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Full Length Article

A novel intelligent health indicator using acoustic waves:
CEEMDAN-driven semi-supervised ensemble deep learning

Morteza Moradi *, Georgios Galanopoulos , Thyme Kuiters , Dimitrios Zarouchas
Center of Excellence in Artificial Intelligence for Structures, Prognostics & Health Management, Aerospace Engineering Faculty, Delft University of
Technology, Kluyverweg 1, Delft 2629 HS, the Netherlands
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A B S T R A C T

Designing health indicators (HIs) for aerospace composite structures that demonstrate their
health comprehensively, including all types of damage that can be adaptively updated, is chal-
lenging, especially under complex conditions like impact and compression-fatigue loadings. This
paper introduces a new AI-based approach to designing reliable HIs (fulfilling requir-
ements—monotonicity, prognosability, and trendability—referred to as ’Fitness’) for single-
stiffener composite panels under fatigue loading using acoustic emission sensors. It in-
corporates complete ensemble empirical mode decomposition with adaptive noise for feature
extraction, semi-supervised base deep learner models made of long short-term memory layers for
information fusion, and a semi-supervised paradigm to simulate labels inspired by the physics of
progressive damage. In this way, nondifferentiable prognostic criteria are implicitly implemented
into the learning process. Ensemble learning, especially using a semi-supervised network built
with bidirectional long short-term memory, improves HI quality while reducing deep learning
randomness. The Fitness function equation has been modified to provide a more trustworthy
foundation for comparison and enhance the practical reliability of the standard in prognostics and
health management. Ablation experiments are conducted, including variations in dataset division
and leave-one-out cross-validation, confirming the generalizability of the approach.

1. Introduction

Structural health monitoring (SHM) has been introduced in the last few decades as a way to provide in-situ measurements of the
state of engineering structures in real time and identify adverse changes in their structural integrity [1,2]. Also, SHM is essential for the
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prognostics and health management (PHM) framework, which aims to direct the industry toward condition-based maintenance (CBM)
policies that increase availability while lowering operating downtime and costs [3,4]. The shift into a CBM paradigm under a PHM
framework requires reliable SHM techniques.

The final level of SHM is the accurate estimation of the remaining useful life (RUL) through a prognostic model [5,6]. Of imperative
importance is the input to these models, which are features capable of correlating to degradation [7,8]. Such features are usually
referred to as health indicators (HIs) [9] and are an indirect output of the SHM data [10]. HIs can be directly tied to the damage
accumulation displaying a non-linear behavior, as damage progression is usually non-linear. For structural components, commonly
employed HIs are based on acoustic emission (AE) [11], strain distribution [12], stiffness [13], crack size [14,15], or crack density
[16]. However, the latter three cannot be directly measured in real-time by SHM systems. For the construction of capable HIs, re-
searchers have turned their attention to advanced processing methodologies to create suitable HIs. Principal component analysis
(PCA)-based algorithms [17,18,19], genetic programming [20,21], and other machine learning (ML) algorithms [10,22,23,24,25,26]
are usually employed for this process. The favorable properties of such HIs make them more appropriate for use in more complex
applications, like composite structures.

The quality and suitability of HIs are usually measured by three metrics: monotonicity (Mo), prognosability (Pr), and trendability
(Tr) [27], each commenting on a specific property of the HI. All three are crucial for enhanced HI quality and increased prognostic
accuracy [24], which can be considered as an objective function called “Fitness”. However, extracting HIs fulfilling the Fitness metric is
very challenging, even if we assume that informative SHM data is available, due to inhomogeneous material characteristics, variable
operational conditions, stochastic activation and interaction of damage mechanisms, and uncertainties. Therefore, desirable infor-
mation from SHM data should be effectively analyzed and then this information should be mapped to HI. Artificial intelligence (AI) and
signal processing (SP) are two major fields that can be helpful in this regard.

For timeseries signals, like AE signals, common approaches for feature extraction (FE) in the SP field resort to frequency analysis

Nomenclature

m Mean value
cn nth IMF
rn nth residual
Ej[wi(t) ] particular noise
wi added Gaussian noise
β noise amplitude
M(•) local means of data
βn signal-to-noise ratio
x
(
tp
)

HI at the time of tp
x(ti) HI at the time of ti
M number of units (specimens)
xj HI for the jth unit out of M units
xk HI for the kth unit out of M units
Nj number of measurements for the jth unit
Nk number of measurements for the kth unit
cov

(
xj, xk

)
covariance where xj and xk are HIs

sgn(•) signum function
σxj standard deviation of xj

σxk standard deviation of xk
τ test unit
τʹ all units (except for the test unit)
Mτʹ number of all units
Ti Simulated HI as target value at time step i
HIi Network output for time step i
H {•} Hilbert transform
j imaginary part
β shape parameter
t operating time
Na Number of actuators
Ns Number of sensors
fk kth base learner model
ωk weight for kth base learner model
ωk normalized weight for kth base learner model
Lregress Loss function of regression model
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using different methods such as fast Fourier transform (FFT) [28,29]. Such techniques are popular for analyzing stationary signals,
which is not the case for complex structures under variable loading and environmental conditions. In real-world applications, signals
are inherently non-stationary and require more complicated processing methodologies [30,31]. To address this issue, researchers are
employing the Hilbert-Huang transform (HHT) [32,33], where the signal is decomposed into intrinsic mode functions (IMFs) using
empirical mode decomposition (EMD). EMD has found application in SHM for damage detection purposes. For instance, EMD was used
to determine the existence of damage in different types of structures, such as aluminum beams, reinforced concrete slabs, and plates
[34]. This technique was also employed to detect faults in a satellite altitude control system [35]. The methodology decomposed the
signal into IMFs to capture the fault trend and was proven to be able to diagnose both abrupt and early failures.

Despite the wide appeal of EMD, the methodology suffers from a significant drawback: mode mixing, which can lead to inaccurate
SHM results. To solve this issue, variational mode decomposition (VMD) was proposed by Dragomiretskiy and Zosso [36]. VMD can
efficiently differentiate distinct frequency band components of the signal and has an improved time-frequency distribution capacity in
signal decomposition and assessment than EMD [37]. VMD decomposes a signal into a preset number of modes, each with unique
sparsity characteristics, tackling the mode mixing problem more effectively than EMD. However, VMD has some drawbacks, including
the requirement to predetermine the number of modes and the computational complexity. Another method to address the mode mixing
issue is ensemble EMD (EEMD) proposed by Wu and Huang [38], which improved the methodology by adding white noise to the signal.
Sarmadi et al. [39] combined EEMD and Mahalanobis squared distance to identify the presence of damage in a steel truss structure. The
methodology was compared to the simple EMD and displayed superior damage localization performance. Amiri and Darvishan [40]
also compared the EMD and EEMD capabilities for damage detection using vibrational signals from a steel moment frame. Although
superior to the EMD, the EEMD has two significant drawbacks. Due to the added Gaussian white noise, there is residual noise in the
IMFs and difficulty in averaging different numbers of IMFs. To overcome these drawbacks, the complete EEMD with adaptive noise
(CEEMDAN) was proposed [41]. In CEEMDAN, the noise is added after each stage of the decomposition process, creating a unique
residual. Thus, this SP technique is employed as a suitable candidate to process AE data in the present work.

As a powerful mathematical tool, ML and deep learning (DL) have garnered significant attention in recent years across the domains
of SHM, CBM, and PHM. Within this context, a plethora of algorithms have emerged aimed at analyzing data for purposes such as
feature extraction (FE), feature selection (FS), and feature fusion (FF) [31,42]. While there have been persistent efforts to replace
traditional SP algorithms with ML and DL models in pursuit of higher accuracy and end-to-end automation, AI models have not yet
reached that level of maturity [43]. In fact, both SP and AI (particularly DL) represent potent mathematical tools for information
extraction from data, each with its own unique set of advantages and drawbacks. SP methods often follow explicit solutions, resulting
in globally applicable and faster outcomes, whereas AI methods, including back-propagation-based approaches, tend to be implicit,
introducing locality and randomness into their outputs. On the other hand, DL models can uncover deeper and more intricate re-
lationships among input variables thanks to deep networks and parallel computation capabilities. In contrast, SP models cannot be
conducted simultaneously; they typically require a sequential approach and cannot be applied until the previous step is completed.
Both SP and AI methodologies demand ongoing parameter adjustments when operational conditions change, necessitating the fine-
tuning of (hyper)parameters. Consequently, expertise in AI or SP is essential for navigating the (hyper)parameter tuning process.
Regarding the (hyper)parameter tuning of the models and the relevant knowledge to do so, a data analyzer with skills in AI or SP for
each case is needed. In terms of experts’ involvement in data extraction and labeling, both AI and SP models need that step. Therefore,
SP and AI can complement each other in order to provide a more efficient methodology. For instance, Mousavi et al. [44,45], paired
CEEMDAN with HHT and an artificial neural network (ANN) to locate and classify the severity of damage in a model steel bridge
structure. While the methodology provided effective indicators for detecting damage, first, dealing with composite structures is more
challenging than with metallic ones; second, the task of constructing a comprehensive, adaptive HI poses greater difficulty compared
to the damage detection.

To develop a capable HI, the common procedure involves the selection of the best extracted features from SHM data in terms of the
prognostic metrics. In such cases, features with low Fitness values are discarded, despite the fact that they may prove useful in a feature
fusion scenario. A more valid approach would be to fuse the available information and embed the prognostic criteria into the fusion
process as a supervisory tool, rather than using them only as a measurement of the HI’s quality at the final stage [23]. However, Fitness
is not a differentiable function, making it challenging to incorporate into many optimization techniques, such as back-propagation-
based ones. Furthermore, the entire timeseries of HIs, and as a result, SHM data up to the end of life (EoL), should be available in
order to calculate Tr and Pr, which is not practical.

To address these challenges, different kernel functions (linear, polynomial, logarithmic, and exponential) in terms of operational
time were investigated based on their suitability as functions to simulate hypothetical HIs, and it was found out that the polynomial
kernel equation provided the highest prognostic criteria, inspired by damage accumulation [46]. Accordingly, a label simulation
technique under the inductive semi-supervised learning (SSL) paradigm can be adopted to train a back-propagation-based model.
Other shortcomings that should be addressed are: first, input features into the model could be more informative; and second, the
inherent randomness and uncertainty of an ML-based model should be mitigated. In this study, CEEMDAN is used to deal with
nonstationary signals and extract more informative features and ensemble learning (EL) is adopted to address the ML’s randomness.

