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SUMMARY

Road safety is still a challenging issue. In 2020, 1.35 million people have died as a
result of traffic accidents, where the number one cause of death for young adults be-
tween the age of 5 and 29 is car accidents. In an attempt to improve road safety, the
automotive industry has developed numerous types of Advanced Driver Assistance
Systems (ADAS). These systems are in general effective in improving safety. However,
these systems will only be used if and only if drivers perceive the assistance as intuitive
and cooperative. It is recently found that 61% of drivers sometimes switch off the as-
sistance, 23% feel that current assistance are annoying and bothersome, whereas only
21% find them helpful. A safe system that is not used has no safety benefits.

A promising way to improve driver acceptance and to increase safety is to employ
haptic shared control (HSC), which is an effective way of keeping drivers in the active
control loop. Support in the form of HSC benefits situation awareness and ensures
effective monitoring of the environment and automation. However, torque conflict
resulting from opposing intentions of driver and automation is reported to be a bot-
tleneck for drivers’ acceptance of HSC. Particularly, such conflicts are found to be most
debilitating in curves. With each driver having an individual driving style, with differ-
ent preferences and skill levels, the current standard ’one-size-fits-all’ assistance ap-
proach to HSC, and driver support in general, is not satisfactory for every individual.

An effective approach to increase acceptance in ADAS, and a reliable way to align
the automation to the driver’s preferences, is through personalisation. Here, personal-
isation is generally defined as ’making something suitable for the needs and preferences
of a particular person’. For HSC, personalisation can be effectively realised by adapt-
ing the system’s adopted trajectory to that of the driver. Therefore, the personalisation
of HSC requires a driver modelling approach that predicts an individual driver’s be-
haviour.

Before this thesis, the personalisation of HSC was attempted by adjusting the gains
of a corrective feedback HSC, as though it were a driver steering model itself. What
was missing was 1) a HSC that allows for personalisation, i.e., a framework where a
personalisable reference trajectory is independent of the haptic controller and, 2) a
computational driver model or a data-driven driver classification approach that is able
to describe individual drivers.

When this thesis was started, a theoretical HSC concept, the ’Four-Design-Choice-
Architecture’ (FDCA) was introduced within our group. This promising concept was,
however, not realised or implemented yet. As for modelling individual drivers, it was
not known what type of driver steering and trajectory model(s) are suitable to generate
personalised trajectories, if any, due to the lack of a standardised way to compare and
evaluate the output performance of driver behaviour models with different structures
and complexities. It was not known exactly how to achieve successful personalisation
in curves, nor was the needed level of personalisation understood, i.e., adapting to the
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intricacies of each individual or adapting to a more general style. Moreover, whether
personalisation in itself improves the acceptance of HSC systems, was still to be veri-
fied.

These challenges are addressed in the four parts of this thesis:

1. Driver model assessment: The development of an assessment method and ap-
plication on prominent control-theoretic driver models in the literature.

2. Driver trajectory classification: Understanding and categorising the types of in-
dividual driver trajectories present in the driving population.

3. Driver prepositioning: Understanding and modelling driver prepositioning be-
haviour, a behaviour found to be an essential, yet mostly overlooked aspect of
curve-driving behaviour.

4. Application to Haptic Shared Control: Apply and evaluate personalised haptic
shared control.

With the rich body of driver models available in the literature, it is not only prob-
lematic to choose which model to use for personalisation, but it is also unknown whether
any can accurately reproduce individual driver steering and trajectory behaviour. A
new driver model assessment methodology developed in this thesis quantifies the
ability of any control-theoretic driver model to reproduce trajectories of individual
driver behaviour (descriptiveness), as well as be parsimonious to allow for identifica-
tion (realistic identifiability). This assessment procedure is applied to three prominent
control-theoretic driver models for comparison: the Mars model, the Van der El model
and the Van Paassen model. According to the developed driver model assessment pro-
cedure, the Van Paassen model is most suitable for identifying individual driver steer-
ing and trajectory behaviour. Nevertheless, it is classified as ’under-parameterised’,
i.e., the model is parsimonious but is unable to reproduce individual drivers suffi-
ciently. None of the tested models can capture the drivers’ anticipating and preparing
for curve entry (prepositioning). This shortcoming severely degrades the descriptive-
ness of these models, restricting these driver models to being able to describe only 17%
of drivers at most. Application of the developed model assessment technique not only
highlighted what model is most suitable but also pointed out some serious shortcom-
ings even in the most prominent control-theoretic driver model in the literature.

How differently do drivers take curves? Can individual trajectories be categorised,
and used as templates for personalisation? The lack of a mathematical algorithm to
categorise such driver trajectories in literature was addressed in this thesis by devel-
oping novel rule-based trajectory classifiers for curve driving. Based on knowledge
from empirical data of a dedicated driving simulator experiment, rule-based trajec-
tory classifiers were developed. The resulting classes categorise different trajectory
types, ranging from severe curve-cutting to severe counter curve-cutting, and are found
to classify all drivers in two separate experiments successfully. From the classification
results, performed on right and left turns separately, it is found that most drivers fall
into different classes in right and left turns. This means that curve driving in left and
right curves should be treated independently. Moreover, it is found that drivers change



SUMMARY xv

their trajectory style when the curve geometry changes, i.e., more drivers curve cut
when the curve becomes sharper. The average behaviours of each class were also used
for the model assessment methodology to gain insight into what type of behaviour
a given model can reproduce. Moreover, this trajectory classifier is also used in this
thesis to implement class-average personalisation.

All drivers show a consistent way in which they laterally position themselves before
entering a curve, defined in this thesis as prepositioning. However, most driver steer-
ing models do not account for the occurrence of prepositioning. This thesis improves
the understanding of prepositioning through geometric quantification and investigat-
ing the effect of velocity and curvature. In the dedicated prepositioning experiment,
88% of the individual driver trajectories exhibit significant prepositioning behaviour.
Moreover, lateral prepositioning displacement increases with increasing driving ve-
locity and increasing curvature. The gained knowledge of prepositioning behaviour
is used to develop a sigmoidal prepositioning path model. This path model describes
all prepositioning behaviour from a dedicated prepositioning experiment accurately.
When combined with the Van Paassen model, which is under-parameterised, the com-
bined model is able to describe all different types of individual trajectory categories
accurately. Hereby, a key novelty of this thesis is the first individual control-theoretic
driver model. This model is capable of capturing a wide range of different driving styles
including the prepositioning that earlier models were not considering.

On the application side, what was missing is a personalisable haptic shared con-
troller. This thesis is the first to realise and implement the theoretical concept of the
Four-Design-Choice-Architecture for HSC proposed in our group. This architecture
for HSC is unique in that it separates the reference trajectory from the haptic con-
troller, which facilitates independent personalisation of the controller’s reference (tra-
jectory). To test the newly implemented Four Design Choice (FDC) controller, an ex-
periment was designed where the FDC HSC was compared with a conventional feed-
back HSC. Two different realisations of the FDC were tested: one with a one-size-fits-
all controller reference and one with a personalised reference. These references were
generated using the Mars driver model (i.e., no prepositioning). It is found that both
FDC implementations reduce the occurrence of conflicts by a factor 2.3 and reduces
driver torque by a factor 3.2 compared to the conventional controller. The significant
improvement of the FDC HSC compared to conventional HSC stems from the novel
feedforward torque in the FDC HSC. This type of torque only guides rather than cor-
rects, where correction from centreline is what most (conventional) HSC apply. This
guidance allows the driver to deviate from the reference trajectory without penalty.
Hereby, the feedforward guidance is a new feature in the FDC HSC that changes the
way HSC is perceived in general. Subjectively, the personalised FDC implementation
is found to improve both satisfaction and usefulness compared to the conventional
HSC. This level of increased acceptance was highly encouraging. We expected that
by also including prepositioning into the personalised guidance, we would be able to
reach even higher levels of acceptance without sacrificing performance.

A final experiment was conducted to evaluate personalisation with the developed
FDC HSC, whilst including prepositioning. The experiment was carried out using two
different driver groups. One consisting curve-cutters and the other offset drivers. Each
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driver group evaluated two different levels of personalisation (i.e., full personalisation
and class-average personalisation), against the centreline trajectory (the ADAS indus-
try’s standard), and the class-average of the other driver group. The results show that
full personalisation is the most capable of aligning torques between automation and
driver, and thereby significantly minimises conflicts. However, no evidence is found
that this torque alignment is perceived as beneficial by drivers. Subjectively, drivers
rate fully personalised, class average personalised and centreline with equal accep-
tance. This is not to say that trajectory type does not matter, offset drivers particularly
give low ratings to a curve-cutting guidance. With this, there is no evidence found
that personalisation through mimicking the drivers behaviour or style can leverage
extra acceptance, however personalisation through adapting to a driver’s preferences
is essential. The drivers unexpected high acceptance ratings to centreline is explained
by 1) the centreline trajectory generally falling within drivers’ preferences and, 2) the
novel feedforward torque in the FDC HSC gives the drivers’ the allowance to deviate
from the controller’s reference without penalty. Hereby, further personalising through
mimicking the driver with the FDC HSC is not recommended. Therefore, as long as the
reference trajectory falls within the preferences of the driver and the shared controller
is not (only) correcting, drivers typically will accept the HSC as a useful and satisfac-
tory support system.

This thesis has achieved it’s highest level goal, which is to improve the acceptance
of the haptic shared control driver support. This thesis provides an improved under-
standing and new insights into 1) how the novel FDC HSC has solved much of the
acceptance issue put forward, and 2) an understanding of how to personalise with the
FDC HSC. In terms of modelling tools and methods, this thesis has contributed with:
1) a model assessment procedure that can highlight the strengths and weaknesses of
any control theoretic model, 2) a trajectory classifier, which can categorise different
types of drivers, 3) a prepositioning path model, which, when combined with the Van
Paassen control-theoretic driver model results in the first individual control-theoretic
driver model, i.e., a model that can capture all main styles of individual driver be-
haviour and 4) the first personalisable HSC, where the developed modelling methods
are applied to evaluate personalised haptic shared control. The findings and insights
from this thesis have contributed to design guidelines and, can accelerate future re-
search. Some examples include 1) using the individualised driver steering model, per-
sonalisation of ADAS can now be done in real-time, 2) using the developed trajectory
classifier, explicit personalisation can be achieved, i.e., the driver can select the type
of trajectory guidance he may want, and, 3) the driver trajectory modelling methods
developed in this thesis can be used for the personalisation of path-planning in fully
autonomous-vehicles.
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Het vergroten van de verkeersveiligheid is nog steeds een grote maatschappelijke en
technologische uitdaging. Alleen al in 2020 zijn er 1.35 miljoen mensen omgekomen
als gevolg van verkeersongevallen. Auto-ongelukken zijn de belangrijkste doodsoor-
zaak voor kinderen en jongvolwassenen tussen de 5 en 29 jaar. Om de verkeersveilig-
heid te verbeteren heeft de auto-industrie talloze Advanced Driver Assistance Systems
(ADAS) ontwikkeld. Dit soort systemen zijn veelal effectief in het verbeteren van de
veiligheid, maar worden alleen door bestuurders gebruikt wanneer zij de assistentie
als intuïtief en coöperatief ervaren. Recentelijk is gebleken dat 61% van de automo-
bilisten de assistentie wel eens uitschakelt, 23% de huidig beschikbare assistentie als
vervelend en hinderlijk ondervindt, en dat slechts 21% van de bestuurders aangeeft
ADAS nuttig te vinden. Een veilig systeem dat niet wordt gebruikt zorgt niet voor meer
veiligheid.

Een veelbelovende manier om de acceptatie van ADAS door bestuurders te verbe-
teren, en daarmee de veiligheid te vergroten, is het gebruik van Haptic Shared Control
(HSC). Ondersteuning met HSC is een effectieve manier van assistentie geven die be-
stuurders actief betrokken houdt bij het besturen van de auto en daarmee het situatie-
bewustzijn en de alertheid in het letten op de omgeving en de automatisering verbe-
tert. Echter, tegenstellingen in de krachten die door de bestuurder en haptische assis-
tentie op het stuurwiel worden uitgeoefend (“conflicten”), als gevolg van tegengestelde
intenties van bestuurder en automatisering, beperken op dit moment de acceptatie
van HSC door bestuurders. Dergelijke conflicten zijn in de praktijk vaak het meest sto-
rend bij sturen van bochten. Aangezien elke bestuurder een individuele rijstijl heeft,
als gevolg van voorkeur en vaardigheidsniveau, is de huidige standaard van “one-size-
fits-all”-assistentie in HSC en andere ADAS over het algemeen niet bevredigend voor
elke bestuurder. Een effectieve aanpak om de acceptatie in ADAS te vergroten, en een
betrouwbare manier om de assistentie af te stemmen op de voorkeuren van de indi-
viduele bestuurder, is door middel van personalisatie. Personalisatie wordt doorgaans
gedefinieerd als het ’aanpassen aan de behoeften en voorkeuren van een specifieke per-
soon’. De personalisatie van HSC kan worden gerealiseerd door de baanpositie die het
HSC systeem probeert te volgen aan te passen aan hoe de bestuurder zelf rijdt. Dus,
voor de personalisatie van HSC zijn technieken nodig die het gedrag van individuele
bestuurders kunnen modelleren en voorspellen.

Voor het uitvoeren van dit promotieonderzoek werd doorgaans geprobeerd HSC
te personaliseren door de parameters van corrigerende feedback HSC systemen in-
dividueel aan te passen. Wat dus ontbrak was 1) een HSC systeem wat in de opzet
personalisatie expliciet mogelijk maakt door het gebruik van een personaliseerbare
referentiebaanpositie die onafhankelijk is van de haptische controller, en, 2) een be-
trouwbare aanpak, gebaseerd op wiskundige bestuurdersmodellen of data-gedreven
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bestuurdersclassificatie, voor het beschrijven van het stuurgedrag van individuele be-
stuurders.

Bij aanvang van het promotieonderzoek dat wordt beschreven in dit proefschrift is,
binnen onze onderzoeksgroep, een nieuwe en verbeterde opzet voor HSC systemen,
de ’Four-Design-Choice-Architecture’ (FDCA), op theoretische basis voorgesteld. Dit
veelbelovende concept was echter nog niet geïmplementeerd of gebruikt voor HSC.
Voor het modelleren van het stuurgedrag van individuele bestuurders was eigenlijk
niet bekend wat voor modellen geschikt zouden zijn voor het implementeren van ge-
personaliseerde referentiebaanposities binnen HSC, en of die al beschikbaar waren,
door het ontbreken van een gestandaardiseerde manier om de beschrijvende capa-
citeit van verschillende bestuurdersmodellen expliciet te vergelijken en te evalueren.
Daarnaast was nog onbekend hoe succesvolle personalisatie voor het assisteren van
het sturen door een bocht kon worden bereikt, alsook het daarvoor benodigde niveau
van personalisatie: is het nodig om volledig te personaliseren, dus inclusief de spe-
cifieke bijzonderheden van elk individu, of is het ook voldoende te variëren tussen
meer algemene stijlen van sturen? Op de vraag of personalisatie als techniek über-
haupt de acceptatie van HSC-systemen verbetert was ook eigenlijk nog geen duidelijk
antwoord.

Deze uitdagingen worden stapsgewijs in de vier delen van dit proefschrift aange-
pakt:

1. Driver Model Assessment: Het ontwikkelen van een nieuwe beoordelingsme-
thode voor de beschrijvende capaciteit van bestuurdersmodellen en de toepas-
sing daarvan op een aantal welbekende modellen uit de literatuur.

2. Driver Trajectory Classification: Het categoriseren en data-gedreven classifice-
ren van de verschillende vormen waarin de baanpositie verandert bij echte au-
tobestuurders tijdens het rijden door bochten.

3. Driver Prepositioning: Het beter begrijpen en wiskundig modelleren van voor-
positioneringsgedrag (“prepositioning”) door bestuurders, een essentieel maar
doorgaans vergeten onderdeel van hoe bestuurders een bocht door sturen.

4. Application to Haptic Shared Control: Het toepassen en evalueren van deze tech-
nieken voor het personaliseren van haptic shared control.

Ondanks het feit dat er een groot aantal verschillende bestuurdersmodellen is voor-
gesteld in de wetenschappelijke literatuur was er nog geen algemeen geaccepteerde
aanpak om het meest geschikte model te vinden voor een bepaalde toepassing, zoals
personalisatie. Daarnaast was eigenlijk ook onbekend of er wel een model bestond
dat het individuele stuurgedrag van bestuurders nauwkeurig genoeg kon reproduce-
ren voor deze toepassing. Om die reden is in dit proefschrift een nieuwe evaluatie-
methode ontwikkeld die het vermogen van bestuurdersmodellen om de baanposities
van verschillende individuele bestuurders te reproduceren (descriptiveness) kwanti-
ficeert, en daarnaast beoordeeld of de modellen voldoende spaarzaam geparamete-
riseerd zijn om betrouwbare schattingen van hun parameters toe te laten (realistic
identifiability). Daarnaast is de beoordelingsprocedure toegepast voor het vergelij-
ken van drie bekende bestuurdersmodellen: het Mars-model, het Van der El-model en
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het Van Paassen-model. De ontwikkelde beoordelingsprocedure laat duidelijk zien dat
van deze drie het Van Paassen-model het meest geschikt is voor het identificeren van
individueel stuurgedrag. Toch is ook dit model slechts in staat om maar een klein deel
van de rijstijlen die worden gebruikt door individuele bestuurders voldoende te mo-
delleren en wordt het dus geclassificeerd als ’ondergeparametriseerd’. Dit komt omdat
geen van de geteste modellen het anticiperende gedrag dat veel bestuurders laten zien
ter voorbereiding op het ingaan van een bocht (‘prepositionering’) voldoende kan be-
schrijven. Deze tekortkoming beperkt de beschrijvende capaciteit (‘descriptiveness’)
van deze modellen dusdanig dat ze het gedrag van hooguit 17% van de gebruikte data-
base van bestuurders afdoende kunnen modelleren. De ontwikkelde modelbeoorde-
lingstechniek heeft dus niet alleen duidelijk gemaakt welk model het meest geschikt
is voor personalisatie van HSC, maar heeft ook aangetoond dat eigenlijk alle bekende
regeltechnische bestuurdersmodellen uit de literatuur dezelfde ernstige tekortkoming
hebben.

Hoe groot zijn de verschillen tussen bestuurders bij het nemen van een bocht?
Kunnen de baanposities zoals gevolgd door individuele bestuurders worden gecate-
goriseerd en gebruikt als sjablonen voor personalisatie? Het ontbreken van een geau-
tomatiseerd algoritme voor het categoriseren van baanpositie-variaties in de weten-
schappelijke literatuur is de reden dat in dit proefschrift een nieuw gestructureerd en
data-gedreven classificatie-algoritme voor deze toepassing is ontwikkeld. Dit classificatie-
algoritme is ontwikkeld op basis van de empirische meetdata uit twee, in dit proef-
schrift beschreven, rijsimulator-experimenten en kan op basis van het gereden tra-
ject op de weg onderscheiden tussen verschillende rijstijlen, variërend van ‘beginnend
aan de buitenkant van de baan, eindigend aan de binnenzijde’ (severe curve-cutting)
tot ‘beginnen aan de binnenkant van de bocht, eindigend aan de buitenzijde’ (severe
counter curve-cutting). De classificatieresultaten, waarin bochten naar rechts en naar
links apart zijn meegenomen, laten zien dat de meeste bestuurders in bochten naar
rechts en naar links doorgaans zeer verschillende manieren van baanpositionering
toepassen. Dit resultaat toont aan dat het rijden in een bocht naar links en naar rechts
altijd gescheiden moet worden behandeld. Bovendien is met deze analyse aange-
toond dat bestuurders hun rijstijl aanpassen aan de geometrie van de bocht. Zo gaan
bestuurders bijvoorbeeld steeds meer de bocht afsnijden wanneer bochten scherper
worden. Op basis van deze classificatie van bestuurdersgedrag is ook een realisatie
van het ‘gemiddelde’ gedrag voor elke klasse geselecteerd om te gebruiken binnen de
voorgestelde beoordelingstechniek voor bestuurdersmodellen, om daarmee beter in-
zicht te krijgen in welke soorten gedrag wel of niet door een bepaald model kunnen
worden beschreven. Dit resultaat van deze nieuwe classificatie-aanpak is in dit proef-
schrift ook verder gebruikt om HSC personalisatie op basis van een klasse-gemiddelde
te implementeren.

In alle experimentele meetgegevens die verzameld zijn voor dit proefschrift laten
bestuurders een sterke consistentie zien in hoe ze hun auto lateraal op de weg positi-
oneren alvorens een bocht in te gaan. In dit proefschrift wordt dit gedrag ‘voorposi-
tionering’ (‘prepositioning’) genoemd. In de meeste wiskundige bestuurdersmodellen
wordt echter het optreden van dit voorpositioneringsgedrag niet expliciet meegeno-
men. Dit proefschrift verbetert ons begrip van voorpositionering met een geometri-
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sche model en een kwantitatieve analyse van hoe snelheid en kromming van de weg
dit gedrag beïnvloeden. In een speciaal voor dit onderzoek uitgevoerd experiment ver-
toont 88% van de bestuurders duidelijk voorpositioneringsgedrag en neemt de laterale
verplaatsing bij het voorpositioneren toe met toenemende rijsnelheid en kromming
van de weg. Verder zijn deze gegevens gebruikt om een sigmoïde-vormig geometrisch
model van voorpositioneringsgedrag af te leiden. Dit model kan al het voorpositione-
ringsgedrag zoals dat is geobserveerd in de verzamelde experiment data nauwkeurig
beschrijven. Als toevoeging aan het (ondergeparameteriseerde) Van Paassen-model
zorgt het meenemen van voorpositioneringsgedrag ervoor dat alle verschillende ge-
meten rijstijlen nu nauwkeurig kunnen worden beschreven. Dus een essentiële bij-
drage van dit proefschrift is het eerste volledig individualiseerbare en complete be-
stuurdersmodel dat in staat is om een breed scala aan verschillende rijstijlen te mo-
delleren. Voor de praktische toepassing van deze toegevoegde kennis ontbrak het aan
een, in de basis, personaliseerbare HSC architectuur. In dit proefschrift is het theoreti-
sche concept van de Four-Design-Choice-Architecture (FDCA, ‘Vier-Ontwerp-Keuze-
Architectuur’) voor HSC, zoals die in onze onderzoeksgroep is voorgesteld, voor het
eerst gerealiseerd en geïmplementeerd. Een uniek aspect van deze HSC architectuur
is dat de referentiebaanpositie expliciet gescheiden wordt van het haptische bestu-
ringsalgoritme, wat een volledig onafhankelijke personalisatie van de referentiebaan
mogelijk maakt. Om de implementatie van de Four-Design-Choice (FDC) HSC te tes-
ten is een experiment uitgevoerd waarbij de FDC HSC is vergeleken met een conventi-
onele HSC architectuur. In dit experiment zijn twee verschillende realisaties van de
FDC HSC getest: één met een ‘one-size-fits-all’ baanreferentie en een tweede met
een gepersonaliseerde referentie. Voor dit experiment werden de referentiebaanposi-
ties gegenereerd met het Mars-bestuurdersmodel (i.e., zonder voorpositionering). De
resultaten laten zien dat beide FDC-implementaties conflicten tussen bestuurder en
HSC met een factor 2.3 verminderen, en leiden tot 3.2 keer lagere stuurkrachten door
de bestuurder, vergeleken met de conventionele HSC. Deze aanzienlijke verbetering
door het gebruik van de FDC HSC komt vooral doordat in de FDC HSC de ‘begelei-
dende’ feedforward-krachten volledig gescheiden zijn van de ‘corrigerende’ feedback-
krachten, terwijl conventionele HSC voornamelijk proberen te corrigeren tot het vol-
gen van de middellijn van de weg. De actieve feedforward begeleiding stelt de be-
stuurder in staat om vrijelijk, zonder afstraffende stuurkrachten, af te wijken van de
referentiebaanpositie, wat de gebruikservaring van de nieuwe FDC HSC sterk veran-
dert ten opzichte van conventionele HSC. Subjectieve beoordelingsdata laten zien dat
de gepersonaliseerde FDC-implementatie zowel de ‘tevredenheid’ als de ‘nuttigheid’
van de assistentie sterk verbeteren. Ookal was deze verbetering van de acceptatie al
zeer bemoedigend, de verwachting is dat deze wanneer ook voorpositionering wordt
toegevoegd aan de gepersonaliseerde begeleiding nog verder zal verbeteren.

Het laatste experiment in dit proefschrift is uitgevoerd om de effecten van per-
sonalisatie bij het gebruik van de FDC HSC te evalueren, waarbij nu ook de voorpo-
sitionering door bestuurders is meegenomen. Het experiment bekeek en vergeleek
de twee meest voorkomende rijstijlen in twee groepen van proefpersonen: één groep
met bestuurders die bochten afsnijden (de ‘curve-cutters’) en een andere met mensen
die op een vaste baanpositie ten opzichte van de middellijn blijven rijden (de ‘offset-
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drivers’). Elke bestuurdersgroep testte vier verschillende HSC instellingen voor de re-
ferentiebaan: twee verschillende personalisatieniveaus (d.w.z., volledige personalisa-
tie en personalisatie op basis van een klasse-gemiddelde), de middellijn van de weg
(de huidige ADAS-industriestandaard), en het klasse-gemiddelde van de andere be-
stuurderssgroep. De resultaten tonen aan dat volledige personalisatie het meest ge-
schikt is om de stuurkrachten tussen de automatisering en de bestuurder op elkaar
af te stemmen en zo conflicten tot een minimum te beperken. Deze verbeterde af-
stemming van de stuurkrachten wordt alleen niet duidelijk door bestuurders als een
structurele verbetering ervaren, want subjectief beoordelen bestuurders de volledig
gepersonaliseerde, klasse-gemiddeld gepersonaliseerde, en de middenlijn referentie-
baanposities op hetzelfde acceptatieniveau. Dit wil echter niet zeggen dat de referen-
tiebaanpositie geen essentiële factor in acceptatie is, want de ‘offset-drivers’ waarde-
ren een ‘curve-cutting’-assistentie duidelijk niet. De onverwacht hoge acceptatiegraad
van het gebruik van de middenlijn als baanreferentie wordt verklaard door het feit dat
1) de middenlijn over het algemeen binnen het bereik van de voorkeuren van de be-
stuurders valt en 2) de ontkoppelde feedforward-kracht in de FDC HSC de bestuurders
de mogelijkheid geeft om, zonder dat dat resulteert in sterke corrigerende haptische
krachten, af te wijken van de referentie van de HSC. Hierdoor lijkt een sterke perso-
nalisatie door het nabootsen van hoe een bestuurder zelf rijdt geen duidelijke extra
voordelen te hebben bij het gebruik van de FDC HSC. Zolang de referentiebaanpositie
binnen de acceptatiegrenzen van de bestuurder valt en de HSC niet (alleen) corrigeert,
zullen bestuurders de haptische assistentie doorgaans accepteren als een nuttig en be-
vredigend ondersteuningssysteem.

Door direct bij te dragen aan het verbeteren van de acceptatie van de ondersteu-
ning van bestuurders door HSC is het hoofddoel van dit proefschrift bereikt. Dit proef-
schrift heeft ons begrip van dit probleem vergroot en nieuwe inzichten gegeven in 1)
hoe de nieuwe FDC HSC een groot deel van het acceptatieprobleem van HSC systemen
kan oplossen, en 2) hoe personalisatie met zo effectief mogelijk kan worden bereikt
voor de FDC HSC. Daarnaast heeft het onderzoek een aantal nieuwe en breed toepas-
bare methoden en algoritmes voor het modelleren van het gedrag van bestuurders op-
geleverd: 1) een modelbeoordelingsprocedure die de sterke en zwakke punten van re-
geltechnische bestuurdersmodellen kan kwantificeren, 2) een classificatie-algoritme
voor het categoriseren van de verschillende manieren waarop bestuurders een bocht
door sturen, 3) een voorpositioneringsmodel dat in combinatie met het Van-Paassen
bestuurdersmodel het eerste volledig individualiseerbare bestuurdersmodel oplevert,
d.w.z., een model dat alle belangrijke stijlen van individueel rijgedrag kan beschrijven,
en 4) de eerste personaliseerbare HSC, waarbij de ontwikkelde modelleringsmethoden
worden toegepast om gepersonaliseerde HSC te evalueren. De bevindingen en inzich-
ten uit dit proefschrift hebben verder bijgedragen aan het opstellen van richtlijnen en
kunnen toekomstig onderzoek versnellen. Enkele belangrijke voorbeelden zijn: 1) met
behulp van geïndividualiseerde stuurmodellen van de bestuurder kan de personalisa-
tie van ADAS nu in real-time worden aangepast, 2) met behulp van het ontwikkelde
classificatiealgoritme voor gereden baanposities kan een expliciete vorm van perso-
nalisatie worden geïmplementeerd, d.w.z., door bestuurders het type baanreferentie
dat hun voorkeur heeft zelf te laten kiezen, en 3) de modelleringsmethoden die in dit
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proefschrift zijn ontwikkeld kunnen ook worden gebruikt voor de personalisatie van
pad-planning in volledig autonome voertuigen.



1
INTRODUCTION

1.1. DRIVER ACCEPTANCE OF DRIVING AUTOMATION
In the era of the fourth industrial revolution, Autonomous Driving (AD) plays a vital
role [113] [153]. The current vision within the automotive industry is that fully au-
tonomous vehicles are the future [42]. This is due to the potential benefits of minimis-
ing accidents, enhancing driver comfort, decreasing environmental impact, etc [73].
However, for a successful realisation of fully autonomous driving, driver acceptance is
imperative [190] [100].

The biggest roadblocks for the successful realisation and adoption of fully Autono-
mous Driving is the psychology of the driver, not the needed technology [156]. Impor-
tant psychological factors that affect driver acceptance of AD include perceived ease
of use, perceived usefulness, perceived risk and trust [81]. A recent survey carried out
by SAE finds that 73% of respondents preferred to at least share the control with their
highly intelligent vehicle, where it is found that ’the biggest barrier to adoption of au-
tomated vehicles is ... acceptance.’ [3]. Thus drivers are not comfortable with handing
over full control and trusting an autonomous system. The most prominent reasons
stem from safety concerns due to potential hacking attacks and system malfunction
[88].

Various studies on the adoption of AD predict that in the late 2020s AD will be
available for the public [104], whereas widespread adoption and acceptance of AD will
only manifest three decades later, around 2050 [106]. In the meanwhile, the underlying
AD technologies will be used in Advanced Driver Assistance Systems (ADAS), which
contribute to ’paving’ the way towards fully autonomous driving.

ADAS are electronic driving automation systems that assist the driver in prevent-
ing accidents and increase driver comfort and convenience. Most ADAS execute their
assistance through either employing binary alarms, traded control, others use con-
tinuous guidance through (haptic) shared control [36]. ADAS systems include Lane
Keep Assistance (LKA) [70], Lane Departure Warning (LDW) [83], collision avoidance
systems [111] and the autopilot systems [34]. These type of systems have been theo-

1
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retically tested through massive computer and driver simulations, showing objective
improvements in safety and driving performance [7] [142].

Entry Entry

ExitExit

a) Individual Driver Trajectory b) Automation used Driver Trajectory

c) Example LDW

Lane Centre
Driver Trajectory
LKA/LDW

Entry

Exit

Entry

Exit

d) Example LKA

Figure 1.1: The first illustration a) shows the trajectory of an actual driver, b) shows the path of a trajectory-
planning-algorithm which many LKA and LDW build upon [55] [82], c) shows how inaccurate prediction of
a driver’s preferred trajectory can cause false LDW, the arrow represents the prediction algorithm, whereas
the red dot represents the false alarm. In d) a continuous LKA system is considered, where the driver from
a) will be unnecessarily guided towards the lane center.

Many steps are taken where the industry simply expects drivers to accommodate
and accept any added automation. However, drivers only use ADAS when they per-
ceive the automation as intuitive and cooperative [72]. With each driver having an
individual driving style, with different preferences and skill levels, the current stan-
dard ’one-size-fits-all’ assistance approach to driver support may not be satisfactory
for every individual. ADAS designs, which genuinely challenge the traditional role of
drivers, are currently not explicitly optimised for driver acceptance. In fact, in a sur-
vey conducted by the Tech Experience Index study [51], 23% of drivers felt that cur-
rent lane-keeping and centering systems are annoying and bothersome, whereas 61%
sometimes switch off the assistance, compared to only 21% that find them helpful.
Hence, the acceptance of ADAS remains a significant issue today [3]. A lack of under-
standing of an individual’s trajectory can cause alarms and support advisories that are
unnecessary and untimely. Fig. 1.1 illustrates such a mismatch in trajectory between
ADAS and driver, where an example for curve negotiation is given with an individual
driver from a) and how a current automatic controller may be designed to drive in b).
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Figure 1.2: This figure illustrates the a general ADAS control diagram for LKA systems. Here, both the ADAS
controller and the driver receive feedback from the environment, however the reference of the driver and
that of the controller are different, resulting in a mismatch of control approaches

If the trajectory that an ADAS uses as its reference driving path does not match that
of the driver, the ADAS will assist when the driver does not feel it is needed. Such
mismatches in driver trajectory would cause unnecessary guidance and suboptimal
support given by the LDW and LKA systems, as shown in c) and d). This mismatch is
can be felt at the control level, as illustrated in the control diagram in Fig. 1.2. Differ-
ent trajectories can result in different steering strategies. Hence, using an inaccurate
algorithm to predict an individual driver’s trajectory or action may result in alarms that
are perceived as false, either through binary beeps or continuous guidance [137]. This
assistance presents itself as a source of annoyance, where the driver may experience
the ’cry wolf phenomenon’ [33] (for binary warnings), rejecting the system altogether
[135]. Therefore, ’many drivers turn off this nannying technology and don’t want it on
future vehicles’ [51].

Ignoring human capabilities, limitations, and strengths by ’engineering the automa-
tion and expecting the human to accommodate to it can be a recipe for disaster.’ [158].
Until fully autonomous vehicles are the de-facto standard, designing assisting driving
automation must be done in a human-centred fashion to ensure driver acceptance.

1.2. HUMAN-CENTERED DESIGN
In 1996 the concept of human-centred design was introduced to help mitigate the ac-
cidents that occurred in the commercial aviation domain [27]. With the flight manage-
ment system and the autopilot, the cockpit provided a high level of automation, which
resulted in the human acting as a supervisor, and thus a ’back-up’ system. This gave
way to the well-documented, classic problems of loss of situation awareness, misuse,
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disuse, skill degradation etc. These human-automation problems seem to be echoing
back into today’s advancements in automotive automation. In fact, these problems
are now even more serious because the available time the driver has to possibly regain
control in a critical situation is much smaller than that of a pilot. Therefore, it is vital
to learn from and follow these guidelines.

The human-centred design guidelines give general requirements for what needs
to be present in automation that is ultimately steered by humans [27]. Yet, Charles
Billings, the author, made it clear that specifications on how to execute these guide-
lines is not possible since each system has a particular context. In this section, the
human-centred design guidelines are outlined to understand the types of require-
ments that can help improve acceptance in today’s ADAS:

Human Centered Design Guidelines [27]

1) Humans must be in command.
2) Humans must be actively involved.
3) Humans are adequately informed.
4) Humans are able to monitor the automation.
5) The automation must be predictable by the human.
6) The automation must monitor and understand the human.

The first guideline, the human must be in command, may be puzzling to some, as
some commands given by humans happen to be questionable, resulting in accidents.
However, when switching on an assistance system, the ultimate responsibility still lies
with the human driver. Even with the highest (SAE) level of driving automation that is
currently legally allowable, Level 3 [53], where the human is expected to uphold vigi-
lance whilst monitoring the driving automation, this ’fall-back ready user is expected
to take over without undue delay’ [4]. For this reason, being in command is the reality
of the driver today.

