitivity of the exceedance probabilities of /,, to RWS and nT is pre-
sented. It should be noted that here the variables have been set to
three values: one close to the minimum recorded value, one close
to the maximum recorded value, and one in between. In this manner,
the measured ranges for the different variables are covered and com-
parison between the plots can be made. As observed in previous re-
search (Bhowmik et al. 1981; Dempwolff et al. 2022), the higher the
nT and the lower the RWS, the higher the /,. This guidance can be
used to develop more efficient policies for river management. For in-
stance, it can also be applied to assess the influence of ship speed re-
strictions for varying water levels. Fig. 8 presents the exceedance
probability plot of the extreme primary wave height for different
ship speeds when RWS = 1.71(mNHN + 1.5m). In addition, the
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Fig. 6. Exceedance probability plots of generated extreme primary
wave heights and generated extreme primary wave heights, given the
information about the ship speed (Vinip) and ambient water level
(RWS) (conditional model) per week.
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Fig. 7. Sensitivity analysis of the exceedance probabilities of the primary wave height (H,) to (a) ambient water level (RWS); and (b) partial blockage

factor (nT).

probabilities of the extreme primary wave height when the ship
speed through water is increased are computed in both low water lev-
els [between 1.2 and 1.71 (mNHN + 1.5 m)] and high water levels
[3.2 (mNHN + 1.5m)], as shown in Table 4). Results indicate that
both RWS and Vg, have a great influence on the probabilities of ex-
ceedance of H,,. In shallower water levels [between 1.2 and 1.71
(mNHN + 1.5m)], if ships increase their speed from 12.6 to 15
knots, the probabilities of the primary wave height greater than 0.8
m [P(H, > 0.8 | Vinip, RWS] become almost 3—4.8 times larger. In
high water levels [3.2 (mNHN + 1.5 m)], the exceedance probabili-
ties of the primary wave height greater than 0.8 m are increased con-
siderably (36 times). However, these probabilities are smaller than
0.11 (for the highest ship speed 15 knots), showing that shallow wa-
ters are more critical for primary wave loading.
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0.4 0.6 0.8 | 1.2 1.4 1.6
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Fig. 8. Exceedance probability plots of the extreme primary wave
height for different ship speeds through water when the water level be-
fore passage is 1.71 (mNHN + 1.5m).
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Discussion

In this study, the NPBNs were used to estimate the primary wave
heights at the tip of a case study groin in the Elbe Estuary. The de-
veloped model could be potentially used in the design phase, i.e., to
determine proper rock sizes in the groin design through a reliability
analysis. A reliability analysis requires the definition of a limit state
function, Z = S — R, where R is the loading and S is the resistance.
Thus, Z < 0 implies failure. For groin design, R can be defined as
the velocity of the overflow in the leeward side of the groin respon-
sible for the erosion of the rock armor. This velocity can be com-
puted using the primary wave height estimated by the NPBN
multiplied by a factor of 2.5. For the considered groin, the mea-
sured primary wave height at the crest is an average of almost
2.5 larger than at the tip. Regarding S, it can be defined as the crit-
ical flow velocity calculated using Izbash (1936)’s formula which
depends on the rock size, between others. Random samples of
the primary wave height can be obtained using the NPBN, and
they can be propagated through the described methodology to com-
pute the probability of failure of the structure in a Monte Carlo
fashion. The obtained probability of failure can be compared to
the design one. Further iterations of the process can be performed
changing the rock size until the desired probability of failure is ob-
tained. Thus, this model allows to move from a deterministic to a
probabilistic design of the studied rock groin and provide further
information to the decision-makers about risk levels.

Future research could address the wave—structure interaction di-
rectly in the probabilistic model (Mares-Nasarre et al. 2024). That
is, variables related to the structure response could be included in
the probabilistic model to account for the stochastic nature of
such interactions. Within the context of groin design, it would be
possible to make a new NPBN that includes variables quantifying
the groin damage or further hydrodynamic variables responsible for
failure modes, such as the velocities of the groin overflow. How-
ever, at the moment, no field measurements are available, and
they would need to be calculated through deterministic empirical
equations.