In this paper, a SSL framework, made up of semi-supervised (SS) base learners and ensemble learners, is proposed to develop HIs.
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The composite structures experienced different real-world uncertainties, including impacts before or during operation and disbond
defects during the manufacturing process. Ten different semi-supervised deep learning (SSDL) networks made of multilayers of long
short-term memory (LSTM) are considered as the SS-base learner, and sixteen models, including four unsupervised averaged-based and
twelve SSDL networks, are considered as the ensemble learner. Compression-compression (C-C) run-to-failure fatigue tests are con-
ducted on single stiffened composite panels experiencing different damage scenarios, and AE is used to monitor the evolution of
damage. First, acoustic emission waves are processed, and then CEEMDAN is applied to extract IMFs. Extracted features from IMFs are
used as input to the SSL framework to derive HIs. The methodology is validated using a leave-one-out cross-validation (LOOCV)
scheme, demonstrating the robustness and repeatability of the process.

The remainder of the paper is structured as follows: In Section 2, the experimental campaign is detailed, providing information on
the specimens, fatigue tests, and acoustic emission monitoring. Section 3 presents and discusses the proposed methodologies in depth,
covering data acquisition, pre-processing, signal processing (SP), feature extraction (FE), and feature fusion (FF). Section 4 provides
the results from the base learner and ensemble models, comparing their performance with existing literature and discussing the
findings. Finally, Section 5 concludes the paper.

2. Case study

Two test campaigns were launched at Delft University of Technology, comprising of constant-amplitude C-C fatigue experiments on
single-stiffened composite panels (SSPs), representative of aerospace wing components, with a fatigue frequency of 2 Hz and a load
ratio of 10 at 65% of the ultimate compressive strength. As can be seen in Fig. 1, an initial damage in the form of disbond (Teflon insert
during manufacturing) in the skin//stiffener interface with different sizes or an impact damage of around 10 J located on the stiffener
area is introduced to some panels. For the panels that do not experience impact prior to testing, after 5000 cycles, the impact is
performed, even if a panel already had an artificial disbond defects. These factors simulate various realistic and uncertain phenomena
in the experiments, resulting in a wide range of EoL from 48.7 K to 756.3 K cycles, which will make it more challenging to perform HI
construction and RUL prediction. To monitor the damage growth, several SHM techniques were employed, including AE, distributed
fiber optical sensors, fiber Bragg gratings, and lamb wave. The experimental campaigns and SHM systems have been discussed in depth
in previous publications [47,48,49]. In this paper, we focus on data recorded by AE, which was constantly logged throughout the tests.
All data are publicly available in [50,51]. More information on the panels and their fatigue life is presented in Table 1.

Fig. 1. Experimental setup, including a single stiffener panel (from the stiffener side) under monitoring by four acoustic emission sensors (all
dimensions in [mm]).
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3. Methodologies

In this section, the methodologies and step-by-step process from data collection to HI creation are discussed (see Fig. 2).

3.1. Data acquisition

A 4-channel Vallen AMSY-6 was used to record the acoustic emission waves. Paired with the acquisition system, four (4) AE sensors,
also from Vallen Systeme GmbH, with a frequency range of 100–900 kHz (VS900-M)—located at strategically selected locations in
order to monitor a broad area of the structure and provide the ability to localize potential damage events (Fig. 1)—and an external 34
dB pre-amplifier were used. In total, six low-level AE features are extracted from the events (directly from the acquisition system),
including amplitude (A), rise time (R), energy (E), counts (CNTS), duration (D), and root mean square (RMS).

3.2. Data pre-processing

To simulate hypothetical, ideal HI with inherently high Fitness as the target of SSDL, operational time information, as will be
explained in subsection 3.5, is required, and hence accurate cycle labeling is mandatory. The MTS machine cannot export the cycle
count straight to the AE system; however, due to the time synchronization of the two systems and knowledge of load and displacement,
the cycles each hit occurred are approximated through signal processing with a maximum error of 0.044% (see Table 1).

To limit the amount of data recorded that is not representative of the degradation process (e.g., noise from machine movement), an
amplitude threshold of 60 dB is employed in the data acquisition phase. Regarding the further noise reduction of the original acoustic
emission signal, the internal Vallen processor for planar localization was utilized. The localization of the AE events is performed using
Geiger’s method [52]. Pencil lead breaks tests were performed prior to each experiment to measure the wave propagation speed in the
longitudinal and shear directions, which showed only slight variability between the different panels. Assuming an average wave
velocity of 5265 m/s in both directions [47], Geiger’s method (included in the internal Vallen processor) estimates the location based
on the time-of-arrival at each sensor. Since we are dealing with an anisotropic structure where localization errors can be large, a filter is
applied, excluding events whose location uncertainty is higher than 50 mm.

Windowing is a common practice to treat non-stationary signals. Additionally, because AE is a passive monitoring technique that
records continuously, windowing aids in identifying highlighted trends in the data that may reveal possible structural degeneration.
There are two main factors influencing the final windowing result: the window’s length and interval. In our case, since every 500
fatigue cycles, quasi-static loadings are performed, we selected both length and interval to be 500 cycles.

To tackle potential missing values in our windowed data, either due to the pre-processing methodologies or the calculations of
statistical features, linear interpolation is used to fill in those missing values.

3.3. Signal processing

Empirical mode decomposition (EMD) is an algorithm capable of decomposing non-linear, non-stationary signals into a set of
orthogonal components. The basis of EMD is the Hilbert-Huang transform [32], which decomposes the original signal into simple
intrinsic mode functions called IMFs. Each IMF needs to fulfill two conditions:

1. The number of extrema and zero crossings must be equal or differ by no more than one.
2. The mean value of the upper and lower envelopes is zero everywhere.

The basic steps of the EMD algorithms are explained below.

Table 1
Information about SSPs’ lifetimes, impact, disbond, and loading conditions.

Specimen No. Impact time
(cycle)

Disbond Load
[min, max]

Cycles to failure Labeled cycles Labeling error (cycle)

size (mm £ mm) location – y (mm)

​ Campaign 2019
SSP1 0 ​ ​ [− 6.5, − 65] 152,458 152,457 − 1
SSP2 0 ​ ​ [− 6.5, − 65] 144,969 144,970 1
SSP3 0 ​ ​ [− 6.5, − 65] 133,281 133,283 1
​ Campaign 2020
SSP4 5000 15 × 20 60 [− 6.5, − 65] 48,702 48,703 1
SSP5 5000 20 × 20 60 [− 6.5, − 65] 65,500 65,502 2
SSP6 5000 20 × 25 60 [− 6.5, − 65] 94,431 94,437 6
SSP7 0 ​ ​ [− 6.5, − 65] 368,558 368,590 32
SSP8 0 ​ ​ [− 6.5, − 65] 510,961 510,982 21
SSP9 5000 ​ ​ [− 6.5, − 65] 226,356 226,361 5
SSP10 5000 ​ ​ [− 6.5, − 65] 756,226 756,264 38
SSP11 5000 ​ ​ [− 6.5, − 65] 110,137 110,185 48
SSP12 5000 ​ ​ [− 6.5, − 65] 170,884 170,898 14
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Firstly, we identify the local extrema of the data. By employing cubic splines, an upper and lower signal envelope are created. Then,
the mean of the upper and lower envelopes is calculated. In the next step, the difference between the mean (m1) and the data (X(t)) is
calculated, which corresponds to the first IMF component h1:

X(t) − m1 = h1 (1)

In the case that the two conditions mentioned above are not validated, the previous steps are repeated until h1 complies with those
criteria (the sifting process). h1 now corresponds to the new data, i.e., X(t) = h1, and the previous steps are repeated to extract the next
IMF as:

h1 − m11 = h11 (2)

After k siftings, IMF that adheres to the criteria is designated as c1 = h1k. Then, c1 is the first IMF and is subtracted from the original
data:

X(t) − c1 = r1 (3)

where r1 is the first residual and treated as the new data in Eq. (1).
The subsequent steps are to extract the nth IMF (cn) until rn is a monotonic function. When a monotonic function is reached, all IMFs

Fig. 2. The overall proposed framework: (a) AE monitoring and low-level feature extraction; (b) localization; (c) windowing; (d) signal processing
(CEEMDAN); (e) statistical feature extraction; (f) semi-supervised base learner model; (g) semi-supervised ensemble learner model.
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are extracted, and the process is completed. To reconstruct the original data after extracting the nth IMF and leaving the residual rn, Eq.
(4) is used.

X(t) =
∑n

i=1
ci + rn (4)

Despite the advantages of EMD, it suffers from a major drawback referred to as mode mixing. A solution to this drawback is
ensemble EMD (EEMD) [38], which adds Gaussian white noise to the data with the appropriate scale. However, it creates new issues,
such as the independence of the decomposition process due to the residual noise in the IMF and deficiencies in the decomposition
process. Also, the EEMD makes it difficult to average different numbers of IMFs. These newfound issues are addressed by the complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [41]. The CEEMDAN process, unlike the EEMD, adds
particular noise Ej[wi(t) ] at each step of the decomposition. The main process of CEEMDAN is described in the following steps:

xi(t) = X(t)+ β0E1[wi(t) ] (5)

where E1[wi(t) ] is added to the original signal X(t) for i = 1,2,⋯,N. The parameters wi, β, and N indicate the added Gaussian noise, the
noise amplitude, and the ensemble size, respectively. The first IMF (c1) is calculated through the first residual r1 as:

c1 = X(t) − r1, where r1 =
1
N

∑N

i=1
M(xi(t) ) (6)

where M(•) is the operator representing local means of data. The second IMF (c2) is obtained through Eq. (7):

c2 = r1 − r2, where r2 =
1
N

∑N

i=1
M(r1 + β1E2[wi(t) ] ) (7)

Here E2[wi(t) ] is the second IMF of EEMD. The nth IMF of CEEMDAN is obtained through:

cn = rn− 1 − rn, where rn =
1
N

∑N

i=1
M(rn− 1 + βn− 1En[wi(t) ] ) (8)

where βn = ε0std(rn) is the signal-to-noise ratio (SNR).

