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ON THE HEAVING MOTION OF TWO CIRCULAR
CYLINDERS ON THE SURFACE OF A FLUID

By Makoto Oukusu*

We investigate the hydrodynamic force upon two circular cylinders when
th'ey are given a forced heaving motion.

The wave amplitude at a distance from the cylinders and the increase or
decrease in the inertia of the cylinders due to the fluid motion can be the-
oretically obtained by a procedure which is similar in principle to Ursell’s
one for one cylinder. :

In addition we measure the wave amplitude at infinity and show that
theoretical and measured wave amplitudes are in good agreement. We find
that the theoretical added mass of the two cylinders has a negative value
in some cases. It is desirable to confirm thdseresults by experiment.

1. TIntroduction

We calculate the hydrodynamic force acting on two circular cylinders con-
nected with each other, when they -are immersed in a fluid of .infinite depth
with their axes in the free surface and given a forced heaying motion, and
compare calculation with experiment, In the aspect of theoretical calculation
Ursell’s solution? for one circular cylinder and Tasai’s solution? for a cylinder
with Lewis form cross-section are well knowr. In addition Tasai® and Porter*
compared these results with the measurements. An investigation of similar
_problems for the case of two cylinders also seems to be necessary for understand-
ing, for example, the behaviour of catamaram ships or floating station in waves.
In treating such problems it is a method most commonly used that we determine
the singularity distribution on the body surface to satisfy the boundery condi-
tion on the surface by solving numerically integral equation.

. In this paper, however, we adopt the method of series expansion by wave
free potentials which Ursell proposed in his first paper” on one circular éyline
der.

Measurements are made mainly about the wave amplitude at a distance from
the cylinders. But in order to compare directly calculation with experiment it
seems to be indispensable to measure pressure on the surface of the cylinders,

* Lecturer, Member of Research Institute for Applied Mechanics, Kyushu University,
Japan .
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168 M. OHKUSU

2. Formulation of problem and calculation
We consider the fluid motion which arises when two infinitely long circular
cylmders which are connected with each other and immersed in a fluid with
their axes lying in the mean free surface oscillate vertically -about their mean
position. The motion is assumed to be two dimensional and in the stationary
state with a period of 2x/w. We deduce the. amplitude of the waves which
travel away from the cylinders and the added mass of the cylinders due to the

fluid motion under the following assumptions.

(i) Sutface tension and viscosity of a fluid can be neglected
(ii) The fluid motion is irrotational and a velocity potential and a conjugate

_stream function exist.
(iii) Compared with the dimension of the cylmder cross=section the amplltude
of the cylinder oscillation and the fluid motion is small, and the length
of the wave which arises is large. After all to the first order we can
linearize the boundary conditions on both the free surface and the body

surface.

Take the origin of the coordinate at the center of the line joining the axis
A and B of two circular cylinders as shown Fig. 1, where the axes of the
osition. The y-axis-is to

cylinders are in the mean free surface in their mean position
the right and the y-axis is vertically downward. The coordinate of the center

A, B of the cylinders is respectivély (—p, 0), (p, 0) and then the dlstance of

between 4 and. B is 2p.

] <]

[ =}

x,y)

Fig. 1 Coordinate system.

Suppdse that the cylinders oscillate about their mean position like

y=Re[le;i*'],

¢y
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where [ is the amplitude of the motion.
Then the velocity potential @ can be expressed as follows

0.=Re‘[¢e“““], @

and it is required to find a velocity potential ¢ which satisfies the boundary con-
dition on the cylinder surface and the free surface, and gives a progressing wave
train .at infinity. !

The velocity potential ¢ satisfies

o'¢ O

o+ ayr =0 for y=<0 3)

On the free surface the pressure is constant, then to the first order

K¢+ g—f =0, @

where X is #?/g.
" The boundery condition on the cylinders is that the velocity component normal

to the boundary surface just inside the fluid is equal to the corresponding com-
ponent of the velocity of the cylinders.-

8 ol cos 0, - ()

where 7z is outward normal to the cylinder surface and 6 is ‘the angle which
the normal! makes with a vertical line through the center of the cylinder
(counterclockwise is positive).

