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Efficient stochastic simulation on discrete spaces

Using balancing functions to incorporate local target density information into
Markov Chain Monte Carlo sampling schemes

Bjarne Herben

Impact statement

Experiments are performed to find out how things work. Similarly, by simulating a random process
many times we can learn a lot about its properties. Essentially, simulating a stochastic process is
like throwing a very complicated dice. The fact that we perform these simulations on a discrete
space merely means that we can count the number of possible outcomes of the process using the
natural numbers {1, 2, 3, . . . }. However, suppose now that, unlike throwing a dice, we are unable
to directly simulate the process that we want to study. Fortunately, we can often apply Markov
Chain Monte Carlo sampling schemes to still be able to simulate the process of interest. The only
downside is now that the simulations take a lot longer to perform, since we randomly propose an
outcome for the “experiment” that we want perform; we are only rarely able to obtain a valid
experimental result. In this work, we consider two ways to use a piece of mathematical machinery
to make the “experiments” that we want to do significantly faster as we are using the knowledge
that we have about the process more efficiently. We check both approaches to see how it can help
us to merge two databases containing records, where we want to avoid duplicate recorded in the
merged database.
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Efficient stochastic simulation on discrete spaces

Using balancing functions to incorporate local target density information into
Markov Chain Monte Carlo sampling schemes

Bjarne Herben

Abstract

The breadth of theoretical results on efficient Markov Chain Monte Carlo (MCMC) sampling
schemes on discrete spaces is slim when compared to the available theory for MCMC sampling
schemes on continuous spaces. Nonetheless, in [Zan17] a simple framework to design Metropolis-
Hastings (MH) proposal kernels that incorporate local information about the target is presented.
The class of functions for which the resulting MH kernels are Peskun optimal in high-dimensional
regimes is characterized. We will refer to these functions as balancing functions and to the class of
resulting MH proposal kernels as pointwise informed proposals. In [PG19], the class of balancing
functions is used to construct Markov Jump Processes (MJP) on discrete state spaces. As a result,
the Zanella process is constructed. In the absence of a theoretical result on the optimal balancing
function to choose from the class of balancing functions, a heuristic approach is proposed using the
Zanella process. To further encourage the mixing behaviour of the simulated chain, the algebraic
structure of the state space is exploited to achieve non-reversible Markov chains on short to medium
timescales. Simulations are performed for all the considered MCMC sampling schemes by studying
the Bayesian record linkage problem.
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Chapter 1

Introduction

The efficient simulation of stochastic processes in continuous state spaces has been an active area
of research. However, on discrete state spaces there are not nearly as much results on increasing
the efficiency of Markov Chain Monte Carlo (MCMC) sampling schemes. This work explores the
proposed framework in [Zan17] to incorporate local information about the target distribution into
Markov Chain Monte Carlo sampling in the setting of discrete-valued high-dimensional parameters.
A direct discrete time application is to create locally-informed proposal kernels that can be used
in the Metropolis-Hastings algorithm.

In continuous time, this framework can also be utilized to a design a Markov Jump Process
(MJP) that leaves the target distribution invariant as detailed in [PG19]. The jumping rates for
this process are calculated by using local information about the target density. This is done in the
Zanella sampler. Moreover, the algebraic structure of the state-space can be exploited to stimulate
non-reversibility of the simulated Markov chain. This is essentially an extensions to the Zanella
process and results in the Tabu sampler. These two samplers are compared in performance to the
regular and locally-informed variation of the Metropolis-Hastings algorithm.

The aim is to compare the incorporation of local information about the target density for the
four discrete and continuous time samplers. The comparison of these four samplers is conducted
on three examples. Two of these examples are relatively simple, independent binary components
and weighted permutations, and can be used to reflect on the performances for different properties
of the target distribution. A more interesting example is the Bayesian record linkage problem,
where the aim is two merge two databases containing duplicate records. MCMC sampling is then
used to explore the posterior distribution on the possible ways in which these two databases can
be matched, where we want to avoid the occurrence of duplicate records in the merged database.
Note that we assume that duplicate records, i.e. two records that contain information on the same
unique entity, only occur between the two databases and not within a database.

1.1 Motivation: Bayesian inference

The difficulty in finding a matching for these two databases is that noise is a part of every database
record. However, when merging these two databases we wish to separate the true signal from the
noise; uncover the entity to which the stored records refers. Hence, if two records refer to the same
entity, then these should be entered as one record in the merged database. The difficulty in doing
this is that we do not know exactly where noise has entered the database record. On the other
hand, we are able to make reliable estimates about the rates at which noise occurs in the database.
If we want to try and merge the two databases in the best possible way, then we need to use all
the reliable information that we have. Fortunately, we also have full access to the two databases
that we wish to merge. All of this information can be used by incorporating it into a statistical
model. Typically, this statistical model describes the following connection, where with merged we
mean the merged database and with observed the two databases that we want to merge,

Merged
Statistical model−−−−−−−−−−→ Observed. (1.1)

However, when we want to merge the two databases we are actually interested in going the opposite
direction. This is where Bayesian statistics could be a solution, since Bayesian statistics allows us
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to relate the probability of the observed given the unobserved to the probability of the unobserved
given the observed [Lam18].

P (observed | unobserved) Bayesian statistics−−−−−−−−−−−→ P (unobserved | observed) (1.2)

In case we want to merge the two databases, we want to use Bayesian statistics in the following
way

P (observed | merged)
Bayesian statistics−−−−−−−−−−−→ P (merged | observed). (1.3)

We can interpret P (merged database | observed databases) as how certain we are that a specific
matching is correct if we are trying to match the observed databases. Naturally, we can then
choose the merged database which is most likely to be correct. Therefore, Bayesian statistics in
this setting is certainly useful, by connecting the two probabilities of interest in the following way

P (merged | observed) = P (observed | merged)P (merged)

P (observed)
, (1.4)

where we call P (merged) the prior, since this term allows for incorporation of the prior knowledge
that we have about the merged database. This prior is usually a probability distribution on the
possible values of the parameter with most probability mass placed in a neighbourhood of the
values that we consider plausible a priori. In addition, notice that given the two databases that
we want to merge, we can consider P (observed) a constant in this context. Therefore, we obtain
the following distribution to observe,

P (merged | observed) ∝ P (observed | merged)P (observed). (1.5)

Notice that the term P (observed | merged)P (observed), also known as the joint distribution, is
entirely determined by the specified statistical model, the observed information, and the prior
knowledge that we have. Thus, we end up with a distribution that we know up to proportionality.
In this case, MCMC is the most common sampling method used to obtain information about the
posterior P (merged | observed); make Bayesian inferences about the merged database. This is
precisely how we wish to apply MCMC to the Bayesian record linkage problem, for more details
the reader is referred to chapter 6.

1.2 Outline of the thesis

In chapter 2 we give a brief theoretical overview of Monte Carlo methods, Markov chains, and
Markov Chain Monte Carlo Methods. In addition, some employed diagnostics will be covered.
The theory on using local-information in the Metropolis-Hastings algorithm as covered in [Zan17]
is given in chapter 3. An extension of this framework to MJPs as presented in [PG19] is included
in chapter 4, where also the Zanella and Tabu samplers will be covered. The independent bi-
nary components and weighted permutations examples are succinctly detailed in chapter 5. The
Bayesian record linkage problem is extensively presented in chapter 6. The performance of the con-
sidered samplers on the covered examples is presented in chapter 7, where numerical simulations
are performed.
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Chapter 2

Markov Chain Monte Carlo

In this chapter we present a brief theoretical overview of Monte Carlo methods, Markov processes,
and Markov chain Monte Carlo methods. We will denote the target distribution as π, and the
corresponding probability measure as Π. Furthermore, we will assume the existence of a probability
density (or probability mass function) unless specified otherwise, the probability density will be
denoted by π. The aim with the notation is to keep it as general as possible, however, the theory
for Markov chains on discrete state spaces is not overcomplicated. Therefore, we will on some
occasions state results that are only applicable to Markov chains on discrete spaces.

2.1 Monte Carlo Methods

Monte Carlo methods are used to evaluate integrals of the following form [RC04],

I = Eπ[h(X)] =

∫
χ

h(x)π(x) dx. (2.1)

In this case, assume that X ∼ π is a random variable on X . A Monte Carlo estimate Î for
Equation 2.1 can be obtained if we are able to generate iid replicas X(i) ∼ π. The Monte Carlo
estimator is then given by

Î =
1

N

N∑
i=1

h(X(i)). (2.2)

The Strong Law of Large Numbers [JP04] then ensures that

lim
N→∞

1

N

N∑
i=1

h(X(i)) =

∫
χ

h(x)π(x) dx a.s. and in L2(π). (2.3)

In addition, if
∫
χ
h2(x)π(x) dx < ∞, then we can apply the Central Limit Theorem (CLT) to the

estimate to obtain asymptotic normality for the Monte Carlo estimator:

√
N(Î − I)

σ

d−→ N (0, 1), (2.4)

with σ2 =
∫
χ
h2(x)π(x) dx − I2. This asymptotic normality can be used to derive confidence

intervals for the estimate.

∥I − Î∥ ≤ c1−α/2

However, the caveat is that this confidence interval is only valid asymptotically.
Contrary to many numerical quadrature rules used to calculate integrals, the convergence rate

of Monte Carlo methods is always O(N−1/2), irregardless of the dimension of the space X , merely
under the assumptions that

∫
X h(x)

2π(x) dx <∞ and that σ2 remains bounded when the dimen-
sion of the space increases. This is indeed a good thing as the convergence of regular numerical
quadrature schemes decrease as the dimension of the integral increases. Therefore, Monte Carlo
methods are especially popular when it comes to the calculation of high-dimensional integrals.
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In the context of Bayesian statistics, Monte Carlo methods can be used to estimate probabilities
by considering expectations of the following form

Eπ[1X∈A] = Pπ(X ∈ A). (2.5)

2.2 Markov Processes

In this section, a brief overview on the theory of discrete time Markov chains on discrete spaces
will be given.

2.2.1 Discrete time Markov chains

Consider a stochastic process {Xn : n ∈ N0} defined on N0 = {0, 1, . . . } and taking values on a
discrete state space X , which means that X is a finite or countable set. Denote by B(X ) the Borel
σ-algebra such that (X ,B(X )) is a measurable space.

Definition 2.1. A stochastic process {Xn ∈ X : n ∈ N0} is a Markov chain if it satisfies the
Markov property

P (Xn+1 = yn+1 | Xn = yn, Xn−1 = yn−1, . . . , X0 = y0) = P (Xn+1 | Xn = yn) (2.6)

for y0, . . . , yn+1 ∈ X .

Thus, a Markov process is a stochastic process for which the distribution of the next state only
depends on the current position. A Markov process is even memoryless when we condition on
a time that is a random variable, this property is called the Strong Markov property. However,
before we can establish this we need the definition of a stopping time.

Definition 2.2. (Stopping time). A random variable τ is called a stopping time if the event
{τ ≤ n} depends only on X0, . . . , Xn, which means that the event {τ ≤ n} is measurable with
respect to the σ-algebra σ(X0, . . . , Xn) generated by X0, . . . , Xn.

Definition 2.3. (Strong Markov property). Let τ be a stopping time of {Xn}. Conditional on
τ < +∞ and Xτ = yi ∈ X ,

P (Xτ+1 | Xτ = yi, Xτ−1 = yτ−1, . . . , X0 = y0) = P (Xτ+1 | Xτ = yi). (2.7)

The Markov property implies that the probability distribution for the next state Xn+1 depends
only on the current state Xn, and possibly on the discrete time of the process n. If there is no
dependence on n, then we say that a Markov chain is homogeneous. This means that for the
transition probabilities from yi to yj there exists a constant Pi,j such that

Pi,j = P (Xn+1 = yj | Xn = yj),

for all n ∈ N0. Therefore, the transition probabilities only depend on the current state. From now
on we will study homogeneous Markov chains, unless specified otherwise.

All the transition probabilities are contained in the Markov transition kernel P , for which it
holds that Pi,j = P (yj , yi). We formalize the properties of a Markov transition kernel below.

Definition 2.4. A Markov transition kernel on (X ,B(X )) is a function P : X × B(X ) → [0, 1]
such that

• for all y ∈ X , P (y, ·) is a probability measure on (X ,B(X ));

• for all B ∈ B(X ), P (·, A) is a measurable function on X .

Usually when we speak about a Markov chain we denote it by (λ, P ), where X0 ∼ λ is a
probability distribution of the starting state and P the Markov transition kernel. We do this as
all the properties of a Markov chain are entirely determined by λ and P .

Consider now the Markov chain (λ, P ) on the discrete state space X . Suppose that we are
interested in P (Xn ∈ A | X0 ∼ λ), denoted by Pλ(Xn ∈ A) for A ∈ B(X ). If we want to calculate
Pλ(Xn ∈ A), then it is convenient to associate with the Markov transition kernel P the transition
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operator P : M1(X ) → M1(X ), where M1(X ) is the set of all probability measures on (X ,B(X ))
[Nob21]. Define the operator P, working on the left of probability measures, in the following way

µ = λP =⇒ µ(A) =

∫
X
P (y,A)λ(dy). ∀A ∈ B(X )

By applying this operator twice, the following distribution is obtained

λP2 = (λP)P =

∫
X

∫
X
P (x, ·)P(y, dx)λ(dy) =

∫
X
P (2)(y, ·)λ(dy).

Hence, P2 refers to the operator associated to P 2 and, in the general case, Pn is the operator
associated to P (n). If we now utilize this operator consideration, then we can denote the measure
of Xn by πn,λ, where πn,λ(A) = Pλ(Xn ∈ A). It follows that

πn,λ = λPn =

∫
X
P (n)(y, ·)λ(dy).

2.2.2 Convergence of Markov chains

The idea behind the convergence of Markov chains is that limn→∞ πn,λ = π, for π a probability
distribution on the discrete state space X . A possible way to interpret this is by considering the
operator P associated to the Markov transition kernel P . For a discrete time Markov chain, every
time step essentially corresponds to applying the operator P to the probability distribution πn,λ

on the possible states for the chain in X at time step n. In case of convergence, the rate with
which the distribution πn,λ changes decreases and the distribution becomes more and similar to
the limiting distribution π. However, if we want to speak about similarities between distributions,
then we need a distance metric to do so. A logical choice would be the total variation metric used
to measure the distance between probability distribution.

Definition 2.5. The total variation norm ∥ · ∥TV for two measures µ1 and µ2 on the measurable
space (X ,B(X)) is defined in the following way:

∥µ1 − µ2∥TV = sup
A∈B(X )

∥µ1(A)− µ2(A)∥. (2.8)

Thus, if a Markov chain (λ, P ) converges, then we can approximate the probability distribution
for the states of the chain at time n, πn,λ, by the limiting distribution π for n sufficiently large.
Now, we still need to determine when a Markov chain converges, and if it does to what distribution.
We start by considering a necessary condition for a limiting distribution π.

Definition 2.6. A probability distribution π on (X ,B(X )) is called invariant with respect to a
Markov transition kernel P if

π = πP =

∫
X
P (y, ·)Π(dy). (2.9)

We will now define detailed balance, which turns out to be a sufficient condition for π being
invariant with respect to the Markov transition kernel P .

Definition 2.7. We say that a distribution π and a Markov transition kernel P are in detailed
balance if for all A,B ∈ B(X ) and Π(A),Π(B) > 0, the following holds:∫

A

P (x,B)Π(dx) =

∫
B

P (y,A)Π(dy). (2.10)

Note that as X is a discrete state space, detailed balanced can also be defined as

Π(dx)P (x, dy) = Π(dy)P (y, dx) for all x, y ∈ X .