To effectively be in command, the human needs to adhere to the second guide-
line: to be actively involved. Thus, the concept of the human being a ’back-up’ system
through unrealistic vigilant monitoring is an approach incompatible with this guide-
line. Unfortunately, long hours of vigilant monitoring of ’autopilot’ driver assistance
systems is required by car manufacturers like Tesla, who blame the inattentive driver in
case of a fatal accident caused by a system inaccuracy [1]. In fact, the lack of active in-
volvement is known to lead to a loss of situation awareness, which makes it humanly
impossible to intervene without undue delay [123]. To effectively stay in the control
loop, drivers should engage in tasks that include ’perceptual, cognitive, and psychomo-
tor components so that the drivers must perceive or detect, think about, and respond
actively to some stimulus’ [27]. Without such an engaging stimulus, regaining control
may put the driver in an even more difficult situation than without any automation
[91].

To be actively involved, the driver needs to adhere to the third guideline: to be ad-
equately informed. Without information about automated features of the assistance,
involvement is delayed, as the actions become unpredictable to the human. This lack
of information could easily result in mistrust of the system. To be adequately informed,
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the driver needs to adhere to the fourth guideline: to be able to monitor the automa-
tion. This holds not only about the current actions the system undertakes, but also
future activities, i.e., to predict and understand the system’s actions. Moreover, be-
ing actively involved through monitoring is vital for building a correct mental model
of the dynamics of the system. This places systems such as Haptic Shared Control,
where the system’s action can be directly felt [44] at an advantage. Hereby, the first
four guidelines can easily be applied when realising the driver assistance concept of
haptic shared control, which is further elaborated in Section 1.3.

Finally, the last two guidelines dictate that the automation must be predictable by
the human and, that the automation must effectively monitor and understand the hu-
man. The fifth guideline can partly be satisfied when being successfully and actively
involved with the automation and the human building a correct mental model of the
system. Still, to be intuitive, the automation must respond in a way that is agreeable
to the driver. Hence, the automation must understand the driver as well, which is the
sixth guideline. Due to the human not being error-free, the automation needs to how
the driver drives normally (whilst being attentive) and correct the driver in times of
fluctuating attention or external perturbations. These last two guidelines call for each
entity understanding the intent of the other intelligent entity, creating effective team-
player dynamics between driver and highly automated vehicle. Therefore, to effec-
tively design driving automation, the automation must understand the driver and act
accordingly. Each driver has their respective unique characteristics, which essentially
calls for the need of personalised driving automation, as further discussed in Section
1.4.

1.3. HAPTIC SHARED CONTROL

A promising solution to realise guidelines 1-4 of the human-centred design principles,
defined in Section 1.2, for the framework of steering ADAS is Haptic Shared Control
(HSC). Compared to the conventional traded control approaches we find in various
ADAS today (i.e., either the driver or the ADAS is in control at a specific moment in
time), HSC is found to be more accepted by drivers [131]. It is found that the drivers’
trust in the system correlates with their ability to regain control (guidelines 2-4), an
advantage that is inherently present with HSC.

Haptic Shared Control consists of two combined elements: Haptics and Shared
Control. It is important first to define these terms to understand what is meant by
Haptic Shared Control. The definition of Haptics in the context of shared control ap-
plications, as is used in this thesis, is:

Haptics

The use of electronically or mechanically generated movement that a user ex-
periences through the sense of proprioceptive feedback as part of an interface.

Shared Control in the context of human-robot interaction is defined as given in [5].
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Shared Control

In shared control, human(s) and robot(s) are interacting congruently in a
perception-action cycle to perform a dynamic task that either the human or
the robot could execute individually under ideal circumstances.

Haptic shared control is where the human and the car automation share the con-
trol of the vehicle through torques on the shared control interface. Haptic shared con-
trol is generally implemented such that the contribution of both controllers is needed
to achieve the highest level of safety and comfort most consistently. This not only
brings the driver back into the active control loop, it can also help and guide the driver
to drive better and safer, effectively diminishing the chance of accidents [5].

For driving, the control interface is either the steering wheel or gas pedal. When
the human can feel the additional torques on the control interface in a coupled haptic
shared control system, this also provides a platform to interact and communicate in-
tentions with the driving automation [47]. Forcing the driver to stay in the active con-
trol loop does not only maintain situation awareness, but may even improve drivers’
manual skills through learning from the guidance torques [167].

As a design guideline for HSC systems, the concept of ’the horse metaphor’ is of-
ten used [57] [112]. This is where the relationship between driver and haptic shared
controller can be seen, metaphorically, to rider and horse. The horse, being an intelli-
gent being that always wants to stay safe, takes commands from the rider. Fortunately,
when the rider is slightly distracted when, e.g., reading a map, the horse does not stop
and keeps ongoing. Likewise, when the rider gives a command that results in an un-
safe situation, e.g., to gallop into a tree, the horse will evade this command, as it can
see the tree (and other obstacles on the road) and act upon it (change heading and
speed). All these, whilst intentions of both intelligent beings are interactively com-
municated through push and pull torques on the reins. Although it would be naive to
think we can create an automation that is as interactive and intelligent as a horse, the
horse-rider phenomenon is a universally understandable metaphor. An ideal to strive
towards for HSC [6].

There have already been numerous initiatives to apply haptic shared control. In
general, there are two design approaches: 1) using virtual fixtures and 2) optimal tra-
jectory guidance. The first approach essentially sets a grid of go and no-go areas, i.e.,
the torques are activated when the event of passing a threshold occurs, e.g., placing re-
pellent forces around obstacles or road boundaries, or the flight envelope in aviation
[172]. The second approach, which is the area of interest of this thesis, continuously
guides the driver on a specified trajectory. Continuous haptic shared control has been
developed for multiple manoeuvres within steering control tasks, where performance
enhancements are found in manoeuvres such as lane-keeping [32], lane changes [169],
evasive manoeuvres [136] and, above all, curve negotiation [129] [31].

Although haptic shared control has proven beneficial in terms of improved per-
formance (safer driving) and reduced effort in curves [129], it is also proven that cur-
rent systems suffer from user acceptance issues [137]. With the existing controllers,
user experiences report guidance that is perceived as too strong [45], on trajectories



1.3. HAPTIC SHARED CONTROL

1

7

that feel ’unnatural’ [31], especially in curves [128] [129]. These non-human-like, non-
personalised controllers result in disagreement between haptic shared controller and
driver, evident from opposing torques on the control interface; a phenomenon called
a haptic (torque) conflict [6]. This means that the driver fights the shared controller,
which causes annoyance, mistrust and rejection of the system altogether. Similar to
the mismatch presented in LDW and LKA ADAS, as illustrated in Fig. 1.1, the haptic
shared controller must also understand the preferences of the human driver.

To increase the acceptance of haptic shared control, this thesis proposes to add
guideline 6 of the human-centred design framework, which is achieved through effec-
tive personalisation. As an example of personalisable haptic shared control, Fig. 1.3
gives an illustration of the structure of the recently proposed ’four design choice’ HSC
architecture [177]. As the name suggests, the control structure comprises four design
choices. The haptic shared controller is essentially triggered by the first design choice:
the Human Compatible Reference (HCR). Upon changing the driver, the HCR must
adapt accordingly. The other design choices, the Strength of Haptic Feedback (SoHF),
Level of Haptic Support (LoHS) and Level of Haptic Authority (LoHA), deal with haptic
feedforward and feedback strengths, and authority, are elaborated in detail in Chapter
7.

Human Compatible 
Reference (HCR) Haptic

Controller

Strength of 
Haptic

Feedback 
(SoHF)

Level of 
Haptic

Support
(LoHS)

Actuator

Level of 
Haptic

Authority
(LoHA)

Entry

Exit

Position,
heading

Steering
commands

Environmental Feedback
Identification/ 
classification

Driver

Entry

Exit

Figure 1.3: The figure illustrates the control structure for the Four-Design-Choice haptic shared controller,
derived from the Four-Design-Choice-Architecture [177]. These comprise of a Human Compatible Refer-
ence (HCR), Level of Haptic Support (LoHS), Strength of Haptic Feedback (SoHF) and Level of Haptic Au-
thority. More details about how the HCR is generated in the identification/classification block is given in
Fig. 1.4.
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Attempts to personalise haptic shared control have so far not shown dramatic im-
provements [31], which can be traced down to the disability of various underlying
reference trajectories to re-construct the individual driver’s behaviour [155]. A hap-
tic shared controller, synonymous to a horse, can only adapt to the driver when it
possesses the intellect to distinguish between different drivers, where this intellect is
analogous to a driver model able to perceive, monitor and reproduce individual driver
behaviour or the driver’s style. With such adaptations, the interaction between driver
and shared controller becomes one that increases not only acceptance, but also re-
liance and trust.

What if the currently inflexible ’horses’ would be granted the ability to become aware of
their master’s needs and preferences across varying situations, and adapt themselves to

best serve and satisfy them? What if drivers and cars could become trustworthy
companions that can rely on each other, like Alexander the Great and his famous horse

Bucephalus.

Prof. David Abbink

1.4. PERSONALISATION
One of the key concepts mentioned in Section 1.2 is that of the automation under-
standing the human. Therefore, to ensure optimal user experience, personalisation of
systems is essential. The general definition of personalisation is [72]:

Personalisation

To make something suitable for the needs and preferences of a particular per-
son.

Specifically for ADAS personalisation, the goal is ’to improve the driving experience
and the performance of the assisted drivers by adapting the assistance system to their
preferences and needs’ [72]. Unfortunately, most technology-centred approaches do
not take into account the driver’s preference and assume the human always to accept
an ’ideal’ path, mostly the lane centre [98]. This is evident from trajectory planning
algorithms used in various driver assistance systems such as lane-keeping assistance,
departure warning, and autopilot [55], as shown in Fig. 1.1. As a step forward, general
human-like behaviour is taken into account in several studies, as researchers are start-
ing to believe that it is not only essential to develop intelligent vehicles that are safe but
path planning and prediction that is also human-like [69] [96] [86]. Incorporating such
human-like models for ADAS is found to improve performance and acceptance of the
overall driving. In fact, industrial projects like Nissan’s HumanDrive [2] will take such
concepts to the commercial market.

As humans drive differently and each has different preferences, merely basing a
support system on a one-size-fits-all human-like algorithm seems superficial and in-
sufficient. We see that there is an infinite number of ’human-like’ ways to drive, taking
an average may support a substantial slice of the driving population; however, not ev-
eryone. Driver classification studies find that there are not only numerous ways to
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classify different drivers [107] [179], some studies also find over 50 clusters of driving
styles [76]. Driver modelling studies also find a continuous range of identified param-
eters, indicating the presence of a continuum of individual driving behaviour. These
findings all support the notion of personal driving style and characteristics.

Adapting ADAS to an individual driver may leverage more significant benefits than
only considering a general ’human-like’ algorithm. Personalisation improves the driv-
ing experience with ADAS in general [101], enhancing driver comfort and safety [97].
The need for personalisation is further highlighted with driver safety being strongly
correlated to the individual’s style [143], where ADAS adaptations to a driver’s style
improve performance and safety [94].

There are two (high-level) ways to achieve personalisation, either explicitly or im-
plicitly [54]. Explicit personalisation facilitates the driver to choose a form of guidance
to his/her liking, which leaves the driver in control. However, drivers may also need to
do extra cognitive work to understand which mode they may prefer. Implicit personal-
isation is where the ADAS adapts itself to the driver over time (assuming the car is used
by a single driver, which can be traced through driver identification or facial recogni-
tion etc.). This offers a more fine-tuned and automated form of personalisation. On
the other hand, the driver may not always fully understand the adaptations made.

For both implicit and explicit personalisation, driver modelling is cardinal. Driver
models are incorporated to predict and quantify the driver’s trajectories, intentions,
and state–all to adapt or intervene through the support system. Personalisation was
pioneered for longitudinal control through adaptive cruise control [72]. More recently,
lateral (steering) control ADAS such as lane keep assist and lane change support sys-
tems are studied for personalisation [72]. A general control loop for steering ADAS is
presented in Fig. 1.2, whereas a personalisable HSC is illustrated in Fig. 1.3. Here
the generated Human Compatible Reference shown as an individual trajectory on a
curved road is generated by the identification/classification block, which employs an
algorithm that detects the (individual) characteristics of the driver from the available
environmental data and can capture/replicate it. The generated reference is then used
as input for the HSC controller, who uses this information to cater to the needs of the
individual driver.

Personalisation of ADAS through predicting driver behaviour has shown to im-
prove driving performance and driver acceptance, even when compared to a human-
like model with fixed parameters [188]. These efforts include personalisation through
identifying driver state through driver facial classification, shown to improve the per-
formance of a collision avoidance ADAS by 50% [64]. Additionally, using a driver model
to estimate driver state and predict their future trajectory, the false alarms for collision
avoidance and lane departure were reduced by 50% [160]. Including statistics of the
driver’s previous habits through classification decreases the number of false alarm for
lane departure warnings by 66% [195]. Satisfaction increases by 30% when includ-
ing driver behaviour through modelling into their lane departure warning algorithm
[189]. Driver control activity of an LKA haptic shared controller is reduced by up to
40% when personalising the parameters of an underlying driver model through rein-
forcement learning [184]. Therefore, driver behaviour modelling plays a central role in
trajectory personalisation, elaborated in the next section.
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1.5. DRIVER BEHAVIOUR MODELLING
Human driving behaviour contains intricate characteristics of nonlinearity, ambigu-
ity, and randomness, thereby making the modelling of such behaviour not straightfor-
ward. Modelling human drivers, in contrast to their time-invariant counterpart, the
vehicle, is not an easy task which, until today, is relatively poorly understood. Con-
sequently, the expensive and time-consuming prototype evaluation with human test
drivers remains an integral part of developing any ADAS [132]. As a result, understand-
ing human driver behaviour through modelling and identification is a topic under in-
tensive research [180] [103]. Driving a car requires a rich combination of cognitive and
motoric processes pertaining to make useful observations about the surrounding en-
vironment and of the traffic situation. Accordingly, all-round driver models should
include higher-level cognitive processing and lower-level operational control [105].
In fact, there are three categorised levels of driving [125]: strategic, where the route
is planned, and goals are set, tactical, where specific manoeuvres are selected which
have short term objectives, and lastly, the operational level that realises such manoeu-
vres. Although all these levels are important, consistent with a bottom-up approach,
this thesis targets on modelling the low-level operational behaviour. Nevertheless, in-
dividual differences are a result of adopting different strategies (at the strategic level),
which impacts how a manoeuvre is planned (tactical level) and are thereby differently
manifested at the operational level.

Four main types of driver steering models are described in the literature:

1. Data-driven modelling [8], which scrutinizes large amounts of (training) data
to make a mathematical algorithm that makes predictions or decisions about
driver state [64], driver style [181], driver intent [171] and also driver steering
behaviour [11] [24].

2. Analytic modelling, where driver algorithms are analytically derived from geo-
metric relationships [25] [157], or cognitive implications [147].

3. Cost-function-based models which assume that drivers formulate a function, or
criteria and constraints for acceptable behaviour [78], where weights are opti-
mised to attain certain objectives [86] [87], such as minimising the angle to the
tangent point [30] and stabilising position around a preview point [108].

4. Control-theoretic modelling, where the focus is placed on the human’s control
dynamics, identification studies have shown that humans use feedforward (pre-
view) control to anticipate the oncoming road and feedback control to stabilise
the car [163].

The driver modelling used in the thesis focuses only on both data-driven mod-
elling and control-theoretic modelling. The choice of these specific modelling types
is made due to the increased diversity in modelling that these modelling frameworks
provide, i.e., individual differences and the diversity and specifics of individual trajec-
tories maybe not be captured when assuming a driver to optimise certain costs, or re-
strict the driver to analytical derivations of behaviour. In the human controller, there
is a bit of inconsistency that may not be captured with a fixed cost function or with
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theoretical derivations of how drivers are assumed to behave. In fact, in this thesis,
we show that drivers under normal driving conditions do not appear to consistently
follow behaviour that would emerge from either optimal control models.
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Figure 1.4: This figure illustrates two selected types of driver modelling which can potentially describe per-
sonalised trajectories. The modelling methods can be used to generate the Human Compatible Reference
for the haptic shared controller outlined in Fig. 1.3. The two modelling approaches are rule-based trajectory
classification and control-theoretic modelling. Both these approaches use environmental feedback (possi-
bly CAN signals) to generate the HCR. The classification technique first classifies a driver’s trajectory and
then uses the resulting class to select the ’average’ driver behaviour in that class from a database. Note that
the classifier itself does not generate the HCR, for that, a database of (past) driving behaviour is needed. The
control-theoretic model identification method uses the environmental feedback data to optimise model
parameters which ensure the model’s best fit to the individual’s data. Hereby, using only environmental
feedback and a (considerable) processor, the HCR can be generated.

Data-driven modelling [8], are based upon vast amounts of data, which may come
from driving simulator data [11], the vehicle’s data output Controller Area Network
(CAN) [61], or more recently, smart-phone data [134]. This approach embodies sev-
eral mathematical techniques, including basic statistical classification, where patterns
in the data are used to categorise and anticipate driver manoeuvres [97] [13] and indi-
vidual styles [191]. Another mathematical technique is data-generative models, where
patterns between input features such as sensed road curvature, and driver output sig-
nals such as steering angles are analysed through machine learning methods such as
neural networks [11] or Gaussian Mixture Models [182]. From naturalistic driving stud-
ies, there is evidence that there are different categories of drivers from trajectory anal-
ysis [162]. However, a mathematical algorithm to formalise these categories is missing.
Therefore, this thesis develops a type of basic statistical classifier, in particular, to clas-
sify different types of driver steering behaviour through a novel rule-based trajectory
classifier. How this classifier is used to generate a trajectory for the HCR illustrated in
the FDC control structure of Fig. 1.3, is illustrated in Fig. 1.4. The classifier itself is not
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used to generate a trajectory, but, previously classified driver data (from a database) is
used to generate such a reference.

Control-theoretic driver steering models characterise the driver using a combina-
tion of transfer functions. Each block represents fundamental characteristics, like an
anticipatory gain, time delay, and neuromuscular dynamics. These individual blocks
receive anticipatory (road following) feedforward and (various) compensatory (distur-
bance rejection) feedback signals, transforming them into signals that together make
up the drivers steering behaviour [48]. Such control-theoretic models have been devel-
oped through both analytic derivations [146] [177] [150], and objective human steering
control identification [119] [175]. These models can provide an accurate prediction of
the individuals’ control output, i.e., steering angles and trajectory. As illustrated in
Fig. 1.4 control-theoretic models can be used to generate the HCR. Moreover, when
coupled with an (unscented) Kalman filter, real-time updates of meaningful parame-
ters such as time delay and neuromuscular stiffness can be traced [12]. These models,
adapted in real-time, can directly be used for personalisation. Albeit, an appropriate
selection method to determine which of these models would best allow for person-
alised guidance is still missing.
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Figure 1.5: This figure illustrates the differences in the level of personalisation with different driver steering
and trajectory modelling techniques. Control-theoretic trajectory modelling has the potential of providing
full personalisation, if and only if the model is able to capture these different drivers, through individual
control-theoretic modelling. Data-driven, rule-based trajectory classification, essentially groups drivers to-
gether, providing a class-average type of personalisation. The One Size Fits All (OSFA) condition illustrates
the grouping of all drivers into one category.

This thesis focuses on both control-theoretic driver steering and trajectory mod-
elling and rule-based trajectory classification to faciliate personalisation in HSC. Al-
though both methods output driver steering and trajectory behaviour, their differences
should be clearly understood. Fig. 1.5 illustrates this difference effectively through
metaphorically inferring individual drivers as dots, where their style is a specific colour.
The corresponding box that the individual driver falls into is the respective driver (tra-
jectory) behaviour that the specific model outputs, where the colour corresponds to
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the modelled trajectory style. For illustration purposes, only three drivers on the op-
posite ends of the ’style spectrum’ are shown.

Descriptive control-theoretic modelling has the potential, with a model that can
reproduce different individual driver behaviour, of providing full personalisation. Here,
the understanding of the human by the automation would be unique to each individ-
ual, just as the continuous spectrum of colours are. This type of personalisation can
only be implicit. Moreover, compared to explicit personalisation, its is more compu-
tationally laborious due to its fine-tuning. It also means that possible adaptations are
made without the driver being informed (due to the implicit form of personalisation).

Rule-based trajectory classification can provide personalisation at a ’group’ level,
or give class-average personalisation. This is done by first applying the classifier to a
dataset, where the average in a particular class outcome can be used for the group’s
guidance. Compared to full personalisation, see Fig. 1.5, three individual drivers on
opposite ends of the spectrum are each placed in the same class, where the class-
average delivers the average behaviour in that respective class. This type of person-
alisation can be implemented both implicitly and explicitly. While using the class-
average as an explicit form of personalisation may not only be computationally effi-
cient, it gives the driver the freedom to choose the type of trajectory and is a bounded
solution, i.e., it will not adapt to potentially unsafe behaviour. Finally, an average driver
type guidance, provides One-Size-Fits-All support, where all the drivers in the spec-
trum are placed together into one ’box’.

1.6. RESEARCH GAP

To summarise, driver acceptance of Advanced Driver Assistance Systems is a road-
block to enhance driver safety. A promising way to improve driver acceptance and to
increase safety is to employ haptic shared control, which is an effective way to keep
drivers in the active control loop, maintaining the benefits of situation awareness, and
ensuring effective monitoring of the environment and automation. However, torque
conflict (opposing intentions between driver and automation manifested in the con-
trol level) is reported to be a bottleneck for a driver’s acceptance to haptic shared con-
trol. Particularly, these conflicts are found to be highest in curves.

A promising approach found to increase acceptance in other ADAS and, a reliable
way to align the ’intentions’ of driver and automation is through personalisation. This
personalisation can be effectively realised through adapting the system’s adopted tra-
jectory. Exactly how to achieve successful personalisation in curves is still not effec-
tively understood, nor is the required level of personalisation known. It is as of yet still
unknown what type of driver steering and trajectory model(s) are suitable to generate
personalised trajectories, if any, due to the lack of a standardised way to compare and
evaluate the output performance of driver behaviour models with different structures
and complexities. Moreover, whether using individualised driver steering and trajec-
tory models improves acceptance of HSC systems by reducing conflicts between user
and shared-controller, is only hypothesized and not verified yet.
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1.7. RESEARCH GOAL
The challenges of the research gap to increase driver acceptance as mentioned in the
previous section forms the backbone of the research goal of this thesis. Therefore the
goal statement is:

Thesis goal

Develop model-based approaches to personalise trajectories for steering
through curves to enhance acceptance in haptic shared control systems.

1

Part I: Driver Model 
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Part II: Driver 
Trajectory

Classification
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Quantification and
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Part IV: Application 
with Haptic Shared 

Control

Driver Steering and Trajectory Modelling Application

1 2 ..N

Figure 1.6: This figure illustrates the four parts carried out in this thesis to achieve the goal. These are also
indicated in Fig. 1.7.

1.8. APPROACH
The realisation of the goal of this thesis is carried out in four parts. These are illustrated
in Fig. 1.6.

I Driver Model Assessment This part aims to develop a selection technique to objec-
tively determine what model(s) are most suitable to describe and identify indi-
vidual drivers.

II Driver Trajectory Classification This part aims to develop a classifier that can effec-
tively categorise the different types of observable driver trajectory styles in the
driving population.

III Driver Prepositioning This part aims to develop a control-theoretic driver steering
and trajectory model technique that can describe individual trajectories, which,
as shown in this thesis, can only be achieved by incorporating prepositioning
(driver behaviour before curve entry). This individualised driver model can fa-
cilitate a high level of personalisation.

IV Haptic Shared Control Application This part applies and evaluates the developed
personalised driver steering and trajectory model(s) in a haptic shared controller,
to verify the effectiveness of personalisation.
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The approach taken in these four parts are elaborated in the following sections.

1.8.1. PART I: DRIVER MODEL ASSESSMENT
With the rich body of driver models available in literature [25] [132] [114] [180] [103]
[95], it is not only problematic to choose what model to use, but it is also unknown
whether any can accurately reproduce individual driver steering and trajectory be-
haviour. In literature, a systematic method to evaluate and compare the performance
of control-theoretic driver models is absent. Therefore an effective methodology for
rating and comparing the key characteristics of different driver models is essential. In
this thesis, the development of the assessment method and assessing different models
is carried out over two chapters. First, a baseline methodology is layed out for simple
and similar models. Second, this model assessment methodology is updated to allow
for comparison of different types of (more advanced) control-theoretic models.

In the first chapter of this part the baseline methodology is formalised. The base-
line methodology introduces a set of general criteria comprising of descriptiveness, i.e.,
the ability of a model to replicate individual drivers, and identifiability, i.e., the extent
to which these models can produce unique and meaningful parameters. To illustrate
the proposed baseline assessment method, it is applied for a detailed comparison of
two (simple) driver models.

In the second chapter of this part, the baseline assessment procedure is updated
in two ways: 1) it is made driver trajectory style dependent, from the driver trajectory
classes defined in Part II, and 2) it is standardised, i.e., the obtained assessment results
can be used to compare different models that exhibit different types and number of
parameters. The improved and updated data-driven model assessment method is ap-
plied to three control-theoretic driver steering and trajectory models: the Mars model
[155], Van der El Model [175] and Van Paassen Model [177]. The Mars model is chosen
as this model was applied to haptic shared control and has also been used for real-
time driver disturbance detection [12]. The Van der El model is a recently developed
control-theoretic driver steering model, derived using objective system identification
of driver steering behaviour. The Van Paassen model is a recent novel driver steer-
ing and trajectory model, that is explicitly developed for haptic shared control. The
standardised assessment method is applied to these three models, each exhibiting dif-
ferent numbers of parameters and structural elements, to show which model is most
suited for personalisation.

1.8.2. PART II: DRIVER TRAJECTORY CLASSIFICATION
The first criterion outlined in Part I is descriptiveness: the ability of a model to cap-
ture curve driving steering and trajectory behaviour of individual drivers. This part
formalises the specific types of trajectories that a model should be able to capture.
To determine these trajectory types, Part II executes a driving simulator experiment
with 45 subjects driving on three representative roads, at three different driving veloc-
ities. From the collected data, two rule-based trajectory classifier are developed, one to
classify empirical data and the other to additionally account for trajectories produced
by conventional control-theoretic models. Conventional control-theoretic models as-
sume drivers to start the curve at centerline, however, there is no empirical evidence
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for this. Therefore, an additional classifier is formulated to explicitly account for trajec-
tories that are generated by these models. The classifiers are found to not only provide
a mathematical algorithm that can distinguish between the different types of trajec-
tory patterns in the driving population, but also formalise the different trajectory types
that driver models should be able to replicate, i.e., descriptiveness. Additionally, it can
also be used by itself as a ’driver trajectory model’ for personalisation. The empirical
classifier is used as a means to achieve ’class-average’ personalisation (as outlined in
Fig. 1.5) in Part IV.

1.8.3. PART III: DRIVER PREPOSITIONING
All drivers show a consistent way in which they laterally position themselves before
entering a curve, defined in this thesis as prepositioning. Unfortunately, the nature of
control-theoretic driver steering models does not allow for any anticipation or lateral
positioning for the curve before curve onset. This is because most models are ’acti-
vated’ by road curvature, or a change in heading, with at most 1 s of preview. To im-
prove the current understanding of this behaviour, this part is carried out in two chap-
ters. First, the composition of prepositioning is geometrically quantified and how it
is affected by changing road radius and velocity is investigated. Second, a mathemat-
ical model is proposed to capture drivers’ prepositioning behaviour. Fitting metrics
are used to verify the developed model for all types of drivers. Moreover, the preposi-
tioning model is merged with the best performing control-theoretic model from Part I.
Finally, the model assessment criterion: descriptiveness, is applied to show the added
value of including prepositioning behaviour to a driver model.

1.8.4. PART IV: APPLICATION WITH HAPTIC SHARED CONTROL
Application with haptic shared control is carried out over two chapters. First, a person-
alisable haptic shared controller is realised and implemented. Second, personalised
haptic shared control, and the levels of personalisation are evaluated.

In the first application chapter, a realisation of the novel ’Four-Design-Choice-
Architecture’ [177] is newly implemented as the ’Four-Design-Choice’ (FDC) haptic
shared controller. This haptic shared controller was chosen because it is the first to
separate controller reference from haptic controller part, which facilitates indepen-
dent personalisation of the controller’s reference (trajectory). To test out the efficacy
of the control structure and the controller’s potential to personalise, a human-in-the-
loop experiment is carried out. Three haptic shared control implementations are tested
1) the conventional HSC [31] 2) the FDC HSC with a driver modelled reference for the
average driver, a One-Size-Fits-All implementation and, 3) the FDC HSC with a driver
modelled reference for individual behaviour, a (limited) personalised implementation
where prepositioning is not considered. The driver model used to identify driver be-
haviour and thereby generate the controller reference is the Mars model, which is
a prominent control-theoretic driver model used for haptic guidance [155], and as-
sessed in Part I.

In the second chapter of this part, personalisation is evaluated. The experiment
carried out in this chapter tests two different groups of drivers (classified using the
trajectory classifier of Part II). These are the most occurring driver class offset drivers,
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and drivers that try to optimise their steering demand and lateral acceleration, curve-
cutters. Four different types of independent FDC controller references are examined:
1) a fully personalised reference, 2) a class-average personalised reference, 3) the cen-
treline (considered as a baseline because it is the industries standard) and, 4) the other
groups class-average reference. Additionally, these controller references can be served
to the driver in different ways, determined by the HSC feedforward gain. Two different
feedforward gains are tested because the first chapter of this part finds that this gain
has an impact on driver acceptance. Note that for the fully personalised reference,
recorded data were used; however, the individualised control-theoretic model from
Part III could also be used. The results of this part verify not only whether personalisa-
tion increases acceptance, but also what level of personalisation may be required.

1.8.5. SCOPE

All the driver steering and trajectory models in this thesis assume fixed speed, thereby
focusing on steering applications such as curve-negotiation. This assumption is mainly
made for fundamental understanding. When adding another axis of control, motoric
and cognitive interferences may take place [20], cluttering the analysis of steering be-
haviour. With the focus on curve driving, this thesis takes an in-depth look into driver
trajectory behaviour. Moreover, the driver models tested in this thesis that generate
these trajectories, are control-theoretic, linear time-invariant models, although real
drivers may show time-variant artefacts such as fatigue. To focus on a fundamental
understanding of how drivers use visual information to negotiate a curve, in this the-
sis, all experiments are performed in a fixed-based driving simulator. Even though, in
real-life, drivers perceive and respond to vestibular cues when negotiating a (sharp)
curve. Nevertheless, this vestibular feedback is only used in the curve, prepositioning
is triggered purely based on visual information.

This thesis thus aims to improve driver acceptance by experimentally demonstrat-
ing the benefits personalisation of haptic shared control through both driver trajectory
behaviour classification and state-of-the-art control-theoretic driver modelling, deter-
mined offline. This thesis gains a deep understanding of the fundamentals of individ-
ual driver modelling and the carried out experiments are used to develop new design
guidelines which can be used for real-time implementations of personalisation.

1.9. THESIS OUTLINE
The outline of this thesis, sectioned into four parts, is presented in Fig. 1.7.

Part I consists of Chapters 2 and 3, where the methodology for evaluating and com-
paring control-theoretic driver models is developed and applied to five different mod-
els in total. In Chapter 2, the assessment method is developed, allowing there to be a
formalised rating for driver steering models. In Chapter 3, the assessment method un-
dergoes two further developments. First, it becomes mathematically standardised, to
allow for comparisons between models of a different number of parameters. Secondly,
the method becomes data-driven, i.e., dependent on the classes defined in Chapter 4
as representatives for the types of drivers found in the driving population. In practice,
Chapter 4 is carried out before Chapter 3.
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Part II consists of Chapter 4, which focuses on driver trajectory classification. Two
rule-based classification methods are introduced, and the effects of changing driver
speed and road curvature on trajectory class outcomes is determined.

Part III consists of Chapter 5 & 6. These address driver steering behaviour before
curve entry, defined as prepositioning. Geometric quantifications of this behaviour
in terms of trajectory are made in Chapter 5, based on collected experimental data.
At the same time, these geometric quantifications are used in Chapter 6 to develop a
mathematical model that can capture the different prepositioning behaviours present
in the population. In Chapter 6 the developed prepositioning model is combined with
the best performing control-theoretic model from Chapter 3, to show its benefits for
different classes of curve driving steering and trajectory behaviour.

Chapter 4
Driver Trajectory
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Chapter 5
Driver Prepositioning 
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Driver Prepositioning 
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Figure 1.7: This figure illustrates the outline of the thesis in relation to the research parts, see Fig. 1.6. The
cylinder shape indicates that a dataset has been collected in a particular Chapter through a human-in-the-
loop experiment.

Part IV consists of Chapter 7 & 8. Here the effects of personalisation are tested in an
application with haptic shared control. In Chapter 7, limited personalisation is imple-
mented using a state-of-the-art control-theoretic driver model. Note that in practice,
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Chapter 7 is carried out before Chapter 3. In Chapter 8, class-average and full per-
sonalisation are directly compared, facilitated by the developed rule-based trajectory
classifier from Chapter 4 and the developed FDC HSC from Chapter 7.

Finally, Chapter 9 wraps-up this thesis where conclusions, design guidelines and
recommendation are given.
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2
MODEL ASSESSMENT METHOD:

SIMPLE DRIVER MODELS

Remember that all models are wrong; the practical question is how wrong do they have
to be to not be useful.

George E.P. Box

Part I of this thesis, which comprises two chapters, deals with driver model assessment.
This first chapter sets the foundations by proposing a model assessment method, whereas
the second chapter compares and assesses three different and prominent control-theoretic
driver steering models. This chapter introduces the criteria of the basic assessment method:
1) descriptiveness, the model’s ability to capture different types of steering behaviour,
2) identifiability, the ability of the model for unique mapping between a steering be-
haviour and a parameter combination, and 3) realism, the parameter span resulting in
realistic steering behaviour. The utility of the introduced assessment method is shown
by analysing and comparing two driver models: both assuming proportional control on
a predicted lateral position, comprising a gain and lookahead time.

The contents of this chapter have been published as:

Barendswaard, S., Pool, D.M., Boer, E.R., Abbink, D.A., ’A Method to Assess Individualized
Driver Models: Descriptiveness, Identifiability and Realism’, Transportation Research Part
F: Psychology and Behaviour,Volume 61, Pages 16-29.
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2.1. INTRODUCTION
For some driver assistance systems (DAS) mathematical models of human driver con-
trol behaviour are indispensable [6, 124]. Specifically, DAS that collaborate with the
human on an operational level also needs to be tuned to the human’s timely skill-based
behaviour [79]. For a good tuning, we need a proper grip on human behaviour in real-
time, which can be achieved through identifying computational driver models (that
consider environmental and human changes) online [12].

In literature, the focus of driver modelling is directed towards a fundamental un-
derstanding of how humans drive. Research has been done on how human sensors
pick-up information from the environment through; visual, vestibular and somatosen-
sory receptors to form a deeper understanding by developing relevant models [132].
Many models focus on the visual receptors of the human, selecting environmental
cues from the complex three-dimensional visual scene, with both a perception of road
path geometry and optic-flow [62]. For example, most driver steering models are based
on the hypothesis of parallel high- and low-frequency compensation [48, 75, 174], of-
ten coupled to dedicated “far” and “near” preview/tangent points [116, 145, 155], re-
spectively. Driver steering models currently implemented in DAS are often, for practi-
cal reasons, simple – e.g., two-parameter (single preview point) – driver models [129,
144].

