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Nonparametric Segment Detection
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b Delft University of Technology, Delft, the Netherlands
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Abstract. In computer and robotic vision point clouds from depth sen-
sors have to be processed to form higher-level concepts such as lines,
planes, and objects. Bayesian methods formulate precisely prior knowl-
edge with respect to the noise and likelihood of points given a line, plane,
or object. Nonparametric methods also formulate a prior with respect
to the number of those lines, planes, or objects. Recently, a nonparamet-
ric Bayesian method has been proposed to perform optimal inference
simultaneously over line fitting and the number of lines. In this paper
we propose a nonparametric Bayesian method for segment fitting. Seg-
ments are lines of finite length. This requires 1.) a prior for line segment
lengths: the symmetric Pareto distribution, 2.) a sampling method that
handles nonconjugacy: an auxiliary variable MCMC method. Results
are measured according to clustering performance indicators, such as
the Rand Index, the Adjusted Rand Index, and the Hubert metric. Sur-
prisingly, the performance of segment recognition is worse than that of
line recognition. The paper therefore concludes with recommendations
towards improving Bayesian segment recognition in future work.

Keywords. Nonparametric Bayesian, segment detection

Introduction

In computer vision there are many practical methods to extract lines out of a
collection of point observations. Straight line extraction can be done by the Hough
transform [3], RANSAC [2], and is known in general as linear regression. Linear
regression can be cast as a Bayesian inference model by defining a likelihood for
observations given line parameters and a prior for the line parameters themselves.
If the prior for the line parameters is a normal distribution, this corresponds
to ridge regression (l2 norm). If the prior for the line parameters is a Laplace
distribution, this corresponds with lasso (l1 norm).

Bayesian linear regression for a single line is well understood. A challenge
arises when multiple lines have to be extracted simultaneously. Observations have
to be partitioned over lines as well as fitted to the line to which they belong.
For multiple lines, a Bayesian method postulates a prior with respect to the line
parameters as well as the distribution of points over the lines. Given a multinomial
distribution of points over lines, a Dirichlet Process mixture has been used as
such a prior before [5].
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A Bayesian model of linear regression does not take into account the length
of the lines. If it is known that lines are of finite length, this information can be
used to enrich the prior. In the real world, if the height of a person is known to a
robot it can use this as a prior in a recognition task. To detect the number of line
segments, we require a model for the line segment, priors for the line arguments,
and a model and prior for the distribution of points over the line segments.

In this paper we show that including the fact that the lines are of finite length
will not lead to an improvement in segment detection compared to unconstrained
inference.

1. Mixture model for line segments

The model consists out of two parts. The segment model (Sect. 1.1) defines how
an individual segment is described as the sampling of pairs of points from a shifted
symmetric Pareto distribution. The Dirichlet Process Mixture (Sect. 1.2) is a
mixture of multiple of such segments using a Dirichlet Process as prior.

1.1. Segment model

There seems to be no statistical description of data points distributed over a line
segment that has a conjugate prior form. A line segment itself, however, has a
conjugate form! Suppose that we have a prior for the location of endpoints on the
x-axis. By postulating a uniform distribution of the data across the segment, we
can find the new location of the endpoints using a conjugate Bayesian construc-
tion.

Uniform likelihood The data x is distributed according to a symmetric uniform
distribution between −a and a. Hence the likelihood is given by Eq. 1.

x | a ∼ U(x; a) =
{

1
2a for x ≤ |a|
0 otherwise

(1)

Pareto prior A prior for the (endpoints of a) symmetric uniform distribution is
a symmetric Pareto distribution, Ps.

a ∼ Ps(a;λ, k) =

{
1
2kλ

k|a|−k−1 |a| ≥ λ

0 otherwise
(2)

Pareto pairs To sample endpoints of segments we have to sample 1.) pairs of
points (just as many left as right endpoints), and 2.) shift the distribution.

p(a, b) ∼ Pp(a, b;λm, λn, k) (3)

The right endpoint is sampled from a normal Pareto distribution with λm

and the left endpoint from a mirrored Pareto distribution with λn. The sampling
of Pareto pairs is visualized in Fig. 1.
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Figure 1. Sampling of N = 1000 Pareto pairs. The parameters are λm = 2, λn = −4, k = 5,
hence the distribution is centered around −1. There are 500 data points sampled for the left
endpoint, 500 data points for the right endpoint.

Conjugate The Pareto distribution is a conjugate prior for a likelihood described
by a uniform distribution. The hyperparameters for the posterior Pareto distri-
bution are updated as in Eq. 4.

p(a | x0, . . . , xN−1) = P(c,N + k) (4)

The parameter k is adjusted with the number of data points N , and the pa-
rameter c is the maximum of {m,λ} with m the maximum value in x0, . . . , xN−1.