Although, a less general definition for detailed balance, this is the definition that we will use later
when we introduce the Metropolis-Hasting Markov Chain Monte Carlo sampling scheme. Using the
detailed balance, we can now obtain a sufficiency condition for the distribution π being invariant
with respect to the Markov transition kernel P .
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Proposition 2.1. If the Markov transition kernel P and the distribution π on the state space X
are in detailed balance, then π is an invariant distribution for P.

Proof. Start by writing, with B ∈ B(X ),

πP(B) =

∫
X
P (x,B)Π(dx) =

∫
B

P (y,X )︸ ︷︷ ︸
=1

Π(dy) = Π(B).

From which the result immediately follows. Detailed balance was used to interchange B and X in
the integrals and the last equality followed from the definition of the Markov transition kernel P,
see definition 2.4.

Now, we have seen candidate distribution to which the Markov chain (λ, P ) could converge.
However, we need more conditions to establish converge than just a distribution π that is invariant
with respect to the Markov transition kernel P . We will define some extra notions that are useful
in establishing convergence [GWW86].

Definition 2.8. (Irreducibility). Let X be a discrete state space, the Markov chain (λ, P ) is
irreducible if all states communicate, which means that

P (τy <∞ | X0 = x) > 0, ∀x, y ∈ X ,

where τy being the first time the state y is visited by the chain, see definition 2.3.

Definition 2.9. (Aperiodicity). An irreducible Markov chain (λ, P ) is aperiodic if for all x ∈ X ,

gcd{n ∈ N0 : πn,δx > 0} = 1.

Definition 2.10. (Positive recurrence). For a Markov chain with transition kernel P on a discrete
state space X . Define τii = inf{n ∈ N : Xn = yi | X0 = yi}, the stopping time for the chain
revisiting its starting state. If for all yi ∈ X it hold that

E[τii] <∞,

then we say that the Markov chain is positive recurrent.

The following result gives sufficient conditions for the convergence of a Markov chain, in the
total variation norm, on a discrete state space.

Theorem 2.1. ([RC04]). For a positive recurrent and aperiodic Markov chain with transition
kernel P on a countable state space, for every probability measure µ on X , with π the unique
invariant distribution of the chain,

lim
n→∞

∥∥∥∥∫
X
P (n)(x, ·)µ(dx)−Π

∥∥∥∥
TV

= 0.

The following result will be useful as we consider Markov chain Monte Carlo (MCMC) methods
in the next section. The idea behind MCMC is to simulate a Markov chain that converges to the
target distribution π: the distribution from which we want to generate samples to obtain Monte
Carlo estimates. This will be done by ensuring that the simulated Markov chain is in detailed
balance with π, then if we ensure positive recurrence and aperiodicity the Markov chain will
eventually converge to the target distribution.

2.3 Markov Chain Monte Carlo

Here we introduce the main idea behind Markov Chain Monte Carlo sampling schemes on discrete
spaces by considering the Metropolis-Hastings algorithm.
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2.3.1 Metropolis-Hastings

The idea behind MCMC is to simulate a Markov chain that has π (the target distribution) as its
invariant distribution. One of the most popular algorithms, in a discrete time and state space
setting, used to construct and simulate such a Markov chain is the Metropolis-Hastings (MH)
algorithm. The idea behind this algorithm is to simulate a proposal Markov chain, where this
proposed next state is accepted or rejected with a certain probability. By choosing this acceptance
probability in a clever way we can force the simulated Markov chain to be in detailed balance with
π [Nob21].

Start by choosing Q(x, dy) a Markov transition kernel for which it holds that Q(x, dy) =
0 ⇐⇒ Q(y, dx) = 0. A natural choose for Q would be the symmetric random walk kernel, where
the Markov chain has a uniform probability to walk to a next state defined on a neighbourhood of
the current state x.

Next, we define the acceptance probability for any x, y ∈ X by

α(x, y) = min

{
1,

Π(y)Q(y, dx)

Π(x)Q(x, dy)

}
if Q(x, dy) > 0

α(x, y) = 0 if Q(x, dy) = 0.

Sampling from this constructed Markov chain can then be done by taking the steps described
in Algorithm 1.

Algorithm 1 Metropolis-Hastings algorithm

Given: λ (initial distribution), Q (proposal), π (target)
Generate X0 ∼ λ

for n = 1, . . . , N do
Propose a new state X̂n+1 ∼ Q(Xn, ·)
Generate U ∼ U([0, 1])
if α(Xn, X̂n+1) ≥ U then
Xn+1 = X̂n+1 proposal accepted

else
Xn+1 = Xn proposal rejected

end if
end for

Lemma 2.1. The transition kernel of the chain produced by the Metropolis-Hastings algorithm is
given by [Zan17]

P (x, dy) = α(x, y)Q(x, dy) + δx(dy)(1−
∫
χ

α(x, z)Q(x, dz)). (2.11)

Proof. Let (X ,B(X )) be a measurable space. Suppose that Xn = x, and sample U ∼ Unif([0, 1])
and X̃n+1 ∼ Q(x, ·). Then,

P (x,B) = P (Xn+1 ∈ B | Xn = x)

= P (X̃n+1 ∈ B,U ≤ α(Xn, X̃n+1) | Xn = x) + P (Xn ∈ B,U > α(Xn, X̃n+1) | Xn = x).

We split the previous expression into two parts, and start by considering the first one,

P (X̃n+1 ∈ B,U ≤ α(Xn, X̃n+1) | Xn = x) =

∫
B

∫ 1

0

1{u≤α(x,y)} duQ(x, dy)

=

∫
B

α(x, y)Q(x, dy).

For the second part of the expression we obtain the following:

P (Xn ∈ B,U > α(Xn, X̃n+1) | Xn = x) = 1B(x)

∫
X

∫ 1

0

1{u>α(x,y)} duQ(x, dy)

= 1B(x)

∫
X
(1− α(x, y))Q(x, dy).

If we combine these two parts, and set B = {y} then we obtain the desired result.
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Recall from the previous section, proposition 2.1, that when P and π are in detailed balance, the
Markov chain with transition kernel P has π as its invariant distribution. The following theorem
confirms that this is in fact the case.

Theorem 2.2. Let P be the transition kernel from the Markov process that is produced by the
Metropolis-Hastings algorithm, then P and π are in detailed balance.

Proof. We need to show that Π(dx)P (x, dy) = Π(dy)P (y, dx) for all x, y ∈ χ. It is trivial that this
holds for x = y. Hence, suppose that x ̸= y. If we then have that Π(x)P (x, dy) = 0, it follows that
P (x, dy) = 0 as we assumed that the Markov chain is irreducible. This means that Q(x, dy) =
0 ⇒ Q(y, dx) = 0. Thus, we can conclude that P (y, dx) = 0 ⇒ Π(dx)P (x, dy) = Π(dy)P (y, dx).
In case Π(dx)P (x, dy) ̸= 0 we obtain the following by using Lemma 2.1

Π(dx)P (x, dy) = Π(dx)α(x, y)Q(x, dy) = Π(dx)Q(x, dy)min

{
1,

Π(dy)Q(y, dx)

Π(dx)Q(x, dy)

}
= min{Π(dx)Q(x, dy),Π(dy)Q(y, dx)} = Π(dy)Q(y, dx)

{
Π(dx)Q(x, dy)

Π(dy)Q(y, dx)
, 1

}
= Π(dy)P (y, dx).

Therefore, we have shown that P and π are in detailed balance.

Recall, however, from subsection 2.2.2 that we need more than just detailed balance to obtain
the required convergence. An extra condition that we need for the convergence of the Metropolis-
Hastings Markov chain is pi-irreducible with respect to the target distribution.

Definition 2.11. Given a probability distribution π, the Markov chain (Xn) with Markov transition
kernel P (x, dy) is π-irreducible if, for every A ∈ B(X ) with Π(A) > 0, there exists n ∈ N such that
P (n)(x,A) > 0 for all x ∈ X .

Note that π-irreducibility is in fact equivalent to stating that P(τA | X0 = x) > 0 for all x ∈ X
and all A ∈ B(X ). Defined in this way, π-irreducibility is equivalent to irreducibility, see definition
2.8, on the discrete state space X .

Theorem 2.3. ([RC04]). Suppose that the Metropolis-Hastings Markov chain (Xn) with transition
kernel K is π-irreducible.

(i) If h ∈ L1(π), then

lim
N→∞

1

N

N∑
i=1

h(Xi) =

∫
X
h(x)π(x) dx a.e. π.

(ii) If, in addition, (Xn) is aperiodic, then

lim
n→∞

∥∥∥∥∫
X
K(n)(x, ·)µ(dx)−Π

∥∥∥∥
TV

for every probability measure µ on X , where K(n)(x, ·) denotes the kernel for n transitions.

Hence, for Metropolis-Hastings to work properly as an MCMC scheme, we need to check irre-
ducibility and aperiodicity for the simulated Markov chain (Xn) with transition kernel K. If we
choose for the proposal kernel Q the symmetric random walk kernel, i.e. a uniform distribution on
all neighbouring states, then it is not hard to see that these conditions are met.

Metropolis-Hastings efficiency

The efficiency of the Metropolis-Hastings sampling algorithm depends on the speed of convergence
of the chain and the computational resources needed to generate samples. One of the major factors
in determining the efficiency of the MCMC sampling scheme is the speed with which the simulated
Markov chain converges. A chain that takes a long time to converge has a long burn-in time: the
number of simulated Markov chain iterations that need to be deleted as the chain is still far from
convergence and has not reached a stationary state. Note that when we speak about convergence,
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we mean that the chain has reached stationarity: when the traceplots show regular or repeated
patterns. This is inspected visually by considering a trace plot.

A proposal that is often rejected is also inefficient as it takes it increases the time needed to
reach stationarity, since the chain needs to move in order to achieve this. Furthermore, as our goal
is to generate independent samples from π, a state that is the result of a rejection is correlated
with the previous state and is therefore not an independent realization of π.

Suppose now that we choose Q(x, dy) to be an uniformed symmetric kernel. This means that
Q will propose a random walk with a uniform distribution over the neighbouring states of x. Note
that in this case the acceptance probability becomes

α(x, y) = min

{
1,
π(y)

π(x)

}
.

Which means that the proposed state is always accepted whenever π(y) ≥ π(x). However, the

proposal kernel does not take this into account when proposing a new state. The ratio π(y)
π(x)

can usually be calculated reasonably quickly. Indeed, if we know the target distribution up to

a constant π = cπ̃, where we only know π̃, then
˜π(y)
˜π(x)

= π(y)
π(x) . In the next chapter we will see

that we can incorporate this knowledge into the proposal kernel to increase the efficiency of the
Metropolis-Hastings algorithm. The rationale behind this is that the acceptation-rejection step
corrects for the fact that the proposed states are not distributed according to π, where sampling
new states proportional to the probability ratio π(y)/π(x) leaves less correcting to do and results
in fewer rejected proposal states.

2.3.2 Gibbs sampler

Suppose that the state space X has several components, x = (x1, . . . , xd), with xi ∈ Xi. The
Gibbs sampler is a single component MH, where we update each component separately. The
advantage of using this approach is that it converts a d-dimensional problem into d separate 1-
dimensional problems [Pen22]. In order to do this we do need a proposal density q(yi | x−i) for
each conditional density π(xi | x−i), with x−i = (x1, . . . , xi−1, xi+1, . . . , xd), as we cycle trough
sampling from π(xi | x−i) for each component i.

Algorithm 2 Gibbs sampler

Given: λ (initial distribution), π (target distribution)
Generate X0 ∼ λ

for n = 1, . . . , N do
Set Yn+1 = Xn

for i = 1, . . . , d do
Sample Ŷn+1,i ∼ q(Yn+1,i | Yn+1,−i)
Generate U ∼ U([0, 1])
if α(Ŷi | Y ) ≥ U then
Set Yn+1,i = Ŷn+1,i proposal accepted

else
Yn+1,i = Yn+1,i proposal rejected

end if
end for
Set Xn+1 = Yn+1

end for

The procedure for applying a Gibbs sampling scheme is given in algorithm 2. The accept-reject
probability is defined by the following:

α(ŷi | y) = min

{
π(ŷi | y−i)π(yi | y)
π(yi | y−i)π(ŷi | y)

, 1

}
.

2.4 Diagnostics

The simulated Markov chain will, if converged, generate independent and identical realisations
of the target distribution. However, this only occurs asymptotically, which means that this will
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happen if we were to generate the Markov chain for an infinite amount of time. When we want to
make concrete estimations, this is indeed not possible and we will need to make estimations with
only a finite number of samples. In this case, diagnostics can be used to assess the quality of the
finite chain against the properties of the converged chain.

2.4.1 Effective sample size

Effective sample size is a diagnostic used to assess the quality of the obtained samples from the
simulated Markov chain. This is done by considering the autocorrelation within the simulated
Markov chain (Xn). Ideally, we want to sample identical and independent realizations from the
target π, where the simulated Markov chain is by design created to converge to the target distribu-
tion. As a proxy to measure this convergence, we are correcting for the autocorrelation within the
chain to obtain an estimate of the number of independent samples. Indeed, independent samples
hint at the Markov chain state distribution being relatively unchanged for each time iteration, i.e.
the chain is close to converging to the target.

Assume that the state space X is 1-dimensional. If this is not the case, then a summary statistic
of the simulated chain should be used. The following formula is used to calculate effective sample
size [Rip87]:

ESS =
n

1 + 2
∑∞

k=1 ρ(Xk)
, (2.12)

where n is the number of samples, and ρ(Xk) is the autocorrelation at lag k.

2.4.2 Gelman-Rubin diagnostic

The Gelman-Rubin diagnostic can be used to assess how well the used the used samplers converge,
not how close a certain samples are to being independent realizations of the target distribution.
The method will be used as presented in [GR92]. The main idea is to generate multiple sequences
from with different starting states, the chains are then studied by consideration of a scalar summary
statistic. In the beginning, when the chains have not yet converged, the individual sequences will
be quite different as they are still dependent on their starting state. When converged, all the chains
should be identical, and so the sequences of the summary statistic should be indistinguishable. As
a proxy to measure this, the variability within a sequence is compared to the total variability,
where indeed in the beginning the sequence variability will be smaller as the entire state space is
yet to be fully explored.

The Gelman-Rubin diagnostic is especially relevant when it comes to applied inference for
Bayesian posterior distributions as the diagnostic is derived as a normal-theory approximation to
exact Bayesian inference, conditional on the observed simulations.

The method consists of two major steps. First, the starting states for the simulated sequences
are generated from an overdispersed distribution, i.e. a distribution that is more variable than the
target distribution. Second, the generated starting states are used to run the iterative simulations.
Each iterative sequence is then analyzed to obtain a distributional estimate of what is known
about the target distribution, given the realised simulations thus far. In the end, this results in an
estimate on how close the simulation process is to convergence. This is eloquently summarized in
the resulting statistic R: the factor by which the scale of the current distribution for the summary
statistic might be reduced if the simulations were to be continued asymptotically.

The overdispersed starting distribution

In the case of a discrete state space, the overdispersed starting distribution is empirically con-
structed by generating a totally random state, which is used as the starting state for the Metropolis-
Hasting algorithm with a symmetric random walk kernel. After a relatively small number of steps,
the final state of this simulation is added to the empirical overdispersed distribution. The ratio-
nale behind this procedure is that the totally random state is indeed overdispersed, where a small
amount of information about the target is incorporated by considering a fixed number of proposed
states. Repeat this procedure N times (typically N = 1000) and consider these samples taken
from the overdispersed distribution.