What is still missing in the framework of driver (steering) modelling, is a structured
approach to assess driver models’ practical capabilities. Specifically, their abilities in
capturing different realistic driver steering behaviour and the corresponding ability of
unique mapping between that behaviour and an identified parameter set are still miss-
ing. The lack of a systematic assessment method is a bottleneck to determining which
elements of a driver model, be it structure (i.e., inputs and outputs, model equations)
or the number of parameters, is beneficial and necessary for a model. Driver mod-
els’ practical capabilities in capturing different types of drivers can be enhanced by
using more parameters. However, then the mapping between a modelled driver out-
put and parameter set becomes less unique, resulting in a tradeoff [10, 49]. A lack of
a formal quantification of model characteristics has prohibited the fair comparison
of existing driver models and thereby, the determination of an optimal driver model,
for a given application. More specifically, we lack a comprehensive analysis of model
performance in terms of 1) descriptiveness, the capacity for capturing realistic human
behaviour and style variations, 2) identifiability, the success of unique parameter re-
trieval and 3) realism, avoiding unrealistic driver model steering behaviour.

As an attempt to bridge the missing link in the driver (steering) modelling litera-
ture, this chapter introduces the needed criteria for a systematic quantitative assess-
ment method for the sake of model performance analysis. The introduced assessment
method is demonstrated via comparing a linear prediction driver model, used for in-
dividualisation of haptic shared control by means of driver identification [31], with a
nonlinear prediction driver model used as part of an underlying controller in [128, 129].
The models’ descriptiveness is determined to evaluate whether the models are able to
capture different trajectories in the lateral position domain. Real human driver data
for comparison is also illustrated, taken from recent simulator experiments [31].
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Figure 2.1: This figure illustrates a flow-diagram that presents how the three criteria (Descriptiveness, Identifiability, Realism) are generally computed and evaluated.
The inputs comprise a Driver X, a reference parameter set Θ, road data and the considered parameter span ~Θ. The Driver X, i.e., empirical driver behaviour of an
human driver, is used for experimental identifiability. The parameter set Θ is used for inherent identifiability. The road data and considered parameter span are used
to compute the driver model response at every entry of the parameter span ~Θ which results in the model span ~D~Θ. The model span is used in the identifiability
preprocessing block to evaluate how close Driver X or the model response to Θ is to each of the entries in the model span. For the realism criteria, each entry in the
model span is evaluated in terms of whether it is realistic (where being realistic is defined in Section 2.2.1) and descriptiveness determines the trajectory area that the
model span covers in the lateral position domain.
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The identifiability will be investigated in twofold, through an inherent model- sen-
sitivity type analysis and by examining the sensitivity of parameter retrieval based on
experimental data. These analyses are done in both the lateral position and steering
angle domain. The models’ capacity for capturing realistic human steering deflections
is verified by quantifying human-like behaviour (realism) in terms of avoiding many
steering wheel oscillations.

This chapter is structured as follows: Section 2.2 gives a description of the three
assessment criteria and elaborates on how they are quantified. Section 2.3 describes
the driver models from [31] and [128, 129] that are assessed in this chapter. Section 2.4
presents the results of the assessment, along with a summarised objective comparison
of the models. Finally, Sections 2.5 and 2.6 are the discussion and conclusion.

2.2. DESCRIPTION OF THE ASSESSMENT METHOD
This model assessment method provides a complete model performance analysis and
provides a platform for a fair comparison between multiple driver models. The method
is based on three criteria: Realism, Identifiability and Descriptiveness. These criteria
are computed based on four inputs and a driver model, as illustrated in Fig. 2.1. The
inputs are the road data (consisting of road geometry, road curvature and road width),
the parameter span ~Θ and the identifiability inputs (parameter set Θ and Driver X).
The road geometry provides the environmental cues for the driver model simulation,
where the exact signals extracted from the road geometry depend on the driver model.
The parameter span ~Θ, for all driver model parameters within Θ, is a subspace of (-
∞,∞). It is essential to choose this span wisely to include for extremes of the driver
steering model. The parameter set Θ is input for the inherent identifiability, whereas
Driver X is input for the experimental identifiability.

For all three criteria, generating the models Model Span is necessary. Given the
road geometry, the model span simulates the driver outputs of the driver model for
each parameter combination defined in the parameter span ~Θ. This vector of driver
model outputs ~D~Θ (where steering angle and lateral position, amongst others, are
driver model outputs {δs ,sl at } ∈ D) is then used as input for all three criteria prepro-
cessing blocks; Identifiability preprocessing, Realism preprocessing and Descriptive-
ness preprocessing. Each of which is elaborated in the criteria sections. The output
of the criteria computation gives a quantitative output which can be used to classify a
model and also a means to compare models with each other.

These three criteria are elaborated, giving both their general definitions’ and spe-
cific implementations’ in the following.

2.2.1. REALISM

Realism is generally defined as: the parameter span of the driver model generating re-
alistic driver (steering) behaviour.

The realistic parameter span results from examining the Realism Metric as given in
Fig.2.1, specified in this chapter by analysing the modelled steering wheel deflections
δs , through the steering reversal rate SRR. It can be seen in Fig. 2.2, that the signal of
interest extracted from ~D~Θ is the steering angle ~δs~Θ

. The matrix signal ~δs~Θ
is examined
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Model
Span ~D~Θ
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~δs~Θ
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Output
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SRR~Θ

Figure 2.2: This figure illustrates a flow-diagram that presents how the Realism Preprocessing Block is
specifically implemented. The input is the model span, from this the steering angles (δs ) are selected

for its steering reversal rate SRR, which tests for its number of oscillations. The steer-
ing reversals are defined as the number of times that the steering wheel was reversed
by a magnitude greater than 2 deg [118] around a local minima and maxima of steer-
ing wheel angle δs . The SRR block produces another matrix signal ~SRR~Θ which has

the same dimension as ~δs~Θ
. The signal ~SRR~Θ becomes an input to the Realism crite-

ria which decides upon a realistic ~Θ (less than 5 oscillations per curve) for which the
steering oscillations are acceptable, providing the parameter area of ~Θ as quantitative
output. A large realistic parameter area means more flexibility for choosing a param-
eter set, which is generally good. Another output from this criteria is the parameter
span of realistic steering reversals realistic~Θ, input to the descriptiveness block.

2.2.2. DESCRIPTIVENESS
Descriptiveness is generally defined as: the extent to which a driver (steering) model is
capable of capturing different driver (steering) behaviour.

Input

Realistic
~Θ

Road

Model
Span ~D~Θ

Width

Selection

Filter

Output
Signal

~slat~Θ

~slat~ΘR

Figure 2.3: This figure illustrates a flow-diagram presenting how the Descriptiveness Preprocessing Block
is specifically implemented. The model span, realistic parameter span and road width are taken as inputs.
The realistic parameter span and road width are used in the selection process to select trajectories (sl at )
that are produced by the realistic parameter span and fall within the road boundaries.

In this chapter, we define the extent of capturing different driver steering behaviour
in the lateral position domain, as a distinction between different types of driving steer-
ing behaviour for constant velocity simulations is predominantly found in driver tra-
jectories (the sl at response). In Fig. 2.3, the signal of interest is the lateral deviation
~sl at~Θ

, which is extracted from the driver model span ~D~Θ. The complete modelled lat-
eral deviation span is filtered by only taking through the signals which are contained
within the road width, and that is not resulting from a unrealistic parameter set. The
filtered matrix signal~sl at~ΘR

has a smaller dimension than~sl at~Θ
due to leaving out un-
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realistic signals. The signal~sl at~ΘR
(the realistic sl at span in Fig.2.1), is used as input to

the descriptiveness criteria where the realistic lateral position span is quantified as a
percentage area of the total descriptiveness area. The larger this percentage, the more
descriptive the model becomes.

We define a descriptiveness area of sl at (lateral position) in which all the extremes
of curve cutting and over turning that lie within the limits of the road-width are con-
tained. All types of driver behaviour, labelled as swinging, correcting, cutting, and
drifting [162], should lie within the bounded descriptiveness area. The descriptive-
ness area is given as a grey block illustrated in Fig. 2.4. The descriptiveness area starts
1 second before the curvature begins and ends 1 second after the curvature ends be-
cause, for curve driving, preview/prediction time is usually around 1s [174] [31].
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2

Figure 2.4: Top Figure: curvature profile with a curve radius of 250m, for a velocity of 25m/s; a curve length of
150m. Bottom Figure: representation of ideal model descriptiveness area given in grey for the corresponding
curvature profile and a 3.6m road width, the dashed line at sl at =0 represents the lane center.

2.2.3. IDENTIFIABILITY

Identifiability is generally defined as: the ability for unique mapping between a given
driver (steering) behaviour and a parameter combination.

Identifiability looks into the sensitivity of a given driver steering behaviour to vari-
ations in model parameters (that would produce almost the same behaviour). This
chapter realises this by defining two different categories of driver steering behaviour,
that which comes from the driver model itself, and that which comes from experimen-
tal data of a human driver. Resulting in two different types of identifiability; inherent
and experimental driver identifiability. Inherent identifiability evaluates the extent to
which a simulated model time series can be uniquely and accurately identified using
the same model. In contrast, experimental driver identifiability evaluates the extent
to which an experimental driver time series can be uniquely and accurately identified.
Mathematically, given a driver model where the parameter spaceΘ is finite, we declare
the driver model output D to be identifiable if the mapping Θ→ DΘ is unique. This
implies that:
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Figure 2.5: This figure illustrated a flow-diagram that presents how the Identifiability Preprocessing Block
is specifically implemented. There are two types of identifiability considered, that of experimental identifi-
ability and inherent identifiability. For the experimental identifiability an empirical drivers output is used
(Dexp ) and compared to the model span to output the experimental identifiability VAF matrix (V AFexp~Θ

).

For inherent identifiability, a single modelling output (DΘ) is used for comparison with the model span to
output the inherent identifiability VAF matrix (V AFΘ~Θ

).

DΘ1 = DΘ2 −→Θ1 =Θ2 f or al l Θ1,Θ2 ∈Θ (2.1)

As given in Fig.2.5, this unique mapping is tested for both inherent and experi-
mental identifiability. For inherent identifiability, the model’s output given a param-
eter setting Θ is DΘ. Whereas for experimental identifiability a real driver X is to do
an experiment to obtain their driver steering behaviour Dexp . Simulated time domain

response DΘ̂ (a single realisation of the model span ~D~Θ) is compared through the VAF
metric to the reference time domain series DΘ for inherent identifiability and Dexp

for experimental driver identifiability. Equation 2.2 illustrates the VAF equation for in-
herent identifiability, whereas for experimental driver identifiability DΘ is substituted
with Dexp .

VAF =
(

1−
∑N

k=1 |DΘ[k]−DΘ̂[k]|2∑N
k=1 D2

Θ
[k]

)
×100% (2.2)

The VAF represents the normalised sum of errors between two signals in the time
domain subtracted from unity, where N is the number of samples. The higher the VAF,
the better the driver model output DΘ̂ from the model span is able to fit the baseline
time series DΘ (for inherent identifiability) or Dexp (for experimental driver identifi-
ability). A VAF of 100% means that measured and modelled signals are identical, and
the quality of fit (as given in Fig.2.1) is high. In principle, other metrics that measure
quality of fit can be used; however, VAF is preferred as it is widely used in identification
literature [19, 174]. The Variance Accounted For (VAF) between the signals DΘ, Dexp

and the ~D~Θ is used to obtain V AFΘ~Θ and V AFexp~Θ
respectively. These are used as input

signals for the identifiability criteria.
A quantification of identifiability is defined as the identifiability space, i.e., the pa-

rameter space where the VAF is between 95-100%. When this space is large, the map-
ping between driver behaviour and parameter set becomes less sensitive, less ’unique’
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and less identifiable (i.e. the steering behaviour resulting fromΘ is almost the same as
2Θ). Therefore there is an inversely proportional relationship between identifiability
and identifiability space.

In this chapter, two driver outputs D are of interest: lateral position sl at and the
steering deflections δs , as these two model outputs are mostly used for human con-
troller identification [12, 19, 31].

2.3. MODELS FOR ASSESSMENT
This section carefully describes two simple driver steering models, which are assessed
in this chapter using the criteria defined in Section 2.2. Both models have the same
underlying concept of how drivers control a car: by performing proportional control
(with control gain Ky ) on a predicted lateral position (a function of look-ahead time
tLH ). Although both models, are two-parameter models, having a gain Ky and look-
ahead time tLH , they are very different on a detailed level, making them suitable for
such model performance comparison and scrutiny. The two models tested in this
chapter are referred to as the ’linear’ and ’nonlinear’ prediction model. Both models
are lateral control models, assuming constant velocity. To facilitate a fair comparison
with the experimental driving data in [31], the vehicle dynamics used for both models
in this chapter is identical to [31], a modified bicycle model, presented in Appendix
A.1.

2.3.1. LINEAR PREDICTION MODEL
The linear prediction model, see Fig. 2.6, was used for individualization of haptic
shared control through driver identification in [31]. It is one of the lowest-order and
most simple steering models of curve driving behaviour available.

Although this model controls on predicted lateral position, the structure in Fig.
2.6 shows that the model is a compensatory PI controller, taking current heading as
a compensatory input cue, (ψr (t )−ψg (t )). The vehicle’s lateral velocity with respect
to the road center vl atr (t ) can be estimated using a small angle approximation and a
constant longitudinal car velocity vlong assumption, as shown in Eq. (2.3). This causal
linear approximation of lateral position based on a current heading cue uses a similar
fundament as the approximation of lateral velocity made in the vehicle/road dynamics
of [145].

vl atr (t ) = vlong (ψr (t )−ψg (t )) (2.3)

Here ψr (t ) is the heading angle of the road and ψg (t ) is the heading angle of the
car. The approximated lateral position can be continuously integrated to obtain an ap-
proximation of lateral displacement from the reference lane ŝl at , as given in Eq. (2.4).

ŝl at (t ) =
∫ t

0
vl atr (t )d t (2.4)

A prediction of the future lateral position is given as a linear extrapolation given
the current lateral velocity vl atr (t ) multiplied by a look-ahead time tLH , summed to
the current approximation of lateral position ŝl at (t ), as given in Eq. (2.5).
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Figure 2.6: This figure illustrates the linear-prediction driver-model architecture used for identification in [31]. The model parameters are indicated in green: the
lookahead time (tLH ) and the compensatory position error gain (Ky ). The road heading ψr (t ) at current time is taken as reference input, then, the heading error
(ψr (t )−ψg (t )) is scaled with longitudinal velocity (vlong ) to obtain the lateral velocity (vl atr (t )), by making a small angle approximation. The lateral velocity is
integrated to obtain an estimate of the current lateral position (ŝl at (t )). Additionally, the lateral velocity is multiplied by lookahead time (tLH ) and summed to the
current estimate of lateral position to obtain a linear estimate of lateral position ahead (ŝl at (t + tLH )). The lateral position ahead is then scaled with gain Ky .
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ŝl at (t + tLH ) = ŝl at (t )+ vl atr (t )tLH (2.5)

Note this causal prediction of lateral position is then not compared to the future
nearest road point, in contrast to [186] and [144]. The driver is modelled to perform a
proportional control on a linear causal prediction of the future lateral position as given
in Eq. (2.6).

δs (t ) = Ky ŝl at (t + tLH ) (2.6)

This type of linear causal prediction as a function of heading error results in large
inaccuracies of lateral position prediction during a curve, that could already be im-
proved when taking heading rate into account [145]. Moreover, with the lack of a feed-
back loop on the road ahead, this model does not include any anticipation or preview.

2.3.2. NONLINEAR PREDICTION MODEL
Eq. (2.6), presenting the human performing proportional control Ky on predicted lat-
eral position, a function of look-ahead time tLH , is also applicable to the nonlinear
prediction model as given in Fig 2.7. However, in contrast to the linear prediction
model, the nonlinear model predicts by taking vehicle yaw rate ψ̇g (t ) and body lat-
eral velocity vl at (t ) into account. Estimating ŝl at (t + tLH ) is then done by closing the
future lateral position loop. Consequently, the nonlinearity stems from both the non-
linear mapping between look-ahead time and the time-advanced vehicle states and
the geometrical calculations needed to determine the future position and lateral posi-
tion (w.r.t the road).

This driver steering model was implemented and tested as a part of the haptic
shared controller in several previous studies [128, 129]. Contrary to a driver modelling
study, the focus of these studies was on the practical effect of the magnitude of force
and/or stiffness feedback of a haptic shared controller. Even though one of the un-
derlying variables used for control is the predicted future lateral position, the gain and
look-ahead time used to determine predicted lateral position were not varied, nor was
their effect studied. Nevertheless, this type of lateral position prediction for haptic
shared control has also been used in [32].

From a conceptual stance, this driver steering model has an interesting way of
combining elements of the Successive Organisation of Perception [89], where instead
of applying compensatory stabilizing control to current vehicle states and feedforward
to the future road ahead, we apply a compensatory loop to a driver’s estimation of fu-
ture vehicle state on the previewed road ahead. This is is similar to one of the loops in
the multi-loop driver steering model in [185].

Where this model differs from the time-advanced lateral position loop in [185] is
how the time-advanced lateral position is calculated. In the algorithm 1 we show how
the vehicle state is extrapolated from its vehicle state (X (t ), Y (t ), ψg (t ), xvd (t ) ), with
a constant steering wheel input δs to the predicted position vector (X̂ (t + tLH ),Ŷ (t +
tLH )). Essentially manifesting a simulation within the simulation presented in Fig.
2.7. Algorithm 1 uses two functions, VehicleDyn() and Body2Global() which are the
same as the blocks Vehicle Dynamics and Body to Global Transformation in Fig.2.7,
both elaborated in Appendix A.1 and A.2 respectively.



2

34
2

.M
O

D
E

L
A

S
S

E
S

S
M

E
N

T
M

E
T

H
O

D
:

S
IM

P
L

E
D

R
IV

E
R

M
O

D
E

L
S

δs(t)

Vehicle Position
Prediction tLH

X̂(t+ tLH), Ŷ (t+ tLH)
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ŝlat(t+ tLH)ref = 0
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Figure 2.7: This figure illustrates the nonlinear prediction driver-model architecture. The model parameters are highlighted in green, these are the prediction time tLH
and compensatory gain Ky . Given the current steering angle (δs (t )), vehicle states (xvd (r )), heading angle (ψg (t )) and position (X (t ),Y (t )), a nonlinear prediction

(including yawrate) is made iterating the vehicle dynamics tLH s ahead. The predicted position ahead (X̂ (t+tLH ), (̂Y )(t+tLH )) is mapped onto the physical previewed
road ahead to obtain the estimate for future lateral position (ŝl at (t + tLH )). This position is then compensated for by gain Ky .
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Algorithm 1: Vehicle Position Prediction tLH

Input : X (t ), Y (t ), ψg (t ), xvd (t ), δs (t )
Output : X̂ (t + tLH ), Ŷ (t + tLH )
Constant Parameters: vlong , tLH , dt

for i = t:dt:t+tLH -dt do
[ vl at (i ) ψ̇g (i ) xvd (i +1) ]T = VehicleDyn(xvd (i ),δs )
ψg (i +1) = ψg (i ) + ψ̇g (i )dt
[ vy (i ) vx (i ) ]T = Body2Global(vlong , vl at (i ), ψg (i ))
X (i +1) = X (i ) + vx (i )dt
Y (i +1) = Y (i ) + vy (i )dt

end

With the linear vehicle dynamics (given in the discrete state-space VehicleDynam-
ics function), the mapping between steering input δs (t ) and iterated vehicle state out-
puts vl at (t + tLH ) , ψ̇g (t + tLH ) is linear. However, the mapping between steering input
δs and vehicle position X̂ (t + tLH ) ,Ŷ (t + tLH ) is not, due to the Euler transformation
matrices.

Merely iterating this state space an tLH /d t number of times does not make the cal-
culation nonlinear. However, the relationship between look-ahead time tLH and the
vehicle output states vl at (t ) and ψ̇g (t ) is. With the current stable vehicle dynamics,
feeding in a constant steering wheel input and iterating the vehicle’s state, results in
a step input. For a stable LTI state space, all states will reach a steady-state response,
implying a nonlinear relationship between state outputs and iteration time. Moreover,
the relationship between tLH and vehicle position X̂ (t + tLH ) ,Ŷ (t + tLH ) is also non-
linear due to the transformation matrices. Finally, the predicted position X̂ (t + tLH )
,Ŷ (t + tLH ) is used to find the smallest Euclidean distance to the road, which is then
ŝl at (t + tLH ).

2.4. APPLICATION OF ASSESSMENT METHOD

This section presents the outcome of assessing both the linear and the nonlinear pre-
diction models with the developed criteria. First, the descriptiveness of the models
is evaluated, including a comparison to real human - driving data. Then, the inher-
ent identifiability of the models for DΘ is evaluated along with the experimental driver
identifiability of curve cutting subject 5, representing Dexp from [31]. Finally, the real-
ism criteria is assessed.

2.4.1. DESCRIPTIVENESS

Figs. 2.8 & 2.9 show example results of the driver model descriptiveness test, where
the descriptiveness of the models is shown through the shaded model capabilities area
given in Fig. 2.8 for the linear prediction model and Fig. 2.9 for the nonlinear predic-
tion model. This area encompasses the full set of solutions in the sl at domain within
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Figure 2.8: An illustration of Descriptiveness for the linear prediction model. Top figure: curvature pro-
file, middle figure: Model Descriptiveness of Curve-Negotiation in sl at domain with real data from a curve
cutting subject from [31], bottom figure: corresponding δs

the limitation of realistic steering reversals. The corresponding steering deflections δs

is also given.
For the linear prediction model in the sl at domain, it is clear that only under-steer

driver steering behaviour can be reproduced, without even being able to track the ex-
act centre of the curve. Whereas for the nonlinear prediction model, we see that the
model capabilities cover both under-steer and curve-cutting. Due to the predicted lat-
eral position feedback loop, we see that this model is also able to steer into the curve
before the curve starts. However, this model is not able to steer into the curve on the
outer part of the lane.

Data recorded from a real subject (Subject 5 from [31]) obtained in a driving simu-
lator experiment where the subject negotiated the exact same curvature profile is given
in blue, representing curve-cutting behaviour. The span of the curve negotiation be-
haviour of all 12 participating subjects presented in the real driver space is shaded in
light pink. It is remarkable to see that for the linear prediction model, only a fraction
of the real driver space (14%) falls within the model capabilities in the sl at domain.
In contrast, for the nonlinear prediction model, the overlap is much more significant
(89%). In the steering angle domain δs , the linear prediction model has more overlap
with 68% falling within the model capabilities. Yet, the nonlinear prediction model has
even more overlap with 93% falling within the model capabilities. Variability in steer-
ing behaviour is more apparent and distinguishable in lateral position than in steering
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Figure 2.9: An illustration of Descriptiveness for the nonlinear prediction model Top figure: curvature pro-
file, middle figure: Model Descriptiveness of Curve-Negotiation in sl at domain with real data from a curve
cutting subject from [31], bottom figure: corresponding δs

wheel angle. The suitability of a model to capture different driver steering behaviour
in curve negotiation should therefore not just be evaluated on steering wheel angle,
but also lateral position.

2.4.2. IDENTIFIABILITY

The ability of model parameters to be accurately identified from data can be quanti-
fied in two ways. Firstly through inherent identifiability, where the quality of fit be-
tween the models steering behaviour given a particular Θ and the model span (based
on parameter combinations defined in the parameter span) is determined. The sen-
sitivity of the driver model’s steering behaviour (to changes in parameters) is visible
with parameter sets that also result in a good fit around the ground truth given as the
underlying Θ. With experimental identifiability, an optimal parameter combination
is found by finding the best quality of fit for Driver X within the model span, without
such ground truth.

The inherent identifiability of a model is evaluated by calculating the VAF for a
wide range of parameter combinations resulting in driver model outputs’ ~DΘ̂, against
a modeled/simulated data set DΘ. Whereas the identifiability of an experimental data
run is calculated by evaluating the VAF for all parameter combinations ~DΘ̂ against an
experimental dataset Dexp , which in this case represents curve-cutting. The range of
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Figure 2.10: Inherent identifiability and model sensitivity, in terms of Variance Accounted For (VAF) based
on simulated data where Ky =1, tLH = 1s. The green dot shows the parameter set for the optimal VAF, and
the black asterisk shows the parameter set used to generate DΘ

values evaluated to obtain the matrix ~DΘ̂, for parameters { Ky , tLH } are Ky ∈ (
0,4

]
(from 0 till 4, excluding 0 and including 4) and tLH ∈ (

0,4
]
. For the two-parameter

models used, the large VAF matrices are illustrated visually using a heat-map as done
in Fig 2.10.

INHERENT IDENTIFIABILITY

For the inherent identifiability analysis, the simulated data set DΘ is for parameter
values Ky =1, tLH = 1s. As it is impossible to illustrate the inherent identifiability for
all initial sets of parameters we chose this single parameter set as this was the most
frequently identified parameter combination in [31] and the default settings used for
[128]. Figs. 2.10a,b and Figs. 2.10c,d illustrate the VAF data in the sl at and δs domains
for the linear and nonlinear prediction models, respectively. It can be seen that the
parameter set corresponding to the optimal VAF is identical to the generated data set
for Ky = 1, tLH = 1s.

Fig. 2.10a presents the inherent identifiability space of the lateral position of the
linear prediction model with a total integrated white VAF area of 0.5s, with an asym-
metrical distribution, spanning tLH ∈ [

0.4, 1.9
]
s and Ky ∈

[
0.7, 1.3

]
. For the sl at domain

this is a wide range.
Fig. 2.10b illustrates the inherent identifiability of the steering wheel deflections

for the linear prediction model. The identifiability space has a very large range almost
spanning half of the solution space presented, spanning values of Ky ∈ [

0.1,4
]

and
tLH ∈ [

0.1,4
]
s, indicating poor identifiability.

Fig. 2.10c presents the inherent identifiability space of the lateral position of the
nonlinear prediction model with an area of 0.01s, spanning three very small areas
around the coordinates (tLH , Ky ) at (1,1) ,(1.1, 3.4) and (2.4, 0.9). Here we see an exam-
ple of good identifiability.

Fig. 2.10d illustrates the inherent identifiability of the steering wheel deflections
for the nonlinear prediction model. The identifiability space has a distribution span-
ning half of the solution space presented, spanning values of Ky ∈ [

0.1,4
]

and tLH ∈[
0.2,2.5

]
s, indicating a poor identifiability when only considering δs . However, if we
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combine the δs identifiability space by the sl at identifiability space (dot product), we
find that only one small area around (tLH , Ky ) = (1,1) will come out as a solution.

When comparing the inherent δs identifiability spaces of the linear model with the
nonlinear model, it is interesting the see that the nonlinear prediction model shows
the same insensitivity to gain Ky ∈ [

0.1,4
]
. However, the sensitivity of the lookahead

time is larger than the linear model, reducing this range to tLH ∈ [
0.2,2.5

]
s. This in-

dicates that the lookahead time distinguishes between different δs steering behaviour
better in the nonlinear model, which, can be related to the fact that there is a feedback
loop on predicted lateral error for the nonlinear prediction model.

EXPERIMENTAL IDENTIFIABILITY

Figs. 2.11a, 2.11b, 2.11c and 2.11d illustrate the experimental identifiability of the
models given a real curve-cutting data set Dexp of Subject 5 from [31]. The optimal
parameter set that maximizes the VAF is given in green. A solution within the 95-100%
VAF limit is outlined in red, which is scrutinized from another (realism) perspective in
Section 2.4.3. This example illuminates the challenges of accurate identification given
models of different descriptiveness.

Fig. 2.11a illustrates the experimental identifiability map of the linear prediction
model for Subject 5 in the sl at domain. In combination with Fig. 2.8, the linear predic-
tion model is clearly unable to replicate the experimentally observed curve-cutting in
the sl at domain. The highest VAF found in the parameter solution space is around 8%,
which is low.

Fig. 2.11b illustrates the experimental identifiability map of the linear prediction
model for Subject 5 in the δs domain. The identifiability space is significantly reduced
compared to the inherent analysis of Fig. 2.10b. In Fig. 2.8 it is seen that steering angle
is not perfectly replicated; however, we still find a relatively large identifiability space
of 1.1s. In combination with the lack of identifiability space in the sl at domain, this in-
dicates that based on identification in the δs domain, it is not possible to discriminate
between different driver steering behaviour.

Fig. 2.11c shows the experimental identifiability map of the nonlinear prediction
model for Subject 5 in the sl at domain. Although the trajectory of Subject 5 lies within
the model capabilities, see Fig. 2.9, the maximum VAF that can be achieved is a low
58%, instead of 95-100%, indicating that the model can not fully replicate this driver’s
trajectory.

Fig. 2.11d illustrates the experimental identifiability map of the nonlinear predic-
tion model for Subject 5 in the δs domain. The identifiability space is somewhat re-
duced from Fig. 2.10d. In Fig. 2.9, we see that steering inputs of subject 5 mostly
falls within the model’s capabilities, except in entering and leaving the curve. Given
that the range of identified values of tLH is between 0.5 and 1.7s and Ky between 0.2
and 4. This shows that in the δs domain, the identifiability of tLH is much better than
Ky . Meaning that, the parameter tLH differentiates (more) between the different drive
lines encompassed in Fig. 2.9, as the further you look, the more you curve-cut.
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Figure 2.11: Experimental identifiability, in terms of Variance Accounted For (VAF) based on real curve-
cutting subject data. The green dot shows the parameter set for the optimal VAF
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Figure 2.12: Illustration of Realism Heatmap of steering reversal rates (top panels) for the linear model (left
panels) and the non-linear model (right panels), including time traces of three different sets of parameters.
SR optimal, the parameter set corresponding to the optimal SRs, Optimal ID the parameter set correspond-
ing to the optimal VAF of experimental identifiability in the δs domain and ID limit a parameter set on the
limits of the identifiability space of experimental identifiability in the δs domain. Middle panels: a com-
parison of steering wheel deflections relating to points on the heatmap and a human δs , bottom panels:
illustration of the corresponding sl at .

2.4.3. REALISM

The realism criteria focuses on defining a feasible parameter space that results in re-
alistic driver steering behaviour. In this chapter this is quantified as an acceptable
number steering reversals. For each parameter combination in the parameter space {
Ky , tLH } for Ky ∈ (

0,4
]

and tLH ∈ (
0,4

]
, the steering reversals are evaluated and pre-

sented in a SR-heatmap as illustrated in Fig. 2.12a. Three points are shown in the map,
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the SR optimal (minimal amount of steering reversals), the optimal ID VAF, a point
corresponding to the optimal VAF for subject 5 illustrated in Fig. 2.11b, and the ID
limits is also a point that falls within the bounds of the identifiability parameter space
for subject 5 in the domain of δs . Fig. 2.12 middle illustrates the δs corresponding to
the three points on the SR-heatmap and Fig. 2.12 bottom presents the corresponding
sl at .

Fig 2.12 shows that both the optimal SR and the optimal ID parameter combina-
tion for Subject 5 produce acceptable δs , in both the linear and nonlinear prediction
model. However, this is not the case for δs corresponding to a parameter combination
on the identifiability limits (ID limit). It is still remarkable to see that the limiting solu-
tion that fits within the identifiability parameter space (95-100% V AF ), even produc-
ing a smooth trajectory in sl at , may have unacceptable δs oscillations. Both the linear
and the nonlinear prediction model produce a solution which may not be suitable for
some driver assistance system applications; nevertheless, the linear prediction model
produces more oscillations. This is due to the SR gradient on the considered bound-
ary of the acceptable steering oscillations space; the nonlinear prediction model has
a more smooth gradient on the chosen boundary location than the linear prediction
model. Moreover, the nonlinear prediction model can provide a larger space of ac-
ceptable steering oscillations. Where the linear prediction model has an area of 2.5,
the nonlinear prediction model has an area of 6.8.

2.4.4. QUANTITATIVE MODEL PERFORMANCE COMPARISON

This section objectively compares the performance of the two models using the crite-
ria elaborated in the previous sections. The model assessment results are summarized
in Table 2.1.

Table 2.1 facilitates a pairwise objective summarized comparison between the two
models, which shows that the nonlinear prediction model outperforms the linear pre-
diction model in many aspects. The nonlinear prediction model has a larger descrip-
tiveness percentage, meaning it is capable of capturing a wider range of driver steering
behaviour. Moreover, it has better inherent identifiability (smaller identifiability area)
in both the δs and sl at domains, and a larger realism space (larger SR area). However,
at first glance, for the experimental curve-cutting identifiability, it is not clear whether
the linear prediction model is better or worse than the nonlinear prediction model. In-
corporating knowledge from the descriptiveness area, we see that the reduced param-
eter solution space for δs for the linear prediction model is in fact because the model
is not able to capture this type of trajectory. This is reflected by the fact that the maxi-
mum VAF for the nonlinear prediction model is 58% in Fig. 2.11c whereas for the linear
prediction model it is only 8% (in Fig. 2.11a). Moreover, suppose we superimpose both
the sl at and the δs identifiability spaces. In that case, the optimal solution in sl at for
the nonlinear model falls within the identifiability solution space of δs , illustrating an
overlapping solution. Whereas for the linear prediction model, the solutions are not
coherent, proving that one can not reproduce this type of trajectory. Nevertheless, the
fact that we do not see a 95-100% replicability from the nonlinear prediction model in
the sl at domain means that this type of individualized trajectory, with its distinctive
pattern, is still not fully captured by this driver steering model.
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Table 2.1: Quantitative comparison between the linear and nonlinear prediction models

Criteria Linear Prediction Model Nonlinear Prediction Model

Descriptiveness

sl at Span 33 % 66 %

Identifiability

Inherent: Ky , tLH = (1,1)

δs 7.5 3.8

sl at 0.5 0.01

Experimental: Curve-cutting

δs 1.1 2.5

sl at N.A. N.A.

Solution Overlap? No Yes

Realism

SR area 2.5 6.8

2.5. DISCUSSION
In this chapter, three driver model assessment criteria are defined: descriptiveness,
identifiability and realism. These criteria determine the degree to which a given model
structure is capable of capturing individual differences in driving steering behaviour.
Moreover, these criteria are applied to find a model suitable for individualising intelli-
gent DAS. Descriptiveness is defined as the ability of the model to capture a variety of
different trajectories in the sl at domain, quantified as a percentage (a 100 % indicates
that the model can replicate all different trajectories). Identifiability has two differ-
ent branches; inherent identifiability for a specific parameter set and experimental
identifiability for a specific driver. Inherent identifiability indicates how sensitive a
simulated time series (from a particular parameter set) is to a range of different pa-
rameters. Whereas experimental identifiability indicates how accurately the steering
behaviour of an empirical driver can be identified given a particular model. An identi-
fiability space is defined as the model parameter space satisfying a VAF > 95%. In this
chapter, experimental identifiability of a curve-cutter (Subject 5) from [31], is evalu-
ated. Finally, the realism criterion determines the space of solutions with acceptable
oscillatory δs behaviour. As a demonstration of the proposed assessment procedure,
these three criteria are applied to two models, each having two parameters, and each
applies the concept that drivers perform proportional control on a predicted lateral
position. These two models comprise 1) a linear (two-parameter) prediction model
from [31], which was used for individualising haptic shared control, and 2) a nonlinear
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(two-parameter) prediction model, that was used as underlying driver steering model
for the haptic shared control studies [128, 129].

Within the framework of cybernetic driver steering models, there is much thought
put into the structure of a model by for example, inferring the driver’s mental model
[155]. However, many are unable to capture a range of driver steering behaviour. This
is reflected by kinematic models such as [139] only allowing for positive lateral devi-
ation (curve-cutting), or in [157] where under-steer can not be described. This may
not be problematic for a multitude of applications, however, when applied for indi-
vidualisation of DAS such as in [31], the ability of the model to be descriptive becomes
of paramount importance. The two-parameter model of [31] has a descriptiveness of
33% only allowing for under-steer. Despite its limited capabilities to capture different
trajectories, it is used for identification and individualisation. The identifiability of the
linear model (of [31]) to empirical curve cutting behaviour, had no identifiability space
in the sl at domain and a maximum VAF of 8%. This means that one can not describe
the curve-cutting trajectory using the linear model, which, may pose a dispute about
the conclusions drawn in [31], i.e., whether individualisation was truly realised in the
implemented haptic shared controller. With low descriptiveness, the identifiability re-
sults become questionable and trajectory dependent. Moreover, using a model with
low descriptiveness to individualise DAS is quite controversial.