3.4. Feature extraction (FE)

As mentioned in Section 3.1. Data acquisition, six low-level features are obtained from each AE event, i.e., A, R, E, CNTS, D,
and RMS. For the ith SSP, there are ki time windows. The CEEMDAN methodology is applied to each time window in order to extract

the IMFs. Arbitrarily, four IMFs are extracted for each time window. Since the time windows have different numbers of data points and
occasionally not enough data is available to decompose into IMFs, linear interpolation between the previous and next time windows is
performed.

For each low-level feature, four IMFs are extracted, providing 24 new features. For each time window, statistical quantities are
calculated to generate a single value, and the single value is assigned a time value of the mean time of the window. 21 statistical
quantities are calculated, which are listed in Table 2. In total, 504 (6x4x21) new features are obtained, which are going to be the input
to the DL algorithm that creates the HI.

3.5. Feature fusion (FF)

To achieve the optimal fusion of features, yielding a HI qualified as per prognostic metrics, a DL model referred to as the base
learner is designed. Given the absence of labels for real, comprehensive HIs in composite laminates, a semi-supervised paradigm is
adopted. This involves generating hypothetical ideal labels based on prognostic metrics. Subsequently, EL is employed to mitigate the
inherent randomness within the base learner. This subsection begins by defining the prognostic metrics that will be updated in the

Table 2
Statistical features.

No. Name No. Name No. Name

1 Mean 8 Kurtosis 15 Central moment for 4th order
2 Standard Deviation 9 Crest Factor 16 Central moment for 5th order
3 Root Amplitude 10 Clearance factor 17 Central moment for 6th order
4 Root Mean Square 11 Shape factor 18 FM4
5 Root sum of Squares 12 Impulse factor 19 Median value
6 Peak 13 Maximum to minimum difference 20 Signal Power
7 Skewness 14 Central moment for 3rd order 21 Entropy
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current work for consideration of only the test unit (SSP). Following that, both the base and ensemble learner models are introduced.

3.5.1. Health indicator metrics
The evaluation of a prognostic predictor, or HI, is based upon three established criteria, namely Mo, Pr, and Tr [46,53,54]. These

metrics are defined as follows:

Mo =
1
M
∑M

j=1

⃒
⃒
⃒
⃒
⃒

1
Nj − 1

∑Nj

i=1

∑Nj
p=1,p>i

(
tp − ti

)
.sgn

(
x
(
tp
)
− x(ti)

)

∑Nj
p=1,p>i

(
tp − ti

)

⃒
⃒
⃒
⃒
⃒
.100% (9)

Pr = exp

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M
∑M

j=1

⃒
⃒
⃒
⃒
⃒
xj
(
Nj
)
−

[

1
M
∑M

i=1
xi(Ni)

] ⃒
⃒
⃒
⃒
⃒

2
√
√
√
√

1
M
∑M

j=1

⃒
⃒xj(1) − xj

(
Nj
) ⃒
⃒

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10)

Tr = min
j,k

⃒
⃒
⃒
⃒
⃒

cov
(
xj, xk

)

σxjσxk

⃒
⃒
⃒
⃒
⃒
, j, k = 1, 2,⋯,M (11)

where x
(
tp
)

and x(ti) denote the measurements (HIs in the context) at the times of tp and ti, respectively. The sgn(•) function represents
the signum function. cov

(
xj, xk

)
signifies the covariance, where xj and xk are vectors of measurements for the jth and kth unit (out of M

units) with Nj and Nk measurements, respectively. The standard deviations of xj and xk are denoted by σxj and σxk , respectively. The
evaluation metric selected for Mo in Eq. (9) is the modified Mann-Kendall (MMK) metric. In comparison to the Sign and Mann-Kendall
versions, MMK is more resilient to noise and considers the correlation between data points with time gaps exceeding one unit [46,53].
All three HIs metrics (Mo, Pr, and Tr) are rated on a scale ranging from 0 to 1, where a score of 1 signifies optimal HI performance.

With consideration to these criteria, the Fitness metric is formulated as follows:

Fitness = a.MoHI + b.PrHI + c.TrHI (12)

Assuming the control constants a, b, and c each equal 1, the Fitness metric spans from 0 (indicating minimal quality) to 3 (indicating
maximal quality) for the evaluated HIs.

It is important to emphasize that the HIs’ evaluation metrics mentioned above are devised to encompass all units (SSPs in the
present work), specifically from their healthy state to their final failure status within the context of PHM. Without access to complete
trajectories of HIs across all units, the assessment of HIs’ quality lacks implication. Consequently, whether during the training or
testing phase of ML-based models, the inclusion of all units becomes crucial to accurately measuring Fitness. However, a potential
challenge arises due to the possibility of highly matched HIs during the training phase, which might result in a misleadingly high
Fitness score when confronted with an unmatched (outlier) HI from a specific unit during the testing phase. Therefore, it is essential to
evaluate HI metrics solely based on the test unit.

The choice of using the singular noun “test unit” instead of the plural “test units” is a reflection of the specific context within this
work. In this study, we are focused on a single unit designated for testing the model. This decision is dictated by the limited number of
units available, with only 12 SSPs allocated for training and testing in the sequence-to-sequence (seq2seq) problem. However, it is
noteworthy that similar functions, as will be briefly explained for each, could be readily extended to accommodate multiple test units.

Metrics, particularly Pr, are refined to focus more on the test units rather than incorporating the entire set (train/validation/test) of
units. This adjustment is aimed at preventing the false positive influence of training units on final scores, which might overshadow the
low scores of the test unit. By primarily considering the test unit, these updated metrics aim to determine if it deviates significantly
from the training units and to what extent. It is noteworthy that if the metrics yield higher values for only the test unit while remaining
lower for the training units, the methodology could be rendered ineffective. Conversely, if the metrics are consistently high for the
training units, then achieving high scores for the test unit becomes meaningful [55].

The definition of Mo remains consistent, and its computation for a single unit follows a straightforward process involving the
internal summation of Eq. (9):

Moτ =

⃒
⃒
⃒
⃒
⃒

1
Nτ − 1

∑Nτ

i=1

∑Nτ
p=1,p>i

(
tp − ti

)
.sgn

(
x
(
tp
)
− x(ti)

)

∑Nτ
p=1,p>i

(
tp − ti

)

⃒
⃒
⃒
⃒
⃒
.100% (13)

where the symbol τ represents the test unit. In cases where multiple units are being considered for testing, Eq. (13) will be similar to Eq.
(9), with the difference being the inclusion of an averaging procedure across only the test units.

However, Pr requires redefinition. In this adaptation, rather than considering the standard deviation of HIs at EoL across all units in
the numerator, the deviation of the HI at EoL for the test unit from the deviation basis (i.e., its corresponding value averaged over the
training units) is computed:
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Prτ = exp

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

⃒
⃒
⃒
⃒
⃒
⃒
⃒

xτ(Nτ) −

[
1
Mτʹ

∑Mτ́

i=1
xi(Ni)

]⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
deviationbasis ⃒

⃒
⃒
⃒
⃒
⃒
⃒

1
M
∑M

j=1

⃒
⃒xj(1) − xj

(
Nj
) ⃒
⃒

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
scalingfactor

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)

where τʹ represents all units set except for the test ones and Mτʹ signifies the count of those units, including the training ones (or even
the validation ones). It should be noted that xj(1) and xj

(
Nj
)

denote the HI values of the jth unit at the initiation and EoL, respectively.
The denominator serves as a scaling factor, which in this case corresponds to the mean value of the difference between HIs at the
beginning and EoL across all units (τ ∪ τʹ) or the training units (τʹ). After evaluating both options within this study, the mean value over
all units is considered, as symbolized in Eq. (14). When dealing with multiple units (Mτ) under consideration for testing, the deviation
basis of EoL could be established based on the training set (τʹ), the test set (τ), or a combination of both (τ ∪ τʹ), among which the latest
with M units is advisable:

Prτ = exp

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Mτ

∑Mτ

j=1

⃒
⃒
⃒
⃒
⃒
⃒
⃒

xj
(
Nj
)
−

[
1
M

∑M

i=1
xi(Ni)

]⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
deviationbasis ⃒

⃒
⃒
⃒
⃒
⃒
⃒

2
√
√
√
√
√
√
√

1
M
∑M

j=1

⃒
⃒xj(1) − xj

(
Nj
) ⃒
⃒

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
scalingfactor

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15)

Regarding Tr, it is crucial to note that the minimum correlation of HIs should be computed between two distinct units, which is not
feasible when considering only a single test unit while excluding the training units. Additionally, if the correlation between the HI of
the test unit and the HIs of the training units is calculated in a pairwise manner, followed by selecting the minimum as Tr, this value
might surpass the correlation computed when considering all units’ HIs pairwise. Consequently, to ensure a more stringent evaluation,
the same formula as Eq. (11) is again applied to the test units. This approach is more rigorous and maintains consistency.

With considering the updated metrics, the Fitness metric for the test unit is as follows:

Fitnessτ = a.Moτ
HI + b.Prτ

HI + c.TrHI (16)

where TrHI is the same as before.

3.5.2. Base learner models
In continuation of the authors’ previous work [46], a SSDNN approach is proposed to create the HI. A SSL paradigm is employed

due to its ability to exploit unlabeled data to create more potent regressors. The Fitness function as well as the available lifetimes of the

Fig. 3. The general architecture of the semi-supervised base learner models.
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units are implemented in the network targets. First, a hypothetical HI is formulated that conforms to the prognostic metrics. It was
found [46] that the hypothetical HI that best matches these assumptions is:

HI(t) =
t2

t2EOL
(17)

where t is the running time and tEOL is the EoL operational time of the available training SSPs. Eq. (17) provides a HI in the range [0, 1],
which can also be scaled by simply a multiplication in a coefficient [10,24,56]. The normalization via t2EOL is necessary to obtain the
desired values for prognosability since each unit has a different lifetime. It is highlighted that this hypothetical HI is only proposed for
the available training samples, where the lifetimes are known a priori.