In addition the so-called radiation condition at infinity is necessary. This
is ‘
B~ ¥ (y)er® 12! as [x| oo ®)

It is of course that ¢ must satisfy the condition at y—oo.

The following condition is imposed on a conjugate stream function ¢ as a
boundary condition on the cylinder surface instead of (5).

3¢ S

m= iwl cos @ ’
$=iol a sinf +C, - O
where C is constant and positive sign is taken on the cylinder 4 and neg-

ative sign on the cylinder B.

The velocity potential ¢ must be, of course, symmetrical and the stream
function ¢ must be antisymmetrical with respect to the y-axis.

Applying an idea” by which Ursell constructed the solution for similar
problem on one cylinder, we can comparatively easily obtain the solution for
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two cylinders which satisfies the foregoing conditions. Suppose the velocity
potential ¢ can be expressed in the form

=010+, + Py H Pl APt e (8

where ¢,° ¢,° is respectively the velocity potential that represents a fluid motion

when a cylinder A or B oscillates individually, that is, Ursell’s solution, and ¢
¢% is obtained one by one as a diffraction potential of ¢37, ¢5~' as follows.
¢, is a diffraction potential of ¢,° by the cylinder 4 under the condition of

%(¢A‘+¢B°)=0 on the surface of the cylinder A4, ¢,! is a diffraction of ¢,°

by the cylinder B and once more ¢, a diffraction of ¢;' etc. .

Strictly speaking, it is necessary to prove the convergence of this series, but
here we assume that the series converges and it gives the solution which we
want to obtain, because on physical grounds it seems to be true and in addition
we can do qualitatively such discussion as follows.

A diffraction potential ¢% is proportional to the amplitude of the diffracted
wave and it is conceived® that the diffraction amplitude of a progressing two

dimensional wave is necessarily smaller than that of the incident wave as far -

as the wave length is not so small compared with depthwise dimension of the
cylinder.l) On the other hand the amplitude of the stationary wave which exist
near around the cylindér rapidly decreases as a distance from the cylinder in-
creases, and therefore a diffraction of the stationary wave becomes smaller as
a diffraction occurs. That is |¢%|=¢|¢57*|, e<l. q})ﬁ T PTRAC e
Each of ¢%, ¢% is diffraction wave potential by the cylinder 4 and B, then they
are expressed as a conbination of a series of symmetrical and antisymmetrical
wave free potentials with respect to a vertical line through the center of each
cylinder, and the potentials with a wave train diverging away at infinity, e. g.

the functions describing a source and a dipole at 4 or B. It is proved by Ursell:

that such a series uniformly converges if a boundary condition on the cylinder

is symmetric- and the series constitutes of only symmetrical terms. By just the
same procedure as Ursell we can easily prove the uniform convergence of the

series when the boundary condition is antisymmetric and accordingly the series
is constructed by only antisymmetrical terms. - After all it follows that the
series converges uniformly for such a case of more general boundary condition
as this diffraction problem. Accordingly if we define the collection of diffrac-
tion potentials by 4 and B as

=P TP At DSt Pr=0s + s H P e ®

where we have (%, V=¢5(—x)
then we immediately obtain the following expression for ¢

W Tw 01 4 0
_,gl 6= gl-- (¢A’ + ¢ +¢4+¢B)
o 0 0
= gl (¢A +¢B) ‘f"

1.0 fnews trae Cg Lotorr A &1 jec’o,m 2t le—L.E { et ?/i -

Verlical o £/ Gondl At zeane /% Cavmplele

/\\il,[/eclc_df -!/"-/’%ﬂw‘,—’ ﬂ/l/l/‘l? /@W&/—zbba 1) Foern P lrloecbr o] )

(4 Hae o e /l//? R T
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LP\ . < = Urs b(,['.( ¢ oA R P—QE—EME'H:\_ .

