
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Designing Syntax Embeddings and
Assimilations for Language Libraries

Martin Bravenboer, Eelco Visser

Report TUD-SERG-2008-042

SERG

TUD-SERG-2008-042

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

M. Bravenboer and E. Visser. Designing Syntax Embeddings and Assimilations for Language Libraries. In
H. Giese, editor, Models in Software Engineering. Workshops and Symposia at MoDELS 2007, volume
5002 of Lecture Notes in Computer Science, pages 34–46, Heidelberg, 2008. Springer.

@inproceedings{BV08,
author = {Martin Bravenboer and Eelco Visser},
title = {Designing Syntax Embeddings and Assimilations for Language Libraries},
booktitle = {Models in Software Engineering. Workshops and Symposia at MoDELS 2007},
pages = {34-46},
year = {2008},
editor = {H. Giese},
volume = {5002},
series = {Lecture Notes in Computer Science},
issn = {0302-9743},
isbn = {978-3-540-69069-6},
location = {Nashville, TN, USA},
address = {Heidelberg},
publisher = {Springer},
doi = {http://dx.doi.org/10.1007/978-3-540-69073-3_5},

}

c© copyright 2008, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Designing Syntax Embeddings and Assimilations
for Language Libraries

Martin Bravenboer and Eelco Visser

Software Engineering Research Group, Delft University of Technology,
The Netherlands, martin.bravenboer@gmail.com, visser@acm.org

Abstract. Language libraries extend regular libraries with domain-specific no-
tation. More precisely, a language library is a combination of a domain-specific
language embedded in the general-purpose host language, a regular library im-
plementing the underlying functionality, and an assimilation transformation that
maps embedded DSL fragments to host language code. While the basic archi-
tecture for realizing language libraries is the same for all applications, there are
many design choices to be made in the design of a particular combination of li-
brary, guest language syntax, host language, and assimilation. In this paper, we
give an overview of the design space for syntax embeddings and assimilations for
the realization of language libraries.

1 Introduction

Software libraries provide reusable data structures and functionality through the built-in
abstraction facilities of a programming language. While functionally complete, the in-
terface through regular function or method calls is often not appropriate for efficiently
and understandably expressing programs in the domain of the library. Language li-
braries extend regular libraries with domain-specific notation. More precisely, a lan-
guage library is a combination of a domain-specific language embedded in a general-
purpose host language, a regular library for the underlying functionality, and an assim-
ilation transformation that maps embedded DSL fragments to host language code.

In recent years case studies of language libraries have been conducted for a num-
ber of host languages and types of applications, including concrete object syntax for
meta-programming [3, 24], embedding of domain-specific languages in general purpose
languages (MetaBorg) [11, 6], and syntax embeddings for preventing injection attacks
(StringBorg) [7]. While there is a common architecture underlying all these language
libraries, there are many design choices to be made in filling in the parameters to the
architecture. For example, a recent innovation is type-based disambiguation of syntax
embeddings [26, 10], which uses the type system of the host language to disambiguate
quoted code fragments, thus allowing a more lightweight syntax.

In this paper, we present an overview of the design space for syntax embeddings and
assimilations for the realization of language libraries. The contribution of this paper is
an overview of the state-of-the-art, providing insight in the design space, and research
questions in language library realization, in particular, the identification of research
issues for realizing an independently extensible language library framework. In the next

SERG Designing Syntax Embeddings and Assimilations for Language Libraries

TUD-SERG-2008-042 1

section we give an overview of the various types of applications of language libraries
illustrated with examples. In the remaining sections we discuss technical considerations
and trade-offs in the realization of language libraries.

2 Applications of Language Libraries

In this section we consider different types of applications, which are characterized by
the target of assimilation. We distinguish four types of language libraries; libraries for
transformation, generation, string generation, and DSL embedding. We consider each
of these categories in turn and show typical examples. Figure 1 gives an overview of
some libraries that we have realized.

host language
guest lang. Stratego Java Perl PHP

Stratego T
Tiger T

ATerm T T
C G(T)

Java G(T) G
XML G(T) G
SQL S S S
Shell S S S
XPath S S S
Swul D
Regex D

Fig. 1. Examples of realized em-
beddings with host languages
in columns and embedded lan-
guages in rows. The letters indi-
cate the type of embedding with
G = generation, T = transforma-
tion, S = string generation, D =
DSL embedding.

