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Chapter 1
Introduction

1.1 Introduction

A linear optimization (LO) problem is a problem of minimizing or maximizing a
linear function in the presence of linear constraints of the inequality and /or the
equality type. The first method to solve LO problems was the simplex method
developed by George Dantzig in 1947 [16]. This algorithm explores the combina-
torial structure of the feasible set to identify a solution by moving from a vertex
of the feasible region to an adjacent vertex while improving the value of the ob-
jective function. Not only did the simplex method prove to be very efficient in
practice but it also facilitated the development of duality theory.

The simplex method remained the champion for solving LO problems even after
Klee and Minty [43] established its non-polynomiality. They showed that the
simplex method has exponential complexity in the worst case. This means that it
is impossible to bound the computational time required for the simplex method
to solve any given LO problem by a polynomial function of the “input size” of a
given problem.1 For LO, the first polynomial-time algorithm is due to Khachiyan
in 1979 [42]. His approach is based on the ellipsoid method for nonlinear optimiza-
tion, developed by Shor [87]. With this technique, Khachiyan proved that LO is in
the class of polynomially solvable problems. In spite of having a polynomial-time
worst-case complexity, Khachiyan’s method fell far short of the expectation that
it would be faster than the simplex method in practice.

A more important development was the publication of Karmarkar’s paper in 1984
[41], describing a new polynomial-time interior-point method (IPM). After the
publication of Karmarkar’s algorithm, researchers developed many algorithms in-
spired by different features of that algorithm and its analysis. Gill et al. [24]

1The input size of a problem (denoted by L) indicates the length of a binary coding of the
input data.

1



2 INTRODUCTION 1.1

observed that some simple variants of Karmarkar’s algorithm could be traced
back to a very old algorithm in nonlinear optimization, namely, the logarithmic
barrier method of Frisch [22] and Fiacco and McCormick [20], and the method
of centers of Huard [36, 37]. Roos and Vial [85] proved that the basic logarith-
mic barrier method for LO has polynomial complexity. Renegar [80] proposed
to use an upper bound on the optimal value of the objective function to form
successively smaller subsets of the feasible region, and employ Newton’s method
to follow the so-called analytic centers of these subsets to get a primal optimal
solution. Another very important concept in the IPM literature is the central
path, which was first recognized by Sonnevend [88] and Meggido [57]. Almost
all known polynomial-time variants of IPMs use the central path as a guideline
to the optimal set and some variant of Newton’s method to follow the central
path approximately. These Newton-type methods fall into different groups with
respect to the strategies used in the algorithms to follow the central path. For
more details see [29, 33].

Besides having polynomial complexity, IPMs are also highly efficient in practice.
One may distinguish between IPMs according to wether they are primal-only,
dual-only or primal-dual, and whether they are feasible IPMs or infeasible IPMs
(IIPMs). Primal IPMs are called primal because they keep track only of the pri-
mal variables. These methods do not give any information about the solution of
the dual problem nor the duality gap. Dual IPMs keep track only of the dual
variables and they do not give any information about the solution of the primal
problem. Primal-dual IPMs iterate on both the primal and dual variables and find
a primal-dual solution (x∗, y∗, s∗) such that x∗ and (y∗, s∗) are optimal solutions
of the primal and dual problem, respectively. Primal-dual IPMs have proven to
be among the most efficient methods for linear optimization, and many polyno-
miality results exist for these methods. The first primal-dual IPM for LO was
constructed by Kojima et al. [45] based on the work of Megiddo [57]. See also
[62, 92].

Feasible IPMs start with a strictly feasible point and maintain feasibility during
the solution process. For feasible IPMs, it is not at all trivial how to find an
initial feasible interior point. One strategy to overcome this problem is to use the
homogeneous embedding model as introduced first by Ye et al. [106] for LO, and
further developed in [4, 84, 104]. On the other hand IIPMs start with an arbitrary
positive point and feasibility is reached as optimality is approached. The choice
of the starting point in IIPMs is crucial for the performance. Lustig [52] and
Tanabe [93] were the first to present IIPMs for LO. The first theoretical result
on primal-dual IIPMs was obtained by Kojima, Meggido and Mizuno [44]. They
showed that an infeasible-interior-point variant of the primal-dual feasible IPM
studied in [59] is globally convergent. The first polynomial-complexity result was
obtained by Zhang [107] who proved that, with proper initialization, an IIPM has
O
(
n2 log 1

ǫ

)
-iteration complexity. Shortly after that, Mizuno [58] proved that the

Kojima-Meggido-Mizuno algorithm also has O
(
n2 log 1

ǫ

)
-iteration complexity. In
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[58, 78], two predictor-corrector IIPMs with O
(
n log 1

ǫ

)
-iteration complexity are

proposed. Several other authors tried to improve the complexity bounds and re-
lax some of the assumptions on the initial point used by the algorithm. See, e.g.,
[12, 13, 21, 46, 60, 67, 68, 77, 86, 95, 101, 102]. More details on IIPMs can be
found in the books by Vanderbei [97], Wright [103] and Ye [105].

1.2 Preliminaries

This section is introductory in its nature. Its purpose is to provide the background
material needed in the rest of this thesis as well as to introduce the notations used
throughout this work. The development of most of the basic concepts of this chap-
ter is based on [10, 76, 84, 105].

1.2.1 Primal-dual model for LO and duality theory

There are many different ways to present the LO problem. One particular formu-
lation of the linear optimization problem, the standard form, is frequently used
to describe and analyze algorithms. This form is

min cTx

(P ) s.t Ax = b,

x ≥ 0,

where c and x are vectors in Rn, b is a vector in Rm, and A is an m× n matrix,
where m ≤ n. Without loss of generality we assume that A has full row rank.

We can convert any LO problem into standard form by introducing additional
variables, as slack variables and other artificial variables, into its formulation [27].

Associated with any linear optimization problem is another linear optimization
problem called the dual problem, which consists of the same data objects arranged
in a different way. The dual of (P ) is

max bT y

(D) s.t AT y + s = c,

s ≥ 0,

where y is a vector in Rm and s is a vector in Rn. We call the components of y
the dual variables, while s is the vector of dual slacks. The dual problem could be
stated more compactly by eliminating s from (D) and rewriting the constraints
as AT y ≤ c. However, in many cases it turns out to be expedient for the analysis
and implementation of IPMs to include the slack vector s.
The linear optimization problem (P ) is often called the primal problem, and (D)
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the dual problem, and together the two problems are referred to as the primal-
dual pair.

Definition 1.2.1. If x satisfies the constraints Ax = b, x ≥ 0 (or x > 0), we call
it a feasible (or strictly feasible) point for (P ). A pair (y, s) is feasible (or strictly
feasible) for (D), if AT y + s = c and s ≥ 0 (or s > 0). The triple (x, y, s) is
primal-dual feasible (or strictly feasible) if x and (y, s) are feasible (or strictly
feasible) for the primal and dual problems, respectively.

A duality theory exists that explains the relationship between the two prob-
lems (P ) and (D). We recall below the main results of this theory.

Theorem 1.2.2 (Weak Duality Theorem). If x is feasible for (P ) and (y, s) is
feasible for (D), then

cTx ≥ bT y.

Proof. By the construction of the primal and dual, we immediately get

cTx− bT y =
(
AT y + s

)T
x− bT y = yTAx+ sTx− bTy = sTx ≥ 0, (1.1)

where the inequality comes from the non-negativity of x, s.

Theorem 1.2.3 (Strong Duality Theorem). If (P ) has an optimal solution then
so does its dual. Furthermore, then their optimal values are equal.

By Theorem 1.2.2, if (x, y, s) is a primal-dual feasible pair then bT y ≤ cTx.
In other words, the objective value in (D) gives a lower bound for the objective
in (P ), and the objective in (P ) provides an upper bound for that in (D). Using
Theorem 1.2.2 and Theorem 1.2.3, the main duality results can be summarized
by the following theorem [38, 84].

Theorem 1.2.4. For (P ) and (D) one of the following holds:

(i) (P ) and (D) are feasible and there exists a primal-dual feasible pair (x∗, y∗, s∗)
such that

cTx∗ = bT y∗.

(ii) (P ) is infeasible and (D) is unbounded.

(iii) (D) is infeasible and (P ) is unbounded.

(iv) Both (P ) and (D) are infeasible.

Hence, solving LO amounts to detecting which of these four cases holds, and
in case (i) an optimal solution (x∗, y∗, s∗) must be found. Note that in case (i),



1.3 PRIMAL-DUAL IPMS FOR LO 5

the two objective values in (P ) and (D) coincide with each other at the solution
(x∗, y∗, s∗), that is cTx∗ = bT y∗, which implies by (1.1) that

(s∗)T x∗ = 0.

Observe that since x∗, s∗ ≥ 0, the above equality can also be written as

x∗i s
∗
i = 0, i = 1, ..., n.

An intrinsic property of LO is given by the following result first established by
Goldman and Tuker [28]. This theorem plays an important role in the design and
analysis of IPMs [84, 105].

Theorem 1.2.5. Suppose that both (P ) and (D) are feasible. Then there exists a

primal-dual pair (x∗, y∗, s∗) such that (x∗)T s∗ = 0 and x∗ + s∗ > 0. A solution
(x∗, s∗) with this property is called strictly complementary.

1.3 Primal-dual IPMs for LO

In this section we proceed by describing primal-dual IPMs for LO. All these
methods start from an initial point

(
x0, y0, s0

)
with x0, s0 > 0 and generate

a sequence of positive points such that the sequence converges to the optimal
solution. If, at each iteration, the point also satisfies the linear equality constraints
for the primal and dual problem (P ) and (D), then the algorithm is called a
feasible interior-point algorithm. Otherwise, it is called an infeasible interior-
point algorithm.

1.3.1 Feasible primal-dual IPMs for LO

Feasible primal-dual IPMs start with a strictly feasible interior point and main-
tain feasibility during the solution process. As mentioned in Section 1.1 for LO
problems we can assume, without loss of generality, that both (P ) and (D) satisfy
the interior-point condition (IPC). That is, there exists a triple

(
x0, y0, s0

)
such

that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0. (1.2)

By using the self-dual embedding model, we can further assume that x0 = s0 = e.
Under the IPC, we are in case (i) of Theorem 1.2.4 which implies that there exists
an optimal solution pair. Hence Theorem 1.2.4 states that finding an optimal
solution of (P ) and (D) is equivalent to solving the following system:

Ax = b, (Primal feasibility)

AT y + s = c, (Dual feasibility) (1.3)

xs = 0, (Complementary slackness)

x ≥ 0 , s ≥ 0.
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Here xs denotes the coordinatewise product of the vectors x and s, i.e.,

xs = (x1s1; . . . ; xnsn) .

We also use the notation
x

s
=

(
x1

s1
; . . . ;

xn
sn

)

,

for each vector x and s such that si 6= 0, for all i = 1, . . . , n.

The basic idea of primal-dual interior-point methods is to replace the third equa-
tion (which is nonlinear), called the complementary slackness condition, in (1.3)
by the nonlinear equation xs = µe, where e is the all-one vector, and µ > 0. Thus
we consider the following system

Ax = b, x ≥ 0

AT y + s = c, s ≥ 0 (1.4)

xs = µe.

The existence of a unique solution to the above system is well-known (see [30, 45,
56]). We denote the unique solution of system (1.4) by (x (µ) , y (µ) , s (µ)) for
each µ > 0; x (µ) is called the µ-center of (P ) and (y (µ) , s (µ)) is the µ-center of
(D). The set of µ-centers (with µ > 0) defines a homotopy path, which is called
the central path of (P ) and (D) [57, 88]. If µ goes to zero then the limit of the
central path exists. This limit satisfies the complementarity condition, and hence
yields optimal solutions for (P ) and (D) [84].

IPMs follow the central path approximately. Let us briefly indicate how this goes.
Without loss of generality, we assume that (x (µ) , y (µ) , s (µ)) is known for some
positive µ. As already mentioned, without loss of generality we can assume that
x0 = s0 = e. Since then x0s0 = 1.e, we see that system (1.4) holds with µ0 = 1.
We now update µ by setting µ := (1 − θ)µ, for some θ ∈ (0, 1). Then we solve
the following well-known Newton system, which is obtained by linearizing (1.4),

A∆x = 0,

AT∆y + ∆s = 0, (1.5)

s∆x+ x∆s = µe− xs.

Because A has full row rank, the above system uniquely defines a search direction
(∆x, ∆y, ∆s) for any x > 0 and s > 0; this is the so-called Newton direction
and this direction is used in all existing implementations of (feasible) primal-dual
methods. By taking a step along the search direction where the step size “α” is
defined by some line search rules, one constructs a new triple (x+, y+, s+), with
positive x+ and s+. If necessary, we repeat the procedure until we find the iterates
(x+, y+, s+) that are close enough to (x (µ) , y (µ) , s (µ)). The new iterates are
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given by

x+ = x+ α∆x,

y+ = y + α∆y,

s+ = s+ α∆s.

(1.6)

Then µ is again reduced by the factor 1 − θ and we apply Newton’s method
targeting at the new µ-centers, and so on. This process is repeated until µ is
small enough, say until nµ ≤ ǫ; at this stage we have found ǫ-solutions of the
problems (P ) and (D).

For notational convenience, and as in [8, 72, 73, 84, 105], we define

v :=

√
xs

µ
, v−1 :=

√
µ e

xs
. (1.7)

dx :=
v∆x

x
, ds :=

v∆s

s
. (1.8)

Note that (1.7) implies that if x is primal feasible and s is dual feasible then the
pair (x, s) coincides with the µ-center (x (µ) , s (µ)) if and only if v = v−1 = e.

Using this notation, the system (1.5) can be rewritten as follows:

Ādx = 0,

ĀT∆y + ds = 0, (1.9)

dx + ds = v−1 − v,

where Ā = AV −1X and V := diag (v) , X := diag (x). Note that since dx belongs
to the null space of the matrix Ā and ds to its row space, it follows that dx and
ds are orthogonal vectors, i.e.,

dTx ds = 0.

In the same way, it follows from (1.5) that ∆x and ∆s are orthogonal,

(∆x)
T

∆s = 0.

Using the third equation in (1.9) we obtain

‖dx‖2 + ‖ds‖2 = ‖dx + ds‖2 =
∥
∥v−1 − v

∥
∥

2
.

Note that dx = ds = 0 if and only if
∥
∥v−1 − v

∥
∥ = 0. In this case, v = e and hence

x and s satisfy xs = µe, which implies that x, s are on the µ-center (x (µ) , s (µ)).
Thus, we can use

∥
∥v − v−1

∥
∥ as a quantity to measure closeness to the pair of

µ-centers. Following [84], we therefore define

δ (x, s;µ) := δ (v) :=
1

2

∥
∥v − v−1

∥
∥ . (1.10)
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General Feasible Primal-Dual IPM for LO

Input:
Accuracy parameter ǫ > 0;
a threshold parameter τ > 0;
barrier update parameter θ, 0 < θ < 1.

begin
x := e; s := e; µ = 1;
while xT s ≥ ǫ do
begin

µ := (1 − θ)µ;

v :=
√

xs
µ ;

while δ(v) ≥ τ do
begin

x := x+ α∆x;
y := y + α∆y;
s := s+ α∆s;

v :=
√

xs
µ ;

end
end

end

Figure 1.1: General Feasible Primal-Dual IPM for LO

Using this proximity measure a generic primal-dual IPM is described in Figure
1.1. The parameters θ and α are very important both in theory and practice of
IPMs. Usually, if θ is a constant independent of n, for instance θ = 0.9, then we
call the algorithm a large-update (or long-step) method. If θ depends on n, such as

θ = Θ
(

1√
n

)

, then the algorithm is called a small-update (or short-step) method.

The choice of the step size α (0 < α ≤ 1) is another crucial issue in the analysis
of the algorithm. It has to be taken such that the closeness of the iterates to
the current µ-center improves by a sufficient amount. In the theoretical analysis
the step size α is usually given a default value that depends on the closeness of
the current iterates to the µ-center. It is now known that small-update methods
have an O (

√
n log (n/ǫ)) iteration bound and that large-update methods have an

O (n log (n/ǫ)) iteration bound [84, 103, 105].

In this thesis, we focus on so-called full-Newton step IPMs. In these algorithms
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the new iterates are given by

x+ = x+ ∆x,

y+ = y + ∆y, (1.11)

s+ = s+ ∆s.

So the step size α equals 1 in each iteration. As we will see below we then need

to take θ = Θ
(

1√
n

)

, which means that full-Newton step methods belong to the

class of small-update methods. A generic primal-dual IPM with full-Newton steps
is described in Figure 1.2. Before proceeding with the analysis of this algorithm

Primal-Dual IPM with full-Newton steps for LO

Input:
Accuracy parameter ǫ > 0;
a threshold parameter τ > 0;
barrier update parameter θ, 0 < θ < 1.

begin
x := e; s := e; µ = 1;
while xT s ≥ ǫ do
begin
µ := (1 − θ)µ;
x := x+ ∆x;
y := y + ∆y;
s := s+ ∆s;

end
end

Figure 1.2: Primal-Dual IPM with full-Newton steps for LO

we present a graphical illustration. We consider the problem with A, b and c as
follows

A =

[

2 1 3

4 5 2

]

, c =






1

1

1




 , b =

[

6

11

]

.

Figures 1.3 and 1.4 show the behavior of IPMs in the xs-space, with full Newton
steps and large updates, respectively. In both figures the scale of the axes is
logarithmic and the xs-space is projected onto its first two coordinates. In the
xs-space the central path is represented by the half-line µe, µ > 0. As starting
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Figure 1.3: Performance of the primal-dual IPM with full Newton steps

point we use the vectors x = s = (1; 1; 1) and y = (0; 0) and we take the initial
value of the barrier parameter µ equal to 1. Since xs = (1; 1; 1) = 1 · e, it follows
that the starting point is the µ-center for µ = 1. In these figures we have drawn
the iterates for the given problem and the level curves for δ (v) ≤ τ around the
target points on the central path that are used during the algorithm.
We now recall some lemmas that are crucial in the analysis of the algorithm in
Figure 1.2.

Lemma 1.3.1 (Lemma II.47 in [84]). After a primal-dual full-Newton step one

has (x+)
T
s+ = nµ.

Proof. Using (1.11) and the fact that the vectors ∆x and ∆s are orthogonal, the
duality gap after the Newton step can be written as follows:

(
x+
)T
s+ = eT ((x+ ∆x) (s+ ∆s))

= eT (xs+ (x∆s+ s∆x) + ∆x∆s)

= eT (xs+ (µe− xs) + ∆x∆s)

= µ eT e = nµ,

where we used the third equation in (1.5) for the third equality. This proves the
lemma.
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Figure 1.4: Performance of a large-update primal-dual IPM

Lemma 1.3.2 (Lemma II.54 in [84]). Let (x, s) be a positive primal-dual pair and
µ > 0 such that xT s = nµ. Moreover, let δ := δ (x, s;µ) and let µ+ = (1 − θ)µ.
Then

δ
(
x, s;µ+

)2
= (1 − θ) δ2 +

θ2n

4 (1 − θ)
.

Proof. We may write, using (1.10) and (1.7),

4δ
(
x, s;µ+

)2
=

∥
∥
∥
∥

√
1 − θ v−1 − v√

1 − θ

∥
∥
∥
∥

2

=

∥
∥
∥
∥

√
1 − θ

(
v−1 − v

)
− θv√

1 − θ

∥
∥
∥
∥

2

.

From xT s = µn it follows that ‖v‖2
= n. Since vT

(
v−1 − v

)
= n− ‖v‖2

= 0 the
vectors v and v−1 − v are orthogonal. Therefore,

4δ
(
x, s;µ+

)2
= (1 − θ)

∥
∥v−1 − v

∥
∥

2
+
θ2 ‖v‖2

1 − θ
.

Finally, since
∥
∥v−1 − v

∥
∥ = 2δ and ‖v‖2

= n the result follows.

From (1.11) and the third equation in (1.5) we have

x+s+ = µ e+ ∆x∆s = µ (e+ dxds) , (1.12)

where for the last equality we used (1.7) and (1.8). In the following we recall two
lemmas, which are essential for our main Lemma 1.3.5.
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Lemma 1.3.3 (Lemma II.48 in [84]). The primal-dual Newton step is feasible if
and only if

e+ dxds ≥ 0

and strictly feasible if and only if

e+ dxds > 0.

Lemma 1.3.4 (Lemma II.49 in [84]). Let (x, s) be any positive primal-dual pair
and suppose µ > 0. If δ := δ (x, s; µ), then ‖dxds‖∞ ≤ δ2 and ‖dxds‖ ≤

√
2δ2.

Lemma 1.3.5 (Theorem II.50 in [84]). If δ (x, s;µ) ≤ 1, then the primal-dual
full-Newton step is feasible, i.e., x+ and s+ are nonnegative. Moreover, if δ < 1,
then x+ and s+ are positive and

δ
(
x+, s+;µ

)
≤ δ2
√

2 (1 − δ2)
.

Proof. Lemma 1.3.3 and Lemma 1.3.4 imply the first part of the lemma. Now we
want to prove the second statement. Let δ+ := δ (x+, s+; µ) and

v+ :=

√

x+s+

µ
.

Then by using δ (v) as defined in (1.10) we have

2δ+ =
∥
∥
∥

(
v+
)−1 − v+

∥
∥
∥ =

∥
∥
∥

(
v+
)−1

(

e−
(
v+
)2
)∥
∥
∥ .

Moreover, (1.7) and (1.12) imply that

v+ =
√

e+ dxds.

Substitution gives

2δ+ =

∥
∥
∥
∥

dxds√
e+ dxds

∥
∥
∥
∥
≤ ‖dxds‖
√

1 − ‖dxds‖∞
.

Now using the bounds in Lemma 1.3.4 we obtain

2δ+ ≤ δ2
√

2√
1 − δ2

.

Dividing the both sides of the last inequality by 2 gives the result in the lemma.

Corollary 1.3.6. If δ := δ (x, s; µ) ≤ 1√
2
, then δ (x+, s+;µ) ≤ δ2.
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This corollary makes clear that if x, s and µ are such that δ (x, s; µ) ≤ 1√
2

then the Newton process converges quadratically fast to the µ-center. We say then
that the pair (x; s) lies in the region of quadratic convergence of the µ-center.

Theorem 1.3.7 (Theorem II.53 in [84]). If τ = 1√
2

and θ = 1√
2n

, then the

primal-dual full-Newton IPM requires at most

√
2n log

n

ǫ

iterations. The output is a primal-dual pair (x; s) such that xT s ≤ ǫ.

Proof. At the start of the algorithm we have δ (x, s; µ) ≤ τ = 1√
2

and the duality

gap corresponding to the starting point is nµ0 = n. After the primal-dual Newton
step to the µ-center we have, by Lemma 1.3.5, δ (x+, s+; µ) ≤ τ2 = 1

2 . Also, from

Lemma 1.3.1, (x+)
T
s+ = nµ. Then, after the barrier parameter is updated to

µ+ = (1 − θ)µ, with θ = 1√
2n

, Lemma 1.3.2 yields the following upper bound for

δ (x+, s+; µ+):

δ
(
x+, s+; µ+

)2 ≤ 1 − θ

4
+

1

8 (1 − θ)
≤ 3

8
.

Assuming n ≥ 2, the last inequality follows since its left hand side is a convex
function of θ, whose value is 3/8 both in θ = 0 and θ = 1/2. Since θ ∈ [0, 1/2], the
left hand side does not exceed 3/8. Since 3/8 < 1/2, we obtain δ (x+, s+; µ+) ≤
1√
2

= τ . Thus, after each iteration of the algorithm the property

δ (x, s; µ) ≤ τ

is maintained, and hence the algorithm is well defined. At the start of the algo-
rithm duality gap is n and in each iteration duality gap is reduced by the factor
1− θ. Therefore, the duality gap, given by xT s = nµ, is smaller than, or equal to
ǫ if

(1 − θ)
k
n ≤ ǫ.

taking logarithms, this becomes

k log (1 − θ) + log (n) ≤ log ǫ.

Since − log (1 − θ) ≥ θ, this certainly holds if

kθ ≥ log (n) − log ǫ = log
n

ǫ
.

Substituting θ = 1√
2n

the theorem follows.
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1.3.2 Infeasible Primal-dual IPMs for LO

So far, we have assumed that the starting point
(
x0, y0, s0

)
is strictly feasible

and, in particular, that it satisfies the linear equations Ax0 = b, AT y0 + s0 = c.
All subsequent iterates also respect these constraints, because of the zero right-
hand side terms in (1.5). In general, however, no strictly feasible starting point
is known for a given primal-dual pair of problems (P ) and (D). In such cases one
might consider to use a so-called infeasible IPM (IIPM). In this section we briefly
survey the ideas underlying IIPMs and we present the main complexity results
for such methods.

IIPMs start at
(
x0, y0, s0

)
with x0 > 0, s0 > 0 and usually y0 = 0, but x0 and

(
y0, s0

)
are not feasible for (P ) and (D), respectively. This means that the initial

primal and dual residual vectors, defined by

r0b = b−Ax0, (1.13)

r0c = c−AT y0 − s0, (1.14)

are nonzero. As we will see, the iterates will be infeasible as well, but during the
course of the algorithm the residual vectors converge to zero, so that the final
iterates are ”almost” feasible. In case of IIPMs we call the triple (x, y, s) an
ǫ-solution of (P ) and (D) if the norms of the residual vectors do not exceed ǫ,
and also xT s ≤ ǫ.

As mentioned in Section 1.1 the first theoretical result on primal-dual IIPMs
was obtained by Kojima et al. [44]. Then Zhang [107] for first time designed
a primal-dual IIPM for complementary problems with polynomial complexity.
In [58, 78, 103, 105], the authors also presented some primal-dual IIPMs with
polynomial-complexity. In all algorithms with polynomial complexity the starting
point is chosen as

(
x0, y0, s0

)
= ζ (e, 0, e) (1.15)

with ζ > 0 such that

‖x∗ + s∗‖∞ ≤ ζ (1.16)

for some optimal solution x∗ of (P ) and (y∗, s∗) of (D).

Now let us briefly describe the IIPM algorithms mentioned above. We first con-
sider Wright’s algorithm because it looks simpler than the others.

1.3.3 The IIPM of Wright

In this subsection we briefly describe Wright’s algorithm [103]. In his algorithm
he uses some constants σmin, σmax, γ and β such that 0 < σmin < σmax ≤ 1

2 , γ ∈
(0, 1) and β ≥ 1. This algorithm works with a neighborhood of the central path
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that is defined as follows:

N−∞ (γ, β) :=

{

(x, y, s) : ‖(rb, rc)‖
µ ≤ β

‖(r0b , r0c)‖
µ0 , xs ≥ γµe, (x; s) > 0

}

,

where

µ =
xT s

n
, µ0 =

(
x0
)T
s0

n
, (1.17)

and rb and rc denote the residual vectors for the primal and dual problem, re-
spectively:

rb = b−Ax, (1.18)

rc = c−AT y − s. (1.19)

Recall that r0b and r0c are the initial primal and dual residual vectors as defined in
(1.13) and (1.14). Without loss of generality, we suppose that the current point
(x, y, s) is in the neighborhood N−∞ (γ, β) and µ is as defined in (1.17). Note
that since β ≥ 1, at the start of the first iteration this is certainly true.

The search directions are designed in such a way that they target at the σµ-centers
of (P ) and (D), where σ is an arbitrary number in [σmin, σmax]. Ideally ∆x, ∆y
and ∆s would satisfy the following system,

A (x+ ∆x) = b,

AT (y + ∆y) + s+ ∆s = c,

(x+ ∆x) (s+ ∆s) = σµ e.

(1.20)

Since the third equation is nonlinear it is linearized, which leads to the following
linear system of equations in ∆x, ∆y and ∆s :

A∆x = b−Ax,

AT∆y + ∆s = c−AT y − s,

x∆s+ s∆x = σµ e− xs.

(1.21)

Using (1.18) and (1.19), the system (1.21) can be rewritten as follows

A∆x = rb,

AT∆y + ∆s = rc,

x∆s+ s∆x = σµ e− xs.