+C0/H{Ey(Kr sy 0.) +&(Krs, 65)
+ 33 PLlfu(Ka, ru/a, 0.)+fu(Ka, o/a, 6)])
FEu/ UK 00— 05(Krs, 05)
+ 5 0ulsn(Ka, 14/a, 6,)~ga(Ka, 14/a, 6,)]) (105

i71

where ¢s (Kr,, 0,), ¢s (Krs 65) are the velocity potentials due to a source
placed at 4 and B, and ¢, (Kr,, 0,), vp (Krs, 0;) the velocity potentials due to
a dipole at 4 and B. r, is a distance from 4 to a point(x; ») and r; a dis-
tance from B to this point. &, is the angle that the r, makes with a vertical
line through A and 6, the angle that the r; makes with the line through B
(counterclockwise is positive) as iho’wiF_ig».__l, _and they are given by

os(Kr, §) =—ime ¥Xreos? gikrisinol \/
{ " sin(Krt cos 6) —tcos (Krt cos §) _,,,
{ . +J ( i )1+t2 ( )e Krtlsinol gy / an

0 ) prd

e kreosaotkn simor. Krlsingl-- ‘/7
@o(KF, 0)=TF e~ Kreostgikr-isinti= (IKr)Z ' . _

+ J tsin(Kr tcos 6) +cos(Kricos 6) e~ Ertlsinol gy

T4z a2

4]
f. (Ka, ry/a, 0,), f, (Ka, rs/a, 65) are wave free potentials symmetrical about

A or B, and g, (Ka, r,/a, 0,), g. (Ka, rg/a, 05) are antisymmetrical about A4 or
B and they are given by® ‘

’ Ka cos(2m—1)0  cos2m@
fu(Ka, r/ab) = Qm—1) (r/a)‘2m~l+ (,./ar;lzm . (13)

Ka sin 2m@ sin(2m+1)0 . ’
zm(’-/a)Ztn + (’-/a)2m+l (14)

" gn(Ka, r/a; 6) =
¢/l ¢,/l, P,, Q, are complex numbers and the wave elevation ¢ due to Gatds
is at x—»>—oo0 i £

c=Re[—c, e'”‘"‘_""“’”—cle"“‘ﬁ*"’b) 2
A .
_icze—i(Kz+—p+wt)+l'cze-I(K:_——p+wl)] (15)

The conjugate stream function ¢ can be easily derived from the velocity
potential ¢ as follows :

W g0 ° 0
7‘/’ =77(¢A +¢s )

+ S {os(Kra 0,0 +¢5(Krs, 05)

&
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+ ’g P,[Ea(Ka, 1,/a, 0,.{)+$,,,(Ka,r3/a, o,,)]}

+ G- {00(Kra 0.0 —¢o(Kribs)
+ ";i_'l Qn_.[ﬂm(K'a, r./a, 04);nm(Ka, ry/a 03)-]} (16)

Here ¢s (Kr, 0), ¢» (Kr, 8) are the conjugate harmonic function of o5 (Kr, 6),
¢p (Kr, 6) and they are

¢S(Kr, 0) =‘$7'Il.'e—x'°°s ] e;Kr isina!

if tsnn(Krtcosol)I;:zos(Krtcoso)e_,(,,,SM,dt for =0 (I7)
. .
- —Krcos Ly |.sin K"COSﬂ
¢ p=imeKrcostgikrisin o) 4 o
_ " sin(Kr tcosf) —t cos(Krt cosf) _K,,;slnol' '
f ; T Ixr € dt (18)

&, (Ka, r/a, 6), 1, (Ka, r/a, §) are also the conjugate of f, (Ka, r/a, 6),
g.(Ka, r/a, 6) _ : - -
‘ Kasin(2m—1)6 , sin2m#
TR O GO