Transformation of structured data is typi-
cally used for program transformation, but also
for transformation of other structured data, such
as XML documents. Direct manipulation of the
structures through their API can lead to tedious
coding in which the natural structures are hard
to recognize. Syntax embeddings can be used
to provide concrete syntax for patterns used to
match and construct code fragments [24]. The
target of assimilation in these applications is an
API for analysing and constructing abstract syn-
tax trees. For example, consider the following
Stratego rewrite rule that defines the desugaring
of the sum construct in terms of a for loop with
an auxiliary (fresh) variable:

DefSum :

|[sum x = e1 to e2 (e3)]| ->

|[let var y := 0

in (for x := e1 to e2

do y := y + e3); y end]|

where y := <newname> x

The terms between |[and]| are quotations of
Tiger code patterns that are used both to pattern match and to compose code. For ex-
ample, the left-hand side |[sum x = e1 to e2 (e3)]| of the rewrite rule is as-
similated to the term pattern Sum(Id(x), e1, e2, e3), where x, e1, e2, and e3 are
meta-variables, i.e. variables that match subterms when the rule is applied. (newname
is used to create a fresh variable in order to avoid accidental capture of free variables.)

A similar idea can be used with Java as host language. While Stratego natively
supports terms for representing abstract syntax trees, Java requires such structures to be
defined using objects. A syntax embedding of terms in Java (JavaATerm) can be used to
make analysis and construction of term structures in Java programs easier. For example,
the following is a code fragment from a transformation from an ATerm representation
of bytecode files to a BCEL representation of bytecode:

private void addInstructions(ATerm code) {

ATerm optlocals = null, optstack = null;

Designing Syntax Embeddings and Assimilations for Language Libraries SERG

2 TUD-SERG-2008-042

ATerm is = null, excs = null;

match code with

Code(MaxStack(optstack), MaxLocals(optlocals)

, Instructions([...] and is)

, ExceptionTable([...] and excs)

, Attributes(_));

The embedding provides (among other things) concrete syntax for term patterns and
the match <expr> with <term> construct, which is assimilated to statements that
implement the matching by analyzing the ATerm argument against the declared pattern.

An important requirement for the use of syntax embeddings in transformations is
that the structure of the quoted pattern coincides with the structure of the program to
which it is applied. This does not hold in scenarios where the abstract syntax tree of a
program is heavily analyzed, modified, and/or attributed before being transformed. For
example, abstract syntax trees for C and Java require static semantic analysis before
they can be properly transformed.

Code generation involves the composition of programs from templates based on
input such as a DSL program or user input. Construction of large pieces of code using
string concatenation is tedious and error-prone. Templates are not checked statically
for well-formedness and meta characters need to be escaped. Furthermore, a textual
representation does not allow further processing. Use of an API provides a structured
representation, but is not suitable for encoding (large) templates. Syntax embeddings
allow encoding templates in the concrete syntax of the language, but at the same time
producing structured code. Embedded code fragments are assimilated to API calls for
constructing structured data (such as ASTs). The API does not need to support trans-
formation of patterns derived from concrete syntax. For example, the back-end of the
Stratego compiler uses rules such as

TranslateStrat(|S,F) :

|[s1 < s2 + s3]| ->

stm|[{ ATerm ~id:x = t;

~stm:<translate-strat(|Next,F’)>s1

~stm:<translate-strat(|S,F)>s2

~id:F’ : t = ~id:x;

~stm:<translate-strat(|S,F)>s3 }]|

where x := <new>; F’ := <new>

to implement schemes for translating Stratego to C. In this example two languages
are embedded in the host language; the left-hand side of the rule is a Stratego code
fragment, while the right-hand side is a C code fragment. The right-hand side template
uses recursive calls to generate code for the subterms of the left-hand side pattern.
The results are integrated by anti-quotations such as ~stm:t and ~id:t that convert
a Stratego term into the right syntactic sort. Note that quotations and antiquotations
are tagged with syntactic sorts such as stm|[and ~id:, this is necessary to avoid
ambiguities in parsing.