A way to improve the realizations from this overdispersed distribution is by using a procedure
called importance resampling. Draw without replacement m samples from the previously realized
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N , where the probability of drawing a state x is proportional to the log energy of the target density.
A typical value for m would be somewhere in the ballpark of m = 10, since these realizations will
be the starting point for each of the simulated sequences.

Analyzing the iterative simulations from multiple sequences

For each of the m sampled starting states simulate a sequence with length 2n, where we will
consider the first n as burn-in and focus on the last n iterations. Denote by x the considered
summary statistic and by π the target distribution.

For the summary statistic, calculate the following,

B = the variance between the m sequence means xi for n values of x;

B =
1

n

m∑
i=1

(xi − x)2

(m− 1)
; (2.13)

W = the average of the m within sequence variances s2i ;

W =

m∑
i=1

s2i
m
. (2.14)

With x being the average of the averages of the m simulated sequences. Use x to estimate the
target mean, µ =

∫
xπ(x) dx. The target variance, σ2 =

∫
(x− µ)2π(x)dx, will be estimated by a

weighted average of W and B,

σ̂2 =
n− 1

n
W +

1

n
B. (2.15)

Under the assumption that the starting distribution is overdispersed, σ̂2 is an overestimation of
σ2. However, if the distribution from which the starting states were sampled would be the target
distribution, then σ̂2 is in fact an unbiased estimator of σ2.

Now, we are ready to estimate what is known about x. This will be done by using an ap-
proximate Student’s t distribution, since we will also account for the sampling variability of the
estimates µ̂ and σ̂2. The resulting distribution will have the following properties:

center: µ̂;

scale:
√
V̂ =

√
σ̂2 +

B

mn
;

degrees of freedom: df = 2
V̂ 2

ˆvar(V̂ )
.

The ˆvar(V̂ ), is defined by the following expression,

ˆvar(V̂ ) =

(
n− 1

n

)2
1

m
ˆvar(s2i ) +

(
m+ 1

mn

)2
2

m− 1
B2+

2
(m+ 1)(n− 1)

mn2
· n
m

[
ˆcov(s2i , x

2
i )− 2x ˆcov(s2i , xi)

]
. (2.16)

Notice that all estimated variances and covariances are applied to the m sample values of xi and
s2i .

Lastly, we can monitor the convergence of the iterative simulations by estimating the factor by
which the scale of the current distribution could be reduced if the simulations were to be continued
indefinitely. This is estimated by the quantity R̂, given by the following expression

√
R̂ =

√√√√( V̂

W

)
df

df − 2
. (2.17)

The factor R̂ declines to 1 as n→ ∞. This factor is composed of the ratio of the current variance
estimate, R̂, to the within-sequence variance, W , with the factor df/(df − 2) accounting for the
extra variance of the t distribution when compared to the Normal distribution. Therefore, if this
factor is high, typically that means R̂ > 1.1, then a lot of scale reduction can still be achieved by
continuing the iterative simulations; the samplers have not yet converged.
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Chapter 3

Informed proposals for local
MCMC

In this chapter we will be concerned exclusively with sampling from a target probability distribution
Π on a discrete state space X . We will also assume that Π admits a bounded density π with
respect to the counting measure dx. Furthermore, when we speak about the proposal kernel of
the Metropolis-Hastings algorithm, then we will denote this Markov kernel by Q. On the other
hand, if we are considering the resulting Markov kernel of the process, with incorporation of the
acceptation-rejection step, we will denote this by P .

The corresponding theory, and the Peskun optimality of pointwise informed proposals that are
locally balanced with respect to the target measure Π, as introduced in [Zan17] will be explored.

3.1 Locally-balanced proposals

Let X be a discrete state space equipped with a distance metric d, consider Kσ(x, dy) the uniform
distribution on the states:

y ∈ X : d(x, y) ≤ σ.

For σ ↓ 0 Kσ(x, dy) converges weakly to the delta measure in x, whereas for σ ↑ ∞ it converges
weakly to the base measure dy, i.e. the uniform distribution on all states in X . The proposal kernels
that we will consider combine the kernel Kσ with a multiplicative bias g(π(y)/π(x)). Therefore,
we will consider proposals with the following structure, as introduced by [Zan17],

Qg,σ(x, dy) =
g
(

π(y)
π(x)

)
Kσ(x, dy)

Zg(x)
. (3.1)

Where g : (0,∞) → (0,∞) is a continuous function, and where Zg(x) is the normalizing constant:

Zg(x) =

∫
X
g

(
π(z)

π(x)

)
Kσ(x, dz). (3.2)

By the continuity of g and the fact that π is a probability density, it is not hard to see that this
integral is finite. Furthermore, as was done in [Zan17], we will assume that g(t) ≤ at+ b for some
a, b ∈ R. Now, we can introduce the notion of locally-balanced kernels.

Definition 3.1 (Locally balanced kernels [Zan17]). A family of Markov transition kernels {Qg,σ}σ>0

is locally-balanced with respect to a distribution Π if each Qg,σ is reversible with respect to some
distribution Πσ such that Πσ converges weakly to Π as σ ↓ 0.

The motivation behind using locally-balanced proposals is that these will be approximately
Π-reversible for local moves: moves proposed from a kernel Qg,σ with σ small. Therefore, the
acceptation-rejection step will need to do less correcting and reject less moves. As explained
earlier, this increases the efficiency of the MH-algorithm. The reason for choosing small moves is
that as the dimensionality of X increases, the MH moves decrease relative to the size of the state
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space X . This is especially relevant since for many distributions defined on X , the reason for using
MCMC is the computational cost needed to calculate the normalizing constant for the distribution
Π. The following theorem characterizes the pointwise informed proposals that are locally-balanced.

Theorem 3.1 ([Zan17]). A pointwise informed proposal {Qg,σ}σ>0 is locally-balanced with respect
to a general Π if and only if

g(t) = tg(1/t) ∀t > 0. (3.3)

From now on we will refer to these functions g as balancing functions. Later we will see
that balancing functions are Peskun optimal when used in the pointwise informed proposals in
Equation 3.1. However, note that there are not yet theoretical results on what function is optimal
within the class of balancing functions.

3.2 Peskun ordering

Usually when we perform Monte Carlo simulations we want to estimate the quantity

I = Eπ[f(X)]. (3.4)

Under the assumption that Eπ[|f |] <∞. For this we will use the estimator

Î =
1

N

N∑
t=1

f{X(t)}, (3.5)

where X(t) are realizations of the simulated Markov chain in the MCMC simulations. The error
made in estimation is approximately equal to the variance of the estimator; Error(Î) ≈ var(Î).
The expression for the asymptotic variance of Î, where we assume that the chain has reached
stationarity, as stated by [KS+60] is the following:

var(f, π, P ) = lim
N→∞

Nvar

[
N∑
t=1

f{X(t)}/N

]
. (3.6)

Note that P refers to the resulting Markov transition kernel of the MH-algorithm, and with sta-
tionarity it is meant that we assume that X1 ∼ π. Therefore, reduction of the asymptotic variance
would asymptotically result in better estimation of the target quantity I.

Now, Peskun ordering is a way to order MH-algorithms, in terms of their respective asymptotic
variance, by studying their resulting Markov kernels. Let P1 and P2 be two be two such resulting
Markov kernels, then we say that P1 ≥ P2 if

P1(x, dy) ≥ P2(x, dy) for all x, y ∈ χ such that x ̸= y. (3.7)

This means that P1 has a uniformly higher probability of moving to a different state; more prob-
ability mass on the off-diagonal elements. Equivalently, this could be reformulated as

PP1
(Xn+1 ̸= x | Xn = x) ≥ PP2

(Xn+1 ̸= x | Xn = x) for all x ∈ χ. (3.8)

The significance of this ordering follows from the following theorem, which was stated first in
[Pes73].

Theorem 3.2. Suppose that both of the irreducible transition matrices P1 and P2 are in de-
tailed balance with the same probability distribution π. If P1 ≥ P2, then for the estimate Î =∑N

)t=1f{X(t)}/N ,

var(f, π, P1) ≤ var(f, π, P2).

Thus, being optimal in terms of Peskun ordering is equivalent to having the lowest asymptotic
variance of the resulting estimator Î.
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3.3 Optimality of balancing functions

In this section we will take a fixed σ and only study the optimal class of g, the balancing functions,
in terms of the Peskun ordering. Therefore, we will also index the pointwise informed proposals
as stated in Equation 3.1 only by g and write Qg. Before we can state the main result we need to
define the following constant,

cg = sup
(x,y)∈R

Zg(y)

Zg(x)
, (3.9)

where R = {(x, y) ∈ X × X : π(x)Kσ(x, dy) > 0} and Zg(x) as defined in Equation 3.2.

Theorem 3.3. Consider the state space X (n) with target distribution π(n), where n refers to the
dimension of the state space. Let g : (0,∞) → (0,∞) be continuous and locally-bounded. Define
g̃(t) = min{g(t), tg(1/t)}. If we then apply the Metropolis-Hastings algorithm with the pointwise
informed proposals Qg and Qg̃, we get the resulting kernels Pg and Pg̃. If it holds that

c(n)g → 1 as n→ ∞, (3.10)

for every g that is continuous and bounded on compact subsets of (0,∞). Then we obtain that

Pg̃(x, y) ≥ Pg(x, y) ∀x ̸= y. (3.11)

Where Equation 3.11 refers to the Peskun optimality, since this causes the asymptotic variance
of the estimate to be smaller, see Theorem 3.2. Note that Theorem 3.3 states that locally-balanced
proposals are asymptotically optimal in terms of Peskun ordering, since any pointwise informed
proposal as stated in Equation 3.1 can be characterized by the choice of g. By construction g̃ is a
balancing function, which means that the proposal kernel becomes locally-balanced as is stated in
Theorem 3.1. Hence, this implies Peskun optimality since for every pointwise informed proposal
we can construct a locally-balanced one that has less asymptotic variance.

Now, we will focus on proving this result.

Proof. Suppose that g : (0,∞) → (o,∞) is continuous and locally bounded, and let x, y ∈ X (n)

such that x ̸= y, with n the dimension of the state space. Remember that we have chosen σ fixed
in this section. Therefore, we have only indexed the kernel with the function g. In order to simplify
notation, define txy = π(y)/π(x) In this case, the resulting Markov kernel from the MH-algorithm,
for x ̸= y, is the following,

Pg(x, dy) = Qg(x, dy)α(x, y) =
g(txy)K(x, dy)

Zg(x)
min

{
1, txy

g(tyx)

Zg(y)

Zg(x)

g(txy)

}
, (3.12)

where we have taken the proposal kernel expression from Equation 3.1. Then, we can use this
expression to derive a different expression for the proposal kernel divided by the symmetric random
walk kernel,

Pg(x, dy)

K(x, dy)
=
g(txy)

Zg(x)
min

{
1, txy

g(tyx)

Zg(y)

Zg(x)

g(txy)

}
= min

{
g(txy)

Zg(x)
, txy

g(tyx)

Zg(y)

}
Using Equation 3.12 we can derive the following inequality:

Pg(x, dy)

K(x, dy)
=
Zg(x)

Zg(y)

Zg(y)

Zg(x)
min

{
g(txy)

Zg(x)
, txy

g(tyx)

Zg(y)

}
≥ 1

c
(n)
g

min{c(n)g g(txy), txyg(tyx)}
Zg(x)

(3.13)

≥ 1

c
(n)
g

min{g(txy), txyg(tyx)}
Zg(x)

. (3.14)

Similarly, we can also derive an upper bound for the same expression:

Pg(x, dy)

K(x, dy)
=
Zg(x)

Zg(y)

Zg(y)

Zg(x)
min

{
g(txy)

Zg(x)
, txy

g(tyx)

Zg(y)

}
≤ c(n)g

min

{
1

c
(n)
g

g(txy), txyg(tyx)

}
Zg(x)

(3.15)

≤ c(n)g

min {g(txy), txyg(tyx)}
Zg(x)

. (3.16)
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For both inequalities we have used the definition of c
(n)
g , see Equation 3.9, and the fact that

c
(n)
g ≥ 1 since the expression is symmetric in x and y. Furthermore, it follows that g̃(t) ≤ g(t) by
construction of g̃. This also implies that Zg(x) ≥ Zg̃(x). Now, we start by using Equation 3.13 to
deduce the following,

Pg̃(x, dy) ≥
1

c
(n)
g̃

min{g̃(txy), txy g̃(tyx)}
Zg̃(x)

K(x, dy) =
1

c
(n)
g̃

g̃(txy)

Zg̃(x)
K(x, dy). (3.17)

In similar fashion, this time by utilizing the upper bound in Equation 3.15, the following can be
derived,

Pg(x, dy) ≤ c(n)g

g̃(txy)

Zg(x)
K(x, dy) ≤ 1

c
(n)
g̃

g̃(txy)

Zg̃(x)
K(x, dy). (3.18)

Thus, if we combine Equation 3.17 and Equation 3.18, then we obtain that

Pg̃(x, dy) ≥
1

c
(n)
g c

(n)
g̃

Pg(x, dy). (3.19)

If we now use the condition stated in Equation 3.10, then as n → ∞ we get that c
(n)
g → 1 and

c
(n)
g̃ → 1. It is important to note that if g is continuous and bounded on compact subsets of (0,∞),
then, by construction, this trivially also holds for g̃. Hence, we end up with the desired result that

Pg̃(x, dy) ≥ Pg(x, dy) for n→ ∞ and x ̸= y.
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Chapter 4

Accelerated sampling on discrete
spaces

In the previous chapter we have seen that by using locally-balanced proposals embedded in the
Metropolis-Hastings framework, sampling on discrete spaces can be dramatically improved. It
turns out that further improvement can be found when sampling with a continuous-time Markov
process on a discrete state space: a Markov Jump Process (MJP). We will study the approach as
described in [PG19], where the jumping rates are calculated by using locally-balanced functions
(Theorem 3.1). Furthermore, by incorporating the algebraic structure of the state space into the
sampling algorithm, the exploration of new modes is encouraged.

4.1 Markov Jump Process

The approach is to sample on a discrete state space with a continuous-time Markov process. There
is only one class of Markov processes with these characteristics: Markov Jump Processes.

Definition 4.1. [PG19] A Markov Jump Process is a continuous-time Markov process on a count-
able state space X . Such a process is entirely characterised by its jump rates, denoted by λ(x→ y),
defined in the following way

P (Xt+h = y | Xt = x) = h · λ(x→ y) + o(h) for x ̸= y (4.1)

P (Xt+h = x | Xt = x) = 1− h · Λ(x) + o(h). (4.2)

Where Λ(x) =
∑

y λ(x→ y). The generator of a MJP is given by

Lf(x) =
∑
y

λ(x→ y)[f(y)− f(x)]. (4.3)

Similar to how we did this for a discrete-time Markov process, we need a locally verifiable condition
to ensure that the simulated Markov process has the target measure π as its invariant measure.
We will use the reversibility condition with respect to the MJP generator as this is a sufficient
condition for the MJP to have π as its invariant measure.

Definition 4.2. [PG19] A Markov Jump Process with generator L is reversible with respect to the
measure π if, for all f, g ∈ L2(π), it holds that

Eπ[(Lf)(x)g(x)] = Eπ[f(x)(Lg)(x)]. (4.4)

The following calculations show that this reduces to detailed balance in some cases.