£.(Ka, r/a, 8) =

Kacos2m@ cos(2m+1)8 a0y

1.(Ka, r/a, 8)=— 2m(r/ay™" ~ T (r/ay

If ¢ satisfies the condition (7) on the surface of the cylinder A, then it
satisfies the condition on the cylinder B because it is antisymmetrical about the
y-axis. Since ¢,° is the solution for the case of one cylinder, it satistfies the
following condition on the cylinder A. '

i-w-Ka sin 0=7;_‘;’¢,A0 | e

Therefore the condition for ¢ on the cylinder 4 becomes as follows
C—Z3-¢u=S-{4s(Ka, 6)+95(Krs, 05)
+ 3)PLlga(Ka, 1, 0)+4(Ka, rs/a, 05)])
+ 52 {00 Ka, 0)—¢o(Krs, 05)

+ ?ﬂ 0, [7a(Ka, 1, 8) —n.(Ka, rs/a, 01;)]}‘ ' )
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where ) 0;=tan"! (%/_a) , 23
(rs/a)t=1—-2(2P/a)sin §+ (2P/a)* . (24)

If- we determine the unknown coefficients P,, Q,, c.//, ¢./l and C satisfying
this equation, we obtain the solution ¢ or ¢ by inserting these coefficients
into the equation (16) or (10) and the ratio A defined as

—. wave amplitude at infinity
amplitude of forced heaving _

=2|(—ca/z/—cl/1>cos KP+i (c,/0) sin KP| , @5)

where ¢,/l is the ratio when one cylinder oscillates, that is a contribution due
to ¢,° or ¢,° (Appendix 1). The ratio is proportional to the square root of the
damping force acting upon the cylinder which is out of phase with the displace-
ment of the cylinder. In addition we can obtain a vertical component Py of
a fluid dynamic force per unit length acting upon the cylinder from the
expression for the velocity potential ¢. :

/e .
Py=_pae-“‘"J iogcosfdl , » (26)

—=xr/2
where p is the fluid density.
Then the component of Py, which is in phase with the acceleration of the
cylinder is

' z/2
_egla | 4 [‘"“’ ¢] cos 66 @
PN L
and the added mass coefficients m with the nondimensional quantity, which is
defined as. the added mass/the mass of the fluid displaced by unit length of the
cylinder, is given by

n/2
5 Tw
2f ﬂlm[—g—l¢:|cosﬂd0 (28)
n* Ka

m=

The coefficients P,, Q,, ¢./l, ./l and C are the roots of infinite number of
equations. Then we replaced this system of equations with a finite number of
equations, where the coefficients are P, (Ka, M), Q, (Ka, M) (m=1,2, ...... , M).
We evaluated the known functions in the equations (22) at some chosen values
of § and determined P,, Q,, ¢./!l, c./! and C so as to be fitted at these § by
least square method. 2/ +1> dewovrs = [ e ¢
Here we selected M=6 (P,, Q. ¢./I, §,/l are complex numbers, then the
number of unkllgw-n/céeﬂicients amouts to 28 because we can eliminate C),’
. 0=-=90°, —81°,°—-72°, ...... , 0°,9° 18, ... , 90° and solved a set.of 28 simultaneous
. Jl‘.—
} _ y jy./ /th T,
/.0 chlm/[,7 12, Liewce /4% f"r wﬂ"ﬁ /"”[ -
g ! .
6‘0!‘\/ ng M/'—"—dj 70\/\, 0 ¢ C&—/\ /
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linear equations for P,, Q,, £./l, ./l which the least square condition provided.
WHere the terms which are expressed by an integral in ¢ (Kr, 8), ¢, (Kr, 0),
etc. were evaluated by the expansion as shown in Appendix 2.

The added mass coefficient was calculated by numerically integrating the
velocity potential according to the equation (28).

The calculation was carried out by using a computer FACOM 230-60 of Kyu-
shu University Computer Center. ‘

Some examples of the calculated 4 and m for four cases 2P/a=3.0, 4.0, 5.0
and 6.0 are shown in Table. 1 and Fig. 4, 5, 6, 7, and 8.

Finally we add that the procedure adopted here can be applied to the problem
on the swaying or rolling motion of two cylinders with almost no modification.