The same technique is used for other host languages. For example, the following
fragment shows a Java method generating Java code represented using the Eclipse JDT.

public CompilationUnit run(ClassDescriptor cd) {

CompilationUnit result = |[

SERG Designing Syntax Embeddings and Assimilations for Language Libraries

TUD-SERG-2008-042 3

import java.util.*;

public class #[cd.getName()] {

#[attributes(cd)]

}

]|;

return result;

}

Note that unlike in the Stratego case, the (anti)quotations are not tagged; this informa-
tion can be deduced from the types of the host language (e.g., CompilationUnit) [10].

String generation is commonly used in libraries supporting domain-specific lan-
guages such as XML, XPath, regular expressions, and SQL to provide an interface
that uses character strings to communicate programs in these language. For example, a
method execQuery from an SQL library might take a string containing an SQL query
as argument, such as

execQuery("SELECT * FROM Users where username = \’" + name + "\’");

Insertion of run-time data (e.g., user input) is done by composing queries using string
concatenation from constant parts and dynamic parts provided by variables. The ap-
proach suffers from a number of problems. First, strings are not statically guaranteed
to be well-formed, which may lead to run-time errors. Second the approach requires
escaping of meta-symbols (such as the quotes in the example above), which can lead to
tedious and obfuscated code. Worst of all, the approach leads to software that is prone to
injection attacks, where ill-formed user input may lead to breakdown or security com-
promises. For example, insertion of the string ’ OR 1=1-- in the query above would
lead to dumping a list of all users.

These problems can be avoided by using syntax embeddings instead of string con-
catenation [7]. By quoting a query, as in the following code fragment

SQL.QueryExpr q = <| SELECT * FROM Users WHERE username = $str{arg} |>;

execQuery(q);

the query is syntactically checked at compile-time, no spurious escaping is needed, and
insertion of run-time data is guaranteed to be properly escaped to avoid injection at-
tacks. Embedded queries are assimilated to calls to methods in a syntax API, which
provides for each production in the syntax definition a corresponding method. This en-
sures that well-formedness of queries is verified by the type system of the host language.

Domain-specific language (DSL) embedding is concerned with providing better
notation for programming in a certain domain, and are typically designed around an
existing library. The DSL abstracts over normal usage of the library, and assimilation
is to sequences of library calls. For example, JavaRegExp is a DSL built on top of the
Java regular expression library. In the first place it provides a syntax for quoting regular
expressions without spurious escaping, similar to the string generation examples above.
Building on this basic embedding, JavaRegExp provides a DSL for defining and com-
bining string rewrite rules in Java. For example, the following code fragment defines
several string rewrite rules for escaping HTML special characters, their composition
with a choice operator <+, and the application of the rules to the contents of a string in
variable input:

Designing Syntax Embeddings and Assimilations for Language Libraries SERG

4 TUD-SERG-2008-042

regex amp = [/ & /] -> [/ & /];

regex lt = [/ < /] -> [/ < /];

regex gt = [/ > /] -> [/ > /];

regex escape = amp <+ lt <+ gt;

input ~= all(escape);

Another example in this category is JavaSwul, an embedding in Java of a dedicated
language for creating Swing user-inteface widgets, following the hierarchical structure
of the class hierarchy of Swing [11, 6].

3 Syntax Embedding and Assimilation

Fig. 2. Components for syntax embedding and
assimilation. Solid arrows denote data-flow,
dashed arrows parameters of tools in the chain.

Language libraries are realized
by means of syntax embeddings
and assimilations as illustrated by
the architecture diagram in Fig-
ure 2. An implementation typi-
cally consists of four components,
i.e. a parser, typechecker, assimi-
lator, and pretty-printer. Together
these components transform pro-
grams in the extended language
to programs in the host language
only. Each of the components is
parameterized with data that are
specific for the syntax embedding
at hand. The parser is parameter-
ized with the syntax of the ex-
tended language. This requires syntax definitions for the host language and the guest
language, and a definition of how guest language fragments are inserted in host lan-
guage programs. The parser converts a textual representation of a program in the com-
bined language to a tree structure that is suitable for further processing. Type rules ex-
tend the typechecker of the host language to check extended programs. This component
is optional. Having an extensible typechecker avoids type error messages expressed in
terms of assimilated programs. The assimilator transforms embedded guest language
fragments to an implementation in the host language. The assimilator is parameter-
ized with a set of assimilation rules that define the translation schemes for the guest
language. For certain applications the assimilation rules may be generic in the guest
language. A pretty-printer converts the tree structure produced by the assimilator to
text, which can be fed to a host language compiler or interpreter. Pretty-printing can
be avoided if transformations are expressed directly on parse trees, rather than abstract
syntax trees. Another option is not to produce a textual representation of the assimi-
lated program at all, but instead link assimilation into the host language compiler. This
is done for example in Stratego, where assimilation of concrete object syntax is built
into the compiler [24]. Finally, the assimilator may generate code that makes calls to an
API corresponding to the guest language (the ‘run-time system’ for the embedding).