Proposition 4.1. By considering f(x) = I[x = a], g(x) = I[x = b], the reversibility condition is
equivalent to detailed balance:

π(x)λ(x→ y) = π(y)λ(y → x) for all x, y ∈ X . (4.5)
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Proof. Start by noting that

L(I[x = a])(x) =
∑
y

λ(x→ y){I[y = a]− I[x = a]}.

Hence, for the expectation this means the following

Eπ[(Lf)(x)g(x)] =
∑
x

∑
y

λ(x→ y){I[y = a]− I[x = a]}I[x = b]π(x)

=
∑
y

λ(b→ y)I[y = a]π(b)

= λ(b→ a)π(b).

Where the second equality follows from the fact that only x = b contributes to the summation over
x. The other direction follows by a similar calculation. The proof is complete if we consider that
we choose a, b ∈ X arbitrarily.

Before we can specify the sampling algorithms, we need to make a few assumptions about the
state space X and the MJP. For the state space X we assume that it has a graph-like structure.
Essentially, this means that the notion of locality refers to the existence of an edge between two
elements of X . Thus, it is assumed that there exists some set of edges E ∈ X ×X , where indeed x
and y are neighbours if (x, y) ∈ E . The neighbourhood of x is denoted by ∂x = {y ∈ X : (x, y) ∈ E}.
The implications of these assumptions on the structure of the state space will be more clear when
we consider the algebraic structure of the state space.

On the considered MJPs, (Xt)t≥0, we make the following assumptions [PG19]:

1. The process can only jump from x to y if y ∈ ∂x.

2. The jump rate from x to y, λ(x→ y), is a function of π(y)
π(x) .

3. Xt is in detailed balance with respect π

The first assumption is an indirect consequence of the graph structure assumption of the state space,
since this ensures the MJP to behave in accordance with this structure. The second assumption is
a simplifying one, however, by applying it we can also see the occurrence of balancing functions as
we have already seen in [Zan17]. Thus, by applying the second assumption we obtain λ(x→ y) =

g(π(y)π(x) ). By writing this into the detailed balance condition we obtain for all (x, y) ∈ E

π(x)λ(x→ y) = π(y)λ(y → x)

π(x)g

(
π(y)

π(x)

)
= π(y)g

(
π(x)

π(y)

)
g

(
π(y)

π(x)

)
=
π(y)

π(x)
g

(
π(x)

π(y)

)
g(t) = t · g(1/t) for t =

π(y)

π(x)
.

Therefore, the jumping rate functions under these assumptions are exactly the same class of func-
tions as described in Theorem 3.1 as derived by [Zan17]. Note that the last assumption is there to
ensure the ergodicity of the MJP with respect to the target measure π. We need this for proper
convergence of the Monte Carlo estimate. Now, we have derived enough to consider the Zanella
process to sample from π.
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Algorithm 3 Zanella process

Given: λ (initial distribution), π (target distribution)
Goal: sample from π(x) for x ∈ X
Generate X0 ∼ λ

for n = 1, . . . , N do

1. For y ∈ ∂x, compute λ(x→ y) = g
(

π(y)
π(x)

)
.

2. Compute Λ(x) =
∑

y∈∂x λ(x→ y).

3. Sample a waiting time T ∼ Exponential(rate = Λ(x)).

4. Sample a new location y ∈ ∂x with probability λ(x→y)
Λ(x)

5. Advance time by T .

6. Set Xn+1 = y

end for

In Algorithm 3, it can be observed that the Zanella process is essentially a rejection-free random
walk algorithm in continuous time, where at each jump the process walks to a neighbour with
probability proportional to the jump rate. By also sampling the time at which the jump occurs,
the Zanella process becomes rejection free. This changes the way in which the process can be
tweaked to increase the efficiency of the Monte Carlo procedure. As the process is rejection free,
this is indeed a component that we do not need to worry about. In addition, it is important to
note that for the Zanella process the wall-clock time and the clock of the process have essentially
been decoupled.

Most of the time that the sampling with the Zanella process takes will be spend on the calcu-

lation of the ratios π(y)
π(x) . Therefore, it is important to embed a graph structure in the state space

such that a lot of terms in the ratio π(y)
π(x) cancel. It can also increase efficiency if the sampling

algorithm could be tweaked in such a way that travelling along edges into unexplored regions is
encouraged. When we consider the algebraic structure of the state space in the next section, we
will see how this can be exploited to further enhance the mixing behaviour of the chain. Similar
to how the entire class of balancing functions is optimal for pointwise informed proposals [Zan17],
there is no strong theory on the balancing function to choose. Later, we will however, consider a
heuristic approach on how such a function can be chosen.

4.2 Algebraic structure of the state space

In order to further increase the efficiency of the Zanella process, the goal is to be able to bias the
sampling algorithm to travel to regions of the state space that are yet to be explored. Especially,
when such regions contain modes of the target distribution. A first step is to consider the algebraic
structure of the state space, which means that there is a group G that acts on the state space X .
Essentially, this means that by performing the group action to an element x ∈ X , we obtain a
new state y = g ⋆ x. We are then able to define the neighbours of x to be the elements y that can
be obtained by performing a group action (with an element g ∈ G) to x. Later this idea will be
formalized. We start by recalling the definition of a group.

Definition 4.3. A group is a set G equipped with a binary operation · : G × G → G, denoted by
(G, ·). Such that the operation · satisfies the following properties:

1. Closure: for all g, h ∈ G it holds that g · h ∈ G.

2. Associativity: for all g, h, z ∈ G it holds that (g · h) · z = g · (h · z).

3. Identity element: there exists an e ∈ G such that for all g ∈ G, g · e = e · g = g.

4. Inverse: for each g ∈ G there exists a unique g−1 ∈ G such that g · g−1 = g · g−1 = e.

Now we have a group, however, it is not yet clear how we can use the group to induce movement
among the states of X . By introducing a group action this can be performed, and the previous
idea of generating neighbours for x by using the group can be formalized.
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Definition 4.4. Given a set X and a group (G, ·), a group action is an operation ⋆ : G×X → X
that satisfies the following:

1. For all x ∈ X , e ⋆ x = x.

2. For all g, h ∈ G, g ⋆ (h ⋆ x) = (g · h) ⋆ x.

By using the group G and the group action we can now define the neighbours of x by ∂x =
{y ∈ X : ∃g ∈ G such that y = g ⋆ x}. Hence, we can embed the structure of a graph into the
state space X by considering a group G that acts on the elements of X . Although adhering to the
assumptions that we previously made, defining the neighbours in this way could be inefficient. For
sampling we do not need every possible edge in the graph to exist, it is only needed that there are
enough edges such that every state can be reached. This idea has some resemblance to how only a
basis is needed in order to be able to construct every vector in a vector space. Thus, it is natural
to consider a generating set such that the graph structure can be simplified.

Definition 4.5. Let (G, ·) be a group, and let Γ ⊂ G. We say that Γ is generating set if ⟨Γ⟩ = G,
where ⟨Γ⟩ is defined by

1. Γ ⊂ ⟨Γ⟩.

2. γ ∈ ⟨Γ⟩ =⇒ γ−1 ∈ ⟨Γ⟩.

3. γ, η ∈ ⟨Γ⟩ =⇒ γ · η, η · γ ∈ ⟨Γ⟩.

We also call the elements of Γ generators if ⟨Γ⟩ = G.

Therefore, by taking a generator Γ for the group G that works on the state space X , we can
reduce the number of edges in the graph-like structure of the state space. This is significant since
it reduces the computational complexity as each state x has less neighbours; each neighbour is
given by applying the group action with an element from the generating set Γ to a state x in X .
Therefore, we need to calculate the ratio π(y)/π(x) less often when we consider a move. However,
the state space on which we sample remains unchanged as G = ⟨Γ⟩.

4.3 Tabu Sampler: Self Avoiding Walks

Backtracking behaviour is often harmful for the mixing of the simulated Markov chain. By repeat-
edly visiting the same states, the chain can get stuck in a small subset of the state space. This
hinders convergence as the repeated samples are not at all independent. For example, a bimodal
distribution with a low-probability region between the two modes usually results in a chain that
gets stuck in the mode that was closest to its starting state. We saw that dependence of the
current state on the starting state hints towards a chain that has not yet properly converged; this
is precisely the way that the Gelman-Rubin diagnostic tests for convergence.

Similar to how we incorporated the information of the ratio π(y)/π(x) to decrease the number
of rejected states, we can keep track of the previously visited states to encourage the exploration
of new regions of the state space. Before this can be done, it is important to study the order of
the generators, since this determines how generators can be used to avoid back-tracking.

Definition 4.6. Let (G, ·) be a group, and let g ∈ G {e}. We say that g has order k if gk = e,
and if gj ̸= e for 0 < j < k. If no such k exists, then we say that g has infinite order. Whereas we
say that e has order 1.

Hence, if a generator γ has infinite order, then using it over and over would result in non-
backtracking behaviour. On the other hand, a generator γ of order 2 that is re-used would result
in the state we were in two moves ago as can be seen below,

State 1: x;

State 2: γ ⋆ x;

State 3: γ ⋆ (γ ⋆ x) = (γ · γ) ⋆ x = x.

Furthermore, a generator γ of order 2 is also referred to as an involution. As we will only consider
examples with involutions, non-backtracking behaviour can be induced by discouraging the re-
use of generators. This is precisely the idea behind the Tabu sampler. However, before we can
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introduce this sampler, we need to introduce the notion of skew-reversibility. Similar to standard
reversibility, this provides a local and check-able condition to ensure that the MJP has π as its
invariant distribution.

Definition 4.7. [PG19] Let X be a discrete state space equipped with an involution S : X → X .
Let π be a probability measure on χ such that for all x ∈ X , π(x) = π(S(x)). Let Q : L2(π) → L2(π)
be the operator given by Qf(x) = f(S(x)).

A Markov process with generator L is skew-reversible with respect to the measure π and the
involution S if, for all f, g ∈ L2(π), it holds that

Eπ[(QLf)(x)g(x)] = Eπ[f(x)(QLg)(x)]. (4.6)

The following proposition shows that in certain cases skew-reversibility can be simplified.

Proposition 4.2. By considering f(x) = I[x = a], g(x) = I[x = b], it can be shown that skew-
reversibility is equivalent to

π(x)λ(x→ y) = π(S(y))λ(S(y) → S(x)) for all x, y ∈ X (4.7)

Λ(x) = Λ(S(x)) for all x ∈ X . (4.8)

Proof. Let f(x) = I[x = a] and g(x) = I[x = b], where we choose a, b ∈ X arbitrarily. First, notice
the following

(QLI[x = a])(x) =
∑
y

λ(S(x) → y){I[y = a]− I[S(x) = a]}.

Hence, for the expectation this means the following

Eπ[(QLf)(x)g(x)] =
∑
x

∑
y

λ(S(x) → y){I[y = a]− I[S(x) = a]}I[x = b]π(x)

=
∑
y

λ(S(b) → y){I[y = a]− I[S(b) = a]}π(b),

where the sum could be simplified by considering the values for which x and y contributed to the
summation. Similarly, for the other expectation,

Eπ[f(x)(QLg)(x)] =
∑
y

λ(S(a) → y){I[y = b]− I[S(a) = b]}π(a).

Now, if we suppose that S(b) = a, then the jumping rate λ(S(b) → a) does not exist, since jumping
rates are only defined between two different states. Note that S(b) = a also implies that b = S(a),
and vice versa, by applying the involution S to both sides of the equation. This means that if
S(a) = b holds, then also there is no jumping rate λ(S(a) → b).

Hence, if we suppose that S(b) = a, we obtain the following for both expressions,

Eπ[(QLf)(x)g(x)] = π(b)
∑
y

λ(a→ y);

Eπ[f(x)(QLg)(x)] = π(S(b))
∑
y

λ(S(a) → y).

By using that π(x) = π(S(x)) for all x ∈ X , we get that the following∑
y

λ(a→ y) =
∑
y

λ(S(a) → y)

Λ(a) = Λ(S(a).

Remember that we choose a, b ∈ X arbitrary to see that we get Λ(x) = Λ(S(x)) for all x ∈ X .
On the other hand, if we suppose that S(b) ̸= a, then the following must hold

π(b)λ(S(b) → a) = π(a)λ(S(a) → b).

By how we choose a, b ∈ X and by the properties of S, we can set b = S(x) and a = y. Again,
remember that π(x) = π(S(x)) for all x ∈ X to obtain the final result:

π(x)λ(x→ y) = π(S(y))λ(S(y)) → S(x).

Thus, we have proven the result.
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The skew-reversibility is needed as the Tabu sampler will leave π invariant on the augmented
state space (x, α, τ) ∈ X×{±1}Γ×{±1}. Essentially, the state space is extended to be able to carry
memory about the generators that were used previously. The idea is to assign to each generator γ
a memory value of either 1 or −1, where the global memory variable τ ∈ {±1} determines whether
the generators carrying 1 or −1 can be used. If a generator γ was used its memory value α(γ)
is set to −α(γ), and it cannot be used until the global memory variable τ is also flipped. This
happens with a probability proportional to the sum of the jumping rates of all new states accessed
by applying the generators to the current state x for which it holds that α(γ) = −τ . Therefore,
the generators γ ∈ Γ are partitioned in the following way,

Γ(α, τ) = {γ ∈ Γ : α(γ) = τ}
Γ(α,−τ) = {γ ∈ Γ : α(γ) = −τ}
Γ(α, τ) ∩ Γ(α,−τ) = ∅
Γ(α, τ) ∪ Γ(α,−τ) = Γ

Intuitively, we have a set of generators that we can use (Γ(α, τ)) and cannot use (Γ(α,−τ)). If
a generator is applied, then it is moved from the set of generators that we can move to the set of
generators that we cannot. This process continues until we carry out a flip and swap the two sets,
where the swap is performed by setting τ to −τ . The exact procedure is detailed in Algorithm 4.

Algorithm 4 Tabu sampler for sampling π(x) for x ∈ X , when γ2 = e for all γ ∈ Γ

Given: λ (initial distribution), π (target distribution), {α(γ)}γ∈Γ ∈ {±1}Γ, τ ∈ {±1}
Goal: sample from π(x) for x ∈ X
Generate X0 ∼ λ

for n = 1, . . . , N do

1. For γ ∈ Γ such that α(γ) = τ , compute λ(γ;x, α, τ) = g
(

π(γ⋆x)
π(x)

)
.

2. For γ ∈ Γ such that α(γ) = −τ , compute λ(γ;x, α,−τ) = g
(

π(γ⋆x)
π(x)

)
.

3. Compute

Γ(x; , α, τ) =
∑
γ∈Γ

λ(γ;x, α, τ) · I[α(γ) = τ ] (4.9)

Γ(x; , α,−τ) =
∑
γ∈Γ

λ(γ;x, α,−τ) · I[α(γ) = −τ ] (4.10)

Γ(x;α) = max{Γ(x;α, τ),Γ(x;α,−τ)}. (4.11)

4. Sample a waiting time T ∼ Exponential(rate = Γ(x;α)), and advance time by T.

5. Generate U ∼ U([0, 1]).

(a) If U ≤ Γ(x;α,τ)
Γ(x;α) :

i. Sample a generator γ ∈ Γ with probability λ(γ;x,α,τ)I[α(γ)=τ ]
Γ(x;α,τ) .

ii. Set the value of α(γ) to −α(γ).
iii. Jump to y = γ ⋆ x.