Table 1. The calculated values of 4, m

S
} H

3.0 \e0) so | 6.0
ka i m 7 i - 7 -
005 | 0170 | 3104] 0172 | 2865| 0.173 | 2665] 0.174 | 2.488
0l | 0.313 | 2280| 0.319 | 20| 0.323 | 1782 | 0326 | 1.559
015 | 0441 | 1.915| 0,45 | 1.646| 0.467 | 1.255| 0.473 | 1.028 -
0.20 | 0.560 | 1.73¢| 0.590 | 1435| 0613 | 1.047| 0.624 | 0.585
025 | 0.674 | 1.630| 0730 | 1.305 0.7 | 0.727| 0.719 | -0.156
0.30 | 0.787 | 1.600| 0.888 | 1.208 | 0.963 | 0.168| 0.853 | -1.327
0.35 |.0.905 | 1.624| 1.091 | 1.071| 1.120 | -1.134 | 0.572 | -1.662
0,40 | 1.033 | 1.697| 1.376 | 0.592| 0.855 | -2.207| 0.137 | -0.680
0.45 | 1187 | 1.829| 1.659 | ~1.365 | 0.290 | -1.198| 0.143 | -0.586
0.50 | 1391 | 2041 | 1126 | 2983 | 0.062 | -0.407 | 0.312 | 0.227
—0.ss | 1.708 | 2358 | 0.356 | -L.587| 0.265 | -0.026| 0.426 | 0.371
— 060 | 2312 | 2600| 0.040 | -0.712| 0395 | 0.017| 0.509 | 0.452
0.70 | 1.828 | -5.174| 0:394 | -0.042| 0.557 | 0.369 | 0.627 | 0.544
~0.80 | 0,039 | -1.365| 0.562 | 0.215| 0.65 |. 0.468 | 0.707 | 0.599
0.90 | 0.383-| -0.426| 0.664 | 0.352| 0.728 | 0:532| 0.766 | 0.643
—1.00 | 0.57 | -0.040| 0.734 | 0.442| 0.779 | 0.581| 0.811 | 0.682

3. Experiment

The experiment was carried out at the small water tank at Tsuyazaki (60 M
x 1.5 M x 1.5 M), Research Institute for Applied Mechanics, Kyushu University.
We layed two cylinders between the water tank walls at the right angles to the
axes of the cylinders in the free surface, where the velocity component parallel
to- the axes of the cylinders vanishes and the fluid motion is expected.to be two
dimensional, and we measured the height of a single regular wave train travelling
away from the cylinders which was generated by giving to the cylinders the
forced motion with a period 2r/w.

In Fig. 2 are shown the forced heaving apparatus used and the position of
a wave height meter at the water tank which is of ultra-sonic type and used
for the measurement.of the wave height. In Fig. 3 are illustrated the details
of this apparatus and the dimension of the cylinders which are made of wood.
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1,
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o
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K =
V7 — e i e e - — —z
4 Cylinder A . _/ F
Wall of © 1,494 mm ( 150
the Tankl 1,500 mm f mm
. L
Fig. 2 Forced heaving apparatus ,
60 M ’ ~Wave Height Meter —Heaving Apparatus
| / 19M o ALY 3M
z N
N
10
= L4 = T s =T
—— o <
5-2" . 777 7 77 ///////‘/‘/ s 7 7 A.//
’ Wave Damper ’ Wave Damper

Fig'. 3 Water tank and arrangement of experimental' apparatus

The forced heaving apparatus is driven by -a'AC motor M through a crank
C as shown in Fig. 2. A guide equipment G is installed to the apparatus and
a beam B is sufficiently stiffened so that we may make as small as possible the
vibration of a driving rod R or a beam B which is likely to disturb the wave
form generated by the heaving motion of the cylinders. The heaving displace-
ment of this apparatus is measrued by a potentio meter P and we confirmed
that it made almost perfect sinusoidal motion,

About the diffraction wave from the ends of the water tank, Tasai® inves-
tigated when he carried out his experiment in this same tank and we confirmed
his result by making the similler experiment again. That is, the amplitude of
diffracted waves from the wave damper placed at the ends of this tank is a
few.or 10 percents of that of incident wave and it may be said that the wave
system propagates at 1/2 of the phase velocity (group velocity) corresponding to
the heayving period. In our experiment we adopted the records of the wave
height meter as a data when all the water surface at the right side of the ap-
paratus was filled with the waves.