SERG Designing Syntax Embeddings and Assimilations for Language Libraries

TUD-SERG-2008-042 5

3.1 Syntax Embedding

module TinySQL exports

lexical syntax

[A-Za-z]+ -> Id 1

[A-Za-z0-9\ \"\-\;] -> Char

"\’" ("\’\’" | Char)* "\’" -> CharString 2

context-free syntax

"SELECT" Id* "FROM" Id Where?-> Query 3

"WHERE" Expr -> Where 4

Expr "=" Expr -> Expr {left} 5

CharString -> Expr

Id -> Expr

Fig. 3. Syntax definition for a tiny subset of SQL

A syntax embedding is an ex-
tension of the syntax of the
host language with the syn-
tax of a guest language. Such
an extension is achieved by
an extension of the grammar
of the host language, which
introduces the language con-
structs of the guest language
at specific places in the host
language. To illustrate the ba-
sic principles of syntax embed-
dings, we use an embedding of
SQL in PHP using SDF [23], a modular syntax definition formalism for defining the
lexical as well as context-free syntax of language in a single formalism. Figure 3 shows
the syntax definition for a tiny subset of SQL, the guest language of this example. We
omit the syntax definition of the host language. The module TinySQL defines the lex-
ical and context-free syntax of a stylized subset of SQL in reversed EBNF notation,
namely simple queries 3 with where clauses 4, equivalence expressions 5, identifiers 1

and character strings with escaped quotes 2.

module SQL-in-PHP imports PHP TinySQL 6 exports

context-free syntax

"<|" Query[[SQL]] "|>" -> Expr[[PHP]] 7

"${" Expr[[PHP]] "}" -> Expr[[SQL]] 8

"$str{" Expr[[PHP]] "}" -> CharString[[SQL]] 9

Fig. 4. Embedding of syntax for SQL in syntax for Java.

The syntax of TinySQL
is embedded in PHP by
creating a new SDF mod-
ule (Figure 4) that im-
ports the syntax defini-
tions of PHP as well as
TinySQL 6 and defines
how the languages are combined, i.e. where TinySQL can be used in PHP and
vice versa. The productions of this module use parameterized non-terminals, e.g.
Expr[[PHP]] and Expr[[SQL]], which are used to indicate the language of the non-
terminal. The first production 7 of SQL-in-PHP defines the quotation of SQL queries,
i.e. that they can be used as PHP expressions between the quotation tokens <| and
|>. The second 8 and third 9 productions define the anti-quotations of this embedding,
which allow an SQL expression or character string to be constructed by an arbitrary
PHP expression. In this way, queries can be composed dynamically. From this com-
bined syntax definition a parser is generated, which is used to parse PHP programs that
use the SQL syntax extension. After that, the resulting parse tree or abstract syntax tree
is transformed to a plain PHP program by an assimilation.

3.2 Assimilation

The assimilation phase provides the actual implementation of the embedded syntax of
the domain-specific language. In this phase the embedded language constructs are re-
moved from the source program by a translation to the host language, using any neces-
sary translation scheme. The implementation of the assimilation phase largely depends

Designing Syntax Embeddings and Assimilations for Language Libraries SERG

6 TUD-SERG-2008-042

on the application for which the embedded language is intended. The complexity of the
implementation depends on the particular combination of the embedded language and
the host language. The design of the assimilation is influenced by the requirements to
make embeddings (a) easy to understand, (b) composable, and (c) analyzable.

