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ABSTRACT 
Droughts are a serious threat to the planet. Especially in agriculture, the consequences are devastating 
leading to reduced yields or crop failure with further implications for economics, politics and society. Being 
able to monitor and predict agricultural droughts is an important step to reduce agricultural vulnerability and 
secure livelihoods. However, few drought indicators measure the actual crop response towards the 
hydrological conditions. Remote sensing bears great potential for this challenge due to its worldwide 
continuous coverage and relatively low costs.  Vegetation Optical Depth (VOD), a remote sensing method, is 
a measure of above-ground vegetation water content based on passive microwaves, which are not affected 
by atmospheric distortion. The present research aims at analysing the potential of VOD as an agricultural 
drought indicator. A case study on pepper fields in Indonesia was conducted using daily VOD data between 
2012 and 2018 at a downscaled spatial resolution of 100 x 100 m. Correlations between VOD anomalies and 
anomalies of other meteorological drought indicators were calculated. VOD was found to be correlated with 
the Standardized Precipitation Evaporation Index (SPEI) by 0.47, with the El Niño Southern Oscillation 
(ENSO) by -0.46 and with the Indian Ocean Dipole (IOD) by -0.46. These correlations indicate that other 
factors influence the VOD, which should be considered as an independent dataset. This study provides 
evidence that VOD is capable of capturing agricultural droughts. A cross-comparison was conducted with the 
Normalized Difference Vegetation Index (NDVI), which is often compared to VOD as an alternative measure. 
Results in the investigated area suggest that, although VOD has a lower spatial resolution, it performs better 
than NDVI. Finally, a roadmap was proposed towards developing a drought indicator based on the VOD 
anomalies. This roadmap aims at modelling future VOD based on the relation between SPEI and VOD by 
using the added value of VOD that this study reveals. This study is especially relevant for other tropical areas 
with a high cloud density. 
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1  INTRODUCTION 
Droughts represent a severe threat to humans and ecosystems. Compared to other atmospheric hazards, 
droughts are often characterized by a larger spatial coverage and a longer duration (Ding et al., 2013). Even 
though they are among the most slowly developing extreme meteorological phenomena, they are still the 
least predictable (Mishra et al., 2010). Although droughts are often related to arid climates, almost all regions 
including wet and humid climates are susceptible to them (Dai, 2011; Carrão et al., 2016). In particular, 
populated and agriculturally extensively exploited areas are characterized by a high drought risk (Carrão et 
al., 2016). From an economic point of view, annual yield variations, crop failure and pasture losses represent 
the main direct impacts of this natural hazard within the agricultural sector (Boyer, 1982; Ding et al., 2013). 
This may even have a catalytic effect on social and political conflicts (Kelley et al., 2015). Due to this 
complexity of the impacts on the environment, the economy and the society, the consequences of droughts 
are difficult to quantify (Wilhite, 2000). 
At a global scale, recent drying has been influenced on the one hand by natural climatic variations in 
atmospheric circulation patterns such as El Niño Southern Oscillation (ENSO) and Asian monsoons (Dai, 
2011). On the other hand, anthropogenic activities caused an increase in greenhouse gas emissions leading 
to higher atmospheric moisture demand, thus, altering the atmospheric circulation patterns (Dai, 2011). 
Additionally, population growth and the associated increased water demand as well as other anthropogenic 
triggers such as excessive irrigation, over-farming and deforestation will aggravate the impacts of droughts 
(Mishra et al., 2010). The central role of humans in this complex issue also includes the opportunity to reduce 
future damage if more knowledge were available on sustainable limits of agriculture and water use. Instead 
of managing droughts after they occurred, as currently common practice (Hayer et al., 2004, Svoboda et al., 
2015; Wilhite et al., 2007, 2014 cited in Carrão et al., 2016), drought monitoring and prediction could help to 
reduce the agricultural vulnerability in order to secure livelihoods.  
A range of drought indices was developed in this context. Most of these are based on indirect measures 
such as precipitation or temperature (Torres et al., 2013). However, the site-specific soil and vegetation 
properties, e.g. soil water content, play a significant role in the manifestation of droughts (Martínez-
Fernández et al., 2016). The indirect indices became the common practice because of the deficient 
availability of the required ground data (Van Lanen et al., 2013).  
Through its continuous and worldwide coverage, remote sensing offers cost-efficient opportunities to meet 
this challenge, especially at continental to global scales or in locations where in-situ measurements are 
difficult to obtain. Due to its simplicity and efficiency, the Normalized Difference Vegetation Index (NDVI) has 
become the most used indicator of vegetation productivity on global scale studies (Andela et al., 2013; 
Sruthi et al., 2015). This index operates in the optical spectrum and measures the chlorophyll abundance at 
the planet’s surface (Myneni et al., 1995). Therefore, it can be used as a pre-drought indicator value to study 
vegetation cover changes as well as trends in the occurrence of agricultural droughts (Van Dijk et al., 2013; 
Sruthi et al., 2015). Despite the various advantages of NDVI and similar remote sensing based vegetation 
indices, they also have downsides, as for instance, lacking data in case of cloud cover or a high concentration 
of aerosols (Morton et al., 2014, Saleska et al., 2016, Samanta et al., 2010 cited in Liu et al., 2018). 
Furthermore, in the densely vegetated tropical areas, NDVI saturates, impeding proper analysis. One 
approach to face this challenge is to complement NDVI with the highly negatively correlated Land Surface 
Temperature (LST) data (Sruthi et al., 2015).  
The microwave spectrum bears promising potential. Temperature, soil moisture as well as the shielding 
effect of water in the above-ground vegetation biomass define the intensity at which the Earth naturally emits 
passive microwaves (Jackson et al., 1991; Kerr et al., 1990; Guglielmetti et al., 2007 cited in Liu et al., 2015). 
For this reason, soil moisture and vegetation water content can be measured with passive microwaves.  



2 1 INTRODUCTION 
 

Vegetation Optical Depth (VOD) is a dimensionless parameter (Andela et al., 2013) that describes the 
transparency of vegetation in the microwave domain (retrieved through remote sensing) (Kirdiashev et al., 
1979 cited in Andela et al., 2013). It is highly correlated with the total vegetation water content in the 
biomass above the ground (Jackson et al., 1991; Jackson et al., 1982, 1990; Owe et al., 2001; Wigneron et 
al., 1993). In contrast to NDVI, this method includes the biomass of woody as well as of leafy components (Yi 
Liu et al., 2012). The large advantage of VOD over NDVI is that it can penetrate through clouds and aerosols. 
Furthermore, the longer wavelengths of VOD achieve a deeper penetration into the canopy leading to a 
saturation at a higher vegetation density than NDVI (Yi Liu et al., 2012).  
The application of VOD has been studied in different directions. Nevertheless, it is a field that has not been 
studied extensively yet and its full potential is still to be explored.  Liu et al. (2013) applied this method to 
prove that nearly all steppe grasslands in Mongolia experienced a significant reduction in biomass at a rapid 
rate that corresponds to variations in rainfall, crop production, livestock, deforestation and fires. Similarly, Liu 
et al. (2015) used VOD to estimate the global Aboveground Biomass Carbon (ABC) during the past two 
decades looking at both forest and non-forest biomes. Results showed that the strong response of water-
limited environments to precipitation variability heavily influences inter-annual ABC patterns. Liu et al. (2012) 
applied a recently developed long-term VOD record (1988-2008) to analyse the response of vegetation 
water content in various land-cover types to anthropogenic and environmental influences. This record 
allowed identifying different trends and causes per land-cover type. Andela et al. (2013) employed VOD as 
well as NDVI to study the long-term vegetation changes in drylands around the world. By analysing co-trends 
between both methods and considering the sensitivity of NDVI towards leafy components, a trend towards 
woody vegetation encroachment replacing the herbaceous vegetation components could be identified. 
Moreover, Liu et al. (2007) used satellite-derived soil moisture content and VOD to demonstrate that 
registered drought conditions in Eastern Australia can be identified with this method and that they could be 
explained to a large extent by the El Niño Southern Oscillation Index (SOI) and to a lesser extent by the 
Indian Ocean Dipole (IOD) index. Similarly, Van Dijk et al. (2013) compared VOD, NDVI as well as a model-
based crop water use as crop growth indicators to estimate the impact of droughts on yields in Australia and 
to compare it with actual yield data. Results showed that each of the test variables could explain 66% - 68% 
of the recorded crop-yield variations. Furthermore, this study underlines that only rainfall-based indicators 
are insufficient to characterize droughts. More recently, Liu et al. (2018) found that VOD is able to capture 
droughts in the Amazon rainforest. The study highlights that during the onset of droughts, when rainfall is 
below and radiation above average, large-scale positive anomalies in VOD were observed. This is most likely 
caused by enhanced canopy growth. When rainfall deficit is persisting resulting in water and heat stress that 
exceeds a certain threshold, widespread negative VOD anomalies are observed.   
South Asia is one of the most drought-vulnerable regions worldwide, which is also related to the insufficient 
socio-economic capacity to manage its effects (Carrão et al., 2016). In particular, in Indonesia drought-
related expansions of peat fires release sequestered carbon impacting on other areas of the world (Field et 
al., 2009). The resulting high concentration of aerosols in combination with the high cloud and vegetation 
density in this region challenges optical data retrieval (e.g. NDVI). VOD could represent a cost-efficient 
alternative to monitor droughts, facilitate pre-managing measures in this region and reduce the impact. 
Based on this background, the aim of this study is to assess the potential of VOD as an agricultural drought 
indicator for pepper fields in Indonesia. This research will in particular address the following questions: 

§ How does the VOD of pepper fields compare to large-scale VOD?  

§ How does the VOD compare with other drought indicators? Does it have an added value over NDVI? 

§ How does the VOD capture agricultural drought events?  

§ How can the VOD be transformed to an agricultural drought indicator? 

The pepper fields are compared to their surroundings by looking into spatial images and also into temporal 
anomalies. For the temporal analysis, anomalies of the fields are compared to the anomalies of their 



VEGETATION OPTICAL DEPTH: ITS POTENTIAL AS AN AGRICULTURAL DROUGHT INDEX 3 
 

surroundings. The analysis corresponding to the second research question is also split into a spatial and a 
temporal part. Spatially, VOD and NDVI are compared to a Google satellite image to assess their general 
performance and also to understand the behaviour in the subsequent temporal analysis. Temporally, 
correlations between VOD anomalies and the anomalies of El Niño Southern Oscillation (ENSO), the Indian 
Ocean Dipole (IOD) and the Standardized Precipitation Evaporation Index (SPEI) are calculated. As a cross-
comparison, correlations between NDVI and the other indicators are calculated. The third question on the 
performance on VOD of capturing agricultural drought events is answered qualitatively by combining the 
information obtained in the field visit, with literature and yearly pepper yields of Indonesia. Finally, a 
guideline is proposed to convert VOD into an agricultural drought indicator or even predictor, based on the 
limitations discovered in this study and existing work on drought indices. 
 
In the next chapter, the required theoretical background for this thesis is given. First, the different definitions 
of droughts are presented to understand the differences between various existing drought indicators, which 
are presented subsequently. The description of the indicators with their benefits and shortcomings forms the 
base for the selection of indicators to be compared to VOD within this research. Furthermore, this chapter 
describes the theory behind the retrieval of VOD, which is important to understand the results. In chapter 3, 
the case study of pepper fields in Indonesia is introduced. First, some general information on the climate and 
economy is given. This includes a literature research on droughts occurred in the past years in Indonesia that 
is relevant to discuss the results. Second, the information on agricultural practices obtained on the fieldwork 
is presented. In chapter 4, the methodology is explained. First, the study area and the datasets are 
introduced and then the different analysis procedures, that are required to answer the research questions, 
are explained. Subsequently, the results are described and discussed in chapter 5. Finally, in chapter 6, the 
conclusions of this research are summarized by answering the four research questions. Furthermore, 
recommendations for future research are given. 



4 2 THEORETICAL BACKGROUND 
 

2  THEORETICAL BACKGROUND 
This chapter provides relevant theory for this study. First, the multiple definitions of droughts are explained, 
which is necessary to understand the differences between drought indicators. Secondly, commonly used 
drought indicators are presented, from which four are chosen to be compared to VOD in this study. Third, 
the theory behind the Vegetation Optical Depth retrieval is explained, which helps to understand the results. 

2.1 Definition of droughts 
To analyse droughts, it is important to be aware that there is not a common agreement on the definition of 
droughts. Depending on the perspective out of which a drought is analysed, its definition and so its indicator 
varies across the literature. This obstructs the comparability among different studies. In particular, when 
assessing the impacts, it is important to be aware of the varying underlying concepts of drought indicators to 
prevent false conclusions (Van Lanen et al., 2013). The common denominator of these diverse definitions is 
that droughts originate from a deviation from normal conditions (Wanders et al., 2010). Mishra et al. (2010) 
analysed different drought definitions and found that these mainly differ from the variable used to describe 
the drought and, therefore, classified into the following four categories.  

§ Meteorological drought: refers to a period of time with below-normal precipitation over a region. This 
is either identified as a deficit compared to average values or through a comparison of the drought 
duration and intensity with the cumulative precipitation shortages. (Mishra et al., 2010; Dai, 2011) 

§ Hydrological drought: is defined as a period of time with below long-term mean levels in surface and 
subsurface waters resources (Mishra et al., 2010; Dai, 2011). 

§ Agricultural drought: describes a period of time where soil moisture decline affects crop yield, crop 
growth and agricultural production. This decline in soil moisture can be caused by a below-average 
reduction in precipitation, intense but less frequent rainfall events, changes in temperature or above-
normal evaporation. The plant water demand does not only vary with weather conditions but also with 
the biological features and the growth stage of the plant (Mishra et al., 2010). Although soil moisture is 
the key variable to analyse agricultural droughts, it is not considered by most drought indices. (Dai, 
2011; Sruthi et al., 2015; Martínez-Fernández et al., 2016)  

§ Socio-economic drought: refers to the failure of water resource systems in meeting the water demand, 
requiring water as an economic good (AMS, 2004 cited in Mishra & Singh, 2010). 

Hydrological droughts, as well as agricultural droughts, are often triggered by a lack of precipitation (Dai, 
2011). Nevertheless, other elements such as more intense but less frequent precipitation, erosion and poor 
water management can not only intensify but also cause these type of droughts (Dai, 2011). 
Some studies also classify into meteorological, hydrological and soil moisture (Hisdal et al., 2001 cited in 
Wanders et al., 2010). The focus on the present research is on agricultural droughts. 
Droughts are mainly described in terms of various statistics that summarize the duration, the intensity and the 
spatial extent of the event (Wilhite, 2000). The diversity of droughts concerning these three aspects 
complicate the inter-comparison of droughts even more (Wanders et al., 2010). Furthermore, it is important 
to differentiate correctly between hazard, exposure, vulnerability and risk. Hazard describes the probability 
that an event of a certain severity occurs. The number of elements (population, assets, services, etc.) that can 
be affected by an event is defined as the exposure. The susceptibility of elements to suffer the negative 
impacts of droughts is described as the vulnerability. The product of these three (with normalized statistics: 
0 (min) - 1 (max)) is the likelihood of drought impact defined as drought risk. (Carrão et al., 2016)  
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2.2 Commonly used drought indices 
Several drought indices have been developed to define drought parameters (intensity, duration, spatial 
extent), detecting droughts and assessing the effect of drought (Mishra et al., 2010). Each drought index has 
its benefits and restrictions, which also depend on the region where it is used. So far, research has shown 
that it is difficult to apply a single indicator at a global scale (Fleig et al., 2006; Sheffield et al., 2009; Van 
Lanen et al., 2007 cited in Wanders et al., 2010). In the following, the commonly used drought indices are 
presented with their corresponding benefits and shortcomings. The indices are ordered according to the 
variable they use (as by (Wanders et al., 2010)). 

2.2.1  Meteorological drought indices 

These indices are based on observed precipitation. They are independent of physical properties on-site. 
However, they suffer from a high variety in temporal and spatial distribution of precipitation. The use of 
monthly values or moving averages can diminish this problem (Wanders et al., 2010). 

2.2.1.1 Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index (SPI) has been recognized as the standard and best suitable indicator to 
report meteorological droughts, in particular, assessing drought intensity (Wanders et al., 2010; Keyantash et 
al., 2018). It is based on long-term precipitation records for a specific area and time period. This precipitation 
data can be retrieved either from ground stations or from satellites. The time series are fitted to a probability 
distribution and then transformed to a normal distribution in order to be able to apply the same SPI scale 
across areas and periods with different rainfall amounts. By doing so, the mean SPI is always zero and the SPI 
represents the number of standard deviations from the long-term mean (SADC Regional Remote Sensing 
Unit, 2000; Mishra et al., 2010). It can be applied to a variety of time scales and therefore gives information 
about different parts of the hydrological system. On short timescales, it monitors water storage, which 
respond quickly to precipitation anomalies, such as soil moisture. On longer timescales, the SPI is rather 
related to water resources, which reflect long-term precipitation anomalies, such as groundwater, stream flow 
and reservoir storage. (Mishra et al., 2010; Keyantash et al., 2018)  
The benefits and shortcomings of the SPI are listed below. 
 

Benefits Shortcomings  
§ Applicable for different time scales, 

corresponding to different water resources  

§ Applicable for dry and wet periods  

§ Easier computation and better comparison 
across regions with different climates compared 
to PDSI (see 2.2.2)  

§ Applicable to calculate current precipitation 
deficit but also the current percentage of the 
average precipitation of a certain time period  

§ Evaporation not considered à limited estimation of soil 
moisture and demand  

§ Sensitive to reliability and quantity of data used to fit the 
distribution (30-50 years of data record recommended)  

§ Sensitive to the probability distribution used (gamma, 
Pearson Type III, extreme value, exponential, etc.)  

§ Potentially biased fitting distribution, if SPI is calculated 
for long time scales (>24 months) due to data length 
limitations 

§ The potential impacts of precipitation intensity on runoff, 
stream flow, and water availability are not considered 

Source: (Tsakiris et al., 2007; Mishra et al., 2010; Keyantash et al., 2018) 

2.2.1.2 Standardized Precipitation Evaporation Index (SPEI) 

Due to the limitation of the SPI being unable to consider change in evaporation the Standardized 
Precipitation Evaporation Index (SPEI) was developed. This index works like the SPI but considers 
evaporation, which is one of the major drawbacks of the SPI. The calculation of the evaporation depends on 
the dataset that is used. Although this index identifies meteorological droughts, important stakeholders, such 
as the insurance company SWISSRE use this index in the agricultural context. Thus, it is relevant to this case.  
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2.2.1.3 Multivariate ENSO Index (MEI)  

There are phenomena that influence the global weather patterns. The El Niño Southern Oscillation (ENSO) is 
one of these phenomena. It describes the shift of the winds and ocean currents at the western coast of South 
America that occurs every two to seven years. Normally, the water in the West Pacific is warm and pushed by 
trade winds to the west whereas the water in the east is cold due to a shallow thermocline caused by the 
cold tongue of water at the sea surface. During el Niño years, the trade winds weaken and warmer water 
moves eastward. Over the Central Pacific air rises weakening the trade winds over the West Pacific. During La 
Niña years, the trade winds strengthen and more upwelling occurs in the Pacific Ocean. The atmospheric 
circulation strengthens the trade winds (Pietrzak et al., 2017). While the return period is predictable varying 
from two to seven years, the intensity is difficult to predict as it varies strongly. The duration is 14 to 22 
months. El Niño often starts in the beginning of the year and maximises between November and January.  
The Southern Oscillation, which describes the variations in atmospheric pressure between the eastern 
equatorial Pacific and Indo-Australian areas, is closely related to El Niño. This phenomenon has been 
converted to indices like the air-pressure-based Southern Oscillation Index (SOI), the sea-surface-
temperature-based Oceanic Niño Index (ONI) or the Multivariate ENSO Index (MEI) to quantify this 
phenomenon. The MEI is based on the six main observed variables over the Tropical Pacific: sea surface 
temperature, surface air temperature, sea-level pressure, zonal and meridional components of the surface 
wind and total cloudiness fraction of the sky (NOAA, 2018). These indices are not considered as drought 
indices. However, several studies have shown a relation between the ENSO and drought occurrence, 
especially in Indonesia, Australia, India, the Philippines, Brazil and East and South Africa as well as Central 
America and the US (Ropelewski et al., 1987; University Corporation for Atmospheric Research pursuant to 
NOAA, 1994; Chiew et al., 1998; Hendon, 2003; Schoennagel et al., 2005; National Drought Mitigation 
Centre - University of Nebraska, 2018). See below for a list of benefits and limitations of this index. 
 