(1.22)

Since the coefficient matrix in the linear system (1.22) is the same as in (1.5) and
nonsingular, this system uniquely defines ∆x, ∆y and ∆s. Using these search
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directions, the new iterates are given by

x+ = x+ ᾱ∆x, (1.23)

y+ = y + ᾱ∆y, (1.24)

s+ = s+ ᾱ∆s, (1.25)

where the step length ᾱ is the largest value of α in [0, 1], such that the relations

(x, y, s) + α (∆x, ∆y, ∆s) ∈ N−∞ (γ, β) ,

(x+ α∆x)
T

(s+ α∆s) ≤ (1 − 0.01α)xT s

hold for every α ∈ [0, ᾱ]. Wright shows [103, Lemma 6.7] that the value ᾱ is
always positive. Then he computes µ by using the new iterates and repeats this
process until he obtains an ǫ-solution for the primal and the dual problems. From
the definition of the neighborhood N−∞ (γ, β) it is clear that for all points in the
neighborhood, the norms of the residual vectors rb and rc are uniformly bounded
by some multiple of the µ. This implies that when µ goes to zero then the residual
vectors rb and rc also go to zero. Wright’s algorithm is described more formally
in Figure 1.5. According to [103, Theorem 6.2] the complexity of the algorithm is

Primal-Dual Infeasible IPM for LO

Input:
Accuracy parameter ǫ > 0;
parameters σmin and σmax; 0 < σmin < σmax ≤ 1

2 ;
parameters γ ∈ (0, 1) and β ≥ 1;
parameter ζ > 0;

begin
x := ζe, s := ζe, y := 0 ;
while xT s ≥ ǫ do
begin

choose σ ∈ [σmin, σmax]
x := x+ ᾱ∆x;
y := y + ᾱ∆y;
s := s+ ᾱ∆s;

end
end

Figure 1.5: Primal-dual IIPM algorithm
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Figure 1.6: One iteration of Wright’s algorithm

O



n2 log
max

{(
x0
)T
s0,
∥
∥r0b
∥
∥ ,
∥
∥r0c
∥
∥

}

ǫ



 . (1.26)

Figure 1.6 shows one iteration of Wright’s algorithm. In this figure the xs-space is
projected onto its first two coordinates. In the xs-space the central path of primal-
dual pair of problems is a straight line consisting of µe, for µ > 0 as defined in
this algorithm. The shaded region in the figure is denoted the neighborhood of
the central path N−∞ (γ, β). In this algorithm he starts from a point z = xs in
the shaded region and computes the search directions (∆x, ∆y, ∆s) from system
(1.22). By using these search directions he obtains the new point z+ = x+s+ in
this region again. The algorithms in [44, 58, 78, 105, 107] are almost the same as
Wright’s algorithm [103]. The differences between the algorithms are due to the
use of different neighborhoods of the central path and the step lengths. By using
the description of Wright’s algorithm we now briefly describe the other algorithms.

1.3.4 The IIPM of Ye

In this subsection we briefly describe the IIPM algorithm presented by Ye in
[105]. In this algorithm he uses two constants σ and η such that σ ∈ (0, 1) and
η ∈ (0, 1). The neighborhood of the central path is defined as follows :

N (η) :=

{

(x, y, s) : (x; s) > 0, ‖rb‖
‖r0b‖ ≤ µ

µ0 ,
‖rc‖
‖r0c‖

≤ µ
µ0 , xs ≥ ηµe

}

,

where µ, µ0, r0b , r
0
c , rb and rc have the same meaning as before. He uses the

search directions (1.22) to obtain new iterates as defined in (1.23)-(1.25), and as
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step length ᾱ the largest value of α in [0, 1] such that the following relations

(x, y, s) + α (∆x, ∆y, ∆s) ∈ N (η)

(x+ α∆x)
T

(s+ α∆s) ≤ (1 − α (1 − σ))xT s,

hold for all α ∈ [0, ᾱ]. He also shows [105, Lemma 5.15] that the value ᾱ is always
positive. He proved that the complexity of his algorithm is polynomial and the
same as (1.26).

1.3.5 The IIPM of Kojima et al.

In this subsection we study Kojima et al.’s algorithm [44]. In this algorithm they
use some constants γ, γP , γD, σ, β2 and β3 such that 0 < γ < 1, γP > 0, γD > 0
and 0 < σ < β2 < β3 < 1. The neighborhood of the central path used in this
algorithm is defined as follows :

N :=
{
(x, y, s) : xT s ≥ γP ‖rb‖ or ‖rb‖ ≤ ǫP ,

xT s ≥ γD ‖rc‖ or ‖rc‖ ≤ ǫD,

(x; s) > 0, xs ≥ γµe} ,

where ǫP and ǫD are accuracy parameters for the primal and dual problems,
respectively. An iteration in Kojima et al.’s algorithm goes as follows. Given
a triple (x, y, s) ∈ N , they compute search directions from (1.22) and find the
largest step length ᾱ such that the relations

(x, y, s) + α (∆x, ∆y, ∆s) ∈ N
(x+ α∆x)

T
(s+ α∆s) ≤ (1 − α (1 − β2))x

T s,

hold for every α ∈ [0, ᾱ]. They show [44, Section 3] that the value ᾱ is always
positive. But the actual step length in the algorithm is not ᾱ, since they use
different step length αP and αD for the primal and the dual problem, respectively.
These step lengths are such that

(x+, y+, s+) = (x+ αP∆x, y + αD∆y, s+ αD∆s) ∈ N
(x+)

T
s+ ≤ (1 − ᾱ (1 − β3))x

T s.
(1.27)

In principle they take for αP a fixed fraction (0.9995) of the maximal primal step
length, and for αD the same fraction of the maximal dual step length. But they
do this only if αP and αD satisfy (1.27). Otherwise they take αP = αD = ᾱ.
They proved that their algorithm is globally convergent. This result was the first
theoretical result on primal-dual IIPMs.
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1.3.6 The IIPM of Zhang

The algorithm proposed by Zhang is a modification of Kojima et al.’s algorithm. It
is designed for solving the wider class of linear complementarity problems. In the
description we restrict ourselves to LO problem. He uses a decreasing parameter
ν and a constant γ. At the start of the first iteration ν = 1, and γ ∈ (0, 1) satisfies

γ ≤ min
(
x0s0

)

µ0
.

The main difference with Kojima et al.’s algorithm is that the primal and dual
step lengths are always equal to ᾱ, which is the largest value of α in (0, 1] such
that for all α ∈ (0, ᾱ]

(x+ α∆x) (s+ α∆s) ≥ γ
(x+ α∆x)T (s+ α∆s)

n
e,

(x+ α∆x)
T

(s+ α∆s) ≥ ν
(
x0
)T
s0,

where ν updated after each iteration according to ν := (1 − ᾱ) ν. In this algorithm
the size of the residual vectors controls by the second inequality above by using
parameter ν. He shows [107, Lemma 5.1] that ᾱ is positive. The complexity of
the algorithm is polynomial, and the same as (1.26).

1.3.7 The first IIPM of Mizuno

Shortly after Zhang’s paper, Mizuno proposed two different algorithms in [58]. In
this subsection we briefly describe the first algorithm, which is a modification of
Kojima et al.’s algorithm. He changed the neighborhood of the central path as
follows :

N (γ) :=

{

(x, y, s) : (x; s) > 0, ‖rb‖
‖r0b‖ ≤ µ

µ0 ,
‖rc‖
‖r0c‖

≤ µ
µ0 , xs ≥ γµe

}

,

where γ is a constant such that 0 < γ < 1. This neighborhood was used later also
by Ye in [105]. In each iteration of the algorithm he finds a positive step length ᾱ
in the same way as in Kojima et al.’s algorithm. He proved that the complexity
of his algorithm is the same as (1.26).

1.3.8 The second IIPM of Mizuno

In this subsection we want to describe the second algorithm in [58], which was
a breakthrough since it improved the complexity with a factor n, which gives
currently the best known iteration bound for IIPMs (see (1.29)). This algorithm
is predictor-corrector IIPM which based on Kojima et al.’s algorithm [44] and
Mizuno-Todd-Ye [59]. The algorithm uses some constants γ1, β2 and σ and a
parameter ν such that γ1 = 1

4 and 0 < σ < β2 < 1 and ν as in Zhang’s algorithm.
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Mizuno works with a new neighborhood of the central path that has become very
popular since then, namely

N2 (γ1) =

{

(x, y, s) : (x, s) > 0,

∥
∥
∥
∥

xs

µ
− e

∥
∥
∥
∥
≤ γ1

}

.

From this definition it is clear that N2 (γ1) ⊂ N2 (2γ1). These two neighborhoods
play a crucial role in the algorithm. Each iteration in Mizuno’s algorithm consists
of two steps. The first step starts from a triple (x, y, s) ∈ N2 (γ1). Using search
directions from (1.22) he moves along these directions and finds iterates (x′, y′, s′)
as defined for (x+, y+, s+) in (1.23)-(1.25). The step length ᾱ is the largest value
of α in [0, 1], such that the following relations hold for every α ∈ [0, ᾱ] :

(x, y, s) + α (∆x, ∆y, ∆s) ∈ N2 (2γ1) ,

(x+ α∆x)
T

(s+ α∆s) ≤ (1 − α (1 − β2))x
T s,

(x+ α∆x)
T

(s+ α∆s) ≥ (1 − α) ν
(
x0
)T
s0.

Again it is shown [58, Lemma 4.3] that ᾱ is positive. Moreover, the new iterates
belong to N (2γ1). To understand the second step we need to refer to Subsection
1.3.1, where we described the Newton step targeting at the µ-center of a primal-
dual problem pair. Mizuno’s second step is a Newton step of this form for the
primal-dual problem pair given by (A′, b′, c′) with

A′ = A,

b′ = Ax′, (1.28)

c′ = AT y′ + s′.

He shows that after such a “centering” step the iterates again belong to the
neighborhood N2 (γ1) (see Lemma 4.2 in [58]). He repeats this process until he
obtains an ǫ-solution for the primal and dual problems. The resulting complexity
is

O



n log
max

{(
x0
)T
s0,
∥
∥r0b
∥
∥ ,
∥
∥r0c
∥
∥

}

ǫ



 . (1.29)

We conclude this subsection with a graphical illustration of one iteration of the
algorithm, in Figure 1.7. This figure is drawn in xs-space. In this figure the
xs-space is projected onto its first two coordinates. In the xs-space the central
path is represented by half line µe, for µ > 0 as defined in this algorithm. The
neighborhoods N2 (γ1) and N2 (2γ1) are denoted by shaded regions. In this al-
gorithm he starts from a point z = xs in the inner neighborhood N2 (γ1), and
calculates the search directions (∆x, ∆y, ∆s) from the system (1.22). He moves
along these directions until he finds a point z′ = x′s′ in the outer neighborhood
N2 (2γ1). After the second step of the algorithm he has a point z1 inside the inner
neighborhood N2 (γ1).
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Figure 1.7: One iteration of the second IIPM of Mizuno

1.3.9 The IIPM of Potra

Potra [78] also presented a predictor-corrector IIPM. This algorithm is based on
Mizuno-Todd-Ye [59]. In this algorithm he uses two constants γ and β such that

γ ∈ (0, 1) (he takes γ = 1
4 ) and 0 < γ < β ≤ 2γ ≤

√
2

1+
√

2
. The neighborhood of

the central path is the same as the neighborhood in Mizuno’s second algorithm,
which is now denoted by N (γ). He also uses a second neighborhood N (β) with
γ < β. This implies N (γ) ⊂ N (β). Each iteration of Potra’s algorithm consists
of two steps. The first step starts from a triple (x, y, s) ∈ N (γ) and it serves
to get iterates that are in the neighborhood N (β). In this step he obtains the
affine-scaling directions (∆xa, ∆ya, ∆sa) that are the solution of the following
system:

A∆xa = 0,

AT∆ya + ∆sa = 0,

x∆sa + s∆xa = −xs.

He also computes search directions (∆x, ∆y, ∆s), by solving

A∆x = rb,

AT∆y + ∆s = rc,

x∆s+ s∆x = 0.

Now he moves along these directions and finds the iterates (x′, y′, s′) as follows:

x′ = x+ α1∆x
a + α2∆x,

y′ = y + α1∆y
a + α2∆y,

s′ = s+ α1∆s
a + α2∆s,
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where the step lengths α1 and α2 are in (0, 1] such that (x′, y′, s′) ∈ N (β) (see
[78, Section 2]). The second step is a centering step, just as the second step of
Mizuno’s second algorithm, which finds the iterates again belong to the neighbor-
hood N (γ). He repeats this process until he obtains an ǫ-solution for primal and
dual problems. He proved that the complexity of his algorithm coincides with
iteration bound (1.29).

1.4 The scope of this thesis

As mentioned in Subsection 1.3.1, small-update IPMs theoretically have the best
iteration bound and IPMs with full-Newton step belong to this class of methods.
Recently, Roos [82] designed the first primal-dual IIPM with full Newton steps
for LO problems. In his algorithm the starting point is chosen as in (1.15) and
µ0 = ζ2. As established in [82] if ζ is chosen large enough (e.g., ζ = 2L), where
L is the input size of the problem, the algorithm finds an ǫ-solution or detects
that the primal and dual problems (P ) and (D) are infeasible or unbounded. He
also proved that the complexity of his algorithm coincides with the best iteration
bound for the IIPM algorithms as given in (1.29). In the next two chapters
of this thesis we further explore the algorithm [82]. In Chapter 2, we present an
algorithm obtained by slightly changing the definition of the search direction used
in [82]. Compared with the algorithm in [82], the analysis of the new algorithm
is simpler, whereas the iteration bound of the algorithm is the same as before.
This chapter is based on [55]. In Chapter 3, we investigate the generalization to
semidefinite optimization (SDO) of the IIPM algorithm presented in [82]. The
chapter is based on [54].

In Chapter 4 we change topic by considering full-Newton step primal-dual IPMs
that are defined by barrier functions based on kernel functions. As mentioned
in Subsection 1.3.1 the theoretical iteration bound for large-update methods is
O
(
n log n

ǫ

)
, where n denotes the number of inequalities in the problem and ǫ is the

desired accuracy of the solution. In practice, large-update methods are much more
efficient than small-update methods for which the theoretical iteration bound is
only O

(√
n log n

ǫ

)
. So the theoretical bounds differ by a factor

√
n, in favor of

the small-update methods. This significant gap between theory and practice has
been referred to as the irony of IPMs [81]. Some progress has recently been made
in this respect by Peng et al. [74, 76] and Bai et al. [6–9]. In these results they
introduced a class of new barrier functions that are defined by univariate functions,
so-called kernel functions. In these results the “gap factor” was reduced from

√
n

to logn. But the iteration bounds for small-update methods based on these barrier
functions always were O

(√
n log n

ǫ

)
, which is the best known bound for IPMs for

LO. In Chapter 4, we prove that the class of barrier functions introduced in [6–
9, 74, 76] are locally self-concordant. By using the properties of self-concordance
functions we show why all the small-update methods have the iteration bound
O
(√
n log n

ǫ

)
. This chapter is based on [83].

Finally, Chapter 5 contains some conclusions and comments on further research.



Chapter 2
A full-Newton step primal-dual IIPM

for LO

2.1 Introduction

As pointed out in Section 1.4, the algorithm presented in [82] is a primal-dual
IIPM that uses full-Newton steps to solve LO problems. In this chapter we use
a slightly different algorithm which is obtained by changing the definition of the
search direction in the algorithm [82]. As we show, the analysis of our algorithm
is easier than the analysis of the algorithm in [82] at some places, whereas the
iteration bound essentially remains the same.

In the sections to follow we assume that (P ) and (D) are feasible. Only at the end,
in Section 2.4, we will discuss how our algorithm can be used to detect infeasibility
or unboundedness of (P ) and (D).

2.2 A primal-dual IIPM for LO

As usual for IIPMs, we use the starting point as in (1.15). So,

(
x0, y0, s0

)
= ζ (e, 0, e) (2.1)

with ζ > 0 such that

‖x∗ + s∗‖∞ ≤ ζ (2.2)

for some optimal solution x∗ of (P ) and (y∗, s∗) of (D). Our aim is to show that,
under this assumption, our algorithm obtains an ǫ-solution.

23
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The initial residual vectors are denoted by r0b and r0c , as defined in (1.13) and
(1.14). So we have

r0b = b−Ax0 = b− ζAe (2.3)

r0c = c−AT y0 − s0 = c− ζe. (2.4)

We start by recalling the main ideas underlying the algorithm in [82]. After that,
in Subsection 2.2.3, we point out where our algorithm differs from the algorithm
in [82].

2.2.1 The perturbed problems

Let
(
x0, y0, s0

)
be as defined in (2.1). For any ν with 0 < ν ≤ 1 we consider the

perturbed problem (Pν), defined by

(Pν) min
{(
c− νr0c

)T
x : Ax = b− νr0b , x ≥ 0

}

,

and its dual problem (Dν), which is given by

(Dν) max
{(
b− νr0b

)T
y : AT y + s = c− νr0c , s ≥ 0

}

,

where r0b and r0c are the initial residual vectors as defined in (2.3) and (2.4).
Note that if ν = 1 then x = x0 yields a strictly feasible solution of (Pν), and
(y, s) = (y0, s0) a strictly feasible solution of (Dν). Due to the choice of the
initial iterates we may conclude that if ν = 1 then (Pν) and (Dν) each have a
strictly feasible solution, which means that both perturbed problems satisfy the
IPC. More generally one has the following lemma (see also [82, Lemma 3.1]).

Lemma 2.2.1 (Theorem 5.13 in [105]). The original problems, (P ) and (D), are
feasible if and only if for each ν satisfying 0 < ν ≤ 1 the perturbed problems (Pν)
and (Dν) satisfy the IPC.

Proof. Suppose that (P ) and (D) are feasible. Let x̄ be feasible solution of (P )
and (ȳ, s̄) a feasible solution of (D). Then Ax̄ = b and AT ȳ + s̄ = c, with x̄ ≥ 0
and s̄ ≥ 0. Now let 0 < ν ≤ 1, and consider

x = (1 − ν) x̄+ ν x0, y = (1 − ν) ȳ + ν y0, s = (1 − ν) s̄+ ν s0.

One has

Ax = A
(
(1 − ν) x̄+ ν x0

)

= (1 − ν)Ax̄+ νAx0

= (1 − ν) b+ νAx0 = b− ν
(
b−Ax0

)
,
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showing that x is feasible for (Pν). Similarly,

AT y + s = (1 − ν)
(
AT ȳ + s̄

)
+ ν

(
AT y0 + s0

)

= (1 − ν) c+ ν
(
AT y0 + s0

)
= c− ν

(
c−AT y0 − s0

)
,

showing that (y, s) is feasible for (Dν). Since ν > 0, x and s are positive, thus
proving that (Pν) and (Dν) satisfy the IPC.

To prove the inverse implication, suppose that (Pν) and (Dν) satisfy the IPC
for each ν satisfying 0 < ν ≤ 1. Obviously, then (Pν) and (Dν) are feasible for
these values of ν. Letting ν go to zero it follows that (P ) and (D) are feasible.

2.2.2 Central path of the perturbed problems

We assumed that (P ) and (D) are feasible. Letting 0 < ν ≤ 1, Lemma 2.2.1
implies that the problems (Pν) and (Dν) satisfy the IPC, and hence their central
paths exist. This means that the system

Ax = b− νr0b , x ≥ 0 (2.5)

AT y + s = c− νr0c , s ≥ 0. (2.6)

xs = µe, (2.7)

has a unique solution, for every µ > 0. We denote this unique solution as
(x(µ, ν), y(µ, ν), s(µ, ν)). These are the µ-centers of the perturbed problems
(Pν) and (Dν).

Note that since x0s0 = µ0e with µ0 = ζ2, x0 is the µ0-center of the perturbed
problem (P1) and (y0, s0) the µ0-center of (D1). In other words,

(x(µ0, 1), y(µ0, 1), s(µ0, 1)) = (x0, y0, s0). (2.8)

In the sequel we will always have µ = ν µ0, and we will accordingly denote
(x(µ, ν), y(µ, ν), s(µ, ν)) simply as (x(ν), y(ν), s(ν)).

2.2.3 An iteration of our algorithm

We just established that if ν = 1 and µ = µ0, then x = x0 and (y, s) =
(
y0, s0

)

are the µ-centers of (Pν) and (Dν) respectively. These are our initial iterates.

We measure proximity to the µ-center of the perturbed problems by the quantity
δ (x, s; µ) as defined in (1.10). So, initially we have δ (x, s; µ) = 0, due to (2.8).
In the sequel we assume that at the start of each iteration, just before a µ-update,
δ (x, s; µ) is smaller than or equal to a (small) threshold value τ > 0. So this is
certainly true at the start of the first iteration.

Now we describe one iteration of our algorithm. Suppose that for some µ ∈ (0, µ0]
we have x, y and s satisfying the feasibility conditions (2.5) and (2.6) for ν = µ

µ0 ,

and such that xT s = nµ and δ (x, s; µ) ≤ τ . We reduce µ to µ+ = (1 − θ)µ,
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with θ ∈ (0, 1), and find new iterates x+, y+ and s+ that satisfy (2.5) and (2.6),

with ν replaced by ν+ = µ+

µ0 , and such that xT s = nµ+ and δ (x+, s+; µ+) ≤ τ .

Note that ν+ = (1 − θ) ν.

To be more precise, this is achieved as follows. Each main iteration consists of
a feasibility step and a few centering steps. The feasibility step serves to get
iterates

(
xf , yf , sf

)
that are strictly feasible for (Pν+) and (Dν+), and close to

their µ-centers (x (ν+) , y (ν+) , s (ν+)) such that δ
(
xf , sf ; µ+

)
≤ 1√

2
. Since the

triple
(
xf , yf , sf

)
is strictly feasible for (Pν+) and (Dν+), we can perform a few

centering steps starting at
(
xf , yf , sf

)
, targeting at the µ+-centers of (Pν+) and

(Dν+), and obtain iterates (x+, y+, s+) that are feasible for (Pν+) and (Dν+)
and such that δ (x+, s+; µ+) ≤ τ . For the analysis of the centering steps we can
just use the theory presented in Section 1.3.1 of Chapter 1, since the iterates are
feasible for the current pair of the perturbed problems. For the analysis of the
feasibility step, which we define below, much more work is needed.

From the definition of the perturbed problems (Pν) and (Dν), it is clear that the
feasibility equations for these problems are:

Ax = b− νr0b , x ≥ 0, (2.9)

AT y + s = c− νr0c , s ≥ 0, (2.10)

and those of (Pν+) and (Dν+):

Ax = b− ν+r0b , x ≥ 0, (2.11)

AT y + s = c− ν+r0c , s ≥ 0. (2.12)

So, assuming that x, y and s satisfy (2.9) and (2.10), to get iterates that are
feasible for (Pν+) and (Dν+) we need search directions ∆fx, ∆fy and ∆fs such
that

A
(
x+ ∆fx

)
= b− ν+r0b ,

AT
(
y + ∆fy

)
+
(
s+ ∆fs

)
= c− ν+r0c .

Since x is feasible for (Pν) and (y, s) is feasible for (Dν), it follows that ∆fx, ∆fy
and ∆fs should satisfy

A∆fx = (b−Ax) − ν+r0b = νr0b − ν+r0b = θνr0b ,

and

AT∆fy + ∆fs =
(
c−AT y − s

)
− ν+r0c = νr0c − ν+r0c = θνr0c .

In [82] the following system is used to define ∆fx, ∆fy and ∆fs:

A∆fx = θνr0b

AT∆fy + ∆fs = θνr0c

s∆fx+ x∆fs = µe− xs.

(2.13)
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Since matrix A is full row rank, the system (2.13) uniquely defines (∆fx, ∆fy,
∆fs) for any x > 0 and s > 0.

We follow a different approach and replace the third equation in (2.13) by the
equation

s∆fx+ x∆fs = 0. (2.14)

This leads to the following system

A∆fx = θνr0b (2.15)

AT∆fy + ∆fs = θνr0c (2.16)

∆fx+ x∆fs = 0, (2.17)

which, by the same arguments as before, also has a unique solution. After the
feasibility step the iterates are given by

xf = x+ ∆fx, (2.18)

yf = y + ∆fy, (2.19)

sf = s+ ∆fs. (2.20)

We conclude that after the feasibility step we have iterates
(
xf , yf , sf

)
that sat-

isfy the affine equations of the new perturbed problem pair (Pν+) and (Dν+). In
the analysis we should also guarantee that xf and sf are positive and moreover
belong to the region of quadratic convergence of their µ+-centers (x(ν+), y(ν+),
s(ν+)). In other words, we must have δ

(
xf , sf ; µ+

)
≤ 1√

2
. Proving this is the

crucial part in the analysis of the algorithm.

After the feasibility step we perform centering steps in order to get iterates

(x+, y+, s+) that satisfy x+T s+ = nµ+ and δ (x+, s+; µ+) ≤ τ , where τ > 0.
By using Corollary 1.3.6, the required number of centering steps can easily be
obtained. Indeed, assuming δ = δ

(
xf , sf ; µ+

)
≤ 1√

2
, after k centering steps we

will have iterates (x+, y+, s+) that are still feasible for (Pν+) and (Dν+) and that
satisfy

δ
(
x+, s+; µ+

)
≤
(

1√
2

)2k

.

Therefore, δ (x+, s+; µ+) ≤ τ will hold if k satisfies

(
1√
2

)2k

≤ τ,

which gives

k ≥ log2

(

log2

1

τ2

)

. (2.21)
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We conclude this section with a graphical illustration of one iteration of the al-
gorithm, in Figure 2.1. This figure is drawn in xs-space. In the xs-space the
central path of primal-dual pair of problems is a straight line consisting of µe, for
µ > 0. Hence, the central paths of the perturbed problem pair (Pν) and (Dν)
and also (Pν+) and (Dν+) are represented by two straight lines. We have drawn
the level curves for δ (v) = τ around target points on the central paths that are
used during the algorithm. The starting point z0 = xs of an inner iteration is
close to the µ-center µe of the perturbed problem pair (Pν) and (Dν). After the
feasibility step we have a feasible point for the new perturbed problem pair (Pν+)
and (Dν+), which is denoted by z1 = xfsf in the figure, and which lies in the
region of quadratic convergence of their µ+-centers. This is the shaded region
in the figure. By performing centering steps, starting at z1, we obtain iterates,
which are denoted by z2, z3 and z4 in xs-space, that are still feasible for the
new perturbed problem pair (Pν+) and (Dν+) and z4 is sufficiently close to their
µ+-center.
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Figure 2.1: Performance of one iteration of primal-dual IIPM

2.2.4 The algorithm

A more formal description of the algorithm is given in Figure 2.2. Note that since
in each iteration µ and ν are reduced by the factor 1 − θ, it follows that after
each iteration the residuals and the duality gap are also reduced by the factor
1 − θ. The algorithm stops if the norms of the residuals and the duality gap are
less than the accuracy parameter ǫ.
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Primal-Dual Infeasible IPM

Input:
Accuracy parameter ǫ > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ > 0;
parameter ζ > 0.

begin
x0 := ζe, s0 := ζe, y0 := 0; µ0 := ζ2;
while max

(
xT s, ‖rc‖ , ‖rb‖

)
≥ ǫ do

begin
feasibility step:

(x, y, s) := (x, y, s) +
(
∆fx, ∆fy, ∆fs

)
;

µ-update:

µ := (1 − θ)µ;

centering steps:

while δ (x, s, µ) ≥ τ do
begin

(x, y, s) := (x, y, s) + (∆x, ∆y, ∆s);
end

end
end

Figure 2.2: Infeasible full-Newton-step algorithm

2.3 Analysis of the feasibility step

Let x, y and s denote the iterates at the start of an iteration, and assume
δ(x, s;µ) ≤ τ . Recall that at the start of the first iteration this is certainly
true, because then δ(x, s;µ) = 0.

2.3.1 The feasibility step; choice of θ and τ

As we established in Section 2.2.3, the feasibility step generates new iterates xf ,
yf and sf that satisfy the feasibility conditions for (Pν+) and (Dν+). A crucial
element in the analysis is to show that after the feasibility step we have that
δ(xf , sf ;µ+) ≤ 1/

√
2, i.e., that the new iterates are within the region where the

Newton process, targeting at the µ+-centers of (Pν+) and (Dν+), is quadratically
convergent.
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We define

dfx :=
v∆fx

x
, dfs :=

v∆fs

s
, (2.22)

with v as defined in (1.7). Now, by (1.7) we have xs = µv2. Hence we may write

dfxd
f
s =

v2∆fx∆fs

xs
=

∆fx∆fs

µ
.

Using this and (2.17) we may write

xfsf = xs+
(
s∆fx+ x∆fs

)
+ ∆fx∆fs = µv2 + ∆fx∆fs = µ

(
v2 + dfxd

f
s

)
.

(2.23)

Lemma 2.3.1. The iterates
(
xf , yf , sf

)
are strictly feasible if and only if v2 +

dfxd
f
s > 0.

Proof. Note that if xf and sf are positive then (2.23) makes clear that v2+dfxd
f
s >

0, proving the ’only if’ part of the statement in the lemma. For the proof of the
converse implication we introduce a step length α ∈ [0, 1], and define

x (α) = x+ α∆fx, y (α) = y + α∆fy, s (α) = s+ α∆fs.

We then have x (0) = x, x (1) = xf and similar relations for y and s. Hence we
have x (0) s (0) = xs > 0. We write

x (α) s (α) =
(
x+ α∆fx

) (
s+ α∆fs

)
= xs+ α

(
s∆fx+ x∆fs

)
+ α2∆fx∆fs.

Using (2.23) and s∆fx+ x∆fs = 0 and xs = µv2, we obtain

x (α) s (α) = xs+ α2∆fx∆fs = µv2 + α2µdfxd
f
s = µ

(
v2 + α2dfxd

f
s

)
.