Assimilate : 10

ArrayType(type) -> e|[_ast.newArrayType(e)]|

where e := <Assimilate> type

Assimilate : 11

Field(e ,y) -> |[

{| FieldAccess x = _ast.newFieldAccess() ;

x .setExpression(e1); x .setName(e2);

| x |}

]|

where <newname> "expr" => x ;

[e1 ,e2] := <map(Assimilate)> [e ,y]

Assimilate = 12

?AntiQuote(<assimilate-strat>)

assimilate-strat = 13

alltd(?Quote(<Assimilate>))

Fig. 5. Assimilation of Java in Java

Assimilation rules are
the basic transformation
steps of the assimilation
that have a pattern of guest
code at their left-hand side
and produce a pattern of
host code at their right-
hand side. In our examples
the assimilation rules are
implemented in the Strat-
ego program transforma-
tion language. Figure 5 il-
lustrates two assimilation
rules for the embedding
of Java in Java. The first
rule 10 assimilates an array
type by generating invoca-
tions of the Eclipse JDT
API for the representation
of Java programs in Java. The second rule 11 assimilates a field access by creating a
FieldAccess object and invoking some methods on it for initialization. The assimila-
tion rules are applied by an assimilation strategy 13, which traverses the program and
applies the rules where necessary. Most assimilation strategies have the same structure:
they traverse the program topdown and apply the assimilation rules if a quotation is
found. If an anti-quotation is found 12, then assimilation is stopped and the assimilation
strategy is invoked recursively.

4 Design Issues

There are many variation points in the realization of syntax embedding and assimilation
for a language library. In this section we give an overview of the main issues. An in
depth discussion of the issues and the range of solutions and their relative advantages
and disadvantages is beyond the scope of this paper.

4.1 Syntax Embedding

The grammar formalism that is used for defining the syntax embeddings should allow
modular extension of grammars. A modular grammar formalism implies support for
the full class of context-free grammars, since that is the only class that is closed under
composition. In particular, grammar classes such as LL and LR, which are supported by
conventional parser generators are not adequate. Similarly, the lexical syntax is usually

SERG Designing Syntax Embeddings and Assimilations for Language Libraries

TUD-SERG-2008-042 7

defined using a collection of regular expressions. However, the class of regular gram-
mars is also not closed under composition. Solutions to composition of lexical syntax
that are used in practice are: (1) Ignoring the problem, which entails that the lexical
syntax of host and guest language are merged, e.g. keywords of one become keywords
of the other. Used in Bali, from the pioneering AHEAD/JTS tool set [3] (see [11] for
a discussion). (2) Use lexical states to distinghuish the context in which a program
fragment should be interpreted. In language libraries for program generation such as
Meta-AspectJ [26] and JavaJava [10] with explicit quotation symbols this is a possible
solution (3) Control the state of the lexical analyzer from the parser. While this a major
complication of the interface between the scanner and the parser and seems to be rather
unpopular in practice, it has recently been applied in the Silver extensible compiler sys-
tem [22]. (4) Let the scanner produce all possible interpretations of tokens. This is only
possible if the token boundaries of the host and guest languages are exactly the same,
which is often not the case. (5) Integrate lexical syntax and context-free syntax in the
same formalism as is realized in the syntax definition formalism SDF, which imple-
mented by using scannerless parsing This means that a separate lexical analysis phase
is omitted and the parser operates directly on the individual characters of a source file.
This is the only solution that can gracefully deal with combinations of languages.

Requiring support for the full class of context-free grammars reduces the number of
parsing algorithms that can be used. Currently, the best studied algorithms for parsing
possibly ambiguous context-free grammars are generalized-LR [21, 18] and Earley [12]
parsing. Scannerless parsing [19], which is an important feature for syntax embedding,
has been integrated with generalized-LR in the implementation of SDF [23]. Known is-
sues with (S)GLR are the poor quality of error messages and the absence of error recov-
ery. Packrat parsing [13] is another candidate for parsing syntax embeddings. Packrat
parsers are used to parse languages defined by parsing expression grammars, which are
closed under composition, intersection and complement. Scannerless packrat parsers
are available and have been shown to perform very well [14] compared to current GLR
parser implementations. Unfortunately, packrat parsers are not able to produce all pos-
sible alternatives for ambiguities.