Benefits Shortcomings  
§ Strong link between droughts and the ENSO in 

certain regions 

§ Predictive value concerning timing 

§ Not a drought indicator as such 

§ Different indicators for the ENSO itself  

§ Only applicable to regions affected by the ENSO 

§ Droughts cannot be entirely explained by the ENSO 

Source: (Chiew et al., 1998)  

2.2.1.4 Dipole Mode Index (DMI) 

The Indian Ocean Dipole (IOD) is a coupled ocean-atmosphere phenomenon that influences the climate 
variability in the tropical Indian Ocean and the surrounding countries like Indonesia (Saji et al., 1999; Webster 
et al., 1997-98 cited in Lestari et al., 2018). When the IOD is positive, low SST anomalies occur in the west of 
Sumatra and high SST anomalies occur in the western and central tropical Indian Ocean. This leads to south-
easterly wind anomalies along the coast of Sumatra and Java resulting in a deficit precipitation over 
Indonesia and Australia and an excess precipitation in East Africa, India and Southeast Asia (Lestari et al., 
2018). This phenomenon is often quantified with the Dipole Mode Index (DMI), which is a measure of the 
anomalous SST gradient between the western (50E-70E and 10S-10N) and the south-eastern equatorial 
Indian Ocean (90E-110E and 10S-0N). (NOAA, 2017) 
 

Benefits Shortcomings  
§ Strong link between droughts and the IOD in 

certain regions 

§ Predictive value concerning timing 

§ Not a drought indicator as such 

§ Different indicators for the IOD itself  

§ Only applicable to regions affected by the IOD 

§ Droughts cannot be entirely explained by the IOD 

Source: (Lestari et al., 2018) 



VEGETATION OPTICAL DEPTH: ITS POTENTIAL AS AN AGRICULTURAL DROUGHT INDEX 7 
 

2.2.1.5 Other meteorological indices 

Below other meteorological drought indices are listed. However, these are not used for further analysis. 

Table 1: Other meteorological drought indices 

Meteorological 
Indicator 

Description Benefits Shortcomings  

Rainfall Deciles § Compares monthly 
accumulates to long-term mean  

§ Observed data is ranked and 
classified with deciles  

§ Easy to calculate 

§ Less data required 
compared to other 
indices  

§ Long-term records required 

§ Less suited for dry climates 
or climates with a strong 
seasonality  

Effective 
Drought Index 
(EDI) 

§ Calculates water accumulation 
with a weighting function of 
time passage on a daily time-
scale  

§ Standardised index 
à comparable 
across different 
climatic regions 

§ Data series of >30 years 
required to transform the 
EDI values into a reliable 
normal distribution 

Number of 
consecutive dry 
days 

§ Gives the number of maximum 
consecutive dry days per year  

§ Indicates relative dryness of a 
certain year by changes in P  

§ Easy to calculate § Long-term records required  

Rainfall Anomaly 
Index (RAI) 

§ Uses average P of a week/ 
month/year to calculate relative 
drought 

§ Different time scales  

§ Similar to PDSI 
results (see 2.2.2)  

§ Choice of time scale based 
on P distribution 

P = Precipitation; Source: (Hayes et al., 1999; Mekis et al., 2004; Kim et al., 2009; Wanders et al., 2010; Mishra et al., 2011) 

2.2.2  Hydrological drought indices  

Hydrological drought indicators use observed or simulated stream flow, groundwater storage or ground 
water levels to characterize droughts. Some of the existing hydrological drought indices are listed below. 

Table 2: Hydrological drought indices 

Hydrological 
Index 

Description Benefits Shortcomings  

Surface Water 
Supply Index 
(SWSI) 

§ Calculates probability of 
exceedance based on historical 
data (Q, reservoir storage, 
snowpack and P) 

§ Same index value as the PDSI 

§ Monthly time-scale 

§ Unique for every 
catchment  

§ Able to cope with snow 
and resulting delayed 
runoff and large 
topographic variations 

§ Unique for every 
catchment à difficult 
inter-basin/global 
comparison  

Groundwater 
resource Index 
(GRI) 

§ Uses P, air temperature and air 
pressure data to simulate 
groundwater storage 

§ Appears to be a better 
indicator than the SPI in 
the Mediterranean area  

§ Only tested on a single 
study (Mendicino et al., 
2008) 

Total Storage 
Deficit Index 
(TSDI) 

§ Uses P, E and Q from the basin 
outlet  

§ Combines the PDSI and water 
storage anomalies from Gravity 
Recover And Climate Experiment 
satellite observations 

§ Capable of representing 
long-term dryness and 
wetness 

§ Only two case studies so 
far (Yirdaw et al., 2008; 
Agboma et al., 2009) 

§ Not applied yet to a 
global scale 

P = Precipitation; E = Evaporation; Q = Stream flow       Source: (Wanders et al., 2010) 

2.2.3  Soil moisture indices 

Soil moisture drought indices indicate drought situations based on observed or simulated soil moisture, 
meaning the amount of water stored in the unsaturated zone. Especially for describing agricultural droughts, 
the soil moisture can be a better description of the dryness, considering that precipitation changes can be 
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different from the soil moisture changes (Dai, 2011). Therefore, these indicators are often used to describe 
agricultural droughts. When only using soil moisture for the drought analysis, the prediction becomes 
problematic in arid regions (Sheffield et al., 2009). Some of the soil moisture drought indicators also use 
meteorological data such as precipitation. (Wanders et al., 2010)   

Table 3: Soil moisture indices 

Soil Moisture 
Index 

Description Benefits Shortcomings  

Palmer 
Drought 
Severity Index 
(PDSI) 

§ Estimates soil moisture 
supply and demand with a 
two-layer soil model (fed 
with P and T data) 

§ One of the most prominent 
drought indices in the USA 

§ Accounts for E 

§ Long existing index à 
well tested and 
verified    

§ Accounts for T and 
soil characteristics 

§ Standardised à 
comparable across 
climatic regions and 
time scales  

§ Drought start and end not clearly 
defined à slow response to 
developing/diminishing droughts  

§ Simplified two-layer model 

§ Assumes runoff occurrence 
during saturation of both layers 
only à runoff underestimation 

§ Assumes uniform land use and 
soil properties across regions 

§ Snow and hail are seen as rain  

Palmer Z-
Index 

§ Derived from PDSI 
calculation  

§ Describes SM anomaly of 
the current month 

§ Same as of the PDSI 

§ Time-independent à 
faster response to 
changes in SM 

§ Same as of the PDSI 

African Flood 
and Drought 
Monitor (of 
Princeton 
University) 

§ Drought index based on 
low SM percentiles 

§ Historic and real-time data 
modeled with the Variable 
Infiltration Capacity land 
surface hydrological model 
with observations and 
modeled/remotely sensed 
meteorology  

§ Near-real-time  

§ 0.25° and daily 
resolution 

§ At basin or 
continental scale 

§ Stable and robust 
system providing 
continuous data 

§ Open source  

§ More comprehensive evaluations 
are needed on the drought 
products utility of the system 

§ Focused on Africa only 

 

Soil Moisture 
Deficit Index 
(SMDI) 

§ Based on SM and E values 
simulated in a SWAT model  

§ Used for agricultural 
droughts 

§ Weekly time-scale 

§ Detects short-term 
dry conditions 

§ Independent of 
season and climate 

§ Highly correlated with 
SPI and PDSI 

§ Has neither been tested in other 
study areas than the US nor at 
global scale 

§ Based on estimated values from 
hydrological models/climatic 
variables à large uncertainty 

Crop Moisture 
Index (CMI) 

§ Evaluates short-term 
variations in SM 

§ Calculates excess P (based 
on long-term mean) and SM 
infiltration based on excess 
P and observed T 

§ Used for agricultural 
droughts 

§ Weekly time-scale 

§ Suitable for predicting 
short-term droughts 

§ Suitable during warm 
seasons (growing 
season) 

§ Increases with potential E à with 
higher potential E the SM 
increases which does not occur 
in nature 

§ CMI responds quickly to short-
term conditions à misleading 
information about long-term 
conditions  

§ Not suitable for winter droughts 

Soil Moisture 
content 

§ Detects a drought when SM 
content is below a certain 
threshold 

§ Has been used on a 
global scale 

§ Varying indicator performance 
per catchment à difficult 
comparison 

P = Precipitation; T = Temperature; SM = Soil Moisture; E = Evaporation;  
Source: (Palmer, 1965; Mishra et al., 2010; Wanders et al., 2010; Princeton University, 2013; Carrão et al., 2015) 
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2.2.4  Combined drought index 

This category refers to an indicator that uses precipitation, soil moisture as well as storage or discharge data. 
Thus, it is potentially capable of describing the drought throughout the entire hydrological cycle.  

Table 4: Combined drought index 

Combined Index Description Benefits Shortcomings  
Aggregate 
Drought Index 
(ADI) 

§ Uses P, E, Q, reservoir 
storage, soil moisture 
content and snow 
water content  

§ Monthly time-scale 

§ Assesses various drought 
types  

§ Direct mathematical 
formulation à easy to apply 
to new observational data 

§ Requires observations of at 
least five variables 

§ Only tested in three Climates 
in California (Keyantash et 
al., 2004) 

P = Precipitation; E = Evaporation; Q = Stream flow;               Source: (Keyantash et al., 2004; Wanders et al., 2010) 

2.2.5  Vegetation indicators 

In order to monitor agricultural droughts, the actual response of vegetation to hydrological circumstances is 
relevant. Low precipitation anomalies and even low soil moisture anomalies do not directly mean that yields 
are reduced. Additionally, the hydrological simulations with current models used in several of the previously 
mentioned indicators imply large uncertainties (Dai, 2011). Therefore, vegetation indices can monitor 
agricultural droughts although they are not defined as drought indices as such. They aim at measuring the 
condition of the vegetation. Hence, many studies have found the vegetation index to be one of the 
important parameters to map drought conditions and crop yield amongst others (Tucker et al. (1982); Justice 
et al. (1985); Hielkema et al. (1986); Kogan (1987a, b), (1995); Dabrowska-Zielinska et al. (2002), Narasimhan 
et al. (2005), Chakraborthy et al. (2010) cited in Sruthi et al., 2015). Moreover, vegetation indices are always 
based on remote sensing data. It is a cost-efficient and valuable source of spatially and timely continuous 
data about the earth’s surface that allows monitoring vegetation dynamics over large areas (Mishra et al., 
2010; Xue et al., 2017). Important to understand in this context is that these indices are based on different 
parts of the spectrum. Figure 1 gives an overview of the different frequencies and spectra. 
 

 
Figure 1: Frequencies, wavelength and spectra (Imgur Stack Exchange, no date) 

Nevertheless, existing vegetation indices also suffer from shortcomings. The revisit time of the satellites, 
which is 16 days on average provides a relatively coarse temporal resolution for agricultural applications such 
as water management (Xue et al., 2017). Remote sensing data that is based on optical data is limited by 
atmospheric influences as for instance clouds (Xue et al., 2017). To overcome this obstacle, Sruthi et al. 
(2015) conducted a study to analyse water stress in Southern India by combining the Normalized Difference 
Vegetation Index (NDVI) with the highly negatively correlated Land Surface Temperature (LST). The authors 
found that with the combination of the two datasets agricultural drought could be identified and this method 
can serve to monitor agricultural droughts in order to develop an early warning system for farmers. 
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2.2.5.1 Normalized Difference Vegetation Index (NDVI) 

Due to its simplicity and efficiency, the Normalized Difference Vegetation Index (NDVI) is currently the most 
commonly used vegetation index (Sruthi et al., 2015). It monitors vegetation cover changes through the 
following ratio of red (λRED) and near-infrared reflectance (λNIR ) (Andela et al., 2013).  

𝑁𝐷𝑉𝐼 =
𝜆𝑁𝐼𝑅 − 𝜆𝑅𝐸𝐷
𝜆𝑁𝐼𝑅 + 𝜆𝑅𝐸𝐷

 

The values range between 0 and 1 (Xue et al., 2017), indicating the amount of photosynthetically active 
vegetation and, therefore, the chlorophyll in the canopy, as leaves absorb red and reflect near-infrared 
radiation (Andela et al., 2013). Furthermore, it is correlated to the leaf area index (LAI) and the fraction of 
absorbed photosynthetically active radiation (PAR) (Andela et al., 2013). These parameters allow analysing 
trends in the occurrence of agricultural droughts (Sruthi et al., 2015). Due to the disadvantages of the NDVI 
(listed below) it is recommended to combine the NDVI with Land Surface Temperature (LST), which can 
deliver significant data about the climate and the physical properties of the surface (Sruthi et al., 2015). NDVI 
is often compared to Vegetation Optical Depth (VOD), which is the tested method in the present study. 
 

Benefits Shortcomings  
§ Open source data 

§ Simple 

§ High spatial resolution 

§ Limited by atmospheric effects (clouds, cloud shadow, aerosols)  

§ Saturation on dense vegetation 

§ Only senses the top layer of the canopy 

§ Sensitive to effects of soil brightness and colour 

Source: (Yi Liu et al., 2012; Sruthi et al., 2015; Xue et al., 2017) 

2.2.5.2 Other vegetation indices 
Table 5: Other vegetation indices 

Vegetation Index Description Benefits Shortcomings  
Difference 
Vegetation Index 
(DVI) 

§ DVI = NIR – Red 

 

§ Senses vegetation amount  

§ Simple 

§ Does not compensate 
atmospheric errors  

Ratio Vegetation 
Index (RVI) (Or 
Simple Ratio (SR)) 

§ RVI = NIR/Red 

§ Widely used for green 
biomass monitoring 

§ High correlation with LAI, 
Leaf Dry Biomass Matter 
and chlorophyll content 

§ Less affected by atmos. 
and topography than DVI 

§ Simple  

§ At sparse vegetation 
cover (<50%) 
atmospheric effects 
dominate causing errors 

Vegetation 
Condition Index 
(VCI) 

§ Compares current NDVI to 
previous years 

§ VCI of month i 

VCI! =
!"#!!!!"#!!"#

!"#!!"#!!"#!!"#
∗ 100  

§ More suitable for long-
term drought monitoring  

§ Depends on NDVI quality 

§ In regions without 
seasonality values are 
unpredictable and 
sharply fluctuating  

Vegetation Health 
Index (VHI) 

§ Considers VCI and thermal 
condition of vegetation  

§ Evaluates thermal stress 
on vegetation 

§ Lower drought accuracy 
than PDSI 

Normalized 
Difference Water 
Index (NDWI) 

§ NDWI = ! !.!"#! !!(!.!"#!)
! !.!"#! !!(!.!"#!)

 

where ρ(λ) is the 
reflectance at wavelength λ 
(different λ than in NDVI) 

§ Complements NDVI  

§ Less sensitive to atmos. 
scattering than NDVI 

§ These two wavelengths 
penetrate equally deep  

§ Sense the liquid water 
content in the vegetation 

§ Equivalent water 
thickness is not 
detectable over party 
vegetated areas as soil 
background reflectance 
cannot be removed  

Source: (Kogan, 1990; Bannari et al., 1995; Gao, 1996; Liu et al., 2012; Choi et al., 2013; Jiao et al., 2016; Xue et al., 2017)  
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2.3 Vegetation Optical Depth (VOD) 
The main focus of this study is on Vegetation Optical Depth (VOD). This section describes the theory behind 
the retrieval model applied in this research. VOD (denoted τ) is a measure of the opacity of a medium 
(canopy) to radiation passing through it and is closely related to the aboveground biomass water content (de 
Jeu et al., 2004). This includes the water present in the leafy but also in the woody components of the 
vegetation (Shi et al., 2008). VOD is derived from Passive Microwave Remote Sensing (PMRS) (Yi Liu et al., 
2012). So far, microwave technology is the only remote sensing technique that measures a direct response to 
the absolute water quantity in the surface soil and the above ground vegetation. Radiometers on board of 
satellites measure the brightness temperature, which depends on several factors such as the surface 
temperature of the soil and vegetation, the soil-moisture-dependant dielectric constant of the soil, the VOD-
dependant transmissivity of the vegetation and the vegetation-induced scattering of the albedo. A method 
presented by (Owe et al., 2001) allows solving the soil moisture and Vegetation Optical Depth 
simultaneously. This method is known as the Land Parameter Retrieval Model (LPRM) and is further explained 
in 2.3.2. (de Jeu, 2003)  

2.3.1  History 

Satellite remote sensing is already being applied for water-related purposes for several decades. The first 
studies focused on the visible and infrared spectrum, which, for example, revealed valuable information on 
for example, land use or surface temperature. However, this radiometry is constrained by clouds and 
aerosols. In contrast, the microwave radiometry is not affected by these atmospheric contaminants. For this 
reason, the first microwave satellites (EMSR and SMMR) were launched in the 1970s. In order to better 
understand the physics of microwave radiation in the soil, Wilheit (1975) developed one of the first radiative 
transfers models. This and further radiative transfer models served to develop soil moisture models, such as 
the one of Njoku et al. (1977), which considers rapidly changing moisture profiles and non-uniform 
temperature profiles. Choudhury et al. (1979) presented a soil moisture model, which also took the effect of 
surface roughness on brightness temperature into consideration. Moreover, Wang et al. (1980) developed a 
model that improves the description of the dielectric behaviour of different soil-water mixtures. (de Jeu, 
2003) 
 

In 2001, Owe et al. (2001) presented the Land Parameter Retrieval Model (LPRM), that serves to retrieve VOD 
and soil moisture simultaneously from low-frequency passive microwave observations (<20 GHz) (Yi Liu et al., 
2012; Andela et al., 2013). In 2005, the LPRM was further improved in efficiency by Meesters et al. (2005) and 
tested with different passive microwave sensors (Owe et al., 2008; Andela et al., 2013). Six years later, Liu et 
al. (2011) produced the first long-term (1987-2008) passive microwave satellite-based vegetation product by 
merging the data of three satellite-based passive microwave instruments and using the LPRM algorithm. 
Specifically, the SSM/I (Special Sensor Microwave Imager, 1988-2007), TMI (on board of the Tropical Rainfall 
Measuring Mission satellite, 1998-2008) and AMSR-E (Advanced Microwave Scanning Radiometer – Earth 
Observing System, 2002-2008) were applied to produce this long-term record. Although the accuracy of 
VOD retrievals from AMSR-E was expected to have a better accuracy than the other two due to its longer 
wavelength, Yi Liu et al. (2012) showed that the errors related to sensor changes in this harmonized product 
are small (Andela et al., 2013).  