A multi-layer LSTM network is proposed to perform the feature fusion task, and the general network architecture can be observed in
Fig. 3.

The half-mean-squared error is regarded as the loss function of the seq2seq regression network:

Lregress =
1

2Nj

∑Nj

i=1

(
Tj(ti) − HIj(ti)

)2 (18)

where Tj(ti) = ti2/t2EOLj denotes the target value and HIj(ti) is the output of the last layer for the jth unit at time step i.
The general architecture of the network was fixed, while hyperparameters, including the number of neurons in the fully connected

(FC) layers, the number of units in the first LSTM layer, dropout (D) value, and batch size, were tuned using Bayesian optimization [57]
given the statistical features extracted from the time and frequency domains of FFT in [46]. To this end, a holdout validation scheme is
employed, with 10 SSPs used for training, 1 for validation, and 1 for testing, to evaluate the hyperparameters of the network.

Ten top models, according to the lowest root-mean-square error (RMSE) (the maximum RMSE over all SSPs was regarded as the
objective function), are considered the base learners in the current work, where the new features extracted from the IMFs of CEEMDAN
are imported. Although the process of optimizing the hyperparameters based on the new feature inputs could be repeated, this step is
skipped to save time. It should be noted that this section can be viewed as a type of transfer learning designed to cut down on time. The
relevant hyperparameter information after Bayesian optimization can be seen in Table 3.

3.5.3. Ensemble learner models
Ensemble learning (EL) techniques can be used to build a meta-model that can address the inherent randomness in ML models and

uncertainties in model structure after HIs have been extracted from base models. This is especially relevant when there is a small
sample size, as there was in the present research. The reliability and accuracy of an ensemble prediction model can be improved by
effectively leveraging the strengths of various single prediction models [58,59]. EL techniques fall into three main categories: bagging
[60], boosting [61], and stacking [62]. Bagging includes bootstrapping (random sampling) and aggregation (averaging the outputs of
the base learners). An example of this is random forest [63]. Boosting combines sequentially arranged base learners, such as in adaptive
boosting (AdaBoost) [64] and extreme gradient boosting (XGB) [65]. Stacking uses heterogeneous base learner models through
training a meta-model (blender) as opposed to the earlier methods’ homogeneous base learner ones.

From another point of view, ensemble models that rely on averaging can be broadly divided into two types: simple averaging
ensemble (SAE) [66] and weighted averaging ensemble (WAE) [67], with the first being a particular instance of the last. Predictions
from various trained base models are equally combined by the EL model in SAE. The fact that each model contributes equally to the
ensemble prediction, regardless of how well it performs, is a limitation. Contrarily, WAE allows for a more refined contribution by
allocating weights to ensemble members based on confidence in their predictive qualities.

Despite the fact that a variety of EL methods and models (including random forest, least squares linear, support vector machine,
boosting, Bayesian linear regression, Gaussian process regression, and Gaussian kernel regression) were investigated, the presented
work concentrates on averaging ensemble models using various weighting techniques and DL ensemble models. The decision to use

Table 3
Base learner models’ hyperparameters.

Model
(rank)

Hyperparameters
[search space] I: integer or D: decimal

Batch Size
I: [1, 5]

Dropout
D: [0, 0.5]

FCL1
I: [1, 201]

LSTM1
I: [1, 256]

FCL2
I: [1, 50]

1 4 0.3 110 154 50
2 5 0.4 124 83 48
3 5 0.5 201 79 36
4 5 0.4 152 81 27
5 5 0.5 41 142 43
6 2 0 30 256 45
7 5 0.4 124 56 48
8 5 0.1 137 20 39
9 5 0.4 161 92 48
10 5 0.4 53 120 50
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these models over others was made based on their superior performance and effectiveness.
Initially, leave-one-out cross-validation (LOOCV) [68] is employed, where a single unit (SSP) is designated for testing, leaving 11

specimens for subsequent processing. With this in mind, three main dataset divisions can be made: (A) considering one test SSP without
validation (training with a fixed number of epochs); (B) considering the test SSP itself as validation (intended to prevent overfitting);
and (C) considering another SSP other than the test SSP as validation. Given the small number of specimens available in this study,
Ccase B is less generalized yet nonetheless partially valid. Therefore, cases B and C are investigated in the current work, where in the
latter, the validation SSP is randomly chosen from the 11 left SSPs. The base learner models are totally trained 100 times in such a way
that, for Case C, the validation unit is randomly selected 10 times, and then the learning process is conducted with 10 different random
seed numbers [69] for initializing weights and biases. The 100 HIs predicted by the base learner models are then ensembled using a
process involving SAE, WAE, and finally DL models.

The overall WAE can be stated as follows:

fWAE =
∑K

k=1

ωkfk (19)

where fk indicates the kth individual model and ωk is its normalized weight:

ωk =
ωk

∑K
k=1ωk

(20)

where ωi denotes the kth individual base model’s weight, which can be specified according to diverse error metrics. In the current
study, the mean square deviation (MSE), RMSE, and the model’s Fitness are considered as the error metrics. Both MSE and RMSE are
computed by comparing the predictions of the kth base model (HIk(E), where (E) denotes the ensemble HI) and the simulated HIs (T):

ωMSE
k =

1
MSE

(
T,HIk(E)

) =
1

1
Mτ́

∑
j∈τʹ

[

1
Nj

∑Nj
i=1

(
Tj(ti) − HIk(E)j (ti)

)2
] (21)

ωRMSE
k =

1
RMSE

(
T,HIk(E)

) =
1

1
Mτ́

∑
j∈τʹ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

1
Nj

∑Nj

i=1

(
Tj(ti) − HIk(E)j (ti)

)2
]√

√
√
√

(22)

ωFitness
k = a.MoHI + b.PrHI + c.TrHI , j ∈ τʹ (23)

When all ωk are uniformly set to one, the SAE approach is implemented.
In addition to averaging ensemble models, another approach involves using a subsequent ML-based model to fuse the predictions.

This ML-based EL model can be implemented using DL networks. In this study, we assess 12 networks comprising various types of
layers, including FC, LSTM, bidirectional LSTM (BiLSTM), and dropout (D) layers. The architectures (hidden layers) of these EL models
are summarized in Table 4, in which the value within parentheses indicates the number of neurons, units, or dropout percentage. For
example, Fig. 4 shows the architecture of Model 16—Net(12), which is composed of a BiLSTM layer. The output layer is a seq2seq
regression layer that relies on the loss function outlined in Eq. (18).

Table 4
Ensemble learner models.

Model num. Model name Architecture (hidden layers)

1 SAE
2 WAE-MSE
3 WAE-RMSE
4 WAE-Fitness

5 Net(1) FC(10) D(0.5) ReLU FC(1) ​ ​ ​
6 Net(2) FC(100) D(0.5) ReLU FC(1) ​ ​ ​
7 Net(3) FC(10) D(0.5) ReLU FC(5) D(0.5) ReLU FC(1)
8 Net(4) FC(100) D(0.5) ReLU FC(5) D(0.5) ReLU FC(1)
9 Net(5) LSTM(5) D(0.5) FC(5) D(0.5) ReLU FC(1) ​
10 Net(6) LSTM(10) D(0.5) FC(5) D(0.5) ReLU FC(1) ​
11 Net(7) FC(10) D(0.5) ReLU LSTM(5) D(0.5) ReLU FC(1)
12 Net(8) FC(10) D(0.5) ReLU BiLSTM(5) D(0.5) ReLU FC(1)
13 Net(9) BiLSTM(5) D(0.5) BiLSTM(1) D(0.5) FC(1) ​ ​
14 Net(10) BiLSTM(10) D(0.5) BiLSTM(1) D(0.5) FC(1) ​ ​
15 Net(11) BiLSTM(5) D(0.5) FC(5) D(0.5) ReLU FC(1) ​
16 Net(12) D(0.5) BiLSTM(5) D(0.5) FC(5) D(0.5) ReLU FC(1)
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4. Results and discussion

4.1. Base learner models

To demonstrate the effectiveness of the CEEMDAN features as input to the base learner models, the average Fitness values (and
standard deviation) over the 100 repetitions are presented in Table 5. The best obtained value is 2.82 (±0.24) for Fold 12 and the base
learner Model 10. Table 6 summarizes the results over the 100 repetitions for the test units (Eq. (16)) to evaluate the methodology’s
adaptability to unknown data. The best result is observed for Model 10, Fold 12, with a Fitness 2.75 (±0.21). In Fig. 5, a visual
representation of Tables 5 and 6 for Model 10 is displayed for easier comparison between the two. What is observed is that Mo and Pr,
and consequently Fitness, display slightly lower values, since the test units are unable to follow the ideal HI with the same proficiency,
resulting in overall lower fitness values.

A drawback of the original methodology’s evaluation via LOOCV, also presented in [46], is the use of the test unit as validation
during training (Case B). This way, it is incorporated into the training step, thus it is not hidden during the application step. To
overcome the limitation, a random SSP from the training set is used for model validation (Case C). By employing this methodology, the
training dependency on the test unit is eliminated, thus enabling the possibility of real-time implementation.

The average Fitness scores over the 100 repetitions for both the entire and the test units are shown in Tables 7 and 8, respectively,
while Fig. 6 presents both cases for the base learner Model 9. Comparing with data division Case B, it is evident that the values obtained
are overall lower. However, the values remain high, providing HIs with great prognostic potential. The best values are observed for
Fold 12 and Model 9 at 2.51 (±0.43) for the entire set and 2.44 (±0.4) for the test unit.

Model 10 (iteration 96) achieved the best HI for Case B, while Model 9 (iteration 97) did so for Case C, as shown in Fig. 7(a) and (b).
At first glance, it is observed that not every fold is able to create a HI close to the ideal simulated one. For instance, in Fold 3 of Fig. 7(a),
not even the training units are able to fit the ideal HI, although the different units display a similar trend. On the other hand, for Fold
10, the training SSPs display a behavior close to the ideal one; however, the test unit fails to reproduce this trend. Contrary to Fig. 7(a),
the test units in Case C deviate from the training units quite significantly and in more folds, as seen in Fig. 7(b). This is also observed by
the drop in average Fitness values in Table 8. This suggests that the base learners are struggling to generalize the good results of
training to unseen data.