The radius a of the cylinders is 150 mm and the amplitude of their forced
heaving motion is selected to be a/10, that is 15mm. If this amplitude is too
small, the accuracy of the measurement of the wave height or pressure on the
body surface decreases. On the other hand the larger the amplitude, the larger
the influence of nonlinearity. Then this value was carefully adopted after we

_——¢xamined Tasai’s results for one cylinder and made some measurements with
N

\\
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several kinds of the amplitude.

Since the measured amplitude of motion by the potentio meter was a little
changed due to its period (a shorter period made smaller the amplitude about
0.5mm) we measured the amplitude every time we changed the heaving period
T, (=2r/w). As shown later only a little variation of 7, some times results in
a sudden and large change of the wave height. Accordingly we made the
experiment varying 7T, by as small step as possible and in the range of T, where
a sudden change of the wave heights occured we endevoured to find out a
period at which the wave height reached to the maximum or minimum by
continuosly varying the number of revolution of the motor.

Photo 1, 2 are some examples of the records of the minimum and maximum
wave height.

The experiment were carried out for four cases 2p/a=3.0, 40, 50 and 6.0
(2p is the distance between the centers of two cylinders). The results are shown
in Fig. 4, 5, 6, 7 in the form of A4 (wave amplitude/motion amplitude)~Ka (=
w?-a/g). These figures show that the wave height becomes almost zero (not
perfectly zero because there is a little space between the ends of the cylinders
and the tank wall whether we like it or not and consequently a small three
dimensional wave is generated around this space) at some Ka which depends
upon the value of 2p/a. When Ka deviates a little to smaller side from Ka of
the minimum wave height, the wave height become maximum. The difference
between both values of Ka is, for example, only 0.15 in case of 2p/a=4, which
corresponds to 0.13 sec in 7,. Especially for the case of 2p/a=3.0 this difference

2Pa=6.0 B

Ka-0456 4
A £0.068 o .
~
. Wave  Elevation o __
' . . 4 ;
T

Heaving Motion

, : {.158%ec.
- S e e e s et

2.98cm
i

T M D e e e . am . — It

Photo. 1
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2P/a=6.0 _
kKa=0.308 A=0.740

"Wave Elevation

E
. - Q
| )
~
| N I
Heaving Motion E
' ' o
L i 1.40sec. *
- ~
2 sec )
Photo. 2

is too small and we can not change « by smaller step.

The noteworthy fact observed in our experiment is that the standing wave
at the water surface between two cylinders becomes unusually high in the range
of Ka where a abrupt change of travelling wave height occurs, that is, between
the maximum and minimum wave height. And such a phenomenon was observed
that there was almost no waves outside the cylinders while inside the cylinders
the wave height was so large that the water got over the cylinder.

4. Discussion of results

In comparison of theoretical and measured A the agreement is very good in
the frequency Ka=0~1.2 as shown in Fig. 4, 5, 6 and 7. We can find from these
figures that maximum A4 becomes unusually large for small distance-radius ratio
2P/a. There seems to be a deviation between theoretical calculation and meas-
urements in the range of the frequency from Ka of maximum wave amplitude
to Ka of minimum (zero) amplitude. It is perhaps due to the fact that the wave
is so high in this range, but here is almost no measured value because the forced
heaving apparatus used was not complete, then in future we should make sure
of this results.