2.3.2  Derivation 

PMRS consists in the measurement of the thermal radiation emitted naturally by the earth’s surface in the 
centimetre wave band (λ = 0.1 to 100 cm). The physical temperature and the emissivity of the radiating body 
are the main variables influencing this radiation. Compared to the longwave infrared region (λ = 1 to 100 µm), 
the emitted radiation is extremely low (~a factor 1000 lower). Radiometers are able to measure the intensity 
of the earth’s surface thermal emission (microwave brightness temperature Tb) up to the thermal sampling 
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depth, which is thought to be several tenths of the wavelength deep (Schmugge, 1983; de Jeu et al., 2004). 
This is approximately 0 to 5 cm at L-band frequency (λ =21 cm), depending on the moisture content. 

2.3.2.1 The dielectric constant 

The dielectric constant is a key element in PMRS. This electric property of matter is a measure of the polarity 
of a medium. It is dependent on temperature, pressure and frequency (Owen et al., 1961). Additionally, this 
constant is a dimensionless number that consists of a real and a complex component as shown below.  

ε = ε! + ε′′i  

The first term (𝜀!) determines the propagation characteristics of the energy as it moves upward through the 
soil and the latter (𝜀′′𝑖) term the energy losses. In the following, the dielectric constant is simplified using only 
the real component. (de Jeu, 2003) 

k =  ε    

Dry soil has a dielectric constant of k ≈ 4, whereas water has a dielectric constant of k ≈ 80 for low 
frequencies (<10 GHz). The development of the dipole structure of water molecules in response to an 
applied electric magnetic field explains the larger value of water (Schmugge, 1983). This results in values 
ranging from 4 to 44 for soil-water mixtures. The exact values of these non-homogeneous mediums are 
mainly dependant on the moisture content, temperature, salinity textural composition and frequency. Soil 
moisture and dielectric constant of the soil are almost linearly related, except for low moisture conditions. 
When a small amount of water is present in the soil, the bonds between the soil particle surfaces become 
much stronger. The described relationship between the dielectric constant and the soil moisture also varies 
per soil type: smaller particles such as clays or fine sands have a higher surface area-to-volume ratio and are, 
thus, able to hold more water molecules at higher potentials. Furthermore, the dielectric constant, is directly 
related to the surface emissivity (see Figure 2) (de Jeu et al., 2004). The large contrast resulting from the 
presence of different amounts of water influence the emissivity of the soil and makes it possible to quantify 
soil moisture at the surface. The following schematization describes the relation between the brightness 
temperature measured by radiometers on board of satellites and the dielectric constant, which is dependent 
on the water content (see Figure 2). (de Jeu, 2003)  

Figure 2: Relationship between Brightness temperature and emissivity for low frequencies 

The absolute soil emissivity is higher at vertical polarization but the sensitivity to changes in surface moisture 
is significantly lower compared to the horizontal polarization (de Jeu, 2003).  

Assumptions: 
• Dielectric constant 

in the soil has a 
smooth boundary 

• Uniform 
temperature + 
surface moisture 
distributions  

Observed brightness temperature of 
polarization l (horizontal or vertical) 

T!(!) ≈ e!(!)T 
 

T: Physical (thermodynamic)  
  temperature of emitting layer 
es(l): Smooth-surface emissivity of  
  polarization l (either hor. or ver.) 
 

H, V: polarization of     
   emitted radiation 
u: incident angle 
k: dielectric constant  
 

Reflectivity 
R = 1 − e!(!) 

 

Reflectivity  
horizontal polarization 

R!(u) = !
cos u − √k − sin! u
cos u + √k − sin! u

!
!

 

Reflectivity  
vertical polarization	

R!(u) = !
kcosu − √k − sin! u
kcosu + √k − sin! u

!
!

 

f < 117 GHz à Rayleigh-Jeans approximation: 
 

 Frensel equation: 
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2.3.2.2 Surface roughness 

Surface roughness influences the emission in several ways. With a higher surface roughness, the surface area 
increases leading to scattering. This results in an increase of the apparent emissivity. Furthermore, the 
sensitivity to soil moisture changes and, therefore, the measurable emissivity from dry to wet conditions are 
reduced. For frequencies larger than 10 GHz, which are usually affected by atmospheric attenuation, the 
elevation and the slope of the surface resulting from surface roughness influence the path between the soil 
surface and the sensor. Different roughness models were developed to approach the impact of surface 
roughness on the emissivity. For the presented approach, the model of Wang et al. (1981) is used to 
describe the dimensionless rough surface emissivity calculated as a function of soil moisture, soil texture and 
indirectly of the effective temperature as well as corrected for soil roughness and polarization mixing 
influences. (de Jeu, 2003) 
 
 
 
 
 

Figure 3: Rough surface emissivity and resulting reflectivity 

Where H and V are the two polarizations, Q the polarization mixing factor, RH and RV the Fresnel reflectivities 
and h a dimensionless roughness characterizing height. (Schalie et al., 2015). 

2.3.2.3 Atmosphere 

Atmospheric gases, such as, oxygen, water vapour, etc., can absorb the radiation emitted by the earth’s 
surface and reduce the amount that arrives at the sensor. Nevertheless, the impact for frequencies lower than 
15 GHz is relatively small and negligible for frequencies lower than 10 GHz. More significant are the effects 
of water droplets present in the atmosphere. The impact varies with the phase state of the water and the 
particle size relative to the wavelength. Furthermore, sky background radiation reflecting towards the sensor 
as well as a direct radiation from the atmosphere, both attenuated by the atmospheric transmissivity, should 
be taken into consideration. (de Jeu, 2003) 

2.3.2.4 Vegetation 

It is important to mention that the measured brightness temperature is not only composed by the emission 
of the bare soil, but also by the emissivity of the vegetation itself as well as the one reflecting from the 
vegetation to the soil and consequently to the atmosphere. In areas with a highly dense canopy, the soil 
radiation will be replaced by canopy radiation. Furthermore, the wavelength and the vegetation water 
content define the magnitude of the absorption by the canopy. In soil moisture sensing, the most commonly 
used wavelengths are in the L-band (λ ≈ 21 cm) and the C-band (λ ≈ 5 cm), where the former can penetrate 
deeper into vegetation of any significant density. Also for the influence of the vegetation on the brightness 
temperature, different models were developed.  
For this research, the model of (Mo et al., 1982) is used as it is considered to be simple but physically based 
and capable of estimating the soil’s radiation effectively even under vegetation. This model describes the 
upwelling radiation from land surface (brightness temperature) with the following simple radiative transfer 
equation (see Figure 4). The first term describes the radiation emitted by the soil and attenuated by the 
surrounding vegetation. The second term defines the upward radiation emitted directly by the vegetation. 
The last term accounts for downward radiation emitted by the vegetation that is reflected upward by the soil 
and attenuated by the surrounding vegetation. The attenuation through vegetation is described by the 
dimensionless transmissivity 𝛤 !  of the vegetation, which is a function of the Vegetation Optical Depth 𝜏 !  
including a correction for the observation angle u as shown below. (de Jeu, 2003)  

Reflectivity (H and V polarization): 
R!! = !(1 − Q)R!(u) + QR!(u)!e!!"#$ ! 
R!! = !(1 − Q)R!(u) + QR!(u)!e!!"#$ ! 

 

Rough surface emissivity (H and V polarization): 
e!" = 1 − !(1 − Q)R! + QR!!e!!"#$ ! 
e!" = 1 − !(1 − Q)R! + QR!!e!!"#$ ! 
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Figure 4: Brightness temperature according to (Mo et al., 1982) including vegetation effects (image: de Jeu, 2003) 

The optical depth increases with higher vegetation densities and higher frequencies. For frequencies below 
10 GHz, 𝜏 !  a linear relation to vegetation water content was found. At higher frequencies, the relationship is 
still to a large degree unknown. With increasing VOD, soil emissions are attenuated more by the canopy and 
the signal is saturated by the emission from the vegetation. As a result, the sensor sensitivity to soil moisture 
variations decreases with increasing canopy thickness or VOD (Ulaby et al., 1986 cited de Jeu, 2003). At C-
band, the horizontal signal saturates significantly at an optical depth of 0.75 achieving a total saturation at 
𝜏 ! =1.5. This can occur at even lower VOD values under dry conditions. (de Jeu, 2003) 
The dimensionless single scattering albedo 𝜔 !  expresses the scattering of the emitted microwaves through 
vegetation. As it theoretically depends on the plant geometry, it varies per plant species. However, in reality, 
it is often considered to be stable over time (van der Schalie et al., 2017). According to de Jeu (2003), a 
limited amount of experimental studies have determined values varying between 0.04 to 0.12 for selected 
crops and around 0.05 for natural vegetation. Although the influence of polarization on 𝜏 !  and 𝜔 !  is still to 
be studied in further detail, it seems that for random canopies the optical depth is independent of 
polarization and that for vegetation with some systematic orientation such as vertical stalks differences can 
be observed between 𝜏! and 𝜏!, that increase with the incident angle. (de Jeu, 2003) 

2.3.2.5 Temperature retrieval 

Ts and Tc are the thermodynamic temperatures of the soil and the canopy. In analogy to de Jeu (2003), for 
the present method, the surface temperature TS is assumed to be equal to the temperature at a depth of 
28% of the wavelength. Previous studies have shown that, at a frequency of 37 GHz, the brightness 
temperature is mainly dependant on soil surface temperature (Holmes et al., 2009). For this reason, the 
equation is solved in that frequency to obtain the soil temperature resulting in the following equation by 
Parinussa et al. (2016). However, other sources for this temperature could also be used.  
 
 
 

Figure 5: Physical soil and canopy temperature according to (Parinussa et al., 2016) 

2.3.2.6 Land Parameter Retrieval Model (LPRM) 

The previously explained theory comes together in the Land Parameter Retrieval Model (LPRM) (de Jeu, 
2003; Owe et al., 2001, 2008). This model uses dual-polarized low frequency passive microwave observations 

Microwave Theory

( )+Γ= srb TeT ( )+Γ−− 1)1( cTω ( )ΓΓ−−− 1)1)(1( cr Te ω

Γ = Transmissivity of the vegetation, er = Rough surface emissivity, Ts = Surface temperature,
ω = Single scattering albedo, and Tc = Canopy temperature.

Figure 2.4: Schematic representation of the partitioning of microwave radiation from a
vegetation covered surface in terms of the brightness temperature (From Van de Griend and
Owe (1993)).

Where Ts and Tc are the thermometric temperatures of the soil and the canopy
respectively, ω is the single scattering albedo, and Γ the transmissivity of the canopy.
The first term of the above equation defines the radiation from the soil as attenuated
by the overlying vegetation.
The second term accounts for the upward radiation directly from the vegetation,
while the third term defines the downward radiation from the vegetation, reflected
upward by the soil and again attenuated by the canopy. These three terms are
summarized in Figure 2.4. The transmissivity (Γ) is defined in terms of the optical
depth τ , such that

Γ(l) = exp
−τ(l)

cos u
(2.6)

The canopy optical depth is related to the vegetation density and the frequency. For
frequencies less than 10 GHz, it has been shown to be a linear function of vegetation
water content. Typical values of τ for agricultural crops have generally been given
as less than one (Mo et al., 1982; Jackson and O’Neill, 1990a).
Theoretical calculations show that the sensitivity of above-canopy brightness temper-
ature measurements to variations in soil emissivity decreases with increasing optical
depth or canopy thickness (Ulaby et al., 1986). This is because the soil emission is
attenuated by the canopy and emission from the vegetation canopy tends to saturate
the signal with increasing optical depth. This subsequently results in decreased sen-
sor sensitivity to soil moisture variations.
A transmissivity of 1 corresponds to an optical depth of 0, indicating bare soil, or at
least no attenuation of the soil-emitted radiation due to an overlying canopy. Con-
versely, a transmissivity of 0 indicates an infinitely thick canopy, with no penetration
of the soil emission through the canopy.

– 9 –

Brightness temperature of polarization (l) 
𝑇!(!) = 𝑇!𝑒!(!)Γ(!) + !1 − 𝜔(!)!T!!1 − Γ(!)! + !1 − 𝑒!(!)!!1 − 𝜔(!)!𝑇!!1 − Γ(!)!Γ(!)  

 

Ts: physical surface temperature  
erl): rough-surface emissivity  
Γ(!): transmissivity of the vegetation 
𝜔(!): single scattering albedo  
Tc: canopy temperature 
 

Transmissivity of polarization (l) 

Γ(!) = exp !
−𝜏(!)
cos 𝑢

! 

 

𝜏(!): optical depth  
u: incident angle 
 

Optical depth 
For agricultural crops typically: 𝜏(!) < 1 

 
Bare soil/no canopy attenuation 

𝜏(!) = 0 → Γ(!) = 1 
  

Infinite thick canopy  
𝜏(!) = ∞ → Γ(!) = 0 

  

Physical soil temperature 
T! = 0.844 ∗ T!(!".!") + 54.1[K] 

Physical canopy temperature 
T! = T! 
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to retrieve VOD and the soil dielectric constant simultaneously based on the function for the Brightness 
temperature in vertical and horizontal polarization by (Mo et al., 1982), shown in Figure 4. It is applicable in 
wide range of low microwave frequencies like L-Band, C-Band, X-Band and Ku-Band (Parinussa et al., 2016). 
Figure 6 gives a schematic overview of this method, which is based on the previously explained formulas. 
The inputs to the model are the polarized brightness temperatures and the incident angle measured by the 
radiometers. The Polarization Mixing Factor Q is a constant value and 𝜔! is a global value that was optimised 
by Van der Schalie (2017). The only remaining unknown is the dielectric constant that represents the soil 
moisture and the roughness parameter h, which is directly linked to the soil moisture and varies depending 
on the soil moisture that is used. The model is solved analytically with the dimensionless Microwave 
Polarization Difference Index (MPDI) by Meesters et al. (2005). Additionally, the model is run in an iterative 
manner with a wide range of scenarios for the dielectric constant of the soil (or soil moisture). The scenario 
resulting in the smallest absolute difference between the observed and calculated brightness temperature is 
taken as the “true” values. This index does not require any information on vegetation and can therefore be 
used as an independent vegetation index.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Schematization of simultaneous VOD and soil moisture retrieval (LPRM)  

Brightness temperatures  
T!" = T!e!"Γ! + (1 − ω!)T!(1 − Γ!) + (1 − e!")(1 − ω!)T!(1 − Γ!)Γ!  
T!" = T!e!"Γ! + (1 − ω!)T!(1 − Γ!) + (1 − e!")(1 − ω!)T!(1 − Γ!)Γ! 

 

Physical temperature 
T! = 0.844 ∗ T!(!".!") + 54.1[K] 

T! = T! 
 

Transmissivity  

Γ(!) = exp !
−𝜏(!)
cos𝑢

! 

 

Rough surface emissivity 
e!" = 1 − !(1 − Q)R! + QR!!e!!"#$ ! 
e!" = 1 − !(1 − Q)R! + QR!!e!!"#$ ! 

 

Reflectivity 

R! = !
cosu − √𝐤 − sin! u
cosu + √𝐤 − sin! u

!
!

 

R! = !
𝐤cos u − √𝐤 − sin! u
𝐤cos u + √𝐤 − sin! u

!
!

 

 

Microwave 
Polarization 

Difference Index 

MPDI =
T![!] − T![!]
T![!] + T![!]

 

Measured by radiometer 
Incident angle u 
Brightness temperature TbH and TbV 
 
 

Other input 
Polar. mixing factor Q 
Single scatter albedo 𝜔!  

Theoretical optical depth 
τ(!) = cos 𝑢 ln !𝑎𝑑 + !(𝑎𝑑)! + 𝑎 + 1! 

where:  a = 0.5 (!!(!)!!!(!)
!"#$

− 𝑒!(!) − 𝑒!(!) 

d =  0.5 !
ω

1 − ω
! 

 

Iteration  
A wide range of scenarios of different dielectric constants is tested until there is the smallest absolute difference 

between the observed and the calculated brightness temperature T!(!)  with the theoretical values 
 

Wang-Schmugge 
model to convert 
e!(!)to soil moisture 

 

Unknowns 
Dielectric constant 𝑘 
à related roughness 
parameter h 
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The MPDI describes a ratio function between the measured horizontal and vertical polarized brightness 
temperature (de Jeu et al., 2004). When vegetation density and therefore VOD, is low the difference 
between the wet and the dry curve is large. This can be seen in the graph shown below (see Figure 7). In 
contrast, if a lot of vegetation is present, the difference between the wet and the dry curve becomes smaller. 
This means that the VOD saturates at some point. Nevertheless, it saturates at a higher biomass level than 
the NDVI, because it penetrates deeper into the canopy due to the longer microwave lengths (Liu, 2013). It 
also becomes visible that the relationship between the optical depth and the MPDI is strongly dependant on 
surface moisture (see dielectric constant k).  
 

 
Figure 7: Relation between VOD and MPDI (de Jeu, 2003)  

The MPDI is used to eliminate the dependency of the temperature. As the influence of vegetation and soil 
temperature on the MPDI is negligible, the changes in the index can be attributed to variations either in soil 
moisture conditions or in vegetation (de Jeu et al., 2004).  
From the rough surface emissivity, the soil moisture can be calculated with the Wang-Schmugge Model 
(Wang et al., 1980). However, this is not discussed further in detail here. 
The relation between the optical depth and the water content can be described as follows:  

τ = τo + τu = cτ (ϴomo+ϴumu) 

where the subscripts o and u stand for overstory and understory, ϴ is vegetation water content, m the 
aboveground biomass, and cτ the constant of proportionality. (Andela et al., 2013) 

2.3.3  Bands, resolution and downscaling 

The VOD and other products at VanderSat are available at four different frequencies. Each frequency has a 
different foot print size as shown in Table 6.  

Table 6: Bands, frequencies and foot print sizes (VanderSat B.V., 2016) 

Name Band  
[GHz] 

Polarization Spatial Resolution (3-dB footprint size)  
[km x km] 

C-Band 6.93 V, H 62 x 35 

X-Band 10.8 V, H 42 x 24 

Ku-Band 18.7 V, H 22 x 14 

Ka-Band 36.5 V, H 12 x   7 
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Figure 5.1: The theoretical relationship between MPDI and the vegetation optical depth
for a range of soil dielectric constants (h = 0, ω = 0.06, and u = 50.3◦). Typical soil
moisture values of 0 m3 m−3, 0.18 m3 m−3, 0.26 m3 m−3, 0.34 m3 m−3, and 0.41 m3 m−3

would correspond to dielectric constants of k = 3, 8, 13, 18, and 23.

surface moisture calculations over the test areas, and was subsequently set to 0.
Furthermore, we didn’t account for spatial distribution of temperature within the
canopy and assume that the soil and vegetation have the same temperature, Ts = Tc

(See equation 2.5), and the mean surface temperature (Ts) of the SMMR footprint
was estimated with Equation 4.6. However, Ts may be provided from other sources
as well.
The model now has two remaining parameters; the optical depth that represents the
vegetation density and directly affects the canopy transmissivity and the soil mois-
ture that affects the the soil emissivity. Solving for these two variables, requires a
more unique approach, and is described below. Brightness temperature measured
from space contains information on both the canopy and soil surface emissions and
their respective physical temperatures (Equation 2.1). Polarization ratios, such as
the Microwave Polarization Difference Index (MPDI), are frequently used to remove
the dependence of the temperature of the emitting layer on Tb, resulting in a pa-
rameter that is quantitatively related to the dielectric properties of all the emitting
surface(s). At the 37 GHz frequency, the MPDI is mainly a function of the overlying
vegetation, and consequently is a good indicator of the canopy density (Becker and
Choudhury, 1988). At a frequency of 6.6 GHz, the MPDI will not only contain infor-
mation on the canopy, namely the optical depth, but will also contain significantly
more information on the soil emission and consequently the soil dielectric properties.