During the identification of cybernetic models, a cost function is generally opti-
mised. The results of this chapter show that the type(s) of driver output(s) selected
for optimisation is important. In some studies a number of driver outputs are opti-
mized simultaneously [138], others use only sl at [139] or δs [31] [133], in combination
with steering torque [146]. It is found in this study that although optimising for only
δs may give a high VAF in the δs domain; it may be far from a good replication in the
sl at domain, where different trajectories are illuminated. This is because small vari-
ations in steering, which do not make a large difference in overall δs VAF can change
the trajectory significantly. Therefore a high VAF for δs can be misleading. Still, the
human control-action output is used to objectively identify human dynamics in many
frequency domain analysis of manual pilot-control [19].

Inherent identifiability of a model for all modelling outputs is essential to obtain
as a prerequisite before identification. Otherwise, the found results can be misleading,
i.e., large identifiability spaces indicate non-unique solutions and large insensitivity
to parameter variations. This becomes especially important when testing the effect
of environmental factors or distraction on driver identified parameters [12]. With-
out knowledge of identifiability space or parameter sensitivity, the cause of parame-
ter variations is ambiguous. These variations could either result from the indepen-
dent variable tested (experimentally) or the inherent identification insensitivity. The
inherent identifiability space in δs is vast for the linear model [31], which indicates
non-unique solutions and bad identifiability. Whereas for sl at it is much smaller, in-
dicating a more promising identification domain for discriminating between different
behaviours.

Although the sl at domain facilitates better identifiability, one should not ignore
the δs domain. Without constraining the parameter solution space to that of realistic
SR, good trajectory fits will result but with possibly unrealistic δs . For applications
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such as haptic shared control where the human haptically feels the provided δs , these
deflections need to be comfortable. Comfort can be provided when the provided δs is
coherent with the humans inherent neuromuscular filtering properties [109]—thereby
suggesting to add constraints of realism in the identification process. This is because
a parameter difference of 0.5s for tLH may not make much difference in VAF; however,
it can result in oscillations and user-rejection of the system.

This chapter defines three metrics in a general sense; however, there are limitations
to these. Descriptiveness is quantified as a percentage of modelled area covered rel-
ative to the descriptiveness area (defined as the area spanning the road width during
a curve). Although most trajectories should fall within the bounds of the descriptive-
ness area, the discontinuous edges of the descriptiveness area (a block) are unnatural.
Moreover, the descriptiveness area does not indicate the shape of the trajectory, which
is also crucial in defining a trajectory. This shortcoming in the definition of the de-
scriptiveness criteria is evident with the nonlinear model. The trajectory of Subject
5 from [31] can not be successfully described using the nonlinear model, at a VAF of
58%. Yet, the trajectory of Subject 5 falls within the ’model capabilities’ outlined in the
descriptiveness test. Therefore defining a model’s capabilities based on modelling out-
put area is insufficient. An alternative would be to define driving styles that a model
should capture. One could base these driving styles on inertial behaviour [35]; de-
fensive, neutral and offensive or, trajectory typology categorisation [162]. Hereby, the
descriptiveness metric can improve to include for such refinements.

This chapter gives a general definition of each criteria, and also provides a means
to realise this general definition. This does not mean that the way in which these cri-
teria are realised is the only way. We evaluate two driver model outputs δs and sl at

in our analysis. However, in variable velocity simulations, other driver outputs such
as lateral acceleration and time-to-line crossing could also be used for defining differ-
ent driver behaviours (descriptiveness) and identification, with an additional realistic
lateral acceleration metric for realism.

We consider two models that are based on the same concept, but are mathemat-
ically realised very differently. The different criteria have all suggested that the non-
linear model outperforms the linear prediction model. However, the different criteria
can be weighed to a specific application. For a study where the only objective is per-
sonalisation, i.e., the focus is on describing different driver behaviour, identifiability
becomes less critical. Thereby, the ’best’ model may not be the model that you need
for your application.

Overall, these assessment criteria indicate a quantitative difference in performance
between the two models. However, what it doesn’t specify is the cause of this differ-
ence. On a superficial level, both the linear and nonlinear prediction models do the
same: both assume that humans perform proportional control on a predicted future
lateral position. Taking a closer look, the difference stems from both the way the pre-
dicted future lateral position is calculated and closing the loop on the future lateral
position prediction. These two elements seem to be essential for driver modelling per-
formance and quality improvement.
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2.6. CONCLUSION
This chapter proposes a three-part method by which one can assess the practical ca-
pabilities of a given driver model. The three criteria outlined are descriptiveness, iden-
tifiability and realism. Descriptiveness quantifies to what extent the model can cap-
ture different driver steering behaviour. Identifiability evaluates the extent to which
the mapping between a given driver steering behaviour and a parameter set is unique.
Realism determines the parameter space that results in realistic driver steering be-
haviour.

Two simple two-parameter driver steering models are compared to demonstrate
the effectiveness of this assessment method. Both models assume the human per-
forms proportional control on a predicted lateral position; however, they differ in the
implementation of the prediction. Therefore, they are named the linear-prediction
and the nonlinear- prediction models. The assessment methodology was able to dis-
criminate between these two models’ performance for all three criteria. The nonlin-
ear model outperformed the linear model in all three quantified criteria, it exhibits
1) twice as large descriptiveness, 2) twice as good inherent identifiability in the steer-
ing angles domain, 3) a 50 times better inherent identifiability in the lateral position
domain and 4) 2.7 times larger realism space.

Overall, the presented results show that the proposed assessment method can quan-
tify key differences between driver steering models. By providing explicit insight into
different factors that quantify a model’s success in replicating real driver behaviour,
the method scrutinizes models by giving them an absolute quality ’grade’ and thereby
presents a platform for a fair comparison between different models.
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ASSESSMENT OF THREE

CONTROL-THEORETIC DRIVER

STEERING MODELS

Chapter 2 has introduced a driver model assessment method that is only applicable to
compare similar driver models (i.e. with equal number and type of parameters). This
chapter upgrades the assessment methodology presented in Chapter 2 to compare and
assess different control-theoretic driver models with a different number of parameters.
The upgrade results in two standardised metrics based on empirical data, which are:
1) descriptiveness, defined as the capacity of a model to describe individual trajectories
and, 2) realistic identifiability, defined as the uniqueness of mapping between identified
parameters and realistic trajectories - as constrained by staying in the lane, and suffi-
ciently smooth steering angles. This upgraded assessment method is applied to three
prominent control-theoretic models and the results are discussed.

The contents of this chapter are to be published as:

Barendswaard, S., Pool, D.M., Boer, E.R., Abbink, D.A., ’Comparison of Control-Theoretic
Driver Models for Personalised Trajectory Generation using an Assessment Methodology’,
IEEE Transactions on Human Machine Systems.
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3.1. INTRODUCTION
Personalisation of Advanced Driver Assistance Systems (ADAS), plays a vital role in
increasing the acceptance of an ADAS, allowing it to support drivers with safe and
comfortable driving [72]. For such personalised systems, the main challenge is to ac-
curately match and predict a driver’s steering behaviour, trajectories and states [114].
The aim is to support personal styles within the realm of safe driving behaviour. Appli-
cations of personalised ADAS with underlying driver steering models include: 1) Lane
Departure Warnings (LDW), where the predicted driver state is used by ADAS to ap-
ply preventive measures [65, 160, 194] and, 2) Lane Keeping Assistance (LKA) where a
drivers steering and trajectory preference is understood by predicting driver’s desired
steering through (individualised) models [145, 181]. Outside the traditional ADAS ap-
plications, personalised trajectories can also be used with haptic shared control guid-
ance [152] and fully autonomous path prediction [71, 149], to support safe driving be-
haviour and increase acceptance. With an increasing interest in personalised ADAS
systems, more effective estimation and prediction accuracies of driver behaviour are
needed [8].

In one of the most basic steering manoeuvres, that of curve-driving, personali-
sation can be effectively realised through the automation identifying an individual
driver’s steering behaviour in real-time. Individuals are known to exhibit a range of dif-
ferent styles [41] and trajectory classes in curves [18], which indicates the presence of
diversity in driver steering and trajectory behaviour. There are two properties a driver
model must have to identify and describe the diverse driver trajectories available in
the driving population. Firstly the model should be able to capture different types of
drivers and, secondly the identified parameters for every kind of driving trajectory be-
haviour should be unique [17].

Driver steering models available in literature can be categorised into four different
groups: 1) data driven modelling, [11, 24, 64, 171, 181], 2) analytic modelling, [25, 147,
157], 3) cost-function based modelling [30, 78, 86, 108] and, 4) control-theoretic mod-
elling [116, 150, 173]. Although all four groups of driver models are able to describe
individual driver trajectories and steering behaviour, only the control theoretic driver
models can explicitly identify driver steering and trajectory behaviour with meaning-
ful parameters. A model that exhibits meaningful parameters facilitates a platform in
which we can understand human driver behaviour. Control-theoretic models place
the focus on the human’s control dynamics, where the driver is represented by mean-
ingful blocks of transfer functions, each block representing elemental characteristics,
like an anticipatory gain, time delay, and neuromuscular dynamics, which are param-
eters that have physical meaning. These individual blocks receive anticipatory (road
following) feedforward and (various) compensatory (disturbance rejection) feedback
signals [163], transforming them into signals that together generate the drivers steer-
ing behaviour [48].

Within the domain of control-theoretic driver steering models, it is common prac-
tice to demonstrate the performance of a driver steering model in terms of its capacity
for matching measured steering angles. This is usually carried out on a (small) set of
human driving data, without the aim of describing individual driver behaviour, either
in the time domain [145] or the frequency domain [119, 163, 173]. However, it is easier
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to match steering angles than trajectories, and fitting on steering angles approach does
not verify a model’s ability to capture individual driver steering behaviour. For that,
trajectory behaviour needs to be described [17]. A complicating factor in judging the
appropriateness of a control-theoretic model lies in the well-known trade-off between
the ability to capture all types of behaviour, and the danger of over-parametrisation.
For example, a model with a large number of parameters may be very descriptive, i.e.,
able to capture a variety of different individual driver trajectories, however, may not
be very identifiable, i.e., exhibit unique parameter retrieval [49]. To quantify such a
trade-off, Chapter 2 introduced a systematic analysis methodology that evaluates the
performance of driver steering models. However, studies to compare how well dif-
ferent control-theoretic driver steering models can capture individualised trajectories
and steering behaviour is, to the best of our knowledge, not yet dealt with in literature.

Therefore, this study introduces a comprehensive assessment methodology (as a
refinement of Chapter 2) to compare prominent driver models. The refined assess-
ment methodology comprises two metrics: descriptiveness and realistic identifiabil-
ity. Descriptiveness determines the capacity of a model to capture different individ-
ual driver steering and trajectory behaviour. Realistic identifiability determines the
standard degree of uniqueness of mapping between estimated parameter and driver
steering and trajectory behaviour.

This comprehensive assessment methodology is applied to compare the following
models:

1. The Mars model [114, 145], chosen for its popular use to estimate driver steering
in haptic shared control applications [74, 145, 152, 183].

2. The Van der El model [173], chosen as this model is the state-of-the-art of ob-
jective (frequency domain) identification of driver perception of the road and
execution of the driving task.

3. The Van Paassen model [177], a model developed within our group based on
lessons learnt from previous shortcomings of personalisable haptic shared con-
trollers [31].

This chapter is structured as follows: Section 3.2 describes the models for assess-
ment and additional adjustments made for the comparison, the comprehensive method-
ology is presented in Section 3.3, assessment results in Section 3.4, discussion in Sec-
tion 3.5 and last but not least conclusions in Section 3.6.

3.2. MODELS FOR ASSESSMENT AND ADJUSTMENTS
This section describes the adaptations made to facilitate a fair comparison between
models, the models and the limitations of each model. Three models are assessed,
namely: the Mars model [155], the Van der El model [173] and the Van Paassen model
[177].

For a fair comparison, the simulated neuromuscular dynamics and vehicle/road
dynamics are made identical. The respective vehicle/road dynamics consists of a bi-
cycle model and linear computation of heading error ψL and trajectory (defined in
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this chapter as lateral position relative to road centerline, without velocity informa-
tion) sl at . These vehicle dynamics use the road curvature as (extra) input, as given in
the state space of Eq. (3.1). This system characterisation is based on the bicycle/road
dynamics used in [145] [116] [74].

β̇

ṙ
ψ̇L

ṡl at

=


a11 a12 0 0
a21 a22 0 0

0 1 0 0
V ls V 0



β

r
ψL

sl at

+


0
0

−V
−lsV

κ+


a15

a25

0
0

δs (3.1)

The model of Eq. (3.1) consists of a bicycle model (see the ax coefficients, elabo-
rated in Appendix B.1), with the slide slip angle, β and the yaw rate, r as states. Ad-
ditionally, the states heading angle error ψL and lateral deviation from centerline sl at

(trajectory) are linearly approximated as a function of road curvature input κ, the slide
slip angle β and yaw rate r . The derivatives of these states: side slip rate β̇, yaw accel-
eration ṙ , heading error rate ψ̇L and lateral velocity ṡl at are computed as part of the
state space.

The neuromuscular dynamics Hnm , present in each of the models, is represented
as a filter, as given in Eq. (3.2), to prevent steering inputs with too high frequencies.
See Appendix B.1 for its value.

Hnm = 1

Tn s +1
(3.2)

To gain deeper insights into the reasons for possible assessment outcomes, it is
important to gain a fundamental understanding of the assessed models. Therefore,
the description and elaboration of each model is carried out in four parts: 1) concept,
explained with the help of the concept diagrams in Figs. 3.1, 3.2 & 3.3, 2) explanation,
elaborated based on the control diagrams in Figs. 3.1,3.2 & 3.3, 3) limitations and 4)
degrees of freedom, i.e. number of free parameters.

3.2.1. MARS MODEL

CONCEPT

The Mars model as described in [155], is based on the hypothesis that drivers use near
and far points ahead on the road for steering control, as illustrated in Fig. 3.1. This is
realised in the model by considering two inputs, the near angle θnear to a road way-
point close to the car and the far angle θ f ar to the tangent point on the curve. Hereby,
the near angle drives a stabilising compensatory control loop and the far angle enables
anticipatory control in curves.

EXPLANATION

The control structure in Fig. 3.1, shows that the feedforward input signal is not directly
θ f ar , but the current road curvature κ. In fact θ f ar can be approximated through Eq.
(3.3) [155].

θ f ar (t ) = D f arκ(t ) (3.3)
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Figure 3.1: The top figure illustrates a schematic of the concept of the Mars model. This concept uses stabilising feedback on the near angle θnear (i.e., angle to the
near point, which is 5m ahead of the car on the road centreline, indicated with a white circle) and anticipatory feedforward on the far angle θ f ar (i.e., angle to the
tangent point on the curve, where this tangent makes a 90o angle to the radius vector of the curve). The bottom figure illustrates the control diagram of the Mars
model. The parameters used for identification are indicated in red.
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The assumptions for this equation to hold are 1) the curvature of the road must be
constant and, 2) the lateral distance from the centerline is constant. The geometric
derivation for Eq. (3.3) is included in Appendix B.2 for reference. The θ f ar (t ) signal is
scaled with a prediction gain Kp , to obtain the complete anticipatory response.

For the feedback loop, the heading error ψL and relative lateral position w.r.t. to
road centerline sl at are used to compute θnear , given in Eq. (3.4). Here we see the
summation of two angles, the heading error and the angle the car makes to the near
point. This near point is assumed to be a waypoint on the road centerline a distance
ls ahead of the car. The assumption for this computation to be valid is that we are on
a straight road, as elaborated in the geometric derivation in Appendix B.2.

θnear (t ) = sl at (t )

ls
+ψL(t ) (3.4)

The compensatory loop is then also scaled with gain Kc and consequently filtered,
with a lead-lag filter, to reduce any noise present in the stabilisation loop. Both feed-
back and feedforward contributions are summed, and sent through the human-like
time delay element e−τv s and neuromuscular dynamics Hnm to obtain the steering
wheel input δs .

LIMITATIONS

Although this model includes both feedback and feedforward input signals, with a
structure very similar to that of McRuer et al. [119], it is lacking in terms of not having
any explicit preview. The concept of the model claims to be driven by an anticipa-
tory tangent point. However, this anticipation is based on linear extrapolation of the
current road curvature, rather than the true road ahead. Moreover, the feedforward
loop does not include any smoothing filter, which is problematic when encountering
non-clothoidal roads.

DEGREES OF FREEDOM

The degrees of freedom for this model are two: the ’preview’ gain Kp and compen-
satory gain Kc . The lead-lag values TL and Tl are not considered as degrees of freedom
as the original authors [155] have restricted their design values to serve a certain pur-
pose: filtering out the noisy feedback data. The visual time delay τv is fixed to the set
value (0.04s) by the original authors.

3.2.2. VAN DER EL MODEL

CONCEPT

The Van der El model [175] is a driver model that was obtained from objective fre-
quency domain identification, following the tradition of McRuer, who used this method
to identify the fundamentals of human control in tracking tasks [120]. The model is de-
duced from frequency domain data collected through a curve driving experiment with
sinusoidal roads.
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Figure 3.2: The top figure illustrates a schematic of the concept of the Van der El model. The Van der El model applies feedback on the angle (e∗) the cars axis makes to
a previewed, filtered road waypoint ahead yc (t +τ f ), this point is indicated as a "X" on the schematic of the concept. The bottom figure illustrates the control diagram
of the transformed Van der El model. For details on the transformation, see Appendix B.3. The parameters used for identification are indicated in red.
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Results of this objective identification procedure have shown that in the abstract
experiment carried out by [175], drivers react to three inputs: 1) absolute car heading
feedback 2) absolute car position feedback and 3) previewed road centerline position
feedforward yc (t +τ f ). The findings have resulted in a control-theoretic model that
accurately explains the steering behaviour of human drivers in the frequency domain.

The identified model also has a geometric interpretation. The human is thought to
anticipate a future waypoint yc (t +τ f ) that is filtered (illustrated as ’x’ in Fig. 3.2 ) of
the previewed road centerline position. Through the additional heading and position
feedback, the cascaded transfer functions result in a specific element being controlled
in a compensatory fashion: the angle the car’s principal axis makes to the filtered fu-
ture waypoint ahead ’x’ (e∗). This means the control concept is compensatory con-
trol on the angle the principal axis of the car makes to a filtered anticipated waypoint
ahead.

EXPLANATION

The input signals to the model are objectively deduced from an abstract experiment
where the road is a sum of sinusoids. Therefore, the input signals of the original model
are not compatible with a practical driving situation. A key contribution of this chapter
is transforming the Van der El model to one that applies to practical driving situations.
The algebraic conversion to more realistic inputs as used here and shown in Fig. 3.2,
is given in Appendix B.3.

The adapted control structure, shown in Fig. 3.2, makes the summation of three
angles:

θ1 the heading angle difference between the nearest road point heading and the road
heading at τ f .

θ2 the angle between sl at and the future filtered waypoint ’x’.

ψL the heading error w.r.t the road heading.

The first angle θ1 represents the target, whereas the summation of θ2 and ψL are
compared to the target to obtain e∗(t ). The concept of the geometric interpretation of
these angles are illustrated in Fig. B.3 in Appendix B.3.

For the computation of the first angle, we see the feedforward loop takes the road

heading at a time τ f aheadψc (t+τ f ) and filters it through the transfer function
K f

1+Tl , f s .

With a time constant of Tl , f this reduces the effective lookahead to a point which is less
than τ f , as given in Eq. (3.5).

τ= τ f −Tl , f (3.5)

The filtered road heading at time τ ahead is then compared to current road head-
ing, obtaining the heading ’increment’. This is then sent through two blocks which is
merged into one in Fig. 3.2, as shown in Eq. (3.6).

1

τs
= V

s

1

V τ
(3.6)
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Firstly, the future heading error of the road is multiplied by velocity and integrated,
and this results in position error the road makes to the future waypoint on the road.
Secondly, the position error to future waypoint is divided by V τ, the longitudinal dis-
tance to the waypoint at time τ ahead. With a small angle approximation, this re-
sults in the angle from the current road position to the future road waypoint. Subse-
quently, to obtain the angle increment needed, the current heading is subtracted from
this amount, resulting in θ1.

θ2 is then added to θ1. The car’s current lateral position error sl at is divided by V τ,
which computes the relative angle made to this waypoint, due to the lateral position
offset to road centerline (θ2). Finally, the third angle ψL the heading error is added in
the last feedback loop. The resulting value e∗ is the angle from the car’s axis to the fu-
ture waypoint. This is fed through an equalisation block, that exhibits a compensatory
gain and lead time constant, where the functionality of this block is to minimise e∗.

LIMITATIONS

This model does not exhibit an independent feedforward path that can be separately
tuned, which can potentially diminish its descriptive capabilities.

DEGREES OF FREEDOM

In the Van der El model there are four degrees of freedom, highlighted in red as given in
Fig. 3.2. The lookahead time τ f , the filtering time constant Tl , f , the equalisation gain
Ke and the lead time constant TL . The parameter K f is kept constant, as it is found to
always exhibit a value of 1 for curve driving [175]. The value of τ is a function of τ f and
Tl , f , as given in Eq. (3.5). The visual time delay τv is taken as constant value of 0.35s,
as identified in [175], this is inherent in human response mechanisms.

3.2.3. VAN PAASSEN MODEL

CONCEPT

The Van Paassen model was built based upon knowledge and understanding of previ-
ous driver modelling shortcomings [31], it was developed for the sake of facilitating the
personalisation of haptic shared control. This model [177] makes use of pure position
feedback on a predicted (curve cutting) position ahead (ycc (t )) and an independent
feedforward path that provides the necessary steering to make the curve, through ex-
plicitly coupling the curvature feedforward input with the car’s velocity.

Hereby, the concept is that the steering rate target to make the curve is set by the
feedforward loop, whereas trajectory fine-tuning is left for the position feedback loop.
What is noteworthy, is that the feedback loop predicts the position of the car ahead,
and sets a future curve cutting reference ycc for the feedback loop to follow. This an-
ticipatory feedback concept is visualised in Fig. 3.3. This model is the first to explic-
itly declare a non-zero position feedback reference, which makes sense as drivers are
found not to follow the centreline when driving [18].
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Figure 3.3: The top figure illustrates a schematic of the concept of the Van Paassen model. The Van Paassen driver model uses feedforward to set the steering rate
needed to make the curve and uses feedback on the predicted lateral position ahead ŝl at (t +τn ) with a curve-cutting distance ycc as reference. Note that the concept
illustration of the Van Paassen model excludes the explicit feedforward contribution, as given in the control diagram. The bottom figure illustrates the control diagram
of the Van Paassen model. The parameters used for identification are indicated in red.



3

58 3. ASSESSMENT OF THREE CONTROL-THEORETIC DRIVER STEERING MODELS

EXPLANATION

In Fig. 3.3 the feedforwarded signal κ(t+τ f ) is filtered with a second-order filter with a
break frequency at Ths , this is especially important when the road is non-clothoidal, to
prevent any transition responses from the dynamical transfer functions. The filtered
curvature signal is then used for both the feedback loop and the feedforward path.

In the feedback loop, the filtered curvature is used to compute the curve cutting
distance as given in Eq. (3.7), the geometric derivation that makes this relationship
possible is given in Appendix B.4.

ycc (t ) = 1

2
(τ f V )2κ(t +τ f ) (3.7)

The curve cutting distance is taken as a reference in the predicted position tracking
feedback loop. The predicted position is computed by linear approximation at the
prediction look ahead time τn (ideally τn = τ f −Ths ). KF B then compensates this error.

In the feedforward loop, the filtered curvature is scaled by driven velocity to obtain
a steering angle that is proportional to the required yaw rate in a curve, given in Eq.
(3.8).

r = V

R
=V κ (3.8)

This means that when the feedforward gain KF F is too high, the steering input δs

is appropriate for a sharper curve.
Note that Van Paassen does not exhibit a visual time delay. This could be due to it

being redundant with preview time, i.e. the effective preview time is the visual time de-
lay subtracted from the preview time. Hence to skip this step, the considered preview
time τ f is the effective preview time.

LIMITATIONS

The concept of setting a reference other than centerline for position tracking is unique
to this model. Unfortunately, the computation of ycc as given in Eq. (3.7), results in
a fixed value that scales with curvature magnitude. Moreover, the term is squared,
which means that it will always be positive, implying that the reference of the position
tracking will always lead to curve cutting. This structure may prove inflexible when
fitting for hypothetical counter curve cutters (i.e. drivers that exhibit a negative ycc ).

DEGREES OF FREEDOM

The degrees of freedom in the Van Paassen model are five: the lookahead time τ f , the
filter time constant Ths , the prediction time τn , the feedback gain KF B and the feedfor-
ward gain KF F . The other parameters shown in the model such as the wheelbase gain
Kw , wheelbase distance Lwb , the effective steering ratio Ke f f and Kδ are all constants
and properties of the vehicle driven. These properties of the vehicle dynamics are in
the Van Paassen driver model part, as he explicitly assumes that drivers invert specific
properties of the car.
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3.3. ASSESSMENT METHODOLOGY

The assessment methodology introduced in this Section provides a platform for fair
comparison between different control-theoretic driver models. The fundament of this
assessment methodology is based on Chapter 2. For the aim of detailed comparison,
the methodology of Chapter 2 is modified through upgrading the metric Descriptive-
ness and introducing the standardised (and combined) metric Realistic Identifiability.
The detailed explanation of the additional improvements of the methodology is elab-
orated in Appendix B.5.

The assessment methodology computes two standardised properties (Descriptive-
ness and Realistic Identifiability) of the assessed model for a defined manoeuvre. The
Descriptiveness is defined as the capacity of the model to describe different types of
driver (trajectory) behaviour. The Realistic Identifiability defines the extent to which
the resulting identified model parameters are unique to a given driver behaviour, rel-
ative to the parameter space which results in desired driving behaviour. The more
unique, the smaller the realistic identifiability value and thus the more meaningful the
considered parameters are.

Section 3.3.1 explains what the implications of the assessed model are with differ-
ent Descriptiveness and Realistic Identifiability outcomes. Section 3.3.2 gives a step-
wise guideline of the assessment procedure. Section 3.3.3, explains the realism bound-
ary conditions for desirable modelling outputs, Section 3.3.4 explains the experimen-
tal data generation and Section 3.3.5 explains the processing blocks.

3.3.1. IMPLICATIONS OF THE ASSESSMENT METHODOLOGY

The implications of the results of the assessment methodology are illustrated by a
four-quadrant diagram in Fig. 3.4. The four-quadrant diagram provides the inter-
pretation of the combined results of descriptiveness and realistic identifiability. In
the case of a low descriptiveness and high realistic identifiability (Q4), the model is
over-parametrised, i.e. exhibits parameters that do not have a unique function/pur-
pose (meaningless) and is unable to describe a sufficient portion of the tested driving
population. This model needs fundamental revision. In the case of a low descriptive-
ness and low realistic identifiability (Q3), the model exhibits meaningful parameters
but is unable to describe a sufficient portion of the driving population. Thereby, this
model needs to be structurally extended. In the case of a high descriptiveness and
high realistic identifiability (Q2), the model is over-parametrised. This implies param-
eter redundancy in the model, i.e. the parameters have lost meaning. However, the
model is complete (it doesn’t need an extension) as it can describe a sufficient portion
of the driving population. In the case of a high descriptiveness and low realistic iden-
tifiability, the model is both parsimonious and able to sufficiently describe the driver
population tested, this is considered an ideal model (Q1).

An ideal model would be able to describe all the categorised types of driving tra-
jectories, thereby achieve a score of 100% Descriptiveness. Whereas, an ideal Realistic
Identifiability is achieved when the percentage ratio between parameter space that de-
scribes a specific type of driving behaviour and the total parameter space producing
desirable driving behaviour, is lower than 1%.
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Figure 3.4: This figure illustrates the assessment methodology’s (quantitative) implication quadrants. The
first quadrant (Q1) implies the model is ideal, i.e., a model with a high descriptiveness and low realistic
identifiability. The second quadrant (Q2) implies the model is over-parametrised, i.e., a model that has
high descriptiveness and high realistic identifiability. The third quadrant (Q3) implies the model is under-
parametrised, i.e., it has low descriptiveness and low realistic identifiability. The fourth quadrant (Q4) im-
plies the model exhibits poor descriptive capacity and meaningless parameters, i.e., it has low descriptive-
ness and high realistic identifiability.

3.3.2. ASSESSMENT PROCEDURE GUIDELINE
This assessment procedure is developed for control-theoretic steering models which
describe curve driving behaviour. However, it can also be applied to (identifiable)
models that can describe any driving manoeuvre. The assessment procedure guide-
line consists of eight steps, which are given (as S1 ... S8) in Fig. 3.5. The guideline steps
on how to carry out the assessment procedure are the following:

S1 To start with, the Scenario Settings defines the road scenario to be driven and
modelled. In the case of (fixed speed) curve driving, this is the road width Wr , the road
curvature profile κ and the fixed vehicle velocity V .

S2 In this step: Experimental Data Generation (elaborated in Section 3.3.4), the
driving simulation is first created using the scenario settings (Wr ,κ,V ). The experi-
ment is executed by testing a given number of human drivers. The Experimental Data
Generation produces the trajectories of all the individual drivers (~sl at ,e ). Note that the
vector notation in (~sl at ,e ) is used when dealing with a matrix of data, as opposed to
sl at ,e which is a single trajectory.

S3 In this step: the Realism Boundary Conditions (RBC) are set (elaborated in Sec-
tion 3.3.3). One of these conditions is based on the scenario settings, specifically the
road width Wr .

S4 In this step: Classification and Identification is the first processing block (elab-
orated in Section 3.3.5), where the experimental trajectories~sl at ,e are first categorised
by a trajectory classifier. Then a representative driver from each class is selected. The
Assessed Model is then used in the identification of the class representative drivers (one
representative driver per class).
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Figure 3.5: This figure illustrates a flow diagram to outline the assessment procedure. There are three Scenario Settings, the road width Wr , the road curvature profile
κ and (fixed) velocity V . There are three Parameter Span Settings which are decided based on knowledge of the model: the initial realistic parameter set P0, parameter
exploration increment Pi ncr and parameter span resolution dP . There is one database, that of experimental driving simulator data explained in Section 3.3.4 and one
decision node Sufficiently describe class? defined in Section 3.3.5. There are three main processing blocks: Classification and Identification (elaborated in both Fig. 3.6
and Section 3.3.5), Modelled Data Generation (elaborated in both Fig. 3.7 and Section 3.3.5) and Identifiability Analysis (elaborated in both Fig. 3.9 and Section 3.3.5).
These processing blocks incorporate the Realism Boundary Conditions.
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The inputs (κ,V ,) are used to compute the Assessed Model response in the identifi-
cation procedure, where the RBC is used to constrain the identification optimisation.
The Classification and Identification block results in four outputs: 1) the occurrence
per trajectory class OC x , 2) the model fit evaluation metric per class V AFC x (Variance
Accounted For, defined in Eq. (3.11)), 3) the modelled trajectory per class ŝl at ,C x and,
4) the parameter estimates per class P̂C x .

S5 In this step, a decision is made: which classes the assessed model can suffi-
ciently describe. For curve driving trajectories, the sufficiency criteria is outlined in
Section 3.3.5. The resulting Descriptiveness is the summation of the class occurrence
OC x∗ (consequent from the experimental data in S3) which the model can sufficiently
describe, resulting in the first metric of this methodology: Descriptiveness.

S6 This step determines the Parameter Span Settings for S7. These are the initial
parameter set P0, a parameter search resolution Pi ncr and a parameter span resolu-
tion dP . These values are determined based on knowledge and experience with the
assessed model.

S7 This step: Modelled Data Generation, the second processing block (elaborated
in Section 3.3.5), produces all the modelled trajectories and steering angles considered
(~sl at ,m ,~δs,m) for the Identifiability Analysis. First this step explores the maximum pos-
sible value of each parameter that would still satisfy the defined RBC, this is done in
steps of Pi ncr . Second, the resulting parameter span ~Pspan , with parameter resolution

dP , is used to compute the model span ~sl at ,m ,~δs,m which is the model response for
each parameter combination in ~Pspan .

S8 This step: Identifiability Analysis, the third processing block (elaborated in Sec-
tion 3.3.5), determines how sensitive the model response is to changes in model pa-
rameter values. This analysis is only performed for the classes the model can suffi-
ciently describe. Essentially it computes the comparison of the model output from
the parameter estimate P̂C x∗ and the model span~sl at ,m ,~δs,m . This is performed inde-
pendently on both the steering angle ~δs,m and trajectory~sl at ,m domains. The output
from this block is the metric Realistic Identifiability, which is the second output of this
methodology.

3.3.3. REALISM BOUNDARY CONDITIONS
Realism boundary conditions are defined as the necessary conditions for desired driver
modelling outputs. These are:

1 The trajectory must be within the road boundaries, i.e. |sl at | <Wr .

2 The response of steering must be smooth, i.e. no oscillation in δs .

The first boundary condition directly depends on the road width. The second
boundary condition determines the smoothness of the steering response, determined
by the number steering oscillations, which is computed by the number of steering re-
versals [118]. The steering reversals is conventionally computed using human steering
angles to indicate the drivers workload. To filter out human noise, the steering angles
signal is first filtered and then a reversal is recognised when reaching a steering magni-
tude greater than 2 deg around a local minima and maxima. In contrast to the conven-
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Figure 3.6: This figure illustrates the Classification and Identification processing block (elaborated in Section
3.3.5), which, consists of three sub-processing blocks. The experimental trajectories~sl at ,e are categorised in
Trajectory Classification. Each class of trajectories~sl at ,C x undergoes Representative Driver Selection, where
the resulting selected trajectories sl at ,C x are used for identification in the Identification per Class block.

tional method, this methodology deals with the output of driver models which do not
exhibit (human) noise. Therefore, the filtering of steering angle is removed because
this may obscure high-frequency oscillations resulting from some model settings. Ad-
ditionally, to detect (and prevent) such small unwanted high frequency oscillations,
instead of 2 deg to define an oscillation, a factor 10 less is used: 0.2 deg.

For a strictly smooth steering response, using the above method to compute steer-
ing reversals, 2 steering reversals are needed per curve. The proposed methodology al-
lows for four extra steering reversals, setting the limit to 6 steering reversals per curve.
This amount of 6 steering reversals per curve is found to be the maximum for human
data from Chapter 4.

3.3.4. EXPERIMENTAL DATA GENERATION
The experiment is performed in a driving simulator, testing individual human drivers.
The trajectories from the experiment (~sl at ,e ) are needed for driver trajectory style clas-
sification (as outlined in Chapter 4), performed in the Classification and Identification
processing block. Hence, the generalisability of the class outcomes, increases with
an increasing number of subjects (individual drivers) that participate in the experi-
ment. The experimental data is needed to define the types of driving behaviour that
the driver model should be able to capture (in Classification and Identification), which,
is used to evaluate descriptiveness.

3.3.5. PROCESSING BLOCKS
The processing blocks which are dealt with in the following sections are Classifica-
tion and Identification, Modelled Data Generation and Identifiability Analysis, shown
in Fig. 3.5.