Now suppose that v2 + dfxd
f
s > 0. Then dfxd

f
s > −v2, so we get

x (α) s (α) > µ
(
v2 − α2v2

)
= µ

(
1 − α2

)
v2 =

(
1 − α2

)
xs, α ∈ [0, 1] .

Since
(
1 − α2

)
xs ≥ 0 it follows that x (α) s (α) > 0 for 0 ≤ α ≤ 1. Hence, none

of the entries of x (α) and s (α) vanishes for 0 ≤ α ≤ 1. Since x (0) and s (0) are
positive, and x (α) and s (α) depend linearly on α, this implies that x (α) > 0 and
s (α) > 0 for all 0 ≤ α ≤ 1. Hence, x (1) and s (1) must be positive, proving the
’if’ part of the statement in the lemma.

Using (2.22) we may also write

xf = x+ ∆fx = x+
xdfx
v

=
x

v
(v + dfx) (2.24)

sf = s+ ∆fs = s+
sdfs
v

=
s

v
(v + dfs ). (2.25)

To simplify the presentation we will denote δ(x, s;µ) below simply as δ. Recall
that we assume that before the feasibility step one has δ ≤ τ .
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Lemma 2.3.2. The new iterates are certainly strictly feasible if

∥
∥dfx

∥
∥ <

1

ρ(δ)
and

∥
∥dfs

∥
∥ <

1

ρ(δ)
, (2.26)

where

ρ(δ) := δ +
√

1 + δ2. (2.27)

Proof. It is clear from (2.24) that xf is strictly feasible if and only if v + dfx > 0.
This certainly holds if

∥
∥dfx

∥
∥ < min(v). Since 2δ =

∥
∥v − v−1

∥
∥, the minimal value t

that an entry of v can attain will satisfy t ≤ 1 and 1/t− t = 2δ. The last equation
implies t2 + 2δt− 1 = 0, which gives t = −δ+

√
1 + δ2 = 1/ρ(δ). This proves the

first inequality in (2.26). The second inequality is obtained in the same way.

The above proof makes clear that the elements of the vector v satisfy

1

ρ(δ)
≤ vi ≤ ρ(δ), i = 1, . . . , n. (2.28)

One may easily check that the system (2.15)–(2.17), which defines the search
directions ∆fx, ∆fy and ∆fs, can be expressed in terms of the scaled search
directions dfx and dfs as follows.

Ādfx = θνr0b , (2.29)

ĀT
∆fy

µ
+ dfs = θνvs−1r0c , (2.30)

dfx + dfs = 0, (2.31)

where

Ā = AV −1X. (2.32)

Hence, due to (2.31), we have dfs = −dfx, and therefore

z := −dfxdfs =
(
dfx
)2
. (2.33)

Assuming v2 + dfxd
f
s = v2 −

(
dfx
)2
> 0, which according to Lemma 2.3.1 holds if

and only if the iterates
(
xf , yf , sf

)
are strictly feasible, we proceed by deriving

an upper bound for δ
(
xf , sf ;µ+

)
. According to definition (1.10) it holds that

δ
(
xf , sf ;µ+

)
=

1

2

∥
∥
∥vf − e

vf

∥
∥
∥ , where vf =

√

xfsf

µ+
.

In the sequel we denote δ
(
xf , sf ;µ+

)
also shortly by δ

(
vf
)
. We need to find an

upper bound for δ
(
vf
)
. To this end, we need the following technical lemma.
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Lemma 2.3.3. For i = 1, . . . , m, let fi : R+ → R denote a convex function.
Then we have for any nonzero vector z ∈ Rn

+ the following inequality:

n∑

i=1

fi(zi) ≤
1

eT z

n∑

j=1

zj



fj(e
T z) +

∑

i6=j
fi(0)



 .

Proof. We define the function F : Rn
+ → R by

F (z) =

n∑

i=1

fi(zi), z ≥ 0.

Letting ej denote the j-th unit vector in Rn, we may write z as a convex combi-
nation of the vectors

(
eT z

)
ej , as follows.

z =

n∑

j=1

zj
eT z

(
eT z

)
ej,

Indeed,
∑n

j=1
zj

eT z = 1 and zj/e
T z ≥ 0 for each j. Since F (z) is a sum of convex

functions, F (z) is convex in z, and hence we have

F (z) ≤
n∑

j=1

zj
eT z

F
((
eT z

)
ej
)

=
n∑

j=1

zj
eT z

n∑

i=1

fi
((
eT z

)
(ej)i

)
.

Since (ej)i = 1 if i = j and zero if i 6= j, we obtain

F (z) ≤
n∑

j=1

zj
eT z



fj(e
T z) +

∑

i6=j
fi(0)



 .

Hence the inequality in the lemma follows

Lemma 2.3.4. Assuming v2 −
(
dfx
)2
> 0, one has

4δ(vf )2 ≤ θ2n−
∥
∥dfx

∥
∥

2

1 − θ
+ (1 − θ)




4δ2 +

ρ(δ)4
∥
∥dfx

∥
∥

2

1 − ρ(δ)2
∥
∥
∥d

f
x

∥
∥
∥

2




 ,

with ρ as defined in (2.27).

Proof. After division of both sides in (2.23) by µ+ we get, using (2.33),

(
vf
)2

=
xfsf

µ+
=
µ
(
v2 + dfxd

f
s

)

µ+
=
v2 + dfxd

f
s

1 − θ
=
v2 − z

1 − θ
.
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Hence we have

4δ(vf )2 =

n∑

i=1

((

vfi

)2

+
(

vfi

)−2

− 2

)

=

n∑

i=1

(
v2
i − zi
1 − θ

+
1 − θ

v2
i − zi

− 2

)

For each i we define the function

fi(zi) :=
v2
i − zi
1 − θ

+
1 − θ

v2
i − zi

− 2, i = 1, . . . , n.

Due to hypothesis in the lemma we have v2
i − zi > 0, for each i. Using this one

may easily verify that fi(zi) is convex in zi. We therefore may apply Lemma

2.3.3. A direct application, also using zi =
(
dfx
)2

i
and eT z =

∥
∥dfx

∥
∥

2
, gives

4δ(vf )2 ≤ (2.34)

n∑

j=1

(
dfx
)2

j
∥
∥
∥d

f
x

∥
∥
∥

2






v2
j −

∥
∥dfx

∥
∥

2

1 − θ
+

1 − θ

v2
j −

∥
∥
∥d

f
x

∥
∥
∥

2 − 2 +
∑

i6=j

(
v2
i

1 − θ
+

1 − θ

v2
i

− 2

)




 .

From Lemma 1.3.2 we know that

n∑

i=1

(
v2
i

1 − θ
+

1 − θ

v2
i

− 2

)

= 4 (1 − θ) δ2 +
θ2n

1 − θ
.

Hence, the last term in the right-hand side of (2.34) can be rewritten as

∑

i6=j

(
v2
i

1 − θ
+

1 − θ

v2
i

− 2

)

=

n∑

i=1

(
v2
i

1 − θ
+

1 − θ

v2
i

− 2

)

−
(

v2
j

1 − θ
+

1 − θ

v2
j

− 2

)

= 4(1 − θ)δ2 +
θ2n

1 − θ
−
(

v2
j

1 − θ
+

1 − θ

v2
j

− 2

)

.

Substituting this in the right-hand side of (2.34) gives the following upper bound

for 4 δ
(
vf
)2

:

n∑

j=1

(
dfx
)2

j
∥
∥
∥d

f
x

∥
∥
∥

2






v2
j −

∥
∥dfx

∥
∥

2

1 − θ
+

1 − θ

v2
j −

∥
∥
∥d

f
x

∥
∥
∥

2 − 2 + 4(1 − θ)δ2 +
θ2n

1 − θ

−
(

v2
j

1 − θ
+

1 − θ

v2
j

− 2

))

.
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This expression can be simplified to

4 (1 − θ) δ2 +
θ2n

1 − θ

+
1

∥
∥
∥d

f
x

∥
∥
∥

2

n∑

j=1

(
dfx
)2

j






v2
j −

∥
∥dfx

∥
∥

2

1 − θ
+

1 − θ

v2
j −

∥
∥
∥d

f
x

∥
∥
∥

2 −
(

v2
j

1 − θ
+

1 − θ

v2
j

)



 ,

which can be further reduced to

4(1 − θ)δ2 +
θ2n

1 − θ
+

1
∥
∥
∥d

f
x

∥
∥
∥

2

n∑

j=1

(
dfx
)2

j





−
∥
∥dfx
∥
∥

2

1 − θ
+

1 − θ

v2
j −

∥
∥
∥d

f
x

∥
∥
∥

2 − 1 − θ

v2
j






= 4(1 − θ)δ2 +
θ2n

1 − θ
−
∥
∥dfx

∥
∥

2

1 − θ
+

1 − θ
∥
∥
∥d

f
x

∥
∥
∥

2

n∑

j=1

(
dfx
)2

j

∥
∥dfx

∥
∥

2

v2
j

(

v2
j −

∥
∥
∥d

f
x

∥
∥
∥

2
)

= 4(1 − θ)δ2 +
θ2n

1 − θ
−
∥
∥dfx

∥
∥

2

1 − θ
+ (1 − θ)

n∑

j=1

(
dfx
)2

j

v2
j

(

v2
j −

∥
∥
∥d

f
x

∥
∥
∥

2
) .

From (2.28) we know that vj ≥ 1
ρ(δ) . Using this we get

4δ(vf )2 ≤ 4(1 − θ)δ2 +
θ2n−

∥
∥dfx

∥
∥

2

1 − θ
+

(1 − θ) ρ(δ)4
∥
∥dfx

∥
∥

2

1 − ρ(δ)2
∥
∥
∥d

f
x

∥
∥
∥

2 .

This implies the lemma.

We conclude this section by presenting a value that we do not allow
∥
∥dfx

∥
∥ to

exceed. It may be worth noting that dfx is dependent on the value of θ, as is clear
from (2.29) - (2.31). This fact will be explored later on. Recall that we want
δ(vf ) ≤ 1/

√
2, and observe that Lemma 2.3.4 implies that this holds if

θ2n−
∥
∥dfx

∥
∥

2

1 − θ
+ (1 − θ)




4δ2 +

ρ(δ)4
∥
∥dfx

∥
∥

2

1 − ρ(δ)2
∥
∥
∥d

f
x

∥
∥
∥

2




 ≤ 2.

At this stage we decide to choose

τ =
1

8
, θ =

α√
2n
, α ≤ 1. (2.35)

Then, for n ≥ 1 and δ ≤ τ , one may easily verify that

∥
∥dfx

∥
∥ ≤ 1

2
⇒ δ(vf ) ≤ 1√

2
. (2.36)

We proceed by considering the vector dfx more in detail.



2.3 ANALYSIS OF THE FEASIBILITY STEP 35

2.3.2 Upper bound for
∥
∥df

x

∥
∥

Using (2.31), we can rewrite (2.29)-(2.30) simply as

Ādfx = θνr0b ,

ĀT ∆fy
µ − dfx = θνvs−1r0c .

(2.37)

Now let us denote the null space of the matrix Ā as L. So,

L :=
{
ξ ∈ Rn : Āξ = 0

}
.

Then the affine space
{
ξ ∈ Rn : Āξ = θνr0b

}
equals dfx + L. Note that due to a

well-known result from linear algebra the row space of Ā equals the orthogonal
complement L⊥ of L. Therefore, the second equation in (2.37) shows that the
affine space

{
−θνvs−1r0c + ĀT ς : ς ∈ Rm

}
equals dfx +L⊥. Since L∩L⊥ = {0},

it follows that the affine spaces dfx + L and dfx + L⊥ meet in a unique point.
Therefore, system (2.37) determines dfx uniquely. Now using similar arguments
as in [82, Section 4.4] we can prove the following lemma.

Lemma 2.3.5 (Lemma 4.7 in [82]). One has

√
µ
∥
∥dfx

∥
∥ ≤ θν ζ

√

eT
(x

s
+
s

x

)

. (2.38)

Proof. From the definition (2.32) we deduce that Ā =
√
µAD, where

D = diag

(
xv−1

√
µ

)

= diag

(√
x

s

)

= diag
(√
µvs−1

)
.

To simplify notations, let us write

rb = θνr0b , rc = θνr0c and q = −dfx.

Then the system defining q is equivalent to

√
µADq = −rb,

√
µDAT ξ + q =

1√
µ
Drc,

where ξ = ∆fy
µ . This implies

µAD2AT ξ = AD2rc + rb,

whence

ξ =
1

µ

(
AD2AT

)−1 (
AD2rc + rb

)
.
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Substitution gives

q =
1√
µ

(

Drc −DAT
(
AD2AT

)−1 (
AD2rc + rb

))

.

Observe that

q1 := Drc −DAT
(
AD2AT

)−1
AD2rc =

(

I −DAT
(
AD2AT

)−1
AD

)

Drc

is the orthogonal projection of Drc onto the null space of AD. Let (ȳ, s̄) be such
that AT ȳ + s̄ = c. Then we may write

rc = θνr0c = θν
(
c−AT y0 − s0

)
= θν

(
AT
(
ȳ − y0

)
+ s̄− s0

)
.

Since DAT
(
ȳ − y0

)
belongs to the row space of AD, which is orthogonal to the

null space of AD, we obtain

‖q1‖ ≤ θν
∥
∥D
(
s̄− s0

)∥
∥ .

On the other hand, let x̄ be such that Ax̄ = b. Then

rb = θνr0b = θν
(
b−Ax0

)
= θνA

(
x̄− x0

)
,

and the vector

q2 := θν DAT
(
AD2AT

)−1
AD

(
D−1

(
x̄− x0

))

is the orthogonal projection of θνD−1
(
x̄− x0

)
onto the row space of AD. Hence

it follows that
‖q2‖ ≤ θν

∥
∥D−1

(
x̄− x0

)∥
∥ .

Since
√
µq = q1 − q2 and q1 and q2 are orthogonal, we may conclude that

√
µ ‖q‖ =

√

‖q1‖2 + ‖q2‖2 ≤ θν

√

‖D (s̄− s0)‖2 + ‖D−1 (x̄− x0)‖2, (2.39)

where, as always, µ = µ0ν. We are still free to choose x̄ and s̄, subject to
constraints Ax̄ = b and AT ȳ + s̄ = c. Taking x̄ = x∗ ≥ 0 and s̄ = s∗ ≥ 0, where
x∗ and (y∗, s∗) are optimal solutions for (P ) and (D), respectively and satisfy
(1.16). This implies that the entries of the vectors x0 − x̄ and s0 − s̄ satisfy

0 ≤ x0 − x̄ ≤ ζe, 0 ≤ s0 − s̄ ≤ ζe.

Thus it follows that
√

‖D (s̄− s0)‖2 + ‖D−1 (x̄− x0)‖2 ≤ ζ

√

‖De‖2 + ‖D−1e‖2 = ζ

√

eT
(x

s
+
s

x

)

.

Substitution into (2.39) gives

√
µ ‖q‖ ≤ θνζ

√

eT
(x

s
+
s

x

)

.

Since q = −dfx, this completes the proof.
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To proceed we need upper and lower bounds for the elements of the vectors
x/s and s/x.

2.3.3 Bounds for x/s and s/x and the choice of α

Let x be feasible for (Pν) and (y, s) for (Dν) and, moreover δ(x, s;µ) ≤ τ , i.e.,
these iterates are close to the µ-centers of (Pν) and (Dν). Based on this informa-
tion we need to estimate the sizes of the entries of the vectors x/s and s/x. To
this end we recall some lemmas from [82]. Let

Φ (xs;µ) := Ψ(v) :=

n∑

i=1

ψ(vi), vi :=

√
xisi
µ
, ψ(t) :=

1

2

(
t2 − 1 − log t2

)
,

where µ = µ0ν = νζ2. It is well known that ψ(t) is the kernel function of
the primal-dual logarithmic barrier function, which, up to some constant, is the
function Φ (xs;µ) (see, e.g., [8]).

Lemma 2.3.6. One has

Φ (xs;µ) = Φ (xs(ν);µ) + Φ (x(ν)s;µ) .

Proof. The equality in the lemma is equivalent to

n∑

i=1

(
xisi
µ

− 1 − log
xisi
µ

)

=

n∑

i=1

(
xi(ν)si
µ

− 1 − log
xi(ν)si
µ

)

+
n∑

i=1

(
xisi(ν)

µ
− 1 − log

xisi(ν)

µ

)

.

Since

log
xisi
µ

= log
xisi

xi(ν)si(ν)
= log

xi
xi(ν)

+ log
si

si(ν)
= log

xisi(ν)

µ
+ log

xi(ν)si
µ

,

the lemma holds if and only if

xT s− nµ =
(
xT s(ν) − nµ

)
+
(
sTx(ν) − nµ

)
.

Using that x(ν)s(ν) = µe, whence x(ν)T s(ν) = nµ, this can be written as (x −
x(ν))T (s−s(ν)) = 0, which holds if the vectors x−x(ν) and s−s(ν) are orthogonal.
This is indeed the case, because x − x(ν) belongs to the null space and s − s(ν)
to the row space of A. This proves the lemma.

Lemma 2.3.7. One has

ψ

(√
xi

xi(ν)

)

≤ Ψ(v), ψ

(√
si

si(ν)

)

≤ Ψ(v), i = 1, . . . , n.
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Proof. By Lemma 2.3.6 we have Φ (xs;µ) = Φ (xs(ν);µ) + Φ (x(ν)s; ν). Since
Φ (xs;µ) is always nonnegative, also Φ (xs(ν);µ) and Φ (x(ν)s;µ) are nonnegative.
Thus it follows that Φ (xs(ν);µ) ≤ Ψ(v) and Φ (x(ν)s;µ) ≤ Ψ(v). The first of
these two inequalities gives

Φ (xs(ν);µ) =

n∑

i=1

ψ

(√

xisi(ν)

µ

)

≤ Ψ(v).

Since ψ(t) ≥ 0, for every t > 0, it follows that

ψ

(√

xisi(ν)

µ

)

≤ Ψ(v), i = 1, . . . , n.

Due to x(ν)s(ν) = µe, we have

xisi(ν)

µ
=

xisi(ν)

xi(ν)si(ν)
=

xi
xi(ν)

,

whence we obtain the first inequality in the lemma. The second inequality follows
in the same way.

Note that ψ(t) is monotonically decreasing for t ≤ 1 and monotonically in-
creasing for t ≥ 1. In the sequel we denote by ̺ : [0,∞) → [1,∞) the inverse
function of ψ(t) for t ≥ 1 and by χ : [0,∞) → (0, 1] the inverse function of ψ(t)
for t ≤ 1. So we have

̺(s) = t ⇔ s = ψ(t), s ≥ 0, t ≥ 1. (2.40)

and

χ(s) = t ⇔ s = ψ(t), s ≥ 0, 0 < t ≤ 1. (2.41)

Lemma 2.3.8. let t > 0 and ψ(t) ≤ s. Then χ(s) ≤ t ≤ ̺(s).

Proof. This is almost obvious. Since ψ(t) is strictly convex and minimal at t = 1,
with ψ(1) = 0, ψ(t) ≤ s implies that t belongs to a closed interval whose extremal
points are χ(s) and ̺(s).

The above lemma is illustrated in Figure 2.3.

Corollary 2.3.9. One has

χ (Ψ(v)) ≤
√

xi
xi(ν)

≤ ̺ (Ψ(v)) , χ (Ψ(v)) ≤
√

si
si(ν)

≤ ̺ (Ψ(v)) .

Proof. This is immediate from Lemma 2.3.8 and Lemma 2.3.7.
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s

̺ (s)χ (s) 1

ψ(t)

t

Figure 2.3: Graphical illustration of the functions χ(s) and ̺(s).

Lemma 2.3.10. One has
√
x

s
≤ ̺ (Ψ(v))

χ (Ψ(v))

x(ν)√
µ

√
s

x
≤ ̺ (Ψ(v))

χ (Ψ(v))

s(ν)√
µ
.

Proof. Using that xi(ν)si(ν) = µ, for each i, Corollary 2.3.9 implies

√
xi
si

≤ ̺ (Ψ(v))
√

xi(ν)

χ (Ψ(v))
√

si(ν)
=
̺ (Ψ(v))

χ (Ψ(v))

√

xi(ν)

si(ν)

=
̺ (Ψ(v))

χ (Ψ(v))

√

x2
i (ν)

µ
=
̺ (Ψ(v))

χ (Ψ(v))

xi(ν)√
µ
,

which implies the first inequality. The second inequality is obtained in the same
way.

Lemma 2.3.11. Let t ≥ 1. Then ψ (t) − ψ
(

1
t

)
≥ 0.

Proof. Define f (t) := ψ (t) − ψ
(

1
t

)
for t > 0. Then

f ′ (t) = t− 1

t
−
(

1

t
− t

) −1

t2
=

(

t− 1

t

)(

1 − 1

t2

)

=

(
t2 − 1

)2

t3
≥ 0.

It follows that f (t) is monotonically increasing for t > 0. Since f (1) = 0 this
proves that f (t) ≥ 0 for t ≥ 1, and hence the lemma follows.

Theorem 2.3.12. Let δ(v) be as defined in (1.10) and ρ(δ) as in (2.27). Then
Ψ(v) ≤ ψ (ρ(δ(v))) .
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Proof. The statement in the lemma is obvious if v = e since then δ(v) = Ψ(v) = 0
and since ρ(0) = 1 and ψ(1) = 0. Otherwise we have δ(v) > 0 and Ψ(v) > 0. To
deal with the nontrivial case we consider, for τ > 0, the problem

zτ = max
v

{

Ψ(v) =

n∑

i=1

ψ(vi) : δ(v)2 = 1
4

n∑

i=1

ψ′(vi)
2 = τ2

}

.

The first order optimality conditions are

ψ′(vi) = λψ′(vi)ψ
′′(vi), i = 1, . . . , n,

where λ ∈ R. From this we conclude that we have either ψ′(vi) = 0 or λψ′′(vi) =
1, for each i. Since ψ′′(t) is monotonically decreasing, this implies that all vi’s for
which λψ′′(vi) = 1 have the same value. Denoting this value as t, and observing
that all other coordinates have value 1 (since ψ′(vi) = 0 for these coordinates),
we conclude that for some k, and after reordering the coordinates, v has the form

v = (t, . . . , t
︸ ︷︷ ︸

k times

, 1, . . . , 1
︸ ︷︷ ︸

n−k times

).

Since ψ′(1) = 0, δ(v) = τ implies kψ′(t)2 = 4τ2. Since ψ′(t) = t− 1/t, it follows
that

t− 1

t
= ± 2τ√

k
,

which gives t = ρ(τ/
√
k) or t = 1/ρ(τ/

√
k). By Lemma 2.3.11, the first value,

which is greater than 1, gives the largest value of ψ(t). This follows because

ψ(t) − ψ

(
1

t

)

=
1

2

(

t2 − 1

t2

)

≥ 0, t ≥ 1.

Since we are maximizing Ψ(v), we conclude that t = ρ(τ/
√
k), whence we have

Ψ(v) = k ψ

(

ρ

(
τ√
k

))

.

The question remains which value of k maximizes Ψ(v). To investigate this we
take the derivative of Ψ(v) with respect to k. To simplify the notation we write

Ψ(v) = k ψ (t) , t = ρ (s), s =
τ√
k
.

The definition of t implies t = s +
√

1 + s2. This gives (t − s)2 = 1 + s2, or
t2 − 1 = 2st, whence we have

2s = t− 1

t
= ψ′(t).
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Some straightforward computations now yield

dΨ(v)

dk
= ψ (t) − s2ρ(s)√

1 + s2
=: f(τ).

We consider this derivative as a function of τ , as indicated. One may easily verify
that f(0) = 0. We proceed by computing the derivative with respect to τ . This
gives

f ′(τ) = − 1√
k

s2

(1 + s2)
√

1 + s2

This proves that f ′(τ) ≤ 0. Since f(0) = 0, it follows that f(τ) ≤ 0, for each
τ ≥ 0. Hence we conclude that Ψ(v) is decreasing in k. So Ψ(v) is maximal when
k = 1, which gives the result in the theorem.

Corollary 2.3.13. Let τ ≥ 0, δ(v) ≤ τ and ρ (δ) as defined in (2.27). Then
Ψ(v) ≤ τ ′, where

τ ′ := ψ (ρ(τ)) . (2.42)

Proof. Since ρ(s) is monotonically increasing in s, and ρ(s) ≥ 1 for all s ≥ 0,
and, moreover, ψ(t) is monotonically increasing if t ≥ 1, the function ψ (ρ(δ)) is
increasing in δ, for δ ≥ 0. Thus the result is immediate from Theorem 2.3.12.

Theorem 2.3.14. Let τ ≥ 0 and δ(v) ≤ τ and τ ′ as defined in (2.42). Then

√
x

s
≤ ̺ (τ ′)

χ (τ ′)

x(ν)√
µ

√
s

x
≤ ̺ (τ ′)

χ (τ ′)

s(ν)√
µ
.

Proof. Since ̺(t) is monotonically increasing and χ(t) monotonically decreasing
this is an immediate consequence of Lemma 2.3.10 and Corollary 2.3.13.

Corollary 2.3.15. Let τ = 1
8 , δ (v) ≤ τ and ρ (δ) as defined in (2.27). Then

√
x

s
≤

√
2
x (ν)√
µ
,

√
s

x
≤

√
2
s (ν)√
µ
.

Proof. If τ = 1
8 , then τ ′ ≈ 0.016921, ̺ (τ ′) ≈ 1.13278 and χ (τ ′) ≈ 0.872865,

whence
̺ (τ ′)

χ (τ ′)
≈ 1.29777 <

√
2.

Thus the result follows.
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Based on the above analysis we choose

τ =
1

8
. (2.43)

By Corollary 2.3.15 we then have

√
x

s
≤

√
2
x (ν)√
µ
,

√
s

x
≤

√
2
s (ν)√
µ
,

Substitution into (2.38) gives

√
µ
∥
∥dfx

∥
∥ ≤ θν ζ

√
√
√
√2eT

(

x(ν)
2

µ
+
s(ν)

2

µ

)

.

This implies

µ
∥
∥dfx

∥
∥ ≤ θνζ

√
2

√

‖x(ν)‖2
+ ‖s(ν)‖2

.

Therefore, also using µ = νζ2 and θ = α√
2n

, we obtain the following upper bound

for
∥
∥dfx

∥
∥:

∥
∥dfx

∥
∥ ≤ α

ζ
√
n

√

‖x(ν)‖2
+ ‖s(ν)‖2

.

We define

κ(ζ, ν) =

√

‖x(ν)‖2
+ ‖s(ν)‖2

ζ
√

2n
, 0 < ν ≤ 1.

Now we may write

∥
∥dfx

∥
∥ ≤ α κ̄(ζ)

√
2 where κ̄(ζ) = max

0<ν≤1
κ(ζ, ν).

Note that since x(1) = s(1) = ζe, we have κ(ζ, 1) = 1. Hence it follows that
κ̄(ζ) ≥ 1. We found in (2.36) that in order to have δ(vf ) ≤ 1/

√
2, we should have

2
∥
∥dfx

∥
∥ ≤ 1. This certainly holds if 2α κ̄(ζ)

√
2 ≤ 1. We conclude that if we take

α =
1

2
√

2 κ̄(ζ)
, (2.44)

then we will certainly have δ(vf ) ≤ 1/
√

2. In the next section we will find an
upper bound for κ̄ (ζ). The next section is based on Section 4.6 in [82].
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2.3.4 Bound for κ̄ (ζ).

Due to the choice of the vectors x̄, ȳ, s̄ and the number ζ we have

Ax̄ = b, 0 ≤ x̄ ≤ ζe

AT ȳ + s̄ = c, 0 ≤ s̄ ≤ ζe

x̄s̄ = 0.

To simplify notation in the rest of this section, we denote x = x (ν) , y = y (ν)
and s = s (ν). Then x, y and s are uniquely determined by the system

b−Ax = ν (b−Aζe) , x ≥ 0

c−AT y − s = ν (c− ζe) , s ≥ 0

xs = νζ2e.

Hence we have

Ax̄−Ax = ν (Ax̄− ζAe) , x ≥ 0

AT ȳ + s̄−AT y − s = ν
(
AT ȳ + s̄− ζe

)
, s ≥ 0

xs = νζ2e.

We rewrite this system as

A (x̄− x− νx̄ + νζe) = 0, x ≥ 0

AT (ȳ − y − νȳ) = s− s̄+ νs̄− νζe, s ≥ 0

xs = νζ2e.

By using again orthogonality of the row space of a matrix and its null space, we
get

(x̄− x− νx̄ + νζe)
T

(s− s̄+ νs̄− νζe) = 0.

Defining
a := (1 − ν) x̄+ νζe, b := (1 − ν) s̄+ νζe,

we have (a− x)
T

(b− s) = 0. This gives

aT b+ xT s = aT s+ bTx.