– 39 –
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Additionally, VOD is currently available at a daily step. With the proprietary downscaling method of 
VanderSat, the VOD can be obtained at a resolution of 100 x 100 m (VanderSat B.V., 2016). This method is 
briefly described here. 
 
The satellite measures the brightness temperature per footprint. The footprint has an oval shape in which the 
highest signal density is in the centre of this footprint decreasing towards the edges. The distribution of the 
contribution of the signal is assumed to be a Gaussian distribution. Figure 8 illustrates the relation between 
the Gaussian distribution, the signal intensity and the curve width. For example, when the intensity is at half 
of the maximum, the curve width is 2.355σ and the values above the -3dB limit contribute approximately with 
75% to the brightness temperature value of the total footprint. At an intensity reduction of -30dB, 
approximately 100% of the contribution is reached.  Table 6 contains the height and the length of the ellipse 
of this 75% limit. With this concept, the footprint can be divided into several ellipses with the same centre 
contributing with different percentages to the footprint brightness temperature, as shown in Figure 9. 

 

 

Figure 8: Intensity and Gauss distribution (VanderSat, 2016) 

 
Figure 9: Ellipses (VanderSat, 2016) 

Next, a high-resolution land water map is built by using ESA Sentinel satellite images and static land cover 
maps to mask out water surfaces. These maps are updated frequently. Then, the brightness temperature is 
corrected for the percentage of water pixels with an assumed brightness temperature of only water surface 
such that a land brightness temperature is obtained. In the final step, the brightness temperature of every 
100 x 100 m pixel is calculated as a weighted sum of all overlaying ellipses of different footprints. The weight 
depends on the percentage associated with the ellipse. In the tropics, there are approximately 4 to 6 
footprints contributing to a single value. 
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The downscaling in tropical areas suffers from two main drawbacks: the limited variety in brightness 
temperatures and the dynamics of open water bodies. Open water bodies are not well mapped, they change 
in shapes and the temperature of their surface is not well known and, therefore, has to be estimated. Apart 
from the mentioned issues, it is a reliable method except at the 37GHz frequency, where footprints do not 
fully overlap, which leads to blocky structures in the imagery. 

2.3.4  Differences between VOD and NDVI 

Being a remote sensing based technology without any required ground data, VOD offers the opportunity to 
obtain global data dating back to 1978. VOD is often compared to the NDVI as both use the presence and 
state of vegetation to monitor droughts  (e.g. (Liu et al., 2012)). Due to its chlorophyll sensitivity, NDVI rather 
senses the greenness of vegetation, whereas VOD is sensitive to biomass water content and, therefore, to 
photosynthetic but also non-photosynthetic (leafy and woody) components of the vegetation (Liu, 2013). This 
is an important advantage of VOD because canopy greenness and vegetation water content do not 
necessarily change simultaneously and with the same trend (Ceccato et al., 2002). The sensitivity of VOD to 
changes in the woody components is larger than the one to leafy components (Liu, 2011). 
Furthermore, VOD is based on longer wavelengths (microwaves) than NDVI (infrared). As a result, the 
penetration through the canopy is deeper and, consequently, VOD saturates at a higher biomass level. NDVI 
only senses the top of the vegetation canopy and saturates at relatively low vegetation (Yi Liu et al., 2012). 
Consequently, the spatial correlation between VOD and NDVI is more reliable in crop- and grasslands than in 
high vegetation density areas where NDVI saturates (Liu, 2011). Additionally, the longer wavelength also 
reduces the sensitivity to the atmosphere and weather conditions. (Andela, 2013; Liu, 2013) 
On the other side, VOD also features some downsides. The presence of open water bodies can affect the 
emissivity and thus lead to an underestimation of the optical depth and an overestimation of retrieved soil 
moisture (Liu, 2013; Ye et al., 2015). To overcome this problematic, the water bodies are masked out as 
explained in 2.3.3. However, especially in the tropics, not all water bodies might be masked out properly. For 
this reason, areas with extensive lakes, reservoirs, rivers and flooded vegetation have to be interpreted with 
caution (Liu, 2013). According to (Andela et al., 2013), previous studies (de Jeu, 2003; Jones et al., 2011) 
showed that, also over sandy deserts and under frost conditions the conclusions, on the interpretation of the 
VOD signal should be drawn carefully. As microwaves are emitted at a lower energy level, a larger footprint 
(diameter of several kilometres) is required. This results in coarser resolutions than thermal and optical 
techniques (Liu, 2013). Even with the downscaling method, the resolution of 100 x 100 m is still lower 
compared to optical data. Due to the downscaling method, the radius of influence is larger than the 
resolution. 
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3  INDONESIA: A CASE STUDY 
The presented research on VOD is conducted on the case study Indonesia. This archipelago is the fourth 
largest country on Earth and has 252 million inhabitants (The Worldbank, 2018). Its economy heavily relies on 
agricultural yields, representing 14% in 2016 (The Worldbank, 2017). Most of the agriculture is rain-fed, 
which leads to a strong dependence on the climate (Devendra, 2016). In combination with the exposure of 
the agriculture to the variable climate, this dependency raises concerns about the economic impact of 
droughts (Carrão et al., 2016). 
This study is embedded in the SpiceUp project, which is a G4AW1 project aiming at optimizing the efficiency 
of pepper farms in Indonesia. For this reason, the focus of the present study is on pepper fields. The two 
main provinces of the project are Bangka-Belitung (in specific: Bangka island [2.2885° S, 106.0640° E]) and 
Lampung on Sumatra island [4.5586° S, 105.4068° E]. The areas of interest are shown in Figure 10. These 
two regions are well known for the production of white (Bangka) and black (Lampung) pepper, which was 
historically brought from India and has been cultivated for 2000 years (Tremblay, 2018). Pepper fields are 
challenging to analyse with satellites, since they are relatively small (often around 1 ha) and they grow along 
supporting sticks or trees, which have their own biomass. 
First, this chapter provides general information on the region relevant for this case study (see 3.1). 
Furthermore, within this research, a field visit was conducted to obtain actual insight to the on-site conditions 
and select relevant areas. Finally, the outcomes of this field visit are described in 3.2. 
 

 
Figure 10: Map of Indonesia with islands (capital letters) and provinces (lower case letters) of interest 

3.1 General Information 

3.1.1  Climate  

Overall, Indonesia is characterised by a hot and humid tropical rainforest climate (Af in the Köppen–Geiger 
climate classification system) (Köppen et al., 1936; Peel et al., 2007; Climate-Data.org, 2012). It is located 
around the equator in a low-pressure zone, where prevailing winds are calm. Due to its equatorial location, it 
barely experiences any changes in daylight hours throughout the year and has a relatively constant average 

                                                        
1 Geodata for Agriculture and Water is a programme of the Dutch Ministry of Foreign affairs, executed by the 
Netherlands Space Office (Affairs, 2018) 
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temperature of 26.2°C (The World Bank Group, 2016). However, due to the monsoons, the annual 
precipitation of 2800 mm is spread heterogeneously over the year creating two main seasons.  
Generally, the wet season concentrates on the period between December and March, when winds blow from 
the northwest bringing Pacific Ocean air masses. The peak of the wet season is in January. The dry season 
takes place between June and September peaking in August, when winds blow from southeast bringing 
Australian continental air masses. Figure 11 shows the mean precipitation and temperature of the entire 
country. However, these seasons shift depending on the exact location, also within the same province. 
(Hendon, 2003; The World Bank Group, 2016) 
 

 
Figure 11: Mean precipitation and temperature in Indonesia (The World Bank Group, 2018) 

In Lampung, the dry season lasts from June to October. During this period the rainfall is still around 140 mm 
per month but the rainfalls are much less heavy compared to the wet season (Fanin et al., 2017).  
In Bangka, the dry season lasts from March to October. However, more recently rains have lasted until April 
or later. In December, heavy storms with strong winds occur. Muntok (in the north of Bangka) is an exception 
in terms of climate as it has a tropical monsoon climate (Am in the Köppen–Geiger climate classification 
system), which means that the dry season is much shorter with its peak in August (Climate-Data.org, 2012). 
Climate change has a significant impact on the probability of drought occurrence in this area. Recent 
warming of the tropical ocean has led to a weaker Walker circulation and, therewith, a decrease in 
precipitation. Despite the increasing tropical mean precipitation, a 25% increase in severe droughts from 
1951-2000 to 2001-2050 is expected. (Lestari et al., 2014) 

3.1.1.1 Droughts and El Niño 

Indonesia has experienced several droughts including very severe droughts in the last decades. Many studies 
aim at finding correlations with other phenomena such as Sea Surface Temperature (SST) or the Indian 
Ocean Dipole to explain these droughts. Multiple studies confirmed that the occurrence of droughts is 
strongly linked with El Niño Southern Oscillation (ENSO) (Hackert et al., 1986; Hendon, 2003; Chang et al., 
2004; D’Arrigo et al., 2006, 2008; Hamada et al., 2012; Aulia et al., 2016; Setiawan et al., 2016, 2017). In 
these studies, either the closely related SST or indices as the SOI or ONI are used to represent the ENSO. 
In Indonesia, during the rainy season and the first transitional season, from December to May, there is a low 
probability to be affected by El Niño, whereas in July to October, the risk is very high over several regions 
including Sumatra (Supari et al., 2016). In most cases, the impacts of El Niño start in June with a drier climate 
(Supari et al., 2016). This contributes to droughts and through the dry season, prolonged by El Niño, to crop 
failure in many agricultural areas (Aulia et al., 2016). The opposite occurs during La Niña, meaning a wetter 
and prolonged wet season (Aulia et al., 2016).  
Table 7 shows the intensity of El Niño years measured with the SOI and with the SST. Although the timing of 
droughts is more or less foreseeable with the ENSO, the spatial distribution and intensity depends on the 
season and the intensity of the El Niño event, but also on local factors (Setiawan et al., 2017). During el Niño 
years, the late onset of the Maritime Continent monsoon can also contribute to low precipitation anomalies 
leading to a non-linear relationship of the severity of a drought to the intensity of El Niño (Hamada et al., 
2002; Moron et al., 2009; Lee and McBride, 2016 cited in Setiawan, 2017). 
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Table 7: Intensity of El Niño years from 1980-2018 (Australian Government - Bureau of Meteorology, no date) 

 
The occurrence of droughts over the country is heterogeneously distributed. For this reason, it is important 
to identify areas affected by droughts. Setiawan (2017) conducted a study in Indonesia analysing the spatio-
temporal meteorological drought characteristics during weak, moderate and strong El Niño years (derived 
from SST anomalies in the index Niño 3.4). The meteorological drought impact was measured with the SPI3, 
which is a 3-month SPI data set. The SPI3 values from 1950 to 2010 were averaged over three intensities of 
El Niño events. These SPI3 composite maps are shown in Figure 12. The colour bar represents the SPI value, 
which gives the number of standard deviations from the long-term mean (see 2.2.1.1). The results confirm 
that during strong El Niño years, moderately to exceptionally dry conditions occur from September to 
October over most of Indonesia. Lampung and Bangka are among the most affected regions by this 
phenomenon. Also during moderate El Niño years, meteorological droughts occur but less prominent. 
Similarly, the impact is visible from June to August, although less pronounced. On the other hand, from 
March to May of weak El Niño years, areas like Sumatra and Kalimantan experience abnormally wet 
conditions. As mentioned previously, this study confirms that from December to February the rainfall is 
barely correlated with the ENSO and the large-scale spatial coherence is lacking. The authors point out that 
results vary with the number of months that are being aggregated for the SPI (1 month, 3 months, 6 months 
or 12 months) and that it is essential to look into agricultural droughts more carefully. In the monthly 
aggregation, for example, November shows the severest meteorological droughts all over the country. 
 

 
Figure 12: Composite maps of meteorological drought (SPI3) in September–October–November during warm ENSO years 

((a) all, (b) weak, (c) moderate, and (d) strong El Niño years) (Setiawan et al., 2017) 
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Further back in history, the droughts of 1982/83 and 1997/98 have been historic drought events (Van 
Nieuwstadt et al., 2005). In the studied period of the present work (2012-2018), the only Indonesian drought 
described in the literature is the one of 2015/2016. The El Niño event of 2015/16 has been ranked in the 
same intensity due to the extreme SST anomalies. However, fires did occur at a less exceptional scale 
suggesting that the relationship between climate, land change and fire occurrence as well as the relationship 
between rainfall and El Niño might have changed over the years (Sloan et al., 2017). 
Lestari et al. (2018) analysed the dynamical development of the severe drought of 2015/2016 in Indonesia by 
comparing (TRMM) precipitation data to El Niño and Indian Dipole events. The authors used the monthly 
value of the Niño3.4 index (retrieved from SST anomalies in the equatorial Pacific Ocean) and the Dipole 
Mode Index (DMI) (retrieved from differences in SST anomalies between the western and eastern tropical 
Indian Ocean region) to represent the evolution of the two types of climate mode in this region. Over 
southern Sumatra, the low precipitation anomaly persisted from July 2015 to January 2016 and lead to a 
meteorological drought peak between September and October of 2015 with an anomaly of -450mm/month. 
El Niño started in April 2015, peaked in January 2016 and ended in April 2016, whereas the DMI revealed 
that the Indian Dipole event started in August 2015, peaked in September 2015 and ended in November 
2015. These two peaks coincide with the low precipitation anomaly. The authors conclude that the severe 
drought of 2015/2016 is caused by the simultaneous occurrence of El Niño and the positive IOD event.  
Sholihah et al. (2016) used the Vegetation Health Index (VHI) to identify the spatiotemporal extent of 
agricultural droughts over West Java and to classify the drought severity between the years 2000 and 2015. 
For this purpose, the authors used Landsat NDVI and Land surface temperature (LST) data to calculate the 
moisture vegetation/vegetation condition (VCI)2 and the temperature condition (TCI)3. Based on the VCI and 
the TCI the Vegetation Health Index (VHI)4 was calculated. This describes overall vegetation health and can 
indicate the severity of agricultural drought extent. The authors classified the conditions in 2015 as a “severe 
drought”, which is the second extreme class before “extreme drought”.  
Also, other phenomena as the Indian Ocean Dipole (IOD) have shown to be related to droughts in Indonesia. 
Field et al. (2009) found the IOD to be an independent contributor to droughts in Indonesia. Additionally, 
Hamada (2012) observed that droughts in West Java, which is very close to Lampung and Bangka, occur with 
a positive El Niño but also a positive IOD. Similarly, Ashok et al. (2003) related the IOD to the low SST 
anomalies between Sumatra and Java contributing to droughts on the surrounding land. 

3.1.1.2 Droughts and fires 

Indonesia is characterised by the highest density of fire emissions in the world with most fires being 
generated in Sumatra and Kalimantan (Fanin et al., 2017). The fires in Indonesia are mainly lit to clear 
vegetation waste, especially resulting from agricultural expansion and deforestation, maintaining or securing 
land tenure and regrowth (Field, 2009; Herawati et al., 2011; Medrilzam et al., 2014). They are often set on 
degraded and drained peatlands that are not capable of holding water anymore (Gaveau et al., 2014). Peat is 
a layer of up to 20 m thickness, consisting of partially decomposed plant material and is thus characterized 
by a high proportion of organic matter (Fanin et al., 2017). The fires are mainly set during the dry season 
(July to mid-November) leading to a much higher risk of forest and peat fires (Fernandes et al., 2017). During 
abnormally dry El Niño years, the peat reaches such dry conditions that it can burn and release a high 
amount of sequestered carbon (Page et al., 2002; Medrilzam et al., 2014). The long duration of these fires is 
caused by the fact that the fires expand underground, where they have a large source of fuel and are only 
stopped by the return of the monsoon rains (Field et al., 2008). This causes a strongly non-linear relationship 
between droughts in Indonesia and fires (Field et al., 2016). 

                                                        
2 VCI of month i: VCI! =

!"#!!!!"#!!"#

!"#!!"#!!"#!!"#
∗ 100 

3 TCI of month i: TCI! =
!"!!"#!!"!!
!"#!"#!!"#!"#

∗ 100 
4 VHI of month i: VHI! = αVCI! + 1 − α TCI!   where the correlation factor of VCI and TCI: α = 0.5 



VEGETATION OPTICAL DEPTH: ITS POTENTIAL AS AN AGRICULTURAL DROUGHT INDEX 23 
 

Land use change is a strong contributor to this problematic. In the last decades a continuous peatland 
deforestation and conversion into managed land cover types, in particular, palm oil and pulp wood 
plantations, has taken place in Sumatra and other parts of Indonesia (Miettinen et al., 2016). This increases 
the risk of expanding fires. Similarly, perturbed forests that have already been burned partly are more prone 
to fire occurrences (Sloan et al., 2017). 
These resulting gas and aerosol emissions affect not only the climate but also the air quality (Langmann et 
al., 2009). Especially during El Niño years, the contribution of fires in Southeast Asia to fine particular matter 
and ozone is very high (Marlier et al., 2013). This has serious health consequences for the population. For 
example, the emissions of these fires contribute to around 2% of the annual increase in adult cardiovascular 
mortality in this region (Marlier et al., 2013).  
The magnitude of the Indonesian fire events in 2015 contributes to the drought evidence described in 
3.1.1.1. Around 2.6 million hectares were affected (Tacconi, 2016). Field et al. (2016) detected the fire season 
of 2015 and the resulting smoke pollution in Indonesia as the most severe since 2000 when NASA 
observations started. Also, longer-term records of airport visibility in Sumatra showed that 2015 was the 
worst case after 1997. In 2015 the fire season in Sumatra began in July. From September to October, large 
parts of the region were blanketed in thick smoke. This led to a 2-month hazardous exposure of millions of 
people to poor air quality. The MODIS fire detection confirmed the dense occurrence of active fires. Most of 
these were in peatland areas.  
The greenhouse gases (GHG) emitted during this fires season were the second highest of the past two 
decades. During September and October 2015, the daily GHG emission was approximately 11 times higher 
than during normal years. As a consequence, over half a million people in the country suffered noticeable 
health effects. Furthermore, the fire and haze had a roughly estimated economic cost of US$ 16.124 billion 
(1.8% of Indonesia’s GDP in 2014). However, the total cost is likely to be much higher including the impact 
on other countries for example. Amongst others, the economic impact consisted of a reduced oil production 
due to ill workers, thousands of cancelled flights, further impacting on tourism and business and lost timber 
due to burned forests and plantations. Additionally, the reduced solar irradiance through the haze might 
have impacted agricultural crops (Tacconi, 2016) 

3.1.2  Economy 

In the last years, the gross domestic product share of agriculture in Indonesia has been around 14% 
(TheGlobalEconomy.com, 2016). Farming occupies a third of the labour force and is the main source of 
income for more than half of the economically poor households (Owen, 2015). To assure stable productions 
in the agriculture it is crucial to manage climatic variability, especially droughts. (Aulia et al., 2016)  
In 2015, the World Bank estimated that the drought of 2015 would reduce the rice production by 2.9% (2.1 
million tonnes) and increase the rice prices by 10.2%. This mostly affects poorer households that spend a 
larger proportion of their income on food. (Owen, 2015) 
Similarly, the World Food Programme conducted a survey in December 2015 in eastern Indonesia to assess 
the impacts of the drought. They survey revealed that 40% of the farmers relying primarily on their rice 
production lost more than half of their crop. Two thirds of the farmers stated that in the past three months 
their crop plantation was either delayed or not possible at all. Furthermore, 60% of the agricultural 
households reported to have lost income due to the drought and 10% had to reduce their money they were 
spending on food due to these conditions. (World Food Programme, 2016) 
The pepper production in Indonesia relies heavily on the climate. During the drought of 1995, for example, 
Indonesian pepper production reduced by two-thirds within one year (Weiss, 2002). These strong 
fluctuations in production put the global supply under pressure and lead to highly volatile pepper prices, 
which are not only depending on global and domestic production but also on the international prices, 
especially of Vietnam (Yogesh et al., 2013; Krishnakumar, 2016). In turn, the production in Vietnam, which is 
the largest producer and exporter of pepper, is also affected by droughts (International Pepper Community, 
no date) 
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3.2 Field visit in the pepper fields 
The aim of the field visit was to obtain a general understanding of the cultivation of pepper. This included 
information on cropping cycles, irrigation practices, yields and droughts but also on adjacent land use and 
historical land use changes. 
Both Bangka and Lampung, are mainly covered by natural forests and agricultural fields. However, the 
distribution of crops grown in both places is different. Bangka, which is a flatter region, with the exception of 
some hills in North Bangka, mainly contains natural forests, palm oil, rubber, tin mines, urban areas and 
pepper. Lampung, is much hillier and has more natural forest. The main crops grown in Lampung are 
cassava, corn and rice. Some of these land uses are shown in Figure 13, Figure 14, Figure 15 and Figure 16. 
 