We tried to calculate the amplitude of the wave progressing to the left (—x
direction) from the cylinder B as shown in Fig. 9. We can immediately find
from this figure that this amplitude reaches to its peak when Ka is in the range
between maximum and minimum Z, and moreover its peak valye is unusually
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Fig. 4 The amplitude ratio (wave amplitude/heaving amplituded
Theoretical (2P/a = 5)
1.5¢ ° Measured ( ” )
------- V2 x A (One Cylinder)

2 [
. [D)
:/ Ka-—g—a
o o2 0.4 0.6 0.8 1.0 1.2

Fig. 5 The amplitude ratio (wave amplitude/heaving amplitude)
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) ,
—————— Theoreticahk(2P/A=4)
a MeasuredW)

______ {2 x A (One Cylinder)

L a a a
A
@
o
| Kac—g—a
0 0.2 04 o4 0.6 o8 > 1.0 1.2

Fig. 6 The amplitude ratio (wave amplitude/heaving amplitude)
large, especially for small 2P/a, compared with the waye amplitude thch one
cylinder produces without interference with another cylinder.

At the water surface between two cylinders there is no progressing wave
but standing wave. If we neglect the stationary wave near around each of the
cylinders, the amplitude of the standing wave between the cylinder is considered
to be twice of the amplitude of the ‘waves progressing to the left from the cylin-
der B because the wave with the same -amplitude and the same phase is progres-
sing to the right (x direction) from the cylinder 4. For example, the amplitude
of this standing wave for 2p/a=3.0 amounts to 16 X heaving amplitude. Since
in such a case, as stated in Section 3 the water got over the cylinder, we could
not continue the measurement. :

As Ka tends to zero, the amplitude ratio 4 tends to 4Ka assuming 2p/a to
be large enough to be able to neglect (a/2p):. It may be shown as follows.
We know from Ursell’s solution for one cylinder

- B es~2Ka(ps+ TPfa) : (29)

Then we can calculate the velocity ¥ of a-fluid near the cylinder 4 due to this
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Fig. 7 The amplitude ratio (wave amplitude/heaving amplitude)

velocity potential. That is

=2 Ka
2 V~O(Ka) +0 (W) (30)

Accordingly at infinity the velocity potential ¢ is given by

Ka ) 31

) Tw =2
ridadra (9" +9:")+0(Ka)+0 (W
n=zo0

Let 2p/a tends to infinity we obtain

A~4Ka . @3
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Added mass coefficient, due to a component of .a fluid dynamic force upon
one of the two cylinders which is in phase with the displacement of the cylin-
ders, is given in Fig. 8 with that for one cylinder. Added mass coefficient for
two cylinders is of the same order as for one cylinder in comparatively small
Ka, but at some Ka dependent upon 2p/a the former begins to decrease and
takes a negative value. And it gets to a minimum, then-it begins to increase
and seems to come back again to the level of one cylinder. Especially for small
2p/a the degree of the decrease is very steep and there can be two or more
values of free heaving period of the ‘two cylinders for 2p/a = 3.0 neglecting
damping force. 1

According to Yoshiki and others”, added mass coefficient of two cylinders
when Ka tends to infinity (¢=0 is the condition on the free surface) is 1+
5‘%' which is marked in Fig. 8. In our calculation also such a tendency as the

added mass coefficient becomes over that of one cylinder is found in the case

Kg@—~o° by

2P/a =6
” 5
” 4
” 3

One Cylinder.

Fig. 8 Added mass coefficient,

Yoshiki 4 others
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Fig. 9 Wave amplitude from cylinder B toward cylinder A.

of 2p/a=6.0. It is of course that negative added mass of the cylinder 4 or B
is given rise to as an exciting force by the velocity potential, especially progres-
sing wave potential, due to another cylinder B or A. Ka value at which the
added mass becomes a minimum with a negative value coincides with the one
at which the amplitude of progressing wave to the right (to the cylinder A)
from the cylinder B (or to B from A) has the largest value shown in Fig. 9.
And also this Ka coincides with Ka at which ,/ 2 - 4,, where 4, is the amplitude

ratio of one cylinder when there is no interference between two cylinders, is -

equal to 4 for the two cylinders as shown Fig. 4, 5, 6 and 7. Where /24,
corresponds to the sum of damping forces acting upon the two cylinders when
they oscillate without interference —— it is an imaginary case — because the
amplitude of the damping force for this case is twice of that for one cylinder
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and 4 is proportional to the amplitude. The forementioned fact means that all
of the fluid dynamic force acting upon one cylinder as an exciting force due to
the velocity potential of another cylinder contributes to the component in phase
with the displacement that is the added mass of the former cylinder, when the
exciting force is the largest.