(b) Else: flip τ to −τ .
end for

The Tabu sampler essentially has a binary memory bank α(γ) for each generator γ. This allows
the Tabu sampler to better navigate low probability regions between modes, since it prevents the
process from re-using the previously applied generators over short to medium timescales. This non-
reversibility is however, not guaranteed to last for a certain period of time, since the Tabu sampler
is ”self-tuning” by being able to flip the set of generators that can be used if the total event rate for
the current state x ∈ X is much larger for the generators for which I[α(γ) = −τ ], i.e. if Γ(x;α, τ)
is heavily-dominated by Γ(x;α,−τ). This is done in step 5 of the Tabu sampler algorithm, see
algorithm 4. Hence, the Tabu sampler is able to correct its non-backtracking behaviour if more
desirable states under the target are available.
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The computational cost associated with running the Tabu sampler is comparable to that of
the Zanella process, sometimes referred to as the Zanella sampler, since the sampling method
also has the store α, τ and perform an accept-reject step for flipping τ . The total costs of these
operations compared to the total use of computational resources is negligible. As the Tabu sampler
is more resilient when it comes to clearing low energy barriers between modes, at no significant
computational cost, it is expected that the Tabu performs better when the target distribution is
multi-modal with larger barriers between the modes.

As a proxy to measure the ”roughness” (multi-modality in combination with the amount of low
energy barriers between modes), the mean reversion time for the Tabu sampler can be used. This is
the average number of iterations, i.e. the number of times the steps 1−5 are performed in algorithm
4, between two flips of the global memory variable τ . The reasoning behind this is that a high
number of accepted moves: a lot of iterations before τ is flipped; implies that the distance between
high-probability regions is larger. Indeed, a lot of low-probability moves performed subsequently
will not greatly affect Γ(x;α, τ).

4.4 Balancing function heuristic

In chapter 3 we discussed the result that balancing functions are Peskun optimal when it comes to
incorporating local information in the MH proposal kernel [Zan17]. Merely in the specific case that
the target distribution consists of independent Bernoulli variables, the Barker balancing function
is known to be optimal. For a general target π no theoretical result exist on the optimal balancing
function g to choose. Similarly, for the continuous time samplers as introduced in this chapter, the
theory on the optimal balancing function to choose is yet to be established. Within this section we
will briefly explore the influence of the balancing function on the mixing of the underlying Markov
chain as discussed in [PG19]. In the end, a possible heuristic approach to finding a suitable
balancing function choice is discussed.

Consider the embedded jump chain (x̂)k≥1 of the Zanella process, i.e. the discrete time Markov
chain consisting of the Markov process evaluated after each jump time τk. Hence, x̂k = Xτk , with
(Xt)t≥0 the continuous time Markov chain generated by the Zanella process, where τ0 = 0. We
will now consider the invariant distribution of the jump chain, which is determined by the choice
of balancing function, and given by the following expression [PG19],

πJ
g (x) ∝ π(x)Λ(x) = π(x)

∑
y∈∂x

λ(x→ y)

 = π(x)

∑
y∈∂x

g

(
π(y)

π(x)

) . (4.12)

The idea behind studying the invariant distribution of the jump chain, is that it can be used as
a proxy to study the effects of the balancing function on the mixing behaviour of the simulated
chain. We will attempt to determine how similar the invariant distribution of the jumping chain is
to the target π, since more similarity requires less correcting effort from the continuous sampler.
As a metric for this similarity, the ratio πJ

g /π will be considered.
On the other hand, deviations can in fact be helpful if the target distribution is very peaked

around its modes. In this case, a balancing function which lowers the energy barriers between
the modes can be beneficial to the mixing behaviour as it becomes easier for the Markov chain
to travel between the modes. Essentially, this entails increasing the metastability of the chain to
further encourage mixing behaviour.

In [PG19], a simple one-dimensional example is considered on the state space X = [0, 50] with
the neighbourhood structure ∂x = {x − 1, x + 1}. Among a few considered balancing functions
compared for three distributions (Triangle, Beta-Binomial(10, 20), and a marginal of a mixture of
lattice Gaussians) the Barker balancing function (g(t) = t/(1 + t)) seems to be the most suitable
choice for all of these considered distributions. When compared to g(t) = t, g(t) =

√
t, and

g(t) = min{1, t} (MH balancing function), the Barker balancing function is stable around the
modes, finds a balance between distributing mass among high and low-probability regions, and is
most stable in the tails of the distribution. In short, the Barker balancing function seems to be
a safe and stable option. As the main aim of this work is to compare the samplers introduced
in [Zan17] and [PG19], see chapter 3 and chapter 4, the Barker balancing function is the natural
choice.
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The proposed heuristic

In the general case, we know the target distribution π on the discrete state space X up to pro-
portionality. The same holds for the invariant distribution of the jump chain πJ

g . Therefore, π
J
g is

exactly equal to the target distribution if and only if

πJ
g (x)/π(x) ∝ Λ(x) = K for all x ∈ X , for some K ∈ R;

as a probability distribution is uniquely identifiable even if known up to proportionality. The idea
is now to choose a balancing function for which this holds approximately. The first step is to
sample a relatively large number of states x ∈ X from an overdispersed distribution, for example
consider the overdispersed distribution on a discrete state space X as described in subsection 2.4.2.
An overdispersed distribution is used to generate states x ∈ X , since this slightly emphasizes
the metastability of the chain, i.e. more probability mass is placed outside of the modes which
encourages mixing behaviour. As a metric to proximity that the generated data-pairs (x,Λ(x)),
where x ∈ X has been generated from the overdispersed distribution, have to being constant it is
suggested that the coefficient of determination R2 for the regression of the Λ(x) data on a constant
K ∈ R is considered.

As this regression procedure can be used to empirically tweak and construct a balancing
function, it would be natural consider several balancing functions, i.e. functions g for which
g(t) = tg(1/t) for all t > 0. Furthermore, as we assumed in chapter 3, we will limit ourselves to
functions of g for which it holds that g(t) ≤ at + b for all t > 0 and some a, b ∈ R. A possible
way to start could be considering candidate functions bounded by a linear function, and then to
consider for each g for which the former holds, the balancing equivalent g̃(t) = min{g(t), tg(1/t)}.
After selecting the candidates, the best balancing function can be considered following the defined
metric. Alternatively, linear combinations of the candidate functions could be considered as well,
where an optimization algorithm could be used to determine the linear coefficients.

27



Chapter 5

Two well-known examples

Here we will present two examples that are commonly used to compare the performance of different
MCMC samplers. These examples will be used to compare the discrete-time Metropolis-Hastings
sampling with a random walk kernel and a locally-balanced pointwise informed proposal kernel to
the continuous time Zanella and Tabu samplers.

5.1 Independent Binary Components

As a first toy example in a high-dimensional regime we will consider independent binary components
[Zan17]. Hence, we find ourselves in the following setting: X (n) = {0, 1}(n). Where the elements
of X (n) are denoted as x = (x1, . . . , xn), the target distribution takes the following form

π(n)(x) =

n∏
i=1

p1−xi
i (1− pi)

xi .

Where pi ∈ (0, 1). The base kernel K(n) is the uniform distribution on the neighbourhood N(x)
given by the following expression

N(x) = {y = (y1, . . . , yn) :

n∑
i=1

|xi − yi| = 1}.

If we now assume that infi∈N pi > 0 and supi∈N pi < 1, then we obtain by Theorem 3.3 that
locally-balanced proposals are asymptotically (n → ∞) optimal when compared by using the
Peskun ordering. Where indeed this hold asymptotically with respect to the dimension of the state
space. This is especially relevant since the dimension of the state space is what determines the
computational cost of calculating the normalizing constant and therefore the need to sample by
using MCMC methods.

Proposition 5.1. In the case of independent binary components, if we assume that infi∈N pi > 0
and supi∈N pi < 1, then for every g : (0,∞) 7→ (0,∞) a balancing function we obtain that pointwise
informed proposals are asymptotically (n→ ∞) optimal in the Peskun ordering.

Proof. We will show this by applying Theorem 3.3. It suffices to show that

c(n)g → 1 as n→ ∞

Fix x ∈ {0, 1}n and y ∈ N(x). Hence, there exists an i ∈ {1, . . . , n} such that |xi − yi| = 1.

Furthermore, note that if xi = 1, then π(n)(y)
π(n)(x) = pi

1−pi
and for xi = 0; π(n)(y)

π(n)(x) = 1−pi

pi
. Thus, define

gxi =

{
g( pi

1−pi
) if xi = 1

g( 1−pi

pi
) if xi = 0

.

Considering

I =

[
infi∈N pi

1− infi∈N pi
,

supi∈N pi
1− supi∈N pi

]
∪
[
1− supi∈N pi

supi∈N
,
1− supi∈N pi

supi∈N

]
,
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we obtain that g = inft∈I g(t) > 0 and g = supt∈I g(t) < ∞ because g is locally bounded and I is

compact. By looking at the expression for Z
(n)
g (x)

Z(n)
g (x) =

1

n

n∑
j=1

gxj =
1

n

 n∑
j=1,j ̸=i

gxj + gxi

 ,

it can be derived that

n∑
j=1,j ̸=i

gxj ≥
n∑

j=1,j ̸=i

g = (n− 1)g = O(n)

and

gxi ≤ g = O(1).

Note that for all j ∈ {1, . . . , n} \ {i} it holds that gxj = gyj since by moving from x to y only the
ith component has been flipped. Using this it follows that

lim
n→∞

Z
(n)
g (y)

Z
(n)
g (x)

= lim
n→∞

∑n
j=1,j ̸=i g

y
j∑n

j=1,j ̸=i g
x
j

= lim
n→∞

∑n
j=1,j ̸=i g

x
j∑n

j=1,j ̸=i g
x
j

= 1.

Which is exactly what we needed to show. Now we have enough to apply Theorem 3.3, from which
we can conclude optimality in terms of Peskun ordering.

The unique feature of the independent binary component example is that we know the optimal
balancing function among the class of balancing functions, namely the Barker balancing function:
g(t) = t/(1 + t) [Zan17]. As it is shown that asymptotically for n → ∞ the Barker balancing
function leads to the smallest mixing time for all balancing functions used to incorporate local
information into the Metropolis-Hastings proposal kernel. On the basis of this theoretical result,
it is possible to directly infer whether continuous time samplers can in potential be an even more
efficient MCMC sampling scheme.

For the continuous time sampling the generator set that we will use is:

Γ = {i : i ∈ {1, . . . , n}}.

Thus, every generator refers to a component in the state vector x, where by application of this
generator we flip the component.

5.2 Weighted permutations

Let S = {1, . . . , n}, then Sn is the space of permutations of n elements, i.e. all possible bijections
from S to itself. The target distribution takes the following form

π(n)(ρ) =
1

Z

n∏
i=1

wiρ(i) ρ ∈ Sn, (5.1)

where Z is the normalizing constant
∑

ρ∈Sn

∏n
i=1 wiρ(i). Furthermore, {wij}ni,j are positive and

symmetric weights; wij = wji > 0 for all i, j ∈ {1, . . . , n} with i ̸= j.
The neighbourhood structure for this example {N(ρ)}ρ∈Sn

is the following

N(ρ) = {ρ′ ∈ Sn : ρ′ = ρ ⋆ (i, j) for some i, j ∈ {1, . . . , n} with i ̸= j}, (5.2)

where the group action ⋆ is defined by ρ′(i) = ρ(j), ρ′(j) = ρ(i), and ρ′(l) = ρ(l) for l ̸= i and
l ̸= j.

Similar to proposition 5.1, we have a Peskun optimality result for pointwise informed proposals
using balancing functions for the weighted permutations target distribution.

Proposition 5.2. In the case of weighted permutations, if we assume that infi,j∈N wij > 0 and
supi,j∈N wij <∞, then for every g : (0,∞) 7→ (0,∞) a balancing function we obtain that pointwise
informed proposals are asymptotically (n→ ∞) optimal in the Peskun ordering.
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The proof is very similar to the proof for proposition 5.1 and therefore not stated.
As is not difficult to see with the defined neighbourhood structure, we will choose the following

set of generators for the continuous time sampling:

Γ = {i, j ∈ {1, . . . , n} with i ̸= j}. (5.3)
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Chapter 6

Bayesian Record Linkage

Bayesian record linkage will be studied as presented in [Zan17]. The aim is to merge two databases
x = (x1, . . . , xN1

) and y = (y1, . . . , yN2
), where the records in both databases that refer to the

same entity should be matched such that the merged database contains no redundant entries.
For example, consider a government database with personal records, when we want to match
two regional databases it is important not to have two files on the same person. This will be
accomplished by keeping track of the matching denoted by M = (M1, . . . ,MN1), where Mi = j
if xi and yj refer to the same entity, and Mi = 0 if xi is not matched with a record from y.
In addition, the database entries xi and yj are formatted in exactly the same way, where non-
triviality occurs by the presence of a noise parameter β. Although most natural to include this as
an unknown hyperparameter of the model, it is difficult to estimate and as stated by [Zan17], the
efficiency of the sampling algorithms was not affected by different choices of β. Meaning that it is
natural to choose a value for β, since this section intends to compare and analyze the performance
differences between continuous and discrete-time samplers. For more discussion on this specific
parameter and the caveats in estimation see [Ste14].

6.1 The generating model

We start by specifying the statistical model that is used to generate the databases x and y. The
first step is to sample the parameters λ and pmatch from their respective priors, where λ is the
mean of the Poisson distribution from which the total number of unique entities in the merged
database is sampled. The pmatch parameter is the probability that a record in the merged database
occurs in both x and y, i.e. the probability that two records in x and y are matched. The exact
distributional dependencies assumptions will be explained later in this section, but the idea is that
in the end we end up with the databases x and y with sampled records.

6.1.1 Composition of the x and y databases

We start by sampling λ and pmatch from the following priors

pmatch ∼ Unif([0, 1]) (6.1)

λ ∼ π(λ). (6.2)

As pmatch is a probability we have chosen a basic and uninformative prior. For λ we will consider
an arbitrary prior distribution, albeit with positive support.

The total number of unique entries in the merged database T is sampled from the following
distribution

T | λ ∼ Poisson(λ). (6.3)

Conditional on the matching probability (pmatch) and the total number of records in the merged
database (T ), the number of matched records (Nm), the number of singletons in x (Nx), and the
number of singletons in y (Ny) follow a multinomial distribution. The probability that a record
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from the merged database is a matched record (occurs in both x and y) is pmatch and the probability
that it occurs in either x or y as a singleton is (1− pmatch)/2 for both the x and y database.

Nm, Nx, Ny | T, pmatch ∼ Multinom(T, (pmatch,
1− pmatch

2
,
1− pmatch

2
)) (6.4)

The last step before sampling the records themselves, is sampling the total number of different
ways that the number of sampled matchings can occur between x and y, i.e. the possible config-
urations of M given the dimension of the vector (N1 = Nm + Nx) and the number of non-zero
entries (Nm). Furthermore, we assume a uniform distribution on the possible configurations of M.
Essentially, we are looking at the number of different ways in which we can pair Nm records from
x with Nm records from y, where we also need to look at the number of different ways in which we
can choose Nm records in x and Nm records in y. This is further explained in Figure 6.1, where
also the corresponding entry in the M vector for each matching is added.

x y

x1

x2

x3

x4

x5

x6

x7

xN1

y1

y2

y3

y4

y5

y6

y7

yN2

M3 = 6

M6 = 1

M6 = 4

MN1
= 7

Matched record

Singleton in x

Singleton in y

Figure 6.1: A schematic overview of a configuration of the M vector and how this translates to
the x and y databases. Two green records are matched if connected by an arrow, the added M
entry explains how this is captured in M.

Hence, conditional on Nm, Nx, and Ny, the probability for each possible configuration of the
M vector is the following

fM|Nm,Nx,Ny
(m | Nm = nm, Nx = nx, Ny = ny) =

(
nx + nm
nm

)−1(
ny + nm
nm

)−1
1

nm!