 
Figure 13: Palm oil plantation 

 

Figure 14: Rubber plantation 
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The focus of this study is on pepper fields. Therefore, during the field visit mainly pepper fields were visited 
with the help of PT CAN, an organization within the SpiceUp project, which collects the pepper from the 
farmers and has a registration of all farmers involved. Pepper cultivation is considered to be a very risky 
business requiring skills, hard work and also luck (Wadley et al., 2005). Before the recent climate change, it 
used to generate yearly income, and is therefore a long-term investment in comparison to other crops such 
as palm oil (Personal communication, 2018). 
 
 
 

 
 

 
Figure 15: Tin mine in Bangka 

 
Figure 16: Cornfield in Lampung 
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3.2.1  Plant and field shape  

Seen from space pepper plantations have a peculiar shape (see Figure 17). As they are climbing vines, they 
require supporting trees or poles to grow upwards resulting in a quadratic net of high vegetation column 
next to bare soil or very light vegetation. Additionally, they have shallow roots under the ground and usually 
hold a few major lateral roots that are able to penetrate soil depths of around 2 m. The trees should be 
planted with a 3-m distance between each other to avoid the expansion of diseases. However, most of the 
visited fields had distances of 1.5 to 2.5 m. For the same reason, the first 0.3 m from the soil upwards should 
be cleared from vegetation. Moreover, pepper plants should be exposed to the sunlight to avoid yield 
reduction. (Personal communication, 2018) 
On Bangka, mainly sticks support the pepper plants (see Figure 18 and Figure 19). However, some plants 
also grow on living trees with controlled branches and leaves growth. Most fields visited in Bangka cover an 
area of 1-2 ha. There is one very large industrial pepper field of 36 ha (see Figure 20). Many of the visited 
fields suffer from the Yellow Disease and Rot Root Cancer (see 3.2.2). These kinds of diseases can easily 
spread, since the trees are often planted too close to each other and vegetation grows between them. 
(Personal communication, 2018) 
 

 
Figure 17: Pepper and some other land uses from a Google Earth image 

 
Figure 18: Pepper plants growing on sticks in North Bangka 

 
   Pepper                       Pepper 
                      Pepper 
             Forest 
 
 
          Palm Oil 
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Figure 19: Pepper plants growing on sticks in central Bangka  

 
Figure 20: Industrial pepper field of 36 ha in Bangka 

                        
Figure 21: Pepper plants on living trees on Lampung with large canopy (left) and with small canopy (right) 



28 3 INDONESIA: A CASE STUDY 
 

In Lampung, the pepper is mainly supported by living trees (see Figure 21). The canopy of these trees varies 
significantly from field to field. One of the main reasons for using living trees here is that many of the forests 
are protected and can thus not be cleared. Therefore, the pepper has to be grown around the trees that are 
forbidden to be cut off. Furthermore, the fields on Lampung are very different from one another. In some 
fields, the canopies are dense leading to remarkably less dense pepper plants. Additionally, due to the lower 
amount of light in fields with large canopy trees on Lampung, the pepper plants are less dense. Other fields 
had small canopies and dense pepper plants. 

3.2.2  Life cycle  

In most of the cases, pepper fields are created in areas of previously natural forest. After clearing the forest, 
the ground is supplied with fertilizers for three months. The pepper seedling is prepared by taking one 
segment of a branch of a grown-up tree and by planting it into a polybag with some soil (see Figure 22). 
Figure 23 shows the segment structure of the pepper plant. The seedling preparation is mainly not done by 
farmers but by people engaged in the seedling business. These people buy a pepper segment and a 
polybag for 1000 Indonesian Rupiah (~0.06 €) each, water it for three months and sell it for 10 000 
Indonesian Rupiah (~0.57 €). (Personal communication, 2018) 
 

 
Figure 22: Seedlings in polybags 
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Figure 23: Segment structure of the pepper plant 

 

Figure 24: Recently planted pepper plant 

Then, the seedling is planted in the nutrient rich field and covered by palm tree leaves to provide the young 
plant with shade. In this period, the pepper is watered regularly. Once the pepper seedling is planted, it 
takes between one and two years before the first harvest can take place. (Personal communication, 2018) 
In the beginning, the plant should be cut regularly, keeping it small in order to increase the strength of the 
root and stem. After flowering, it takes approximately nine months before the ripe berries can be harvested. 
Usually, all pepper berries ripen at the same time of the year around July or August. However, since the 
climate is changing, the pepper often matures heterogeneously from plant to plant but also within the same 
plant (see Figure 25). For this reason, most of the visited farmers harvest over the whole year. During the 
field visit, pepper farmers reported that the wet and dry seasons have recently changed and became 
unpredictable impacting their yields. (Personal communication, 2018) 
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Figure 25: Irregular ripening process within the same plant 

In Lampung, black pepper is produced and in Bangka white pepper. These two differ only in the processing 
after harvesting the berries. The berries that are processed to be white pepper are gathered in large bags 
and left in water bodies for several weeks until the shell dissolves and the inner white core remains (see 
Figure 26 and Figure 27). The black pepper is made from the entire berry including the outer shell.  White 
pepper can be sold on average for 60 000 Indonesian Rupiah/kg (3.44 €/kg) and black pepper for 30-40 000 
Indonesian Rupiah /kg (~2.00 €/kg). (Personal communication, 2018) 
 

 
Figure 26: Soaking of pepper in open surface water bodies to become white pepper 
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Figure 27: Black and white pepper 

A pepper plant produces pepper for approximately 15 years. The most common disease of these plants is 
the Yellow Disease. It originates when the root is not strong enough to absorb nutrition on the ground and 
results in fewer and smaller leaves (see Figure 28). This leads to a slow decline of the entire plant until it dies. 
This process continues despite sufficient soil moisture availability. Once a pepper plant is ill, most farmers 
remove the plant, as it cannot recover to carry fruits again. Another common disease is the Root Rot Disease 
(see Figure 29). It is transmitted through water and is therefore most common during periods of heavy rain. It 
can also appear when young plants are watered too intensively. Measures to reduce the transmission risk of 
diseases are a good drainage to avoid stagnant water and the removal of the canopy of the living tree to 
reduce the moisture built up. Furthermore, a sufficient distance between the individual plants of 3 m should 
be kept and the soil between the trees should be cleared from vegetation. (Personal communication, 2018) 
 

 
Figure 28: Pepper plant with yellow disease 
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Figure 29: Pepper plant with root rot disease 

3.2.3  Irrigation and droughts 

Pepper plants require around 2000 mm rain per year. If it does not rain enough, irrigation is needed to 
ensure constant yields. In the visited areas, none of the pepper fields is irrigated although yields were 
reported to be lower in drier years like in the year 2015. Especially in Lampung, several farmers reported to 
have experienced droughts in the past and were interested in irrigation advice (for which infrastructure would 
be needed). The only water used for the cultivation is during the first phase of the pepper life cycle to grow 
the seedling to a plant being able to attach to a support such as a stick or a tree. Some farmers dig round 
ditches around the individual plants to maintain the water for a longer period. Others, especially in the north 
of Bangka, where rain has recently increased throughout the dry season, farmers must deal with excess water 
and have developed draining techniques.  Figure 30 shows a draining technique, in which the soil, where the 
pepper is planted, is slightly elevated in comparison to the surrounding. (Personal communication, 2018) 
 

 
Figure 30: Irrigation dredge 
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Due to the inexistent irrigation, the water consumption related to the pepper production is very low. 
However, other crops, such as rice, maize and coconuts, are extensively irrigated. The water used in 
Lampung is to 98 % internal use, meaning that no external water needs to be imported. By exporting these 
crops to other islands, Lampung becomes one of the highest virtual water exporters of Indonesia. Moreover, 
Bangka is almost not exporting virtual water. (Bulsink et al., 2010)   
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4  METHODOLOGY 
In this chapter, the exact study area is shown, the different datasets are described, and the methods used to 
address the research objectives are explained. For the analysis ten of the visited pepper fields in Bangka and 
seven of the visited pepper fields in Lampung are selected. The locations are depicted in Figure 31 and 
Figure 32 and the details about the individual fields are given in Appendix 8.1 

4.1 Study area 
During the field visit mainly pepper fields were visited with the help of PT CAN, an organization within the 
SpiceUp project, which collects the pepper from registered farmers. The exact locations are depicted in 
Figure 31 and Figure 32. 
 

 
Figure 31: Study areas on Bangka 
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Figure 32: Study areas on Lampung  

4.2 Datasets 

4.2.1  Vegetation Optical Depth  

The Vegetation Optical Depth data is provided by VanderSat at X-Band. The data is given in daily time steps. 
However, certain days lack of data values (on average 40% of missing data within the AMSR-2 VOD dataset). 
These gaps are most probably due to the revisit time, which becomes longer at the equator. For this reason, 
VanderSat also provides a 20-day moving average. By doing so, the VOD curve is smoothened and the gaps 
of missing data are filled.   
From May 2002 until October 2011 the VOD was retrieved from the AMSR-E on NASA’s EOS Aqua 
spacecraft. Since May 2012 it is retrieved from the AMSR-2 on JAXA-s GCOM-W1 spacecraft (Kachi et al., 
2014). The VOD product of VanderSat suffers from a miscalibration between the two missions leading to a 
shift between the two time series for some regions of the world. Due to the large gap and the offset between 
the two missions, only the second, more recent mission of AMSR-2 is used. In the first weeks of the AMSR-2 
missions, all the parameters on board of the mission were still being calibrated. Therefore, the data is only 
being used from the 15.08.12 when the values reached the average values of the time series. The end of the 
time series is set to the 01.05.2018, when the field visit took place. 
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4.2.2  Normalized Difference Vegetation Index (NDVI) 

In this study, two different NDVI data sets are used. For the spatial analysis, the Near-Infrared and the Red 
band from the Sentinel-2 MultiSpectral Instrument (Level-1C) are retrieved via the Google Earth Engine (see 
4.3). These two bands have a spatial resolution of 10 m. This dataset does not correct for clouds but includes 
a cloud mask band with a resolution of 60 m and the image property CLOUDY_PIXEL_PERCENTAGE, which 
gives a granule-specific cloudy pixel percentage taken from the original metadata.  
 
The Normalized Difference Vegetation Index data for time series analysis is retrieved as MOD13A1: 
MODIS/Terra Vegetation Indices 16-day L3 Global 500 m SIN Grid V006 from the online Application for 
Extracting and Exploring Analysis Ready Samples (AppEEARS), courtesy of the NASA EOSDIS Land 
Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science 
(EROS) Center, Sioux Falls, South Dakota (NASA EOSDIS LP DAAC, 2015).  This dataset has an integrated 
cloud correction. As the name already suggests, it has a spatial resolution of 500 m. The timescale is given at 
an approximate 16-day interval. However, this interval is sometimes a day shorter or longer. The 16-day 
composite is generated using the two 8-day composite surface reflectance granules (MxD09A1) in the 16-day 
period. 

4.2.3  Multivariate ENSO Index (MEI) 

In order to test the correlation between the VOD time series and the ENSO Index, the Multivariate ENSO 
Index (MEI) dataset from the NOAA website is used (NOAA, 2018). This dataset consists of bimonthly MEI 
values, which are given in 1/1000 of standard deviations. The dataset covers the time from December 1949 
to May 2018. Missing values are left blank. However, there are no missing values in the timeframe that is 
used for this analysis. The values are normalized for each bimonthly time step. This means that the 44 values 
between 1950 and 1993 have a standard deviation of one and an average of zero. 

4.2.4  Dipole Mode Index (DMI) 

To quantify the Indian Ocean Dipole (IOD), the Dipole Mode Index (DMI) dataset from the NOAA website is 
used (NOAA, 2017). The data consists of monthly values from January 1870 to December 2017. A positive 
DMI refers to a positive IOD and thus lack of precipitation over Indonesia and vice versa. This dataset has no 
missing values. 

4.2.5  Standardized Precipitation Evaporation Index (SPEI) 

The data of the Standardised Precipitation-Evapotranspiration Index (SPEI) is obtained from a website from 
the Spanish Agency for Superior Scientific Investigations (Consejo Superior de Investigaciones Cientificas – 
CSIC) (Vicente-Serrano et al., 2018). The data dates back to January 1901. It offers long-time SPEI time series 
of a spatial resolution of 0.5 degrees. The time resolution is monthly. However, the website offers 
aggregated datasets of time-scales ranging between 1 and 48 months. For this study, the monthly dataset is 
used.  
 
On the Website two types of datasets are available:  
1. The SPEIbase is a revised dataset that is based on monthly precipitation and potential evapotranspiration 
(PET) from the Climatic Research Unit of the University of East Anglia and dates until December 2015. The 
PET is obtained by the FAO-56 Penman-Monteith model. This is the more robust of the two available SPEI 
datasets. This dataset is available as netCDFs for larger regions or as CSV files for single coordinates. 
2. The SPEI Global Drought Monitor is an unrevised near real-time dataset. It is updated at the beginning of 
each month based on the mean temperature of the NOAA NCEP CPC GHCN_CAMS gridded dataset and 
monthly precipitation sums from the Global Precipitation Climatology Centre (GPCC). This precipitation data 
is interpolated from an original resolution of 1° to the desired resolution of 0.5°. Due to the lack of real-time 
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data sources for more robust PET estimations, the PET is based on the Thornthwaite equation. As an 
example of the lower reliability of this near real-time product, the current drought of the summer 2018 in the 
Netherlands appears to be less strong than in the previous year, although this is not the case. This dataset is 
available as CSV files for single coordinates. 

4.2.6  Hansen deforestation maps 

For analysing the trends in the VOD time series, the Hansen deforestation maps are used (Hansen et al., 
2013). It is based on Landsat imagery with a spatial resolution of approximately 30 by 30 m. It shows the 
yearly deforestation per pixel from 2000 to 2018. It also gives the overall increase in vegetation or forest in 
the same period. However, the increase is not split into the individual years.  

4.2.7  Yield data 

The Directorate General of Estate Crops et al. (2016) of the Ministry of Agriculture of Indonesia published a 
report about the pepper production in Indonesia. It contains statistics on the yearly pepper field areas, the 
pepper production, export and import and yields. The data of this report is collected from the Estate Crops 
Province Level and from other institutions such as Board of Central Statistics, the Ministry of Industry, Ministry 
of Trade, the Central Bank of Indonesia and the publication of Estate Commodity Associations. The exact 
procedure of the collection of the yield data is not given. Additionally, the values of the year 2016 are 
preliminary values and the values of 2017 are estimations only. Therefore, the reliability of this data is 
uncertain as there is no information available on what the statistics are based. 

4.3 Spatial patterns in VOD  

4.3.1  Comparison of VOD and NDVI to general land use patterns 

In a first step, VOD and NDVI images are compared to a Google Maps image. For this purpose, the mean of 
the year 2016 (01.01.2016 to 31.12.2016) is calculated for VOD as well as for NDVI for two selected squares 
of 10 x 10 km, one on Bangka (BSquare02) and one on Lampung (LSquare07) (in Figure 31 and Figure 32). As 
an additional comparison LSquare04 is used as well. Each of these squares includes several pepper fields. 
The Google Maps image is composed by different years. Although land uses changes relatively fast in this 
region it gives a broad idea of the present land uses.  
The NDVI image is obtained by combining the Nir and the Red Band of the Sentinel 2 data from the Google 
Earth Engine. Due to the high cloud occurrence, the clouds are masked out. To avoid the effect of cloud 
shadow that remains after the masking out the clouds, images with a cloudy pixel percentage of over 80% 
are excluded. This percentage was chosen in a process of trial error to obtain enough images in the period 
of one year. In Bangka, this leads to 19 images (35 before cloud filter) and in Lampung to 7 images (19 
before cloud filtering). The NDVI images are then overlaid with contour lines of the VOD gradient in steps of 
0.001 to show the similarity or the difference between the two spatial images. 

4.3.2  Derivation of spatial characteristics of VOD of pepper fields 

The spatial distinguishability of pepper fields is assessed on the VOD images produced in the previous step 
(4.3.1). The distinguishability is cross-compared with the same NDVI images. BSquare02 includes the pepper 
fields BPepperField01, BPepperField02, BPepperField03 and BPepperField04. The pepper fields 02 and 03 
exist since 2014, whereas BPepperField04 exists since 2015 and BPepperField01 since 2017. LSquare07 
includes LPepperField05, LPepperField06 and LPepperField07. All these fields existed before 2012. 

4.3.3  Identification of spatio-temporal characteristics of large-scale VOD  

Furthermore, a spatio-temporal analysis is conducted for BSquare02 and LSquare07 to see if spatial patterns 
become visible during a drought. For both locations, three situations (before, during and after a drought) are 
compared during the drought year 2015. For each situation, a 4-month VOD average is created per location 
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and compared during the drought year 2015 and the non-drought year 2016. The three periods vary in the 
two locations. The exact period per location of the resulting 6 images are shown in Table 8. 

Table 8: Timeframe for the 4-month VOD mean in the drought and the non-drought year 

Location Label Timeframe for the 4-month VOD mean 
  Drought year  Non-drought year 
  From To    From To 
 Before the drought 01.03.2015 01.07.2015 01.03.2016 01.07.2016 

Bangka During the drought 01.07.2015 01.11.2015 01.07.2016 01.11.2016 
 After the drought 01.11.2015 01.03.2016 01.11.2016 01.03.2017 
 Before the drought 01.04.2015 01.08.2015 01.04.2016 01.08.2016 

Lampung During the drought 01.08.2015 01.12.2015 01.08.2016 01.12.2016 
 After the drought 01.12.2015 01.04.2016 01.12.2016 01.04.2017 

 
Next, the images from each situation are compared to their corresponding situation from the other year as 
follows. 

(VOD drought year – VOD non-drought year)/ VOD non-drought year 

The resulting image gives the increase or decrease in VOD with reference to the non-drought year in a 
specific period. Positive values indicate that the VOD in the drought year is higher and negative values 
indicate that the VOD in the drought year is lower. 