When the basic requirements for modularly combining grammars are met, there are
additional modularity features a grammar formalism should have to support syntax
embeddings. A notion of namespaces is needed to manage the scope of definitions in
grammars to be combined. The host and guest language grammar may use the same
non-terminal, which will become a single syntactic category when combined. To keep
such non-terminals separated and to control exactly which non-terminals are identi-
fied, a namespace or renaming mechanism is necessary. A related issue is that the set
of identifiers that should be considered as reserved keywords depends on the context.
For example, class is a keyword in Java, but not in SQL. Also the rules for layout
(whitespace and comments) are different depending on the context. For example, // is
a comment symbol in Java, but an operator in XPath. In a declarative syntax definition
of AspectJ [8], the notion of grammar mixins was introduced to deal with these issues
(except for modular layout). The parameterized sorts and modules of SDF, along with
a mixin generator, were used to implement grammar mixins. A proper language design
for grammar mixins is needed.

Designing Syntax Embeddings and Assimilations for Language Libraries SERG

8 TUD-SERG-2008-042

In code and string generation, quotations and anti-quotations are often highly
ambiguous if the quotations of the various guest non-terminals all use the same syn-
tax. There are three solutions to this problem. (1) The number of quotations can be
restricted. For example, if the embedding allows the quotation of a list of statements as
well as a single one, then a quotation of a single statement will always be ambiguous. In
some applications, having only a quotation for the list of statements might be sufficient.
(2) The quotations and anti-quotations can be explicitly tagged with their syntactic type,
basically introducing different quotation symbols for every quotable non-terminal. This
solves the ambiguity problem, but the user now needs to know when and how to use
these tags. Furthermore, the tags obfuscate the code and often feel redundant to the user.
In some cases explicit tagging can be made less unattractive by using keywords from
the guest language. For example, the anti-quotation of an optional where clause of an
SQL query can be tagged using WHERE?, which looks like the keyword WHERE from SQL.

"WHERE" "?" "${" E "}" -> Where[[SQLCtx]]?

(3) The ambiguities can be preserved by parsing the ambiguous source file to a parse
forest. The ambiguity can then be dealt with at a later phase (for instance, by leveraging
the type system of the host language [10]), or can even be ignored if the exact repre-
sentation is irrelevant. For the user this is by far the most attractive solution, since the
embedding is not restricted and no knowledge about the ambiguities is required.

Having a single extension of a host language available is useful, but many applica-
tions require multiple extensions to be available in a single source file. For example, in
web applications, the main application domain of StringBorg, XML, SQL, Javascript,
and Shell, are often used together. Extensions should preferably not be deployed as
closed extensions of the host language, but rather as separate plugins that can be se-
lected by the user and combined on the fly by the system. This requires independent
extensibility of the host language, that is truly modular implementations of language
libraries.

4.2 Assimilation

The scope of a transformation [25] indicates the parts of the source and target program
that are involved in the transformation. Scope has a major impact on the complexity
of assimilations. We distinguish the following types of scopes. (1) Local-to-local as-
similations map guest code fragments directly to host code fragments, which are at the
exact same place in the abstract syntax tree as the original guest code. Local-to-local
rules are easy to implement, since the rules are all independent and do not influence
the assimilation strategy. (2) Local-to-global assimilations do not just locally replace
guest code fragments, but in other places in the abstract syntax tree as well. These as-
similations are typically needed when fragments to be generated cannot be expressed
locally. For example, executing statements, declaring new methods, or introducing im-
port declarations. (3) Global-to-local assimilations need context information from the
original program for a local assimilation, such as the current package, class, method,
or even type information. (4) Global-to-global assimilations need context information
from the source program and also produce global host code. Dynamic rewrite rules [9]

SERG Designing Syntax Embeddings and Assimilations for Language Libraries

TUD-SERG-2008-042 9

are typically used to implement context-sensitive transformations, that is all but those
with local-to-local scope.

To avoid name capture, assimilation rules should be hygienic, that is, generated
names should all be unique. This can be achieved easily with a gensym-like mechanism
that guarantees generation of unique names.

If the embedding is part of a family of embeddings that all implement a similar
assimilation, the assimilation may be generic in the guest language. For example, the
representation of object programs in Stratego is directly based on the syntax defini-
tion of the object language, thus the transformation from the guest code to Stratego is
implemented generically [24]. In some cases the assimilation can even largely be host
language independent [7].

If the host language can be typechecked statically, then it is useful to typecheck
before assimilation, to keep the error reports as close to the original source as possible.
This requires extension of the typechecker of the host language with type rules for the
guest language.