=
nm!nx!ny!

(nx + nm)!(ny + nm)!
(6.5)

Note that for the total number of entries in x, it holds that N1 = Nm + Nx. Similarly, for y
we get that N2 = nm + Ny. Therefore, this explains the appearance of the terms nx + nm and
ny + nm in Equation 6.5. For an overview of the variables that describe the size of the databases,
the reader is referred to Table 6.1.
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Table 6.1: Variables and their meaning

Variable Meaning
T The total number of entries in the merged database
Nm The total number of matched records (appearing in both x and y)
Nx The number of singletons in x (record only appearing in x)
Ny The number of singletons in y (record only appearing in y)
N1 The number of records in the x database
N2 The number of records in the y database

6.1.2 Sampling the records

The distribution of the records (x,y) | M follows a hit and miss model as described by [CH90].
In this setting consider both databases to be lists of records x = (xi)

N1
i=1 and y = (yj)

N2
j=1. Where

each record xi contains l fields, by assumption each yj has the same l fields. We will denote this by
(xis)

l
s=1 and (yjs)

l
s=1. Each field has ms categories and density vector θs = (θsp)

ms
p=1. The density

vector is assumed to be known, which is not a restrictive assumption since in data application this
can always be estimated by the empirical distribution for each field. In the numerical simulations
that will be explored later, each record was set to have 15 fields and the same 5 categories for each
of these fields. The theta vector from which each of these fields is sampled was set to have the
following form θ = (0.05, 0.15, 0.4, 0.2, 0.2).

An important assumption is now that the entities are assumed to be conditionally independent
given the matching M. In case xi and yj are singleton records, the fields are sampled in the
following way

xis, yjs ∼ θs s ∈ {1, . . . , l}.

If xi and yj are matched, then first a common value vi is sampled in the same way as the singletons.
The actual database entries xi and yj are then sampled conditionally on the common value vi,

vis ∼ θs s ∈ {1, . . . , l}.

xis, yjs|vs
iid∼ βθs + (1− β)δvs s ∈ {1, . . . , l}.

Hence, with probability β, a field of the matched record is sampled as if it were a singleton. Since
this could potentially cause the matched records to disagree in a field, β is called the distortion
probability. Therefore, every field of a matched record is sampled from a mixture distribution,
where with probability β the field is sampled as if it were a field of a singleton field and with
probability 1 − β it is set equal to the value in vis. It is important to realize that this procedure
is repeated for both the matched xi and the matched yj , explaining why iid is added above the
matched record field distribution.

6.2 Joint probability distribution

Now, we have established all the (conditional) probability distributions from which the databases
x and y can be sampled. Here we will combine these expressions and derive the form of the joint
probability. We can write the joint probability in the following way

fx,y,M,Nm,Nx,Ny,T,λ,pmatch
(x,y,m, nm, nx, ny, nm + nx + ny, λ, pmatch) =

fx,y|M,Nm,Nx,Ny
(x,y | M = m, Nm = nm, Nx = nx, Ny = ny)·

fM,Nm,Nx,Ny,T |λ,pmatch
(m, nm, nx, ny, nm + nx + ny | λ, pmatch)·

π(λ)1{pmatch∈[0,1]}.

The term describing the probability contribution of (x,y, | M, Nm, Nx, Ny) will be referred to as
the likelihood of the records. The term describing (M, Nm, Nx, Ny, T | λ, pmatch) will be referenced
as the marginal of the matching structure. These two terms will be derived in the following two
subsections to complete the derivation of the joint probability distribution.
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6.2.1 Marginal of the matching structure

In this section we derive an expression for fM,Nm,Nx,Ny,T |λ,pmatch
. Start by decomposing this term

in the following way

fM,Nm,Nx,Ny,T |λ,pmatch
(m, nm, nx, ny, nm + nx + ny | λ, pmatch) =

fM|Nm,Nx,Ny
(m | Nm = nm, Nx = nx, Ny = ny)·

fNm,Nx,Ny|T,pmatch
(nm, nx, ny | T = nm + nx + ny, pmatch)·

fT |λ(T | λ).

Then, by using the distributional assumptions that we made previously,

fNm,Nx,Ny|T,pmatch
(nm, nx, ny | T = nm + nx + ny, pmatch) · fT |λ(T | λ)

=

{
(nx + ny + nm)!

(nx)!(ny)!(nm)!

(
1− pmatch

2

)nx+ny

pnm

match

}
·
{
e−λλnx+ny+nm

(nx + ny + nm)!

}

=
e−λλnx+ny+nm

(nx)!(ny)!(nm)!

(
1− pmatch

2

)nx+ny

pnm

match. (6.6)

By now combining the expressions from Equation 6.5 and Equation 6.6, the full expression for the
marginal of the matching structure is obtained,

fM,Nm,Nx,Ny,T |λ,pmatch
(m, nm, nx, ny, nm + nx + ny | λ, pmatch) =

e−λλnx+ny+nm

(nx + nm)!(ny + nm)!

(
1− pmatch

2

)nx+ny

pnm

match. (6.7)

6.2.2 Likelihood of the records

By sampling the records according to the procedure that we described previously, we obtain the
following expression on the likelihood of the records fx,y|M,Nm,Nx,Ny

. Let {i : Mi > 0} be the set
of indices i ∈ {1, . . . , N1} for which xi ∈ x is matched to yj ∈ y for some j ∈ {1, . . . , N2}.

fx,y|M,Nm,Nx,Ny
(x,y | M = m, Nm = nm, Nx = nx, Ny = ny) =

l∏
s=1

(nx+nm∏
i=1

θsxis

)ny+nm∏
j=1

θsyjs

 ∏
{i:mi>0}

P (xis, ymis | M)

θsxis
θsymis

 .


Note that nx + nm is equal to the number of records in the x database, since the x database
is composed of singleton records nx appearing only in x, and matched records nm appearing in
both x and y. Analogously, ny + nm is equal to the number of records in the y database. The
term P (xis, yMis | M), which describes the sampling of a field of two records given that these are
matched, can be decomposed by splitting over the cases xis = yMis and xis ̸= yMis. Start by
considering xis = yMis:

P (xis = yMis | M) = (1− β)2θsymis
+ 2β(1− β)θsxisθsymis

+ β2θsxisθsymis

= (1− β)2θsymi
s + β(2− β)θsxis

θsymis
.

Where θsxis = θsyMi
s, since we assumed that xis = yMis. In case both are equal to the sampled

value of vs, the term in which (1−β)2 appears, we can replace this probability with θsxis or θsyMi
s

since the vs are sampled from the same distribution as the singletons. In case, xis ̸= yMis:

P (xis ̸= yMis | M) = 2β(1− β)θsxis
θsymis

+ β2θsxis
θsymis

= β(2− β)θsxisθsymis
.

Again we have used here that vs is sampled from the same distribution as the singletons. By
combining the two cases, we obtain the following

P (xis, yMis | M) = β(2− β)θsxisθsymis
+ (1− β)2θsymis

1(xis = ymis).
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Thus, if we now substitute this back into the expression we had starting out, then the expression
for the likelihood can be obtained,

fx,y|M,Nm,Nx,Ny
(x,y | M = m, Nm = nm, Nx = nx, Ny = ny) = l∏

s=1

(
nx+nm∏

i=1

θsxis

)ny+nm∏
j=1

θsyjs

 ·
l∏

s=1

∏
{i:mi>0}

(
β(2− β) +

(1− β)2

θsxis

(xis = ymis)

)
.

(6.8)

6.2.3 The joint distribution

The complete expression for the joint distribution can be obtained by combining Equation 6.7,
Equation 6.8, and the priors for λ and pmatch. This results in the following

fx,y,M,Nm,Nx,Ny,T,λ,pmatch
(x,y,m, nm, nx, ny, nm + nx + ny, λ, pmatch) =

e−λλnx+ny+nm

(nx + nm)!(ny + nm)!

(
1− pmatch

2

)nx+ny

pnm

match l∏
s=1

(
nx+nm∏

i=1

θsxis

)ny+nm∏
j=1

θsyjs


l∏

s=1

∏
{i:mi>0}

(
β(2− β) +

(1− β)2

θsxis

(xis = ymis)

)
· π(λ) · 1{pmatch∈[0,1]}

(6.9)

6.3 Posterior distribution

6.3.1 Metropolis-within-Gibbs sampler

After having established the statistical model for the Bayesian record linkage. A Metropolis-within-
Gibbs scheme is used to sample from the posterior distribution (M, λ, pmatch) | (x,y) [Zan17].
Given (x,y,M) the two parameters λ and pmatch are conditionally independent, with the following
distributions:

pmatch | x,y,M ∼ Beta(1 +Nm, 1 +N1 +N2 − 2Nm) (6.10)

λ | x,y,M ∼ Gamma[max{N1,N2},N1+N2](1 +N1 +N2 −Nm, 1). (6.11)

Where the Gamma[min{N1,N2},N1+N2] refers to the truncated Gamma distribution. This means
that for X ∼ Gamma, X|{X ∈ [min{N1, N2}, N1 + N2]} ∼ Gamma[min{N1,N2},N1+N2]. Sampling
from the posterior distributions for λ and pmatch is straightforward. However, for the posterior
distribution of M this is less straightforward. Thus, MCMC sampling will be used to generate
insight into this distribution, which is proportional to

P (M | x,y, λ, pmatch) ∝ (6.12)∏
{i:mi>0}

(
4pmatch

λ(1− pmatch)2

l∏
s=1

(
β(2− β) +

(1− β)2

θsxis

1(xis = ymis)

))
.

This sampling scheme alternates between Gibbs updates for λ and pmatch, and Metropolis-Hastings
updates for M. The challenge lies in efficiently updating the matchings for M. This is also
where continuous-time samplers will be compared to the pointwise informed proposals as found
in [Zan17]. The basis of the Metropolis-Hastings sampling algorithm is the random walk proposal
kernel Q(M,M′). It starts by sampling a random couple (i, j) ∈ {1, . . . , N1}×{1, . . . , N2}. Based
on the current configuration of the matching M, an update is made to obtain the proposed state
M′. As the move that is performed depends on whether the xi and yj are currently matched to
another record, we also need to be able to reason about the record in x to which the record yj
could potentially be coupled, i.e. to see whether it is still considered a singleton. Therefore, define
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the following

M−1
j =

{
i ∈ {1, . . . , N1} such that Mi = j {i ∈ {1, . . . , N1} :Mi = j} ≠ ∅
0 otherwise.

(6.13)

Note that M−1
j = i, if and only if Mi = j. Hence, instead of reasoning about the matches from

the entries in the x database, we reason from the y database when we consider M−1
j . Thus, given

a current M and a random couple (i, j), the following operations are performed to obtain the
proposal state M′.

Algorithm 5 Updating M

Given: M (current configuration), (i, j) (random couple)
Goal: update to M′

if Mi = 0 and M−1
j = 0 then

Move 1: Mi = j
else if Mi = j then

Move 2: Mi = 0
else if Mi = 0 and M−1

j = i′ for some i′ ∈ {1, . . . , N1} then
Move 3: Mi = j and Mi′ = 0

else if Mi = j′ for some j′ ∈ {1, . . . , N2} and M−1
j = 0 then

Move 4: Mi = j
else if Mi = j′ for some j′ ∈ {1, . . . , N2} and M−1

j = i′ for some i′ ∈ {1, . . . , N1} then
Move 5: Mi = j and Mi′ = j′

end if

The accept-reject probability of this proposal kernel, for standard Metropolis-Hastings, takes
the following form:

α(M,M′) = min

{
1,
P (M′ | x,y, λ, pmatch)

P (M | x,y, λ, pmatch)

}
. (6.14)

Note that the part of the ratio relating to the proposal kernel Q always vanishes, since
Q(M′,M) = Q(M,M′) for every M ∈ χ and every M′ ∈ χ such that M′ = (i, j) ⋆ M. As
every pair (i, j) ∈ {1, . . . , N1}×{1, . . . , N2} is drawn with equal probability, we only need to count
the number of pairs which correspond to a transition from M to M′ and the number of pairs with
which we can go back from M′ to M, to ensure that the proposal kernel Q is symmetric. We will
do this by considering each of the five possible moves as stated in Algorithm 5.

Before we will do this, the situations in which each one of the possible five moves occurs will be
explained. Note that a chosen generator is always of the form (i, j), where i ∈ {1, . . . , N1} refers to
an index of a record in x and j ∈ {1, . . . , N2} to an index of a records in y. Thus, when a generator
(i, j) is drawn we want to try the matching xi and yj . However, the exact action that we propose
also depends on the the current configuration of the vector M, as can be seen in Table 6.2.

Table 6.2: An overview of the five moves

Move Situation Action
1 xi and yj are currently seen as sin-

gletons
xi and yj are matched

2 xi and yj are currently matched unmatch and consider both xi and yj
as singletons

3 xi is seen as a singleton and yj is
matched to some xi′

match xi and yj , xi′ is considered a
singleton

4 xi is matched to some yj′ and yj is
considered a singleton

match xi and yj , and set yj′ to be a
singleton

5 xi is matched to some yj′ , and yj is
matched to some xi′

match xi and yj , and match xi′ and
yj′

Suppose that M transitions to M′ by a move 1 operation, then this can only occur if the unique
pair (i, j) is sampled, where the i and j are as described in the updating algorithm. Hence, in the
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case of a type 1 move, both the xi and the yj record were unmatched in M, and are linked to each
other in M′ as Mi = j. On the other hand, M′ can only be changed back to M if the proposed
move for the pair (i, j) is accepted, since this deletes the newly made matchingMi = j only if (i, j)
were matched in the previous configuration. Therefore, if M becomes M′ by a type 1 move, then
for these two states the proposal kernel is symmetric. Similarly, we can see that a type 2 move
is also only obtained for a unique pair (i, j), where the move is set back if the previously deleted
linked records Mi = j are linked again.

Alternatively, suppose that M is set to M′ by a type 3 move. This means that we have sampled
a pair (i, j), where the xi record is currently unmatched and the yj is matched to some xi′ , i.e.
Mi′ = j. After performing the move, we set Mi = j and match the xi and the yj record, and we
unmatch the yj record. As we set Mi = j, the sampled pair (i, j) uniquely determines the state
M′, meaning that we can only go from M to M′ in one way. When we want go back from M′ to
M, we need to match the pair xi′ and yj , and unmatch the pair Xi and yj . This can be done by
sampling the pair (i′, j), which is again a type 3 move, where yj is already matched to xi and xi′

is still unmatched. Hence, after setting Mi′ = j and unmatching xi we are back at state M again.
In case a type 4 move is performed to go from M to M′, the situation is similar to the one for

a type 3 move, only with the x and y databases inverted. Again, a pair (i, j) is sampled where xi
is already matched to some yj′ , hence Mi = j′, and yj unmatched. When performing the move we
set Mi = j and unmatch yj′ . This can indeed only be done in one way since we set Mi = j for the
sampled pair (i, j). If we now want to go back from M′ to M, then we need to sample the pair
(i, j′). After which we set Mi = j′ and unmatch the record yj , which means that we are back in
the state M.

Lastly, the case in which a type 5 move is performed to go from M to M′. If the pair (i, j) is
sampled where xi and yj are already currently matched, i.e. Mi = j′ and Mi′ = j for some xi′

and yj′ , then we switch both the matched pairs and set Mi = j and Mi′ = j′. As the two pairs
of record are essentially swapped with respect to their current matching, the same state M′ could
have been reached if the pair (i′, j′) was sampled. Similarly, if we want to go from M′ back to M,
we can do this by sampling either (i′, j) or (i, j′) by the same reasoning as before. Therefore, this
shows that the proposal kernel Q is symmetric, and further explains the way in which the current
state M is updated.