4.2. Ensemble learner models

In Table 9, the ensemble models’ Fitness averaged over the 12 Folds is presented for the different ensemble models, where the base
learner is trained with Case B (the test unit as validation). When considering the entire set (training and testing) it is observed that
Fitness is mostly over 2.6. What is surprising is the performance of WAE-MSE and WAE-RMSE, which are underperforming even
compared to SAE. The best Fitness result is obtained using the 16th EL model, Net(12), which is one of the more complex networks,
where the Fitness value is 2.84 (±0.13) and is obtained for base learner Model 9, while base learner Model 3 also achieves a similar

Fig. 4. The architecture of the semi-supervised ensemble learner Model 16 – Net(12).
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Table 5
Fitness values for base learner models averaged over the 100 repetitions using Eq.(12) considering all units and data division Case B.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

Model 1 2.07 (±0.67) 2.21 (±0.61) 1.82 (±0.65) 2.75 (±0.26) 2.58 (±0.48) 2.81 (±0.17) 2.45 (±0.5) 1.98 (±0.35) 2.26 (±0.57) 1.26 (±0.3) 2.48 (±0.48) 2.71 (±0.23)
Model 2 2.35 (±0.6) 2.24 (±0.64) 1.66 (±0.63) 2.74 (±0.26) 2.59 (±0.45) 2.69 (±0.35) 2.49 (±0.44) 2.07 (±0.38) 2.25 (±0.62) 1.34 (±0.35) 2.48 (±0.54) 2.6 (±0.38)
Model 3 2.58 (±0.41) 2.12 (±0.68) 1.67 (±0.61) 2.68 (±0.28) 2.43 (±0.47) 2.65 (±0.31) 2.56 (±0.35) 2.16 (±0.38) 1.97 (±0.71) 1.47 (±0.48) 2.49 (±0.49) 2.54 (±0.33)
Model 4 2.22 (±0.6) 2.09 (±0.66) 1.61 (±0.64) 2.71 (±0.31) 2.5 (±0.45) 2.72 (±0.38) 2.54 (±0.43) 2.1 (±0.37) 2.17 (±0.62) 1.42 (±0.43) 2.32 (±0.58) 2.58 (±0.32)
Model 5 2.56 (±0.65) 1.71 (±0.62) 2.35 (±0.57) 2.7 (±0.27) 2.75 (±0.3) 2.59 (±0.38) 2.48 (±0.46) 1.93 (±0.33) 2.5 (±0.44) 1.32 (±0.27) 2.42 (±0.56) 2.78 (±0.25)
Model 6 2.07 (±0.65) 1.82 (±0.58) 2.1 (±0.55) 2.39 (±0.5) 2.33 (±0.55) 2.67 (±0.26) 2.31 (±0.51) 1.82 (±0.34) 2.06 (±0.61) 1.39 (±0.28) 1.93 (±0.58) 2.51 (±0.39)
Model 7 2.38 (±0.65) 2.12 (±0.7) 1.72 (±0.63) 2.75 (±0.21) 2.54 (±0.54) 2.76 (±0.28) 2.33 (±0.59) 2.17 (±0.36) 2.01 (±0.69) 1.39 (±0.41) 2.53 (±0.47) 2.6 (±0.31)
Model 8 2.23 (±0.6) 2.12 (±0.58) 1.74 (±0.54) 2.53 (±0.53) 2.46 (±0.53) 2.63 (±0.47) 2.24 (±0.59) 2.13 (±0.49) 1.91 (±0.68) 1.75 (±0.51) 2.24 (±0.5) 2.51 (±0.38)
Model 9 2.34 (±0.62) 2.31 (±0.61) 1.7 (±0.67) 2.72 (±0.24) 2.46 (±0.54) 2.7 (±0.34) 2.51 (±0.41) 2.17 (±0.37) 2.33 (±0.54) 1.34 (±0.42) 2.58 (±0.4) 2.61 (±0.33)
Model 10 2.36 (±0.76) 1.95 (±0.69) 1.98 (±0.7) 2.75 (±0.19) 2.74 (±0.35) 2.64 (±0.38) 2.47 (±0.49) 1.98 (±0.26) 2.56 (±0.36) 1.35 (±0.3) 2.48 (±0.5) 2.82 (±0.24)
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Table 6
Fitness values for base learner models averaged over the 100 repetitions using Eq.(16) considering only test unit and data division Case B.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

Model 1 1.82 (±0.69) 1.82 (±0.52) 1.51 (±0.56) 2.51 (±0.37) 2.53 (±0.39) 2.63 (±0.26) 2.33 (±0.45) 1.61 (±0.31) 1.9 (±0.51) 1.26 (±0.25) 2.2 (±0.39) 2.66 (±0.2)
Model 2 2.13 (±0.66) 1.93 (±0.59) 1.5 (±0.49) 2.56 (±0.3) 2.54 (±0.38) 2.53 (±0.44) 2.34 (±0.43) 1.65 (±0.35) 1.99 (±0.48) 1.28 (±0.24) 2.32 (±0.45) 2.58 (±0.34)
Model 3 2.44 (±0.48) 1.89 (±0.57) 1.42 (±0.55) 2.48 (±0.34) 2.46 (±0.37) 2.54 (±0.34) 2.46 (±0.35) 1.81 (±0.38) 1.82 (±0.61) 1.39 (±0.31) 2.35 (±0.47) 2.55 (±0.3)
Model 4 1.96 (±0.63) 1.79 (±0.5) 1.44 (±0.54) 2.49 (±0.39) 2.45 (±0.44) 2.56 (±0.37) 2.41 (±0.4) 1.7 (±0.33) 1.88 (±0.49) 1.3 (±0.27) 2.11 (±0.49) 2.55 (±0.28)
Model 5 2.51 (±0.7) 1.46 (±0.47) 2.03 (±0.5) 2.48 (±0.35) 2.7 (±0.24) 2.43 (±0.42) 2.25 (±0.44) 1.59 (±0.29) 2.07 (±0.36) 1.26 (±0.21) 2.19 (±0.45) 2.72 (±0.22)
Model 6 1.84 (±0.71) 1.49 (±0.47) 1.86 (±0.46) 2.1 (±0.54) 2.37 (±0.46) 2.45 (±0.27) 2.2 (±0.45) 1.48 (±0.28) 1.75 (±0.49) 1.27 (±0.26) 1.79 (±0.43) 2.43 (±0.37)
Model 7 2.2 (±0.69) 1.86 (±0.54) 1.52 (±0.5) 2.57 (±0.29) 2.49 (±0.45) 2.64 (±0.29) 2.23 (±0.51) 1.76 (±0.33) 1.8 (±0.56) 1.27 (±0.25) 2.33 (±0.42) 2.59 (±0.28)
Model 8 1.86 (±0.56) 1.66 (±0.51) 1.33 (±0.46) 2.24 (±0.5) 2.41 (±0.45) 2.44 (±0.4) 2.06 (±0.5) 1.69 (±0.42) 1.7 (±0.54) 1.43 (±0.38) 2.05 (±0.44) 2.48 (±0.34)
Model 9 2.19 (±0.64) 2.03 (±0.52) 1.48 (±0.53) 2.51 (±0.29) 2.45 (±0.45) 2.55 (±0.38) 2.38 (±0.42) 1.75 (±0.36) 2.06 (±0.48) 1.3 (±0.25) 2.37 (±0.38) 2.6 (±0.3)
Model 10 2.26 (±0.76) 1.7 (±0.54) 1.76 (±0.58) 2.52 (±0.31) 2.68 (±0.31) 2.41 (±0.42) 2.24 (±0.46) 1.63 (±0.22) 2.08 (±0.4) 1.34 (±0.22) 2.21 (±0.4) 2.75 (±0.21)
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value of 2.84 (±0.15).
To evaluate the performance of the models only on unknown data of the test unit, Table 10 demonstrates the Fitness values

calculated using Eq. (16). The values have overall decreased, which is expected since the test unit does not fit the ideal behavior
perfectly and diverges from the average behavior of the training units. The best Fitness is again obtained for the Net(12) ensemble upon
Model 3, with a value of 2.74 (±0.33). The results of Tables 9 and 10 are also visually summarized for Model 3 in Fig. 8. It is evident
that the Fitness has only slightly reduced overall when only considering the test units, which demonstrates the effectiveness of the

Fig. 5. The prognostic metrics distribution based on all and test units for the base learner Model 10, considering Case B for the dataset division (the
test SSP itself as validation).
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Table 7
Fitness values for base learner models averaged over the 100 repetitions using Eq.(12) considering all units and data division Case C.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