5 Related Work

Syntax Embedding Macro systems usually restrict the syntax that can be introduced.
For an extensive review of the relationship to JSE [1], Maya [2], Metafront [5], JTS [3],
and camlp4 [20] we refer to [11] and [10]. There are a number of parser generators that
could be applied for the parsing of syntax embeddings. Harmonia’s Blender [4] and
Cardelli’s extensible syntax have been discussed in detail in [11]. Packrat parsing [13,
14] has been discussed in Section 4.1. The Polyglot parser generator [17] supports mod-
ular adaptation of LR-grammars, which has been discussed in [7].

Furthermore, there is a wide range of applications that apply a form of syntax em-
bedding. In these particular applications (Template-Haskell, MetaOCaml, Meta-AspectJ,
SafeGen, etc.) the parsing problem is often reduced because the host language is embed-
ded in itself or development time for parsing this combination of languages is accept-
able. Hence, no general method for language libraries is required, though they could
profit from such a facility. Recently, support for quoting expressions has been intro-
duced in C#. C# does not introduce a syntax for quotation, but infers quotations from
the type of variables and parameters. One of the main purposes of this facility is to use
C# expressions to express query expressions, e.g. SQL, without introducing syntax (see
also [7]).

Assimilation Macro systems usually only allow a straightforward local-to-local
mapping from the introduced syntax to the host language. Our assimilation rules and
strategies allow local-to-global and global-to-local transformations, which is somewhat
related to the desire for macros to reach out and touch somewhere [15], one of the
ideas leading to AspectJ. Macro systems that allow context-free grammars as macro
arguments often provide more advanced facilities for transformations. For example,
Metafront [5] associates transformations to all productions and additionally guarantees
termination of the transformation.

Open Compilers Open compilers such as Polyglot [17] are not designed to facili-
tate DSL embedding in particular. Instead, they are designed for the introduction of new

Designing Syntax Embeddings and Assimilations for Language Libraries SERG

10 TUD-SERG-2008-042

language features that invade the language, such as new types, optimizations, concur-
rency features, etc. The requirements for a system that supports the implementation of
syntax embedding and assimilation by non-compiler experts are rather different. More
experience with extensions is needed to give definite answers on the requirements.

Methodology In [16] the authors state that work is needed on DSL development
methodologies, since the use of a DSL can provide major benefits, but the development
of DSLs often raises many questions without clear answers or resources on the right de-
cisions to make. Though our work chooses a particular approach to DSL development,
our analysis of the design space in this area contributes to the discussion on method-
ologies. Also, a major focus of our work is to make the implementation of extensions
as easy as possible by not imposing technical constraints on the syntax embedding and
assimilation.

Domain-Specific Embedded Languages The term domain-specific embedded (or
internal) language (DSEL/EDSL) is often used for a DSL defined within the host lan-
guage, that is, without syntactically extending the host language. DSELs are popular in
languages that have a flexible syntax, such as Haskell (user-definable infix operators)
and Ruby. In the case of Ruby, there is extensive support for introspection, interces-
sion, code generation, evaluation and bindings, which reduces the need for interpreting
the DSL. The heavy use of run-time code generation is largely cultural (since similar
functionality is available in languages such as Perl and Python) and due to seemingly
irrelevant details, such as multi-line string literals. Considering the syntax, the main dis-
advantages of embedded domain-specific language approaches is that the syntax cannot
be clearly defined separately, but has to be crafted carefully, based on the constraints
imposed by the host language.

Acknowledgments This research was supported by NWO/JACQUARD projects
638.001.201, TraCE: Transparent Configuration Environments, and 638.001.610,
MoDSE: Model-Driven Software Evolution.

References

1. J. Bachrach and K. Playford. The Java syntactic extender (JSE). In Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’01), pages 31–42. ACM, 2001.

2. J. Baker and W. Hsieh. Maya: multiple-dispatch syntax extension in java. In Programming
Language Design and Implementation (PLDI ’02), pages 270–281. ACM, 2002.

3. D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for implementing domain-specific
languages. In International Conference on Software Reuse (ICSR’98), pages 143–153. IEEE,
1998.

4. A. Begel and S. L. Graham. Language analysis and tools for input stream ambiguities. In
Language Descriptions, Tools and Applications (LDTA’04), ENTCS. Elsevier, April 2004.

5. C. Brabrand, M. Vanggaard, and M. I. Schwartzbach. The metafront system: Extensible
parsing and transformation. In Language Descriptions, Tools and Applications (LDTA’03).
ACM, April 2003.