CLASSIFICATION AND IDENTIFICATION

Classification and Identification is carried out through three consequent sub-processes
as outlined in Fig. 3.6. These sub-processes are the Trajectory Classification, Represen-
tative Driver Selection and Identification per Class. The first process is Trajectory Clas-
sification where experimental driver trajectories are placed into categories using the
11-class classifier defined in Chapter 4. The classifier sorts the individual trajectories
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from the experiment (~sl at ,e ) into groups of trajectories (~sl at ,C 1,~sl at ,C 2, ...), where each
of these groups present a class. The groups are ordered based on three decision nodes:
1) where is the driver at curve entry? (outer part of curve, centerline band or inner
part of curve), 2) if centerline, to which side do you drift in the curve? (outer, center-
line, inner), 3) how many in curve centreline band transitions are made? (0,1,2). This
rule-based classifier results in 11 classes which categorises all the trajectories from the
driving simulator study.

The class occurrence per class OC 1,OC 1, ... is a calculated from the percentage of
drivers falling into each class. From these classes of trajectories the Representative
Driver Selection sub-processing block computes the average trajectory per class and
then selects the driver that exhibits the closest fit (via standard least-squares compu-
tation) to the class average trajectory. The representative trajectories per class (sl at ,C 1,
sl at ,C 2,..) are input for the final sub-processing block: Identification per Class.

Identification per Class is performed only on trajectories, because this driver mod-
elling signal is the best for discriminating between individual drivers and driving styles,
as found in Chapter 2. Fitting on only trajectory can result in oscillating steering (Chap-
ter 2), to avoid this, the identification optimisation is constrained to stay within the Re-
alism Boundary Conditions (RBC). The equation for identification is outlined for (hy-
pothetically) fitting on class x in Eq. (3.10).

P̂C x = argmin
P

n∑
i=1

(ŝl at (κi ,V ,P )− sl at ,C x (i ))2 (3.9)

subject to[ŝl at δ̂s ] = Model (κ,V ,P ) sati s f i es RBC (3.10)

Hereby, the output of the identification block results in a parameter estimate P̂C x

and corresponding trajectory ŝl at ,C x per class: P̂C 1, P̂C 2... and ŝl at ,C 1, ŝl at ,C 2, ... The
accuracy of fit is evaluated using the Variance Accounted For (VAF) metric, a common
system identification measure [20, 175], described in Eq. (3.11).

VAFC x =
(

1−
∑N

k=1 |sl at ,C x [k]− ŝl at ,C x [k]|2∑N
k=1 s2

l at ,C x [k]

)
×100% (3.11)

For the VAFC x computation in Eq. (3.11), the identified trajectory responses ŝl at ,C x

resulting from the model, are compared to the real trajectory that represents the class
average sl at ,C x . The VAF represents the normalized sum of errors subtracted from
unity, where N is the number of samples. The higher the VAF, the better the model
is able to capture the trajectory behaviour. A VAF of 100% means that the model cap-
tures 100% of the signal, which is the goal for an ideal model.

The four outputs of Classification and Identification are the class occurrence per
class OC x , the evaluated VAF for the modelled trajectories per class VAFC x , the esti-
mated trajectories per class ŝl at ,C x and the parameter estimates P̂C x per class.
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Figure 3.7: This figure illustrates the Modelled Data Generation processing block (elaborated in Section
3.3.5), which, consists of three sub-processing blocks. The bounds of the parameters still satisfying the
RBC are explored in Parameter Exploration. The discrete set of parameters for the Parameter span Pspan

are vectorised in Parameter Vectorisation as defined in Eq. (3.12). The modelling outputs (~sl at ,m ,~δs,m )
corresponding to each parameter combination in Pspan is determined in Model Span Computation.

SUFFICIENTLY DESCRIBING CLASS BEHAVIOUR

The decision node in Fig. 3.5 decides whether the assessed model can sufficiently de-
scribe the representative drivers from the classified trajectory data (~sl at ,C 1,~sl at ,C 2, ...).
This is determined by satisfying both of the following two criteria:

• V AFC x ≥ 80%.

• Modelled response should classify into the same class.

First, the model fit should be good within the curve, a value of 80% is chosen to be
sufficient for trajectories in this chapter. Second, the modelled response should be of
the same class as the data it aims to describe.

MODELLED DATA GENERATION

This block is feeded by the inputs κ,V and incorporates the Road Boundary Condi-
tions. Modelled Data Generation is carried out through three consequent sub-processes
as outlined in Fig. 3.7. These sub-processes are the Parameter Exploration, Parameter
Vectorisation and Model Span Computation.

Parameter Exploration is the first sub-process, where the aim of this process is to
find the maximum range of each model parameter that still produces ’realistic’ model
behaviour. For this, both the road properties κ,V and the Realism Boundary Condi-
tions are needed.

The search algorithm used is specifically designed for this method and is described
in Algorithm 2. We start at a low parameter value set starting point P0, which should
be realistic. This is determined off-line based on domain knowledge. While the model
is within the realistic space, there are two different search types to consider, the princi-
pal parameter update, denoted by P where all parameters are updated all at once with
the incremental value Pi ncr and, the temporary parameter update Pt [k], which has
the same step size value as Pi ncr . The second type of search explores the incremen-
tal increase of a single parameter, whilst keeping all other parameters constant. This
search continues until reaching out of the realistic space. All the parameters explored
are stored in Ps , which is used to find the Parameter bounds Pbound s .
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Algorithm 2: Parameter Exploration

Require: P0, Pi ncr , κ, V
P = P0

while [ŝl at δ̂s ] = Model (κ,V ,P ) sati s f i es RBC do
for k = 1 : N do

Pt = P
while [ŝl at δ̂s ] = Model (κ,V ,P ) sati s f i es RBC do

Pt [k] = Pt [k]+Pi ncr [k]
Ps = [Ps Pt ]

end while
end for
P = P +Pi ncr

end while
Pbound s = max(Ps )

A special halting process (not explicitly shown in the exploration algorithm) is in-
troduced in a temporary parameter update Pt [k] exploration for lead/lag time con-
stants (for e.g. the Mars model [116]). As is known for lead/lag filters, they can serve
as two different purposes: 1) determine the break frequency of a given filter, 2) act as
effective gain. Once the time constant is outside of the bounds of the excitation fre-
quencies of the road, the lead/lag contribution reduces to an effective gain. Thereby,
the effectiveness in changing the response by increasing the time constant parame-
ter may asymptotically stagnate, as illustrated in Fig 3.8. Therefore, to avoid very large
time constant parameter bounds, an additional halting criteria is implemented for this
type of parameter: when the VAF between consecutive responses of incremented time
constant exploration trials is larger than 98%.

Parameter Vectorisation is a simple step, but important for the accuracy of Realistic
Identifiability. The formula for vectorisation is given in Eq. (3.12).

~Pspan = [0,dP,2dP,3dP, . . . ,Pbound s ] (3.12)

As dP increases, the accuracy of sensitivity estimation decreases. When dP de-
creases, the computational load increases. Therefore a trade-off between accuracy
and number of responses to compute must be considered. The relationship between
number of responses to be computed, number of parameter-values chosen per pa-
rameter (N and M for a model with 2 degrees of freedom (DoF)) are that of: number
of [sl at ,δs ] responses = N M . Hereby the computational time scales linearly with the
number of [sl at ,δs ] responses.

It is important to note that this algorithm computes the span Pspan based on the
maximum possible value per parameter Pbound s abiding the the RBC, however, this
does not mean that all parameter combinations in Pspan abide to RBC aswell.

Model Span Computation is the last sub-process of Modelled Data Generation. This
subprocess takes the parameter span ~Pspan as input and evaluates the model’s re-
sponse to each parameter combination in a grid format. Since, the model outputs
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Figure 3.8: Illustration of the halting process for a lag time constant. The trajectory sl at illustrated for a range
of different lead time constant TL values. After increasing TL above 0.11s the response does not change.
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Figure 3.9: This figure illustrates the Identifiability Analysis processing block (elaborated in Section 3.3.5),
which, consists of three sub-processes. The Realism Matrix Determination evaluates whether each entry in
the model span~sl at ,m ,~δs,m satisfies RBC. The Closest sl at ,δs Determination finds the model entry that best

matches P̂C x . The Normalised Parameter Sensitivity evaluates the sensitivity space of PC x within the RBC,
normalised to the models’ realistic space ~R.

not only trajectories sl at , but also steering angles δs , this results in the model’s span
along two domains ~δs and~sl at .

IDENTIFIABILITY ANALYSIS

This block is fed by the inputs the parameter span and selected parameter estimates
(P̂C xx ,~Pspan) and model span (~sl at ,m ,~δs,m) and, incorporates the Road Boundary Con-
ditions. Identifiability Analysis is carried out through three sub-processes, two of which
are executed in parallel, as outlined in Fig. 3.9. These sub-processes are the Closest
sl at , δs Determination, Realism Matrix Determination and Normalised Parameter Sen-
sitivity.

The Closest sl at , δs Determination sub-process takes in the selected parameter es-
timate P̂C x∗ and finds the index that corresponds to the closest parameter in ~Pspan .

This index is then placed in the model span~sl at ,m ,~δs,m to find the the corresponding
sl at ,C x , δs,C x . Note that for this step to be valid, the parameter increment dP in the
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Parameter Span ~Pspan should not be too large. When this is the case, the identified
PC x∗ and selected response from the model span may be quite different.

The Realism Matrix Determination evaluates each grid entry in the model span
(~sl at ,m , ~δs,m) and determines whether a respective parameter combination results in a
response that satisfies the RBC. This results in a binary matrix ~R containing ones and
zeros, that defines the realistic space of parameter combinations.

Algorithm 3: Normalised Parameter Sensitivity

Require: ~R, sl at ,C x , δs,C x , ~sl at ,m ,~δs,m

for i = 1 : N do
for j = 1 : M do

if R(i , j ) == 1 then
VAFsl at (i , j , :) = VAF(sl at ,m(i , j , :), sl at ,C x )
VAFδs (i , j , :) = VAF(δs,m(i , j , :),δs,C x )

end if
end for

end for
RIsl at ,C x =

si ze( f i nd(V AFsl at
≥95))

si ze( f i nd(R==1))

RIδs,C x =
si ze( f i nd(V AFδs ≥95))

si ze( f i nd(R==1))

The Normalised Parameter Sensitivity compares the selected class response (sl at ,C x ,
δs,C x ) to all the responses in the model span (~sl at ,m ,~δs,m) through the validation met-
ric VAF. In Algorithm 3 this is demonstrated on a model that has two DoF, with N and
M number of parameters in each dimension. The identifiability volume is determined
by the parameter space surrounding P̂C x∗ that produces a VAF ≥ 95% and satisfies the
RBC. Note that a VAF of 95% was chosen heuristically. This DoF-dimensional volume
is then normalised by the total realistic volume in ~R to produce the final standard-
ised metric of this methodology, Realistic Identifiability. This standardisation is a key
change w.r.t. Chapter 2 and makes it possible to compare models of different numbers
and types of parameters. However, a model that has more degrees of freedom, may be
susceptible to a smaller realistic identifiability volume, since normalising a unit on a
2-D circle gives a larger percentage than a unit in a sphere. In terms of acceptable re-
alistic identifiability values, a model with less than 1% realistic identifiability is ideal,
this means that 1% within the realistic space of parameters can sufficiently describe
the specified driver behaviour.
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Table 3.1: The Table lists the values chosen for P0, Pi ncr used for the Parameter Exploration parameter
processing block. The resulting Pbound s and chosen dP required to compute Pspan is also reported.

Mars Van der El Van Paassen
Kp Kc Ke τ f TL Tl , f KF F KF B Ths τ f τn

P0 3 15 2 0.3 0.2 0.2 0.1 0.15 0.1 0.1 0.1
Pi ncr 1 3 1 0.1 0.1 0.01 0.05 0.05 0.1 0.05 0.05

Pbound s 22.3 77 64 3.4 6.2 0.9 1.2 5.3 27.3 2.8 1.8
dP 0.75 2 1.1 0.2 0.33 0.1 0.08 0.4 2 0.3 0.2

0 2 4 6 8 10 12

time (s)

0

2
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6
10-3

Figure 3.10: This figure illustrates the clothoidal road curvature from curve 3 in Chapter 4. This is curvature
profile that stems from the road used for the empirical driver data, and is used for driver modelling input.

3.4. ASSESSMENT RESULTS
Three prominent models, Mars [116], Van der El [173] and Van Paassen [177], were as-
sessed using the method outlined in Section 3.3. This section comprises three parts.
The first part describes the applied input parameters for assessment. The second part
presents the descriptiveness results and the third part presents the realistic identifia-
bility results. The last two parts give the assessment per model and a comparison of
the models.

3.4.1. APPLIED INPUT PARAMETERS FOR ASSESSMENT
This section deals with the specific input parameter which are used in the assessment
of the three models. The road width Wr used is 3.6m. The velocity used was fixed at
80km/h. The clothoidal road used is illustrated in Fig. 3.10, taken from Chapter 4. In
a single run, there are 5 right and 5 left curves, where the taken trajectories are aver-
aged across the 5 runs. Therefore there are two trajectories, one per curve direction,
considered per driver. The dataset considers 45 drivers. Details of P0,Pi ncr and dP for
each model parameter are given in Table 3.1.

3.4.2. DESCRIPTIVENESS
The descriptiveness outlines to what extent a model can capture different types of
driver behaviour. The types of driver behaviour tested in this Chapter are defined by
an extended trajectory classifier (11-class classifier of Chapter 4). Fig. 3.11 shows the
representative driver of each class, as well as the identification fit results per class. Ta-
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ble 3.2 summarises the identification fit results per class. The degree of importance to
fit a certain class is indicated by the number of drivers classified in a particular class,
the class occurrence OC x , as shown in Fig. 3.11 and Table. 3.2.
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Figure 3.11: This figure shows the result of model fits in the lateral position domain (sl at ) for different classes
of right curve driving (indicated by R), with the corresponding class occurrence (OC x ) percentage indicated
by Rx: OC x %. The class occurrence is based on data from a fixed based driving simulator experiment from
Chapter 4. The first row presents the model fits of Mars (M), the second row presents the model fits of
Van der El (VdE) and the third row presents the model fits of Van Paassen (VP). The horizontal grey bars
represent the effective road boundary starting at 0.9 and -0.9 m. The two vertical grey lines represent the
beginning and end of a curve. The representative driver of each class is illustrated by blue line. The model
fits, which result in other classes than the representative driver, are shown with a dashed red line. The model
fits resulting in the same class are represented by a (non-dashed) red line. When the fit is above 80 %, the
plot has a dark green box frame. When the fit is above 80% and not within the same class, the plot has a light
green frame.

Table 3.3 gives an overview of the descriptiveness value and weighted average VAF
fit value.

ASSESSMENT

The Mars model has a descriptiveness of 16% as shown in Tables 3.2, 3.3 and Fig. 3.11.
This model can only capture one class of driver behaviour, class 7, as shown in Ta-
ble 3.2 and Fig. 3.11. Nevertheless, the weighted average VAF, that is the average VAF
weighted by class occurrence (see Table 3.2), is still high for the Mars model at 72%.
This is because a high VAF fit value 81% is achieved for class 2, which comprises 47%
of drivers in our dataset.

The Van der El model has a descriptiveness of 17% shown in Table 3.3, and captures
two classes of driver behaviour, class 7 and 8, as illustrated in Table 3.2. However, the
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Table 3.2: The identification fit per class for the three models. The columns represent a class number, the
resulting percentage occurrence OC x of each respective class. The identification fits given in VAF per class.
When bold the identified response falls in the same class as the observed data used to identify the model
parameters.

Class OC x (%) Mars (%) Van der El (%) Van Paassen (%)
1 6 0 73 50
2 47 81 33 65
3 24 83 92 93
7 16 84 99 98
8 1 0 93 90
9 6 10 12 10

10 1 0 94 93

Table 3.3: Overview of descriptiveness score (
∑

OC x∗ ) and weighted average (by the class occurrence OC x )
VAF fit score from Table 3.2, for the models.

Metric Mars Van der El Van Paassen
Descriptiveness (%) 16 17 17

Weighted average VAF (%) 72 64 74

average fit value is 64%; which is mostly because the model shows a bad descriptive
capacity to class 2, which comprises 47% of drivers in our dataset.

The Van Paassen model has a total descriptiveness of 17%, see Table 3.3, and also
captures two classes of driver behaviour, class 7 and 8 at high accuracy. Moreover, the
average fit value is 74%, see Table 3.3.

COMPARISON

Table 3.3 shows that the Van Paassen model and Van der El models are both able to
capture two classes of curve driving, in comparison to the Mars model that can only
capture one class. With the information on class occurrence given in Table 3.2, this
means 17% descriptiveness for both Van Paassen and Van der El, whereas 16% for
Mars. This indicates that the Van Paassen and Van der El have the same value. How-
ever, when taking into account the weighted average fit value, we see that Van Paassen
is the most flexible and descriptive model.

All control-theoretic driver models tested in this Chapter can only capture class 7
and 8 and stay within the same class. This is because, before curve entry, these mod-
els are not capable of replicating any prepositioning behaviour, a phenomenon that
drivers commonly undertake, as deduced from Chapter 5. Hence, only the classes
that start at centerline upon curve entry (potentially also classes 4,5 and 6 in another
dataset or curve direction) are those which the models can replicate, this accounts for
17% of the drivers in the dataset from Chapter 4. This low descriptiveness percentage
is a consequence of these control theoretic models ignoring steering behaviour before
curve entry.

For the other classes, we can see that sometimes, the in-curve fit is good, with the
Mars model reaching 81% for class 2 and Van Paassen reaching 93% in class 10. This
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Table 3.4: The Realistic Identifiability values for the classes 7 & 8: the classes that the model can sufficiently
capture. Given for both the steering wheel δs and trajectory sl at domains. The corresponding parameters
PC x can be found in Appendix A.

Models Realistic Identifiability (%)
Class 7 Class 8
δs sl at δs sl at

Mars 88 9 N.A. N.A.
Van der El 97 3 100 1.7

Van Paassen 6 0.06 5.6 0.05

indicates how flexible the models are in capturing different types of drivers. Neverthe-
less, some classes are more important to fit than others. For example, class 2 is the
most prevalent at 47% in Chapter 4, and is a curve cutting class. This means that it is
an essential class of driver behaviour to model. Interestingly, although the Mars model
does not fit most classes as well as Van der El and Van Paassen, it fits class 2 better than
both of them.

3.4.3. REALISTIC IDENTIFIABILITY
Realistic Identifiability indicates to what extent a specific parameter combination PC x∗

has unique mapping to its modelled driver steering behaviour [ŝl at δ̂s ]. In this as-
sessment procedure, realistic identifiability is only evaluated for the classes that the
model can sufficiently describe. Hence the parameters evaluated are PC 7,PC 8, for class
7 and 8 respectively. The realistic identifiability results for the N-dimensional parame-
ter spaces of the models’ are summarised in Table 3.4. A 2-dimensional identifiability
heatmap slice of the N-dimensional parameter space is presented (for illustration pur-
poses) in Fig. 3.12, 3.14 and 3.15 for class 7. The presented identified PC x is rounded
up to the closest resolution point in the defined Pspan , as defined in the assessment
methodology see Fig. 3.9.

ASSESSMENT

The Mars model can only sufficiently capture class 7, as given in Table 3.4. Fig 3.12
illustrates this realistic identifiability for the identified parameter set of class 7, PC 7.
Here a heatmap of VAF fit results are shown for different parameter combinations (de-
fined by the parameter axes) relative to the modelled output (either sl at or δs ) for
PC x . The blue boundary illustrates the Realistic Boundary Conditions (RBC). These
boundary conditions are a consequence of two requirements: 1) staying within the
road boundaries Wr and maintaining the number of steering reversals below 6. These
criteria are separately illustrated in Fig. 3.13, where the righter part of the boundary is
constrained by the steering reversals requirement whereas the left part is constrained
by staying within road boundaries. The realistic identifiability percentage is the 95%
area (white space) divided by the area within the RBC bounds.

For class 7, 9% of all realistic trajectories, fall within 95% VAF of the model trajec-
tory response (sl at ) for PC 7. Whereas, 88% of the realistic model steering angle re-
sponses fall within 95% VAF of the model steering response (δs ) to PC 7. This means
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Figure 3.12: These plots illustrate a 2-dimensional representation of Realistic Identifiability for class 7 of the
Mars model, showing the feedforward Kp and feedback Kc gains. Plot a) presents the trajectory domain sl at
and plot b) presents the steering angle δs domain.
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Figure 3.13: These plots illustrate a 2-dimensional representation of Realistic Parameter space of the Mars
model, showing the feedforward Kp and feedback Kc gains. Plot a) presents the first RBC constraint,
whether sl at is within the road boundaries Wr , plot b) presents the second RBC constraint, the number
of steering reversals.

that the model’s δs response is not sensitive to changes in parameters, within the real-
istic space of parameter combinations, whereas the model’s sl at response is relatively
better. On observing Fig. 3.12a), it can be seen that there is a ratio between the feedfor-
ward gain Kp and the feedback gain Kc that produces similar trajectories, this can be
observed through the slanted, nearly linear white space on the sl at heatmap. For Fig.
3.12b), the sensitivity space is larger, it overlaps a lot with the realistic space ~R shown
with the RBC, confirming the realistic identifiability percentage of 88% given in Table
3.4.

For the Van der El model, we observe a higher discrepancy between the identifi-
ability of δs and sl at modelling outputs, for both class 7 and 8, as given in Table 3.4.
On average (across class 7 and 8), the δs realistic identifiability is 98.5%, whereas sl at

realistic identifiability is 2.35%. Fig. 3.14 illustrates the class 7 realistic identifiability,
for only two parameters (degrees of freedom): feedback gain Ke v.s. preview time τ f ,
which is a 2 dimensional slice of a 4-dimensional parameter space. These parameters
were selected as they can best compare to the anticipatory gain Kp and feedback gain
Kc from the Mars Model. The two requirements that define the RBC is illustrated in Ap-
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Figure 3.14: These plots illustrate a 2-dimensional representation of Realistic Identifiability for class 7 of
the Van der El model, showing the error gain Ke and the look-ahead time t f .Plot a) presents the trajectory
domain sl at , plot b) presents the steering angle δs domain.
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Figure 3.15: These plots illustrate a 2-dimensional representation of Realistic Identifiability for class 7 of the
Van Paassen model, showing the feedforward gain KF F and the feedback gain KF B . Plot a) presents the
trajectory domain sl at , plot b) presents the steering angle δs domain.



3.5. DISCUSSION

3

75

pendix B.7. Fig. 3.14 illustrates a small sl at identifiability space within the RBC. For a
90% VAF, it seems that parameter Ke can exhibit a large range of values without much
change in the response, however, the sl at response is significantly more sensitive to
changes in preview time τ f . For both the sl at and δs domains, a smaller range for τ f

than for Ke is seen, this means that changing τ f can directly result in a wider range of
trajectories.

For the Van Paassen model, the realistic identifiability in both the sl at and δs do-
mains are small. On average (across class 7 and 8), δs realistic identifiability is 5.8%
whereas sl at realistic identifiability is 0.055% as given in Table 3.4. However, when we
decrease the Realistic Identifiability threshold from 95% to 90%, the sensitivity volume
of the Van Paassen model increases to 92% and 94% for δs in class 7 and 8. In fact, the
ratio between the realistic identifiability of sl at to δs is about a factor 100, for both class
7 and 8. This still means that identifying individual driver behaviour in the sl at domain
is more effective. Fig. 3.15, illustrates the class 7 realistic identifiability, for only two
parameters (degrees of freedom): feedforward gain KF F v.s. feedback gain KF B , which
is a 2 dimensional slice in a 5-dimensional parameter space. These parameters were
selected as they can best compare to the anticipatory gain Kp and feedback gain Kc

from the Mars Model. The two requirements that define the RBC is illustrated in Ap-
pendix B.7. From Fig. 3.15, the δs parameter sensitivity is very low, however, that of
sl at is better. It is interesting to see that parameter KF B has less sensitivity than KF F .
Where the relative indifference of KF B is similar to Ke in the Van der El model, inter-
estingly, both of these gains are providing feedback on an anticipated point ahead. So,
increasing the feedback gain does not change the output response much.

COMPARISON

The comparison is given in Table 3.4. The Mars model exhibits the largest realistic
identifiability value for sl at at 9%. The Van der El model exhibits better realistic iden-
tifiability values at an average of 2.35 %, whereas Van Paassen has the best realistic
identifiability value, at an average of 0.055%. Hereby, the Van Paassen realistic identi-
fiability exhibits the most unique mapping between identified model parameters and
driver behaviour, which means that it is the most promising to meaningfully describe
a specific driver behaviour. It is interesting to observe that the realistic identifiability
is not very different for class 7 and 8 for Van Paassen and Van der El. This, however,
could have to do with the classes being similar.

3.5. DISCUSSION
The aim of this chapter was to introduce a comprehensive assessment methodology
(as a refinement of Chapter 2) and, to use this methodology to compare the qual-
ity of three prominent control-theoretic models. The refined assessment methodol-
ogy comprises two metrics: descriptiveness and realistic identifiability. Descriptive-
ness determines the capacity of a model to capture different individual driver steer-
ing and trajectory behaviour. Realistic identifiability determines the standard degree
of uniqueness of mapping between estimated parameter and driver steering and tra-
jectory behaviour. The assessed models are 1) the Mars model [114, 145], chosen
for its popular use to estimate driver steering in haptic shared control applications
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[74, 145, 152, 183], 2) the Van der El model [173], chosen as this model is the state-
of-the-art of objective (frequency domain) identification of driver perception of the
road and execution of the driving task, and, 3) the Van Paassen model [177], a model
developed within our group based on lessons learnt from previous shortcomings of
personalisable haptic shared controllers [31].

Both this chapter and Chapter 2 finds that the realistic identifiability is substan-
tially higher for sl at than it is for δs for all models tested. This is because there is a
certain amount of steering input δs needed to make a curve. In fact, this amount is
proportional to the yaw rate required of the vehicle, which is a direct function of cur-
vature (r = κV ). That is, when increasing the yaw rate, this results in a steering mag-
nitude that is needed for a sharper curve. Small deviations from this amount result in
different trajectories; thereby, the difference in steering between trajectories is much
smaller than the magnitude of steering required to make a curve. Hence, obtaining a
good fit on steering angles may only indicate that you are negotiating the same road,
rather than capturing the style of an individual driver. It is, therefore, necessary to
include sl at whilst identifying individual driver steering and trajectory behaviour.

The control-theoretic models tested in this assessment are ’triggered’ by a feed-
forward signal. This signal is current road curvature κ(t ) for the Mars model, pre-
viewed road heading ψ(t +τ f ) for the Van der El model and previewed curvature κ(t +
τ f ) for the Van Paassen model. With preview time being around 1s [119, 163, 173],
at best, the control-theoretic driver model can exhibit steering behaviour around 1s
before curve entry. However, 83% of the drivers tested in this chapter exhibit clear
steering behaviour before curve entry, a phenomenon called prepositioning, that on
average starts 7s before curve entry, as deduced later in Chapter 5. With ignoring
this curve initiation phase (prepositioning), the descriptive capacity of these control-
theoretic models is bounded to driver trajectory behaviour that starts around curve
entry (class 7 and 8). This imposes a maximum descriptiveness threshold at 17%,
which is quite low. This means that at best, control-theoretic models are classified
as ’under-parametrised’. Therefore extending current control-theoretic models to ac-
count for prepositioning is a must to sufficiently describe all the considered trajectory
classes of the driving population.

The dimensionality of a model (number of free parameters) may place its realis-
tic identifiability at an advantage. One can understand this advantage through the
following example: normalising a unit block w.r.t to a 2-dimensional circle gives a
higher fraction value than normalising w.r.t a 3-dimensional sphere. In this Chapter,
Van Paassen has a factor 100 better realistic identifiability compared to Van der El, in
both the δs and sl at domains. The Van Paassen model has five parameters, resulting
in 5-dimensional parameter space, Van der El has four parameters, thereby the Van
Paassen model has a larger space to normalise in. However, even with four parameters
assumed, the Van Paassen model outperforms the Van der El model, see table B.7 in
the Appendix.

Interestingly, the Van Paassen model seems to perform best in both descriptiveness
and realistic identifiability, even with reduced dimensionality. This could be traced
down to the flexible structure of the model; having independent feedforward and feed-
back loops. Since a certain amount of steering is needed to make a curve, the feed-



3.5. DISCUSSION

3

77

forward is used to obtain the required steering (to stay on the road). The feedback
loop is used to fine-tune to trajectory position by exhibiting an explicit non-centerline
reference for future (τ f ) position tracking. Finally, the Van Paassen model does not
exhibit a time-delay. Although time-delays are undeniably a human element of con-
trol behaviour, it may not be a necessary element to model human driving behaviour.
In fact, when removed, it improves the stability margins of the model, making more
parameter combinations realistic. A time delay could even be redundant when using
preview time, as it can directly compensate for it.

Identifiability in the realm of driver modelling is the ease of replicating driver be-
haviour with meaningful parameters. The meaningfulness of the parameters identi-
fied can be reflected by looking to the Realistic Identifiability. When the realistic iden-
tifiability percentage (on the sl at domain) is low, this means the mapping between
behaviour and parameters is unique, which implies meaningfulness. However, the
uniqueness of mapping does not necessarily indicate the ease of identification. In fact,
with more parameters to optimise for during identification, the dimensionality of the
(nonconvex) optimisation increases, resulting in more local minima to avoid which
means that it can become harder to obtain the true parameters. Therefore it is impor-
tant to investigate the relationship between identifiability and realistic identifiability.

In previous studies based on the statistical modelling [10, 49], it is found that in-
creasing the number of polynomial parameters improves the fit of the model to the
data, however, decreases the identifiability. There is a parallel to be drawn with the
findings of this study; however, there is a sheer difference as well. Statistical models
can only add or remove polynomial terms, whereas, in this study, we are also consid-
ering different model structure, which adds another dimension to the issue. In fact, in
Chapter 2, two models of the same number of parameters were tested; however, due
to structural differences, there was an apparent discrepancy in both descriptiveness
and identifiability. Moreover, in this study, the Van der El model has twice as many pa-
rameters that the Mars model, however, exhibits a similar realistic identifiability per-
centage, and even exhibits a lower weighted average class fit value. Whereas the Van
Paassen model has one more parameter than Van der El, but achieves an improvement
in realistic identifiability and improves by 10% for weighted average class fits. Hence, a
clear-cut tradeoff in descriptiveness and realistic identifiability v.s. number of param-
eters is not found, due to a critical dimension: the control structure. This means that
with control-theoretic models, an increase or decrease in number of parameters can
not be scaled with an increase in descriptiveness or decrease in realistic identifiability,
without considering the control structure.

The proposed comprehensive methodology can explicitly indicate the types of be-
haviour a given model can capture, and to what extent. In the previously proposed as-
sessment methodology in Chapter 2, only the area the modelled trajectories can span
along a curve is considered for descriptiveness. However, from driving simulator data,
we find that not only may the whole area of the curve be unnecessary to describe,
but also that a mere area obscures the important pattern or shape of the trajectory
which has to be described. The realistic identifiability is a novel standardised metric
that is a combination of the previously proposed metrics identifiability and realism.
If we were to use the ’old’ metrics, these would produce incomparable values. These
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conventional metrics compute a volume that is not independent of parameter type or
numbers of degree of freedom in the model. Thereby the previously proposed met-
ric can only be used to compare models that have the same type and number of free
parameters. Whereas in this comprehensive methodology, the identifiability space is
normalised by the realism space, resulting in a dimensionless fraction which can be
used to compare models regardless of parameter type and number of free parameters.

A model that is both descriptive and exhibits meaningful parameters is potentially
instrumental for the concept of meaningful human control in driving automation.
One of the two conditions for meaningful human control in automated driving sys-
tems is the traceability of system (and driver) behaviour to its source (i.e. through pa-
rameters), for the purpose of accountability [148]. Meaningful parameters are essen-
tial for not only the understandability of the model but also for physical interpretation
and mapping of driver steering and trajectory behaviour. Hereby, when (real-time)
identified driver parameters of a descriptive model are meaningful, one can trace ac-
countability.

In literature, there are two ways found to validate through assessing driver steering
model performance. First through fits on steering angle, and second, through fitting
the trajectory of an ISO lane change. Validation through fits on steering angle is found
in both the body of control-theoretic driver modelling [119, 145, 163, 173], and with
cost-function based driver models[40, 84]. However, fitting on steering angles is found
to exhibit poor discriminability between different driver behaviours (identifiability)
as found in Chapter 2, which, questions the significance of validating on steering an-
gle alone. Validation by showing the fit of a couple of drivers in specifically the ISO
lane change manoeuvre is performed for other (non-control theoretic) driver models
[26, 52, 56]. However, the ISO lane change manoeuvre, traditionally driven by an ex-
pert driver to test the handling performance of a vehicle, is hardly a representation
of normal driving. Therefore, applying the descriptiveness metric can improve the
quality of the current validation methods because 1) it is performed on trajectories
which is proven to provide discriminability between individual drivers and 2) provides
a platform to validate on both representative drivers and manoeuvres, compared to a
handling-quality test ISO lane change.

The assessment results presented in this chapter are based on a specific fixed-
based driving simulator dataset from Chapter 4. This dataset exhibits a particular pro-
file of curvature of a clothoid road that is 6s long with 10s straight sections in between
curves. The road profile taken at a constant speed of 80 km/h is representative of a
highway road in the Netherlands. This representative (right-curve) road may give a
characteristic indication of the quality performance of a driver model; however, can
not represent the assessment results when tested on other (realistic) roads. Therefore,
for a practical assessment result, it is recommended to apply this assessment on data
from a real-world driver test-track.

3.6. CONCLUSIONS
This chapter assesses and compares the quality of performance of three different control-
theoretic driver models for personalised trajectories. These are the Mars model, Van
der El model and Van Paassen model. The assessment grades the models using two
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metrics: descriptiveness and realistic identifiability. The descriptiveness metric signi-
fies what per cent of drivers from the driving population (defined in the used dataset)
the model can sufficiently capture. For an ideal model, the descriptiveness is 100%.
This computation is based on the model’s identification on a representative driver
from each driving trajectory class, where the trajectory classes categorise different
types of drivers within the specific driving population. The realistic identifiability eval-
uates the degree of uniqueness of mapping between identified parameter set and re-
sulting driver behaviour. Promising realistic identifiability is achieved when the per-
centage ratio between parameter space that describes a specific class behaviour and
the total realistic parameter space, is lower than 1%.

The descriptiveness results are the Mars model 16%, Van der El 17% and Van Paassen
17%. Whereas the corresponding weighted (by class occurrence) average fit values are:
the Mars model 72%, van der El 64% and Van Paassen 74%. Out of the seven trajectory
classes tested, the Mars model is only able to describe one class (class 7, i.e. normal
curve cutting starting at road centerline) sufficiently. In contrast, the Van der El model
and Van Paassen models can describe two classes (class 7 & 8 i.e. severe curve cut-
ting and normal curve cutting starting at road centreline) sufficiently. For all models
the descriptiveness is low and can not be further improved without accounting for
driver steering behaviour before curve entry, i.e. prepositioning. Steering angle re-
alistic identifiability is poor for all models. This indicates that the steering angle is
not appropriate for individualised driving trajectory behaviour identification. The av-
erage realistic identifiability in the trajectory domain is Mars model 9%, Van der El
2.35 % and Van Paassen 0.055%. The assessment results imply that the Van Paassen
model exhibits the best descriptiveness and also the best realistic identifiability. With
a high realistic identifiability and low descriptiveness, the best model, Van Paassen is
’under-parametrised’. It is therefore recommended to extend the Van Paassen model
to account for prepositioning. This extension is carried out in Chapter 6.
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DRIVER TRAJECTORY

CLASSIFICATION

We are moving slowly into an era where data is the starting point, not the end.

Pearl Zhu

When taking a curve, drivers follow their own unique trajectory. Most driver style classi-
fiers in literature are based on inertial inputs (i.e. gas pedal deflection, throttle, braking,
acceleration), denoting whether a given driver is aggressive or calm. However, this does
not give a direct indication of a drivers trajectory style, i.e. whether a driver typically
cuts curves or stays at a constant offset in the lane even during curve negotiation. To fill
this void, this chapter, which makes part II of the thesis, introduces two novel rule-based
classifiers that categorise seven and eleven different trajectory styles. The classifiers are
applied to data from a fixed-base driving simulator study in which 45 subjects drove on
three roads, at three different velocities and with three corresponding radii.