6.3.2 Continuous-time sampling

Continuous-time sampling, with the Zanella and the Tabu sampler, will be performed for the
posterior distribution M | x,y, λ, pmatch. The state space X contains all the possible maps ψ :
{1, . . . , N1} → {1, . . . , N2}∪{0} such that the map is injective when restricted to ψ−1[{1, . . . , N2}].
By construction of the forward model, only two records can refer to the same entity. Whereas,
each database is not limited to a certain number of singletons a priori.

The neighbouring structure of the state space takes the following form

∂M = {M′ : ∃(i, j) ∈ {1, . . . , N1} × {1, . . . , N2} such that M′ = (i, j) ⋆M}. (6.15)

Where the group action ⋆ is defined by the steps described in Algorithm 5. Hence, the considered
generators will be (i, j) ∈ {1, . . . , N1} × {1, . . . , N2}.

6.3.3 Derivation of the posterior

Here we will derive the posteriors from which we sample in the Metropolis-within-Gibbs sampler.
The starting point will indeed be the joint distribution as stated in Equation 6.9. Firstly, we will
replace the random variables Nx and Ny, the number of singleton records in x and y respectively,
with the random variables N1 and N2. As N1 and N2 refer to the lengths of the x and y database,
this is more convenient when we observe x and y directly. In addition, this substitution is straight-
forward as it holds that N1 = Nx +Nm and N2 = Ny +Nm. Lastly, we will change to Bayesian
notation when we refer to the posterior distributions.

The first step is to condition on the databases x and y, from which it follows that we end up
with the following conditional density:

fM,Nm,N1,N2,T,λ,pmatch|x,y(m, nm, n1, n2, n1 + n2 − nm, λ, pmatch | x,y) =
fx,y,M,Nm,N1,N2,T,λ,pmatch

(x,y,m, nm, n1, n2, n1 + n2 − nm, λ, pmatch)

fx,y(x,y)
.
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Since the two databases x and y are observed, the term fx,y(x,y) is essentially a constant under
this observed information. Therefore, the posterior density is proportional to the joint,

fM,Nm,N1,N2,T,λ,pmatch|x,y(m, nm, n1, n2, n1 + n2 − nm, λ, pmatch | x,y) ∝
fx,y,M,Nm,N1,N2,T,λ,pmatch

(x,y,m, nm, nx, ny, n1 + n2 − nm, λ, pmatch).

Before we can derive the posteriors that we use to sample from the Metropolis-within-Gibbs sam-
pler, we need to choose the specific priors for λ and pmatch. For λ we have chosen a uniform distri-
bution on the range of possible sizes of the merged database, namely [max{N1, N2}, N1+N2]. Since
pmatch is a probability, we have opted for a uniform distribution on the interval [0, 1]. Resulting in
the following priors:

λ ∼ Unif([max{N1, N2}, N1 +N2]); (6.16)

pmatch ∼ Unif([0, 1]). (6.17)

Furthermore, we can omit the explicit mention of the random variables Nm, N1, N2, and T by
noticing a few things:

N1 : The number of records in x; (6.18)

N2 : The number of records in y; (6.19)

Nm = #{i :Mi > 0}; (6.20)

T = N1 +N2 −Nm. (6.21)

Thus, by being a conditional probability density for m, λ, pmatch | x,y, given the databases x and
y and for a certain vector m all of the random variables in Equation 6.18 are already determined.
This means that we do not need to explicitly mention them in the conditional density. Therefore,
this fact and the specific priors lead to the following conditional density:

fM,λ,pmatch|x,y(m, λ, pmatch | x,y) ∝

e−λλn1+n2−nm(m)

n1!n2!

(
1− pmatch

2

)n1+n2−2nm

pnm

match

l∏
s=1

∏
{i:mi>0}

(
β(2− β) +

(1− β)2

θsxis

(xis = ymis)

)

· 1(pmatch ∈ [0, 1]) · 1(λ ∈ [max{n1, n2}, n1 + n2])

min{n1, n2}
.

Now, we can derive the posterior distributions for the Gibbs sampling scheme. From this point
we will also replace the conditional densities with the Bayesian conditional probability notation.
Note that conditional on (x,y,M) the two parameters λ and pmatch are conditionally independent
[Zan17]. We start by considering pmatch | x,y,M. Then we obtain

P (pmatch | x,y,M) ∝ pnm

match(1− pmatch)
n1+n2−nm

∝
pnm

match(1− pmatch)
n1+n2−2nm

B(1 + nm, 1 + n1 + n2 − 2nm)
.

Which is exactly the density function of a Beta(1 +Nm, 1 +N1 +N2 − 2Nm) distribution.
Similarly, by considering λ | x,y,M, it can be concluded that

P (λ | x,y,M) ∝ e−λλn1+n2−nm1(λ ∈ [max{n1, n2}, n1 + n2])

∝ e−λλn1+n2−nm1(λ ∈ [max{n1, n2}, n1 + n2])

Γ(α)P (λ ∈ [max{n1, n2}, n1 + n2] | x,y,M)
.

We see that this is exactly the density function of a truncated (or conditional) Gamma[min{N1,N2},N1+N2](1+
N1 +N2 −Nm, 1) distribution.

Lastly, we consider M | x,y, λ, pmatch,

P (M | x,y, λ, pmatch) ∝
pmatch4

nm

λ(1− pmatch)nm
·

l∏
s=1

∏
{i:mi>0}

(
β(2− β) +

(1− β)2

θsxis

(xis = ymis)

)
.
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Now, we can get rid of the Nm random variable by noting that Nm = #{i : Mi > 0} and by
rearranging the term in the product operator. Therefore, we end up with the following posterior
(up to proportionality):

P (M|x,y, λ, pmatch) ∝ ∏
{i:mi>0}

(
4pmatch

λ(1− pmatch)2

l∏
s=1

(
β(2− β) +

(1− β)2

θsxis

1(xis = ymis)

))
.
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Chapter 7

Numerical simulations

In this section we will perform numerical simulations using the target distributions that arise
from the examples as presented in chapter 5 and chapter 6. All of these simulations were per-
formed using code written in Python 3 and available at https://github.com/BjarneHerben/

CodeDiscreteStochSim. The aim of these simulations is to compare the pointwise informed pro-
posals as described in chapter 3 and the continuous time samplers introduced in chapter 4. The
connection between these sampler philosophies is that both use the same balancing functions to
incorporate local information about the target in the sampling process. Therefore, as the aim is to
compare these approaches, the Barker balancing function g(t) = t/(1 + t) has been used for each
sampler.

7.1 The considered MCMC schemes

In this section four MCMC schemes are compared: random walk Metropolis-Hastings (MH), point-
wise informed proposal with the Barker balancing function, the Zanella process, and the Tabu
sampler. The random walk MH and the informed proposal sampler are discrete time Markov pro-
cesses. Whereas, the Zanella and the Tabu sampler are Markov Jump Processes (MJP) with the
jumping rates being calculated with the Barker balancing function, where the rate to jump from
y ∈ X to x ∈ X is calculated by g(π(y)/π(x)). With X the considered discrete state space and π
the target density.

The starting point for the discrete-time samplers is the uniform kernel on a neighbourhood of
the current state x, hence resulting in the following kernel: K(x, ·) = Unif(N(x)), with N(x) the
neighbourhood of x. In the considered examples, these neighbourhoods are regular in the sense
that every state has the same number of neighbours. For example, in the case of independent
binary components this amounts to each state that can be accessed by flipping one component.
For the continuous time samplers, we reason not from the perspective of possible moves, but from
generators that can be applied to the current state to obtain a new one, i.e. a move is performed
when a generator is applied to the current state. However, by indexing each possible move as a
generator that can be applied, this translates to a similar traversion of the state space.

7.2 Continuous-time implementation

As described by algorithm 3 and algorithm 4, a MJP can be simulated directly on a discrete state
space. Therefore, if we wish to estimate Eπ[f(X)] for f : χ → R by simulating a MJP (X)t∈[0,T ],
we will obtain an estimate that is close to the actual value of Eπ[f(X)] if we simulate the Markov
chain long enough. This follows from the fact the empirical average of the process converges to
the actual value in the limit [PG19]:

lim
T→∞

1

T

∫
[0,T ]

f(Xs) ds = Eπ[f(X)]. (7.1)

The integral on the left-hand side, which is used as an estimator for some T finite, will be calculated
by applying a thinning procedure to the simulated Markov chain. A value 0 < ϕ < T is chosen such
that T/ϕ is an integer. At each multiple of T/ϕ the state of the process is recorded. Furthermore,

40

https://github.com/BjarneHerben/CodeDiscreteStochSim
https://github.com/BjarneHerben/CodeDiscreteStochSim


ϕ is also chosen to be approximately the mean event time after the MJP has reached stationarity.
Therefore, this would result in the following estimate for the expectation:

Eπ[f(X)] ≈ ϕ

T

T
ϕ∑

i=0

f(Xi). (7.2)

7.3 Independent Binary Components

Simulating independent binary components is a toy example, since we are in fact able to simulate
samples from this target density directly. However, as we know that the Barker balancing function
(g(t) = t/(1 + t)) is the optimal balancing function leading to the smallest mixing time of the
chain [Zan17], it is interesting to consider whether the continuous time samplers could still be an
improvement over the optimal pointwise informed sampler.

Recall from section 5.1 that x ∈ χ(n) = {0, 1}(n), where the target distribution takes the
following form:

π(n)(x) =

n∏
i=1

p1−xi
i (1− pi)

xi . (7.3)

The parameter n is used to control the dimensionality of the state space and has been set to
n = 1000 for the considered simulations. In addition, each probability pi has been simulated from
a uniform distribution, i.e. pi ∼ Unif([0, 1]) for i ∈ {1, . . . , n}.

Figure 7.1: Traceplot of the log energy of the target density of the four considered samplers for
independent binary components.

The traceplots in Figure 7.1 and Figure 7.2 are similar and suggest that the Zanella process
and Tabu sampler are performing the best, where the Zanella process is doing marginally better for
the effective sample sizes. As expected, the random walk MH sampler performs the worst with the
pointwise informed proposal being a considerable improvement over the aforementioned sampling
scheme. In the autocorrelation plot in Figure 7.3, the same conclusion can be drawn, only differing
in the fact that the Zanella process and Tabu sampler are indistinguishable when it comes to the
autocorrelation of the summary statistics.

The Gelman-Rubin diagnostic, see Table 7.1, suggests that all samplers do indeed properly
convergence. The Tabu sampler converges slightly faster than the Zanella process. This is to
be expected as the Tabu sampler is non-reversible on short to medium timescales. However, the
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Figure 7.2: Traceplot of the Hamming distance to the state where each binary component is flipped
to 1.

Figure 7.3: Autocorrelation plot for all four samplers for the two considered summary statistics:
log energy of the target density and Hamming distance. The autocorrelation has been calculated
for the traces as displayed in Figure 7.1 and Figure 7.2.

difference is hardly significant by the perceived smoothness of the target distribution, since the
mean reversion time is merely 33 for the Tabu sampler. Therefore, in this case the Tabu sampler
and Zanella process perform equally well, where the Zanella process has a higher effective sample
size per unit of runtime as each iteration requires slightly less computations when compared to the
Tabu sampler.

The main takeaway is that the continuous time samplers do seem to be able to outperform the
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Sampler N = 1000 N = 5000 N = 10000
Random walk 1.4986 1.0698 1.0480
Pointwise sampler 1.3327 1.0332 1.0675
Zanella sampler 1.0703 1.0259 1.0092
Tabu sampler 1.0376 1.0146 1.0051

Table 7.1: The R̂ value of the Gelman-Rubin diagnostic of the four considered samplers for different
values of N . For each iterative simulation m = 10; 10 different iterative sequences were simulated
for comparison.

pointwise informed proposal sampler in spite of the former being optimal for this class of MCMC
schemes.

7.4 Weighted permutations

Sampling from a distribution of weighted permutations is a non-trivial task often accomplished by
MCMC schemes. Recall from section 5.2, that we have following target density

π(n)(ρ) ∝
n∏

i=1

wiρ(i).

The base kernel K(ρ, ·) is uniform on the neighbourhood defined in Equation 5.2. The generators
used for the Tabu sampler and Zanella process are defined in Equation 5.3.

Sampler λ = 1 λ = 2 λ = 3 λ = 4 λ = 5
Random walk 0.3876 0.1816 0.1620 0.1422 0.1322
Pointwise sampler 0.7154 0.7778 0.8544 0.8708 0.8684

Table 7.2: Evolution of the acceptance ratios of the pointwise and the random walk sampler in the

setting: n = 100, N = 1000, and log(wij)
iid∼ N (0, λ2). The acceptance ratios have been obtained

by averaging over 5 runs, where for each run the weights were re-sampled. The starting position
has been the identity permutation for each run, i.e. ρ(1) = 1, ρ(2) = 2, etc.

Sampler λ = 1 λ = 2 λ = 3 λ = 4 λ = 5
Random walk 83.2670 25.5077 26.1798 24.1437 55.5518
Pointwise sampler 1.5926 0.3407 0.4444 0.3520 1.0972
Zanella sampler 1.3632 7.5518 8.4628 77.7086 165.1725
Tabu sampler 2.1678 7.3387 21.7478 67.3799 185.4858

Table 7.3: Evolution of the effective sample size of the Hamming distance relative to the identity

permutation, in the setting: n = 100, N = 1000, and log(wij)
iid∼ N (0, λ2). The acceptance ratios

have been obtained by averaging over 5 runs, where for each run the weights were re-sampled. The
starting position has been the identity permutation for each run, i.e. ρ(1) = 1, ρ(2) = 2, etc.

For the simulations the weights are sampled i.i.d. according to log(wij) ∼ N (0, λ2). This means
that the parameter λ can be used to control the smoothness of the target distribution, where
decreasing λ results in an increase of the smoothness of the target. For example, by taking λ = 0,
the pointwise informed proposal sampler collapses to the random walk MH sampler. Furthermore,
both the Zanella process and Tabu sampler become a MJP with uniform jump rates to neighbouring
states. As a larger value of λ causes the weights of the permutations wij to exhibit a higher degree
of differentiation, this is expected to result in a higher acceptance rate for the pointwise sampler
and a lower acceptance rate for the random walk MH sampler. The results in Table 7.2 confirm
this. Similarly, by increasing λ the target distribution is also expected to express a higher level of
multi-modality. In order to analyze how this affects the performance of the samplers, the effective
sample size of the log energy of the target density has been considered in Table 7.3. The obtained
values for the discrete time samplers are mostly inconclusive. However, the higher value for the
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Figure 7.4: Traceplot of the log energy of the target density of the four considered samplers for
weighted permutations. The plot has been generated in the setting: n = 500, N = 10000, and

log(wij)
iid∼ N (0, λ2) for λ = 5.

Sampler N = 1000 N = 5000 N = 10000
Random walk 36.211 22.5390 15.9962
Pointwise sampler 102.8996 35.4290 12.3601
Zanella sampler 7.5457 14.4057 13.5076
Tabu sampler 22.0393 83.9910 39.9017

Table 7.4: The R̂ value of the Gelman-Rubin diagnostic of the four considered samplers for different

values of N . The setting: n = 100 and log(wij)
iid∼ N (0, λ2) for λ = 5. For each iterative simulation

m = 10; 10 different iterative sequences were simulated for comparison.

random walk sampler could suggest that the pointwise sampler is more likely to get stuck in a
single mode of the target. Between the Zanella process and Tabu sampler it seems that the Tabu
sampler performs better when the distribution becomes more multi-modal, this could be caused by
the Tabu sampler being self-avoiding over short to medium timescales. However, also the Zanella
process performs significantly better when the ”roughness” of the target distribution increases. A
possible explanation could be that by also sampling the time at which the moves occur, resulting
in a rejection-free sampling algorithm (see algorithm 3), the sampler is able to overcome the fact
that moves to lower probability states are typically rejected.