4.4 Temporal patterns in VOD  

4.4.1  Calculation of VOD anomalies 

For the analysis, it is crucial to understand whether a VOD value is low due to season-related little vegetation 
in that period or due to atypical low moisture availability. For this purpose, time series anomalies are going 
to be analysed. The VOD anomaly is calculated as follows. The VOD data is given as time series of raw data 
with the actual daily values and as a time series of the moving 20-day average given in daily time steps as 
well. This average overcomes the issue of missing values and also fluctuations. The given average time series 
is used to calculate the climatology. Leap years are considered within this calculation. And only the VOD 
data from 15.08.2012 until the 01.05.2018 are used for the climatology. Next, the anomaly is calculated by 
subtracting the climatology from the VOD moving average time series. 

VODAnomaly = VOD20 – VODClimatology 

4.4.2  De-trending of VOD anomalies 

According to the Hansen deforestation maps, the analysed area in Indonesia has experienced extensive 
deforestation (Hansen et al., 2013). In these areas, agricultural vegetation is cultivated. As the purpose of the 
VOD in this study is to detect (drought conditions) differences in vegetation water content as a response to 
“short-term” water shortages, the long-term trends which can be either decreasing or increasing should be 
extracted from the time series. For this reason, the VOD anomaly time series is de-trended. A linear model is 
fit to the time series. This linear trend is then subtracted from the actual anomaly time series.  

4.4.3  Derivation of temporal characteristics of VOD of pepper fields 

The used downscaled VOD product gives dimensionless VOD values per 100 m x 100 m pixel, which is 
representative of the total water content in that pixel. However, it is important to consider the analysed field 
size taking into account that the resolution is only 1 ha. Furthermore, the downscaling method leads to a 



VEGETATION OPTICAL DEPTH: ITS POTENTIAL AS AN AGRICULTURAL DROUGHT INDEX 39 
 

radius of influence of several kilometres. This means that the adjacent land use should be taken into 
consideration for the interpretation, especially if a small area of the size of one pixel is analysed. 
 
In order to assess whether the fields are distinguishable, the VOD anomaly time series of 17 fields are 
compared to the time series of the mean value of a square of 10 x 10 km. Then, the difference between the 
two time series is calculated and plotted together with the two original time series. Additionally, the mean of 
the absolute difference as well as the mean of the absolute anomaly of the field is calculated in order to 
calculate the mean difference as percentage of the field anomaly (see title of each plot). 
Furthermore, the spatial analysis explained in further detail in 4.3 gives insight to the distinguishability of the 
individual pepper field. This analysis consists in the comparison of three aggregated images before, during 
and after a drought. 

4.4.4  Comparison of VOD to other drought indicators 

In order to evaluate the added value through VOD as an alternative drought indicator, the VOD anomalies 
are cross-compared to the anomalies of other indices. Based on the comparison of the different drought 
indicators in section 2.2 and previous studies in Indonesia (see 3.1.1.1), four different proxies or indicators 
are chosen to compare with VOD: The Multivariate ENSO Index (ENSO), the Dipole Mode Index (DMI) that 
describes the Indian Ocean Dipole, the Standardized Precipitation Index (SPEI) and the Normalized 
Difference Vegetation Index (NDVI).  
The correlation with other drought indices is based on the fields. The VOD anomaly time series of the 17 
fields is compared with the anomaly time series of the other selected drought indices. For all drought 
datasets, the correlation with the VOD anomaly is tested with the Pearson correlation test and the Spearman 
Rank Test. The Pearson test gives a correlation coefficient r that ranges between -1 and 1, and expresses the 
degree to which two variables change correspondingly. The p-value indicates the probability to obtain the 
present result with a correlation coefficient of zero. The correlation coefficient is defined as statistically 
significant it the p-value is lower than 5 %. (MedCalC, no date)  
The Spearman Rank test gives the correlation coefficient rs ranging between -1 and 1, which indicates the 
strength of the link between the two datasets also for non-linear correlations. Again, the correlation is 
statistically significant when the p-value is under 5%. If both tests give similar correlations the two datasets 
are linearly correlated. If Spearman gives higher results than Pearson then the correlation is non-linear. 
The tests are conducted in python by using pearsonr and spearmanr function from the scipy.stats package as 
follows.  

p = pearsonr (VOD_anomaly, OtherIndicator_Anomaly) 

s = spearmanr (VOD_anomaly, OtherIndicator_Anomaly)  

Both functions return the correlation coefficient and the 2-tailed p-value. 

4.4.4.1 MEI 

As the MEI is given in bimonthly values, the VOD anomaly data has to be aggregated to monthly data. Next, 
the correlation lag functions between the two time series is plotted as follows with the xcorr function in the 
matplotlib.pyplot package in Python. 

ax.xcorr(a- mean(a), b- mean(b), usevlines=False, maxlags=8, normed=True) 

Where a and b are the two sequences of scalars of the anomaly time series that are compared. This line 
returns a plot in which the x-axis represents the lag, from minus to positive, and y-axis values show 
correlation coefficient in each time lag. Here, the maximum possible lag is set to 8 months. These functions 
show at which positive or negative lag the correlation is the highest. The negative lag is the significant one 
here, as the vegetation and thus, the VOD reacts slower to global patterns such as the ENSO. A negative lag 
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means that the VOD time series shifts from 0 to 8 months earlier and, thus, the visible effects of the ENSO 
are artificially occurring at the same time as the ENSO. This negative lag takes place when the most negative 
correlation occurs. Then, the two time series are plotted with the respective calculated maximum correlation 
lag and the statistical tests are conducted on the lagged time series. 

4.4.4.2 DMI 

The Dipole Mode Index (DMI) is given in monthly values from January 1870 to December 2017. Thus, the 
overlapping time period with the analysed VOD time series is only from August 2012 to December 2017. 
Also here the VOD is aggregated to monthly values and the lag function is applied to find the maximum 
correlation between the two datasets. Then, both time series are plotted under consideration of the lag and 
the statistics are calculated. 

4.4.4.3 SPEI 

As mentioned in 4.2.4, there is more robust data available until 2015 and less robust data available until the 
present. The more robust dataset is used as a netCDF in order to obtain the mean of the polygon to have 
the same maximum resolution of the product as it will be used for the VOD product. One of the strongest 
droughts seems to be at the end of 2015, when the short time series ends. Therefore, also the unrevised 
dataset is included. This dataset is only given for a single coordinate.  
The plot includes the VOD anomalies as well as the two different SPEI anomaly time series. The statistical 
analysis showing the correlation between the different time series is done as follows. First the correlation 
between the revised and the unrevised SPEI is calculated to understand how different or similar these two 
datasets are from each other. Next, the VOD is compared to the long and unrevised SPEI and then to the 
short and revised SPEI. The correlation of the SPEI with the VOD is calculated without time lag as they are 
supposed to occur simultaneously.  

4.4.4.4 NDVI 

Since the NDVI is also given as a spatial time series in a netCDF, the NDVI data is extracted, in analogy to 
the SPEI data extraction, as the mean NDVI value of each pepper field polygon. As described in 4.2.2, the 
time interval of the NDVI dataset is not homogeneously 16 days. For this reason, a rolling mean of 18 days is 
applied to the NDVI dataset filling all the empty days. The resulting artificially created daily NDVI anomalies 
are aggregated to monthly values to have a fair comparison with the other indices. These monthly NDVI and 
VOD anomalies are plotted without time lag and the corresponding statistics are calculated.  

4.4.5  Comparison of NDVI to other drought indicators 

In order to put the results from 4.4.4 into perspective, the same analysis is conducted comparing the NDVI to 
the MEI, the DMI, the short SPEI and the long SPEI. The methodology is in analogy to the VOD analysis. All 
calculations are based on monthly values as well. Time lags are only applied for the MEI and the DMI. 

4.4.6  Comparison of yields to VOD  

The national yearly pepper yields are calculated by dividing the yearly pepper production given in tons by 
the yearly pepper cultivation area given in hectares. The values of 2016 are preliminary values and the ones 
of 2017 are estimated values only. Nevertheless, national pepper production in tons and the area of pepper 
fields in hectare are plotted from 2012 to 2017. The provincial production is not used as it only contains data 
from 2015 and estimates of 2016 and 2017. This time period is too short to detect trends. 
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5  RESULTS & DISCUSSION 
This chapter describes and discusses the results. First, the general spatial performance of VOD is discussed. 
Then, spatial and temporal characteristics of VOD of pepper fields are compared to their surroundings. Next, 
VOD anomalies are compared to other drought indicator anomalies. Further, VOD anomalies are compared 
qualitatively to yield data. Lastly, a roadmap to convert VOD into a drought index is proposed. 

5.1 Spatial patterns 

5.1.1  VOD and NDVI 

This section discusses the spatial similarity between VOD and NDVI in terms of their representation of the 
overall land use. Figure 33 shows the Google Earth images of the LSquare07 and BSquare02 including some 
clearly detectable land uses. Most of the other areas are small agricultural fields with different crops. As the 
land use changes relatively fast in this region, the Google Earth image only gives a general idea of the land 
use. Figure 34 and Figure 35 show the comparison between NDVI and VOD on the example of BSquare02 
and LSquare07. Each figure includes an NDVI image, an image where the NDVI is overlaid by VOD contour 
lines with a difference of 0.001 and a VOD image. 
 

 
Figure 33: Google Earth image of BSquare02 (left) and LSquare07 (right) 

As the NDVI is derived from the 10-m-resolution Sentinel 2 imagery, the spatial resolution is high enough to 
identify most of the land uses and even some fields. However, as mentioned in 4.3 the temporal resolution in 
this area is very low. Even the one-year-mean has gaps of the cloud mask in LSquare07 (see white areas in 
the northeast in Figure 35). In BSquare02, the villages are characterized by bare soil and light vegetation. 
The tin mines contain bare soil, light vegetation and turbid water. The large palm oil plantation in the east is 
identifiable through the separation of rectangular streets with lower NDVI values. In LSquare07, the large 
water body in the north features clear and turbid water. The thin lines, appearing as lighter vegetation, 
represent streets with houses along them. The rice fields in the west, feature lighter vegetation. 
The VOD has a much coarser scale with a pixel size of 100 x 100 m. It has to be considered that these images 
are aggregated over one year and do therefore differ from single day images. In section 4.3.2, VOD images 
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of single days are discussed. These images show that the values only have 2 decimals (see Figure 40). This 
leads to relatively large areas with the same value. However, each day, the footprints are located in different 
points. Therefore, other proportions of footprints are used every day to obtain the downscaled VOD of a 
certain pixel. Additionally, the sensor’s inaccuracy of 1 to 2 K when measuring the brightness temperature 
contributes to inter-daily variations. In the moment, that a moving average is applied or an aggregated 
image over a certain period is generated as for this analysis step (see Figure 34 and Figure 35), the larger 
homogeneous areas of the single day images become more heterogeneous and gradients become smoother 
as mean values have more than 2 decimals. Therefore, in both locations, water surfaces, like the tin mines are 
clearly detectable by lower VOD values. In BSquare02, the VOD seems to capture gradients of denser 
vegetation, such as the natural forest, to lighter vegetation, like the tin mine. Remarkable is the gradient from 
west to east in LSquare07, which prevails regardless of actual differences in vegetation density.  
The comparison of the different VOD images with their corresponding NDVI image shows the difference 
between the two locations. In BSquare02, the contour lines mainly match the variation in vegetation 
greenness of the NDVI. Especially, the shape of the high density NDVI in the mid-south-west is very similar to 
the gradient in VOD values. An exception is the north-eastern corner, which shows the lowest values in VOD 
but not in the NDVI. The slight mismatch between the two images could be partly originated by a different 
spatial distribution of leafy vegetation (sensitivity of NDVI) and of woody vegetation (sensitivity of VOD). 
In LSquare07, the VOD contour lines barely match differences in NDVI. The gradient from west to east seems 
to be dominant over small variations. The presence of the water body could contribute to this effect. 
Moreover, to understand the performance of VOD in Lampung, a second square (LSquare04) is analysed. 
The results are shown in the Appendix 8.2. In this example, the horizontal gradient is not present but there is 
a wave-shaped gradient, which is caused by the border of a swath. To avoid these patterns, images including 
a swath edge should be excluded. 
 
The results suggest that the NDVI represents the land use properly. However, to produce satisfactory results, 
images over extremely long periods have to be aggregated due to the high cloudy cover. The VOD in turn 
does not face these temporal issues, but has a lower spatial resolution. Temporal aggregation leads to a 
smoother gradient and also a slight heterogeneity. Important to mention is, that the spatial performance of 
VOD varies per location. In the selected area in Bangka, VOD is very similar to NDVI, representing the land 
use properly. On Lampung, the VOD in the analysed area does not seem to capture spatial differences. 
Surface water bodies and swath edges seem to have a negative impact on the spatial performance of VOD. 

5.1.2  Derivation of spatial characteristics of VOD of pepper fields  

The two selected squares contain several pepper fields (see Figure 34 and Figure 35). As mentioned in 5.1.1, 
the spatial resolution of NDVI is high enough to identify some field shapes in general. For this reason, it is 
used as reference to see if the vegetation density from the fields is actually different to the surroundings, 
which is required to distinguish a pepper field in the VOD image. In BSquare02, BPepperField01 is not 
distinguishable, as it only exists since 2017. BPepperField02 and BPepperField03 have partly different NDVI 
values compared to the surrounding, but are not homogenous within the same field. BPepperField04 is 
clearly distinguishable due to its size. In Lampung, all fields exist since 2012 or earlier. However, the pepper 
plants in these fields are supported by trees. For this reason, they only differ slightly from their surroundings. 
The VOD does not allow for a detection of smaller fields. This is to be expected since the small fields only 
have a weak contrast in the higher-resolution NDVI. Possible explanations are similar surrounding vegetation 
density, the coarse resolution and the previously mentioned slight heterogeneity caused by temporal 
aggregation. Only the 36-ha-large BPepperField04 is clearly recognizable in the VOD image. 
 
Summarizing, most of the fields do not have different spatial characteristics of VOD compared to their 
surroundings. This is caused by a combination of field size, coarse resolution, similar surrounding vegetation 
density, heterogeneous VOD and the radius of influence. Only the pepper field of 36 ha size is detectable.   
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Figure 34: Mean NDVI (top), mean NDVI with VOD contours (middle) and mean VOD (bottom) of 2016 of BSquare02 
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Figure 35: Mean NDVI (top), mean NDVI with VOD contours (middle) and mean VOD (bottom) of 2016 of LSquare07 
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5.1.3  Spatial changes in large-scale VOD over time 

This section gives further information on the spatial patterns of large-scale VOD during a drought. This can 
help in assessing, whether large-scale VOD can be used to describe droughts in pepper fields. Figure 36 
shows the 4-monthly VOD anomaly before, during and after the drought of 2015 in BSquare02 and 
LSquare07. The anomalies are given as a percentage of the normal year 2016. Each plot has a different scale. 
The mean, minimum and maximum value per image are summarized in Table 9. 
 

 
Figure 36: 4-monthly VOD anomaly before, during and after the drought in BSquare02 (left) and LSquare07 (right) 

Table 9: Mean, min and max anomaly before, during and after the drought in 2015 with reference to the normal year 2016 

Area Before During After 
 Mean Min Max Mean Min Max  Mean Min Max 

BSquare02 +2.2% +0.4% +4.1% -9.0% -11.6% -5.7% +3.0% +0.8% +4.6% 
LSquare07 -2.2% -3.0% -1.1% -14.1% -15.3% -13.6% -1.2% -2.7% -0.1% 
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In BSquare02, on average the anomalies develop from +2.2% before the drought, to -9.0% during the 
drought and then back to +3.0% after the drought. The percentages within the same image vary within a 
range of 3.7 points before, 5.9 points during and 3.8 points after the drought. These are relatively large 
variations within the same image considering the difference between a non-drought and a drought situation 
is only a 6-point difference. During the drought, the highest differences are in the southwest. In this same 
area, the VOD reaches the highest values after the drought. In the north-east, the VOD anomaly during the 
drought is lower. Nevertheless, after the drought the VOD anomaly does not reach as positive values as in 
the southwest. These anomalies are based on one normal year only. Ideally, the anomaly should be based on 
the mean of all non-drought years between 2012 and 2018. This means that the sign of the values closer to 
zero should not be over-rated as they could still be part of a negative anomaly if the non-drought mean 
would be slightly different. Together, the three images of BSquare02 indicate that the drought in the 
southwest is stronger and concentrated over a short period whereas in the northeast it is less strong but 
spread over a longer period.  
In LSquare07, the anomalies develop on average from -2.2% before the drought, to -14.1% during the 
drought and then back to -1.2% after the drought. And the percentages within the same image differ within 
a range of 1.9 points before, 1.6 points during and 2.6 points after the drought. The smaller differences 
within the same image lead to a more homogeneous pattern for the three periods. Interestingly, the pattern 
observed in the one-year aggregates disappears in the anomaly. However, a new pattern of diagonal edges 
with strong contrasts becomes visible in both locations for the period after a drought. This could be caused 
by the shape of the physical temperature distribution, which is used for the VOD retrieval in the LPRM (see 
2.3.2.6). The temperature is based on a higher frequency with smaller footprints and, thus, less overlap. 
These edges could also be caused by swath edges. 
This analysis shows that spatio-temporal characteristics can vary within a square of 10 x 10 km. For this 
reason, the following temporal analysis (in 5.2) is conducted on the fields rather than on the large squares. 

5.2 Temporal patterns 

5.2.1  Effect of applying a moving average or temporal aggregation 

For the temporal analysis, it should be considered, that the used VOD data set is a moving average. For the 
comparison of VOD with other drought indicators, the time series is even aggregated to monthly data. As 
explained in 5.1.1, the varying position of the footprints and the sensor uncertainty lead to inter-daily VOD 
fluctuations, which are shown in the example time series of BPepperField06 in Figure 37). By taking the 
moving average of 20 days, on which this entire analysis is based, this effect smoothens. 
 

 
Figure 37: VOD (X-Band) time series of BPepperField06 – raw data, moving average and climatology 
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5.2.2  VOD trends 

The de-trending of the VOD time series for the different fields results in decreasing trends in some areas and 
in increasing trends in other areas. Especially in Bangka, all fields show an increasing trend and in Lampung 
they show between almost no trend and a decreasing trend (see Table 10).  

Table 10: Increasing or decreasing trends of the VOD anomaly time series per pepper field 

Location Field/Square number Anomaly trend of PepperField  Anomaly trend of Square 

Bangka 

01 0.00001146 0.00001142 
02 0.00001164 0.00001198 
03 0.00001197 0.00001198 
04 0.00001075 0.00001180 
05 0.00001282 0.00001478 
06 0.00001002 0.00000958 
07 0.00001129 0.00001089 
08 0.00001542 0.00001441 
09 0.00000838 0.00001015 
10 0.00000843 0.00001015 

Lampung 

01 -0.00000194 -0.00000325 
02 -0.00000030 -0.00000125 
03 -0.00000052 -0.00000114 
04 -0.00000027 -0.00000114 
05 -0.00000793 -0.00000519 
06 -0.00000865 -0.00000558 
07 -0.00000865 -0.00000558 

 
The most probable reason for the decreasing trends in Lampung is the rapid rate of deforestation in the 
region stated by Hansen (2013) (see 4.4.2). Apart from the yearly decreasing rate given for each year from 
2000-2017, the Hansen maps also show an increase in forests. However, the increase is given as one value 
from the period 2000 to 2012. Thus, the analysed period for this study is not included. For this reason, a net 
increase or decrease per location cannot be calculated. Nevertheless, according to the Hansen maps, in the 
period from 2000 to 2012, the forest cover gain in Bangka was much higher than in Lampung. Probably, this 
trend could have been similar to the period from 2012-2018 of the present study. Possible reasons for 
increasing trends on Bangka are re-growing plantations such as palm oil or rubber replacing previously 
burned areas for agriculture. In Lampung, there are several areas that are under protection where 
deforestation is prohibited. However, the exact location of these natural reserves is not known. Nevertheless, 
this could explain the lack of trend in certain time series.  