Since x̄T s̄ = 0, x̄+ s̄ ≤ ζe and xs = νζ2e, we may have

aT b+ xT s = ((1 − ν) x̄+ νζe)T ((1 − ν) s̄+ νζe) + νζ2n

= ν (1 − ν) (x̄+ s̄)
T
ζe+ ν2ζ2n+ νζ2n

≤ ν (1 − ν) (ζe)
T
ζe+ ν2ζ2n+ νζ2n

= ν (1 − ν) ζ2n+ ν2ζ2n+ νζ2n = 2νζ2n.
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Moreover, also using a ≥ νζe, b ≥ νζe, we get

aT s+ bTx = ((1 − ν) x̄+ νζe)
T
s+ ((1 − ν) s̄+ νζe)

T
x

= (1 − ν)
(
sT x̄+ xT s̄

)
+ νζeT (x+ s)

≥ νζeT (x+ s) = νζ (‖x‖1 + ‖s‖1) .

Hence we obtain ‖x‖1 + ‖s‖1 ≤ 2ζn. Since ‖x‖2 + ‖s‖2 ≤ (‖x‖1 + ‖s‖1)
2, it

follows that √

‖x‖2 + ‖s‖2

ζ
√

2n
≤ ‖x‖1 + ‖s‖1

ζ
√

2n
≤ 2ζn

ζ
√

2n
=

√
2n,

thus proving
κ̄ (ζ) ≤

√
2n.

Substitution of the upper bound for κ̄(ζ) in (2.44) we obtain that we certainly
have δ(v+) ≤ 1/

√
2 if

α =
1

4
√
n
. (2.45)

According to (2.35) this gives the following value for θ:

θ =
1

4n
√

2
. (2.46)

2.4 Iteration bound

In the previous sections we have found that if at the start of an iteration the
iterates satisfy δ(x, s;µ) ≤ τ , with τ as defined in (2.35), and θ as in (2.46), then
after the feasibility step and the µ-update the iterates satisfy δ(x, s;µ) ≤ 1/

√
2.

According to (2.21), at most

log2

(

log2

1

τ2

)

= log2 (log2 64) ≤ 3

centering steps suffice to get iterates that satisfy δ(x, s;µ) ≤ τ . So each iteration
consists of one feasibility step and at most 3 centering steps. In each iteration
both the duality gap and the norms of the residual vectors are reduced by the

factor 1− θ. Hence, using x0T s0 = nζ2, the total number of iterations is bounded
above by

1

θ
log

max
{
nζ2,

∥
∥r0b
∥
∥ ,
∥
∥r0c
∥
∥
}

ǫ
.

Hence, due to (2.46) the total number of inner iterations is bounded above by

16n
√

2 log
max

{
nζ2,

∥
∥r0b
∥
∥ ,
∥
∥r0c
∥
∥
}

ǫ
.

Thus we may state without further proof our main result as follows.
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Theorem 2.4.1. If (P ) and (D) are feasible and ζ > 0 is such that ‖x∗ + s∗‖∞ ≤
ζ for some optimal solutions x∗ of (P ) and (y∗, s∗) of (D) then after at most

16n
√

2 log
max

{
nζ2,

∥
∥r0b
∥
∥ ,
∥
∥r0c
∥
∥
}

ǫ
.

inner iterations the algorithm finds an ǫ-solution of (P ) and (D).

Note that the order of this bound is exactly the same as the order of the
bound in (1.29). A basic question is of course how to choose the number ζ, which
determines the initial iterates and has to be fixed before starting the algorithm.
A related question that we did not yet deal with is wether or not our algorithm
can detect infeasibility (or unboundedness) of (P ) and (D). These issues can be
dealt with if the data A, b and c are integral (or rational). In that case it is
well known that if (P ) and (D) are feasible then there exist optimal solutions
x∗ and (y∗, s∗) of (P ) and (D) such that ‖x∗ + s∗‖∞ ≤ 2L, where L denotes
the binary input size of (P ) and (D) (See, e.g., [103]). The number L can be
computed straightforwardly from the input data A, b and c. Thus, when starting
the algorithm with ζ = 2L, after at most

16n
√

2 log
max

{
n4L,

∥
∥b− 2LAe

∥
∥ ,
∥
∥c− 2Le

∥
∥
}

ǫ
.

iterations the algorithm finds an ǫ-solution if it exists. Otherwise we must decide
that (P ) and (D) are infeasible or unbounded. Working with the number L may
not be possible in practice, however, since this number can be very large. For such
cases it may be worth noting that if (P ) and (D) are infeasible or unbounded then
Lemma 2.2.1 implies that Pν and Dν do not satisfy the IPC for all ν ∈ (0, ν̄] for
some ν̄ ∈ (0, 1). If the iterates after the feasibility step satisfy δ

(
xf , sf ;µ+

)
≤

1/
√

2 we are sure that the perturbed problems corresponding to ν = µ+/µ0 satisfy
the IPC, and hence are strictly feasible. So we then have ν ≥ ν̄. On the other
hand, if ν < ν̄ the algorithm will find that δ

(
xf , sf ;µ+

)
> 1/

√
2, which implies

that there are no optimal solutions x∗ and (y∗, s∗) such that ζ ≥ ‖x∗ + s∗‖∞.
We can then run the algorithm again with ζ = 2 ζ. If necessary this can be
repeated. When starting with ζ = 1, after doubling the value of ζ at most L
times the algorithm must have found optimal solutions of (P ) and (D) if these
exist. Otherwise (P ) and (D) are infeasible or unbounded.

Remark 2.4.2. It may be worthwhile to point out that we used our algorithm to
solve 105 instances. Each instance consisted of a primal-dual pair of randomly
generated problems with known optimal solutions x∗ and (y∗, s∗). We ran the
algorithm for each problem pair with ζ = ‖x∗ + s∗‖∞. To our surprise we found
in all cases that κ̄ (ζ) ≤ 1. If one could prove that κ̄ (ζ) ≤ 1 holds for all LO
problems it would reduce the currently best iteration bound for IIPMs (1.29) by a
factor

√
2n.





Chapter 3
A full-Newton step primal-dual IIPM

for SDO

3.1 Introduction

Semidefinite optimization (SDO) problems are convex optimization problems over
the intersection of an affine set and the cone of positive semidefinite matrices.
SDO arises in many scientific and engineering fields. For applications in system
and control theory we refer to [11, 14, 15] and for applications in statistics and
combinatorial optimization to [2, 26, 40, 50, 51, 71, 91]. SDO also has been
utilized in solving polynomial optimization problems [19, 49, 70].

In this chapter we consider the standard form of the SDO problem:

(SDP )
min Tr (CX)

s.t Tr (AiX) = bi, i = 1, 2, . . . ,m, X � 0,

and its dual:

(SDD)
max bT y

s.t
∑m

i=1 yi Ai + S = C, S � 0,

where each Ai ∈ Sn, b ∈ Rm, and C ∈ Sn. Recall that Tr (CX) is the inner
product of the matrices C and X . Without loss of generality we assume that the
matrices Ai are linearly independent.

Interior-point methods provide a powerful approach for solving SDO problems.
Most IPMs for SDO can be viewed as natural extensions of IPMs for LO, and
have similar polynomial complexity results. For example Nesterov and Todd [66]

47
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showed that the primal-dual algorithm for LO maintains its theoretical efficiency
when the nonnegativity constraints in LO are replaced by constraints that restrict
the variables to a convex cone, provided that the cone is homogeneous and self-
dual, or in the terminology of Nesterov and Todd, the cone is self-scaled. The
non-negative orthant and the cone of positive semidefinite matrices are special
cases of such cones. Many other IPMs for solving SDO problems exist. See, e.g.,
[1, 48, 61, 96, 100].

In the case of IIPMs, as mentioned in Chapter 1, Zhang [107] was the first who
obtained polynomial iteration complexity for LO. Later he extended his algorithm
to SDO [108]. In his algorithm, the starting point is chosen as

(
X0, y0, S0

)
= ζ (I, 0, I) (3.1)

with ζ > 0 such that

‖X∗‖ ≤ ζ, ‖S∗‖ ≤ ζ (3.2)

for some optimal solution X∗ of (SDP ) and (y∗, S∗) of (SDD).

Kojima et al. [47] and Potra and Sheng [79] independently analyzed a generaliza-
tion to SDO of the Mizuno-Todd-Ye algorithm [59] for infeasible starting points
and they proved that the complexity of their algorithm is

O

(

n log
max

{
Tr
(
X0S0

)
,
∥
∥R0

c

∥
∥ ,
∥
∥r0b
∥
∥
}

ǫ

)

. (3.3)

Here X0 and S0 are as defined in (3.1) and (3.2) and R0
c and r0b denote the initial

values of the primal and dual residuals:
(
r0b
)

i
= bi − Tr

(
AiX

0
)
, i = 1, . . . , m, (3.4)

R0
c = C −

m∑

i=1

y0
iAi − S0. (3.5)

In this chapter we undertake the task of generalizing the algorithm for solving
LO that was presented in the previous chapter to the case of SDO. We show that
the iteration bound of our algorithm is the same as the best iteration bound for
IIPMs, as given in (3.3). However, to obtain this complexity result is much more
difficult than in the LO case. The main differences occur in the analysis of the
feasibility step. Below we present our algorithm for SDO and its analysis. In
Section 3.4 we present the analysis of the feasibility step.

3.2 Preliminaries

3.2.1 Duality theory and assumption

In this section we first introduce the duality theory for SDO problem and the
assumption that will be used in the chapter. It is worth noting that the duality
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theory of SDO is weaker than that of LO. Like in LO we have the weak duality
property (see, Theorem 1.2.2): for any (X, y, S) ∈ P ×D, where P and D denote
the feasible sets of the problems (SDP ) and (SDD), respectively, we have

Tr (CX) − bT y = Tr

((

S +

m∑

i=1

yiAi

)

X

)

−
m∑

i=1

yiTr (AiX) = Tr (SX) ≥ 0,

where the inequality follows from X � 0 and S � 0 (see Lemma A.3.3). In other
words, the duality gap is nonnegative for any feasible primal-dual pair. As a
consequence, feasible solutions (X, y, S) with zero duality gap are optimal. Let p∗

and d∗ denote the optimal value of the primal and the dual problem respectively.
The optimal sets for (SDP ) and (SDD) are denoted as follows:

P∗ := {X ∈ P | Tr (CX) = p∗} and D∗ :=
{
(y, S) ∈ D | bT y = d∗

}
.

A problem (SDP ) (resp. (SDD)) is called solvable if P∗ (resp. D∗) is nonempty.

The duality properties in SDO are less simple than LO. Recall that an LO problem
may be feasible or infeasible. If it is feasible then it is either unbounded or
bounded. In case it is bounded it is solvable and the dual problem is solvable as
well, with zero duality gap. If it is infeasible then its dual is either unbounded or
infeasible . So, for a single problem there are 3 possibilities: a problem is either
solvable, unbounded or infeasible (see Theorem 1.2.4).

For an SDO problem, however, the situation is less simple, since a problem that
is feasible and bounded is not necessarily solvable. So for a single problem there
are now four cases: a problem is solvable, feasible and not solvable, unbounded
or infeasible. As a consequence, for a primal-dual pair of SDO problems there are
much more possible situations than in the LO case. For example, a problem may
be solvable, whereas its dual is not solvable. Also both problems can be solvable
but with positive duality gap. In this chapter we assume that there exist optimal
solutions with zero duality gap, i.e., we assume that the set

F∗ = {(X, y, S) ∈ P ×D : Tr (XS) = 0} ,

is nonempty.

Following the same outline as in the LO case we first present a feasible IPM that
uses full-Newton steps.

3.2.2 The central path and feasible full-Newton IPM for SDO

In this section we assume that (SDP ) and (SDD) satisfy the IPC, i.e., there exist
X ∈ P , S ∈ D with X ≻ 0, S ≻ 0. Under this assumption both problems are
solvable and the optimality conditions for (SDP ) and (SDD) can be written as
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follows.

Tr (AiX) = bi, i = 1, 2, . . . , m, X � 0
m∑

i=1

yiAi + S = C, S � 0, (3.6)

XS = 0.

The basic idea of primal-dual IPMs for SDO is to replace the above complemen-
tarity condition XS = 0 by the parameterized equation XS = µI. Then we get
the following system:

Tr (AiX) = bi, i = 1, 2, . . . , m, X � 0,
m∑

i=1

yiAi + S = C, S � 0, (3.7)

XS = µI,

where I denotes the n×n identity matrix and µ > 0. It is well known that the sys-
tem (3.7) has a unique solution for every µ > 0, denoted as (X (µ) , y (µ) , S (µ)),
and that the limit limµ→0 (X (µ) , y (µ) , S (µ)) exists and is a solution of system
(3.6) (see e.g., [31, 48]). The set of all solutions (X (µ) , y (µ) , S (µ)) with µ > 0
is known as the central path [17, 75, 76]. The principal idea of (feasible) IPMs is
to follow this central path and approach the optimal set of (SDP ) as µ goes to
zero.

To obtain a search direction for IPMs an ordinary method is to follow an idea of
Newton method and to linearize (3.7). Thus we have the following system

Tr (Ai∆X) = 0, i = 1, 2, . . . , m,
m∑

i=1

yiAi + ∆S = 0, (3.8)

X∆S + ∆XS = µI −XS.

However, this system may yield as a solution a search direction ∆X which is
not symmetric (∆S is automatically symmetric!). Since we want ∆X to be a
symmetric matrix, one must “symmetrize” the linearization of the complementary
equation. Based on different symmetrization schemes, several search directions
have been proposed, as presented in [48, 66, 90, 94, 108]. In this thesis, we use
Zhang’s direction [108] which is obtained by the following system:

Tr (Ai∆X) = 0, i = 1, 2, . . . , m,
m∑

i=1

∆yiAi + ∆S = 0, (3.9)

∆X + P∆SPT = µS−1 −X,
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where P is a symmetric nonsingular matrix. The system (3.9) has a unique
solution for each P [100]. Now ∆X obtained from this system is automatically a
symmetric matrix. Some choices for the matrix P are listed in Table 3.1.

P References

X
1
2

(

X
1
2SX

1
2

)−1
2

X
1
2 [65]

X
−1
2 and S

1
2 [48, 61]

I [3]

Table 3.1: Choices for the scaling matrix P.

In this thesis we use the matrix P proposed by Nesterov and Todd [65], which is
as follows:

P := X
1
2

(

X
1
2SX

1
2

)− 1
2

X
1
2 = S− 1

2

(

S
1
2XS

1
2

) 1
2

S− 1
2 . (3.10)

The corresponding solution (∆X, ∆y, ∆S) of system (3.8) is called NT-direction

(also Newton-direction, see [94]). Let D = P− 1
2 , where P− 1

2 denotes the inverse
symmetric square root of P . Then D can be used to scale X and S to the same
matrix V , namely [18, 90, 98]:

V :=
1√
µ
D−1XD−1 =

1√
µ
DSD. (3.11)

It follows that

V 2 :=
1

µ
D−1XSD. (3.12)

Note that the matrices D and V are symmetric and positive definite. Let us
further define

Āi :=
1√
µ
DAiD, i = 1, 2, . . . , m;

and

DX :=
1√
µ
D−1∆XD−1; DS :=

1√
µ
D∆SD. (3.13)
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Then (3.9) can be written as follows

Tr
(
ĀiDX

)
= 0, i = 1, 2, . . . , m,

m∑

i=1

∆yiĀi +DS = 0, (3.14)

DX +DS = V −1 − V.

The first two equations in the system (3.9) imply that ∆X and ∆S are orthogonal,
i.e.,

Tr (∆X∆S) = 0.

This implies that the directions DX and DS are also orthogonal:

Tr (DXDS) = 0. (3.15)

Hence, using the third equation in (3.14) and the Frobenius matrix norm we
obtain

‖DX‖2
+ ‖DS‖2

=
∥
∥V −1 − V

∥
∥

2
. (3.16)

This implies that DX and DS are both zero if and only if V −1 − V = 0. In this
case, X and S satisfy XS = µI, which indicates that X and S are the µ-centers.
Thus, we can use

∥
∥V −1 − V

∥
∥ as a quantity to measure closeness to µ-centers. We

define

δ (X, S; µ) := δ (V ) :=
1

2

∥
∥V −1 − V

∥
∥ . (3.17)

Note that for the special case of LO, V is a diagonal matrix and this proximity
measure becomes the same as (1.10). It was used first in [39].

A feasible full-Newton step IPM for SDO is described in Figure 3.1. This is an
extension of the algorithm in Figure 1.2 for LO.

Below the new iterates are denoted as X+, y+ and S+, so we have

X+ = X + ∆X, (3.18)

y+ = y + ∆y,

S+ = S + ∆S. (3.19)

We continue this section by recalling some lemmas that are crucial in the analysis
of the algorithm in Figure 3.1. Before doing this we first mention that by using
(3.11), (3.13), (3.18) and (3.19) we have

X+ = X + ∆X =
√
µD (V +DX)D,

S+ = S + ∆S =
√
µD−1 (V +DS)D−1.



3.2 PRELIMINARIES 53

Primal-Dual Feasible IPM for SDO

Input:
Accuracy parameter ǫ > 0;
threshold parameter τ < 1;
barrier update parameter θ, 0 < θ < 1;
feasible pair

(
X0, S0

)
and µ0 > 0 such that δ

(
X0, S0; µ0

)
≤ τ .

begin
X := X0; S := S0; µ := µ0;
while Tr (XS) ≥ ǫ do
begin

update of µ:

µ := (1 − θ)µ;

centering step:

(X, S) := (X, S) + (∆X, ∆S);
end

end

Figure 3.1: Feasible full-Newton-step algorithm for SDO

Therefore, we have

X+S+ = µD (V +DX) (V +DS)D−1,

which makes clear that the eigenvalues of two matricesX+S+ and µ(V +DX)(V +
DS) are equal. In other words, these matrices are similar,

X+S+ ∼ µ (V +DX) (V +DS) . (3.20)

To simplify the notation we introduce

DXS :=
1

2
(DXDS +DSDX) , (3.21)

and

H := (DXV − V DX) +
1

2
(DXDS −DSDX) . (3.22)

Note that the matrixDXS is symmetric andH is skew-symmetric. By multiplying
both sides of the third equation in (3.14) from the left with matrix V we obtain

V DX + V DS = I − V 2.
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Using this we may write,

(V +DX) (V +DS) = V 2 +DXV + V DS +DXDS

= I − V DX +DXV +DXDS .

By subtracting and adding 1
2DSDX to the last expression we obtain

(V +DX) (V +DS) = I +
1

2
(DXDS +DSDX)

+ (DXV − V DX) +
1

2
(DXDS −DSDX)

= I +DXS +H,

where the last equality follows by using (3.21) and (3.22). Using (3.20) we thus
obtain

X+S+ ∼ µ (I +DXS +H) . (3.23)

Lemma 3.2.1 (Cf. Corollary 7.1 in [18]). Let (X, S) ∈ relint (P ×D) and µ > 0.
Then

Tr
(
X+S+

)
= nµ.

Proof. Due to (3.23) we have

Tr
(
X+S+

)
= µTr (I +DXS +H) = µTr (I) = nµ,

where the second equality follows since Tr (DXS) = 0, by (3.15), and Tr (H) = 0
since matrix H is skew-symmetric. This proves the lemma.

Lemma 3.2.2 (Lemma 7.5 in [18]). Let (X, S) ∈ relint (P ×D) , Tr (XS) = nµ
and δ := δ (X, S; µ). If µ+ = (1 − θ)µ for 0 < θ < 1, then one has

δ
(
X, S; µ+

)2
=

nθ2

4 (1 − θ)
+ (1 − θ) δ2.

Proof. Let matrix V be as defined in (3.11). Then, by using the definition of
δ (V ) in (3.17), we may write

4δ
(
X, S; µ+

)2
=

∥
∥
∥
∥

√
1 − θV −1 − V√

1 − θ

∥
∥
∥
∥

2

=

∥
∥
∥
∥

θV√
1 − θ

−
√

1 − θ
(
V −1 − V

)
∥
∥
∥
∥

2

.

From Tr (XS) = nµ it follows that ‖V ‖2 = n. This implies that V and V −1 − V
are orthogonal:

Tr
(
V
(
V −1 − V

))
= n− ‖V ‖2

= 0.
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Therefore,

4δ
(
X, S; µ+

)2
=
θ2 ‖V ‖2

1 − θ
+ (1 − θ)

∥
∥V −1 − V

∥
∥

2
.

Finally, since
∥
∥V −1 − V

∥
∥ = 2δ and ‖V ‖2

= n the result follows.

Based on Lemma 7.1 in [18] we have the following lemma which gives a suffi-
cient condition for feasibility of the new iterates (X+, y+, S+).

Lemma 3.2.3. Let (X, S) ∈ relint (P ×D) and µ > 0. Then the iterates
(X+, y+, S+) are strictly feasible if

I +DXS ≻ 0.

Proof. For the proof we consider a step length α ∈ [0, 1], and we define

X (α) = X + α∆X, y (α) = y + α∆y, S (α) = S + α∆S.

We then have X (0) = X, X (1) = X+ and similar relations for y and S. Hence
we have det (X (0)S (0)) = det

(
µ0I
)

=
(
µ0
)n

> 0. We want to prove that the
determinant of X (α)S (α) is positive for all α ≤ 1. We write

X (α)S (α)

µ
∼ (V + αDX) (V + αDS)

= V 2 + α (DXV + V DS) + α2DXDS

= V 2 + α (V DX + V DS) + α (DXV − V DX) + α2DXDS .

By using (3.21) and (3.23), and subtracting and adding 1
2α

2DSDX and α2I to
the right hand side of the above equality we obtain

X (α)S (α)

µ
= (1 − α)V 2 + α (1 − α) I + α2

(

I +
1

2
(DXDS +DSDX)

)

+

[
1

2
α2 (DXDS −DSDX) + α (DXV − V DX)

]

= (1 − α)V 2 + α (1 − α) I + α2 (I +DXS)

+

[
1

2
α2 (DXDS −DSDX) + α (DXV − V DX)

]

.

The matrix in brackets in the last expression is skew-symmetric. Therefore due
to Lemma A.3.1 the determinant of X (α)S (α) will be positive if the symmetric
matrix

(1 − α) V 2 + α (1 − α) I + α2 (I +DXS) (3.24)

is positive definite. The latter is true for 0 ≤ α ≤ 1. Hence, the symmetric
matrix in (3.24) is positive definite for α ∈ [0, 1]. This implies that X (α)S (α)
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has positive determinant for α ∈ [0, 1]. Since X (0) and S (0) are positive definite
and since X (α) and S (α) depend continuously on α, it follows that X (1) and
S (1) are also positive definite. This completes the proof.

Corollary 3.2.4. The iterates (X+, y+, S+) are strictly feasible if

|λi (DXS)| < 1, for i = 1, . . . , n.

Proof. By Lemma 3.2.3 X+ and S+ are strictly feasible if I + DXS ≻ 0. Since
the last inequality certainly holds if |λi (DXS)| < 1, for i = 1, . . . n, the corollary
follows.

Lemma 3.2.5. One has

|λi (DXS)| ≤ δ2, for i = 1, . . . , n,

where DXS is as defined in (3.21) and δ is as in (3.17).

Proof. It is trivial to verify that

DXS =
1

2
(DXDS +DSDX) =

1

4

[

(DX +DS)
2 − (DX −DS)

2
]

(3.25)

which implies

−1

4
(DX −DS)

2 � DXS � 1

4
(DX +DS)

2
.

It follows that

−1

4
‖DX −DS‖2

I � DXS � 1

4
‖DX +DS‖2

I.

Since Tr (DXDS) = 0, the matrices DX +DS and DX −DS have the same norm.
Consequently

−1

4
‖DX +DS‖2

I � DXS � 1

4
‖DX +DS‖2

I.

These inequalities and the definition of δ in (3.17) imply the lemma.

Lemma 3.2.6 (Lemma 7.2 in [18]). One has

λmin

((
V +
)2
)

≥ 1 − δ2,

where λmin denotes the smallest eigenvalue.
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Proof. From (3.23) it follows that

λmin

((
V +
)2
)

= λmin (I +DXS +H) .

Since X+ and S+ are symmetric and positive semidefinite, Lemma A.3.3 implies

that the eigenvalues of matrix (V +)
2 ∼ X+S+

µ+ are real and nonnegative. So

the equality above shows that λmin (I +DXS +H) is also real and nonnegative.
Since matrix H is skew-symmetric and λmin (I +DXS +H) is real, Lemma A.3.1
implies

λmin

((
V +
)2
)

≥ λmin (I +DXS) = 1 + λmin (DXS) ≥ 1 − |λmin (DXS)| .

Substitution of the bound for |λmin (DXS)| from Lemma 3.2.5 now yields:

λmin

((
V +
)2
)

≥ 1 − δ2.

This proves the lemma.

Lemma 3.2.7 (Lemma 7.3 in [18]). One has

‖DXS‖2 ≤ 2δ4.

Proof. LetDV := DX+DS andQV := DX−DS. Since Tr (DXDS) = 0, it follows
that the matrices DV and QV have the same norm. Moreover, since matrices D2

V

and Q2
V are positive semidefinite, Lemma A.3.3 implies that the eigenvalues of

the matrix D2
VQ

2
V are nonnegative. So it follows that Tr

(
D2
VQ

2
V

)
≥ 0. Now by

using this and (3.25) we obtain

‖DXS‖2 =
1

16
‖(DX +DS) − (DX −DS)‖2

=
1

16

∥
∥D2

V −Q2
V

∥
∥

2

=
1

16
Tr
(
D4
V +Q4

V − 2D2
VQ

2
V

)

≤ 1

16

(∥
∥D2

V

∥
∥

2
+
∥
∥Q2

V

∥
∥

2
)

≤ 1

16

(

‖DV ‖4
+ ‖QV ‖4

)

=
1

8
‖DV ‖4

= 2δ4,

where the last equality follows from the definition of δ in (3.17). This proves the
lemma.
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Lemma 3.2.8 (Quadratic convergence, Lemma 7.4 in [18]). If δ := δ (X, S; µ) ≤
1, then the full NT step is feasible, i.e., X+ and S+ are feasible. Moreover, if
δ < 1, then X+ and S+ are positive definite and

δ
(
X+, S+; µ

)
≤ δ2
√

2 (1 − δ2)
.

Proof. Since δ ≤ 1, Lemma 3.2.5 implies that |λi (DXS)| ≤ 1, which guarantees
feasibility of the iterates (X+, y+, S+) (see Corollary 3.2.4). This implies the
first part of the lemma. For the proof of the second part of the lemma, by using
(3.17) we may write

(
δ+
)2

=
1

4

∥
∥
∥

(
V +
)−1 − V +

∥
∥
∥

2

=
1

4

∥
∥
∥

(
V +
)−1

(

µI −
(
V +
)2
)∥
∥
∥

2

≤ 1

4
λmax

((
V +
)−1
)2 ∥
∥
∥I −

(
V +
)2
∥
∥
∥

2

=
1

4λmin

(

(V +)2
)

∥
∥
∥I −

(
V +
)2
∥
∥
∥

2

.

We now substitute the bound from Lemma 3.2.6 to obtain

(
δ+
)2 ≤ 1

4 (1 − δ2)

∥
∥
∥I −

(
V +
)2
∥
∥
∥

2

. (3.26)

Moreover, from (3.23) we have

(
V +
)2 ∼ X+S+

µ
∼ I +DXS +H.

Using (3.23) and definition of the Frobenius norm for symmetric matrix as defined
in (A.6), we have

∥
∥
∥I −

(
V +
)2
∥
∥
∥

2

=

n∑

i=1

(λi (I +DXS +H) − 1)
2

=
n∑

i=1

λi (DXS +H)2

= Tr
(

(DXS +H)2
)

.

Since the matrices HDXS + DXSH and H are skew-symmetric and HHT is
positive semidefinite we obtain

Tr
(

(DXS +H)
2
)

= Tr
(
D2
XS +HDXS +DXSH +H2

)

= Tr
(
D2
XS +H2

)
= Tr

(
D2
XS −HHT

)

≤ Tr
(
D2
XS

)
= ‖DXS‖2

≤ 2δ4,
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where the last inequality follows from Lemma 3.2.7. Substitution in (3.26) gives

(
δ+
)2 ≤ δ4

2 (1 − δ2)
,

which implies the lemma.

Corollary 3.2.9 (Corollary 7.2 in [18]). If δ (X, S; µ) < 1√
2
, then δ (X+, S+; µ) <

δ (X, S; µ)2.

This corollary implies that the Newton-process is quadratically convergent when
started close to the µ-center.

Lemma 3.2.2 and Lemma 3.2.8 show that the behavior of the Newton-process and
the feasibility condition for the new iterates (X+, y+, S+) are exactly the same as
in the LO case. We therefore have the following result for SDO which establishes
a polynomial iteration bound for the algorithm in Figure 3.1. The proof is exactly
the same as the proof of Theorem 1.3.7 and is therefore omitted.

Theorem 3.2.10 (Theorem 7.1 in [18]). If τ = 1√
2

and θ = 1√
2n

, then the

algorithm in Figure 3.1 requires at most

√
2n log

nµ0

ǫ

iterations. The output is a primal-dual pair (X, S) such that Tr (XS) ≤ ǫ.