The contents of this chapter have been published as:

Barendswaard, S., Pool, D.M., Boer, E.R., Abbink, D.A., ’A Classification Method for Driver
Trajectories during Curve-Negotiation’, IEEE Systems Man Cybernetics, Bari, Italy, 2019.
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4.1. INTRODUCTION
Driver-style classification is emerging as a critical factor in driver categorisation to
adjust warnings and lane guidance [166], road safety in the context of usage based
insurance [143], and even driver-modelling [17]. Driver assessment and profiling is
important for power management [46] where calm drivers consume less fuel than ag-
gressive drivers in the same scenarios [28]. Unsurprisingly, there is also a relationship
between driving style and road safety [143], with 23% of deaths in traffic being related
to ’aggressive’ driving styles [181]. This has been a motivation for the development of
a number of different ADAS, of which personalised implementations explicitly adapt
their algorithm to a given driver style [94].

A number of different ways to classify human driver styles have been proposed
ranging from classifying groups of people [13] to differentiating between individual
people [107] and different genders [179]. Studies on supervised classification tech-
niques have based the definition of their classes on the friction circle [35], a subjec-
tive Driver-Style-Questionnaire (DSQ) [179], or a rule-based decision tree on throttle
aggressiveness [102]. Whereas unsupervised techniques use feature extraction tech-
niques such as Principle Component Analysis [41] in combination with hierarchical
clustering [159].

Most data-mining efforts to classify human driver style have focused on inertial
behaviour (i.e. gas pedal deflection, throttle, braking, acceleration) [179] [130] [41]
[107] [35] [102] [159] [13]. In this approach, generally thresholds are defined to indicate
whether drivers show a particular level of agressiveness [13] [35], however, a driver’s
level of inertial behaviour can change within a single manouvre. Studies find that a
single driver exhibits multiple styles for a single manouvre (segmented into multiple
time windows), sometimes showing three times more clusters than drivers [76] or that
there are 5 segments where a single driver shows different inertial behaviour within
a given curve [24]. Moreover, these inertial classifications do not directly distinguish
between different trajectories nor can they categorise these. For example defining a
curve-cutting style, which is an output that can directly be used with trajectory driven
ADAS. Alternatively: trajectory classification is inherently consistent for a single ma-
noeuvre, and can categorise different trajectories.

Trajectory classification has been attempted in [165], by using identified param-
eters of a driver model and the steering angle as the features for classification. The
results have shown poor discriminative properties due to the use of steering wheel an-
gle as an input feature, where steering wheel deflection is proven to be a bad metric to
discriminate between drivers’ trajectory as found in Chapter 2. Conversely, a natural-
istic driver study describes different drivers by indicating a driver trajectory typology
in curves [162]. However, this typology is without any numerical quantification.

To bridge this gap, this chapter introduces two newly developed numerical trajec-
tory classifiers for curve driving. They are based on lateral position on a road, before
and during a curve, as features for defining rule-based curve-trajectory classifiers of
driver behaviour. The rules depend on where the car is positioned (w.r.t. the lane cen-
tre) before curve entry and how many transitions the driver’s trajectory makes across
the centerline band during curve negotiation. To show the effectiveness of the pro-
posed trajectory-based classifications, the classifiers are applied to a large dataset col-
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lected from 45 subjects, that drove over three different curves in a dedicated driving
simulator experiment. The curves were designed such that the experienced lateral
acceleration was the same in each curve when following the center line (i.e. sharper
curves were traversed at a slower fixed speed to yield the same center line lateral ac-
celeration).

Two classifiers are developed: a 7-class and an 11-class trajectory classifier. The
7-class classifier is stand-alone published work. The 11-class classifier is presented as
part of an extension of the 7-class classifier.

This chapter is structured as follows: the details of the human-in-the-loop driving
experiment performed for data collection that comprises the dataset used to define
both classifiers is outlined in Section 4.2. The classifiers are defined in Section 4.3. The
results of applying the classifier on the data is presented in Section 4.4. The discussion
and conclusion are in Sections 4.5 and 4.6.

4.2. DATASET
The dataset used to test the proposed classification comes from 45 subjects steering
through three different curves, where speed is axiomatically controlled, in a fixed-
based driver simulator experiment. The details of the road design and experimental
procedures are given in this section.

4.2.1. ROAD DESIGN
A single-lane curve-driving study tested three different road profiles which were tested
through three separate drives. The radii and respective velocities tested are listed in Ta-
ble. 4.1. The three different car velocities are chosen as limit velocities in Dutch traffic
rules [140]. The corresponding radii are chosen such that all roads have a maximum
centerline lateral acceleration of 2.41 ms−2, which is the maximum lateral acceleration
for road design [151].
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Figure 4.1: The first figure illustrates the curvature profile κ of the tested curves c1, c2 and c3. The sec-
ond figure illustrates the corresponding birds-eye-view of these curves as a function of global Xg and Yg
coordinates.

The transitions between straight and constant curve sections are designed as clothoids,
as illustrated in Fig. 4.1. 10-second straight section intervals were inserted in between
curves, and within each curve, the clothoid sections at curve entry and exit lasted 2
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Table 4.1: The designed curve radii, car velocities and peak lateral acceleration of the three curves tested.

Condition Radius Velocity (km/h) al at (ms−2)
c1 R= 20 25 2.41
c2 R= 80 50 2.41
c3 R= 204 80 2.41

seconds. The maximum curvature section lasted 2 seconds, making the total time in
the curve 6 seconds. Each curve was repeated 10 times, i.e. 5 right curves and 5 left
curves, in alternating order.

4.2.2. CONTROL TASK

Subjects performed a curve negotiation (lateral control) driving task in a fixed-base
simulator (the Human-Machine Interface Laboratory in TU Delft) at a fixed speed. A
heavy sedan of 1.8 m wide was used to simulate the vehicle on a single lane road vi-
sually. A vehicle dynamics identical to previous investigations [152], approximated by
a bicycle model, was controlled in a simulation environment with apparatus identical
to previous experiments [152].

4.2.3. EXPERIMENTAL-SETUP AND PROCEDURE

Before participating in the experiment, participants signed a consent form. The con-
ditions outlined in Table 4.1 were presented in a randomised order to each subject. For
each curve, the participants were given a familiarisation run of 160 s before collecting
data for each condition.

4.2.4. SUBJECTS AND INSTRUCTIONS

The experiment was performed by 45 subjects between the age of 18 and 31 years (av-
erage of 22 years and a standard deviation of 3.1 years). The range of driver experi-
ence was between 0 (only experience with driving for the drivers’ license exam) and
10 years, with an average of 3.3 years and a standard deviation of 2.7 years. All partic-
ipants were instructed to drive as they normally would and to hold their hands on the
steering wheel at a "ten-to-two" position.

4.3. TRAJECTORY CLASSIFIERS

In this section, both the 7-class classifier and the 11 class classifier are described. Both
proposed rule-based classifiers use the lateral position on the road sl at at different lo-
cations relative to the curve start on a known curvature profile κ to define the classes.
The introduced rules are knowledge-based, i.e., they are based on the author’s obser-
vation (human cluster detector) of the types of trajectories drivers take when driving
a curve in the driving simulator. The possible lateral positions are defined relative to
the road centerline at two different instances: at curve entry and during a curve. The
details on how trajectories are distinguished differently are explained in the following.
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4.3.1. 7-CLASS CLASSIFIER
Fig. 4.2 illustrates the trajectory outcomes that define the 7-class classifier. These
trajectory shapes are the result of the rules presented in the decision tree illustrated
in Fig. 4.3. The root node looks at curve entry (where the clothoid curve transition
starts), where you can either be on the inner or the outer part of the curve. The first
decision node tackles the number of transitions along the centerline band that can
be made during the curve. The second decision node determines whether you have
stayed within the centerline band, where this is only of concern if you have made 0
transitions along this band.
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Figure 4.2: This figure illustrates the trajectory classes of the proposed 7-class rule-based classes as distin-
guished by the classifier of Figure 4.3. The diagram illustrates the trajectory classes for right curves, but this
is symmetric for left curves. The first row illustrates the curvature profile, indicating curve entry point and
the in-curve phase. The second row illustrates the trajectories in the lateral position domain (sl at ). The third
row illustrates a corresponding birds-eye-view schematic of the trajectories presented in the sl at domain.

The lateral road position at which drivers are during curve entry is crucial as it
could indicate whether they intend to cut the curve [192]. How many transitions are
taken along the centerline band defines how the curvature of the trajectory differs from
that of the road centerline [30]. The choice of having transitions across a band of ± 0.1
m rather than the centerline line is made here such that only drivers who significantly
cross this region are distinguished. The value of ± 0.1 m is chosen as it was found to
be the average standard deviation of straight lane driving in previous studies [152],
i.e. it is considered a 2 σ uncertainty band. This, however, needs to be established for
real-world driving.

4.3.2. 11-CLASS CLASSIFIER

MOTIVATION

The 7-class classifier is developed based on empirical findings of driver behaviour. As
a result of this, the root node categorises two types of drivers, those who start at the
inner or outer part of the curve at curve entry. This binary decision does not consider
a trajectory that starts precisely at centreline, which is the case for most conventional
control-theoretic driver models. Therefore, the extension of the 11-class classifier is
explicitly made for classifying the trajectories resulting from conventional control-
theoretic models, as is done in Chapter 3. Additionally, there are a fraction of drivers
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Figure 4.3: This figure illustrates the decision tree of the 7-class rule-based classifier, which is deduced from
knowledge of driver trajectories. The centerline band is taken at ±0.1 m from the centerline. The value of ±
0.1 m is chosen as it was found to be the average standard deviation of straight lane driving in Chapter 7. The
class numbers are complemented with a code XXX, where X ∈ O, I ,C , representing outer, inner, centerline.

who similarly do not preposition and thereby also start at centreline. To precisely clas-
sify these drivers, the 11-class classifier is needed.

CLASSIFIER

Fig. 4.4 illustrates the trajectory outcomes that define the 11-class classifier. These
trajectory shapes are the result of the rules presented in the decision tree illustrated in
Fig. 4.5. The root node looks at curve entry (where the clothoid curve transition starts),
where you can either be on the outer, centerline-band or inner part of the curve. The
first decision node is exclusive to the drivers that start at centerline. It distinguishes
whether the trajectory deviates out of the centerline band once in the curve, and if so,
on which side of the curve. If the trajectory stays in the centerline band, the trajectory
is directly classified as class 6 (centerline driving, CCC). The next decision node deter-
mines how many complete transitions across the centerline band are made. Compared
to the 7-class classifier, classes 4 (COI) to 8 (CIO) now separately distinguishes trajec-
tories that enter the curve at centerline band.

4.4. RESULTS
The outcomes of both classifiers on a dataset of 45 drivers on 3 different curves are
described, the effect of curve direction is analysed and driver consistency is indicated
for the 7-class classifier in Section 4.4.1 and for the 11-class classifier in Section 4.4.2.
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Figure 4.4: This figure illustrates the trajectory classes of the proposed 11 rule-based classes as distinguished
by the classifier of Figure 4.5. The new classes which start at centerline are indicated with a red dashed box
around them. The diagram illustrates the trajectory classes for right curves, but this is symmetric for left
curves. The first row illustrates the curvature profile, indicating curve entry point and the in-curve phase.
The second row illustrates the trajectories in the lateral position domain (sl at ). The third row illustrates a
corresponding birds-eye-view schematic of the trajectories presented in the sl at domain.

4.4.1. 7-CLASS CLASSIFIER

CLASS OUTCOMES

Fig. 4.6 illustrates the class outcomes of the 7-class classifier. This figure shows the
lateral position sl at , starting 3 seconds before curve entry and ending 3 seconds after
curve exit, for all seven classes. A vertical grey line indicates curve entry and exit, i.e.,
indicating entry phase to curve phase and curve phase to exit phase. The centerline is
indicated at position sl at = 0 and the effective road boundaries are illustrated by the
shaded area, also indicating the inner and outer side of the curve.

This graph shows that within the dataset collected, a wide variety of driver tra-
jectory styles exists even in a relatively homogeneous test group. Nevertheless, not
all classes are found to occur. For example, no instances of the centerline driving (4,
CCC) class are found for both right and left curves. Moreover, some classes are more
prevalent than others, as is shown with the percentage occurrence in Fig. 4.7. For
left curves, class 5 (offset outer curve negotiation, OOO) occurrence is 60% for curve 1
(c1), 48% for curve 2 (c2) and 44% for curve 3 (c3). On the other hand, class 7 (severe
counter curve cutting, IOI) occurs only in 7% of the data for c3. For right curves class
2 (normal curve cutting, OII) and 3 (offset inner curve negotiation, III) are the most
frequently occurring classes, contributing up to 96% together for c3. Some classes
seem to correlate with curvature; for example, class 1 (severe curve cutting, OIO) oc-
curs more frequently for tighter curves (higher curvature). In contrast, class 2 (normal
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Figure 4.5: This figure illustrates the decision tree of the 11-class rule-based classifier, which is deduced from
knowledge of empirical driver trajectories and control-theoretic driver model trajectories. The centerline
band is taken at ±0.1m from centerline. The class numbers are complemented with a code XXX, where X ∈
O, I ,C , representing outer, inner, centerline.

curve cutting, OII) occurs more frequently for smaller curvature. Seeming that some
class 2 (normal curve cutting, OII) drivers switch to class 1 (severe curve cutting, OIO)
for increasing curvature.

EFFECT OF CURVE DIRECTION

One can see a clear difference in trajectory class occurrence between right and left
curves in Fig 4.7. Specifically, for right curves, class 2 (normal curve cutting, OII)
and class 3 (offset inner curve negotiation, III) are most prevalent (86% occurrence
together on average). Whereas for left curves, class 5 (offset outer curve negotiation,
OOO) and 2 (normal curve cutting, OII) are most prevalent (69% occurrence together
on average). Seeming that class 3 (III) and 5 (OOO) switch places for right and left
curves. On observing these two classes, one can see that both trajectories have a neg-
ative sl at compared to centerline as seen in Fig. 4.6 (which is on the right side of the
road). This prevalence of a driver driving on the right side of the road stems from the
driver’s straight road bias which was found to be -0.1 m on average [152]. Drivers’ lat-
eral position is biased to the right side of the road, which makes the inner part of the
right curve and the outer part of the left curve. What does this mean? The trajectories
on left curves are often classified as outer curve negotiation (class 5, OOO), whereas
for right curves as offset inner curve negotiation (class 3, III).
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Figure 4.6: This figure illustrates the average and standard deviation of the outcomes of the classification for
each class in the lateral position (sl at ) domain, respectively. The figure illustrates 3 s before curve entry, a 6
seconds curve and 3 s after curve exit. The curve entry and exit points are indicated with vertical grey lines.
The outcome of the classifications is shown for both right and left curves respectively.
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Figure 4.7: This figure illustrates a stacked bar chart which indicates the occurrence of each class (i.e., num-
ber of drivers in each class) for the 7-class classifier across each curve, i.e., curve 1 (c1), curve 2 (c2) and
curve 3 (c3).

DRIVER CONSISTENCY ACROSS CURVES

The consistency of drivers indicates how generalisable the classification results are
when applied to different curves. Fig. 4.8 illustrates pie charts that give the number
of drivers who are consistent in their trajectory class across 3 curves, semi-consistent
(consistent across 2 curves) and non-consistent (varying classes across all three curves).
One can see that drivers are more consistent in their trajectory class for right curves,
with 62% being consistent, 31% being semi-consistent and 7% inconsistent. For left
curves 44% are consistent, 40% semi-consistent and 16% inconsistent. Where the most
inconsistent curve negotiation styles are found for the sharpest curve (c1), as can be
seen in the class occurrence distribution in Fig. 4.7. Inconsistent drivers could be a
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Figure 4.8: This figure illustrates a pie chart indicating the number of drivers who are consistent, semi con-
sistent or inconsistent in their driver trajectory style. Consistent: all three curves are driven with the same
trajectory class, semi-consistent: two curves are driven with the same trajectory class, and non-consistent:
all three curves are driven in different trajectory classes.

result of a driver struggling to be consistent over the 10 driven curves per curve. Nev-
ertheless, in general, the observed difference from c1 could be a result of having a cur-
vature much larger than c2 and c3, as shown in Fig. 4.1. Where c2 has a curvature 2.5
times larger than c3, c1 has a curvature that is 10 times larger than c3. With c1 being the
most demanding curve, demanding the largest steering inputs, a difference in skill due
to the elevated demand may be a factor that influences this inconsistency. Moreover, a
more demanding curve may instigate the driver to reduce their workload by cutting the
curve. Therefore, the classification results can be more reliably generalisable between
curves with similar curvature, or steering demands. Hence in a real-world application
such as a trajectory-driven ADAS, reclassification of driver trajectories on curves with
similar curvature may not be necessary.

4.4.2. 11-CLASS CLASSIFIER

CLASS OUTCOME

Fig. 4.9 illustrates the classification outcome using the 11-class classifier. This graph
shows that within the dataset collected, a wide variety in driver trajectory styles ex-
ists with the 11-class classifier. Nevertheless, not all classes are found to occur, no in-
stances of the centerline driving (6, CCC) class are found for both right and left curves.
Moreover, some classes are more prevalent than others, as is shown with the percent-
age occurrence in Fig. 4.10.

For left curves, class 9 (OOO), which is equivalent to offset outer curve negotiation,
is the most commonly observed with an occurrence of 53 % for c1, 48% for c2 and
44% for c1. This class is very similar, but not equal to class 5 (OOO) in the 7-class
classifier. The new class is not equal to class 5 in the 7-class classifier because the 7-
class classifier includes trajectories which start at centreline band. The new classes
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Figure 4.9: This figure illustrates the average and standard deviation of the outcomes of the classification
for each class of the 11-class classifier in the lateral position (sl at ) domain, respectively. The classes which
are empty, such as class 4, 5, 6 and 11 for right curves, are not shown. The figure illustrates 3 s before curve
entry, a 6 seconds curve and 3 s after curve exit. The curve entry and exit points are indicated with vertical
grey lines. The outcome of the classifications is shown for each curve respectively.

that start at centreline (classes 4 to 8) occur 15.6% for c1, 4% for c2 and 2% for c1. The
curve cutting classes (classes 1, OIO and 2, OII) occur 26% for c1, 33% for c2 and 37%
for c3.

For the right curves, class 2 (normal curve cutting, OII) is the most predominant. It
is also very similar, but not equal, to class 2 (OII) in the 7-class classifier. The new class
is not equal to class 2 in the 7-class classifier because the 7-class classifier includes
trajectories which start at centreline band. The occurrence for class 2 (OII) is 29% for
c1, 46% for c2 and 48% for c3. Combined with class 1 (severe curve-cutting, OIO), the
occurrence of curve-cutting is 44% for c1, 49% for c2 and 48% for c3. In the 7-class
classifier, the most predominant class for right curves was class 3 (III), however, in the
11-class classifier, class 3 of the 7-class classifier is shared between class 3 (III) and
class 7 (CII) of the 11-class classifier. These two classes are similar. However, class 7
distinguishes the trajectories that start at lane centre. The occurrence for class 3 (III)
is 26% for c1, 29% for c2 and 32% for c3. The occurrence for class 7 (CII) is 15% for c1,
15% for c2 and 15% for c3. The cumulative occurrence for the classes that start at the
centerline (classes 4 to 8) is 20% for c1, 15% for c2 and 15% for c3.
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Figure 4.10: This figure illustrates a stacked bar chart which indicates the occurrence of each class (i.e.,
number of drivers in each class) for the 11-class classifier across each curve, i.e., curve 1 (c1), curve 2 (c2)
and curve 3 (c3).

In general, some class occurrences also seems to relate with curvature type for the
11-class classifier. Class 1 (severe curve cutting, OIO) occurs more frequently for larger
curvature, whereas class 2 (OII) occurs more frequently for smaller curvature. Class 11
(IOI), on the other hand (equivalent to class 7 in the 7-class classifier) only occurs for
the smallest curvature curve (c3) in left curves.

DRIVER CONSISTENCY ACROSS CURVES

Fig. 4.11 illustrates pie charts that give the number of drivers who are consistent in
their trajectory class across 3 curves, semi-consistent (consistent across 2 curves) and
non-consistent (not consistent across all three curves).
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Figure 4.11: This figure illustrates a Pie chart indicating the number of drivers who are consistent, semi
consistent or inconsistent in their driver trajectory style for the 11-class classifier. Consistent: all three curves
are driven with the same trajectory class, semi-consistent: two curves are driven with the same trajectory
class, and non-consistent: all three curves are driven in different trajectory classes.

Compared to the 7-class classifier, there is a drop in consistency for right curves.
Previously this was 62%, now 42%. This drop is expected due to making trajectory
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distinction more refined. The drivers who lowered the consistency scores, moved to
the semi-consistent category, increasing this from 31% to 53%. Interestingly, the non-
consistent group decreased from 7% to 4%. This can be traced down to a driver who
starts in the centerline-band, where previously, a hard-line was drawn if you started
your trajectory on the positive or negative axis. Whereas with the 11-class classifier, as
long as you start within centreline band, whether positive or negative, it is considered
the same trajectory.

For left curves, the scores for being consistent have not changed substantially. The
semi-consistent category has decreased from 40% to 35%, increasing the non-consistent
group from 15% to 20%. These results show that still, in line with the 7-class classifier,
drivers are most consistent in their trajectory in right curves.

4.5. DISCUSSION
The aim of this chapter was to develop a trajectory classifier that is able to categorise
driver trajectories in curves mathematically. Two rule-based classifiers are developed:
a 7-class classifier to categorise empirical trajectories and an 11-class classifier to ad-
ditionally categorise trajectories generated by conventional control-theoretic models
(i.e., the trajectory starts at centreline at curve onset) [116] [174] [11]. We find that
both developed classifiers can successfully categorise all the considered empirical tra-
jectories resulting from the dedicated driving simulator experiment, with the addi-
tional ’centreline-start’ classes in the 11-class classifier amounting to 7% of driver on
left curves and 17% of drivers on right curves.

The fact that class 4 (CCC) in the 7-class classifier and class 6 (CCC) in the 11 class
classifier (centerline driving) is not found to occur, is interesting given that the cen-
treline trajectory is the industry’s standard for autonomous path planning and driver
assistance guidance [98] [55]. Moreover, if we were to classify trajectories coming from
a conventional driver model, with a zero curve entry bias, it would not classify us-
ing the 7 class classifier because of the defined root node. The knowledge based on
empirical-drivers did not result in a root node including centerline in the 7 class clas-
sifier; rather, the lateral position should either be positive or negative. This shows a
mismatch between empirical and modelled driver trajectories. Also, the philosophy
of control-theoretic driver models always aiming to reduce lateral deviations from the
centerline seems to have no ground in driving data, suggesting that designing the con-
trol reference to be a ’driver trajectory’ makes more sense [177], for efficient modelling.

In terms of trajectory shape, it can be argued that classes 2 (normal curve cutting,
OII) and 3 (offset inner curve negotiation, III) are not very different from each other,
especially in right curves. What seems to distinguish between them is a consistent lat-
eral displacement. In fact, a majority of trajectories (except class 7 or 11 (IOI) ) exhibit
a similar trajectory shape, i.e., after curve entry point, drivers drive towards the in-
ner part of the curve, even if they don’t reach it. Class 1 (OIO) contributes to the largest
’travel’ towards the inner part of the curve, which is also reflected in the corresponding
average lateral acceleration. For the 7-class classifier in Fig. 4.12, class 1 (severe curve
cutting, OIO) and 7 (severe counter curve cutting, IOI) are clearly distinguished (me-
dians 0.5 ms−2 apart). Whereas classes 2 (normal curve cutting, OII), 3 (offset inner
curve negotiation, III), 5 (offset outer curve negotiation, OOO) and 6 (normal counter
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Figure 4.12: This figure illustrates the differences in average al at in the curve, given for all curves driven for
the 7 class classifier. A line at 2.41 ms−2 is outlined to represent al at when the centerline of the curve would
be followed.
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Figure 4.13: This figure illustrates the differences in the average al at in the curve, given for all curves driven
for the 11 class classifier. A line at 2.41 ms−2 is outlined to represent al at when the centerline of the curve
would be followed.

curve cutting, IOO) have medians with only 0.08 ms−2 apart. The lateral accelera-
tion distribution across 11-class classifier is illustrated in Fig. 4.13. Here class 1 (OIO)
and 11 (IOI) is distinguished with medians that are also 0.5 ms−2 apart, whereas the
other classes fall within 0.1 ms−2 from each other. This can be explained by the fact
that al at does not vary with any consistent bias on a trajectory because the change in
driven radius is small. Moreover, the difference between class 1 (OIO) and 7 (IOI), or
1 (OIO) and 11 (IOI) stems from drivers taking larger-than-centerline radii trajectories
for class 1 (OIO) and smaller-than-centerline radii trajectories for class 7/11. However,
when curves become longer, the maximum and minimum radii achievable tend to-
wards that of the centerline value, meaning that the longer the curve, the difference in
lateral acceleration achievable between class 1 (OIO) and 7 (IOI) will tend to zero [30]
(also explained in Chapter 5). This means that trajectory-based classification provides
better discriminative abilities for this dataset, whereas a classifier based on lateral ac-
celeration could obscure such refined differences in driver trajectory, as acceleration
is not only ’blind’ to consistent bias but also becomes increasingly indifferent between
trajectories in longer curves.

Drivers are more consistent in their style across curve 2 (c2) and curve 3 (c3) than
they are compared to curve 1 (c1). This difference stems from the greater steering
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demand required to make c1, where more drivers curve cut, as an attempt to minimise
this steering demand. Moreover, c1 is the curve with the shortest curve length at a
velocity of 20 km/h. With a short length, the maximum achievable radius increases,
i.e. the added benefit of curve-cutting in terms of decreasing steering demand and
improving TLC increases [30]. Hereby, trajectory style is not a fixed property of the
driver; it can be influenced by curve type. More specifically, demanding curves like c1
instigate more drivers to curve-cut.

With two classifiers introduced in this chapter, one may expect a trade-off between
them. However, there is no one ’perfect’ classifier. The 7-class classifier is useful when
classifying empirical data, whereas the 11-class classifier is explicitly needed when in-
cluding driver modelled trajectories in the classification. However, the 11 class classi-
fier comes at the cost of degraded consistency, which is expected due to the refinement
of classes, i.e. the more detailed the definitions of the class, the less variability allowed
within a class.

4.6. CONCLUSION
This chapter introduces two novel rule-based classifiers that categorise 7 and 11 dif-
ferent trajectory styles. The classifiers are applied to a dataset of 45 drivers negotiating
three different curves, each with different curvature and velocity.

The classification results show that normal curve cutting and biased inner curve
negotiation are the most prevalent classes for right curves, making up for 86% of class
occurrence for the 7-class classifier and 77% for the 11-class classifier on average. Off-
set outer curve negotiation and normal curve cutting are the most prevalent classes
for left curves, making up 69% of class occurrence for the 7-class classifier and 65% for
the 11-class classifier on average. The 11-class classifier was introduced to distinguish
the drivers that start at centreline, these make up 7% of left curves on average and 17%
of right curves on average.

For both classifiers, drivers are not always consistent in their style (on average 52%
in right curves and 38% in left curves), where most inconsistency stems from a curve
that requires significantly greater steering demand and has the shortest curve length.
Here we see that drivers adapt their style to curve type.

Out of the two introduced classifiers, one does not outperform the other. Rather,
one can use the 7-class classifier for empirical data classification, whereas the 11-class
classifier is necessary when classifying trajectories generated by conventional control-
theoretic driver model. Additionally, both introduced trajectory classifiers can directly
be used in any personalised ADAS (as is done in Chapter 8), primarily trajectory-driven
ADAS, thereby providing an alternative to conventional driver modelling.
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5
DRIVER PREPOSITIONING

QUANTIFICATION

Part III deals with bridging the gap between straight road and curve-driving through de-
scribing and modelling prepositioning. This part consists of Chapter 5 & 6. This chapter
will only deal with geometrically quantifying prepositioning behaviour and investigat-
ing the effect of changes in velocity and curve radius of driver prepositioning. The find-
ings of this chapter are used in Chapter 6.

The contents of this chapter have been published as:

Barendswaard, S. and van Breugel, L. and Schelfaut, B. and Sluijter, J. and Zuiker,L. and
Pool, D.M. and Boer, E.R. and Abbink, D.A., ’Effect of Velocity and Curve Radius on Driver
Steering Behaviour before Curve Entry’, IEEE Systems Man Cybernetics conference, Bari,
Italy, 2019.
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5.1. INTRODUCTION
In naturalistic driving studies curve driving behaviour is generally split into four dis-
tinct phases [38, 117] as illustrated in Fig. 5.1 1) estimation, where drivers estimate the
curvature and adjust their speed for curve entry, 2) anticipation, where drivers antici-
pate the curvature and (pre)position accordingly, 3) entry and curve negotiation, where
drivers adjust their steering and lateral acceleration to stay within road boundaries,
and finally, 4) exit, accelerating to the desired speed again. Two of these phases, the
estimation and anticipation phases, occur before curve entry, wherein the anticipa-
tion phase, drivers show the first steering inputs and prepositioning behaviour. How-
ever, our current understanding of curve driving behaviour, reflected in driver steer-
ing models, does not give enough consideration to the behaviour before curve entry.
Some driver steering models ignore the occurrence of prepositioning by assuming that
drivers enter the curve at lane centre [116] [11], other steering models assume they
start to turn into the curve a few moments before curve entry at a certain preview time
[174][177], or always preposition optimally when the tangent point is detected [30]. In
fact, preview time is always much shorter than the time before a curve when we see
steering changes, i.e., prepositioning phase.

Estimation Anticipation

Prepositioning Phase

Figure 5.1: Illustration of the four phases of curve negotiation [117] [38], where this chapter focuses on the
anticipation or the prepositioning phase

The prepositioning phase is found to play a crucial role in defining the initial con-
ditions for the in-curve trajectory [162]. This phase determines whether the driver has
the intention of minimising their trajectory’s curvature, yaw rate and lateral accelera-
tion to cut the curve for increased comfort [192]. This is done, ideally, by following the
’optimal race-line’, which is harder to drive for longer curves [30]. This, in turn, will
also affect the driver’s speed choice [170]. Moreover, it is recently found that drivers
may make a decision to accept or reject trajectory-driven haptic-shared-control ADAS
based on the interactions during this phase (as found in Chapter 7, conducted before
Chapter 5). Hence an overall better understanding of driver behaviour before curve
entry, and the factors which can affect it, is much needed and still lacking.

To improve on the current understanding of driver prepositioning behaviour, this
chapter investigates the effect of changing vehicle velocity and road curvature on prepo-
sitioning behaviour. The prepositioning phenomenon is investigated through empir-
ical data from a fixed-base driving simulator experiment, where the velocities V = 50
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and 80 km/h, and radii R = 204 and 350 m, were tested. Geometrical changes in prepo-
sitioning were analysed. Moreover, a possible instigator to preposition, the Time-to-
Line-Crossing (TLC), which is a road safety-margin perception metric, is investigated
along with the extent to which drivers adhered to optimal prepositioning trajectories.

This chapter is structured as follows, in Section 5.2 the theoretical kinematic re-
lationships between prepositioning and lateral acceleration and TLC are given. The
independent and dependent variables, road design and hypotheses for the simulator
experiment are described in Section 5.3. Section 5.4 presents the experimental find-
ings, interpretations and discussion. Finally the conclusion is presented in Section
5.5.

5.2. BACKGROUND
Prepositioning is a spontaneous phenomenon that is found to occur in naturalistic
driving studies [38, 117]. However, only optimal prepositioning behaviour is mathe-
matically modelled and quantified in literature. In fact, prepositioning is an emergent
behaviour from all optimal control models, which race-line drivers undertake whilst
pursuing an optimal trajectory [30]. In the light of trajectory optimal curve negotia-
tion in lateral acceleration for a given speed, this section provides the theoretical back-
ground to understand the benefit of and need for prepositioning.

For optimal curve negotiation, one of the performance criteria is to minimise lat-
eral acceleration. Lateral acceleration al at is given in Eq. (5.1), where κ is curvature
and V is velocity.

al at = κV 2 (5.1)

Minimising lateral acceleration in the curve can be accomplished by reducing speed
as well as pursuing a trajectory with a reduced curvature. Here, a particular trajectory,
called the optimal race-line, would be achieved without compromising velocity, but
rather, minimising curvature. A minimum curvature is achieved by driving a trajec-
tory that exhibits a radius larger than that of the road. The largest possible radius Ri

that can be taken through a constant curvature curve is illustrated in Fig. 5.2 with a
dashed line.

Using trigonometric relations the following equation for the maximum radius Ri

achievable in a curve is given in Eq. (5.2), taken from [30].

Ri = R2 −R1cos(φ/2)

1−cos(φ/2)
(5.2)

Here, R1 and R2 are the respective inner and outer radii of the curve boundaries,
whereas φ is the angular curve length. This formulation also indicates a distance λ

that defines the needed distance to start ’turning into the curve’. This distance is geo-
metrically given in Eq. (5.3).

λ= sin(φ/2)(Ri −R1) (5.3)

This distance λ increases with increasing φ and increasing Ri −R1. Eq. (5.2) also
gives us information about conditions to maximise the considered Ri . When the angu-
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Figure 5.2: This figure illustrates a curvature minimising trajectory [30] in dotted purple. The angular curve
length spans 2φ, the radius of the inner boundary of the curve is R1, that of the outer boundary is R2 and the
maximum radius of the optimal lateral acceleration al at trajectory is Ri . The distance needed to optimally
turn into the curve is λ.

lar curve length tends towards π (180 deg), Ri reaches R2 meaning there is no benefit
that arises from prepositioning anymore. Hereby, the larger the curve length, the less
the potential reduction of the experienced al at , achieved from prepositioning.

5.2.1. TIME-TO-LINE-CROSSING AND LATERAL ACCELERATION
The need for prepositioning can be motivated from a lateral acceleration perspective,
i.e. Eq. (5.1). A second consideration, as lateral acceleration is not a signal that can
always be perceived by drivers (e.g. in a fixed based driving simulator), is that prepo-
sitioning helps maximising the Time-to-Line-Crossing (TLC). The TLC is perceived vi-
sually and indicates the safety margins to the road [110] [121]. It has been found in an
early study that drivers may try to maintain an upper bound to TLC in curves, where
for sharper curves drivers may preposition or slow down more [63].

In the following, the relationship between al at and TLC is derived. Fig. 5.3 illus-
trates a vehicle negotiating a curve with radius R at a lateral displacement δ from the
inner road boundary on a road width of w . If the driver were to take their hands off
the steering wheel, the vehicle would exit the road boundary ahead of the vehicle at
a distance D . The time to reach this road boundary is the constant heading ’straight’
TLC, considered in this chapter.

Using Fig. 5.3, the following geometric relations can be established. Using Pythago-
ras’ theorem Eq. (5.4) is formulated.

(R +δ)2 +D2 = (R +w)2 (5.4)

Assuming that δ and w are both small compared to R so that both δ2 and w2 can
be neglected, the following equation is achieved:
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D

w

R

Rδ

Figure 5.3: This figure illustrates a geometric diagram which is used to derive trigonometric relationships
related to TLC. The car is driving on a single lane curve with radius R and width w , at a distance δ to the
road boundary. If the driver were to let go of the steering wheel, the car would exit the lane at a distance D
ahead of the car.

D =
√

2R(w −δ) (5.5)

From Fig. 5.3 it follows that the TLC is given by Eq. (5.6).