Model 1 1.8 (±0.55) 2 (±0.59) 2.08 (±0.61) 2.51 (±0.38) 2.18 (±0.62) 2.03 (±0.65) 1.67 (±0.5) 1.93 (±0.54) 2.02 (±0.49) 1.96 (±0.36) 2.06 (±0.51) 2.43 (±0.46)
Model 2 1.72 (±0.56) 2 (±0.6) 2.07 (±0.55) 2 (±0.67) 2.21 (±0.55) 2.09 (±0.6) 1.85 (±0.57) 2.21 (±0.49) 2.2 (±0.41) 1.94 (±0.45) 1.92 (±0.57) 2.38 (±0.56)
Model 3 2.07 (±0.49) 2.03 (±0.54) 2.12 (±0.54) 2.19 (±0.55) 2.19 (±0.59) 2.08 (±0.65) 1.95 (±0.59) 1.65 (±0.52) 2.1 (±0.5) 1.99 (±0.45) 2.09 (±0.53) 2.18 (±0.61)
Model 4 1.97 (±0.46) 1.96 (±0.64) 1.86 (±0.55) 2.19 (±0.55) 1.98 (±0.67) 2.21 (±0.69) 1.85 (±0.61) 1.99 (±0.55) 2.03 (±0.45) 1.83 (±0.47) 2.02 (±0.53) 2.27 (±0.55)
Model 5 1.6 (±0.52) 2.17 (±0.5) 2.01 (±0.6) 2.17 (±0.59) 2.2 (±0.61) 2.04 (±0.55) 1.56 (±0.4) 2.02 (±0.37) 1.95 (±0.58) 1.8 (±0.42) 2 (±0.54) 2.07 (±0.55)
Model 6 1.71 (±0.4) 1.88 (±0.53) 1.84 (±0.51) 2.02 (±0.53) 2.11 (±0.52) 1.92 (±0.48) 1.73 (±0.4) 1.79 (±0.41) 1.87 (±0.4) 1.86 (±0.41) 1.83 (±0.42) 1.92 (±0.57)
Model 7 2.09 (±0.51) 2.15 (±0.58) 2.05 (±0.52) 2.26 (±0.57) 2.35 (±0.53) 2.3 (±0.57) 1.75 (±0.53) 2.2 (±0.53) 1.97 (±0.54) 2.1 (±0.39) 2.08 (±0.53) 2.33 (±0.55)
Model 8 1.8 (±0.45) 2.02 (±0.55) 1.7 (±0.45) 2.21 (±0.51) 2.01 (±0.59) 2.17 (±0.56) 1.75 (±0.48) 2.11 (±0.49) 1.97 (±0.47) 1.82 (±0.39) 1.94 (±0.51) 2.17 (±0.58)
Model 9 1.95 (±0.55) 2.22 (±0.51) 2.12 (±0.56) 2.27 (±0.56) 2.36 (±0.5) 2.21 (±0.67) 1.91 (±0.53) 1.86 (±0.62) 2.03 (±0.51) 1.93 (±0.5) 2.15 (±0.56) 2.51 (±0.43)
Model 10 1.97 (±0.56) 2.18 (±0.51) 2.05 (±0.5) 1.93 (±0.55) 2.1 (±0.65) 2.1 (±0.58) 1.78 (±0.5) 1.92 (±0.47) 1.92 (±0.45) 1.8 (±0.42) 1.96 (±0.48) 2.25 (±0.57)
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Table 8
Fitness values for base learner models averaged over the 100 repetitions using Eq.(16) considering only test unit and data division Case C.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

Model 1 1.59 (±0.54) 1.62 (±0.52) 1.68 (±0.55) 2.15 (±0.55) 2 (±0.59) 1.91 (±0.55) 1.5 (±0.41) 1.49 (±0.52) 1.47 (±0.53) 1.33 (±0.26) 1.75 (±0.43) 2.38 (±0.46)
Model 2 1.45 (±0.56) 1.68 (±0.53) 1.57 (±0.6) 1.81 (±0.64) 2.03 (±0.57) 1.94 (±0.6) 1.58 (±0.51) 1.75 (±0.5) 1.58 (±0.65) 1.43 (±0.34) 1.7 (±0.5) 2.32 (±0.55)
Model 3 1.77 (±0.63) 1.63 (±0.51) 1.64 (±0.57) 1.85 (±0.6) 2.08 (±0.54) 1.94 (±0.61) 1.79 (±0.58) 1.37 (±0.48) 1.62 (±0.6) 1.45 (±0.32) 1.84 (±0.49) 2.16 (±0.6)
Model 4 1.58 (±0.56) 1.6 (±0.57) 1.41 (±0.52) 1.89 (±0.58) 1.89 (±0.6) 2.12 (±0.62) 1.64 (±0.59) 1.59 (±0.5) 1.5 (±0.57) 1.37 (±0.28) 1.69 (±0.46) 2.2 (±0.55)
Model 5 1.38 (±0.5) 1.77 (±0.41) 1.63 (±0.54) 1.89 (±0.62) 2.05 (±0.6) 1.78 (±0.53) 1.3 (±0.28) 1.33 (±0.53) 1.52 (±0.53) 1.3 (±0.29) 1.73 (±0.46) 1.99 (±0.55)
Model 6 1.38 (±0.42) 1.47 (±0.48) 1.42 (±0.54) 1.62 (±0.55) 2.05 (±0.51) 1.67 (±0.49) 1.5 (±0.37) 1.31 (±0.39) 1.31 (±0.48) 1.36 (±0.37) 1.49 (±0.35) 1.8 (±0.55)
Model 7 1.76 (±0.59) 1.8 (±0.55) 1.52 (±0.58) 1.95 (±0.64) 2.12 (±0.55) 2.07 (±0.53) 1.49 (±0.47) 1.81 (±0.52) 1.48 (±0.57) 1.53 (±0.38) 1.79 (±0.52) 2.25 (±0.52)
Model 8 1.29 (±0.45) 1.59 (±0.5) 1.15 (±0.44) 1.76 (±0.54) 1.85 (±0.52) 1.94 (±0.56) 1.48 (±0.44) 1.62 (±0.48) 1.46 (±0.54) 1.23 (±0.33) 1.63 (±0.5) 2.03 (±0.64)
Model 9 1.67 (±0.59) 1.77 (±0.55) 1.62 (±0.65) 1.98 (±0.59) 2.12 (±0.54) 2.06 (±0.63) 1.64 (±0.51) 1.5 (±0.58) 1.49 (±0.6) 1.46 (±0.3) 1.84 (±0.54) 2.44 (±0.4)
Model 10 1.68 (±0.65) 1.75 (±0.46) 1.58 (±0.54) 1.59 (±0.59) 1.94 (±0.65) 1.89 (±0.51) 1.49 (±0.42) 1.37 (±0.46) 1.29 (±0.51) 1.25 (±0.25) 1.63 (±0.41) 2.19 (±0.57)

M
.M

oradietal.
Mechanical Systems and Signal Processing 224 (2025) 112156 

17 



methodology.
Using a random SSP as the validation unit (data division Case C) slightly affects the Fitness values of the HIs compared to Case B.

Tables 11 and 12 show the average Fitness values (±standard deviation) over 12 Folds, calculated for the entire set (using Eq. (12)) and
only for the test unit (using Eq. (16)), respectively. The highest Fitness value is obtained by Net(12) upon Model 9 in both cases with
values 2.74 (±0.19) and 2.59 (±0.24), respectively. In Fig. 9, the results of Tables 11 and 12 for base learner Model 9 are visually
summarized and compared. The values of the test-only-based Fitness are slightly lower than those for the entire set, especially for the

Fig. 6. The prognostic metrics distribution based on all and test units for the base learner Model 10, considering Case C for the dataset division
(another SSP other than the test SSP as validation).
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Net(12) ensemble, which displays promising results.
Fig. 10(a) displays HIs for different Folds using base learner Model 9 and data division Case B. Each Fold denotes the respective unit

as the test. The solid gray line represents the ideal HI and the dotted colored lines represent the training unit results for each ensemble
model. The solid-colored lines denote the test unit. It is observed that in some Folds, like Folds 2, 3, 9, and 10, the test unit demon-
strates a different behavior than the training units and diverges from both the constructed HIs of the training units and the ideal HI. In
the other Folds, the test units display a similar trend to the training. When data division Case C is applied, the difference between
training and test units increases, diverging from the ideal HI in most Folds, as displayed in Fig. 10(b). Diverging from the ideal HI is not
necessarily a negative attribute as long as training and test units display similar overall trends. The ideal HI is mostly used as a baseline
for the training and not a panacea for the HIs to follow. However, there are Folds, like Folds 1 and 12, where the constructed HIs are
similar between test and training as well as the ideal HI.

4.3. Discussion

The advantage of not using the test unit as validation in LOOCV lies in enabling the ability to validate the methodology in real

Fig. 7. (a) The HIs constructed by the base Model 10, considering Case B for the dataset division (the test SSP itself as validation), with Fitness 2.42
(±0.52) based on Eq. (16); (b) The HIs constructed by the base Model 9, considering Case C for the dataset division (another SSP other than the test
SSP as validation), with Fitness 2.21 (±0.39) based on Eq. (16).
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Table 9
Fitness values for Ensemble learning models averaged over the 12 Folds using Eq.(12) considering all units and data division Case B.

SAE WAE DL-based: Net

MSE RMSE Fitness (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
1

2.69
(±0.26)

2.37
(±0.38)

2.61
(±0.29)

2.7
(±0.24)

2.39
(±0.39)

2.75
(±0.19)

2.68
(±0.13)

2.72
(±0.24)

2.72
(±0.31)

2.74
(±0.22)

2.71
(±0.25)

2.63
(±0.18)

2.66
(±0.17)

2.7
(±0.18)

2.76
(±0.22)

2.78
(±0.24)

Model
2

2.75
(±0.19)

2.52
(±0.27)

2.68
(±0.21)

2.75
(±0.18)

2.49
(±0.34)

2.76
(±0.18)

2.74
(±0.12)

2.72
(±0.14)

2.79
(±0.17)

2.75
(±0.2)

2.73
(±0.19)

2.57
(±0.23)

2.66
(±0.13)

2.72
(±0.13)

2.78
(±0.19)

2.81
(±0.18)

Model
3

2.75
(±0.14)

2.51
(±0.34)

2.67
(±0.2)

2.76
(±0.13)

2.53
(±0.39)

2.78
(±0.12)

2.63
(±0.19)

2.68
(±0.17)

2.82
(±0.11)

2.79
(±0.13)

2.67
(±0.19)

2.65
(±0.13)

2.7
(±0.09)

2.75
(±0.11)

2.81
(±0.14)

2.84 (
±0.15)

Model
4

2.73
(±0.17)

2.44
(±0.27)

2.64
(±0.22)

2.73
(±0.16)

2.69
(±0.21)

2.79
(±0.12)

2.7
(±0.15)

2.72
(±0.12)

2.78
(±0.13)

2.77
(±0.14)

2.72
(±0.14)

2.64
(±0.11)

2.67
(±0.11)

2.72
(±0.11)

2.71
(±0.32)

2.82
(±0.14)

Model
5

2.74
(±0.22)

2.57
(±0.24)

2.7
(±0.21)

2.74
(±0.22)

2.57
(±0.2)

2.76
(±0.17)

2.63
(±0.18)

2.71
(±0.22)

2.8
(±0.14)

2.77
(±0.17)

2.76
(±0.17)

2.63
(±0.16)

2.64
(±0.15)

2.74
(±0.09)

2.78
(±0.2)

2.8
(±0.19)

Model
6

2.62
(±0.27)

2.32
(±0.31)

2.47
(±0.27)

2.63
(±0.26)

2.41
(±0.38)

2.73
(±0.24)

2.46
(±0.34)

2.66
(±0.28)