3.3 Infeasible full-Newton step IPM for SDO

In this section we present an extension of the IIPM for LO in Figure 2.2 to
SDO. We follow the same outline as in the LO case. So we start by introducing
perturbed primal-dual problem pairs and their central paths.

3.3.1 The perturbed problems for SDO

Let X0 and y0, S0 be as in (3.1) and µ0 = ζ2. The initial values of the primal
and dual residuals are denoted by r0b and R0

c , as defined in (3.4) and (3.5). So we
have

(
r0b
)

i
= bi − Tr

(
AiX

0
)
, i = 1, . . . , m, (3.27)

R0
c = C −

m∑

i=1

y0
iAi − S0. (3.28)

By these notations, for any ν with 0 < ν ≤ 1 we consider the perturbed problem
(SDPν), defined by

(SDPν) min
{
Tr
((
C − νR0

c

)
X
)

: Tr (AiX) = bi − ν
(
r0b
)

i
, X � 0

}
,
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and its dual problem (SDDν), which is given by

(SDDν) max

{
m∑

i=1

(
bi − ν

(
r0b
)

i

)
yi :

m∑

i=1

yiAi + S = C − νR0
c , S � 0

}

.

It is easy to see that if ν = 1, then X = X0 and (y, S) =
(
y0, S0

)
are strictly

feasible for (SDPν) and (SDDν), respectively. We conclude that if ν = 1 then
(SDPν) and (SDDν) satisfy the IPC.

Lemma 3.3.1. Let the original problems, (SDP ) and (SDD), be feasible. Then
for each ν satisfying 0 < ν ≤ 1 the perturbed problems (SDPν) and (SDDν)
satisfy the IPC.

Proof. Suppose that (SDP ) and (SDD) are feasible. Let X̄ be feasible solution of
(SDP ) and (ȳ, S̄) a feasible solution of (SDD). Then Tr

(
AiX̄

)
= bi i = 1, . . . ,m

and
∑m

i=1 ȳiAi + S̄ = C, with X̄ � 0 and S̄ � 0. Now let 0 < ν ≤ 1, and consider

X = (1 − ν) X̄ + ν X0, y = (1 − ν) ȳ + ν y0, S = (1 − ν) S̄ + ν S0.

One has, for each i = 1, . . . , m,

Tr (AiX) = Tr
(
Ai
(
(1 − ν) X̄ + ν X0

))

= (1 − ν)Tr
(
AiX̄

)
+ νTr

(
AiX

0
)

= bi − ν
(
bi − Tr

(
AiX

0
))
,

showing that X is feasible for (Pν). Similarly,

m∑

i=1

yiAi + S = (1 − ν)

(
m∑

i=1

ȳiAi + S̄

)

+ ν

(
m∑

i=1

y0
iAi + S0

)

= (1 − ν)C + ν

(
m∑

i=1

y0
iAi + S0

)

= C − ν

(

C −
m∑

i=1

y0
iAi − S0

)

,

showing that (y, S) is feasible for (SDDν). Since ν > 0, X and S are positive
definite. This proves that (SDPν) and (SDDν) satisfy the IPC.

3.3.2 Central path of the perturbed problems for SDO

Since we assumed that (SDP ) and (SDD) are feasible, Lemma 3.3.1 implies that
for any 0 < ν ≤ 1, the perturbed problems (SDPν) and (SDDν) satisfy the IPC,
and hence their central paths exist. This means that the following system has a
unique solution, for every µ > 0,

bi − Tr (AiX) = ν
(
r0b
)

i
, i = 1, 2, . . . , m, X � 0 (3.29)

C −
m∑

i=1

yiAi − S = νR0
c , S � 0 (3.30)

XS = µI. (3.31)
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We denote this unique solution as (X(µ, ν), y(µ, ν), S(µ, ν)). These are the µ-
centers of the perturbed problems (SDPν) and (SDDν), respectively.

Since X0S0 = µ0I, X0 is the µ0-center of the perturbed problem (SDP1) and
(y0, S0) the µ0-center of (SDD1). In the sequel we will always have

µ = ν µ0 = νζ2,

and to simplify notations we denote (X(µ, ν), y(µ, ν), S(µ, ν)) shortly as (X(ν),
y(ν), S(ν)).

3.3.3 An iteration of our algorithm

In this subsection we describe one iteration of our algorithm. Each main iteration
starts with a triple (X, y, S) that is feasible for (SDPν) and (SDDν), such that

δ (X, S; µ) ≤ τ, Tr (XS) = nµ,

where µ = νζ2, 0 ≤ ν ≤ 1. Then we reduce µ to µ+ = (1 − θ)µ, with θ ∈ (0, 1).

Just as in the case of LO each main iteration of our algorithm consists of a
feasibility step and a few centering steps. The feasibility step serves to get iterates
(
Xf , yf , Sf

)
that are strictly feasible for (SDPν+) and (SDDν+), where ν+ =

(1 − θ) ν, and such that δ
(
Xf , Sf ; µ+

)
≤ 1√

2
. Since the triple

(
Xf , yf , Sf

)
is

strictly feasible for (SDPν+) and (SDDν+), we can perform a few centering steps
starting at

(
Xf , yf , Sf

)
targeting at the µ+-centers of (SDPν+) and (SDDν+)

and obtain iterates (X+, y+, S+) that are still feasible for (SDPν+) and (SDDν+)
such that

δ
(
X+, S+; µ+

)
≤ τ, Tr

(
X+S+

)
= nµ+.

We now describe each main iteration in more detail. Due to the definition of the
perturbed problem pair the feasibility conditions for (SDPν) and (SDDν) are

Tr (AiX) = bi − ν
(
r0b
)

i
, i = 1, . . . , m, X � 0,

m∑

i=1

yiAi + S = C − νR0
c , S � 0.

For finding iterates that are feasible for (SDPν+) and (SDDν+) we need search
directions ∆fX, ∆fy and ∆fS such that

Tr
(
Ai
(
X + ∆fX

))
= bi − ν+

(
r0b
)

i
, i = 1, . . . , m,

m∑

i=1

(
yi + ∆fy

)
Ai +

(
S + ∆fS

)
= C − ν+R0

c .

Since X and (y, S) are feasible for (SDPν) and (SDDν) respectively, it follows
that ∆fX, ∆fy and ∆fS should satisfy
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Tr
(
Ai∆

fX
)

= (bi − Tr (AiX)) − ν+
(
r0b
)

i
= ν

(
r0b
)

i
− ν+

(
r0b
)

i
= θν

(
r0b
)

i
,

m∑

i=1

∆fyiAi + ∆fS =

(

C −
m∑

i=1

yiAi − S

)

− ν+R0
c = νR0

c − ν+R0
c = θνR0

c .

Therefore, ∆fX, ∆fy and ∆fS need to satisfy

Tr
(
Ai∆

fX
)

= θν
(
r0b
)

i
, i = 1, . . . , m, (3.32)

m∑

i=1

∆fyiAi + ∆fS = θνR0
c . (3.33)

We add to this system the equation

∆fX + P∆fSPT = µS−1 −X, (3.34)

where P is as defined in (3.10). The system (3.32)-(3.34) has a unique solution
[100] and ∆fX and ∆fS are symmetric. After the feasibility step the iterates are
given by

Xf = X + ∆fX, (3.35)

yf = y + ∆fy,

Sf = S + ∆fS. (3.36)

By definition, after the feasibility step the iterates satisfy the affine equations in
(3.29) and (3.30), with ν = ν+. The main part in the analysis will be to guarantee
that Xf and Sf are positive definite and satisfy δ

(
Xf , Sf ; µ+

)
≤ 1√

2
.

After the feasibility step, in order to get iterates (X+, y+, S+) that satisfy

Tr
(
X+S+

)
= nµ+, δ

(
X+, S+; µ+

)
≤ τ,

we perform centering steps. Just as in the LO case, the required number of
centering steps is at most

log2

(

log2

1

τ2

)

, (3.37)

due to the quadratic behavior of the Newton process.

3.3.4 The algorithm

A more formal description of the algorithm is given in Figure 3.2. Like in LO,
one may easily verify after each iteration the residuals and the duality gap are
reduced by a factor 1 − θ. The algorithm stops if the norms of residuals and the
duality gap are less than the accuracy parameter ǫ.
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Primal-Dual Infeasible IPM for SDO

Input:
Accuracy parameter ǫ > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ > 0;
parameter ζ > 0.

begin
X0 := ζI, S0 := ζI, y0 := 0; µ0 := ζ2;
while max (Tr (XS) , ‖rb‖ , ‖Rc‖) ≥ ǫ do
begin

feasibility step:

(X, y, S) := (X, y, S) +
(
∆fX, ∆fy, ∆fS

)
;

µ-update:

µ := (1 − θ)µ;

centering steps:

while δ (X, S; µ) ≥ τ do
begin

(X, y, S) := (X, y, S) + (∆X, ∆y, ∆S);
end

end
end

Figure 3.2: Infeasible full-Newton-step algorithm for SDO

3.4 An analysis of the algorithm

As before, X, y and S denote the iterates at the start of an iteration and are such
that Tr (XS) = nµ and δ (X, S; µ) ≤ τ . Recall that we have this situation in
the first iteration since Tr

(
X0S0

)
= nµ0 and δ

(
X0, S0; µ0

)
= 0.

3.4.1 The effect of the feasibility step and the choice of θ

As we established in Section 3.3.3, in the feasibility step we obtain new iterates
Xf , yf and Sf that satisfy the affine equations for (SDPν+) and (SDDν+). The
main part in the analysis is to show that Xf and Sf are positive semidefinite
and δ

(
Xf , Sf ; µ+

)
≤ 1√

2
, i.e., that the new iterates are in the region where

the Newton process targeting at the µ+-centers of (SDPν+) and (SDDν+) is
quadratically convergent.
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We define

Df
X :=

1√
µ
D−1∆fXD−1, Df

S :=
1√
µ
D∆fSD,

(
V f
)2

:=
1

µ
D−1XfSfD,

(3.38)
with D as defined in Section 3.2.2. We can now rewrite (3.32)-(3.34) as follows.

Tr
(

DAiDDf
X

)

=
1√
µ
θν
(
r0b
)

i
, i = 1, . . . , m,

m∑

i=1

∆yi√
µ
DAiD +Df

S =
1√
µ
θνDR0

cD, (3.39)

Df
X +Df

S = V −1 − V.

From the third equation in (3.39) we obtain, by multiplying both sides from the
left with V ,

V Df
X + V Df

S = I − V 2. (3.40)

Using (3.11), (3.35), (3.36) and (3.38), we obtain

Xf = X + ∆fX =
√
µD

(

V +Df
X

)

D,

Sf = S + ∆fS =
√
µD−1

(

V +Df
S

)

D−1.

Therefore
XfSf = µD

(

V +Df
X

)(

V +Df
S

)

D−1.

The last equality shows that the matrixXfSf is similar to µ
(

V +Df
X

)(

V +Df
S

)

.

This means that we have

XfSf ∼ µ
(

V +Df
X

)(

V +Df
S

)

. (3.41)

To simplify the notation in the sequel we introduce

Df
XS :=

1

2

(

Df
XD

f
S +Df

SD
f
X

)

, (3.42)

and

M :=
(

Df
XV − V Df

X

)

+
1

2

(

Df
XD

f
S −Df

SD
f
X

)

. (3.43)

Note that Df
XS is symmetric and M is skew-symmetric.

Now we may write, using (3.40),
(

V +Df
X

)(

V +Df
S

)

= V 2 + V Df
S +Df

XV +Df
XD

f
S

= I − VDf
X +Df

XV +Df
XD

f
S .
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By subtracting and adding 1
2D

f
SD

f
X to the last expression we get

I +
1

2

(

Df
XD

f
S +Df

SD
f
X

)

+
(

Df
XV − V Df

X

)

+
1

2

(

Df
XD

f
S −Df

SD
f
X

)

.

Using (3.42) and (3.43) we obtain

XfSf ∼ µ
(

I +Df
XS +M

)

. (3.44)

Lemma 3.4.1. Let X ≻ 0 and S ≻ 0. Then the iterates
(
Xf , yf , Sf

)
are strictly

feasible if

I +Df
XS ≻ 0.

Proof. For the proof we introduce a step length α ∈ [0, 1], and we define

Xf (α) = X + α∆fX, yf (α) = y + α∆fy, Sf (α) = S + α∆fS.

We then have Xf (0) = X, Xf (1) = Xf and similar relations for y and S.
Obviously det

(
Xf (0)Sf (0)

)
= det

(
µ0I
)

=
(
µ0
)n
> 0. Our aim is to show that

the determinant of Xf (α)Sf (α) remains positive for all α ≤ 1. For proving this
we continue in exactly the same way as in the proof of the Lemma 3.2.3. By using
similar arguments as there, we conclude that under the assumption in the lemma
the (symmetric) matrix

(1 − α) V 2 + α (1 − α) I + α2
(

Df
XS + I

)

is positive definite for all α ≤ 1. This implies the lemma.

Corollary 3.4.2. The iterates
(
Xf , yf , Sf

)
are certainly strictly feasible if

∣
∣
∣λi

(

Df
XS

)∣
∣
∣ < 1, for i = 1, . . . , n.

Proof. The proof is similar to the proof of Corollary 3.2.4, and is therefore omitted.

In the sequel we denote

ω (V ) :=
1

2

√
∥
∥
∥D

f
X

∥
∥
∥

2

+
∥
∥
∥D

f
S

∥
∥
∥

2

, (3.45)

which implies
∥
∥
∥D

f
X

∥
∥
∥ ≤ 2ω (V ) and

∥
∥
∥D

f
S

∥
∥
∥ ≤ 2ω (V ).

By using (A.6), (A.7) and (3.45) we have

∥
∥
∥D

f
XS

∥
∥
∥ ≤

∥
∥
∥D

f
X

∥
∥
∥

∥
∥
∥D

f
S

∥
∥
∥ ≤ 1

2

(∥
∥
∥D

f
X

∥
∥
∥

2

+
∥
∥
∥D

f
S

∥
∥
∥

2
)

= 2ω (V )
2

(3.46)

∣
∣
∣λi

(

Df
XS

)∣
∣
∣ ≤

∥
∥
∥D

f
XS

∥
∥
∥ ≤ 2ω (V )

2
, i = 1, . . . , n. (3.47)
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Lemma 3.4.3. If ω (V ) < 1√
2

then the iterates
(
Xf , yf , Sf

)
are strictly feasible.

Proof. Let ω (V ) < 1√
2
. Then (3.47) implies that

∣
∣
∣λi

(

Df
XS

)∣
∣
∣ < 1, for i =

1, . . . , n. By Corollary 3.4.2 this implies the statement in the lemma.

Assuming ω (V ) < 1√
2
, which guarantees strict feasibility of the iterates (Xf , yf ,

Sf ), we proceed by deriving an upper bound for δ
(
Xf , Sf ; µ+

)
. Recall from

definition (3.17) that

δ
(
Xf , Sf ; µ+

)
=

1

2

∥
∥
∥

(
V f
)−1 − V f

∥
∥
∥ , (3.48)

with
(
V f
)2

as defined in (3.38). In the sequel we denote δ
(
Xf , Sf ; µ+

)
also

shortly as δ
(
V f
)
. We need some technical results which give information on the

eigenvalues and the norm of V f .

Lemma 3.4.4. One has, for each i = 1, . . . , n,

λi

((
V f
)2
)

≥ 1

1 − θ

(

1 − 2ω (V )
2
)

.

Proof. Using (3.44), after division of both sides by µ+ = (1 − θ)µ we get

(
V f
)2 ∼

µ
(

I +Df
XS +M

)

µ+
=
I +Df

XS +M

1 − θ
. (3.49)

It follows that

λi

((
V f
)2
)

=
1

1 − θ
λi

(

I +Df
XS +M

)

.

Since M is skew-symmetric, Lemma A.3.1 implies

λi

((
V f
)2
)

≥ 1

1 − θ
λi

(

I +Df
XS

)

=
1

1 − θ

(

1 + λi

(

Df
XS

))

.

Substitution of the bound for
∣
∣
∣λi

(

Df
XS

)∣
∣
∣ in (3.47) yields

λi

((
V f
)2
)

≥ 1

1 − θ

(

1 − 2ω (V )
2
)

,

which completes the proof.

Lemma 3.4.5. One has

∥
∥
∥I −

(
V f
)2
∥
∥
∥ ≤ 2ω (V )

2
+ θ

√
n

1 − θ
.
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Proof. Using (3.49) and properties of the Frobenius norm we have

∥
∥
∥I −

(
V f
)2
∥
∥
∥

2

=

n∑

i=1




λi

(

I +Df
XS +M

)

1 − θ
− 1





2

=
1

(1 − θ)
2

n∑

i=1

(

λi

(

I +Df
XS +M

)

− 1 + θ
)2

=
1

(1 − θ)2

n∑

i=1

(

λi

(

Df
XS +M

)

+ θ
)2

.

The right hand-side of the last equality can be rewritten as

1

(1 − θ)
2

(

nθ2 +

n∑

i=1

(

λi

(

Df
XS +M

))2

+ 2θ

n∑

i=1

λi

(

Df
XS +M

)
)

.

Since
(

λi

(

Df
XS +M

))2

= λi

((

Df
XS +M

)2
)

, for each i, we obtain

∥
∥
∥I −

(
V f
)2
∥
∥
∥

2

=
1

(1 − θ)
2

(

nθ2 + Tr

((

Df
XS +M

)2
)

+ 2θTr
(

Df
XS +M

))

.

(3.50)

Using the skew-symmetry of M we obtain Tr
(

Df
XS +M

)

= Tr
(

Df
XS

)

and

Tr

((

Df
XS +M

)2
)

= Tr

((

Df
XS

)2

+MDf
XS +Df

XSM −MMT

)

.

Since MDf
XS +Df

XSM is skew-symmetric we obtain

Tr

((

Df
XS +M

)2
)

= Tr

((

Df
XS

)2

−MMT

)

≤ Tr

((

Df
XS

)2
)

=
∥
∥
∥D

f
XS

∥
∥
∥

2

,

where the inequality follows since the matrix MMT is positive semidefinite. Sub-
stitution in (3.50) gives

∥
∥
∥I −

(
V f
)2
∥
∥
∥

2

≤ 1

(1 − θ)2

(

nθ2 +
∥
∥
∥D

f
XS

∥
∥
∥

2

+ 2θTr
(

Df
XS

))

.

Now let λ
(

Df
XS

)

be the vector consisting of the eigenvalues of Df
XS . Using the

Cauchy-Schwartz inequality and (3.46) we get

Tr
(

Df
XS

)

=
n∑

i=1

λi

(

Df
XS

)

= eTλ
(

Df
XS

)

≤ ‖e‖
∥
∥
∥λ
(

Df
XS

)∥
∥
∥ = ‖e‖

∥
∥
∥D

f
XS

∥
∥
∥ ≤ 2

√
nω (V )

2
.
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Substitution gives, also using (3.47),

∥
∥
∥I −

(
V f
)2
∥
∥
∥

2

≤ 1

(1 − θ)
2

(

nθ2 + 4ω (V )
4
+ 4θ

√
nω (V )

2
)

=

(

2ω (V )
2

+ θ
√
n

1 − θ

)2

,

which implies the lemma.

Lemma 3.4.6. Let ω (V ) < 1√
2
. Then one has

2δ
(
V f
)
≤ 2ω (V )

2
+ θ

√
n

√

(1 − θ)
(

1 − 2ω (V )
2
) .

Proof. We may write, using (3.48),

2δ
(
V f
)

=
∥
∥
∥V f −

(
V f
)−1
∥
∥
∥ =

∥
∥
∥

(
V f
)−1

(

I −
(
V f
)2
)∥
∥
∥

≤ λmax

((
V f
)−1
)∥
∥
∥I −

(
V f
)2
∥
∥
∥ =

1

λmin ((V f ))

∥
∥
∥I −

(
V f
)2
∥
∥
∥ .

Using the bounds in Lemma 3.4.4 and Lemma 3.4.5 the lemma follows.

Recall from Section 3.3.3 that we need to have δ
(
V f
)
≤ 1√

2
. By Lemma 3.4.6

it suffices for this that

2ω (V )
2

+ θ
√
n

√

(1 − θ)
(

1 − 2ω (V )
2
) ≤

√
2. (3.51)

Lemma 3.4.7. Let ω (V ) ≤ 1
2 and

θ =
α

2 (
√
n+ 1)

, 0 ≤ α ≤ 1. (3.52)

Then the iterates
(
Xf , yf , Sf

)
are strictly feasible and δ

(
V f
)
≤ 1√

2
.

Proof. Due to Lemma 3.4.3 and ω (V ) ≤ 1
2 , the iterates

(
Xf , yf , Sf

)
are strictly

feasible. We just established that if inequality (3.51) is satisfied then δ
(
V f
)
≤ 1√

2
.

The left hand side in this inequality is monotonically increasing in ω (V ). By
substituting ω (V ) = 1

2 , the inequality (3.51) reduces to

1
2 + θ

√
n

√
1
2 (1 − θ)

≤
√

2,
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which is equivalent to

4nθ2 + 4
(√
n+ 1

)
θ − 3 ≤ 0.

The largest possible value of θ satisfing this inequality is given by

θ =
3

2

(√
n+ 1 +

√

(
√
n+ 1)

2
+ 3n

)

≥ 3

2

(√
n+ 1 +

√

(
√
n+ 1)

2
+ 3 (

√
n+ 1)

2
) =

1

2 (
√
n+ 1)

,

which is in agreement with (3.52). Thus the lemma has been proved.

3.4.2 An upper bound for ω (V )

As became clear in (3.39), the system (3.32)-(3.34), which defines the search
directions ∆fX, ∆fy and ∆fS, can be expressed in terms of the scaled search
directions Df

X and Df
S. We define the linear space N as follows:

N := {Γ ∈ Sn : Tr (DAiD Γ) = 0, i = 1, . . . , m} .
Using the linear space N , it is clear from the first equation in (3.39) that the
affine space

{

Γ ∈ Sn : Tr (DAiD Γ) =
1√
µ
θν
(
r0b
)

i
, i = 1, . . . , m

}

equals Df
X + N . From linear algebra we also know that the affine space

{
m∑

i=1

ϑiDAiD : ϑ ∈ Rm

}

.

is the orthogonal complement of N , denoted by N⊥. By the second equation in
system (3.39), we conclude that the affine space

{

1√
µ
θνDR0

cD +

m∑

i=1

ϑiDAiD : ϑ ∈ Rm

}

equals Df
S + N⊥. Since N ∩N⊥ = {0}, the spaces Df

X + N and Df
S + N⊥ meet

in a unique matrix. This matrix is denoted below by Q.

Lemma 3.4.8. Let Q be the (unique) matrix in the intersection of the affine

spaces Df
X + N and Df

S + N⊥. Then

2ω (V ) ≤
√

‖Q‖2
+ (‖Q‖ + 2δ (V ))

2
.
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Proof. The proof resembles the proof of Lemma 4.6 in [82] for the LO case. To
simplify notation in this proof we denote R = V −1 − V . Since N + N⊥ = Sn,
there exist Q1, R1 ∈ N and Q2, R2 ∈ N⊥ such that

Q = Q1 +Q2, R = R1 +R2.

On the other hand, since Df
X−Q ∈ N and Df

S−Q ∈ N⊥ there must exist L1 ∈ N
and L2 ∈ N⊥ such that

Df
X = Q+ L1, Df

S = Q+ L2.

Due to the third equation in system (3.39) it follows that R = 2Q + L1 + L2,
which implies

(2Q1 + L1) + (2Q2 + L2) = R1 +R2.

Since the decomposition N + N⊥ = Sn is unique, we conclude that

L1 = R1 − 2Q1, L2 = R2 − 2Q2.

Hence we obtain

Df
X = Q+R1 − 2Q1 = (R1 −Q1) +Q2,

Df
S = Q+R2 − 2Q2 = Q1 + (R2 −Q2) .

Since the spaces N and N⊥ are orthogonal we conclude from this that

4ω (V )
2

=
∥
∥
∥D

f
X

∥
∥
∥

2

+
∥
∥
∥D

f
S

∥
∥
∥

2

= ‖R1 −Q1‖2
+ ‖Q2‖2

+ ‖Q1‖2
+ ‖R2 −Q2‖2

= ‖Q−R‖2
+ ‖Q‖2

.

Assuming Q 6= 0, since ‖R‖ = 2δ (V ) the right-hand side is maximal if R =
−2δ(V )
‖Q‖ Q, and thus we obtain

4ω (V )
2 ≤

∥
∥
∥
∥

(

1 +
2δ (V )

‖Q‖

)

Q

∥
∥
∥
∥

2

+ ‖Q‖2
= ‖Q‖2

+ (‖Q‖ + 2δ (V ))
2
,

which implies the inequality in the lemma if Q 6= 0. Since the inequality in the
lemma holds with equality if Q = 0, this completes the proof.

From Lemma 3.4.7 we know that we want to have ω (V ) ≤ 1
2 because then

δ
(
V f
)
≤ 1√

2
. Due to Lemma 3.4.8 this will hold if ‖Q‖ satisfies

‖Q‖2
+ (‖Q‖ + 2δ (V ))

2 ≤ 1. (3.53)
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3.4.3 An upper bound for ‖Q‖

Recall from Lemma 3.4.8 that Q is the unique solution of the system

Tr (DAiDQ) = 1√
µθν

(
r0b
)

i
, i = 1, . . . , m,

∑m
i=1

ηi√
µDAiD +Q = 1√

µθνDR
0
cD.

(3.54)

We proceed to finding an upper bound for ‖Q‖. Before doing this we choose the
initial iterates

(
X0, y0, S0

)
as follows:

X0 = S0 = ζI, y0 = 0, µ0 = ζ2, (3.55)

where ζ > 0 is such that

X∗ + S∗ � ζ I, (3.56)

for some (X∗, y∗, S∗) ∈ F∗. For the moment, let us write

(rb)i = θν
(
r0b
)

i
, i = 1, 2, . . . , m, Rc = θνR0

c ,

and let rb be the vector ((rb)1 ; (rb)2 ; . . . ; (rb)m).

Below we use the Kronecker product of two matrices and the vec operator on
matrices. Their properties are given in Appendix A. The system (3.54) can be
rewritten as follows:

vec (Ai)
T

(D ⊗D)vec (Q) = 1√
µ (rb)i , i = 1, . . . , m,

∑m
i=1

ηi√
µ (D ⊗D)vec (Ai) + vec (Q) = 1√

µ (D ⊗D)vec (Rc) .
(3.57)

Let AT = [vec (A1) vec (A2) . . . vec (Am)] and η = (η1; η2; . . . ; ηm). One
may easily verify that we can rewrite the system (3.57) as follows:

A (D ⊗D)vec (Q) = 1√
µrb,

(D ⊗D)AT η√
µ + vec (Q) = 1√

µ (D ⊗D)vec (Rc) .
(3.58)

Lemma 3.4.9. With
(
X0, y0, S0

)
as defined in (3.55) and (3.56), we have

‖Q‖ ≤ θ
√

νTr (P 2 + P−2), (3.59)

where P is as defined in (3.10).

Proof. Replacing A, D⊗D and vec (Q) in system (3.58) by A, D and q, respec-
tively, yields exactly the same system as in the proof of Lemma 2.3.5 in Chapter
2. By using similar arguments as there, we obtain the following result:

√
µ ‖vec (Q)‖ ≤ θν

√
∥
∥vec

(
D
(
S0 − S̄

)
D
)∥
∥

2
+
∥
∥vec

(
D−1

(
X0 − X̄

)
D−1

)∥
∥

2
,
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where X̄, ȳ and S̄ are arbitrary solutions of the system

Avec
(
X̄
)

= b,

AT ȳ + vec
(
S̄
)

= vec (C) .
(3.60)

Using that ‖vec (U)‖ = ‖U‖ holds for any matrix U , we obtain

√
µ ‖Q‖ ≤ θν

√
∥
∥
(
D
(
S0 − S̄

)
D
)∥
∥

2
+
∥
∥D−1

(
X0 − X̄

)
D−1

∥
∥

2
. (3.61)

We are still free to choose X̄ and S̄, such that (3.60) is satisfied. We use X̄ = X∗

and S̄ = S∗, with X∗ and S∗ as in (3.56). Then we have

0 � X0 − X̄ = X0 −X∗ � ζI, 0 � S0 − S̄ = S0 − S∗ � ζI.

It follows that

∥
∥D
(
S0 − S̄

)
D
∥
∥

2 ≤ ζ2
∥
∥D2

∥
∥

2
= ζ2 ‖P‖2

= ζ2Tr
(
P 2
)
.

where we used Lemma A.3.2 and D = P
1
2 . In the same way it follows that

∥
∥D−1

(
X0 − X̄

)
D−1

∥
∥

2 ≤ ζ2Tr
(
P−2

)
.

Substitution the last inequalities and µ = νµ0 = νζ2 into (3.61) gives

‖Q‖ ≤ θ
√

νTr (P 2 + P−2),

proving the lemma.