TLC = D

V
(5.6)

V = D

TLC
(5.7)

Substituting Eq. (5.5) into Eq. (5.1) the relationship between al at and TLC is estab-
lished:

al at = κV 2 = 2(w −δ)

TLC2 (5.8)

As is clear from Eq. (5.8), lateral acceleration is inversely proportional to the TLC2

in a curve. Hence, minimising lateral acceleration can be achieved by maximising TLC.
Therefore, prepositioning (and continuing to follow the optimal curve trajectory) in-
creases TLC. Moreover, the amount of TLC that can be maximised depends on curve
length, just as the amount of al at that can be minimised depends on curve length (as
deduced from Eq. (5.2)). Specifically, one can gain more TLC with a shorter curve
length.

5.3. EXPERIMENT

5.3.1. CONTROL TASK
In the experiment, subjects were asked to perform a curve negotiation (lateral control)
driving task at a fixed speed (i.e., steering only) in a fixed-base driving simulator. A
heavy sedan of 1.8 m wide was used to visually simulate the vehicle on a single lane
road of 3.6 m width. Simplified vehicle dynamics identical to those used in previous
investigations [152] approximated by a bicycle model, was used to simulate the lateral-
directional car dynamics.
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Table 5.1: The centerline Time-to-Line-Crossing (TLC), full curve length and the time spent driven in the
curve at the respective constant velocity.

Condition TLC (s) curve curve
length (m) time (s)

R= 204 m, V =50 km/h 1.39 122 8.76
R= 204 m, V =80 km/h 0.87 122 5.47
R= 350 m, V =50 km/h 1.82 178 12.81
R= 350 m, V =80 km/h 1.14 178 8.01

5.3.2. INDEPENDENT VARIABLES

This study has two factors; car speed and road curvature, each having two levels com-
prising V ∈ {50,80} km/h and curvature with radius R ∈ {204,350} m. The choice of the
speeds is based on the maximum velocity on different roads in the Netherlands: 50
km/h in urban roads and 80 km/h in some motorways. The corresponding radii are
chosen based on the Dutch empirical road design formula in Eq. (5.9) [140].

R ≥ 7V 2

210−V +9p
(5.9)

This equation sets radii limitations to maintain driver comfort empirically, where
V stands for velocity in km/h and p stands for the road tilt in a percentage between 0
and 100%. A road tilt of 10% is taken, as is common in a highway T-section [140]. The
radius of 204 m is the minimum radius for a velocity of 80 km/h whilst that of 350 m
is the minimum radius for a velocity of 100 km/h. A velocity of 100 km/h is taken to
design the road radius, as this velocity is a consecutive limit velocity in Dutch traffic
rules and the corresponding radius is acceptable for both velocities of 50 and 80 km/h.
This is done to avoid a push for prepositioning to reduce the curvature, so that most
likely, the captured data is consistent with natural well-learned behaviour.

The designed curves with corresponding fixed velocities, naturally have different
centreline Time-to-Line-Crossing (TLC), curve length and curve time, as given in Table
5.1. Using Eq. (5.5) and Eq. (5.6), the constant heading, straight TLC [29] values are
computed assuming constant curvature (the maximum curvature of the road) and that
the driver drives on the centreline. With a smaller radius (larger curvature) and larger
velocity, the centreline TLC decreases, meaning a less ’safe’ driving situation.

5.3.3. ROAD DESIGN

Five road design aspects are of interest for this experiment: the road width, the straight
section length, the curve length, the clothoid length, and the order of presentation of
right and left curves. The road width was chosen as 3.6 m in line with Dutch road
specifications and previous studies [68, 152].

The design of the straight section length determines whether prepositioning is stud-
ied independently for each curve. To minimise the chance of interference with ’post-
positioning’ after curve exit, the straight section length was fixed to 25 seconds.
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The design of the curve length is optimised with respect to the extended tangent
point (ETP). That is, the minimum curve length such that at curve entry the curve exit
is not visible [68], i.e., the curve length is always twice the distance to the tangent point,
when prepositioning maximally. This is necessary for a fair comparison between both
curvatures. The angle ψ to the tangent point, for a curve with radius R and road width
w , from the outer curve boundary at curve entry can be computed with Eq. (5.10). The
angle to the extended tangent point is twice this value, where the corresponding curve
length lET P is calculated according to Eq. (5.11).

R− w/2

R+ w/2

ψ

ETP

Figure 5.4: This figure illustrates the maximum achievable distance to the extended tangent point (ETP).
This occurs when a driver prepositions maximally. The angular length to the tangent point isψ, whereas the
angular length to the extended tangent point is 2ψ.

ψ= arccos(
R −w/2

R +w/2
) (5.10)

lET P = 2ψR (5.11)

The clothoidal length of the curve lc is designed according to Eq. (5.12), which is
an empirical relation taken from Dutch road design principles [140]:

lc = 1

9
R (5.12)

Finally, the order of presentation of left and right curves was randomised, as it
should be unpredictable to avoid precognitive behaviour where drivers preposition
based on expectation.

5.3.4. APPARATUS
The driving task was performed in the fixed-based driving simulator at the Human-
Machine-Interaction Laboratory at TU Delft. The visual scenery was presented using
three LCD projectors covering a horizontal field-of-view of 180 deg and a vertical field-
of-view of 40 deg, with an update rate of 50 Hz. A MOOG FCS Ecol8000S Actuator
running at 2500 Hz was used for generating self-aligning haptic torques on the steering
wheel.
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5.3.5. EXPERIMENTAL-SETUP AND PROCEDURE

Before participating in the experiment, participants indicated whether they had a driver’s
license and how experienced they were and provided written informed consent. The
conditions were presented in randomised order which was balanced across partici-
pants. Before each condition, the participants were given a familiarisation run of 160
s.

5.3.6. SUBJECTS AND INSTRUCTIONS

The experiment was performed by twenty-four subjects between the age of 20 and 63
years (average of 32.8 years and standard deviation of 16 years). There was an average
of 28 years of driving experience with a standard deviation of 12.8 years. Within this
population, there are 4 novice drivers (i.e., did not have a drivers license yet) and 4
highly experienced drivers (i.e., had between 39 to 42 years of driving experience). All
subjects were instructed to drive as they normally would and to hold their hands on
the steering wheel at a" ten-to-two" position.

5.3.7. DEPENDENT VARIABLES

There are two sets of dependent variables. The first defines geometric properties that
were used to quantify participants’ prepositioning behaviour, whilst the second set of
metrics is used to verify whether prepositioning improves TLC (i.e. whether the prepo-
sitioning was performed to achieve an improvement in TLC or equivalently, lateral ac-
celeration).

QUANTIFYING PREPOSITIONING BEHAVIOUR

For the quantification and characterisation of the measured differences in preposi-
tioning behaviour, several geometric metrics derived from the driven trajectory are
extracted, as illustrated in Figure 5.5. This figure shows a curvature profile κ and the
corresponding lateral position within the road boundaries sl at , both as a function of
time. As the road width is 3.6 m and the car width is 1.8 m, the effective road width is
1.8 m, as indicated in shaded grey in Fig. 5.5. The optimal race line deduced according
to [30], is illustrated in the sl at domain as well as in a 2D mapping. The following six
metrics were derived from the sl at trajectory before curve entry to characterise prepo-
sitioning behaviour:

• ymax : the maximum prepositioning displacement relative to road centerline.
Note that the presented ymax∗ in the results section is ymax corrected for curve
direction, i.e., always showing positive values in the direction of the outer curve
boundary.

• ye : the curve entry position relative to road centerline. Again, ye∗ is ye corrected
for curve direction.

• τi n : the time before curve entry that the driver decides to turn into the curve,
i.e., the time at which ymax occurs.
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• yb : The trajectory bias on the straight section, here calculated as the average
between 20 and 10 s before curve entry. This is based on a previous study, where
drivers start to decelerate before curve entry, 4.6 s on average, with a 1.5 s σ [68].

• ∆ymax : the maximum prepositioning displacement relative to the straight sec-
tion bias yb .

• ∆ye : the curve entry position relative to the straight section bias yb .
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Figure 5.5: This figure illustrates the geometric overview of the metrics used to quantify prepositioning be-
haviour, with an equivalent 2D schematic. Plot a) illustrates the curvature profile, indicating the preposi-
tioning phase before curve entry and the in-curve phase. Plot b) illustrates a possible prepositioning tra-
jectory in the lateral position domain sl at . Geometric quantifications of the prepositioning trajectory are
indicated. These include: straight road bias yb , maximum prepositioning displacement ymax , curve entry
position ye , turn in time τi n , relative maximum prepositioning displacement ∆ymax and relative curve en-
try position ∆ye . Additionally, the optimal race-line as deduced from [30] is illustrated in red. Finally, plot
c) illustrates a 2D birds-eye-view schematic of the driver trajectory and optimal race-line.

For the evaluation of the statistical significance of differences in these metrics, two
two-way repeated-measures Analysis Of Variance (ANOVA) was performed, i.e., one
for each curve direction, with the velocity and road radius as factors. This is done
for two reasons: 1) drivers drive differently on the right and left curves, as found in
Chapter 4 and, 2) the effect of curve direction on prepositioning behaviour is not the
focus of this study. Assumptions for this statistical test to be valid include 1) normality,
which was tested using the Shapiro-Wilk test, and, 2) sphericity, which was corrected
for using Greenhouse-Geisser correction in case of a violation.
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Figure 5.6: This figure illustrates the minimum achievable κ (using Eq. (5.2)) through following the optimal
raceline. This is plotted against curve length for the different considered curves. The curve length consid-
ered for the designed roads is indicated by a red vertical line. R2 is the radius of the outer boundary of the
road, as outlined in Fig. 5.2. The minimum achievable κ is plotted on the left for R = 204m and on the right
for R = 350m.

METRICS TO VERIFY WHETHER PREPOSITIONING IMPROVES TLC
In addition to comparing prepositioning trajectories themselves, we also focus on TLC
and lateral position sl at during the curve. Specifically, we compare the trajectory gen-
erated by participants to the theoretically calculated optimal race-line. For this, the
following metrics are considered:

• The average lateral position sl at w.r.t. road centreline across 5 runs (20s before
curve entry and including the curve part).

• The ’straight’ Time-to-Line-Crossing (TLC), i.e., the constant heading, constant
velocity TLC [29]. Calculated through an iterative predictive calculation on the
future physical road ahead with an effective road width of 1.8 m.

• Optimal-race-line Variance Accounted For (VAF). The VAF between measured
driver trajectories and the optimal race-line in the lateral position domain (as
described in [30]) was used to quantify the similarity of the two trajectories. The
VAF is a fitting metric [17], where 100% indicates a perfect match.

• TLC ratio signifies TLCdr i ver
TLCcenter l i ne

, which is the ratio between the average TLC of the
driver (across the constant curvature section) and that of the centerline. These
ratios are computed for the in-curve section. A value larger than 1 signifies in-
creased TLC relative to the centreline values, also given in Table 5.1.

5.3.8. HYPOTHESES
Four hypotheses were formulated for this experiment:

H.I Maximum prepositioning displacement ymax and∆ymax increase with increasing
road curvature and with increasing velocity.

H.II τi n (related to the distance λ) decreases with increasing road curvature and with
increasing velocity.
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Table 5.2: The optimal τi n values derived from the required λ distance (in Eq. (5.3)) needed for an optimal
race-line.

Optimal τi n (s) V = 50 km/h V = 80 km/h

R= 204 m 1.72 1.07
R= 350 m 2.03 1.26

H.III All subjects display prepositioning behaviour, which is shown by exhibiting an
∆ymax > 0.05 m.

H.IV By prepositioning drivers can obtain a more optimal TLC in curves.

H.I is based on Fig. 5.6, computed based on Eq. (5.2) which gives the potential
decrease in curvature when drivers preposition before a curve as a function of curve
length. For R = 204 m prepositioning can potentially minimise driven curvature by
0.0014 m−1, whereas for R = 350 m by 0.0006 m−1. Since the curve with larger cur-
vature (R= 204) facilitates a larger improvement in visual safety margins (TLC) when
prepositioning, it is hypothesised that prepositioning increases with curvature. More-
over, when speed increases, the TLC further decreases, so it is hypothesised that the
perceived need by the drivers to increase their TLC by prepositioning may increase as
well.

H.II is based on theoretical derivations. Substituting the considered roads in Sec-
tion 5.3.3 into Eq. (5.3) and Eq. (5.2), the needed τi n to achieve the optimal race-line
is given in Table 5.2. Here it is clear that τi n decreases with increasing curvature and
velocity.

H.III is based on the previous finding that drivers start to decelerate before curve
entry 4.6 s on average [68]. Thereby preparation for the curve by prepositioning is
complementary and expected from everyone.

H.IV is based on Fig. 5.2, i.e., following the optimal race-line can improve TLC in
curves. However, not all drivers follow such an optimal trajectory, as found in Chapter
4. Therefore, it is hypothesised that by only prepositioning, one may also harvest a
fraction of these TLC benefits.

5.4. RESULTS

5.4.1. EFFECT OF VELOCITY AND CURVE RADIUS ON PREPOSITIONING BE-
HAVIOUR

Figure 5.7 shows boxplots of ymax∗, ∆ymax , ye∗ and ∆ye . The schematic on the far
right illustrates the physical realisation of how the average ymax position (average
across the number repetitions of each participant and all participants through each
specific curve) is affected by curve radius and velocity in left curves. The illustration
of the ymax position is done at sl ong (τi n) (equivalent to the drivers ’turn in distance’
λ), which is different for each velocity. It can be seen that on average drivers increase
their ymax with velocity and curvature.

Similarly, ymax * for right curves increases with increasing curvature ( 1
R ) and ve-

locity, as seen in Fig. 5.7. An average displacement increase (for both right and left
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curves) of 0.08 m is found for increasing road curvature, and an average displacement
increase of 0.09 m is found for increasing velocity. For ymax significant effects (with-
out any normality violations) for velocity (right: (F (1,23) = 6.4, p <0.05), left: (F (1,23) =
18.3, p <0.01)) and radius (right: (F (1,23) = 7.3, p <0.05), left: (F (1,23) = 13.2, p <0.01))
were found.
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Figure 5.7: The figure illustrates the metrics used to describe prepositioning behaviour: ymax∗, ye∗,∆ymax
and ∆ye . The grey bar in the ymax∗ and ye∗ plots signify the effective road boundary of the outer part of
the curve. The last figure on the right illustrates the average maximum displacement ȳmax at the average
turn in position (sl at , slong ) at the average turn-in time τi n = 0.92 s, for a left curve

The relative prepositioning displacement ∆ymax (relative to yb , where yb is unaf-
fected by road radius or velocity, average of -0.15 m) is also affected by curvature and
radius for both right and left curves. Here we see an average displacement increase of
0.08 m for increasing road curvature, and an average displacement increase of 0.1 m
for increasing velocity. For∆ymax significant effects (without any normality violations)
for velocity ((F (1,23) = 6.7, p <0.05)-right curves,(F (1,23) = 22.4, p <0.01)-left curves)
and radius ((F (1,23) = 23.3, p <0.01)-right curves,(F (1,23) = 27.8, p <0.01)-left curves)
were found.

The absolute and relative entry position ye and ∆ye seems only to be significantly
affected by velocity in left curves. For left curve, an average ye increase of 0.05 m and
an average ∆ye increase of 0.04 m are found with increasing in velocity. Statistical
analysis shows significant effects for ye (without any normality violations) for velocity
in left curves ((F (1,23) =6.7, p <0.05) and for ∆ye (without any normality violations)
for velocity in left curves (F (1,23) = 7.07, p <0.05).

The drivers’ turn-in time τi n , as shown in Figure 5.8, is not significantly affected
by road radius and velocity. We do see, however, a difference between right and left
curves. Across both curve directions, τi n occurs at 1.04 s before curve entry on aver-
age, with left curves exhibiting a τi n that is 0.25 s lower than found for right curves on
average.
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Figure 5.8: The left figure illustrates boxplots which present τi n for both right and left curves. The right
figure illustrates the maximum prepositioning ymax exclusively for left curves, distinguishing experienced
from novice drivers, i.e., experienced have more than 40 years of driving experience and novice do not have
a drivers license.

The average straight section bias yb is -0.15 m, where for left curves it is -0.18 m
and for right curves it is -0.13 m. This effect is significant when considering a 3-way
ANOVA with curve direction as the third factor (F (1,23) =8.9, p <0.01). This could in-
dicate that drivers start to drift in the direction of prepositioning before 10 s (where
the straight section bias is computed). This is not surprising, since the curve direction
can be distinguished from the horizon line (in the driving simulator) about 16 s before
curve entry.

These results show that drivers consistently and significantly exhibit larger ymax

(preposition more) with increasing velocity and curvature. Hereby, the drivers’ chosen
prepositioning seems to increase when decreasing the default safety margin (decrease
the centerline driving TLC, i.e., an increase in the theoretical curve demand) of the
simulated road environment as given in Table 5.1, thereby H.I is accepted. Moreover,
the significant effect for left curves is consistently more substantial, with drivers ex-
hibiting both larger absolute and relative ymax , a significant increase in ye for velocity
and even turning into the curve sooner. In fact, the significant increase in ye with in-
creasing velocity, which is only found for left curves, could be a consequence of drivers
exhibiting a larger ∆ymax of 0.08 m on left curves. Drivers exhibit a preferred yb sign
(negative sign), which also means that the room for prepositioning is larger for left
curves than it is for right. Moreover, with an average τi n of 0.92 s (for left curves) be-
fore curve entry, the more you swing wide, the harder it is to maintain the same ye

position.
Theoretically, the distance λ for following the optimal race-line increases with re-

ducing road curvature. This translates to an optimal turn in time τi n,opt that decreases
with increasing road curvature and velocity. However, the parameter τi n is not signifi-
cantly affected by curvature or velocity. This rejects H.II. This also implies that not all
drivers follow the optimal race-line, in line with the findings of Chapter 4.

5.4.2. DOES EVERYONE PREPOSITION?
For the collected experiment data, it is found that 88% of the runs tested shows a signif-
icant prepositioning contribution (defined here as having a∆ymax > 0.05 m), as shown
in Fig. 5.7. This validates H.III. Moreover, it seems that prepositioning behaviour could
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be related to experience in driving, especially without any available vestibular feed-
back as given in Fig 5.8. In our experiment, the inexperienced driver tended to drive
near the centerline. In contrast, the experienced drivers could be exercising a habit
that is known for its TLC maximising and al at reducing benefits. This data suggests
that prepositioning behaviour is in fact, a ’learned’ behaviour, but a better experiment
(with more participants in each driver group) is needed to make a conclusive state-
ment.

For those who do preposition, it is found that drivers start to preposition at 7.3 s
before curve entry on average. This value is markedly different from the ’preview’ time
most driver models implement [174] [177], suggesting that this is a separate category
of anticipation that occurs for active steering inputs. Nevertheless, the average turn-
in time τi n , independent of curve radius or velocity, is found to be 1.04 s on average,
which is similar to the human control preview time found in preview identification
studies [174].
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Figure 5.9: This figure illustrates the average and standard deviation of 10 runs of four drivers: a Race-
line driver, a center-line driver, an inverse race-line driver and a driver that prepositions only. The first row
illustrates the lateral position sl at , second row al at and third row TLC. The centerline output is illustrated as
a baseline reference in all domains: sl at , al at and TLC. The optimal race line is illustrated for comparison.
The minimal achievable al at through following the optimal raceline is computed using Eq. (5.2) and Eq.
(5.1).

5.4.3. DOES PREPOSITIONING BENEFIT TLC?
Drivers preposition more with increasing velocity and curve radius. At the same time,
the curves that have a larger curvature ( 1

R ) and velocity have decreased centerline
TLCs, as shown in Table 5.1. TLC can be related to the driver’s safety margin [110] [121],
where a higher TLC implies a better safety margin. Therefore, it seems that drivers
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could be reacting to those decreased centerline driving TLC by prepositioning more.
As outlined in Section 5.2, race-line drivers adopt this prepositioning strategy to op-
timise their lateral acceleration by taking a radius larger than the road. This results
in a reduced curvature of the driven trajectory (κ = 1/R) and reduced required steer-
ing due to reduced yaw rate (r = κV ). This results in an efficient trajectory that ’cuts
the curve’, which significantly increases TLC in curves, both due to the ’cutting’ posi-
tion on the inner part of the curve and the acquired heading. This trajectory thus also
better approximates the optimal race-line [30].
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Figure 5.10: This figure illustrates scatter plots and the best linear fit to these data points. Moreover, the
correlation between the presented metrics are computed.

Figure 5.9 illustrates the lateral position sl at , lateral acceleration al at and TLC of 4
different drivers: a Race-Line driver that closely follows the optimal race-line through
the curve, a Center-Line driver maintaining close proximity to the centerline, a In-
verse Race-Line driver who follows a strategy that is opposite to the optimal race-line
through the curve and a Prepositioning driver who only prepositions. Fig. 5.9 clearly
shows that following the optimal race-line decreases al at and increases TLC, as ex-
pected. Whereas taking an opposite strategy (inverse race-line) increases al at and
decreases TLC further. However, merely prepositioning does not result in the same
benefits as following the optimal race-line.

Fig. 5.10 illustrates two correlation plots, relating the ymax position and TLC ratio
and the extent to which drivers follow the optimal race-line (optimal race-line VAF)
and the TLC ratio. Although both cases show a statistically significant correlation, that
for the optimal race-line VAF is much more robust, which means it is more reliable.
The correlation of 0.86 indicates a strong relationship between following the extent to
which one follows the optimal race-line and an improvement in TLC. The correlation
of -0.51 suggests that the less drivers preposition, the higher their TLC, which shows
that prepositioning alone does not help with increasing your TLC. In fact, some drivers
with a ymax close to 1 obtain a substantially small TLC ratio (possibly by following an
outer-curve negotiation style (OOO)). This result rejects H.IV. Hereby, following the op-
timal race-line, which includes prepositioning, results in larger TLC values in curves,
however, prepositioning alone may not.

If the curve length were designed to be longer, however, such correlations may be-
come weaker. The relative reduction of curvature of the optimal race-line is known to
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become smaller with increasing curve length as implicated by Eq. (5.2), resulting in a
reduced heading difference which further reduces the increase in TLC of the optimal
race-line. This also means that the benefit of prepositioning decreases with increasing
curve length, as theoretically expected. Conversely, it can also be argued that drivers
preposition in relation to curve length. The conditions with a radius of 204 m have not
only a larger curvature, but also a smaller curve length compared to a radius of 350, as
given in Table 5.1. Hereby the significant increase in prepositioning could be a result of
both a smaller curve radius (sharper curve) and a shorter curve length, which is an un-
foreseen possible confound. Therefore it is recommended to perform an experiment
that can independently vary curve length and curve radius.

5.5. CONCLUSION
This chapter concludes that the maximum prepositioning displacement is found to in-
crease with increasing velocity and decrease with increasing road radius. The turn in
time, i.e., the time before curve entry where the driver exhibits their maximum prepo-
sitioning position is not affected by curvature or velocity (contrary to theory for op-
timal prepositioning), with an average of 1.04 s. Prepositioning behaviour is evident
for 88% of the driven curves by the participants, where drivers exhibit a prepositioning
displacement relative to road bias of more than 0.05 m.

It seems that drivers adapt their prepositioning to the perceived centerline Time-
to-Line-Crossing. However, the driver can increase their TLC only by following the
optimal race-line, which, inherently exhibits prepositioning. Prepositioning alone,
without tending to follow to optimal race-line is not found to improve TLC. Overall,
this chapter shows the importance of incorporating these findings in driver modelling
(Chapter 6), which will bridge the gap between straight road and in-curve driving be-
haviour, bolstering the descriptive capacity of these models.
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DRIVER PREPOSITIONING

MODELLING AND INTEGRATION

Model building is the art of selecting those aspects of a process that are relevant to the
question being asked.

J.H. Holland

In the previous chapter prepositioning was geometrically quantified. This chapter deals
with the modelling of prepositioning. A stand-alone prepositioning-path generation
model is introduced, which can be coupled with any control-theoretic driver steering
model with an explicit position feedback loop. The proposed prepositioning-path model
is combined with the Van Paassen control-theoretic driver steering model, which is as-
sessed in Chapter 3. The combined model is evaluated using the descriptiveness assess-
ment metric.

The contents of this chapter are to be published as:

Barendswaard, S., Pool, D.M., Van Paassen, M.M., Boer, E.R., Abbink, D.A., ’A pre-curve
prepositioning model to enhance the descriptiveness of specific control-theoretic driver
steering models.’, IEEE Transactions on Human Machine Systems.
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6.1. INTRODUCTION
The understanding of human driving behaviour in curve negotiation is of increas-
ing importance in the design of Advanced Driver Assistance Systems (ADAS) and au-
tonomous cars [69] [98] [86]. The acceptance of some types of ADAS systems (Lane
Keeping Assitance, Lane Departure Warnings) is highly dependent on the automation
being able to understand and thereby capture an individuals’ driver behaviour and
respond accordingly [152]. Moreover, the acceptance of fully autonomous cars also
depends on their ability to adjust motion and path planning algorithms with realistic
human driving behaviour, because only human-like manoeuvres feel ’natural’ and can
build trust between driver and automation [154].

Estimation Anticipation

Prepositioning Phase

Figure 6.1: Illustration of the four phases of curve negotiation [117] [38], where this chapter focuses on the
curve anticipation or the prepositioning phase

Naturalistic driving studies show that human drivers’ curve driving behaviour is
split into four distinct phases [117][38], as illustrated in Fig. 6.1: 1) estimation, where
drivers estimate the curvature and adjust their speed for curve entry, 2) anticipation,
where drivers anticipate the curvature and (pre)position accordingly, 3) entry and curve
negotiation, where drivers adjust their steering and lateral acceleration to stay within
road boundaries, and finally, 4) exit, accelerating to the desired speed again. Two of
these phases, estimation and anticipation, occur before curve entry, wherein the an-
ticipation phase, drivers demonstrate prepositioning behaviour. A majority of drivers
exhibit prepositioning behaviour, namely 88 % of the runs tested in the experiment
from Chapter 5. Drivers may practice prepositioning as an attempt to increase their
Time-to-Line-Crossing or decrease their steering demand in the curve. Contrary to the
preview time identified in driver models, typically between 0.6-1.2s [174][177], prepo-
sitioning (for a straight section of 25s) is found to be initiated 7s on average before
curve entry in Chapter 5, though there is a large variation between subjects.

Most driver steering models ignore the occurrence of prepositioning by assuming
that drivers enter the curve at lane centre [116] [11]. Other steering models assume
they start to turn into the curve a few moments before curve entry at a certain pre-
view time [174][177] (around 1s), or always preposition optimally through resorting
to optimal control with cost function minimisation [30]. Prepositioning is an emer-
gent behaviour in optimal preview control models. Due to being controlled with a
cost-function, the degree of prepositioning behaviour is linked with the in-curve be-
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haviour. However, as shown in Chapter 5, naturalistic driver prepositioning behaviour
does not show such a link. For example, normal curve cutters and offset outer curve
negotiators (driver class trajectory behaviour outlined in Chapter 4) preposition, but
do not follow the optimal race-line in the curve. Therefore, this chapter places its fo-
cus on control-theoretic driver models because they 1) facilitate increased flexibility in
modelling prepositioning and in-curve behaviour and 2) include parameters that have
physical meaning such as time delay and neuromuscular gain.

State-of-art control-theoretic modelling suffers from their capacity to describe driver
behaviour accurately. Chapter 3 has concluded that such models are not able to de-
scribe more than 17% of the driving population (for right curves), attributable to the
inability to describe prepositioning. The reason for this shortcoming is twofold: 1) cur-
rent control-theoretic models are validated in a limited domain (steering angles) [116]
[11] and, 2) control-theoretic driver models are largely developed for abstract and un-
realistic roads consisting of a continuum of curvature (sum of sinusoids), which is a
limited domain not allowing for any explicit prepositioning that is observed in a real
world curve separated by straight sections. [174].

To bridge the modelling gap, this chapter introduces a novel prepositioning-path
model to be used as an extension with control-theoretic driver steering models [16].
The Van Paassen control-theoretic driver model was chosen for two reasons: 1) it ex-
hibits such exclusive position feedback and, 2) resulted in the best model performance
from the assessment in Chapter 3. This chapter augments the Van Paassen model
with a prepositioning-path reference input. The effectiveness of this augmentation is
tested by applying the descriptiveness assessment procedure from Chapter 3, to both
the augmented and baseline Van Paassen model.

This chapter is structured as follows: Section 6.2 presents the proposed prepositioning-
path model and its capacity to capture different types of prepositioning behaviour. The
Van Paassen model is elaborated in Section 6.3. The augmentations made to the Van
Paassen model to account for prepositioning is given in Section 6.4. The descriptive-
ness assessment of the augmented model relative to the un-augmented model is given
in Section 6.5, discussion in Section 6.6. Finally, the conclusions are presented in Sec-
tion 6.7.

6.2. PREPOSITIONING-PATH MODEL
This section introduces the prepositioning path model by first explaining the relevant
geometric parameters in Section 6.2.1, which are used for the Model Formulation in
Section 6.2.2. The parameters of the formulated model are explicitly explained in Sec-
tion 6.2.3. The results of verifying the introduced path model is given in Section 6.2.4.

6.2.1. GEOMETRIC PARAMETERS

A prepositioning trajectory expressed in terms of lateral position on the road sl at is
geometrically defined by seven measurements, using the metrics illustrated in Fig. 6.2,
which are introduced in Chapter 5.

These geometric quantities can be used to compare the different types of preposi-
tioning behaviour in the driving population, or how road characteristics and velocity
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Figure 6.2: A geometric quantification of prepositioning behaviour. These comprise the straight section bias
(yb ), the maximum prepositioning distance (ymax ), the curve entry position (ye ), the maximum preposi-
tioning distance relative to the straight section bias (∆ymax ), the curve entry position relative to the straight
section bias (∆ye ), turn in time (τi n ) and prepositioning time (τp ).

can affect prepositioning, as was done in Chapter 5. In fact, for modelling preposition-
ing, the following three geometric parameters are of importance.

• yb : straight section average bias

• τp : prepositioning time

• ∆ymax : total prepositioning displacement relative to yb

With these three parameters, the prepositioning response between yb and ymax is
defined, the rest of the geometric measurements follow.

The straight section average bias yb is the biased position on the road that the
driver already exhibits before prepositioning initiation (all drivers exhibit a lateral bias
on straight roads which depends on the lane of travel, especially in multi-lane motor-
ways [92]). When the driver spots the onset of a curve, on average at 7s before curve
entry (as found in Chapter 5), the driver starts to drift away from the initial road bias
yb to a displacement which is equivalent to ymax , positioning a net distance of ∆ymax

at τi n s before curve entry (around 1s).

6.2.2. MODEL FORMULATION
The geometric description of prepositioning can be modelled using a bias and a sig-
moid function. However, the control-theoretic model becomes ’active’ at curve entry,
see section 6.3. Therefore, to minimise the sl at modelling interference, the contri-
bution of the prepositioning path model should be smoothly damped down to zero
immediately after curve entry, which requires a second sigmoidal function.

As given in Eq. (6.1) and illustrated in Fig. 6.3, the proposed model starts at the
constant bias level yb . The first sigmoidal function is activated around the preposi-
tioning time τp , which, is related but not equal to the sigmoid time shift τ1. Instead
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Figure 6.3: Illustration of the prepositioning path model, with the sigmoidal parameters graphically pre-
sented [37]. The model starts at the bias level yb . The sigmoid amplitude is g1 for the Sigmoid 1 and g 1+ yb
for Sigmoid 2. The sigmoid slopes a1 and a2 and the sigmoid time shifts τ1 and τ2, marking the midpoint
of the sigmoid from the curve entry point.

τ1 represents the middle of the sigmoidal slope, given by a1. The amplitude at this
first sigmoid is g1, equivalent to ∆ymax . Once the curve onset is detected the sec-
ond (sharper sloped sigmoid) is activated around τ2, which facilitates ’turning into the
curve’ at time τi n (around 1s before curve entry as found in Chapter 5) and reduces the
prepositioning response back to zero (with an amplitude of yb+∆ymax , or yb+g1). The
parameters τp and τi n are not explicitly included in the model formulation, however,
they emerge from the choices made for τ1, τ2, a1 and a2.

ypr ep (t ) = yb +
g1

1+e−a1(t−τ1)
− g1 + yb

1+e−a2(t−τ2)
(6.1)

The model of Eq. (6.1) only outputs a path, relative to the road centreline. This
path is independent of velocity. The path model also does not produce the crucial
driver output of steering angles. This path is meant to be used as a position reference
in control-theoretic driver steering models.

6.2.3. MODEL PARAMETERS
The prepositioning part is essentially captured by the amplitude g1, the slope a1 and
the time τ1 as given in Fig. 6.3. The bias yb can be extracted from the apparent bias in
the data. This is especially clear from a dataset that has a long straight section before
curve entry, as is the case in Chapter 5. The second sigmoid has an amplitude that is
not independently tunable (g1 + yb), whereas the slope a2 and time τ2 are. The func-
tion of the prepositioning path model ends at curve entry. Therefore, the parameters
a2 and τ2 must ensure that the prepositioning contribution reduces to zero as fast as
possible without incurring any modelling artefacts. To reduce the path as fast as pos-
sible, the parameter a2 should be large and τ2 should be zero. However, very high a2
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and low τ2 results in a near step-like response which causes steering oscillations as
a modelling artefact. To avoid such artefacts, the sigmoid time τ2 is fixed to a value
of 0.5 s and the parameter a2 is restricted not to exceed 2 m/s. For a ymax at 0.9 and
yb at 0, this second sigmoid reduces to zero at a velocity of 0.6 ms−1, acceleration of
0.57 ms−2 and jerk of 1.31 ms−3. Nevertheless, since the control-theoretic model is
’active’ in this region, the decrease rate may not be perceived as strongly. Additionally,
the centripetal acceleration required to make the curve is significantly larger at 2.41
ms−2. Also, the steering demand is much lower for prepositioning than it is to make
the curve, i.e. the instantaneous curvature needed to preposition is around 1/10th of
that for a curve with 0.005 m−1.

6.2.4. MODEL VERIFICATION

The prepositioning-path model is verified on the dataset of Chapter 5, which includes
24 participants. This dataset is chosen because the experiment performed to gener-
ate the dataset is designed with a straight section of 25 s to detect prepositioning be-
haviour accurately. For identification with the prepositioning path model, only 20 s be-
fore curve entry is taken, to exclude any possible post-curve repositioning behaviour.
The identification of the prepositioning path model is performed using Eq. (6.2). Here
the equation finds the argument P (a parameter vector [g1, τ1, a1, a2, yb]) that min-
imises the expression which defines the absolute difference between the modelled
prepositioning path ŝl at (P ) and the true path sl at .

P̂ = argmin
P

n∑
i=1

(ŝl at (P )− sl at (i ))2 (6.2)

IDENTIFICATION RESULTS

Relating to the trajectory classes defined in Chapter 4, there are three different prepo-
sitioning categories, i.e., where ye (from Fig. 6.2) is either at the Outer, Middle (cen-
terline band) or Inner part of the curve. The explicit mapping between prepositioning
category and trajectory class as defined in Chapter 4 is illustrated in Fig. 6.4.

Exit

Entry

Exit

Entry

Exit

Entry

Outer Middle Inner

Class 1,2 & 9 Class 4,5,6,7 & 8 Class 3,10 & 11

Figure 6.4: Prepositioning category and how these relate to the classes of the 11-class classifier outlined in
Chapter 4, shown from a birds eye-view perspective. Due to the exaggerated scale of the road width, the
curves look unnatural. Class 1 & 2 denote curve cutting, 3 biased inner-curve drivers, 4-8 centerline onset
drivers, 9 biased outer-curve drivers and, 10 & 11 counter curve cutting.
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Therefore, the prepositioning paths are grouped into three categories per curve di-
rection, as illustrated in Fig. 6.5. Here, a representative driver, i.e. a driver that best
represents the average of the category, is selected, and the fit of the respective driver’s
trajectory is illustrated. The VAF (a signal validation metric, the Variance Accounted
For, where a 100% means that the model can describe 100% of the behaviour, i.e. a
perfect trajectory match) of the model fit on the representative driver is also listed on
the upper right road boundary. On the lower right road boundary, the percentage oc-
currence O of each prepositioning category from the considered dataset is listed. The
corresponding identified parameters of the representative drivers are given in Table.
6.1. All the model fits for each trajectory are illustrated in Fig. C.1 in Appendix C.1,
where a sample of these is illustrated in Fig. 6.6. The corresponding identified param-
eters are shown in Fig. 6.7.