5.2.3  Derivation of temporal characteristics of VOD of pepper fields 

Overall, the absolute VOD values in Bangka and Lampung are quite similar. The mean of the means of the 
time series per pepper field in Bangka is 0.5660 (σ: 0.0327). In Lampung, the mean VOD value is 0.5661 (σ: 
0.0375). The pepper fields in Lampung have a higher vegetation cover, as the supporting life trees had either 
a large canopy or the pepper plants were very dense. The VOD does not seem to saturate in this area. 
For a better understanding of the VOD, the anomalies for pepper fields are compared to the anomalies of 
the surrounding 100 km2–sized squares. Results are shown in Appendix 8.3.1. Four example fields are 
selected: BPepperField02 and the large industrial BPepperField04 in Bangka as well as LPepperField03 and 
LPepperField07 in Lampung. BPepperField02 exists since 2014, BPepperField04 since 2015, LPepperField03 
since 2014 and LPepperField07 since 2002 (see Figure 38). Visually, in most cases, like BPepperField02 and 
BPepperField04, the differences are around ± 0.005. This corresponds to 5 to 10% of the field anomalies. 
The exact percentages are shown in each plot. These are higher due to the offsets in the time series, which 
are discussed later. The difference is caused by a different magnitude of values and not by a time lag.   
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Figure 38: VOD anomalies of fields and squares in BSquare02, BSquare04, LSquare03 and LSquare07 

On Bangka, the fields exist since recent years. This helps to compare the difference between before and 
after their existence. However, the difference plots are equally irregular before and after the existence of the 
pepper fields. In most cases, the prior land use was natural forest, which would react differently than the less 
dense pepper fields. However, detailed land use maps of prior moments in time would be useful here. Not 
even the large BPepperField04 is different before and after its existence.  
The largest deviations are in LSquare05, LSquare06 and LSquare07. All these fields exist since the beginning 
of the time series or even before. Therefore, it is difficult to make this comparison. These three fields are all 
located almost within the same square including a large water body (see Figure 32). If the exact boundary of 
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the surface water or its temperature is not known, errors are introduced in the downscaling method. Possibly, 
this is the reason for the larger variation over time of the square compared to the pepper field. Slightly 
smaller disparities are visible in LPepperField02, LPepperField03 and LPepperField04. These three fields are 
all in the same area, which contains a large amount of pepper fields. For this reason, the surrounding is 
slightly more homogeneous and similar to the field itself.  
There are several factors influencing the temporal changes of the value of a single pixel. In the first place, the 
value is influenced by the variations of aboveground biomass amount. Furthermore, the downscaled pixel 
value is obtained by combining the data of several footprints. This leads to a radius of influence of several 
kilometres for a single pixel. The accuracy of this downscaling method is unknown. Thus, also changes in the 
surrounding impact on the anomaly of the single pixel. Next, as explained in section 5.2.2, the varying 
composition of the downscaled pixel value and the sensor uncertainty lead to unnatural inter-daily variations 
in the VOD. By taking a 20-day moving average, the impact on the time series is reduced but not eliminated. 
In this part of the analysis, the anomaly of a field, which is composed by a few pixels, is compared to the 
anomaly of a large surrounding, which contains a much larger number of pixels, that are all influenced by 
these different factors. This means that there is evidently a difference between the anomalies of the pepper 
field and the anomalies of the square. However, this cannot be attributed only to the actual differences in 
land use because there are too many factors influencing the downscaled and averaged value of a pixel. 
To see whether there is a relation between the VODDifference and the VODSquare Anomaly, scatterplots are produced 
separating the data in before and after the pepper field existence (see Appendix 8.3.2). However, these plots 
do not reveal a meaningful relationship. 
In several of the plots there are offsets present, like in mid 2017 of BPepperField02 and BPepperField04. 
These offsets are caused by the anomaly time series of the squares. In Bangka, the offsets are negative, 
meaning that suddenly the square has a more positive VOD anomaly than the field. In Lampung, the offsets 
are positive caused by a sudden negative anomaly of the square of a less positive anomaly than in the field.  
 

  

  

  
Figure 39: VOD time series of selected fields in the entire period (left) and a selected period during the offset (right) 
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Figure 40: Spatial VOD images before or after and during offset of selected fields 

To obtain an insight to these offsets, the periods when these offsets occur are extracted in the time series of 
the VOD (see Figure 39). Here, the effect of an extreme peak on the 20-day moving average becomes 
visible. In order to see the difference between these peak days and a normal day, the individual VOD images 
are shown in Figure 40. These images show that there are several kinds of errors generating the observed 
offsets. In the case of BSquare04, it appears that the coastline is shifted on the day of the offset with some 
very high VOD values at the boundary. As a consequence, only very few and high value pixels are counted as 
part of the mean as the rest has no value as it is counted as water surface. This results in a very high mean 
value. The fields on this day do not have a value at all and are, therefore, filled by the normal values through 
the moving average in the time series. In the case of LSquare03, on the day of the offset, most of the square 
contains zero values. In the east, there is a deep gradient towards higher VOD values. In this area, there are 
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no large surface water bodies in the surrounding. In LSquare05, during the offset, the land surface seems to 
have no values and the water body a nan-value. For a certain reason, the mean value of that day is 0.01 
although no pixel is visible with this value. In the three cases, the reasons of the error occurrence are 
unknown. Further investigation is needed. 
 
Summarizing, the anomalies of the pepper fields are different to the anomalies of their surroundings. 
However, this cannot be attributed only to the actual differences in land use as there are too many factors 
influencing the downscaled and averaged value of a pixel. The differences seem to be generated by the fact 
that, when comparing pepper fields to the squares, two different groups of pixels are compared that are 
influenced by the following factors. First, the values vary with the actual changes of the aboveground 
biomass in the square but also of the surrounding because the downscaling method leads to a radius of 
influence of several kilometres. Second, the values fluctuate on a daily basis due to the varying location of 
the footprints leading to a different composition of footprints for the same pixel on different days. This is 
confirmed by the fact that the irregular differences are also present for the period before the area was a 
pepper field. Fields with rather homogeneous land use in the surroundings have a smaller difference as the 
surrounding on average might react more similar to the small pixel. This analysis reveals the existence of 
different errors that lead to offsets in the normal VOD time series and propagates to the anomalies. 
However, the reason for the occurrence of these errors is unclear 

5.2.4  VOD, NDVI and other drought indicators  

The aim of this analysis is to compare the indicators of the El Niño Southern Oscillation (ENSO) and the 
Indian Ocean Dipole (IOD) as well as the meteorological drought indicator Standardized Precipitation 
Evaporation Index (SPEI) to the VOD data. To put this comparison into context, the same indicators are 
compared to the Normalized Difference Vegetation Index (NDVI), which is often used as a comparable tool 
to VOD. For these correlations, it should be kept in mind that VOD and NDVI are independent datasets. The 
VOD is a measure of aboveground biomass and its water content. For this reason, it measures the response 
of the vegetation to the hydrological conditions such as precipitation, temperature or groundwater storage. 
The VOD anomalies are hence expected to be correlated to the anomalies of the tested indicators but not to 
100%. Vegetation does not fluctuate as fast as precipitation does for example. The vegetation is capable of 
buffering extreme conditions to a certain extent. This buffer represents the added value that VOD gives over 
the ENSO, the IOD or the SPEI. This part of the study aims at verifying the existence of this added value.  

5.2.4.1 Overview of correlations with other indices 

Table 11 summarizes the Pearson and Spearman correlations r of other indicators with VOD. More 
specifically, it shows the mean and the standard deviation of all analysed fields per location (Bangka or 
Lampung). Furthermore, the amount of statistically significant results is given per location and indicator. 
Analogically, Table 12 compares the results between the NDVI and other indicators.  
Field-specific Pearson and Spearman correlations with VOD are shown in Figure 41. In these plots, 
statistically insignificant results (p>5%) are set to zero. These spider plots show if the degree in correlation is 
similar for all indicators within the same field. Based on these two figures, fields are selected to further 
discuss the individual indicators in the following sub-chapters. All anomaly plots are shown in Appendix 
8.4.1.1, 8.4.2.1and 8.4.3. The correlations of VOD and NDVI with the ENSO and the IOD are calculated with 
the time lag that results in the highest correlation. The relation between lag time and correlation coefficient 
for the ENSO are shown in Appendix 8.4.1.2 and 8.4.1.3 and for the IOD in Appendix 8.4.2.2 and 8.4.2.3. 
 
For all indicators, the Pearson correlation is similar to the Spearman correlation (see Table 11). This means 
that the variables are linearly related. If Spearman would be much higher than Pearson, the relationship 
would rather be non-linear.  
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When comparing the correlations of other indicators with VOD (Table 11) with the correlations of other 
indicators with NDVI (Table 12), it stands out that overall correlations with NDVI are lower and fewer 
correlations are statistically significant. This is most probably linked with the cloud cover in this area as seen 
in the spatial analysis. The NDVI used for the temporal analysis is taken from MODIS, which has an integrated 
way of compensating the cloud cover (see 4.2.2). However, if the cloud cover is too high there might not be 
enough data available to compensate for the high cloud cover. Furthermore, extremely high aerosol 
concentrations that often occur during peat fires in extreme droughts can impede a proper representation of 
the actual state through NDVI (see 3.1.1.2). The saturation of NDVI at high vegetation intensity could 
possibly also contribute to difficulties in representing the high NDVI peaks and leading to lower correlations.  
 
Figure 41 shows that, in Bangka, Fields 01 to 04 have lower Pearson correlations than Fields 05 to 10. These 
four fields are all on the same spot in Bangka. Here, the fields might have a higher resistance to droughts, 
either through higher groundwater levels, higher soil moisture or more drought-resistant vegetation. The 
difference in correlation between Fields 05 to 10 to Field 01 to 04 for the ENSO and the IOD is much higher 
than for the SPEI. This could indicate that in the area of Field 01 to 04 the precipitation is influenced more by 
other phenomena than the ENSO and the IOD. In Lampung, the correlations are relatively homogeneously 
distributed over the different fields. 

Table 11: Summary of correlations between VOD anomalies and other drought indices 

Index  Pearson Spearman 
  Mean 

correlation 
r 

σ of 
correlation 

Amount of 
fields with 

p<5% 

Mean 
correlation 

rs [-] 

σ of 
correlation 

[-] 

Amount of 
fields with 

p<5% 

ENSO  
(MEI)  

Bangka -0.50 0.22 10/10 -0.58 0.04 6/10 
Lampung -0.40 0.05 7/7 -0.35 0.06 7/7 

IOD  
(DMI) 

Bangka -0.37 0.09 9/10 -0.36 0.07 6/10 
Lampung -0.57 0.04 7/7 -0.53 0.06 7/7 

SPEI  
( long) 

Bangka 0.58 0.12 10/10 0.53 0.11 10/10 
Lampung 0.34 0.04 7/7 0.32 0.08 7/7 

SPEI  
(short) 

Bangka 0.45 0.10 10/10 0.49 0.05 6/10 
Lampung - - 0/7 - - 0/7 

NDVI 
Bangka 0.31 - 1/10 0.30 - 1/10 
Lampung 0.30 0.02 4/7 0.26 0.02 4/7 

Table 12: Summary of correlations between NDVI and other drought indices  

Index  Pearson Spearman 
  Mean 

correlation 
r 

σ of 
correlation 

Amount of 
fields with 

p<5% 

Mean 
correlation 

rs [-] 

σ of 
correlation 

[-] 

Amount of 
fields with 

p<5% 
ENSO  
(MEI)  

Bangka -0.28 - 1/10 - - 0/10 
Lampung -0.43 0.06 4/7 -0.34 0.07 5/7 

IOD  
(DMI) 

Bangka -0.30 0.00 2/10 - - 0/10 
Lampung -0.33 0.06 4/7 -0.37 0.03 3/7 

SPEI  
( long) 

Bangka -0.28 0.00 2/10 -0.11 0.32 3/10 
Lampung - - 0/7 - - 0/7 

SPEI  
(short) 

Bangka - - 0/10 - - 0/10 
Lampung -0.38 0.05 2/7 -0.42 0.03 2/7 
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Figure 41: Field-specific Pearson and Spearman correlations of VOD and other drought indicators 

The spider plots of the NDVI present mainly statistically insignificant results and are therefore not shown. In 
Bangka, Field 04 has a Pearson correlation of 0.3 and Field 09 and 10 have a correlation with the IOD of -0.3. 
On Lampung in Fields 02, 05, 06 and 07, Pearson and Spearman correlations with both the ENSO and the 
IOD are around -0.4.  
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5.2.4.2 ENSO (MEI) 

The Multivariate ENSO Index (MEI), which is a measure of the ENSO, is negatively correlated with the VOD 
and NDVI (see Table 11 and Table 12). This is to be expected as a high positive MEI value indicates an El 
Niño year in which droughts occur, meaning that the VOD (and NDVI) is probable to reach a minimum. It 
should be taken into account that ENSO (and IOD) are indicators of weather phenomena that influence the 
climate in the study area. Correlations only occur during extreme events such as ENSO maxima leading to 
precipitation deficit in the study area and generating an agricultural drought, which could then probably be 
seen in the VOD. In previous studies, the correlation for low ENSO and precipitation in the wet season has 
shown to be low (Hendon, 2003; Chang et al., 2004). For this reason, correlations for ENSO should be 
interpreted with caution. The correlations between the VOD and the ENSO are between -0.22 and -0.70.  
Figure 42 shows the anomaly time series of VOD, NDVI and MEI in selected fields in Bangka and Lampung. 
The ENSO anomaly time series presents one distinguishing large positive anomaly, which coincides with the 
drought of 2015/2016 found in literature and reported by the farmers during the field visit.  

VOD and MEI 
The time lag leading to the maximum correlation between the MEI and the VOD is between zero and six 
months (see Appendix 8.4.1.2 and 8.4.1.3). In some fields, the maximum correlation is very clear and in other 
fields there are two lag times that lead to similar results. The different lag times can be explained by the 
evolution of climate, or by different conditions such as soil moisture making some vegetation reacting slower 
to droughts or drought resistance of certain plants. In previous studies the ENSO has found to be related to 
droughts in Indonesia (Hendon, 2003; D’Arrigo et al., 2008). The different time lags leading to maximum 
correlations indicate that the fields respond differently to the climate conditions related to the ENSO. This 
bears an added value of VOD over the ENSO. 
BPepperField04 is an example of a weaker correlation between VOD and MEI (Pearson: -0.23) and 
BPepperField06 an example of one of the stronger correlations (Pearson: -0.67). The correlation in 
BPepperField04 is calculated without a time lag, whereas BPepperField06 gave a maximum correlation at a 
lag of 5 months. Even though the correlation with BPepperField04 is very low, the extreme drought event of 
2015 is captured by the VOD. LPepperField03 is an example of a lower correlation between VOD and MEI 
on Lampung (Pearson: -0.28) and LPepperField06 an example of one of the stronger correlations in Lampung 
(Pearson: -0.43). Also here, the representation of the drought in 2015 is rather similar.  
In 2015, the positive ENSO peak matches the negative VOD peak. The VOD anomaly plots of Lampung, 
feature a negative peak, reaching almost the magnitude of the peak in 2015. However, the ENSO anomaly 
plot does not have a peak in this period. The VOD anomaly in 2012 could either be related to factors other 
than the ENSO or to faulty VOD data as the spatial analysis showed partly incoherent results in Lampung. 

NDVI and MEI 
The MEI of BPepperField04 is statistically significantly correlated with the NDVI (Spearman: 0.28), whereas 
BPepperField06 is not statistically significantly correlated. In general, the NDVI anomalies fluctuate much 
more. On one hand, this can be explained by the fact that NDVI is more sensitive to leafy part of the 
vegetation whereas VOD is also sensitive to the woody part of the vegetation and probably changes in 
leaves occur faster than in the woody parts. On the other hand, NDVI does not feature a clear pattern 
representing the drought. Of the 17 fields, only four (BPepperField08, LPepperField05, LPepperField06 and 
LPepperField07) have a clear peak in 2015, which is much stronger than other peaks in the anomaly. This 
rather indicates that issues with cloud cover and aerosols lead to low NDVI data quality. 
 
In short, VOD and ENSO anomalies have a correlation coefficient between -0.22 and -0.70. In all plots, the 
VOD anomalies represent the drought event of 2015, which is characterized by a strong positive ENSO 
anomaly. The negative VOD anomaly of 2012 in Lampung is not related to the ENSO. In contrary, there are 
only very few NDVI anomaly plots that have remarkably different patterns during the drought period.  
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Figure 42: VOD, NDVI and MEI anomalies for selected Pepper Fields in Bangka (top) and Lampung (bottom) 
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5.2.4.3 IOD (DMI) 

The DMI is a measure of the Indian Ocean Dipole (IOD). In analogy to the MEI, the DMI is negatively 
correlated with the VOD and NDVI (see Table 11 and Table 12). Also here, high positive DMI values lead to a 
lack of precipitation in Indonesia increasing the probability of agricultural droughts, generating low VOD and 
NDVI values. As explained in 5.2.4.2, the correlation between DMI and VOD or NDVI has to be interpreted 
with caution.  
Figure 43 shows the VOD, NDVI and DMI anomalies of the same fields as in 5.2.4.2. The maximum 
correlation between the DMI and the VOD occurred with time lags between 0 and 3 months (see Appendix 
8.4.2.2 and 8.4.2.3). The time lag is shorter compared to the one for the MEI-VOD correlations. A possible 
reason is the fact, that the Indian Ocean Dipole is concentrated on a smaller geographic area compared to 
the ENSO. Interesting to observe is that the DMI has several positive anomalies: one in the beginning of the 
time series, one in the period of the 2015/2016 drought and another one in 2017. The positive anomaly of 
2017 follows on a period with a strong negative anomaly. 

VOD and DMI 
The correlation between VOD and DMI is between -0.25 and -0.58. BPepperField04 has a correlation of        
-0.27 (Pearson), BPepperField06 of -0.48 (Pearson) and LPepperField03 as well as LPepperField06 have a 
correlation of -0.58 (Pearson). Visually, the correlations in the different fields are quite similar (see Figure 43). 
The VOD has its strongest negative anomaly in 2015/2016, when a large positive DMI anomaly occurs. 
However, the larger positive DMI anomaly of 2017 is represented as a much less pronounced negative 
anomaly in the VOD. The anomaly plots in Figure 43 show that, in certain fields like BPepperField04 there is 
almost no negative anomaly peak. In other fields like BPepperField06, LPepperField03 or LPepperField06, 
there is a negative but smaller peak compared to 2015. The fact that the VOD does not show a strong 
decrease in 2017 is probably related to the prior negative IOD peak, which leads to above average 
precipitation. This can lead to a groundwater recharge in this period, which creates a buffer for the 
vegetation to resist below-average precipitation until a certain extent. This storage capacity can vary per 
location depending on soil characteristics and existing soil moisture or groundwater levels. For the positive 
IOD anomaly peak in the beginning of the time series, the period prior to the anomaly is not included in the 
analysis and no argument can be made in this context. Nevertheless, the fields in Lampung show a negative 
anomaly peak in the beginning of the time series that almost reach the magnitude of the anomaly in 2015.  
In Lampung, correlations between VOD and the DMI are stronger than between VOD and MEI, whereas in 
Bangka it is the opposite (see Figure 41). This could mean that the climate in Lampung is more influenced by 
the ENSO than by the IOD and in Bangka, the DMI has a stronger influence, which makes sense as Lampung 
is closer to the Indian Ocean, where the IOD takes place and Bangka is closer to the Pacific where the ENSO 
mainly takes place. This would be interesting to prove by cross comparing with the NDVI. However, the 
correlations are not sufficient to draw conclusions here.  