Lemma 3.4.10. With
(
X0, y0, S0

)
as defined in (3.55) and (3.56), we have

‖Q‖ ≤ θ

ζ λmin (V )
Tr (X + S) . (3.62)

Proof. Using (3.10) and Lemma A.3.2 we have

Tr
(
P 2
)

= Tr

(

X
1
2

(

X
1
2SX

1
2

)−1
2

X
(

X
1
2SX

1
2

)−1
2

X
1
2

)

= Tr

(

X
(

X
1
2SX

1
2

)−1
2

X
(

X
1
2SX

1
2

)−1
2

)

≤ 1

λmin

((

X
1
2SX

1
2

) 1
2

)Tr

(

X2
(

X
1
2SX

1
2

)−1
2

)

≤ Tr
(
X2
)

λmin

(

X
1
2SX

1
2

) =
Tr
(
X2
)

µλmin (V 2)
,
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where for the last equality we used V 2 ∼ X
1
2 SX

1
2

µ ∼ XS
µ . In the same way we get

Tr
(
P−2

)
≤ Tr

(
S2
)

µλmin (V 2)
.

Thus we obtain

√

Tr (P 2 + P−2) ≤ 1

λmin (V )

√

Tr (X2 + S2)

µ
. (3.63)

Moreover, by the positive definiteness of X and S and Lemma A.3.3 it follows
that

Tr
(
X2 + S2

)
≤ Tr

(
X2 + S2 +XS + SX

)
= Tr

(

(X + S)2
)

≤ Tr (X + S)2 .

(3.64)
Substituting (3.63) and (3.64) in (3.59) gives

‖Q‖ ≤ θ

λmin (V )

√
ν

µ
Tr (X + S)2.

Since µ = νµ0 = νζ2, the lemma follows.

3.4.4 Bounds for Tr (X + S) and λmin (V ). The choice of τ and α

Let X be feasible for (SDPν) and (y, S) for (SDDν), we need to find an upper
bound for Tr (X + S) and lower bound on the eigenvalues of V as defined in
(3.12). We can rewrite δ (V ) in (3.17) as follows:

4δ (V )
2

=
∥
∥V − V −1

∥
∥

2

= Tr
((
V − V −1

)T (
V − V −1

))

= Tr
(
V 2 − 2I + V −2

)

=

n∑

i=1

(

λi (V )2 − 2 +
1

λi (V )2

)

=

n∑

i=1

(

λi (V ) − 1

λi (V )

)2

. (3.65)

Using this we may state the following result.

Lemma 3.4.11 (Cf. Lemma II.60 in [84]). Let δ = δ (V ) be given by (3.65).
Then

1

ρ (δ)
≤ λi (V ) ≤ ρ (δ) , (3.66)
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where

ρ (δ) := δ +
√

1 + δ2. (3.67)

Proof. The proof is exactly the same as the proof given in Lemma II.60 in [84].
We will repeat it here to make our presentation self contained. Since λi (V ) is
positive for each i = 1, . . . , n, we know by (3.65) that

−2δλi (V ) ≤ 1 − λi (V )
2 ≤ 2δλi (V ) .

This implies that

λi (V )2 − 2δλi (V ) − 1 ≤ 0 ≤ λi (V )2 + 2δλi (V ) − 1.

Rewriting this as

(λi (V ) − δ)
2 − 1 − δ2 ≤ 0 ≤ (λi (V ) + δ)

2 − 1 − δ2

we obtain
(λi (V ) − δ)2 ≤ 1 + δ2 ≤ (λi (V ) + δ)2 ,

which implies

λi (V ) − δ ≤ |λi (V ) − δ| ≤
√

1 + δ2 ≤ λi (V ) + δ.

Thus we arrive at

−δ +
√

1 + δ2 ≤ λi (V ) ≤ δ +
√

1 + δ2 = ρ (δ) .

For the left-hand expression we write

−δ +
√

1 + δ2 =
1

δ +
√

1 + δ2
=

1

ρ (δ)
.

This proves the theorem.

Lemma 3.4.12. Let X and (y, S) be feasible for the perturbed problems (SDPν)
and (SDDν) respectively and

(
X0, y0, S0

)
as defined in (3.55). Then for any

(X∗, y∗, S∗) ∈ F∗, we have

νTr
(
S0X +X0S

)
= Tr (SX) + ν2 Tr

(
S0X0

)

+ν (1 − ν)Tr
(
S0X∗ +X0S∗)− (1 − ν)Tr (SX∗ + S∗X) .

Proof. Let

X ′ = X − νX0 − (1 − ν)X∗,

y′ = y − νy0 − (1 − ν) y∗,

S′ = S − νS0 − (1 − ν)S∗.
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From (3.27), (3.28) and the definitions of the perturbed problems (SDPν) and
(SDDν), it is easily seen that (X ′, y′, S′) satisfies

Tr (AiX
′) = 0, i = 1, . . . , m,

m∑

i=1

y′iAi + S′ = 0,

which implies Tr (X ′S′) = 0. i.e.,

Tr
((
X − νX0 − (1 − ν)X∗) (S − νS0 − (1 − ν)S∗)) = 0.

By expanding the last equality and using the fact that Tr (X∗S∗) = 0 we obtain
the desired result.

Lemma 3.4.13. Let X and (y, S) be feasible for the perturbed problems (SDPν)
and (SDDν) respectively and δ (V ) as defined in (3.65) and X0 = S0 = ζI, where
ζ > 0 is a constant such that X∗ + S∗ � ζI for some (X∗, y∗, S∗) ∈ F∗. Then
we have

Tr (X + S) ≤
(

ρ (δ)2 + 1
)

nζ, (3.68)

where ρ (δ) as defined in (3.67).

Proof. SinceX, S, X∗ and S∗ are positive semidefinite, Lemma A.3.3 implies that
Tr (SX∗) and Tr (XS∗) are nonnegative. Therefore Lemma 3.4.12 implies

Tr
(
S0X +X0S

)
≤ Tr (SX)

ν
+ νTr

(
S0X0

)
+ (1 − ν)Tr

(
S0X∗ +X0S∗) .

Since X0 = S0 = ζI and X∗ + S∗ � ζI, we have

Tr
(
S0X∗ +X0S∗) = ζTr (X∗ + S∗) ≤ ζ2 Tr (I) = nζ2.

Also Tr
(
X0S0

)
= nζ2. Hence we get

Tr
(
S0X +X0S

)
≤ Tr (SX)

ν
+ nζ2 =

µTr
(
V 2
)

ν
+ nζ2 = ζ2Tr

(
V 2
)

+ nζ2,

where the last equality follows because of ν = µ
µ0 and µ0 = ζ2. Using Lemma

3.4.11 we obtain

Tr
(
S0X +X0S

)
≤
(

ρ (δ)
2
+ 1
)

nζ2

Since X0 = S0 = ζI we have

Tr
(
S0X +X0S

)
= ζTr (X + S) .

Hence it follows that

Tr (X + S) ≤
(

ρ (δ)
2

+ 1
)

nζ,

which proves the lemma.
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By substituting (3.66) and (3.68) into (3.62) we get

‖Q‖ ≤ nθρ (δ)
(

1 + ρ (δ)
2
)

.

At this stage we choose

τ =
1

8
. (3.69)

Since δ ≤ τ = 1
8 and ρ (δ) is monotonically increasing in δ, we have

‖Q‖ ≤ nθρ (δ)
(

1 + ρ (δ)
2
)

≤ nθρ

(
1

8

)(

1 + ρ

(
1

8

)2
)

= 2.586n θ.

By using θ = α

2(
√
n+1)

(see Lemma 3.4.7) we obtain the following upper bound

for the norm of Q:

‖Q‖ ≤ 2.586nα

2 (
√
n+ 1)

.

In (3.53) we found that in order to have δ
(
V f
)
≤ 1√

2
, we should have ‖Q‖2

+

(‖Q‖ + 2δ (V ))
2 ≤ 1. Therefore, since δ (V ) ≤ τ = 1

8 , it suffices if Q satisfies

‖Q‖2
+
(
‖Q‖ + 1

4

)2 ≤ 1. So we have δ
(
V f
)
≤ 1√

2
if ‖Q‖ ≤ 0.57097. Since

‖Q‖ ≤ 2.586nα

2(
√
n+1)

, the latter inequality is satisfied if we take

α =
2 (

√
n+ 1)

5n
, (3.70)

because
1.14194

2.586
= 0.442 ≥ 2

5
.

3.5 Complexity

As already showed for LO in Section 2.4 of Chapter 2, with τ as defined in (3.69)
according to (3.37), we need at most

log2

(

log2

1

τ2

)

= log2 (log2 64) ≤ 3

centering steps to get iterates that satisfy δ(X,S;µ+) ≤ τ . So each iteration
consists of one feasibility step and at most 3 centering steps. In each iteration
both the duality gap and the norms of the residual vectors are reduced by the
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factor 1 − θ. Hence, using Tr
(
X0S0

)
= nζ2, the total number of iterations is

bounded above by
1

θ
log

max
{
nζ2,

∥
∥r0b
∥
∥ ,
∥
∥R0

c

∥
∥
}

ǫ
.

Due to (3.52) and (3.70) we have

θ =
α

2 (
√
n+ 1)

=
1

5n
.

Hence the total number of inner iterations is bounded above by

20n log
max

{
nζ2,

∥
∥r0b
∥
∥ ,
∥
∥R0

c

∥
∥
}

ǫ
.

Note that the order of this bound is the same as the bound in (1.29) for LO. We
may state without further proof our main result.

Theorem 3.5.1. If (SDP ) and (SDD) have optimal solutions (X∗, y∗, S∗) ∈ F∗

such that X∗ + S∗ � ζ I, then after at most

20n log
max

{
nζ2,

∥
∥r0b
∥
∥ ,
∥
∥R0

c

∥
∥
}

ǫ
.

iterations the algorithm finds an ǫ-solution of (SDP ) and (SDD).

The above theorem gives a convergence result under the assumption (3.56).
One might ask what if this condition is not satisfied. From Lemma 3.4.10 under
conditions (3.55) and (3.56) we know that during the course of the algorithm the
matrix Q satisfies ‖Q‖ ≤ 0.57097. So, if during the execution of the algorithm
‖Q‖ > 0.57097, then we may conclude that there exist no optimal solutions
(X∗, y∗, S∗) with zero duality gap such that

X∗ + S∗ � ζ I.





Chapter 4
Full-Newton step primal-dual IPMs

for LO based on locally SCB

functions

4.1 Introduction

As discussed in Chapter 1 after the seminal work of Karmarkar [41], many re-
searchers have proposed and analyzed various IPMs for LO and a large amount
of results have been reported. IPMs are among the most effective methods for
solving wide classes of linear and nonlinear optimization problems. At present
there is still a gap between the practical behavior of the algorithms and the the-
oretical performance results, in favor of the practical behavior. This is especially
true for so-called large-update methods, which are the most efficient methods in
practice (see, e.g. Andersen et al. [5]). Until very recently, the theoretical iter-
ation bound for all large-update methods was O(n log n

ǫ ), where n denotes the
number of inequalities in the problem, and ǫ the desired accuracy in terms of the
objective value. The best known iteration bound has been derived for so-called
small-update IPMs and is given by O(

√
n log n

ǫ ); small-update IPMs, however,
are very inefficient in practice. This phenomenon is known as the gap between
theory and practice, also called the irony of IPMs [81, page 51]. It is summarized
in the following table:

Large-update methods Small-update methods

Iteration bound O(n) log n
ǫ O(

√
n) log n

ǫ

Practical performance Highly efficient Very poor

79
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Recently some progress has been made by introducing a wide class of new barrier
functions that are defined by univariate functions, so-called kernel functions. As
a result the ‘gap factor’ was reduced from

√
n to logn. See [6–9, 74, 76]. The goal

of these papers was to investigate large-update methods, and to improve their
iteration bounds.

A surprising result in these works is that the iteration bounds for small-update
methods based on these barrier functions always turned out to be O(

√
n log n

ǫ )
(see, e.g., [23]), which is the best known bound for IPMs for LO. It is the aim of
this chapter to explain this surprising phenomenon by using the powerful results
from the theory of self-concordant functions. The theory of self-concordant (SC)
functions was developed by Nesterov and Nemirovski [64] and is generally consid-
ered to be a milestone in the theory of IPMs for linear and convex optimization.
As we will see this theory does not directly apply to the new barrier functions,
since these functions are not SC. The main purpose of this chapter is to show that
the new barrier functions are ‘locally SC’ in a neighborhood of the central path.
As we show this observation explains why under very weak conditions on the
kernel function all small-update methods have the iteration bound O(

√
n log n

ǫ ).

4.2 Self-concordancy

We start this section with a definition and some examples of self-concordant func-
tions.

4.2.1 Definition and examples

We start by considering the case where φ is a univariate function. We assume for
the moment that n = 1, and the domain D of φ : D → R is just an open interval
in R. One calls φ a κ-SC function if κ is a nonnegative number and

|φ′′′(x)| ≤ 2κ (φ′′(x))
3
2 , for all x ∈ D. (4.1)

Note that this definition implies that φ′′(x) is nonnegative, whence φ is convex,
and that φ is three times continuously differentiable. Obviously, linear and convex
quadratic functions are 0-SC, because their third derivatives are zero. We proceed
by presenting a well-known example of SC function on R.

Example 4.2.1. Consider the function

f (x) = − log x, D = R+.

Then

f ′ (x) =
−1

x
, f ′′ (x) =

1

x2
, f ′′′ (x) =

−2

x3
.
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Therefore,
|f ′′′ (x)|
2f ′′ (x)

3
2

=
2/x3

2 (1/x2)
3/2

= 1.

This implies that f (x) is a 1-SC function.

Now suppose that n > 1, so φ is a multivariate function. Then φ is called a
κ-SC function if its restriction to an arbitrary line in its domain is κ-SC. In other
words, φ is a κ-SC if and only if φ̄(t) = φ(x + th) is κ-SC for all x ∈ D and for
all h ∈ Rn. The domain of φ̄(t) is defined in the natural way: given x and h
it consists of all t such that x + th ∈ D. For notational convenience and as in
[11, 15, 63, 64] we define:

φ̄′(t) = ∇φ (x) [h] = 〈∇φ (x) , h〉,
φ̄′′ (t) = ∇2φ (x) [h, h] = 〈∇2φ (x) h, h〉,
φ̄′′′ (t) = ∇3φ (x) [h, h, h] = 〈∇3φ (x) [h]h, h〉.

By these notations we can give the following definition for SC-functions on Rn.

Definition 4.2.2. We call a function κ-SC if the inequality

∣
∣∇3φ (x) [h, h, h]

∣
∣ ≤ 2κ

(
∇2φ (x) [h, h]

) 3
2 , (4.2)

holds for any x ∈ D and h ∈ Rn.

Example 4.2.3. Consider the function

f (x) = −
n∑

i=1

log xi,

with 0 < x ∈ Rn. Then

∇f (x) =

(−1

x1
;
−1

x2
; . . . ;

−1

xn

)

,

∇2f (x) = diag

(
1

x2
1

;
1

x2
2

; . . . ;
1

x2
n

)

,

∇3f (x) = diag

(−2

x3
1

;
−2

x3
2

; . . . ;
−2

x3
n

)

.

Therefore we have for any h ∈ Rn

∇2f (x) [h, h] =

n∑

i=1

h2
i

x2
i

, ∇3f (x) [h, h, h] = −
n∑

i=1

2h3
i

x3
i

.

For any ξ ∈ Rn we have

∣
∣
∣
∣
∣

n∑

i=1

ξ3i

∣
∣
∣
∣
∣
≤

n∑

i=1

|ξi|3 ≤
(

n∑

i=1

ξ2i

) 3
2

,
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where the second inequality comes from the well-known relation ‖·‖3 ≤ ‖·‖2 applied
to vector ξ ∈ Rn. Hence, taking ξi := hi

xi
we get

∣
∣∇3f (x) [h, h, h]

∣
∣ ≤ 2

(
∇2f (x) [h, h]

) 3
2 ,

proving that f is 1-SC.

4.2.2 Newton step and proximity measure

We assume henceforth that φ is a κ-SC function and D ⊆ Rn. The Newton step
at x is defined by

∆x = −H(x)−1g(x), (4.3)

where g(x) and H(x) denote the gradient and the Hessian of φ (x) at x, respec-
tively. So,

g(x) = ∇φ(x), H(x) = ∇2φ(x), ∀x ∈ D.
An important feature is that if φ(x) is strictly convex thenH(x) is positive definite
everywhere on its domain; 1 φ(x) is certainly strictly convex if it is coercive and
its domain does not contain a (complete) straight line (see Theorem 4.3.7 in [63]).
In the sequel we always assume that φ is strictly convex. As a consequence, the
quantity

λ(x) =
√

∆xTH(x)∆x = ‖∆x‖H(x) =
√

g(x)TH(x)−1g(x),

i.e., the length of the Newton step with respect to the norm induced by the
(local) Hessian matrix H(x), can be used as a measure for the ‘distance’ of x
to the minimizer of φ(x) (if it exists). This quantity plays a crucial role in the
analysis of Newton’s method for minimizing φ(x).

In the sequel we consider only barrier functions that have a minimizer, and
for which the minimal value of φ on its domain D equals 0. Moreover, we have
to deal only with points x that are close to the minimizer, in the sense that λ(x)
is small. For such a point the quadratic convergence of Newton’s method to the
minimizer is very nicely expressed by the following lemma.

Lemma 4.2.4 (Theorem 2.2.2 in [69]). If λ(x) < 1
κ then x + ∆x is feasible.

Moreover,

λ(x + ∆x) ≤ κ

(
λ(x)

1 − κλ(x)

)2

.

Corollary 4.2.5. If λ (x) ≤ 1
3κ then x + ∆x is feasible and λ (x+ ∆x) ≤

(
3
2λ (x)

√
κ
)2
.

1This is not obvious! E.g., x4 (x ∈ R) is strictly convex, but its second derivative vanishes
at x = 0.
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One other result that we need estimates the value of φ at x ∈ D in terms of λ(x).
It makes use of the univariate (nonnegative) function ω(t) defined by

ω(t) = t− log(1 + t), t > −1. (4.4)

We recall the following result.

Lemma 4.2.6 (Section 9.6.3 in [15]). Let φ be κ-self-concordant on D, x ∈ D
and λ = λ(x) < 1

κ . Then

φ(x) ≤ −κλ (x) + ln (1 − κλ (x))

κ2
=
ω(−κλ)

κ2
. (4.5)

Hence, since ω(t) is monotonically decreasing if t ∈ (−1, 0], we obtain

λ(x) ≤ 1

4κ
⇒ φ(x) ≤ ω(− 1

4 )

κ2
=

0.0376821

κ2
≤ 1

26κ2
. (4.6)

4.2.3 Minimization of a linear function over a convex domain

We now consider the problem of minimizing a linear function over the closure D̄
of the domain D of a κ-SC function φ : D → R. So D = int D̄, and the given
problem has the form

(P ) min
{
cTx : x ∈ D̄

}
.

We assume that H(x) = ∇2φ(x) is positive definite for every x ∈ D. For µ > 0
we define

φµ(x) :=
cTx

µ
+ φ(x), x ∈ D

and we consider the problem (Pµ) defined by

(Pµ) inf {φµ(x) : x ∈ D} .

We now have

gµ(x) := ∇φµ(x) =
c

µ
+ ∇φ(x) =

c

µ
+ g(x),

Hµ(x) := ∇2φµ(x) = ∇2φ(x) = H(x),

∇3φµ(x) = ∇3φ(x).

Note that the two higher derivatives do not depend on µ. It follows that φµ(x)
is also κ-SC. The minimizer of φµ(x), if it exists, is denoted as x(µ). When µ
runs through all positive numbers then x(µ) runs through the central path of
(P ). When µ approaches 0 then x(µ) converges to an optimal solution of (P ).
Therefore, in IPMs the central path is used as a guideline to the set of optimal
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solutions of (P ). This approach is likely to be feasible because since φµ(x) is
self-concordant, its minimizer can be computed efficiently.

The Newton step at x ∈ D with respect to φµ(x) is given by

∆x = −H(x)−1gµ(x)

and the distance of x to the µ-center x(µ) is measured by the quantity

λµ(x) =
√

∆xTH(x)∆x =
√

gµ(x)TH(x)−1gµ(x) = ‖gµ(x)‖H(x)−1 .

A major question is what the effect is on λµ(x) when µ is reduced to µ+ = (1−θ)µ.
Let λ = λµ(x) and µ+ = (1 − θ)µ. We then have

gµ+(x) =
c

µ+
+ ∇φ(x) =

c

(1 − θ)µ
+ ∇φ(x)

=
1

1 − θ

(
c

µ
+ ∇φ(x) − θ∇φ(x)

)

=
1

1 − θ
(gµ(x) − θ∇φ(x)) .

Hence, denoting H(x) shortly as H ,

λµ+(x) = 1
1−θ ‖gµ(x) − θ∇φ(x)‖H−1

≤ 1
1−θ

(
‖gµ(x)‖H−1 + θ ‖g(x)‖H−1

)

= 1
1−θ (λµ(x) + θ ‖g(x)‖H−1)

= 1
1−θ (λµ(x) + θλ(x)) . (4.7)

Definition 4.2.7. Let ν ≥ 0. The self-concordant function φ is called a (κ, ν)-
self-concordant barrier (SCB) function if φ is κ-SC and

λ(x)2 ≤ ν, ∀x ∈ D. (4.8)

An immediate consequence of (4.7) and this definition is the following lemma.

Lemma 4.2.8. If φ is a (κ, ν)-SCB then

λµ+(x) ≤ λµ(x) + θ
√
ν

1 − θ
.

For future use we recall the following result.

Lemma 4.2.9 (Theorem 2.2 in [25]). If φ is κ-SC then φ is a (κ, ν)-SCB if and
only if

(∇φ(x)[h])
2 ≤ ν∇2φ(x)[h, h], ∀x ∈ D, ∀h ∈ Rn. (4.9)

The algorithm used in this chapter can now be presented, see Figure 4.1 (see
[25]). For the purpose of this chapter the following convergence result is of utmost
importance. We include part of the proof, as given in [25].
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Primal-Dual IPM with Full-Newton step

Input:

Accuracy parameter ǫ > 0;

proximity parameter τ > 0;

update parameter θ, 0 < θ < 1;

x = x0 ∈ D and µ = µ0 > 0 such that λµ (x) ≤ τ < 1
κ .

begin

while µ

(

ν +
τ(τ+

√
ν)

1−κτ

)

≥ ǫ do

begin
µ := (1 − θ)µ;

x := x+ ∆x;
end

end

Figure 4.1: Full-Newton step algorithm.

Theorem 4.2.10. If τ = 1
9κ and θ = 5

9+36κ
√
ν
, then the algorithm with full

Newton steps requires not more than

⌈

2
(
1 + 4κ

√
ν
)

ln
2µ0ν

ǫ

⌉

iterations. The output is a point x ∈ D such that cTx ≤ cTx∗ + ǫ, where x∗

denotes an optimal solution of (P ).

Proof. At the start of the first iteration we have x ∈ D and µ = µ0 such that
λµ(x) ≤ τ . When the barrier parameter is updated to µ+ = (1 − θ)µ, Lemma
4.2.8 gives

λµ+(x) ≤ λµ(x) + θ
√
ν

1 − θ
≤ τ + θ

√
ν

1 − θ
. (4.10)

Then after the Newton step, the new iterate is x+ = x+∆x and, by Lemma 4.2.4,

λµ+(x+) ≤ κ

(
λµ+(x)

1 − κλµ+(x)

)2

. (4.11)
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The algorithm is well defined if we choose τ and θ such that λµ+(x+) ≤ τ . To get
the lowest iteration bound, we need at the same time to maximize θ. From (4.11)
we deduce that λµ+(x+) ≤ τ certainly holds if

λµ+(x)

1 − κλµ+(x)
≤

√
τ√
κ
,

which is equivalent to

λµ+(x) ≤
√
τ

κ
√
τ +

√
κ
.

According to (4.10) this will hold if τ+θ
√
ν

1−θ ≤
√
τ

κ
√
τ+

√
κ
. This leads to the following

condition on θ:

θ ≤ √
τ

1 − κτ −√
κτ√

τ +
√
νκ (1 +

√
κτ )

Since τ = 1
9κ , this upper bound for θ gets the value 5

9+36κ
√
ν
≤ 1

2+8κ
√
ν
. This

justifies the choice of the value of τ and θ in the theorem. The rest of the proof
is not relevant for the purpose of this chapter, and is therefore omitted. We refer
the interested reader to the relevant references, e.g., [25].

Note that the order of magnitude of the above iteration bound is dominated
by the quantity κ

√
ν. Following [25], we call this number the complexity number

of φ.

It follows easily from the above proof that after the µ-update we have

λµ+(x) ≤ 1

4κ
. (4.12)

Since the Newton step decreases the proximity value, we may conclude that the
following holds.

Lemma 4.2.11. During the course of the algorithm, the iterates x always satisfy

λ (x) ≤ 1

4κ
.

The above analysis is based on the fact that the logarithmic barrier function
is SC in interior of Rn

+. After all it turns out that the iterates occur only in
a small part of interior of Rn

+, namely in a narrow neighborhood of the central
path. Therefore it suffices to know the behavior of the barrier function in this
narrow neighborhood, instead of the whole interior of Rn

+. In the next subsection
we introduce the concept of locally self-concordance.
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4.2.4 Locally self-concordant barrier functions

Let D be an open convex subset of Rn and φ : D → R three times continuously
differentiable.

Definition 4.2.12. The local κ-value at x ∈ D is defined by

κ(x) := min
{

κ : ∇3φ(x)[h, h, h] ≤ 2κ
(
∇2φ(x)[h, h]

) 3
2 , ∀h ∈ Rn

}

(4.13)

and the local ν-value by

ν(x) := min
{

ν : (∇φ(x)[h])2 ≤ ν∇2φ(x)[h, h], ∀h ∈ Rn
}

. (4.14)

Clearly φ is SC if κ(x) is bounded above by some (finite) constant on the
domain of φ. Furthermore, φ is a barrier function if moreover ν(x) is bounded
above by some (finite) constant on the domain.

We define the local complexity number at x as

γ(x) = κ(x)
√

ν(x).

Definition 4.2.13. Let S be a nonempty subset of D. Then we say that φ is
locally κ-SC on S if

κ(x) ≤ κ, ∀x ∈ S. (4.15)

If φ is locally κ-SC on S then we call φ a local (κ, ν)-barrier on S if moreover

ν(x) ≤ ν, ∀x ∈ S. (4.16)

4.2.5 Composition rules

In Subsection 4.2.3 it has been made clear that we can find an ǫ-solution of (P )
in polynomial time if we have a self-concordant barrier function for the interior of
the domain. But how do we recognize, or obtain such functions. For this purpose
we have some so-called composition rules.

First we recall that self-concordancy is preserved under scaling by a positive factor.
This follows from the following lemma.

Lemma 4.2.14. Let φ be κ-SC ν barrier (or shortly (κ, ν)-SCB) and λ ∈ R,
λ > 0. Then λφ is a ( κ√

λ
, λν)-SCB.

Self-concordancy is also preserved under addition.

Lemma 4.2.15. Let φi be (κi, νi)-SCB’s on Di, for i = 1, 2. Then φ1 + φ2 is a
(κ, ν)-SCB for D1 ∩D2, where κ = max {κ1, κ2} and ν = ν1 + ν2.
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4.3 Linear optimization based on kernel functions

It is well known that every linear optimization problem can be solved efficiently
(i.e., in polynomial time) if we can find in polynomial time an optimal solution of
problems of the form

(SP ) min{qTx : Mx ≥ −q, x ≥ 0},

where the matrix M is skew-symmetric (i.e., MT = −M) and the vector q is
nonnegative (entry-wise) and nonzero. This can be achieved by embedding a
given linear optimization problem and its dual problem in a problem of the above
form. This embedding technique is due to [106] and described in detail in [84,
Part I]. The problem (SP ) is trivial in the sense that it has a trivial optimal
solution, namely x = 0 which yields the objective value 0; this is optimal because
x ≥ 0 and q ≥ 0 imply qTx ≥ 0 for every feasible solution. But this observation
is not sufficient for our goal, since we need a strictly complementary solution of
(SP ). What this means requires some explanation.

We associate to any vector x ∈ Rn its slack vector s(x) according to

s(x) = Mx+ q.

In the sequel we simply denote s(x) as s. Observe that since M is skew-symmetric
we have zTMz = 0 for every vector z ∈ Rn, where n denotes the order of M .
Hence we have

qTx = (s−Mx)
T
x = sTx+ xTMx = sTx.

Therefore, if x is feasible, then x is optimal if and only if sTx = 0. Since x and
s are nonnegative this holds if and only if xisi = 0 for each i. This shows that
x is optimal if and only if the vectors x and s are complementary vectors. As
discussed in Section 1.2.1 in Chapter 1 we say that x is a strictly complementary
solution if moreover xi+ si > 0 for each i. Summarizing these facts, we have that
x is feasible if x ≥ 0 and s ≥ 0. A feasible x is optimal if xs = 0, and x is a
strictly complementary solution if moreover x+ s > 0.