2.74
(±0.21)

2.74
(±0.23)

2.7
(±0.21)

2.54
(±0.25)

2.63
(±0.18)

2.7
(±0.14)

2.77
(±0.13)

2.77
(±0.17)

Model
7

2.75
(±0.2)

2.41
(±0.38)

2.64
(±0.26)

2.76
(±0.17)

2.66
(±0.15)

2.78
(±0.13)

2.58
(±0.22)

2.66
(±0.37)

2.77
(±0.14)

2.81
(±0.14)

2.74
(±0.18)

2.62
(±0.12)

2.68
(±0.09)

2.73
(±0.11)

2.81
(±0.14)

2.84
(±0.14)

Model
8

2.74
(±0.13)

2.15
(±0.28)

2.59
(±0.15)

2.74
(±0.13)

2.63
(±0.23)

2.75
(±0.14)

2.68
(±0.15)

2.72
(±0.14)

2.77
(±0.13)

2.75
(±0.15)

2.7
(±0.21)

2.66
(±0.16)

2.65
(±0.12)

2.72
(±0.09)

2.77
(±0.15)

2.77
(±0.17)

Model
9

2.76
(±0.15)

2.6
(±0.19)

2.71
(±0.15)

2.76
(±0.15)

2.47
(±0.38)

2.75
(±0.17)

2.62
(±0.23)

2.62
(±0.34)

2.79
(±0.13)

2.75
(±0.16)

2.71
(±0.2)

2.62
(±0.18)

2.66
(±0.15)

2.72
(±0.13)

2.76
(±0.19)

2.84 (
±0.13)

Model
10

2.75
(±0.24)

2.53
(±0.24)

2.7
(±0.23)

2.75
(±0.23)

2.64
(±0.26)

2.77
(±0.15)

2.61
(±0.21)

2.63
(±0.36)

2.77
(±0.15)

2.76
(±0.14)

2.7
(±0.3)

2.61
(±0.17)

2.67
(±0.13)

2.72
(±0.1)

2.8
(±0.15)

2.79
(±0.21)
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Table 10
Fitness values for Ensemble learning models averaged over the 12 Folds using Eq.(16) considering only test unit and data division Case B.

SAE WAE DL-based: Net

MSE RMSE Fitness (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
1

2.44
(±0.39)

2.21
(±0.43)

2.39
(±0.41)

2.45
(±0.38)

2.09
(±0.66)

2.44
(±0.41)

2.42
(±0.29)

2.44
(±0.44)

2.48
(±0.51)

2.47
(±0.44)

2.41
(±0.52)

2.33
(±0.37)

2.43
(±0.3)

2.5
(±0.37)

2.5
(±0.45)

2.6
(±0.44)

Model
2

2.53
(±0.33)

2.39
(±0.34)

2.49
(±0.34)

2.53
(±0.33)

2.2
(±0.53)

2.48
(±0.4)

2.51
(±0.31)

2.47
(±0.26)

2.55
(±0.4)

2.51
(±0.4)

2.48
(±0.45)

2.3
(±0.41)

2.44
(±0.31)

2.56
(±0.29)

2.54
(±0.39)

2.67
(±0.37)

Model
3

2.58
(±0.29)

2.38
(±0.42)

2.51
(±0.33)

2.58
(±0.29)

2.3
(±0.62)

2.56
(±0.32)

2.44
(±0.33)

2.42
(±0.4)

2.63
(±0.32)

2.57
(±0.33)

2.47
(±0.36)

2.48
(±0.27)

2.52
(±0.25)

2.59
(±0.28)

2.62
(±0.33)

2.74 (
±0.33)

Model
4

2.5
(±0.32)

2.29
(±0.35)

2.44
(±0.34)

2.49
(±0.31)

2.44
(±0.4)

2.49
(±0.32)

2.35
(±0.39)

2.44
(±0.35)

2.5
(±0.36)

2.5
(±0.36)

2.45
(±0.36)

2.4
(±0.28)

2.44
(±0.29)

2.53
(±0.29)

2.4
(±0.63)

2.71
(±0.21)

Model
5

2.5
(±0.36)

2.39
(±0.33)

2.48
(±0.36)

2.5
(±0.37)

2.24
(±0.47)

2.44
(±0.43)

2.27
(±0.41)

2.41
(±0.47)

2.52
(±0.4)

2.48
(±0.42)

2.46
(±0.43)

2.37
(±0.34)

2.39
(±0.36)

2.55
(±0.23)

2.54
(±0.44)

2.61
(±0.35)

Model
6

2.39
(±0.38)

2.15
(±0.35)

2.27
(±0.34)

2.4
(±0.37)

2.16
(±0.41)

2.41
(±0.43)

2.05
(±0.65)

2.38
(±0.41)

2.45
(±0.46)

2.47
(±0.45)

2.4
(±0.4)

2.25
(±0.32)

2.39
(±0.36)

2.52
(±0.23)

2.55
(±0.25)

2.66
(±0.26)

Model
7

2.54
(±0.37)

2.29
(±0.43)

2.47
(±0.41)

2.55
(±0.36)

2.42
(±0.31)

2.51
(±0.35)

2.33
(±0.39)

2.45
(±0.47)

2.55
(±0.4)

2.61
(±0.33)

2.51
(±0.41)

2.36
(±0.27)

2.5
(±0.21)

2.55
(±0.29)

2.59
(±0.32)

2.72
(±0.29)

Model
8

2.46
(±0.27)

2.1
(±0.28)

2.4
(±0.25)

2.46
(±0.27)

2.3
(±0.39)

2.39
(±0.35)

2.32
(±0.33)

2.48
(±0.28)

2.5
(±0.32)

2.46
(±0.33)

2.44
(±0.43)

2.36
(±0.28)

2.42
(±0.25)

2.52
(±0.2)

2.48
(±0.34)

2.57
(±0.33)

Model
9

2.55
(±0.3)

2.46
(±0.25)

2.52
(±0.27)

2.54
(±0.32)

2.19
(±0.38)

2.47
(±0.42)

2.34
(±0.45)

2.37
(±0.49)

2.56
(±0.37)

2.51
(±0.37)

2.46
(±0.43)

2.37
(±0.32)

2.45
(±0.36)

2.54
(±0.31)

2.53
(±0.43)

2.69
(±0.3)

Model
10

2.51
(±0.36)

2.37
(±0.34)

2.48
(±0.35)

2.51
(±0.36)

2.34
(±0.46)

2.47
(±0.37)

2.3
(±0.42)

2.34
(±0.52)

2.55
(±0.34)

2.51
(±0.34)

2.46
(±0.5)

2.33
(±0.37)

2.44
(±0.3)

2.52
(±0.27)

2.57
(±0.36)

2.61
(±0.38)
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application scenarios where the test units are new and unknown data. Despite the overall reduction in Fitness of the HI, it remains high,
providing a HI that can be useful in prognostic tasks. The best result, while considering only the test unit for the Fitness calculation (Eq.
(16)), is obtained for SSP 12 using the base learner Model 9 incorporated with the Net(12) ensemble with a value of 2.94. The extension
to calculate test set-specific prognostic standards provides a clear overview of the methodology’s performance on unknown data,
bringing us closer to evaluating real-time implementation. To the best of the authors’ knowledge, this separation between training and

Fig. 8. The prognostic metrics distribution based on all and test units for the base learner Model 3, considering Case B for the dataset division (the
test SSP itself as validation).
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Table 11
Fitness values for Ensemble learning models averaged over the 12 Folds using Eq.(12) considering all units and data division Case C.

SAE WAE DL-based: Net

MSE RMSE Fitness (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
1

2.62
(±0.2)

2.42
(±0.22)

2.54
(±0.2)

2.62
(±0.19)

2.43
(±0.35)

2.61
(±0.19)

2.52
(±0.28)

2.56
(±0.19)

2.64
(±0.2)

2.59
(±0.19)

2.52
(±0.28)

2.41
(±0.34)

2.5
(±0.21)

2.56
(±0.2)

2.64
(±0.19)

2.63
(±0.2)

Model
2

2.63
(±0.17)

2.48
(±0.23)

2.58
(±0.19)

2.63
(±0.17)

2.35
(±0.28)

2.65
(±0.16)

2.5
(±0.15)

2.55
(±0.24)

2.63
(±0.19)

2.58
(±0.2)

2.61
(±0.18)

2.48
(±0.19)

2.52
(±0.21)

2.59
(±0.17)

2.61
(±0.19)

2.67
(±0.27)

Model
3

2.67
(±0.12)

2.53
(±0.11)

2.62
(±0.12)

2.67
(±0.12)

2.25
(±0.49)

2.69
(±0.11)

2.5
(±0.34)

2.6
(±0.19)

2.69
(±0.14)

2.62
(±0.17)

2.6
(±0.18)

2.58
(±0.13)

2.58
(±0.13)

2.62
(±0.15)

2.67
(±0.18)

2.7
(±0.17)

Model
4

2.64
(±0.17)

2.41
(±0.24)

2.55
(±0.19)

2.64
(±0.17)

2.24
(±0.42)

2.64
(±0.16)

2.52
(±0.23)

2.54
(±0.21)

2.62
(±0.21)

2.6
(±0.22)

2.53
(±0.35)

2.42
(±0.33)

2.54
(±0.16)

2.59
(±0.16)

2.59
(±0.23)

2.64
(±0.31)

Model
5

2.55
(±0.3)

2.47
(±0.18)

2.5
(±0.24)

2.54
(±0.3)

2.37
(±0.36)

2.52
(±0.31)

2.34
(±0.29)

2.44
(±0.34)

2.55
(±0.3)

2.51
(±0.29)

2.52
(±0.27)

2.44
(±0.3)

2.47
(±0.32)

2.52
(±0.29)

2.58
(±0.28)

2.59
(±0.26)

Model
6

2.43
(±0.24)

2.18
(±0.24)

2.28
(±0.25)

2.44
(±0.24)

1.94
(±0.41)

2.53
(±0.23)

2.31
(±0.28)

2.36
(±0.3)

2.54
(±0.27)

2.51
(±0.23)

2.36
(±0.39)

2.32
(±0.29)

2.43
(±0.29)

2.49
(±0.25)

2.6
(±0.23)

2.61
(±0.21)