NDVI and DMI 
As explained in the comparison with the MEI, the NDVI anomalies in all fields, behalf of BPepperField08, 
LPepperField05, LPepperField06 and LPepperField07 do not show a significant decrease in 2015/2016. As a 
result, correlations are weak or statistically insignificant.  
 
To sum up, VOD and DMI have correlations between -0.25 and -0.58. The strongest VOD anomaly occurs in 
2015 simultaneous to a large positive DMI anomaly. The largest positive DMI anomaly occurs in 2017 just 
after a strong negative peak. However, the VOD anomaly in most fields does not have a strong negative 
peak in 2017. Probably, the prior above-average rainfall increased the groundwater levels and soil moisture, 
buffering the subsequent below-average rainfall. This storage capacity varies per location depending on soil 
characteristics. The VOD in Lampung appears to be more influenced by IOD whereas the VOD in Bangka 
seems to be more influenced by the ENSO, which is reasonable due to their location.   
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Figure 43: VOD, NDVI and IOD anomalies for selected Pepper Fields in Bangka (top) and Lampung (bottom) 
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5.2.4.4 SPEI 

The SPEI is an indication of water availability through the consideration of precipitation and evaporation (see 
2.2.1.2). On the monthly time scale it monitors water storage, such as soil moisture, which responds quickly 
to precipitation anomalies. A higher SPEI means more rain and less evaporation, enhancing vegetation 
growth and leaving to higher VOD and vice versa. Here, correlations are more relevant, because local 
precipitation is a more direct contributor to agricultural drought in a certain location than the global ENSO or 
IOD values. For this reason, the correlations are calculated without a time lag.  
Figure 44 shows the anomalies of VOD, NDVI and SPEI in selected fields. It includes the revised and short 
SPEI time series as well as the long and unrevised SPEI time series. In Bangka, the two SPEI time series match 
relatively well with each other (Pearson: 0.83). However, in Lampung, the time series differ much more 
leading to lower correlations between the two SPEI datasets (Pearson: 0.12), especially in the period from 
mid 2012 to mid 2014. A possible explanation could be the different method to calculate the evaporation.  

VOD and SPEI 
Table 11 shows that overall correlations are significant but not high. This means, that also factors other than 
precipitation and evaporation influence the VOD. The correlations are positive, which is to be expected as 
explained earlier. The VOD anomalies and the long SPEI anomalies have a mean Pearson correlation of 0.48 
for both provinces together and of 0.58 for Bangka only. The Pearson correlation coefficient between the 
VOD and the short SPEI is on average 0.45, which is composed by the values in Bangka only since all fields in 
Lampung give statistically insignificant results. This means that the correlations with the long SPEI are 
stronger although they are supposed to be less robust. Remarkably is the lack of statistically significant 
results of the correlation between VOD and the short SPEI index in Lampung. Despite the supposed higher 
data quality of the short time series, the shorter time series includes less extreme events. The time series 
ends in 2015 during the drought event. This explains lower or insignificant correlations for the short SPEI 
dataset. It would be interesting to compare the VOD to a longer revised SPEI time series to analyse the 
impact on the correlation. For the long unrevised SPEI time series, the correlations are stronger in Bangka 
than in Lampung. The mismatch between the two SPEI datasets could explain these results.  
Figure 44 reveals two interesting points. First, in 2014, the negative anomaly of the short SPEI is much 
stronger than the one in 2015. However, similar to observations in 5.2.4.3, prior to 2014 there was a long 
period with positive SPEI anomalies. The negative VOD anomaly is not as pronounced as the one of 2015. 
Second, the negative VOD anomaly in 2015 appears a few months after it appears in both, the long and the 
short, SPEI. These two observations are probably caused by the buffer that the vegetation offers to climatic 
conditions and show the potential of the added value the VOD bares. 

NDVI and SPEI 
In comparison to the MEI and the DMI, the two SPEI datasets correlate much less with NDVI. This is due to 
the larger changes between minima and maxima of the SPEI over shorter time periods. The MEI and DMI 
anomalies have less variation within the same year making correlations possible. 
 
Summarizing, the VOD anomalies are correlated on average 0.48 with the long revised SPEI and 0.45 with 
the short unrevised SPEI anomalies. In many fields, the correlations with the short time series are lower or 
statistically insignificant because the time series includes fewer extremes. In Lampung, the long SPEI differs 
strongly from the short SPEI, indicating low data quality in Lampung for the long SPEI time series. This results 
in weaker correlations in Lampung for the long dataset. The VOD anomaly coincides with the strong SPEI 
anomaly in 2015. In 2014, the SPEI features a much stronger negative anomaly. However, the VOD does not 
feature a strong anomaly here, which is probably related to the previous period positive SPEI anomalies 
recharging the hydrological system and providing a buffer for the vegetation. Additionally, the VOD starts to 
decline after the SPEI anomaly, which indicates that meteorological and agricultural droughts do not occur 
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simultaneously. These two observations probably show the added value of VOD. Correlations between the 
NDVI and the other indicators are even lower than compared to the other indicators.  
 

Bangka  

 

 
  

Lampung  

 

 
Figure 44: VOD, NDVI and SPEI anomalies for selected Pepper Fields in Bangka (top) and Lampung (bottom)  
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5.2.5  Yields and VOD 

The selected drought indicators or proxies that are compared with the VOD all show a drought in 2015. 
However, these are rather primarily based on precipitation. Therefore, it is important to prove that this 
drought is also an agricultural drought.  
Figure 45 shows yield per year in Indonesia. This plot is based on a report of the Directorate General of 
Estate Crops of the Ministry of Agriculture of Indonesia. The exact procedure of the collection of the yield 
data is not given. Additionally, the values of 2016 are preliminary values and the ones of 2017 are estimated 
values only. For this reason, this analysis is qualitative only.  
The pepper yield in Indonesia relies on the climate as fields are not irrigated (see 3.1.2). In 2015, the yield 
drops compared to the previous year, which coincides with the droughts visible in the VOD anomaly time 
series as well as the reported droughts and lower yields in 2015 from farmers during the field visit. 
Furthermore, the lower production in 2012 could be related to the negative VOD anomalies in Lampung, 
that are of the same magnitude as of 2015. Nevertheless, the time prior to 2012 should be analysed to be 
able to make a consistent conclusion on this point.  
 
Although only qualitatively, this graphic provides evidence for the drought of 2015/2016 described in the 
literature and by the farmers.  
 

 
Figure 45: Yearly pepper yield from 2012 to 2017 of Indonesia (Directorate General of Estate Crops et al., 2016) 

5.3 Guideline to convert VOD to a drought index 
This previous analysis shows that there is potential to use VOD as a drought proxy but also room for 
improvement, especially on the data quality. The presented guideline proposes steps to take in order to 
convert VOD into a drought index (see Figure 46). This guideline is based on the recent drought work of Liu 
et al. (2018). In that study, VOD and other indicator time series are aggregated or interpolated bi-linearly 
from their original resolution of 0.05° (C-Band) to monthly data with a spatial resolution of 0.10° 
(corresponding to ca. 10 km). The pixel-specific VOD climatology is based on the monthly values of non-
drought years. The anomalies are then calculated with reference to this non-drought climatology. The 
anomalies are standardised by dividing the pixel-specific anomaly by the corresponding pixel-specific 
standard deviation within the reference period. In the present study, the reference period was 7 years. 
Through this standardisation, the anomaly of each grid cell represents the deviation from the non-drought 
average for the same months within the reference period.  
The base for a suitable index is a high-quality input. For the VOD, this means to solve certain issues that 
become evident through this study. With the help of detailed land use maps, the accuracy of the 
downscaling could be assessed. Furthermore, the masking out of surface water bodies should be improved 
and then the influence of the inevitable errors caused by surface water on the downscaled results should be 
evaluated. By combining these steps, the actual spatial resolution can be estimated. In order to approximate 
the temporal resolution, the effect of temporal averaging has to be assessed. The fluctuations in the VOD 
time series are inevitable as the sensor has an uncertainty of 1 to 2 Kelvin, when measuring the brightness 
temperature. Additionally, the previously explained varying footprint location contributes to the fluctuation. 
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Possibly, there is an optimum length of the moving average window. For different purposes, the required 
time scale can vary. Therefore, a drought variable should be capable to quantify droughts at various time 
scales. Drought analyses are more commonly conducted on a yearly time scale followed by a monthly time 
scale. For agricultural droughts, a monthly time scale seems to be more appropriate (Mishra et al., 2010). 
However, within the SpiceUp project, farmers might be interested in shorter time scales in order to decide 
whether it would be beneficial to irrigate, whereas the company Verstegen, that buys the pepper might be 
interested in monthly values. For this reason, it is beneficial to maintain the highest temporal resolution 
possible. Moreover, an essential point to develop a drought index of different resolutions is a sufficient long-
time series in which several drought events have occurred. Here, a data length of at least 15 years is 
suggested. Due to the offset between AMSR-E and AMSR-2, only the latter dataset is used in this work. 
However, in order to obtain time series of more than 15 years, it would be convenient to understand why 
there is this offset. As a last step of the improvement on data quality, a technique should be developed to 
exclude faulty images. This could be executed by excluding values if they vary more than a certain threshold 
compared to their previous value. Next, the pixel-specific climatology based on normal years without 
droughts could be calculated, just as in the work of Liu et al. (2018). Then, the pixel-specific anomaly can be 
estimated which is then normalized in a next step by dividing the anomaly by the pixel-specific standard 
deviation.  
The present study reveals that the meteorological drought index SPEI and VOD are correlated to a certain 
extent. It also shows that the VOD reacts after a time lag on anomalies in the SPEI and also that if a positive 
SPEI anomaly is followed by a strong negative SPEI anomaly the impact on the VOD can be reduced. For this 
reason, the relationship between VOD and a meteorological drought indicator, as for instance SPEI, can be 
modelled for the region of interest in order to be able to predict the future behaviour of VOD. For this 
purpose, in analogy to the VOD, pixel-specific SPEI climatology of non-drought years should be calculated. 
Then, the pixel-specific anomaly can be obtained, which is then also standardised like the VOD. This makes a 
comparison between the two anomalies possible. Finally, it should be determined at which frequency the 
VOD gives the best results (C-Band, X-Band or L-Band).  
 

 
Figure 46: Road map to convert VOD into an agricultural drought predictor 
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6  CONCLUSIONS & RECOMMENDATIONS 
6.1 Conclusions 
The main purpose of this thesis is to analyse the potential of the VOD dataset of VanderSat for agricultural 
drought monitoring on the case study of pepper fields in the regions of Bangka and Lampung in Indonesia 
by answering the following four research questions. Hereafter, a conclusion of each question is given, 
followed by a final conclusion. 

How does the VOD of pepper fields compare to large-scale VOD?  
The spatial analysis reveals that the fields are too small to detect differences in spatial characteristics in VOD 
compared to the surroundings. Apart from the field size, the slightly heterogeneous VOD pattern and similar 
surrounding vegetation density contribute to this difficulty. However, the 36-ha-large pepper field is 
distinguishable due to its size and its contrast in vegetation density with the surrounding. The spatio-
temporal analysis shows that within a square of 10 x 10 km differences in drought intensity and drought 
duration exist. This result suggests that smaller areas should be used to represent the VOD. 
The temporal analysis shows that the VOD anomaly of the pepper fields differs slightly in magnitude 
compared to the larger-scale surroundings. However, this difference is the same as in the period prior to the 
existence of the pepper field. Therefore, the fluctuations seem to be rather related to the downscaling 
method and the temporal averaging.  

How does the VOD compare with other drought indicators? Does it have an added value over NDVI?  
In the spatial analysis, NDVI proves to have a much higher spatial resolution and to represent land use 
properly. However, the temporal resolution of NDVI is very low. An aggregation period of a year is required 
to produce a nearly cloud-free composite. In contrast, VOD does not face the temporal issue but has a 
coarser spatial resolution. The downscaling method in combination with temporal averaging seems to cause 
a smoother gradient but also a slightly heterogeneous pattern. The spatial performance of VOD varies per 
location. In the analysed area in Bangka, VOD is very similar to NDVI, representing the land use properly. In 
the selected area in Lampung, VOD does not capture spatial differences. Surface water bodies could cause 
this negative impact on the spatial performance of VOD.  
The temporal correlations between VOD and other drought indicators are significant but not high, 
suggesting that factors other than precipitation influence the VOD, as for example, different groundwater 
levels or drought resistance of certain plants. This is supported by the fact that some fields present higher or 
lower correlations for all analysed indicators. All three indicators as well as the VOD show strong anomalies 
during the drought of 2015. The NDVI only features a peak in 2015 in a few fields. The ENSO and the VOD 
are correlated on average by -0.46. The IOD and the VOD are on average correlated by -0.46 as well. 
Interestingly, the VOD does not peak in 2017 during the strongest positive IOD anomaly. Probably, this can 
be attributed to the prior negative IOD anomaly leading to above-average rainfall recharging groundwater 
levels and soil moisture, which buffers the subsequent below-average rainfall. The VOD anomalies are 
correlated on average by 0.48 with the long revised SPEI and by 0.45 with the short unrevised SPEI 
anomalies. In many fields, the correlations with the short time series are lower or statistically insignificant 
because the time series includes less extreme events. The most negative anomaly of the SPEI occurs in 2014 
after a long period of positive anomalies. However, the VOD anomaly is less pronounced compared to 2015. 
Again, this is an indication that VOD is able to capture the buffering characteristic that the vegetation and 
soil have to climatic variations. Additionally, the VOD starts to decline some time after the SPEI anomaly, 
which indicates that meteorological and agricultural do not occur simultaneously and reveals the added 
value that VOD bares. Due to the high cloud cover, and probably also the aerosol concentration, the NDVI 
delivers mainly statistically insignificant results with all indicators. 
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How does the VOD capture agricultural drought events? 
Although only qualitatively proven, the pepper yields, which indicate the agricultural drought, fall within the 
same period where VOD shows an extreme drought event. This provides qualitative evidence for an 
agricultural drought occurring in the same period mentioned in the literature and where the farmers have 
reported an extreme drought.  

How can the VOD be transformed to an agricultural drought indicator? 
This study proposes a guideline on the conversion of VOD to a drought indicator. The steps that are 
necessary to obtain a more robust VOD dataset are listed. The guideline suggests modelling the VOD 
anomalies based on the anomalies of a meteorological drought indicator like SPEI. This is an attempt to 
make use of the predictive value of the VOD that the results of this study reveal: the observed time lag 
between the SPEI and the VOD and also the influence of prior above-average rainfall on the course of the 
VOD during below-average rainfall.  
 
In conclusion, this case study shows that VOD is able to capture agricultural droughts and, therefore, it bears 
promising potential as an agricultural drought indicator. The added value of VOD over NDVI is especially 
relevant for other tropical regions with a high cloud cover as in this case study. Possibly, saturation issues will 
arise when VOD is applied to denser vegetation areas. This study also reveals several data quality issues and 
questions the actual resolution of VOD. It remains uncertain if certain peaks of other indicators observed in 
the present study are not as pronounced in VOD due to the vegetation buffer or due to erroneous VOD 
data. Therefore, further analysis is recommended in the following section. 

6.2 Recommendations 
For future studies in this field, it is recommended to better understand the accuracy of VOD as well as the 
here used downscaling method. As this is an independent dataset, its accuracy is difficult to assess. It would 
be useful to quantify the amount of biomass that corresponds to certain VOD values. Detailed yield data 
would be a helpful asset to test the accuracy of VOD. Moreover, further case studies in other climates and 
vegetation densities should be conducted. Most of the recommendations are mentioned in the proposed 
guideline to convert VOD to an agricultural drought indicator in section 5.3. Apart from determining the 
actual spatial resolution with the help of detailed land use maps, an improved recognition and exclusion of 
surface water bodies in the downscaling method is proposed within the guideline. Furthermore, it is 
recommended to determine the optimum moving average length for the VOD time series that fluctuate 
strongly over short periods due to sensor inaccuracies and the downscaling method. Additionally, the 
development of a method to exclude faulty images is recommended. Moreover, it is important to look at 
longer time series including several droughts. Moreover, due to data availability, this study is based on X-
Band VOD. However, it is suggested to look at C-Band VOD, which has a lower frequency and longer 
wavelengths and can, therefore, penetrate deeper into the vegetation. 
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8  APPENDIX 
8.1 Details for the analysed fields 
Name Location Area [ha] Adjacent land use  Support type 
BPepperField01 Bangka 2.27 NF S 
BPepperField02 Bangka 2.16 R + P + PO Ts 
BPepperField03  Bangka 2.20 R + P + PO Ts 
BPepperField04 Bangka 35.57 R + NF + PO Ts 
BPepperField05 Bangka 0.30 NF + PO + TM S 
BPepperField06 Bangka 1.07 PO + R S + Ts 
BPepperField07 Bangka 0.79 PO + R + CF S 
BPepperField08 Bangka 0.81 PO + P S 
BPepperField09 Bangka 0.15 NF S 
BPepperField10 Bangka 0.13 NF Tl + S 
LPepperField01 Lampung  1.45 C + PO + Co + Ca + H Ts 
LPepperField02 Lampung 1.03 G + NF + H + P Ts 
LPepperField03 Lampung 0.98 P + NF + H Ts 
LPepperField04 Lampung 1.68 P + NF + H Ts 
LPepperField05 Lampung 0.30 NF + R + H + F Tl 
LPepperField06 Lampung 1.60 P + PO + R + NF Ts 
LPepperField07 Lampung 6.44 P + PO + R + NF Tl 

 

NF = Natural forest TM = Tin mines  Ca = Cassava  S = Sticks 
R = Rubber  CF = Cleared forest  H = Housing  Ts = Trees with small canopy 
P = Pepper  C = Coffee  G = Grass  Tl = Trees with large canopy 
PO = Palm oil  Co = Coconut  F = Small Farms 
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8.2 Additional spatial analysis of LSquare04 
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8.3 Pepper field versus large-scale surrounding 

8.3.1  Anomaly time series 

Bangka Lampung 
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8.3.2  Scatter plots 

Bangka Lampung 
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8.4 Correlations between different drought indices 

8.4.1  ENSO 

8.4.1.1 ENSO anomaly time series 

Bangka Lampung 
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8.4.1.2 ENSO lag functions Bangka 

VOD NDVI 
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8.4.1.3 ENSO lag functions Lampung 

VOD NDVI 
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8.4.2  IOD 

8.4.2.1 IOD anomaly time series 

Bangka Lampung 
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8.4.2.2 IOD lag functions Bangka 

VOD NDVI 
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8.4.2.3 IOD lag functions Lampung 

VOD NDVI 
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8.4.3  SPEI 

Bangka Lampung 
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