4.3.1 The central path of (SP )

In this subsection we study the central path of the problem (SP ). We already
introduced central path in Section 4.2.3 as the set of minimizers of a barrier
function.

Using the vector s = s(x), the problem (SP ) can be written as

min{qTx : s−Mx = q, x ≥ 0, s ≥ 0}.

So the feasible region is the intersection of the affine space {(x, s) : s−Mx = q}
with the cone

{
(x, s) : x ∈ Rn

+, s ∈ Rn
+

}
= Rn

+×Rn
+. Example 4.2.3 and Lemma
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4.2.15 imply that

−
n∑

i=1

log xi −
n∑

i=1

log si

is a SC function on the interior of the cone Rn
+ × Rn

+. According to Subsection
4.2.3 the function

ΦLB(x, s, µ) =
qTx

µ
−

n∑

i=1

log xi −
n∑

i=1

log si (4.17)

is a SC barrier function for (SP ). This is the so-called logarithmic barrier function.
The µ-center of (SP ) is obtained by minimizing this function subject to the affine
constraint s−Mx = q. The µ-center is (uniquely!) determined by the equations
[84]

s = Mx+ q, x ≥ 0, s ≥ 0,

xs = µe.
(4.18)

Clearly, any solution (x, s) of (4.18) will satisfy x > 0 and s > 0. So a solution
exists only if (SP ) satisfies the IPC, i.e., if the affine space {(x, s) : s−Mx = q}
has nonempty intersection with the interior of the cone Rn

+ × Rn
+. Surprisingly

enough, if the IPC is satisfied then a solution of (4.18) exists, for each µ > 0, and
this solution is unique since the logarithmic barrier function is strictly convex.
We denote it as x(µ) and call x(µ) the µ-center of (SP ); s(µ) is the correspond-
ing slack vector. The set of µ-centers (with µ running through all positive real
numbers) gives a homotopy path, which is called the central path of (SP ).2 If
µ → 0 then the limit of the central path exists and since the limit point satis-
fies the complementarity condition, the limit yields an optimal solution for (SP ).
Moreover, this solution can be shown to be strictly complementary.

Without loss of generality we may assume that (SP ) satisfies the IPC. In fact we
may, and will assume that x = e is feasible for (SP ) and s(x) = e. So, we can
start the algorithm with x = e, s = e and µ = 1. For this and other properties
mentioned above we refer to [84].

In this section we discussed the logarithmic barrier function for (SP ). As dis-
cussed in Section 4.1, small-update methods theoretically have the best iteration
bound, whereas large-update methods are in practice much more efficient than
small-update methods. As we mentioned in Section 4.1 the iteration bound for
large-update methods was recently improved by using a class of barrier functions.
We continue this chapter by introducing this class of barrier functions.

2Note that the word ‘central path’ here has precisely the same meaning as in Section 4.2.
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4.3.2 Kernel-function-based barrier functions

Kernel function of the logarithmic barrier function

For any x that is strictly feasible for (SP ) we have x > 0 and also s(x) > 0. We
define the vector v as in (1.7):

v :=

√
xs

µ
, s = s (x) . (4.19)

Note that if x is the µ-center x(µ) then v = e and vice versa. The logarithmic
barrier function, given by (4.17) can be nicely expressed in terms of v, by using
that qTx = sTx = µ

∑n
i=1 v

2
i :

ΦLB(x, s, µ) =
qTx

µ
−

n∑

i=1

log xisi

=

n∑

i=1

v2
i −

n∑

i=1

log
(
µv2

i

)

=

n∑

i=1

(
v2
i − 1 − log v2

i

)
+ n− n logµ

= 2

n∑

i=1

ψLB(vi) + n− n logµ, (4.20)

where ψLB denotes the univariate function defined by

ψLB(t) =
1

2

(
t2 − 1

)
− log t, t > 0. (4.21)

Note that the above term n−n logµ disappears when taking (partial) derivatives
to x and s. So, when µ is fixed, which is the case when we apply Newton’s method
in the algorithm of Figure 4.1, this term is not relevant. We call the univariate
function ψLB the kernel function of the logarithmic barrier function. It is clear
from (4.20) that the logarithmic barrier function is based on the kernel function
ψLB. As mentioned in Section 4.1 this idea has recently been used to define a new
class of barrier functions based on other kernel functions. In the next subsection
we will discuss this phenomenon in more detail.

Barrier functions based on other kernel functions

In the kernel-function-based approach we let ψ(t) be any univariate function ψ :
(0,∞) → [0,∞) that has the following properties in common with ψLB: ψ(t) must
be strictly convex, minimal at t = 1, and ψ(1) = 0. Any such function is called a
kernel function, and gives rise to a barrier function φµ(x, s) in the following way:

φµ(x, s) := 2Ψ(v) := 2

n∑

i=1

ψ (vi) , x > 0, s > 0. (4.22)
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So the domain of φ is the interior of Rn
+ × Rn

+. It is called the barrier function
based on the kernel function ψ (t). Note that if x = x(µ) then v = e, and hence
ψ(vi) = ψ(1) = 0, which implies φµ(x, s) = 0. Since φµ(x, s) ≥ 0 for every pair
(x, s) of positive vectors x and s, we see that φµ is minimal if and only if x = x(µ)
and s = s(µ).

Let us write ψ (t) as follows:

ψ(t) =
1

2

(
t2 − 1

)
+ ψb(t). (4.23)

We call ψb(t) the barrier term of ψ(t). Recall that if x is strictly feasible for (SP )
and s = s(x), then qTx = xT s = µ

∑n
i=1 v

2
i . Hence if s = s (x) with x feasible for

(SP ), then we have

φµ(x, s) = 2

n∑

i=1

ψ (vi) =

n∑

i=1

(
v2
i − 1 + 2ψb (vi)

)
=
qTx

µ
− n+

n∑

i=1

2ψb (vi).

We denote this function as Φµ(x, s). So,

Φµ(x, s) =
qTx

µ
− n+

n∑

i=1

2ψb (vi). (4.24)

Obviously, Φµ(x, s) and φµ(x, s) coincide if x is strictly feasible for (SP ) and
s = s(x), but otherwise their values may differ. The reason why we use Φµ(x, s)
instead of φµ(x, s) is because the barrier function Φµ(x, s) is strictly convex on
the interior of Rn

+ ×Rn
+, as is shown in the next section, whereas one easily may

verify that φµ(x, s) is in general not convex on the interior of Rn
+ × Rn

+.3

For proving that the barrier function Φµ(x, s) is convex and self-concordant, we
require that the barrier term of the kernel function ψ (t) satisfies the following
three conditions:

ψ′
b(t) < 0, t > 0, (4.25)

ψ′′
b (t) > 0, t > 0, (4.26)

ψ′′′
b (t) < 0, t > 0. (4.27)

Since the barrier term of ψLB(t) is − log t, one easily understands that these
conditions are satisfied by ψLB(t).

4.3.3 Convexity of Φµ (x, s)

In this subsection we show that under conditions (4.25) and (4.26) the barrier
function Φµ (x, s) is strictly convex on interior Rn

+ × Rn
+. Since the sum of

3If n = 1, the determinant of ∇2φµ(x, s) is equal to − v3

4x2s2

�
v + ψ′

b
(v)

� �
1 + ψ′′

b
(v)

�
, as one

may verify. Obviously this not always positive, even not if ψ(t) is the kernel function of the
logarithmic barrier function. This implies that φµ(x, s) is not convex on interior of R

n
+ × R

n
+.
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convex function is convex, it suffices to show that each term of the barrier function
Φµ (x, s) is convex. Since qTx is linear, it is convex. Hence it suffices if ψb (vi) is
convex, for each i. Since ψb (vi) depends only on xi and si, it is enough if ψb (vi)
is convex in xi and si. To simplify notation we drop the subscript i. Then it
remains to show that

f(x, s) := 2ψb (v) , where v =

√
xs

µ
, (4.28)

is convex in x and s, where the variables x and s are positive scalars. One has

∂v

∂x
=

s

2µv
=

v

2x
,

∂v

∂s
=

v

2s
.

Using this it follows that

∂f(x, s)

∂x
= ψ′

b(v)
v

x
,

∂f(x, s)

∂s
= ψ′

b(v)
v

s
, (4.29)

and

∂2f(x, s)

∂2x
= ψ′′

b (v)
v2

2x2
− ψ′

b(v)
v

2x2
=

v

2x2
(ψ′′
b (v)v − ψ′

b(v)) ,

∂2f(x, s)

∂2s
=

v

2s2
(ψ′′
b (v)v − ψ′

b(v)) , (4.30)

∂2f(x, s)

∂x∂s
= ψ′′

b (v)
v2

2xs
+ ψ′

b(v)
v

2xs
=

v

2xs
(ψ′′
b (v)v + ψ′

b(v)) .

Hence the Hessian matrix is given by

∇2f(x, s) =







v

2x2
(ψ′′
b (v)v − ψ′

b(v))
v

2xs
(ψ′′
b (v)v + ψ′

b(v))

v

2xs
(ψ′′
b (v)v + ψ′

b(v))
v

2s2
(ψ′′
b (v)v − ψ′

b(v))






. (4.31)

The conditions (4.25) and (4.26) imply that the diagonal elements are positive.
The determinant is given by

v2

4x2s2

(

(ψ′′
b (v)v − ψ′

b(v))
2 − (ψ′′

b (v)v + ψ′
b(v))

2
)

= − v3

x2s2
ψ′
b(v)ψ

′′
b (v),

which by the same reason is also positive. Thus we have shown that the Hessian
matrix is positive definite, which implies that the barrier function Φµ (x, s) is
strictly convex. Therefore, we can state the following lemma without further
proof.

Lemma 4.3.1. If ψ(t) satisfies the conditions (4.25) and (4.26) then Φµ(x, s) is
strictly convex.
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We now have to deal with the crucial question whether or not Φµ(x, s) is self-
concordant and if so, if it is a ν-barrier for some appropriate value of ν. Because
then we can use it in our generic algorithm, to solve (SP ) in polynomial time.
The disappointing answer to this question is ‘no’, with the logarithmic barrier
function being the only (positive) exception. But this is not the end of our story.
As we show in the next section, when applying our generic algorithm with one
of the new barrier functions, then in the region where the iterates live, which
is a rather small neighborhood of the central path, the new barrier functions are
locally self-concordant. In the next two subsections we compute the local values of
κ and ν for the kernel-function-based barrier function Φµ(x, s) as given by (4.24).
Because of the composition rules in Lemma 4.2.15 we may start by considering
the case where n = 1, and then apply these rules to obtain results for higher
dimensions.

4.3.4 Computation of ν (x, s)

In this subsection we compute the local value ν (x, s). We start with considering
the function f(x, s) given by (4.28). We can easily compute the value of ν(x, s),
since we already computed the first and second derivatives of f(x, s). From (4.29)
we deduce that the gradient is given by

∇f(x, s) =







ψ′
b(v)

v

x

ψ′
b(v)

v

s







= ψ′
b(v)v







1

x
1

s






, (4.32)

and the Hessian by (4.31). According to (4.14) in Definition 4.2.12 the value of
ν(x, s) is given by

ν(x, s) = max
h∈R2

(
∇f(x, s)Th

)2

hT∇2f(x, s)h
,

where h = (h1, h2) and h1, h2 ∈ R. Using the expressions (4.32) and (4.31) it
follows that

∇f(x, s)Th = ψ′
b(v)v

(
h1

x
+
h2

s

)

and

hT∇2f(x, s)h =
1

2
v (ψ′′

b (v)v − ψ′
b(v))

(
h2

1

x2
+
h2

2

s2

)

+ v (ψ′′
b (v)v + ψ′

b(v))
h1h2

xs

=
1

2
v

(

ψ′′
b (v)v

(
h1

x
+
h2

s

)2

− ψ′
b(v)

(
h1

x
− h2

s

)2
)

.

Denoting

σ =
h1

x
, τ =

h2

s
, (4.33)
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we thus obtain

ν(x, s) = max
σ,τ

(ψ′
b(v)v (σ + τ))

2

1
2v
(

ψ′′
b (v)v (σ + τ)

2 − ψ′
b(v) (σ − τ)

2
) .

Changing to new variables y = σ + τ and z = σ − τ we get

ν(x, s) = max
y,z

2ψ′
b(v)

2vy2

ψ′′
b (v)vy

2 − ψ′
b(v)z

2
.

Since ψ′
b(v) < 0 the maximum occurs for z = 0. Therefore, we immediately obtain

that

ν(x, s) =
2ψ′

b(v)
2

ψ′′
b (v)

.

Thus we have found the local value ν(x, s) if n = 1. Now using Lemma 4.2.15 we
can state the next lemma without further proof.

Lemma 4.3.2. The local value ν (x, s) is given by

ν(x, s) =

n∑

i=1

2
ψ′
b(vi)

2

ψ′′
b (vi)

.

4.3.5 Computation of κ (x, s)

In this subsection we compute the local value κ(x, s). For this we first need to
find the third order derivatives of f(x, s). Straightforward computations yield the
following expressions:

∂3f(x, s)

∂3x
=

v

4x3

[
3ψ′

b(v) − 3vψ′′
b (v) + v2ψ′′′

b (v)
]
,

∂3f(x, s)

∂2x∂s
=

v

4x2s

[
−ψ′

b(v) + vψ′′
b (v) + v2ψ′′′

b (v)
]
,

∂3f(x, s)

∂x∂2s
=

v

4xs2
[
−ψ′

b(v) + vψ′′
b (v) + v2ψ′′′

b (v)
]
,

∂3f(x, s)

∂3s
=

v

4s3
[
3ψ′

b(v) − 3vψ′′
b (v) + v2ψ′′′

b (v)
]
.

It will be convenient to use the following short hand notation:

ξb(t) = ψ′′
b (t) − ψ′

b (t)

t
, t > 0. (4.34)
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Then we may write these derivatives as follows.

∂3f(x, s)

∂3x
=

1

4x3

[
−3v2ξb(v) + v3ψ′′′

b (v)
]
,

∂3f(x, s)

∂2x∂s
=

1

4x2s

[
v2ξb(v) + v3ψ′′′

b (v)
]
,

∂3f(x, s)

∂x∂2s
=

1

4xs2
[
v2ξb(v) + v2ψ′′′

b (v)
]
,

∂3f(x, s)

∂3s
=

1

4s3
[
−3v2ξb(v) + v3ψ′′′

b (v)
]
.

Therefore, using the variables σ and τ introduced in (4.33), we may write

4∇3f(x, s)[h, h, h] =
[
−3v2ξb(v) + v3ψ′′′

b (v)
] (
σ3 + τ3

)

+3
[
v2ξb(v) + v3ψ′′′

b (v)
] (
σ2τ + στ2

)

=
[
−3v2ξb(v) + v3ψ′′′

b (v)
] (
σ2 − στ + τ2

)
(σ + τ)

+3
[
v2ξb(v) + v3ψ′′′

b (v)
]
στ (σ + τ)

=
[
v3ψ′′′

b (v)
(
σ2 − στ + τ2

)
+ 3v3ψ′′′

b (v)στ
]
(σ + τ)

+
[
−3v2ξb(v)

(
σ2 − στ + τ2

)
+ 3v2ξb(v)στ

]
(σ + τ)

=
[

ψ′′′
b (v) v2 (σ + τ)2 − 3 ξb(v) v (σ − τ)2

]

v (σ + τ) .

Hence, according to (4.13) in Definition 4.2.12 the value of κ(x, s) satisfies

2κ(x, s) = max
σ,τ

1
4

[

ψ′′′
b (v) v2 (σ + τ)

2 − 3 ξb(v) v (σ − τ)
2
]

v (σ + τ)

(
1
2v
[

ψ′′
b (v)v (σ + τ)

2 − ψ′
b(v) (σ − τ)

2
]) 3

2

.

Changing again to variables y = σ + τ and z = σ − τ we get

2κ(x, s) = max
y,z

1
4

[
ψ′′′
b (v) v2y2 − 3 ξb(v) vz

2
]
vy

(
1
2v [ψ′′

b (v)vy
2 − ψ′

b(v)z
2]
) 3

2

.

The last expression is homogeneous in (y, z) and the denominator is positive. It
follows that

8κ(x, s) = max
{
ψ′′′
b (v) v3y3 − 3 ξb(v) v

2yz2 : ψ′′
b (v) v2y2 − ψ′

b (v) vz2 = 2
}
.

(4.35)
The optimality conditions for this problem are, for some suitable Lagrange mul-
tiplier γ,

3ψ′′′
b (v) v3y2 − 3 ξb(v) v

2z2 = 2γ ψ′′
b (v) v2y,

−6 ξb(v) v
2yz = −2γ ψ′

b (v) vz.
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Replacing γ by 3λ, this simplifies to

ψ′′′
b (v) vy2 − ξb(v) z

2 = 2λψ′′
b (v) y, (4.36)

ξb(v) vyz = λψ′
b (v) z. (4.37)

From (4.37) we see that either z = 0 or

ξb(v) vy = λψ′
b (v), (4.38)

If z = 0 then the constraint in (4.35) implies that ψ′′
b (v) v2y2 = 2. Since we are

maximizing, and ψ′′
b (v) > 0 and ψ′′′

b (v) < 0, the maximal value of 8κ(x, s) is in
this case given by

−2
√

2
ψ′′′
b (v)

(ψ′′
b (v))

3
2

. (4.39)

Next we deal with the case where z 6= 0. It is convenient to introduce two new
functions, namely

ρ(t) =
ψ′
b (t)ψ′′′

b (t)

ξb(t)ψ′′
b (t)

, ρ̄(t) = min [2, ρ(t)] . (4.40)

Note that ρ̄(t) ∈ (0, 2]. We can eliminate λ from (4.36) by using (4.38), which
gives

ψ′
b (v)

[
ψ′′′
b (v) vy2 − ξb(v) z

2
]

= 2λψ′
b (v)ψ′′

b (v) y = 2 ξb(v)ψ
′′
b (v) vy2.

Rearranging the terms, and using (4.40) we obtain

−ψ′
b (v)ξb(v) z

2 = [2 ξb(v)ψ
′′
b (v) − ψ′

b (v)ψ′′′
b (v)] vy2 = [2 − ρ(v)] ξb(v)ψ

′′
b (v) vy2,

yielding
−ψ′

b (v) z2 = (2 − ρ(v))ψ′′
b (v) vy2, (4.41)

Since −ψ′
b (v) > 0 and ψ′′

b (v) > 0, this equation has no nonzero solution if ρ(v) >
2, and hence the maximal value is then given by (4.39).

We proceed by assuming ρ(v) ≤ 2. The optimality condition (4.41) together
with the constraint of (4.35) yields the following system:

[2 − ρ(v)] ψ′′
b (v) v2y2 + ψ′

b (v)v z2 = 0,

ψ′′
b (v) v2y2 − ψ′

b (v) vz2 = 2.

We may consider this as a linear system in the unknowns v2y2 and vz2. By solving
this system we obtain

v2y2 =
2

[3 − ρ(v)]ψ′′
b (v)

, vz2 =
2 [ρ(v) − 2]

[3 − ρ(v)]ψ′
b (v)

.
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Substitution of these values yields:

8κ(x, s) = ψ′′′
b (v) v3y3 − 3 ξb(v) v

2yz2

= vy
(
ψ′′′
b (v) v2y2 − 3 ξb(v) vz

2
)

= vy

(

ψ′′′
b (v)

2

[3 − ρ(v)]ψ′′
b (v)

− 3 ξb(v)
2 [ρ(v) − 2]

[3 − ρ(v)]ψ′
b (v)

)

= vy

(
ψ′′′
b (v)

ψ′′
b (v)

2

[3 − ρ(v)]
− 3

ξb(v)

ψ′
b (v)

2 [ρ(v) − 2]

[3 − ρ(v)]

)

.

Now using the definition of ρ(v), we obtain

8κ(x, s) = vy

(
ψ′′′
b (v)

ψ′′
b (v)

2

[3 − ρ(v)]
− 3

ψ′′′
b (v)

ρ(v)ψ′′
b (v)

2 [ρ(v) − 2]

[3 − ρ(v)]

)

= vy
ψ′′′
b (v)

[3 − ρ(v)]ψ′′
b (v)

(

2 − 6
1

ρ(v)
[ρ(v) − 2]

)

= vy
ψ′′′
b (v)

[3 − ρ(v)]ψ′′
b (v)

2ρ(v) − 6[ρ(v) − 2]

ρ(v)

= vy
ψ′′′
b (v)

[3 − ρ(v)]ψ′′
b (v)

12 − 4ρ(v)

ρ(v)

= vy
4ψ′′′

b (v)

ρ(v)ψ′′
b (v)

.

Since we are maximizing, and ψ′′′
b (v) < 0, we have y < 0. Thus we obtain

8κ(x, s) = vy
4ψ′′′

b (v)

ρ(v)ψ′′
b (v)

=
−4

√
2

√

3 − ρ(v)
√
ψ′′
b (v)

ψ′′′
b (v)

ρ(v)ψ′′
b (v)

=
−4

√
2

ρ(v)
√

3 − ρ(v)

ψ′′′
b (v)

ψ′′
b (v)

3
2

.

Note that for ρ(v) = 2 this gives precisely the same value as in (4.39). Hence,
also using Lemma 4.2.15 we may state without further proof the following result.

Lemma 4.3.3. The local value κ(x, s) is given by

κ(x, s) = max
i

−1√
2 ρ̄(vi)

√

3 − ρ̄(vi)

ψ′′′
b (vi)

ψ′′
b (vi)

3
2

.

4.3.6 Application to barrier functions

In this subsection we use Lemmas 4.3.2 and 4.3.3 to compute the local values of
κ and ν for some barrier functions induced by some well-known kernel functions.
See Table 4.1. The second line in Table 4.1 establishes the well-known fact that
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ψ(t) ψb(t) ψ′
b(t) ψ

′′
b (t) ψ′′′

b (t) ξb(t) ρ(t) κ(x, s) ν(x, s) γ (x(µ), s(µ))

t2−1
2 − log t − log t − 1

t
1

t2
− 2

t3
2

t2
1 1 2n

√
2n

1
2

�
t− 1

t

�2 t−2−1
2 − 1

t3
3

t4
− 12

t5
4

t4
1 2√

3
‖v‖∞

2
3

Pn
j=1 v

−2
j

2
3

√
2n

t2−1
2 + t1−q−1

q−1
t1−q−1

q−1 − 1
tq

q

tq+1 − q(q+1)

tq+2
q+1

tq+1 1 q+1
2
√

q
‖v‖

q−1
2∞

2
q

Pn
j=1 v

1−q
j

q+1
2q

√
2n

Table 4.1: Local values of κ and ν for some well-known kernel functions.

the logarithmic barrier function is a (1, 2n)-SCB on the cone Rn
+ ×Rn

+. One may
easily understand that the logarithmic barrier function is also a (1, 2n)-SCB for
the feasible region of (SP ), which is the intersection of this cone with the affine
space {(x, s) : s = Mx+ q}. Hence, by Theorem 4.2.10, the generic algorithm
of Figure 4.1 will solve (SP ) in at most

⌈

2
(

1 + 4
√

2n
)

ln
4n

ǫ

⌉

= O
(√

n ln
n

ǫ

)

iterations.
For the other two kernel functions the situation is quite different. Their values

of κ are not bounded above if v runs through Rn. Hence the corresponding barrier
functions are not self-concordant. Note, however, that if v is the all-one vector,
i.e., if x = x(µ) and s = Mx+ q, then, e.g., for the third kernel function the local
complexity number is given by

κ
√
ν =

q + 1

2
√
q

·
√

2n

q
=
q + 1

2q

√
2n =

q + 1

2q

√
2n.

So for q > 1 the local complexity number γ (x(µ), s(µ)) of this barrier function
on the central path is even smaller than that for the logarithmic barrier function.

Since κ and ν depend continuously on v, and since during the algorithm the
iterates stay very close to the central path, we can exploit this fact as we show in
the next section.

4.4 Exploiting locally self-concordance

In the previous sections we found expressions for the local κ and ν values of the
barrier function determined by a given kernel function ψ under the assumption
that the conditions (4.25)–(4.27) are satisfied. Let us point out the surprising fact
that these values depend only on the variance vector v at x. In this section we
want to show that such a barrier function is locally self-concordant in the region
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where the iterates of the algorithm occur. In other words, we need to obtain
upper bounds for the local κ and ν values in these iterates.

First we recall from Lemma 4.2.11 that during the course of the algorithm we
have

λµ(x, s) ≤
1

4κ
. (4.42)

According to (4.6) and (4.22) this implies

φµ(x, s) = 2

n∑

i=1

ψ(vi) ≤
ω(− 1

4 )

κ2
=

0.0376821

κ2
≤ 1

26κ2
, (4.43)

where we used that ω(t) is monotonically decreasing on (−1, 0] as defined in (4.4).
Since ψ(t) is nonnegative for all t > 0 it follows that

ψ(vi) ≤
1

52κ2
, i = 1, . . . , n. (4.44)

Let us define

νψ(t) :=
2ψ′

b(t)
2

ψ′′
b (t)

, κψ(t) :=
1√

2 ρ̄(t)
√

3 − ρ̄(t)

−ψ′′′
b (t)

ψ′′
b (t)

3
2

.

By Lemmas 4.3.2 and 4.3.3 the local values of κ and ν at the pair (x, s) are then
given by

κ(x, s) = max
i
κψ(vi), ν(x, s) =

n∑

i=1

νψ (vi) .

We need to find values of κ and ν such that

κ(x, s) ≤ κ, ν(x, s) ≤ ν (4.45)

for all iterates x and s that occur during the course of the algorithm. This
certainly holds if κ and ν are such that

φµ(x, s) = 2

n∑

i=1

ψ(vi) ≤
1

26κ2
⇒ max

i
κψ(vi) ≤ κ,

n∑

i=1

νψ(vi) ≤ ν.

The left-hand side of this implication implies

ψ(vi) ≤
1

52κ2
, i = 1, . . . , n.

Therefore, it suffices if κ and ν are such that

ψ(t) ≤ 1

52κ2
⇒ κψ(t) ≤ κ, nνψ(t) ≤ ν. (4.46)
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According to Lemma 2.3.8 we have

ψ(t) ≤ 1

52κ2
⇔ χ

(
1

52κ2

)

≤ t ≤ ̺

(
1

52κ2

)

,

where the functions χ and ̺ are as in Chapter 2. So, ̺ : [0,∞) → [1,∞) is the
inverse function of ψ(t) for t ≥ 1 and χ : [0,∞) → (0, 1] the inverse function of
ψ(t) for t ≤ 1.

If we choose κ such that

max

{

κψ (t) : χ

(
1

52κ2

)

≤ t ≤ ̺

(
1

52κ2

)}

≤ κ,

then the barrier function is locally κ-self concordant in each of the iterates of the
algorithm. The above inequality certainly has a solution, because if κ goes to
infinity then the left-hand side in the last inequality approaches κψ(1), which is
finite, whereas the right-hand side goes to infinity. Let κ̄ be not smaller than the
smallest solution of the above inequality:

κ̄ ≥ min

{

κ : max

{

κψ (t) : χ

(
1

52κ2

)

≤ t ≤ ̺

(
1

52κ2

)}

≤ κ

}

, (4.47)

Finally, given κ̄, if we take ν̄ such that

ν̄ := n× max

{

νψ (t) : χ

(
1

52κ̄2

)

≤ t ≤ ̺

(
1

52κ̄2

)}

, (4.48)

then the barrier function Φµ(x, s) is locally (κ̄, ν̄)-self concordant barrier function
in the region where the iterates generated by the algorithm occur. Substitution
of these values, also using that µ0 = 1, yields the following iteration bound for
the algorithm:

⌈

2
(

1 + 4κ̄
√
ν̄
)

ln
2ν̄

ǫ

⌉

.

Note that apart from the factor n in the expression for ν̄ this expression depends
only on the kernel function ψ. Thus we may safely state that for every kernel
function satisfying our conditions the iteration bound is

O
(√

n log
n

ǫ

)

.

We conclude this section by illustrating the use of the above analysis for the
kernel functions in Table 4.1.

Example: ψ(t) = t2−1

2
− log t

We deduce from Table 4.1 that κ(x, s) = 1 and ν(x, s) = 2n. Therefore, we may
use simply κ̄ = 1 and ν̄ = 2n in this case, which yields the well-known iteration
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bound for IPMs based on the logarithmic barrier function, namely
⌈

2
(

1 + 4
√

2n
)

ln
2n

ǫ

⌉

.

Example: ψ(t) = 1

2

(

t−
1

t

)2

We need to compute the inverse functions of ψ(t) for t ≥ 1 and for t ≤ 1. One
has

s =
1

2

(

t− 1

t

)2

if and only if

t2 = 1 + s±
√

s2 + 2s.

Hence we have

χ(s) =

√

1 + s−
√

s2 + 2s,

̺(s) =

√

1 + s+
√

s2 + 2s.

Moreover, from Table 4.1 we deduce that

νψ(t) :=
2

3t2
, κψ(t) :=

2t√
3
.