We can calculate the behaviour of the added mass when the distance between
the cylinder is sufficiently large and Ka tends to zero by using Haskind-Newman.
relation.® '

Since 2p/a is large, the velocity potential ¢;°+¢, which comes from the
cylinder B to A constitutes of only the progressing wave train, The fluid dy-
namic force upon the cylinder A is interpreted as the sum of the forces due
to ¢,° the incident wave ¢z°+¢, and its diffraction ¢,. Then the amplitude
of heaving force F by the latter two velocity potentials can be obtained as fol-
lows by Haskind-Newman relation

F=¢, %‘: 4, (33)

where ¢, is the wave amplitude of ¢+ ¢, and A, is the amplitude ratio of one
cylinder.

We put the amplitudes of the forces out of phase and in phase with the
displacement of the cylinder respectively as

2 __ .
&, !zfz A sin § (34
¢, z}g: A, cos § 3%

After all the added mass coeffcient of the cylinder 4 due to ¢,°+¢, and ¢, is
given by o :

%’Zo cos ¢

My= ———— (36)
-5~ (Ka)*

Since the sum of the damping forces due to ¢,°+ ¢, ¢, and ¢,° is equal to half
of the damping force of two cylinders, we get

7=%—osin d+4 ‘ @37
Zz ZZ
T 0

sin? § = 2 (38

In the calculation of 4 when Ka—0 we know (—CI—’L), A, tends to 2Ka and A tends
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to 4Ka when Ka—0, and therefore sin ¢ tends to 1. Therefore m, becomes zero
for Ka—0, and the added mass coeffcient tends to that due to only ¢,° that is
the value for one cylinder

2 1
F(1og7<—— 046) v (39)
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Appendix

Solution of one cylinder

Accordirg to Ursell ¢,° or ¢5° can be derived as follows. ¢,° is expressed by

w0 0= S0 4s(Kry, 0,0+ F rafaka, rafa, 03],

gl
%
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Lelt cotim ot . Xz =P

then the boundary condition on the cylinder A is given by

inKasino=Se [¢S(Ka, 0+ i'i radl(Ka, 1,0)]
= W\» -
If we take a finite number of this series, we can determine the coefficients ¢y/l, r»
by least square method. The wave elevation at x—»>—cc is

o

—
—

_ fyo/s.,v}-—fwe d»__;)___w

Re I:.__c e~ 1 Ez+Prob)
[

A-2. Evaluation of integral

We put
I— Jm tls‘irl (Kyti + zC.OS‘;(K}”) e-Ktizl gy
- 0 +t
_ [~ sin(Ky)—t cos CKy) ,_gt1x
J_L in( )1+t2 (_ )ezm ldt
then

. _ ~ e-Kzi+int _
iJ= L e (A2, 1

If K/x*+y?* =Kr is comparatively small, we can use the following series instead
of the equation (A-2, 1), which is derived from a well known expansion of the ex-
ponential integral.

il+J=(A+iB)e~Ey-iK iz)

(Kr)"cosn?g

A=log Kr +7 + )2

n-n! )
B=— H—"”_,.?::E (Kr')l”.s;n!n 6 . C N ke 2 J[oJ
' ' Kr

where =tan~! [x] /y and r is Euler’s constant (=0.5772------).
If K/ x*+y? is large, the following asymptotic expansion is effective.

3 Pt elo ez‘” 2! ealo - 3! ellﬂ eescccsne
ity [E Tarr Tk T Ky ]
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