6. M. Bravenboer, R. de Groot, and E. Visser. MetaBorg in action: Examples of domain-specific
language embedding and assimilation using Stratego/XT. In R. Lämmel and J. Saraiva,
editors, Generative and Transformational Techniques in Software Engineering (GTTSE’05),
volume 4143 of LNCS, pages 297–311, Braga, Portugal, 2006. Springer Verlag.

SERG Designing Syntax Embeddings and Assimilations for Language Libraries

TUD-SERG-2008-042 11

7. M. Bravenboer, E. Dolstra, and E. Visser. Preventing injection attacks with syntax embed-
dings. A host and guest language independent approach. In J. Lawall, editor, Generative
Programming and Component Engineering (GPCE’07), pages 3–12. ACM, October 2007.

8. M. Bravenboer, E. Tanter, and E. Visser. Declarative, formal, and extensible syntax definition
for AspectJ. A case for scannerless generalized-LR parsing. In Object-Oriented Programing,
Systems, Languages, and Applications (OOPSLA’06). ACM, October 2006.

9. M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program transformation with scoped
dynamic rewrite rules. Fundamenta Informaticae, 69(1–2):123–178, 2006.

10. M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized type-based disambigua-
tion of meta programs with concrete object syntax. In R. Glück and M. Lowry, editors,
Generative Programming and Component Engineering (GPCE’05), volume 3676 of LNCS,
pages 157–172, Tallinn, Estonia, Sept./Oct. 2005. Springer-Verlag.

11. M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific language em-
bedding and assimilation without restrictions. In Object-Oriented Programing, Systems, Lan-
guages, and Applications (OOPSLA’04), pages 365–383. ACM, October 2004.

12. J. Earley. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94–102, 1970.

13. B. Ford. Packrat parsing: simple, powerful, lazy, linear time, functional pearl. In Interna-
tional Conference on Functional Programming (ICFP ’02), pages 36–47. ACM, 2002.

14. R. Grimm. Better extensibility through modular syntax. In W. R. Cook, editor, Programming
Language Design and Implementation (PLDI’06). ACM, June 2006.

15. G. Kiczales, J. Lamping, L. H. R. Jr., and E. Ruf. Macros that reach out and touch some-
where. Technical report, Xerox Corporation, December 1991.

16. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific lan-
guages. ACM Computing Surveys, 37(4):316–344, 2005.

17. N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler framework
for Java. In International Conference on Compiler Construction (CC’03), volume 2622 of
LNCS, pages 138–152. Springer Verlag, April 2003.

18. J. Rekers. Parser Generation for Interactive Environments. PhD thesis, University of Ams-
terdam, 1992.

19. D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) parsing of programming languages.
ACM SIGPLAN Notices, 24(7):170–178, 1989. PLDI’89.

20. D. de Rauglaudre. Camlp4 reference manual, September 2003.
21. M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for Practical Systems.

Kluwer Academic Publishers, 1985.
22. E. Van Wyk and A. Schwerdfeger. Context-aware scanning for parsing extensible languages.

In J. Lawall, editor, Generative Programming and Component Engineering (GPCE’07),
pages 63 – 72. ACM, October 2007.

23. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam,
September 1997.

24. E. Visser. Meta-programming with concrete object syntax. In D. Batory, C. Consel, and
W. Taha, editors, Generative Programming and Component Engineering (GPCE’02), vol-
ume 2487 of LNCS, pages 299–315. Springer-Verlag, October 2002.

25. J. van Wijngaarden and E. Visser. Program transformation mechanics. a classification
of mechanisms for program transformation with a survey of existing transformation sys-
tems. Technical Report UU-CS-2003-048, Institute of Information and Computing Sciences,
Utrecht University., May 2003.

26. D. Zook, S. S. Huang, and Y. Smaragdakis. Generating AspectJ programs with Meta-
AspectJ. In G. Karsai and E. Visser, editors, Generative Programming and Component
Engineering (GPCE’04), volume 3286 of LNCS, pages 1–19. Springer, October 2004.

Designing Syntax Embeddings and Assimilations for Language Libraries SERG

12 TUD-SERG-2008-042

TUD-SERG-2008-042
ISSN 1872-5392 SERG