For the traceplots in Figure 7.5 and Figure 7.4 we have set λ = 5 and n = 500. In Figure 7.5, in
which a traceplot of the Hamming distance to the highest probability state is displayed, it seems
that only the pointwise sampler has reached stationarity. The Zanella process and Tabu sampler
are still slowly getting closer to the highest probability state. On the other hand, it seems that
the random walk sampler has had too few accepted moves to reach stationarity. However, as this
sampler takes the shortest time to compute, it has the highest effective sample size per unit of
time. The traceplot of the log energy of the target density π in Figure 7.4 is in line with what
the observations made based on the traceplot of the Hamming distance. Despite behaving as a
stationary Markov chain, the log energy of the target density for the Zanella process and Tabu
sampler are significantly higher than for the pointwise sampler. As both seem to slowly jump to
higher and higher probability states, with the Tabu sampler doing so slightly faster. This seems
to hint to the fact that the pointwise sampler is getting stuck in a single mode of the target
distribution, which could also be an explanation for the especially high acceptance rate.
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Figure 7.5: Traceplot of the Hamming distance to the highest probability state of the four consid-
ered samplers for weighted permutations. The plot has been generated in the setting: n = 500,

N = 10000, and log(wij)
iid∼ N (0, λ2) for λ = 5

Figure 7.6: Autocorrelation plot for all four samplers for the two considered summary statistics:
log energy of the target density and Hamming distance. The autocorrelation has been calculated
for the traces as displayed in Figure 7.4 and Figure 7.5.

The Gelman-Rubin diagnostic, for which the results can be found in Table 7.4, strongly confirms
the suspicion that the simulation chains are yet to exhibit proper mixing convergence. Although,
the Gelman-Rubin diagnostic is not directly interpretable in terms of the cause of the convergence
issue, the traceplots in Figure 7.4 and Figure 7.5 suggest that the difficulty to traverse the entire
state space is the main candidate cause to consider. Therefore, we have studied the performance of
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the four samplers for varying degrees of roughness of the target distribution, from which it can be
concluded that the continuous time samplers appear to have a higher level of resilience to especially
multi-modal target distributions.

7.5 Bayesian Record Linkage

Record linkage is done to discover which records in a database refer to the same entity. This is useful
when merging two databases as it can be used to avoid the occurrence of duplicate records. The use
of Bayesian statistics to do this allows for an extra level of interpretability of the results, since the
likelihood that two records are matched can be directly observed. For a detailed explanation of the
example, the reader is referred to chapter 6. Recall that we intend to merge two databases x and
y with respective sizes N1 and N2. We assume that duplicates only occur between the databases
and not within. The posterior to which we will apply the four considered MCMC schemes takes
the following form:

P (M | x,y, λ, pmatch) ∝ (7.4)∏
{i:mi>0}

(
4pmatch

λ(1− pmatch)2

l∏
s=1

(
β(2− β) +

(1− β)2

θsxis

1(xis = ymis)

))
.

Contrary to the proposed Gibbs sampling scheme in section 6.3, we will suppose λ and pmatch to
be known. In the simulations these will be set equal to their ground truth values. When sampling
the databases used for the simulations, we will set λ = 50 and generate pmatch ∼ Unif([0, 1]). The
parameter λ has been set to 50 to restrict the computational complexity for sampling from the
posterior, pmatch has still been generated to account for the level of variability at which duplicates
occur in databases that need to be merged. The main reason for keeping λ and pmatch fixed is
to reduce the computational overhead, since sampling λ and pmatch from their posteriors at each
iteration would not allow for a smart update of the rates π(y)/π(x) as a different value for λ and
pmatch would cause each rate to change. Furthermore, as the main aim of the simulations is to
compare the performance of the different MCMC samplers on discrete spaces, the detriment of this
simplification to the results is rather limited. For the same reason, the Barker balancing function,
g(t) = t/(1 + t), has been used throughout.

Sampler β = 0.01 β = 0.05 β = 0.10 β = 0.20 β = 0.30
Random walk 0.2359 0.3093 0.6482 0.2613 0.5529
Pointwise sampler 47.8985 104.3751 86.3000 3.8337 1.1877
Zanella sampler 7.3942 135.3167 12.2272 0.4706 0.4020
Tabu sampler 282.6679 210.7233 3.7774 0.3639 0.4165

Table 7.5: Comparing the effective sample size of the Hamming distance to the golden truth
matching M for different values of β. This was considered for all four samplers, in the setting:
λ = 50 and N = 2000. For each value of λ the results are an average over 5 runs, where the
databases x and y have been regenerated for each run.

Sampler N = 100 N = 500 N = 1000
Random walk 2.2083 3.4042 3.2635
Pointwise sampler 1.4769 1.4860 1.1625
Zanella sampler 2.2376 1.2449 1.4690
Tabu sampler 1.4130 1.5915 1.3832

Table 7.6: The R̂ value of the Gelman-Rubin diagnostic of the four considered samplers for different
values of N . For each iterative simulation m = 10; 10 different iterative sequences were simulated
for comparison. This was done in the setting: λ = 50, β = 0.3, and pmatch = 0.95.

The β parameter is used to describe the noise that occurs between records referring to the same
entity; β is the probability that a category of a matched record is sampled as if it were a singleton
and not set equal to the golden truth value. Therefore, the β parameter can be used to control the

46



Figure 7.7: Traceplot of the number of matched records of the Bayesian Record Linkage problem
for all four considered samplers. The setting: β = 0.3, λ = 50, and pmatch = 0.50.

degree of multi-modality and smoothness of the target distribution. For β = 0 the target becomes
extremely rough with a single mode, as two records can be only be matched together with non-
zero probability if they are exactly equal, i.e. the same category in each field. On the other hand,
for β = 0 the distribution becomes uniform as the level of similarity between two records carries
no information about whether the records refer to the same entity. The effect of different values
of β for the effective sample sizes of the summary statistic being the Hamming distance to the
golden truth matching can be found in Table 7.5. In line with the observations from the previous
example, the Tabu sampler seems to perform the best when the target is especially rough, i.e. for
β = 0.01. The Zanella process seems to be better suited for situations where the target is slightly
smoother having an effective sample size peak for β = 0.05. The performance of the pointwise
informed proposal sampler seems to be similar, albeit being less sensitive to an increasing level of
smoothness. Overall, it is clear that incorporation of local information about the target has the
best return on computational investment when the target is more peaked at its modes. For the
rest of the simulations we set β = 0.30, since this seems to lead to effective sample sizes for all the
considered samplers being somewhat similar. This has been chosen as it is deemed most suitable
to compare the qualitative performance of the samplers.

The traceplots in Figure 7.7, Figure 7.8, and Figure 7.9 suggest that all samplers reach station-
arity relatively quickly. The autocorrelation plot in Figure 7.10 confirms this observation, where
it also becomes apparent that the random walk sampler takes the longest time to converge. This
also results in the lowest effective sample size per unit of runtime for each considered summary
statistic. Despite being the quickest sampler to run, a low acceptance rate of proposed states
leads to the worst performance overall. The traceplot for the pointwise informed proposal looks
the best, with the traceplots for the Zanella process and Tabu sampler being nearly identical. A
similar conclusion can be drawn based on the effective sample sizes. For the Zanella process and
Tabu sampler this high level of similarity is not surprising with the mean reversion, average number
of iterations before the global move indicator τ is flipped (see algorithm 4), being merely 11. In
addition, this suggest that the target is relatively smooth. Moreover, in the Hamming distance
traceplot in Figure 7.8 it can be observed that all samplers are relatively close to the golden truth
matching, with the discrete time samplers being slightly closer compared to the Zanella process
and Tabu sampler.

The consistency of the estimates for the matches probabilities in Figure 7.1 reinforces the
previous observations that the pointwise sampler performs the best, then the Zanella process and
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Figure 7.8: Traceplot of the Hamming distance to the golden truth matching M for all four
considered samplers. The setting: β = 0.3, λ = 50, and pmatch = 0.50.

Tabu sampler with comparable results, and lastly, quite a bit worse, the random walk MH sampler.
Ideally, all points should be on the blue line as this indicates no variation between subsequent
matching estimates. However, the random walk sampler results have significant spread. Whereas,
the estimates are quite close to the blue line for the pointwise sampler. The Zanella process and
Tabu sampler estimates have marginally more spread, but seem to be positioned about the blue
line. The Gelman-Rubin diagnostic presents a similar ordering in the performances of the samplers,
for N = 2000 the pointwise informed proposal sampler is nearly below the threshold of R̂ < 1.1.
This is important since a R̂ value below 1.1 is typically interpreted as an indication of proper
convergence; no convergence issues are detected. The R̂ values for the Zanella process and Tabu
sampler are not monotone decreasing with respect to the N values. This could be due to the
fact that especially for N = 100, the sample size could be too small to conclude on convergence.
However, due to the computational resources needed for the Gelman-Rubin diagnostic, larger
values of N were infeasible. On the other hand, as the R̂ values are not far off from 1.1 it is not
unreasonable to assume that for N = 10000, as is the case for the traceplots, the Zanella process
and Tabu sampler have reached stationarity. The R̂ values for the MH random walk sampler are
in line with the slow convergence as observed in the other plots.

The performance of the four samplers is as expected when it comes to sampling from the
posterior for Bayesian record linkage. The pointwise sampler performs the best for β = 0.30, where
it should be remarked that this results in quite a smooth posterior distribution. The continuous
time MCMC sampling schemes, Zanella and Tabu, are not significantly worse. The fact that
the effective sample sizes are less could be explained by the fact that for the continuous time
samplers also the clock of the process need to be sampled, which results in more computations
needed to sample. In case the posterior has a high level of ”roughness”, as can also be seen in
Table 7.5, this process time sampling seems to be an advantage in adding some extra freedom in
generating samples. However, as the distribution becomes smoother, the returns on doing these
extra computations decrease. In the extreme case, for a totally uniform distribution on the state
space the random walk sampler will certainly be most efficient as incorporating local information
has no added benefit.
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Figure 7.9: Traceplot of the log energy of the target density for all four considered samplers. The
setting: β = 0.3, λ = 50, and pmatch = 0.50.
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Figure 7.10: Autocorrelation plot for all four samplers for the three considered summary statistics:
number of matched records, log energy of the target density, and Hamming distance. The autocor-
relation has been calculated for the traces as displayed in Figure 7.7, Figure 7.8, and Figure 7.9.
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Figure 7.11: The estimated matching probabilities for each pair of records for two runs of all the
four considered samplers. This has been done in the setting: λ = 50, β = 0.3, and pmatch = 0.53.
For both runs the same set of generated databases x and y was used. The starting state was
random and resampled for the second iteration.

51



Chapter 8

Discussion and future work

In this work we compared the MCMC sampling schemes on discrete state spaces as presented
in [Zan17] and [PG19]. These two papers both used balancing functions, see theorem 3.1. The
discrete-time Markov chains used the balancing functions to created pointwise informed Metropolis-
Hastings proposals [Zan17]. The continuous-time samplers used these functions to calculate the
jumping rates for the simulated Markov jumping process. The theory on these samplers was
introduced in chapter 3 and chapter 4.

Performance of the MCMC sampling schemes

The two discrete time samplers considered were the random walk MH and the pointwise informed
MH. The two continuous time samplers were the Zanella process and the Tabu sampler. For a
performance-wise comparison three examples were used, most notably a variant of the Bayesian
record linkage problem was considered. Based on the simulations it can be envisaged that the re-
turns for using the continuous time samplers, in comparison to the discrete time samplers, increase
with the “roughness” of the target distribution; where roughness refers to the difference between
the high and low probability states and the number of modes of the target, i.e. how peaked the
distribution is around its modes and how many modes there are. This could cause the MCMC
scheme to get stuck in a single mode of the target, however, the rejection free continuous time
algorithms are more encouraging toward the mixing of the simulated chain. Part of this could be
explained by the fact that for the continuous time samplers a move to a low probability state only
needs to be proposed, on the other hand, if such a move was proposed in the framework of MH,
the proposed step also needs to accepted in the accept-reject step. Especially the Tabu sampler
with its non-reversibility on short to medium timescales can be a useful remedy to getting stuck
in a subset of the state space. On the other hand, the pointwise informed proposal (MH) sampler
is more prone to this problem. Thus, the continuous time samplers seem to be more robust in
exploring a highly irregular posterior distribution. In particular, the Tabu sampler can be useful
in making inferences from a posterior with a high level of multi-modality. Although, there are not
yet theoretical results that can solidify this conjectured efficiency of the Tabu sampler for highly
irregular target distributions.

Theoretical outlook

The theory on choosing the optimal balancing function is far from complete. Currently, the main
theoretical result is on the balancing functions being Peskun optimal among the functions that
can be used to incorporate local information into the proposal kernel for Metropolis-Hastings sam-
pling, see theorem 3.3. Based on the discussion in [PG19], a heuristic choosing procedure for the
balancing function in the Zanella process was proposed. The procedure, aimed at making a reason-
able trade-off between similarity of the invariant jump measure to the target distribution, and the
encouragement of mixing behaviour. More work on the validity of the heuristic, considered met-
ric, and overdispersed distribution can provide new insights into the characteristics of a successful
balancing function. Furthermore, the application of more advanced machine learning techniques
on the considered data could catalyze new ideas and stimulate theoretical advancements.
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Implementation practicalities

The simulated datasets used for the Bayesian record linkage problem were relatively small, with the
number of total unique records in the databases x and y following a Poisson(50) distribution. The
main reason for doing this is that the number of possible pairings between records in the x and y
databases scales with a factor N1 ·N2, where N1 and N2 refer to the number of records in the x and
y databases respectively. Hence, calculating the rates for each possible move consumes considerable
computational resources. A way to reduce this effect, which works if the term π(y)/π(y) factorizes
conveniently as is often the case, is by only smartly updating the move probabilities g(π(y)/π(x))
after a move has been performed.

Another possible solution could be the consideration of a block-wise implementation as sug-
gested in [Zan17]. This would mean that a smaller sub-neighbourhood of the current state
N ′(x) ⊆ N(x) for x ∈ X is selected. For the continuous time samplers, the exact same approach
can be implemented. Interesting for this approach is also to consider the trade-off between com-
putational and statistical efficiency. Smaller neighbourhoods N ′(x) require less moves for which
g(π(y)/π(x)) has to be calculated. However, as less moves are considered at each iteration, the
statistical efficiency of the generated samples decreases. It would also be interesting to compare
the effects of a block-wise implementation to the discrete and continuous time samplers.

Another reason for the implemented samplers being relatively slow is that all the implementa-
tions were done in Python 3. Despite using as much build-in functions as possible, especially from
the NumPy module. Implementation in a faster, more advanced, programming language like C or
FORTRAN would significantly reduce the time needed to complete the simulations. A minor step
in this direction has been taken with the use of the Numba module, which compiles Python code
into significantly faster machine code. However, even this module can be relatively tricky to apply
to more complex operations. As writing bug-free code was already quite a challenge, and took
more rewriting than a priori expected, it was outside of the scope of this project unfortunately to
also master usage of the Numba module.
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