Figure 2. Data uniformly distributed on line segment [−4, 5] with a Pareto pair prior for the
endpoints. Left: an update for the Pareto distribution with only 2 data points does not set the
left endpoint to −4 yet. Right: further updates of the Pareto distribution with 100 data points
sets endpoints to −4 and 5.

Sampling from the Pareto distribution is through inverse transform sampling.
By sampling from U(0, 1) with 1 included, we transform according to k/U1/a.

Fig. 2 shows how the endpoints are updated given the data. An uninformative
prior is used. In this case the hyperparameters λn,0 and λm,0 are set close to 0,
thus the data will wash out the prior immediately. Note that update of a Pareto
distribution using a maximum operator: if λm is set to a large value, it will never
get smaller with more observations.

1.2. Dirichlet Process Mixture

The distribution of points over line segments is defined as a Dirichlet Process
prior.
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Figure 3. The Bayesian linear regression model for multiple line segments in plate notation.
From left to right: The Dirichlet Process’s concentration parameter α that defines the density
of observations within clusters. The partitions (π1, . . . , πk) with assignment parameters zi that
denote which observation wi belongs to which cluster k. The cluster is summarized through
parameter θk (slope, y-intercept, segment size), generated from the base distribution H(λ0).

In Fig. 3 the model is visualized in plate notation and concisely described in
Eq. 5.

G ∼ DP (α,H)

θi | G ∼ G

wi | θi ∼ F (wi|θi)
(5)

F describes the mapping from parameters θi to observations wi = (Xi, yi).
The probability density F is the product of a Gaussian distribution over the line
y − Xβ (with σ2 as variance) and an uniform distributed between [a, b] on the
x-axis.

F (wi|θi) = F (yi|Xi, β, σ
2, a, b) = N (yi −Xiβ, σ

2)U(Xi; a, b)
(6)

2. Inference over a line segment

Regardless of the existence of a conjugate prior of the above likelihood description,
there are sampling algorithms that do not demand conjugacy. One of these algo-
rithms uses auxiliary variables [1,4] that postulate not just one single new clus-
ter to assign observations to, but multiple new clusters with different parameters
each. To establish to which cluster a certain observation wi needs to be assigned,
the likelihood of each existing and new cluster is compared. The weight of an old
cluster is defined through the number of data points assigned to it. The weight
of a new cluster is defined through α/m. See for further details Algorithm 1.

3. Results

There is one phenomenon that is very noticable in Fig. 4. Line segments that
form a larger line segment are not recognized as such by the inference method.

The results over a larger dataset can be measured with clustering metrics as
visualized in Fig. 5. The Rand Index, Adjusted Rand Index, and Hubert metrics
show all reduced performance compared to line detection where there are no
constraints on segment size.
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(a) Correctly sampled. Only one
outlier to the left.

(b) Incorrectly sampled. The line is
recognized as multiple segments.

(c) More or less correct. The seg-
ments with fewer observations are
recognized poorly.

(d) Completely incorrect. Line seg-
ments are chosen to be orthogonal
to the lines.

Figure 4. Bayesian point estimates of the sampling process with varying outcomes.

(a) Segment detection. (b) Line detection.

Figure 5. Segment detection performs much worse than line detection across all three clustering
performance indicators. Perfect clustering is indicated by 1.0 for Rand Index, Adjusted Rand
Index, and Hubert.

4. Conclusion

Inference over a mixture of lines might benefit from information about line length.
We constrained lines to segments by postulating a prior over segment sizes. How-
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ever, no improved performance was yielded by this approach. The Dirichlet Pro-
cess prior (the concentration parameter α) is not strong enough to prevent sub-
division of a segment into subsegments (connected head to tail).

To overcome this in future work, we can 1.) use an improved Gibbs sampler
with sample steps that merge smaller segments into larger segments, or 2.) use
a likelihood function in which the distribution of points over a segment is taken
into account.
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Algorithm 1 Gibbs sampling over auxiliary variables

1: procedure Gibbs Algorithm with auxiliary variables(w, λ0, α) � Accepts
points w, hyperparameters λ0, α, number of auxiliary variables m, and returns k
line segment parameters

2: for all t = 1 : T do
3: for all i = 1 : N do
4: for all j = 1 : m do
5: θj ∼ NIG(λ0) � Sample θj from NIG
6: end for
7: for all j = 1 : K +m, j �= i do
8: Lj = F (wi|θj) � Update likelihood for all theta (except θi)
9: end for

10: P−i=1:K = b
∑
−i L−i � Calculate probability of existing cluster

11: P−i=K:K+m = bα/mLmL−i � Calculate probability of new cluster
12: θi = θj according to above P−i � Sample θi accord. to above prob
13: Remove unused clusters
14: end for
15: for all j = 1 : K do
16: θj ∼ p(θj | y) � Update θj
17: end for
18: end for
19: return summary on θk for k line segments
20: end procedure
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