Model
7

2.65
(±0.15)

2.42
(±0.23)

2.57
(±0.18)

2.65
(±0.16)

2.42
(±0.38)

2.66
(±0.16)

2.37
(±0.25)

2.53
(±0.26)

2.64
(±0.21)

2.63
(±0.17)

2.56
(±0.19)

2.49
(±0.28)

2.54
(±0.17)

2.6
(±0.16)

2.67
(±0.18)

2.69
(±0.16)

Model
8

2.56
(±0.22)

2.17
(±0.27)

2.44
(±0.25)

2.56
(±0.21)

2.4
(±0.29)

2.57
(±0.25)

2.37
(±0.37)

2.45
(±0.24)

2.57
(±0.24)

2.56
(±0.23)

2.45
(±0.34)

2.52
(±0.23)

2.47
(±0.24)

2.56
(±0.2)

2.59
(±0.22)

2.61
(±0.34)

Model
9

2.67
(±0.15)

2.47
(±0.24)

2.6
(±0.17)

2.67
(±0.15)

2.55
(±0.22)

2.67
(±0.16)

2.53
(±0.23)

2.6
(±0.23)

2.64
(±0.19)

2.6
(±0.21)

2.61
(±0.22)

2.43
(±0.35)

2.53
(±0.19)

2.62
(±0.16)

2.62
(±0.25)

2.74 (
±0.19)

Model
10

2.52
(±0.26)

2.41
(±0.23)

2.45
(±0.25)

2.52
(±0.26)

2.38
(±0.31)

2.56
(±0.26)

2.31
(±0.37)

2.49
(±0.29)

2.58
(±0.22)

2.54
(±0.26)

2.53
(±0.27)

2.4
(±0.3)

2.46
(±0.28)

2.51
(±0.24)

2.53
(±0.27)

2.63
(±0.22)
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Table 12
Fitness values for Ensemble learning models averaged over the 12 Folds using Eq.(16) considering only test unit and data division Case C.

SAE WAE DL-based: Net

MSE RMSE Fitness (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
1

2.22
(±0.41)

2.05
(±0.44)

2.16
(±0.38)

2.23
(±0.4)

2.03
(±0.54)

2.18
(±0.41)

2.04
(±0.6)

2.13
(±0.39)

2.33
(±0.35)

2.25
(±0.35)

2.12
(±0.47)

2.02
(±0.55)

2.2
(±0.34)

2.27
(±0.34)

2.3
(±0.37)

2.43
(±0.31)

Model
2

2.23
(±0.34)

2.09
(±0.46)

2.16
(±0.4)

2.22
(±0.34)

1.86
(±0.51)

2.26
(±0.33)

2.12
(±0.34)

2.12
(±0.45)

2.23
(±0.36)

2.22
(±0.37)

2.28
(±0.35)

2.13
(±0.26)

2.22
(±0.34)

2.33
(±0.32)

2.26
(±0.37)

2.43
(±0.51)

Model
3

2.32
(±0.33)

2.18
(±0.33)

2.27
(±0.34)

2.32
(±0.33)

1.84
(±0.64)

2.38
(±0.28)

2.07
(±0.68)

2.23
(±0.41)

2.42
(±0.23)

2.32
(±0.32)

2.32
(±0.32)

2.23
(±0.3)

2.34
(±0.24)

2.41
(±0.26)

2.42
(±0.31)

2.56
(±0.29)

Model
4

2.24
(±0.39)

2.07
(±0.48)

2.18
(±0.4)

2.23
(±0.39)

1.77
(±0.55)

2.23
(±0.38)

2.02
(±0.5)

2.17
(±0.47)

2.22
(±0.43)

2.2
(±0.41)

2.07
(±0.69)

2.06
(±0.4)

2.21
(±0.35)

2.29
(±0.36)

2.23
(±0.43)

2.4
(±0.48)

Model
5

2.1
(±0.5)

2.12
(±0.36)

2.09
(±0.42)

2.09
(±0.51)

1.86
(±0.67)

2
(±0.54)

1.67
(±0.54)

1.93
(±0.56)

2.06
(±0.52)

2.02
(±0.52)

2.04
(±0.53)

2.01
(±0.46)

2.09
(±0.52)

2.15
(±0.47)

2.13
(±0.52)

2.3
(±0.48)

Model
6

1.97
(±0.45)

1.83
(±0.42)

1.89
(±0.43)

1.98
(±0.44)

1.56
(±0.49)

2
(±0.44)

1.73
(±0.56)

1.81
(±0.57)

2.07
(±0.47)

2.05
(±0.42)

1.84
(±0.7)

1.83
(±0.5)

2.05
(±0.46)

2.08
(±0.43)

2.18
(±0.46)

2.29
(±0.43)

Model
7

2.27
(±0.3)

2.07
(±0.42)

2.19
(±0.35)

2.27
(±0.31)

1.95
(±0.56)

2.27
(±0.31)

1.92
(±0.4)

2.06
(±0.55)

2.33
(±0.35)

2.32
(±0.29)

2.23
(±0.32)

2.07
(±0.46)

2.25
(±0.31)

2.36
(±0.19)

2.36
(±0.32)

2.49
(±0.23)

Model
8

2.08
(±0.44)

1.85
(±0.46)

2.02
(±0.47)

2.08
(±0.44)

1.97
(±0.49)

2.06
(±0.49)

1.9
(±0.6)

1.97
(±0.4)

2.13
(±0.47)

2.08
(±0.47)

1.91
(±0.7)

2.07
(±0.47)

2.06
(±0.45)

2.23
(±0.38)

2.16
(±0.47)

2.28
(±0.61)

Model
9

2.3
(±0.32)

2.1
(±0.47)

2.22
(±0.36)

2.3
(±0.32)

2.22
(±0.31)

2.31
(±0.32)

2.13
(±0.44)

2.23
(±0.41)

2.31
(±0.33)

2.29
(±0.36)

2.23
(±0.41)

2.03
(±0.54)

2.25
(±0.28)

2.36
(±0.29)

2.3
(±0.4)

2.59 (
±0.24)

Model
10

2.02
(±0.5)

2
(±0.46)

1.99
(±0.5)

2.02
(±0.49)

1.94
(±0.6)

2.08
(±0.51)

1.68
(±0.73)

1.99
(±0.54)

2.14
(±0.46)

2.09
(±0.52)

2.11
(±0.53)

1.96
(±0.49)

2.07
(±0.48)

2.11
(±0.43)

2.04
(±0.57)

2.25
(±0.49)
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testing has not been previously performed and provides a first look at a new way to calculate prognosability, taking into account only
the test units.

There have been other attempts to develop HIs for stiffened composite panels. AE-based HIs from complex composite structures
have been presented in [70]. In that research, statistical features were extracted from the windowed AE data and used as input into
multi-input ML algorithms for RUL estimation. The best-discovered feature displayed average Mo and Pr of 0.693 and 0.871,

Fig. 9. The prognostic metrics distribution based on all and test units for the base learner Model 9, considering Case C for the dataset division
(another SSP other than the test SSP as validation).
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respectively. Using strain data and genetic programming, Galanopoulos et al. [21] developed a HI with Mo and Pr of 0.89 and 0.95,
respectively. Tr is not reported in either of these papers. In Yue et al. [13], stiffness was estimated through guided waves and used as a
HI. However, only average Mo and Pr were achieved with values of 0.66 and 0.84, respectively. Also, they did not consider the MMK
Mo which is more rigorous. Comparing with the previous references, the SS-DNN made of LSTM layers in the first step and the EL
model made of BiLSTM layers in the second step, proposed in this paper, provide a HI with average Mo and Pr (including training set,
over 12 Folds) of 0.968 and 0.925, respectively, for the best case and 0.843 and 0.879 for the worst case. Thus, for the HI construction
of SSP under C-C fatigue loading, the high performance and generalizability of the developed approach are both confirmed.

5. Conclusions

In this paper, a methodology for creating a reliable HI for the remaining useful life estimation of composite structures is presented.
Single-stiffened composite panels with disbond/impact damage are subjected to C–C fatigue loading, and acoustic emission (AE) is

Fig. 10. (a) The HIs constructed by the base Model 3, considering Case B for the dataset division (the test SSP itself as validation), with best average
Fitness 2.74 (±0.33) based on Eq. (16) for ensemble Net(12); (b) The HIs constructed by the base Model 9, considering Case C for the dataset
division (another SSP other than the test SSP as validation), with best average Fitness 2.59 (±0.24) based on Eq. (16) for ensemble Net(12). Dotted
lines are related to the training units.
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used to monitor degradation.
The complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is first applied to low-level AE features in

order to extract information with better monotonicity, prognosability, and trendability. Statistical quantities are calculated from the
first four intrinsic mode functions, and a total of 504 high-level features are used as input to a semi-supervised deep learning
framework based on a multilayer LSTM network (referred to as the semi-supervised base model) triggered by simulated HIs due to the
lack of labels. The leave-one-out cross-validation scheme is implemented to evaluate the generalized performance, and a total of 10
different model configurations are investigated and compared.

To further improve the developed HIs, an ensemble learning (EL) step is implemented. Different EL models are investigated,
including simple and weighted averaging as well as semi-supervised deep learning networks. The EL models, particularly the one
composed of BiLSTM units, achieved over 20% increased performance compared to the semi-supervised base learner models, which
had a performance of 71% (2.13/3.00), as demonstrated by the higher fitness values.

To evaluate the suitability of the developed HIs, the prognostic metrics are refined to account for the performance of only the test
unit instead of the entirety of the available units. The new evaluation metrics indicated that the Fitness results were slightly lower
(~5%) than the complete set’s performance of 91.3% (2.74/3.00). Yet, the high values (2.59/3.00) demonstrated the framework’s
effectiveness in creating suitable HIs.

The main limitation of the proposed methodology is its interpretability, which lies in its lack of actual degradation information over
fatigue loading regarding the composite structure. A significant improvement would include physics-informed labels, e.g., knowledge
of the damage size and type, to provide a more interpretable HI. The next step of this research involves employing the developed HIs in
capable prognostic models for RUL estimation of composite structures. Future research can take into account retraining the models and
applying the suggested approach to multi-stiffener panels through transfer learning.
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