It should be noted that the scope of this paper is limited to the
case study in the Elbe River, where factors such as the local bathy-
metry and the groin field have influence on the measured primary
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Table 4. Conditional probabilities of extreme primary wave height per
week (H,) for different ship speeds through water and water level before
ship passage

Vnip (knots)

RWS (mNHN + 1.5 m) P(H, > 0.8 | Vpip, RWS)

12.6 1.2 0.24
13 1.2 0.32
13.4 1.2 0.42
14 1.2 0.55
15 1.2 0.76
12.6 1.71 0.12
13 1.71 0.2

13.4 1.71 0.26
14 1.71 0.4

15 1.71 0.6

12.6 32 0.003
13 32 0.005
13.4 32 0.014
14 32 0.04
15 32 0.11

waves. Therefore, it is encouraged to perform further research on
the generalization of this model to different locations and condi-
tions. To do so, databases from field campaigns in locations with
different bathymetries, waterway configurations, and traffic com-
positions would be desired to capture the whole range of possible
variations. This would give further insight into the physical pro-
cesses, especially in the interactions between the waterway bathy-
metry and the generated primary wave, which has already been
highlighted as a key factor in previous studies (Dempwolff et al.
2022). Moreover, it would also be beneficial to perform further
field campaigns focused on the structure response to ship-induced
loading to better estimate, for instance, the armor damage or the ve-
locity of the groin overflow.

One of the main challenges of using NPBNs is the definition of
the DAG. Here, eight possible models are generated based on the
physical understanding of the phenomenon and a step-by-step pro-
cedure to select and validate it is described. This procedure can be
used in future research to define new models in different locations.

Another important assumption of NPBN is the use of Gaussian
copulas to model the dependence between the variables. That is, the
shape of the dependence between each pair of variables is defined
beforehand and the strength of that dependence is given by the rank
correlation coefficient. If the dependence does not present signifi-
cant asymmetries, the Gaussian copula is a reasonable model.
Here, asymmetries are observed in some pairs (e.g., tail dependence
in the pairs Vpi, and RWS or RWS and Z,), although not in most of
them. Therefore, these asymmetries were considered negligible,
making NPBN an appropriate model. Future research could assess
the importance of those asymmetries in other data sets and, if
needed, explore the use of models based on copula families differ-
ent to the Gaussian (Czado 2019).

Conclusions

This study aims to assess the applicability of the NPBN in estimat-
ing extreme primary wave heights at the tip of a rock groin situated
in the lower Elbe Estuary. The probabilistic framework represents
the primary ship-induced wave loads as a system in which the pri-
mary wave height is given by the interaction between ship and wa-
terway characteristics and drawdown. Thus, the final network was
created using five random variables, namely, ship speed through
water, ambient water level before ship passage, partial blockage
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factor, drawdown, and primary wave height. The NPBN is com-
posed of a directed acyclic graph, which is nonunique, meaning
that different networks can be created based on physical under-
standing of the ship-generated primary wave load system and con-
ditional independence statements of the NPBN. Therefore, eight
networks were investigated and a procedure to define, select, and
validate them was proposed. Following such procedure, the best
network for the estimation of the extreme primary wave height
was selected by comparing their performances in generating ex-
treme primary wave height via diagnostic metrics NSEs and
RMSE. The good performance of the selected NPBN in terms of
NSE and RMSE demonstrates the robustness of the model, high-
lighting the applicability of NPBNs in general for the estimation
of the extreme primary wave height. Also, the proposed model
can be used to predict the probabilities of extreme primary wave
height on groins in Juelssand for future conditions and for design
and assessment purposes.

Appendix I. Empirical vs Parametric Probability
Distributions for DAGs

In Figs. 9 and 10, the exceedance probability plots of the generated
extreme primary wave heights were compared for both empirical
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Fig. 9. Comparison between the exceedance probability plots of the
generated extreme primary wave heights using empirical cumulative
and parametric probability distributions as marginal distributions at
the nodes of the NPBN model (DAG2).
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Fig. 10. Fitted distributions to the extreme primary wave heights (for
DAG2).
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and parametric probability distributions for DAG2. The vertical
axis shows the exceedance probabilities P(X >x)=1—- P(X <x)
of the extreme primary wave height within a week, while
P(X < x) is the nonexceedance probability.

Appendix Il. AlC-Based Goodness-of-Fit for Extreme
Primary Wave Heights

Results of the goodness-of-fit test measure AIC for the determina-
tion of the best-fit distribution for the extreme primary wave
heights (H,) are presented in Table 5.

Table 5. Results of the goodness-of-fit test measure AIC for the
determination of the best-fit distribution for the extreme primary wave
heights (H,)

Distribution type Parameters AlC

GEV (—0.46, 0.16, 0.56) -61.28
EV (0.68, 0.13) —60.80
Normal (0.61, 0.15) —58.34
Weibull (0.66, 4.75) —-60.43
Gamma (12.905, 0.05) —46.65
Inverse Gaussian (0.61, 6.10) -34.39
Logistic (—0.51, 0.15) —47.52
Rayleigh (0.44) -10.11
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