Hence, by (4.47), κ̄ should be taken such that

κ̄ ≥ min

{

κ : max

{

κψ (t) : χ

(
1

52κ2

)

≤ t ≤ ̺

(
1

52κ2

)}

≤ κ

}

= min

{

κ : max

{
2t√
3

: χ

(
1

52κ2

)

≤ t ≤ ̺

(
1

52κ2

)}

≤ κ

}

= min

{

κ :
2√
3
̺

(
1

52κ2

)

≤ κ

}

.

The inequality f (κ) := 2√
3
̺
(

1
52κ2

)
− κ ≤ 0 is satisfied if κ = 1.24892 (see Figure

4.2). Hence we may take κ̄ = 1.24892. Then

ν̄ = n× max

{

νψ (t) : χ

(
1

52κ̄2

)

≤ t ≤ ̺

(
1

52κ̄2

)}

= n× max

{
2

3t2
: χ

(
1

52κ̄2

)

≤ t ≤ ̺

(
1

52κ̄2

)}

=
2n

3χ
(

1
52κ̄2

)2 =
2n

3
̺

(
1

52κ̄2

)2

≤ n

2
κ̄2,
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Figure 4.2: Graphical illustration of the function f (κ)

where we used that χ(s)̺(s) = 1. The complexity number satisfies

κ̄
√
ν̄ ≤ κ̄

√
n

2
κ̄2 = 1

2 κ̄
2
√

2n ≈ 0.779901
√

2n.

Note that this is about 22% smaller than the complexity number of the logarithmic
barrier function, which is

√
2n.

Example: ψ(t) =
t2 − 1

2
+
t1−q − 1

q − 1
, q ≥ 3

To obtain the inverse functions of ψ(t) for t ≥ 1 and for t ≤ 1 we need to solve t
from the equation

s =
t2 − 1

2
+
t1−q − 1

q − 1
.

For general values of q > 1 it is hard to find a closed form solution of this equation.
At this stage the following lemmas are useful.

Lemma 4.4.1 (cf. Lemma 6.1 in [8]). For each kernel function ψ(t) satisfying
(4.25) one has

√
1 + 2s ≤ ̺ (s) ≤

√

1 + s+
√

s2 + 2s ≤ 1 +
√

2s.

Proof. The inverse function ̺ (s) of ψ(t) for t ∈ [1,∞) is obtained by solving t
from the equation ψ(t) = s, for t ≥ 1. Since ψb(1) = 0, and ψ′

b(t) < 0 for all
t > 0, we have ψb(t) ≤ 0 for t ≥ 1. Hence, if t ≥ 1 then

s = ψ(t) =
t2 − 1

2
+ ψb(t) ≤

t2 − 1

2
.
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It follows that
t = ̺ (s) ≥

√
1 + 2s.

For the second inequality we use that ψ′′(t) = 1 + qt−q−1 ≥ 1. Since ψ(1) =
ψ′(1) = 0 it follows that

s = ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ =

∫ t

1

∫ ξ

1

(

1 +
q

ζq+1

)

dζdξ

=

∫ t

1

(

ζ − 1

ζq

)∣
∣
∣
∣

ξ

ζ=1

dξ =

∫ t

1

(

ξ − 1

ξq

)

dξ

≥
∫ t

1

(

ξ − 1

ξ3

)

dξ =
1

2

(

ξ2 +
1

ξ2

)∣
∣
∣
∣

t

ξ=1

=
1

2

(

t− 1

t

)2

,

which, since t ≥ 1, implies

t = ̺ (s) ≤
√

1 + s+
√

s2 + 2s.

Since the last inequality in the lemma easily follows, this proves the lemma.

Lemma 4.4.2. If q ≥ 3 and t ∈ (0, 1] then

ψ(t) ≥ ψ

(
1

t

)

.

Proof. Consider

f(t) := ψ(t) − ψ

(
1

t

)

.

One has

f ′(t) =
1

t3
+ t− 1

tq
− 1

tq−2
=

1

tq
(
tq−3 − 1

) (
1 + t2

)
.

Since f(1) = 0 and f ′(t) ≤ 0 for t ∈ (0, 1], the lemma follows.

Lemma 4.4.3. If q ≥ 3 then

χ(s)̺(s) ≥ 1.

Proof. Let t = χ(s), for some s ≥ 0. Then s = ψ(t) and t ≤ 1. By Lemma 4.4.2
this implies s ≥ ψ

(
1
t

)
. Since ̺ is monotonically increasing it follows that

̺(s) ≥ ̺

(

ψ

(
1

t

))

=
1

t
=

1

χ(s)
,

proving the lemma.
From Table 4.1 we deduce that

νψ(t) :=
2

qtq−1
, κψ(t) :=

(q + 1)t
q−1
2

2
√
q

.
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Hence, by (4.47), κ̄ should be taken such that

κ̄ ≥ min

{

κ : max

{

(q + 1)t
q−1
2

2
√
q

: χ

(
1

52κ2

)

≤ t ≤ ̺

(
1

52κ2

)}

≤ κ

}

= min

{

κ :
q + 1

2
√
q
̺

(
1

52κ2

) q−1
2

≤ κ

}

.

By Lemma 4.4.1, the inequality

q + 1

2
√
q
̺

(
1

52κ2

) q−1
2

≤ κ (4.49)

is satisfied if

q + 1

2
√
q

(

1 +
1

κ
√

26

) q−1
2

≤ κ.

This is equivalent to
(

1 +
1

κ
√

26

) q−1
2

≤ 2
√
q

q + 1
κ,

which gives, by taking logarithms at both sides,

q − 1

2
log

(

1 +
1

κ
√

26

)

≤ log

(
2
√
q

q + 1
κ

)

.

Since log(1 + x) ≤ x, this certainly holds if

q − 1

2

1

κ
√

26
≤ log

(
2
√
q

q + 1
κ

)

.

Putting

κ =
q + 1

2
√
q

(1 + σ)

this leads to the inequality

q − 1

2

1
q+1
2
√
q (1 + σ)

√
26

≤ log (1 + σ) ,

which gives
q − 1

q + 1

√
q√
26

≤ (1 + σ) log (1 + σ) .

Since (1 + σ) log (1 + σ) ≥ σ this inequality is satisfied if

σ =
q − 1

q + 1

√
q√
26
,
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and hence

κ =
q + 1

2
√
q

(

1 +
q − 1

q + 1

√
q√
26

)

satisfies the inequality (4.49). Let κ̄ be given this value. Then, using Lemma
4.4.3, we may write

ν̄ = n× max

{
2

qtq−1
: χ

(
1

52κ̄2

)

≤ t ≤ ̺

(
1

52κ̄2

)}

=
2n

qχ
(

1
52κ̄2

)q−1 ≤ 2n

q
̺

(
1

52κ̄2

)q−1

≤ 2n

q

4q

(q + 1)
2 κ̄

2 =
8n

(q + 1)
2 κ̄

2.

Hence, the complexity number satisfies

κ̄
√
ν̄ =

2κ̄2

q + 1

√
2n =

2

q + 1

(
q + 1

2
√
q

(

1 +
q − 1

q + 1

√
q√
26

))2 √
2n

=
q + 1

2q

(

1 +
q − 1

q + 1

√
q√
26

)2 √
2n.

The smallest value is obtained for q ≈ 2.13136, and then the coefficient of
√

2n
equals 0.89443. For q = 3 the coefficient of

√
2n equals 0.912353, and this coeffi-

cient becomes 1 for q ≈ 5.





Chapter 5
Conclusions

5.1 Conclusions and remarks

In [82], a new primal-dual infeasible interior-point algorithm was presented that
uses full-Newton steps. Each iteration of his algorithm consists of a step that
restores the feasibility for an intermediate problem (the so-called feasibility step)
and few (usual) centering steps. He proved that no more than O

(
n log n

ǫ

)
itera-

tions are required for getting an ǫ-solution of the problem at hand, which coincides
with the best-known bound for infeasible interior-point algorithms.

In Chapter 2, a slightly different infeasible primal-dual interior-point algorithm is
presented for linear optimization problems. This algorithm is obtained by chang-
ing the definition of the search directions in the feasibility step in the algorithm
[82]. We show that the same complexity result can be obtained with a relatively
simpler analysis.

The results of the Chapter 2 for LO can be extended to other conic optimization
problem classes like second order cone and semidefinite optimization. We show
this in Chapter 3, where we deal with semidefinite optimization and show that
the iteration bound of the algorithm has the same order as in [55, 82].

It looks that similar results hold for the case of second order cone optimization
(SOCO), but this is not considered in this thesis.

Chapter 4 was inspired by recent work on so-called kernel function based barrier
function for linear optimization [6–9, 74, 76]. These barrier functions have been
used to improve the iteration bound for large-update IPMs from O

(
n log n

ǫ

)
to

O
(√
n (logn) log n

ǫ

)
. It was observed that the iteration bounds for small-update

methods based on these barrier functions were always O
(√
n log n

ǫ

)
. In this chap-

ter we explained this phenomenon. This is achieved by using the powerful tools for
analyzing Newton’s method provided by the theory of self-concordant functions.

107
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It is shown that barrier functions based on kernel functions are self-concordant
in the region where the iterates of a full-Newton step algorithm occur. We called
these functions locally self-concordant because they are not self-concordant on the
whole domain of the problem under consideration. A surprising result is that the
complexity number for the kernel functions analyzed in this chapter are smaller
than the complexity number for logarithmic barrier method. This is quite surpris-
ing, because it gives evidence to the claim that the classical logarithmic barrier
function may not always be the best barrier function to use, at least not from a
theoretical point of view.

5.2 Further research

We mention some interesting research topics related to the work presented in this
thesis.

• Let us recall from Chapter 2 that based on extensive computational evi-
dence, we conjecture that if ζ is large enough, then κ̄ (ζ) = 1. How can we
prove that this conjecture is true or not?

• By modifying the algorithm in Chapter 2, how we can design a large-update
IIPM for LO problems?

• How can we extend the algorithms in Chapter 2 and 3 to other symmetric
optimization problems?

• It is possible to design primal (or dual) IIPMs using full-Newton steps for
LO? If the result is positive, how we can extend these results to SDO and
SOCO problems?

• Can we design primal-dual IIPMs for SDO based on scaling techniques other
than the Nesterov-Todd scaling?

• Is it possible to extend the algorithm in Chapter 2 to more general nonlinear
optimization problems?

• How can we generalize the results of Chapter 4 to other (symmetric) cone
optimization problems, like SOCO and SDO?

• Can we use the approach presented in Chapter 4 to obtain the improved
bounds as mentioned in this chapter for large-update methods?



Appendix A
Some concepts in linear algebra

In this appendix we recall some concepts in linear algebra that are used in this
thesis. The sources of this appendix are [18, 32, 34, 35, 53, 89].

A.1 Vectors

A vector x is always a column vector, denoted as x = (x1; . . . ; xn) ∈ Rn. Cor-
responding to each vector x, there exists a row vector called the transpose of the
vector x denoted by xT = (x1, . . . , xn).

Definition A.1.1 (Norm). A norm ‖·‖ on a vector space L over R is a real-
valued function with the following properties:

(1) ‖αx‖ = |α| ‖x‖ for all α ∈ R, x ∈ L,

(2) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ L,

(3) ‖x‖ > 0 for all nonzero x ∈ L and ‖0‖ = 0.

Definition A.1.2 (Inner product). Let L be a vector space over R. An inner
product on L is a real-valued function 〈·, ·〉 defined on L × L with the following
properties:

(1) 〈x+y, z〉 = 〈x, z〉+〈y, z〉 and 〈αx, y〉 = α〈x, y〉 for all α ∈ R and x, y, z ∈
L,

(2) 〈x, y〉 = 〈y, x〉 for all x, y ∈ L,

(3) 〈x, x〉 ≥ 0 for all x ∈ L and 〈x, x〉 = 0 implies that x = 0.

109



110 APPENDIX A

If 〈·, ·〉 is an inner product on L then ‖·‖, defined by ‖x‖ = 〈x, x〉 1
2 , is a norm on

L.
A very useful relation between the norm and the inner product is the Cauchy-
Schwartz inequality,

|〈x, y〉| ≤ ‖x‖ ‖y‖ . (A.1)

For all x, y ∈ Rn,

〈x, y〉 := yT x =

n∑

i=1

yixi (A.2)

defines the standard inner product on Rn. This inner product induces the well-
known Euclidean norm on Rn:

‖x‖ = 〈x, x〉 1
2 .

Definition A.1.3. Two vectors x, y ∈ Rn are orthogonal if 〈x, y〉 = 0. A vector
x is called normal or unitary if ‖x‖ = 1.

We denote by R+ the set of nonnegative real numbers and by R++ the set
of positive real numbers. In Rn there exists a standard partial ordering. Take
x ∈ Rn and y ∈ Rn, then this partial ordering is defined by

x ≤ y ⇔ y − x ∈ Rn
+.

By ei we denote the i-th standard basis element of Rn, that is,

ei = (0; . . . ; 0; 1; 0; . . . ; 0) ,

where 1 is in the i-th position. By e ∈ Rn we denote the all one vector of length
n, that is,

e = (1; 1; . . . ; 1) .

A.2 Matrices

We usually denote matrices by capital letters. Let A be an m× n matrix. Then
AT , the transpose of A, is the matrix obtained by interchanging the rows and
columns of the matrix A.

A symmetric matrix is a matrix that equals its own transpose, i.e. AT = A.

Definition A.2.1. If
Ax = λx,

where A ∈ Rn×n, x ∈ Rn and λ is a number, then the number λ and vector x are
called an eigenvalue and an eigenvector of the matrix A, respectively.
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Definition A.2.2. A matrix A is called nonsingular or invertible if and only if
there exists a matrix B such that

AB = I,

where I is the identity matrix. The matrix B is called the inverse matrix of A
and denoted by A−1.

Definition A.2.3. Two n × n matrices A and B are similar, if there exists a
non-singular n× n matrix P such that

B = P−1AP.

The trace of a square n×n matrix A is defined to be the sum of the elements
on the main diagonal (diagonal from the upper left to the lower right) of A, i.e.

Tr (A) =

n∑

i=1

Aii, (A.3)

where Aij represents the (i, j)-entry of A.

The trace is clearly a linear operator and has the following properties.

Theorem A.2.4. Let A, B ∈ Rn×n. Then the following holds:

(i) Tr (A) =
∑n

i=1 λi (A), where λi (A) is the i-th eigenvalue of matrix A;

(ii) Tr (A) = Tr
(
AT
)
;

(iii) Tr (AB) = Tr (BA).

(iv) If A and B are similar. Then, Tr (A) = Tr (B).

Let Rn×n be the space of all square n× n matrices with real entries and let

Sn :=
{
X ∈ Rn×n : XT = X

}

be the space of symmetric matrices. A matrix X ∈ Sn is positive definite, denoted
by X ≻ 0, if for all nonzero z ∈ Rn we have zTXz > 0, and positive semidefinite
if for all z, zTXz ≥ 0. We use the notations Sn+ and Sn++ to denote the sets of
positive semidefinite and positive definite matrices, respectively, i.e.,

Sn+ = {X ∈ Sn : X � 0} ,
Sn++ = {X ∈ Sn : X ≻ 0} .

X � Y and X ≻ Y are used to denote the facts X − Y � 0 and X − Y ≻ 0,
respectively.
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Given two matrices A = (Aij) , B = (Bij) in Rm×n, the standard inner product
for matrices is defined by

A •B =
n∑

j=1

m∑

i=1

AijBij = Tr
(
ATB

)
. (A.4)

The norm associated with this inner product is the Frobenius norm,

‖A‖2
=

m∑

i=1

n∑

j=1

A2
ij = Tr

(
ATA

)
. (A.5)

Obviously one has for any symmetric matrix A ∈ Sn

‖A‖2
= Tr

(
A2
)

=

n∑

i=1

λi
(
A2
)

=

n∑

i=1

λi (A)
2
. (A.6)

We recall from [99] that this norm is sub-multiplicative, i.e.

‖AB‖ ≤ ‖A‖ ‖B‖ , for any A, B ∈ Rn×n (A.7)

We conclude this section with a well-known lemma from linear algebra. That
provide several useful characterizations of positive semidefinite matrices.

Lemma A.2.5 (Characterizations of positive semidefinte matrices). The follow-
ing statements are equivalent for a symmetric matrix X ∈ Sn:

(1) X is positive semidefinite.

(2) The eigenvalues of X are nonnegative.

(3) There exists a matrix C such that X = CTC.

(4) X can be represented as X = QΛQT , where Q is an orthogonal matrix i.e.,
QQT = QTQ = I, where I is identity matrix, and Λ is a diagonal matrix
with nonnegative entries on the diagonal.

Also, matrix X is positive definite if and only if all its eigenvalues are positive.

We continue by recalling some useful lemmas from linear algebra.

A.3 Linear algebra lemmas

Lemma A.3.1 (Lemma A.1 in [18]). Let Q ∈ Sn++, and let M ∈ Rn×n be skew-
symmetric

(
M = −MT

)
. One has det (Q+M) > 0. Moreover, if λi (Q+M) ∈

R, (i = 1, . . . , n), then

0 < λmin (Q) ≤ λmin (Q+M) ≤ λmax (Q+M) ≤ λmax (Q) .
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Proof. First note that Q+M is nonsingular since for all nonzero x ∈ Rn

xT (Q+M)x = xTQx > 0,

where for equality we use the skew symmetry of M . Since matrix tM remains
skew symmetric for all t ∈ R, we have

ψ (t) := det (Q+ tM) 6= 0 ∀t ∈ R.

One may easily see that ψ (t) is a continuous function which is nowhere zero and
strictly positive for t = 0 as det (Q) > 0. This shows that det (Q+M) > 0.

To prove the second part of the lemma, assume λ > 0 is such that λ > λmax (Q).
It then follows that Q − λI ≺ 0. By the same argument as above we then have
(Q+M) − λI nonsingular, or

det ((Q+M) − λI) 6= 0.

Which implies that λ cannot be an eigenvalue of Q+M . In the same way we can
prove that Q + M cannot have an eigenvalue smaller than λmin (Q). This gives
the required result.

Lemma A.3.2 (Lemma 1.2.4 in [32]). Let A, B ∈ Sn+. Then we have following
inequalities

λmin (A) λmax (B) ≤ λmin (A)Tr (B) ≤ Tr (AB) ≤ λmax (A)Tr (B)

≤ nλmax (A)λmax (B) .

Proof. Since matrix A is positive semidefinite, Lemma A.2.5 implies that there
exists an orthonormal matrix P such that A = PΛPT . Then

Tr (AB) = Tr
(
PΛPT B

)

= Tr
(
ΛPTBP

)

≥ λmin (A)Tr
(
PTBP

)
= λmin (A)Tr (B)

≥ λmin (A)λmax (B) .

Which proves the two left hand side inequalities and the proof of the inequalities
in the right hand side is the same.

Lemma A.3.3 (Theorem A.4 in [18]). Let X ∈ Sn++ and S ∈ Sn++. Then all the
eigenvalues of XS are real and positive.

Proof. Since

XS ∼
(

X
1
2

)−1

XS
(

X
1
2

)

= X
1
2SX

1
2 ≻ 0,

the lemma immediately proved.
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A.4 The vec operator and the Kronecker product

Definition A.4.1 (vec Operator). . The vec operator maps an m × n matrix
into an mn× 1 vector. The vec of matrix A (m× n), denoted by vec (A), is the
vector formed by stacking the columns of A into an mn× 1 vector.

vec (A) = (A11; ... ; Am1; A12; ... ; Am2; ... ; A1n; ... ; Amn)

Definition A.4.2 (The Kronecker product). The Kronecker product of A (m× n)
and B (p× q) is denoted by A⊗B and is defined to be the (mp× nq) block matrix

A⊗B =








A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB







.

Notice that A⊗B 6= B ⊗A in general.

A.4.1 Properties of the Kronecker product and the vec operator

In the following it is assumed that A, B, C and D are real valued matrices. Some
identities only hold for appropriately dimensioned matrices.

(1) For any α ∈ R
(αA) ⊗B = A⊗ (αB) = α (A⊗B) .

(2) The Kronecker product distributes over addition

(A+B) ⊗ C = (A⊗ C) + (B ⊗ C)

A⊗ (B + C) = (A⊗B) + (A⊗ C) .

(3) The Kronecker product is associative:

(A⊗B) ⊗ C = A⊗ (B ⊗ C) .

(4) Transpose distributes over the Kronecker product (does not invert order)

(A⊗B)T = AT ⊗BT .

(5) Matrix multiplication, when dimensions are appropriate,

(A⊗B) (C ⊗D) = (AC ⊗BD) .

(6) When A and B are square and full rank

(A⊗B)
−1

= A−1 ⊗B−1.
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(7) For any two matrices A (m×m) and B (n× n)

det (A⊗B) = det (A)m .det (B)n .

(8) The trace of a Kronecker product is

Tr (A⊗B) = Tr (A) .Tr (B) .

(9) vec of a matrix product ABC, when dimensions are appropriate for the
product to be well defined, is given by

vec (ABC) =
(
CT ⊗A

)
vec (B) .

(10) Tr (AB) = vec (A)
T

vec (B) .
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Summary

Full-Newton Step Interior-Point Methods for Conic Optimization

In the theory of polynomial-time interior-point methods (IPMs) two important
classes of methods are distinguished: small-update and large-update methods,
respectively. Small-update IPMs have the best theoretical iteration bound and
IPMs with full-Newton steps belong to this class of methods. Within each of
these classes one has feasible and infeasible interior-point methods (IIPMs). In
this thesis we first deal with full-Newton step IIPMs (Chapter 2 and Chapter 3),
and in Chapter 4 we consider feasible full-Newton step IPMs.

In [82] Roos designed a primal-dual IIPM with full-Newton steps for linear op-
timization (LO) problems. The algorithm constructs strictly feasible iterates for
a sequence of perturbations of the given problem and its dual problem, close to
their central paths. Two types of full-Newton steps are used, feasibility steps and
(ordinary) centering steps, respectively. In each iteration the algorithm starts
with strictly feasible iterates of a perturbed primal-dual pair, on (or close to) its
central path, and feasibility steps are used to find strictly feasible iterates for the
next perturbed pair. By using centering steps for the new perturbed pair, strictly
feasible iterates close to the central path of the new perturbed pair are obtained.
During this both the duality gap and the infeasibility are reduced by the same
factor. By repeating the same procedure the algorithm terminates in at most
O(n log n

ǫ ) steps either by finding an ǫ-solution for the given primal-dual pair, or
detecting infeasibility or unboundedness of the given problem.

In Chapter 2, we present a slightly different IIPM for linear optimization. This
algorithm is obtained by slightly changing the search direction for the feasibility
step as used in [82]. Due to this the analysis of our algorithm is slightly easier
than the analysis of the algorithm in [82] at some places, whereas the iteration
bound is the same. This means that the iteration bound of our algorithm coin-
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cides with the best known iteration bound for IIPMs for LO.

The results of Chapter 2 are extended to semidefinite optimization (SDO) in
Chapter 3, where we also obtain an iteration bound that coincides with the best
known iteration bound for IIPMs for SDO.

In Chapter 4 we consider (feasible) full-Newton step IPMs that are defined by
barrier functions based on so-called kernel functions. Until very recently the the-
oretical iteration bound for all large-update methods was a factor

√
n worse than

the bound for small-update methods, where n denotes the number of inequalities
in the problem. In practice the situation is opposite: in practice large-update
methods are much more efficient than small-update methods. This is called the
‘gap between theory and practice’, also called the ‘irony of IPMs’ [80]. Some
progress has recently been made in this respect by Peng et al. [74, 76] and Bai et
al. [6–9]. They introduced a wide class of new barrier functions that are defined
by univariate functions, called kernel functions. In these results the gap factor

√
n

was reduced to logn. Remarkably enough, small-update versions of these methods
all share the same iteration bound, namely O(

√
n log n

ǫ ), which is the best known
iteration bound for IPMs for LO. We show that the barrier functions underlying
these methods are self-concordant in the region where the iterates of a full-Newton
step algorithm occur. We therefore call these functions locally self-concordant.
Using properties of (locally) self-concordant functions we find an explanation for
the fact that these small-update methods have the iteration bound O(

√
n log n

ǫ ).



Samenvatting

Inwendige Punt Methoden met volle Newton stappen voor Kegeloptimaliser-
ing

In de theorie van polynomiale inwendige punt methoden (IPMs) worden twee
klassen van methoden onderscheiden: methoden met kleine en methoden met
grote herzieningnen (van de barriëre parameter). Methoden met kleine herzienin-
gen hebben de beste iteratiegrens, en methoden met volle Newton stappen zijn
van deze soort. Binnen beide klassen heeft men respectievelijk ‘toelaatbare’ en
‘ontoelaatbare’ methoden (IIPMs). In dit proefschrift kijken we eerst naar on-
toelaatbare methoden met volle Newton stappen (in de hoofdstukken 2 en 3) en
daarna, in Hoofdstuk 4, naar toelaatbare methoden met volle Newton stappen.

In [82] ontwierp Roos een primaal-duale ontoelaatbare methode met volle New-
ton stappen voor het oplossen van lineaire optimaliseringsproblemen. Het algo-
ritme construeert strict toelaatbare oplossingen voor een rij van perturbaties van
het gegeven probleem en het duale probleem, dichtbij hun centrale paden. Twee
typen van volle Newton stappen worden gebruikt, achtereenvolgens toelaatbaar
makende stappen en (gewone) centreerstappen. In elke iteratie begint het algo-
ritme met een strict toelaatbare oplossing van een geperturbeerd primaal-duaal
paar, op (of bijna op) het centrale pad van dit paar, en een toelaatbaar makende
stap genereert een strict toelaatbare oplossing van het volgende geperturbeerde
primaal-duale paar, voldoende dicht bij het centrale pad van dit nieuwe paar.
Door middel van centreerstappen met betrekking tot het nieuwe geperturbeerde
primaal-duale paar wordt een strict toelaatbare oplossing van het nieuwe geper-
turbeerde primaal-duale paar geconstrueerd op (of bijna op) het centrale pad van
dit nieuwe paar. In elke iteratie worden zowel het dualiteitsgat als de primale
en duale restvectoren gereduceerd met dezelfde factor. Door dezelfde procedure
herhaald uit te voeren genereert het algoritme in ten hoogste O(n log n

ǫ ) iteraties
een ǫ-oplossing voor het gegeven primaal-duale paar, of kan worden vastgesteld
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dat een van beide problemen onbegrensd dan wel ontoelaatbaar is.
In Hoofdstuk 2 presenteren we een variant van het hierboven beschreven al-

goritme voor lineaire optimalisering. Dit algoritme ontstaat door de zoekrichting
in de toelaatbaar makende stap enigszins te wijzigen ten opzichte van [82]. Het
gevolg is dat de analyse iets eenvoudiger wordt dan in [82], terwijl de iteratiegrens
dezelfde is. Dit betekent dat de iteratiegrens van het algoritme samenvalt met
de best bekende iteratiegrens voor ontoelaatbare inwendige punt methoden voor
lineaire optimalisering.

De in Hoofdstuk 2 gepresenteerde resultaten worden in Hoofdstuk 3 gegen-
eraliseerd naar semidefiniete optimalisering; de verkregen iteratiegrens valt ook
hier samen met de best bekende iteratiegrens voor ontoelaatbare inwendige punt
methoden voor semidefiniete optimalisering.

In Hoofdstuk 4 beschouwen we (toelaatbare) inwendige punt methoden, met
volle Newton stappen, die zijn gebaseerd op zogenaamde kernfuncties. Tot nog
maar kort geleden was de theoretische iteratiegrens voor methoden met grote
(of gulzige) herzieningen een factor

√
n slechter dan de iteratiegrens voor meth-

oden met kleine herzieningen, waarbij n het aantal ongelijkheden voorstelt in
het gegeven probleem. In de praktijk treedt het omgekeerde op: methoden met
gulzige herzieningen zijn veel efficiënter dan methoden met kleine herzieningen.
Dit verschijnsel staat bekend als ‘de kloof tussen theorie en praktijk’, en is ook
wel de ‘ironie van inwendige punt methoden’ genoemd [80]. Enige vooruitgang
in dit opzicht werd onlangs gemaakt door Peng et al. [74, 76] and Bai et al.
[6–9]. Zij introduceerden een grote klasse van nieuwe barriëre functies die worden
gedefinieerd met behulp van functies met één variabele, kernfunctions genoemd.
In deze resultaten werd de ‘kloof factor’

√
n vekleind tot logn. Opvallend genoeg

is de iteratiegrens voor methoden met kleine herzieningen altijd O(
√
n log n

ǫ ); dit
is de best bekende iteratiegrens voor inwendige punt methoden voor lineaire opti-
malisering. Wij tonen aan dat de nieuwe barriëre functies ‘zelf-gelijkvormig’ zijn
in het gebied waar de iteranden van een volle Newton stap optreden. We noe-
men deze functies daarom ‘lokaal zelf-gelijkvormig’. Door gebruik te maken van
eigenschappen van lokaal zelf-gelijkvormige functies vinden we een verklaring voor
het feit dat deze methoden allemaal de best mogelijke iteratiegrens, O(

√
n log n

ǫ ),
hebben.
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