Figure 6.5: This figure illustrates the fitting (in the lateral position domain sl at ) of the proposed preposition-
ing model on a representative driver (given in red) in each of the different prepositioning categories. Each
row represents a different prepositioning category: Outer, Middle and Inner, whereas each column repre-
sents a curve direction (left, right). The prepositioning path model fit is illustrated with a dark green line.
The measurement data is presented in light blue. The corresponding model fit value of the representative
driver is indicated by the VAF value. The percentage of drivers falling into a given prepositioning category is
indicated by the Occurrence (O).

Without prepositioning, a regular control-theoretic model would stay on the cen-
terline in the straight sections. Without accounting for prepositioning, the computed
VAF for the straight sections is zero, even for the Middle prepositioning cases. Hereby,
this path model shows great improvement. However, the prepositioning path model is
unable to describe oscillatory behaviour on straight sections, which is apparent with
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Table 6.1: Identified parameters of the representative drivers of each prepositioning category: Outer, Middle
and Inner, for each curve direction Right (R) and Left (L).

P. type yb (m) g1 (m) τ1 (s) a1 (m/s) a2 (m/s)
R L R L R L R L R L

Outer 0.08 -0.21 0.25 -0.44 5.6 3.3 0.33 0.38 2 2
Middle -0.14 0.11 0.20 -0.07 2.1 3.0 0.42 1.6 2 0.28
Inner -0.42 0.17 0.07 -0.03 0.03 0.01 0.14 1.1 1.8 1.4

Figure 6.6: The first figure illustrates a sample of all the resulting prepositioning model fits to the driver data
illustrated in Fig. 6.5. The second figure illustrates the corresponding VAF fit values for each prepositioning
category, O outer, M middle and I inner.

some drivers. This is illustrated in Fig. 6.6, where the modelled data does not always
capture the variation in the straight Section, explicitly apparent with the two responses
starting at the inner side of the curve. The incapacity of the prepositioning path model
to capture oscillations is also evident with the low VAF outliers in Fig. 6.6. This model is
not designed to capture human stochastic variability; instead, it should capture an av-
erage trend that drivers may want to follow or may want to be guided by in trajectory-
driven ADAS. Such pre-curve oscillatory behaviour most likely has its origin in other
non-curve related factors such as distraction, attention fluctuation, confusion or sim-
ply a small slip in steering.

For both right and left curves, the most commonly observed prepositioning cat-
egory is that of Outer curve prepositioning. As illustrated in Fig. 6.5 for right curves
Outer has 41% occurence, Middle has 33% occurrence and Inner has 26% occurrence.
Whereas for left curves, Outer has 84% occurrence, Middle has 8% occurrence and
Inner has 7% occurrence. The high Outer curve occurrence for both right and left
curves could be related to most drivers exhibiting a significant ∆ymax . The distinc-
tively higher left Outer occurrence of 84% could be related to the straight road bias
having an average of -0.1m, i.e. -0.1m already falls in the outer part of the curve.

For the representative driver selected from the dataset, the ∆ymax is larger for left
curves than for right curves. This is indeed reflected in the parameters identified, given
in Table 6.1. The value for g1 for right curves is 0.25 m whereas for left curves it is -0.44
m. This representative parameter set is in line with the aggregate findings illustrated
in Fig. 6.7. The median g1 for left curves is at -0.31 m whereas for the right curves it
is 0.20 m. This means that on average drivers make greater lateral displacements to
preposition for a left curve, than for a right curve. This is likely because drivers are
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Figure 6.7: These plots illustrate the range of identified parameters resulting from fits on the dataset of
Chapter 5, for the proposed prepositioning path model ypr ep . These parameters are the prepositioning
amplitude g1, the sigmoid time shift τ1 and the sigmoid slope a1. They are presented separately for prepo-
sitioning responses that enter the curve at the Outer, Middle and Inner part of the curve

on the left side of the car, which, causes a bias offset to the left. Moreover, they can
perceive the distance to the left road edge more accurately, which means they can cut
a left curve more easily.

For both right and left curves, the identified g1 value for Outer prepositioning is
larger than for both Middle and Inner prepositioning. This is evident from the identi-
fied parameters of both the representative drivers in Table 6.1 and Fig. 6.5. The value
of g1 being distinctively larger for Outer prepositioning cases means that most drivers
preposition to strategically optimise their steering demands in the curve. Moreover,
the magnitude of the sigmoidal time shift constant τ1 seems to decrease in parallel
with Outer exhibiting the largest prepositioning times. Here we see that when the
prepositioning displacement is large (g1) the prepositioning time is usually larger as
well. This is because enough time is required to steer toward ymax ; otherwise, the
prepositioning manoeuvre may induce an uncomfortable lateral acceleration. Finally,
the slope parameter a1 does not seem to abide by a trend between the different prepo-
sitioning categories.

6.3. VAN PAASSEN DRIVER STEERING MODEL
The Van Paassen model [177] makes the use of feedback on predicted curve cutting
position (ycc (t ), independent of ypr ep ) and an independent feedforward path that sets
the steering rate requirements in the curve at preview time τ f . With this, the concept
is that the steering requirement to make the curve results from the feedforward loop,
whereas trajectory fine-tuning is left for the position feedback loop.

For ’trajectory fine-tuning’, the feedback loop predicts the position of the car ahead,
i.e. ŝl at (t +τn). It sets a future curve cutting reference ycc (t ), which is an exact trajec-
tory position for the feedback loop to follow, see Fig. 6.8. This ycc (t ) position is only
non-zero when in the curve (non-zero curvature input). This explicit position refer-
ence also enables other position references that are not explicitly linked to the current
or previewed curvature input.



6
.3

.V
A

N
P

A
A

S
S

E
N

D
R

IV
E

R
S

T
E

E
R

IN
G

M
O

D
E

L

6

129

slat(t)

ṡlat(t)

ycc(t) KFB KδKω

κ(t+ τf )

ŝlat(t+ τn)

Vehicle
Dynamics

δs(t)
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Reference
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Figure 6.8: Control structure for the adapted Van Paassen model introduced in this chapter, where the adaptations are indicated in blue. The original Van Paassen
model is given in Fig. 3.3. Here the previewed curvature is taken as feedforward input, along with the additional prepositioning curvature κpr ep , whereas the feedback
is on lateral position and lateral velocity. Moreover, the prepositioning position reference ypr ep , is added to the curve-cutting position reference ycc (t ) to obtain the
future position reference y f r (t ).



6

130 6. DRIVER PREPOSITIONING MODELLING AND INTEGRATION

6.3.1. OUTLINE
The feedforward input signal (the previewed curvatureκ(t+τ f )) is filtered with a second-
order filter with a break frequency at Ths , see Fig. 6.8. This is especially important
when the road is non-clothoidal, to prevent any transition responses from the dynam-
ical transfer functions. The filtered curvature signal is then used for both the feedback
loop and the feedforward path.

In the feedback loop, the filtered curvature is used to compute the curve cutting
offset as given in Eq. (6.3), further geometric explanations are given in Chapter 3 and
Appendix B.4.

ycc (t ) = 1

2
(τ f V )2κ(t +τ f ) (6.3)

The curve cutting distance is taken as a reference in the position tracking feedback
loop. The predicted position (the fed-back signal ŝl at (t +τn)) is computed by linear
approximation at the prediction look ahead time τn (ideally τn = τ f −Ths [173]). This
error is then compensated with feedback gain KF B .

PARAMETERS FOR IDENTIFICATION

The considered parameters in the Van Paassen model for identification are identical
to those considered in Chapter 3. These are five: the lookahead time τ f , the filter
time constant Ths , the prediction time τn , the feedback gain KF B and the feedforward
gain KF F . The other parameters shown in the model such as the wheelbase gain Kw ,
wheelbase distance Lwb , the effective steering ratio Ke f f and Kδ are all constants and
properties of the vehicle driven. The values for these are taken from [177].

6.4. AUGMENTATIONS MADE TO THE VAN PAASSEN MODEL
This chapter augments the Van Paassen model by adding a prepositioning position ref-
erence ypr ep to the curve cutting reference, which augments the signal from only being
a curve cutting reference ycc (t ) to a future position reference y f r (t ), as illustrated in
Fig. 6.8. Additionally, the corresponding prepositioning curvature κpr ep is fed into the
feedforward loop to provide a matching feedforward contribution.

In the feedforward loop, the filtered curvature is summed with the corresponding
prepositioning curvature κpr ep (t ). This prepositioning curvature is computed based
on the identified prepositioning position, as given in Eq. (6.4) and Eq. (6.5). For the
model simulation, the analytical expressions are first explicitly evaluated, using the
parameterised prepositioning model of Eq. (6.1).

apr ep (t ) = d 2 ypr ep (t )

d t 2 (6.4)

κpr ep (t ) = apr ep (t )

V 2 (6.5)

The prepositioning path consists of two sigmoids, where, after curve entry, the con-
tribution of apr ep (t ) should not be considered for prepositioning curvature. This is be-
cause, after curve entry, the second sigmoid’s sole purpose is to damp out the position
reference to zero as fast and smoothly as possible, to allow for the control-theoretic
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Figure 6.9: The first figure is in the lateral position domain (sl at ) and illustrates driver data in red and the
corresponding prepositioning model fit in blue. The second figure, in the (instantaneous) curvature domain,
shows the road curvature in light blue, the modelled curvature in blue, the driver curvature in red and the
prepositioning curvature (κpr ep ) in pink.

model to manage the steering response in the curve independently. Therefore, the
computed lateral acceleration resulting from the second sigmoid after curve entry de-
fined in Fig.6.3, after curve entry, is a modelling artefact and should not be considered
for κpr ep . To avoid this, a fade-out function can be used to attenuate the κpr ep to zero
in the curve. To illustrate that this combination does not result in a peak in driven
curvature when implemented with the model, Fig. 6.9 shows the prepositioning re-
sponse of a given driver and the corresponding instantaneous curvature of the driver
and the model. The driver, illustrated in red in Fig. 6.9 exhibits a maximum jerk of 0.94
m/s3, whereas the modelled prepositioning curvature, illustrated in pink, exhibits a
maximum jerk of 0.05 m/s3. Note that comfortable levels of (guidance) jerk should lie
below 0.6 m/s3 [14].

The combined curvature feedforward is scaled by the driven velocity to obtain a
steering angle that is proportional to the required yaw rate in a curve, as given in Eq.
(6.6).

r = V

R
=V κ (6.6)

This means that when the feedforward gain KF F is too high the steering wheel de-
flections is tuned to a sharper curve.

In the augmented Van Paassen model, the prepositioning path is implemented in
both the feedforward and feedback loop, which may seem redundant. To illustrate
the added benefit of including the prepositioning path in both the feedforward loop
through κpr ep and the feedback loop through ypr ep , model responses are given in Fig.
6.10. The pure feedback response (red) shows a lag in the tracking of ypr ep . Thereby,
due to the build-up of error, overshoots the desired ∆ymax . The pure feedforward



6

132 6. DRIVER PREPOSITIONING MODELLING AND INTEGRATION

10 12 14 16 18 20

-1.5

-1

-0.5

0

0.5

1

1.5

Outer

Inner

Prepositioning reference
Model with FB (y

prep
)

Model with FF (
prep

)

Model with FB & FF (y
prep

 & 
prep

)

Figure 6.10: Illustration of a prepositioning reference ypr ep in the lateral position domain (sl at ) is given in
blue. The augmented Van Paassen model tracking response with only feedback (on ypr ep position feedback)
is given in red, only feedforward (κpr ep ) is given in purple and both feedback and feedforward (κpr ep +
ypr ep ) is given in green. The parameters used to model ypr ep (t ) are g1 = 0.5 m, τ1 = 5 s, a1 = 1 m/s, τ2 = 0.5
s and a2 = 2 m/s.

model (purple) does not display any lag and initiates prepositioning at the right time;
however, due to lack of position feedback also overshoots ∆ymax . When both feed-
back and feedforward contributions are combined in the model, the best response
is achieved. The VAF of the response with only feedback is 96%, with only feedfor-
ward is 95% and with both feedforward and feedback is 98.5 %. In addition, from a
human factors perspective, overshoots may be highly negatively perceived by drivers
because these overshoots may be out of the comfort zone of drivers, moreover, with
haptic shared controllers, drivers may need to give extra torques to overcome these
overshoots.

For the simulation of this driver model, both the vehicle/road dynamics and neu-
romuscular dynamics are needed to close the control loop. The details of these dy-
namics are given in Chapter 3.

6.5. DESCRIPTIVENESS ANALYSIS

This section considers the ’descriptiveness’ of the Van Paassen model with and without
the prepositioning model. The descriptiveness is a property of a model that is evalu-
ated by the assessment procedure outlined in Chapter 3. Descriptiveness shows the
capability of a given model to capture different types of drivers, categorised into 11
classes of trajectories introduced in Chapter 4. A representative driver from each tra-
jectory class is taken, and the assessed model is fit to this driver. When the model fit to
the data for a particular class is higher than 80% VAF and falls within the same class,
the model is considered to sufficiently describe the population in that trajectory class.
The descriptiveness is then the sum of the class occurrence (percentages of drivers
within a class) of the trajectory classes that the model can sufficiently describe (i.e.,
the total percentage of drivers that can be modelled accurately).
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Figure 6.11: This figure illustrates the model fit results for right and left curves for the Van Paassen model
without (NP) and with prepositioning-path model (P). The grey bars around 0.9 to 1.1m and -0.9 to -1.1m
represent the effective road boundary. The vertical grey lines represent the beginning and end of a curve.
The representative driver of each class is illustrated by the ’Data’ (blue line). The model fits which result in
other classes, are shown in a dashed red line. The model fits resulting in the same class are represented by
a (non-dashed) red line. When the fit is above 80 %, the plot has a dark green box frame. When the VAF is
above 80 % and not within the same class, the plot has a light green frame.

6.5.1. VAN PAASSEN MODEL WITH AND WITHOUT PREPOSITIONING PATH

MODEL

In this section, the impact of including the proposed prepositioning path model in
the Van Paassen model is explicitly shown. Fig. 6.11 illustrates the fit of both the Van
Paassen model without prepositioning (NP), in the odd rows, and with prepositioning
(P), in the even rows. The graph illustrates the fit of the model in red and the represen-
tative driver of each class in blue. The curve direction and class are indicated in the
title along with the class occurrence. The VAF value of the fit is given in the bottom
right road boundary. The classes that exhibit significant prepositioning offsets such as



6

134 6. DRIVER PREPOSITIONING MODELLING AND INTEGRATION

class 1, 2 and 9 for both right and left curves, demonstrate a large improvement in VAF
value when including prepositioning. Classes 4, 5, 7 and 8 are classes that do not really
preposition (middle), as illustrated in Fig. 6.4. Thereby, the difference in fit with and
without prepositioning is indeed minimal. Classes 3, 10 and 11 deal with trajectories
that enter the curve at the inner side of the curve. Since the prepositioning magnitude
is generally not large with these classes, the difference in fit is also not as large. Table
C.1 in the Appendix shows the identified parameters for each response shown in Fig.
6.11. These parameters also generally show a larger difference between P and NP for
classes with large prepositioning.

The descriptiveness of a model is the sum of the class occurrences of the classes the
model can sufficiently capture. This is evaluated differently for left and right curves.
For right curves, the descriptiveness is 17% without prepositioning, as only R7 and
R8 are accurately modelled. With prepositioning, descriptiveness for right curves is
100% as the representative driver data of all classes can be accurately described. For
left curves, the descriptiveness is 7%, as only L5, L7 and L8 are accurately modelled
without prepositioning, and also 100% with prepositioning.

6.6. DISCUSSION
The aim of this chapter was to develop a prepositioning path model that can capture a
variety of different prepositioning path behaviours and, combine this path model with
the Van Paassen control-theoretic model. Overall, including prepositioning in the Van
Paassen model has made a considerable improvement in the types of driver trajec-
tories the considered control-theoretic driver model can capture in a curve. This in-
crease highlights the importance of considering prepositioning in driver models. This
importance is further stressed from a human-factors perspective. When the prepo-
sitioning phase is in line with the driver’s intentions, this good ’first impression’ may
make the driver more likely to accept the in-curve guidance advisory, even when the
in-curve driving behaviour is not the same as theirs, as found in Chapter 7. Therefore,
it is recommended to use the proposed augmented driver model, or the preposition-
ing path model in combination with another suitable driver model, for future ADAS
applications.

The prepositioning path model was combined with the Van Paassen model in this
chapter, however, can also be combined with other control-theoretic driver steering
models. Adding a position and curvature reference was straight forward in the Van
Paassen model due to an already available explicit position feedback reference ycc and
feedforward on curvature. For other driver models, those who work with tracking way-
point angles [173] or tangent points [116], may need more restructuring to account for
prepositioning. Hereby, the prepositioning path model is not restricted for application
with the Van Paassen Model.

For future ADAS and autonomous driving (AD) applications, accounting for prepo-
sitioning is essential. However, prepositioning and thereby prepositioning parameters
are not only dependent on individual style (Chapter 4), but also on upcoming curve
details (Chapter 5). Hereby, the next step is to understand how parameters such as g1

and τ1 are affected by different types of curves, i.e. varying curve length, curve width,
curve radius.
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When a driver prepositions in a way that would allow for minimising their lateral
acceleration or maximising their time-to-line crossing, this does not mean that this
objective actually comes into fruition in the curve (as concluded in Chapter 5). In
many cases drivers preposition to set themselves up for greater comfort or safety in
the upcoming curve, nevertheless once in the curve, it may not be demanding enough
to continue to follow the optimal race line. In other words, if a driver prepositions in a
way that would allow for minimising lateral acceleration, it is not guaranteed that his
in-curve trajectory will continue to satisfy this objective. This is evident from having
three prepositioning categories and 11 classes, as illustrated in Fig. 6.4. There is a link
between prepositioning category and trajectory type. However, there is no singular
mapping. Such a disconnect places the current prepositioning modelling approach at
an advantage compared to the only other means to model prepositioning behaviour:
optimal preview control [30]. Therefore, the proposed method of modelling preposi-
tioning in a piece-wise fashion provides greater flexibility than optimising for a cer-
tain objective. This flexibility is useful for ADAS and AD to match driver expectations
(Chapter 4 & 5).

Drivers preposition predominantly towards the outer part of the curve. This is ev-
ident by the most commonly observed prepositioning category being the ’Outer’ type
and the sigmoidal gain g1 being predominantly positive for right and negative for left
curves. Consequently, such drivers proceed to travel towards the inner part of the
curve. Most drivers (except class 11 (IOI) drivers) ’travel’ towards the inner part of the
curve relative to their curve entry point, even when they don’t make a transition across
the centreline band. This finding is illustrated by the representative drivers illustrated
in Fig. 6.11. This finding also supports the notion of the curve cutting reference in the
Van Paassen model ycc (t ) always being positive as outlined in Eq. (6.3).

The prepositioning path model assumes that the bias yb of the driver is constant.
However, making this assumption may not be a representation of reality, due to driver
straight section fluctuations and variance (as for example illustrated in Fig. 6.6) which
may differ from driver to driver. Nevertheless, from a modelling perspective (espe-
cially for driver guidance in ADAS), this assumption would even be desired. Guiding
a driver with such variance and possible oscillations may not only decrease safety but
also reduce acceptance as such guidance is not expected nor predictable.

The prepositioning responses that fall in the ’Middle’ and ’Inner’ styles could be
modelled accurately using a pure gain yb . Therefore, identifying physical parameters
that assume a significant g1 may result in over-fitting. In fact, to model a constant
bias prepositioning response, τ1 should be close to zero, but can also be very large, in
combination with a1 being very small. Nevertheless, for all other responses exhibiting
a significant g1 (>0.05 m), the proposed model does not over-fit.

The purpose of the second sigmoid in Eq. (6.1) is to ’damp’ out the preposition-
ing response in the proposed prepositioning path model to zero at curve entry and
to do so as smoothly as possible without inducing any modelling artefacts. The con-
sidered dataset set used to model prepositioning has a 6 s long curve that exhibits 2
s clothoidal transitions. For this dataset, the considered τ2 was fixed to 0.5 s, which
means that the sigmoid’s time constant is set at a quarter of the clothoidal curve tran-
sition, i.e., the prepositioning response is damped out well before the constant curva-
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ture part. However, when considering different realistic sharp curves, i.e., those with
a transition of 1s, the considered τ2 should decrease to avoid any recurring modelling
artefacts. Hence, parameters a2 and τ2 should depend on the curvature profile whilst
not exceeding comfortable jerk levels [14]. Therefore, it is recommended to investigate
exactly how these relate to each other explicitly.

6.7. CONCLUSIONS
State-of-the-art control-theoretic driver models are unable to describe more than a
fifth of the driving population in and near curves accurately. This shortcoming is pri-
marily traced down to the inability to describe prepositioning behaviour, i.e., driver
behaviour before curve onset. This chapter introduces a new prepositioning path
model for drivers’ lateral position changes prior to curve entry with parameters that
have geometrical significance. This model is shown to describe various preposition-
ing behaviours successfully and is verified on a dataset explicitly designed to study
prepositioning.

The prepositioning path model is used to augment (extend) the Van Paassen control-
theoretic driver model by adding an extra position reference. The descriptiveness of
the Van Paassen model with and without the prepositioning augmentation is assessed.
The Van Paassen model without prepositioning can accurately describe 17% of drivers
in right curves and 7% of drivers in left curves, less than a fifth of the drivers con-
sidered. The Van Paassen model with prepositioning can sufficiently describe 100%
of drivers in both right and left curves. The findings of this chapter introduce a new
modelling concept, that can be used to model individual curve drivers at fixed speed
accurately. Moreover, the individualised model can directly be used to personalise
various ADAS in curves accurately, where these ADAS would need to detect curve en-
try 10s prior (to determine the prepositioning path model) and the curvature profile
around preview time (τ f ) for the control-theoretic model.
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7
FOUR DESIGN CHOICE HAPTIC

SHARED CONTROLLER TO

INCREASE DRIVER ACCEPTANCE

Part IV consists of two Chapters which will deal with applying and evaluating some of
the personalisation methods considered in the previous parts of this thesis with hap-
tic shared control. This chapter introduces the first implementation of the novel ’Four-
Design-Choice’ (FDC) haptic shared controller. One of the design choices is an indepen-
dent controller reference, which can be separately personalised. A human-in-the-loop
experiment is carried out to evaluate three implementations of haptic shared control: 1)
the FDC with a personalised reference, 2) the FDC with ’One-Size-Fits-All’ reference and,
3) a conventional haptic shared controller. Since this chapter was carried out before the
model assessment findings of Chapter 3, the Mars model is used as driver model to iden-
tify the personalised and ’One-Size-Fits-All’ controller reference trajectories. The haptic
shared control realisations are evaluated in terms of conflict occurence, driver torque
and subjective acceptance.

The contents of this chapter have been published as:

Scholtens, W. and Barendswaard, S. and Pool, D.M. and Van Paassen, M.M. and Abbink,
D.A., ’A New Haptic Shared Controller Reducing Steering Conflicts’, IEEE Systems Man
Cybernetics conference, Miyazaki, Japan, 2018.
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7.1. INTRODUCTION
Sharing control through haptics is an alternative approach that mitigates the negative
side effects that arise from traded control in highly automated vehicles [59][137], such
as loss of awareness [122] and skill degradation [45]. Haptic Shared Control (HSC) sup-
ports drivers in the steering task by providing assisting torques on an actuated steering
wheel. The driver and automation jointly exert torques thereby negotiating the final
steering wheel angle [129]. Several studies with different HSC implementations have
shown that compared to manual driving, driving with HSC increases safety margins
[67] and decreases control activity (i.e., steering wheel reversals) [137].

However, these improvements come at a price of increased driver torque magni-
tude [31], which is attributable to a misalignment of intent between driver and HSC,
generally defined as a conflict [80]. There are different ways this misalignment can take
place, resulting in various types of conflicts, where the critical element of all conflicts
is when the driver experiences resistive torques [80]. Therefore, in this study, conflict
occurrence is quantified by instances when the signs of torque from the driver and
HSC are opposite, indicating opposing intentions and resistance. The control actions
by the driver and automation must ideally complement each other, and not counter-
act unnecessarily. For the most HSC design philosophies, these conflicts (opposing
torques) are a source of annoyance [135][137], reducing the acceptance and thereby
benefits of HSC.

1. HCR
HumanCompatible

Reference

Feedback
Torque

2. SoHF

Feedforward
Torque

3. LoHS

4. LoHA
Haptic

Authority

Human

Vehicle &
Steering
Dynamics

Figure 7.1: The Four-Design-Choice-Architecture design philosophy from [177].

The Four-Design-Choice-Architecture (FDCA) design philosophy for haptic shared
control was proposed to reduce driver torques and conflicts and increase acceptance
through its inherent control structure [177]. The design philosophy is depicted in Fig.
7.1. The haptic controller architecture exhibits an independent and separated Human-
Compatible-Reference (HCR) and haptic controller part. The HCR is the controller’s
reference and can be generated by a human-like driver steering model or through
recorded data. The essence of the haptic controller part that follows the independent
HCR is twofold: a pure feedback component to provide compensatory torques reduc-
ing errors with the HCR (SoHF), and a pure feedforward component to provide pur-
suit or anticipatory torques for curve negotiation (LoHS). This decoupling of the error
correction (SoHF) from the support and guidance to follow the controller’s reference
(LoHS), is expected to improve acceptance compared to only feedback [177]. These
two loops are summed together contributing to the total torque. How much influence
the controller has on the final steering wheel angle is determined through the Level
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of Haptic Authority (LoHA), in essence, this authority is set by adjusting the stiffness
setting of the steering wheel around an optimal guidance angle.

The considered FDCA offers a more flexible way to mimic how drivers control than
conventional approaches, through its independent HCR. It is therefore important to
note that generating an appropriate HCR is crucial. No matter how good the haptic
controller, when the HCR is not suitable to a driver, the driver-automation conflicts
may not be resolved.

A few methods have been explored to reduce conflicts in HSC including aligning
the reference with the human’s trajectory (personalisation) [31] [43] or adapting the
Level of Haptic Authority to grip strength (i.e., if the human grips more, the system
grips less) [161]. However, investigating the effect of adjusting the inherent controller
construct on driver acceptance has not been studied yet. This study is the first to test
two key aspects: 1) the effectiveness of the main design philosophy of the new haptic
controller construct: the Four-Design-Choice-Architecture [177] by implementing a
realisation of the architecture: the Four-Design-Choice haptic shared controller (FDC-
HSC) and, 2) personalising the HCR through state-of-art control-theoretic driver steer-
ing modelling [116]. This implementation tests two types of HCRs: 1) a One-Size-Fits-
All (OSFA) average driver reference and, 2) a Personalised driver reference. Both HCRs
are generated through identification on real driver data using the Mars driver model
[116].

This study evaluates the conflict reducing capabilities of the implemented FDC-
HSC in a fixed-speed curve negotiation task. Moreover, the added benefit of person-
alising the HCR is compared to a ’One-Size-Fits-All’ HCR. A two-phase simulator ex-
periment is performed where the first phase is used to collect the empirical driver data
needed to generate both the One-Size-Fits-All and personalised HCRs. In the second
phase, four experimental conditions are tested, comprising:

1. The FDC-HSC with a OSFA HCR,

2. The FDC-HSC with a personalised HCR,

3. The conventional Meshed-HSC of [129] (taken as baseline)

4. Unaided manual driving (also taken as baseline).

The results are evaluated in terms of driver-HSC conflicts, subjective ratings and
driver torque.

This chapter is structured as follows: Section 7.2 describes the implemented Four-
Design-Choice haptic shared controller, along with the conventional Meshed haptic
shared controller. The driver model used to generate the ’One-Size-Fits-All’, and Per-
sonalised HCRs is elaborated in Section 7.3. After which, the experimental design, the
setup of the simulator experiment, experimental conditions, dependent variables and
hypothesis are elaborated in Section 7.4. The experimental results summarising the
outcomes of conflicts, workload and subjective measures and a discussion are pre-
sented together in Section 7.5. Finally, the main conclusions are presented in Section
7.6.
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7.2. HAPTIC SHARED CONTROL DESIGNS
This section describes two different types of shared control implementations that are
each derived from a different shared control concept. An implementation of the novel
Four-Design-Choice-Architecture (FDCA) shared control architecture from [177] is de-
scribed in Section 7.2.1 and the conventional Meshed (M) shared controller of [129] is
described in Section 7.2.2.

7.2.1. FOUR-DESIGN-CHOICE (FDC) HSC
The implemented FDC-HSC, shown in Fig. 7.2, is an implementation of the Four-
Design-Choice-Architecture (FDCA) [177]. In the following each design choice is ex-
plained, although, only three design choices were altered and implemented in this
realisation.

HUMAN COMPATIBLE REFERENCE (HCR)
As shown in Fig. 7.2, the FDC-HSC uses the HCR as its reference. The outputs of
the Modelled Driver Trajectory from Section 7.3, are the coordinates of the HCR: the
trajectory (~XR ,~YR ), the heading ~ΨR and the steering angles ~δR . The ’reference se-
lector’ block finds the index that minimizes the distance to the car’s current position
(Xcar (t ),Ycar (t )), then, the corresponding (XR (t ),YR (t )), ΨR (t ) are taken as input for
the SoHF and δR (t ) for LoHS. This HCR (i.e., trajectory (~XR ,~YR ), heading ~ΨR and steer-
ing angles ~δR ) can be generated by a driver steering model as is done in this chapter
by using the model outlined in Section 7.3, or through recorded driver data.

STRENGTH OF HAPTIC FEEDBACK (SOHF)
The Strength of Haptic Feedback block takes the HCR heading ψR (t ) and position
(XR (t ), YR (t )) as inputs and compares these to the car heading ψcar (t ) and position
(Xcar (t ), Ycar (t )). The operator ∆ in Fig. 7.2: calculates the Euclidean distance be-
tween (XR (t ),YR (t )) and (Xcar (t ), Ycar (t )). The resulting feedback errors ∆sl at and
∆Ψ, are weighted through gains Ks and KΨ, summed and multiplied by gain KSoHF

to obtain the total feedback torque TSoHF . The SoHF essentially acts as a ’spring’ that
pulls the steering angle to the target. The values for the gains Ks , KΨ and KSoHF used in
this chapter are given in Table 7.1 and were heuristically tuned. The feedback torque
was tuned not to feel ’too strong’ and at the same time avoid oscillatory behaviour,
even when given an impulse driver torque.

LEVEL OF HAPTIC SUPPORT (LOHS)
The Level of Haptic Support feedforwards the HCR’s δR (t ) in an open-loop manner.
To obtain the feedforward torque TLoHS (t ), the δR (t ) is multiplied with a gain KLoHS .
Note that: although δR (t ) is a part of the HCR, one can also generate it by taking road
curvature processed by inverse vehicle dynamics to obtain the required steering an-
gles for centreline driving. This feedforward torque provides a distinctively different
type of guidance as even if there is no deviation from the HCR trajectory you are still
supported. Note the distinction between these two haptic support components, while
TSoHF (t ) is only non-zero when there is a deviation from the reference, TLoHS (t ) is in-
dependent of the car lateral or heading error, and only depends on where the driver is
along the HCR.
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Figure 7.2: The implemented Four-Design-Choice (FDC) Haptic Shared Controller, a novel realisation of the ’Four-Design-Choice-Architecture’ of [177]. The Human
Compatible Reference (HCR) is the FDC haptic controllers reference that comprises of a trajectory (~XR ,~YR ), heading ~ΨR and steering angles ~δR . This reference can
be generated by a driver model (as is done in this chapter), driver trajectory classifier, or be a play-back of recorded data. The Strength of Haptic Feedback (SoHF)
regulates the feedback strength of the controller based on the lateral error to the trajectory reference ∆sl at and the heading error ∆Ψ. Note the ∆ operator signifies
the Euclidean distance between, in this case, (XR (t ),YR (t )) and (Xcar (t ), Ycar (t )). The Level of Haptic Support (LoHS) guides the driver with anticipatory feedforward
torques, determined by the controller reference’s steering angles δR (t ).
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Table 7.1: Haptic Shared Control parameter values used for the implemented FDC-HSC and M-HSC

Gain FDC-HSC Gain M-HSC

Ks 0.05 [N] D 0.08 [N]
KΨ 0.03 [Nm/deg] P 0.9 [Nm/deg]

KSoHF 1.5 [-] K f 2.0 [-]
KLoHS 0.45 [Nm/rad] tLH 0.7 [s]

The gain KLoHS (0.45 Nm/rad) given in Table 7.1 was heuristically tuned. Between
the reference steering angles δR (t ) and the actual steering angle realised on the wheel
δs (t ), there is the KLoHS gain that transforms δR (t ) into TLoHS (t ) and the steering
wheel dynamics then transforms TLoHS (t ) into δs (t ). In terms of mapping between
δR (t ) and δs (t ) w.r.t magnitude, a factor KLoHS /Kw is established, where Kw is the
stiffness of the steering wheel. Therefore when KLoHS = Kw , there is a 1:1 magnitude
mapping between δR (t ) and δs (t ). As found (later) in Chapter 8, the stiffness of the
steering wheel is 0.49 Nm/rad, so with the KLoHS gain used in this chapter, the mag-
nitude mapping corresponds to a 0.45/0.49 = 92 % share of control, i.e. the controller
performs 92% of the steering demand set by δR .

LEVEL OF HAPTIC AUTHORITY (LOHA)
The LoHA determines the authority the automation has over the final control output.
This is done by adjusting the stiffness of the steering wheel around a particular opti-
mal steering angle. A high authority setting results in a very rigid system, where the
contribution of the driver is diminished, i.e. due to a higher steering wheel stiffness,
the driver needs to exert substantially more torque to change the steering wheel angle.
Above a certain threshold, the system can become so rigid that it becomes impossible
to move the steering wheel. This can be particularly useful in critical situations, as in-
vestigated in [196]. In this investigation the LoHA was not implemented, as reflected
in Fig. 7.2, and thereby not varied. One could say that it was set to a value of 1 because
the standard steering wheel stiffness was being used with no adaptation to a particular
optimal steering angle.

7.2.2. MESHED (M) HSC
The Meshed Haptic Shared Controller (M-HSC) as shown in Fig. 7.3, is named as
such because the strength of the generated haptic feedback is inherently lumped with
the driver model structure that generates the trajectories. In other words, one can-
not change the haptic feedback or reference (trajectory) independently from one an-
other. Typically, the input for a meshed controller is the road centerline reference,
obtained from selecting a road reference position and heading that is tLH s ahead of
the closest road point to Xcar (t ),Ycar (t ). The resulting look-ahead reference position
XR (t + tLH ),YR (t + tLH ) and road heading ΨR (t + tLH ) are then compared to the pre-
dicted vehicle states (X̂car (t + tLH ), Ŷcar (t + tLH )) and Ψ̂car (t + tLH ), respectively.
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Figure 7.3: The implemented Meshed (M) Haptic Shared Controller previously applied in [129]. The control structure takes the road centerline ahead XR (t +
tLH ),YR (t + tLH ) and road heading ΨR (t + tLH ) at lookahead time tLH , as reference for the pure feedback controller. The trajectory and heading references are
compared to the predicted vehicle position (X̂car (t + tLH ), Ŷcar (t + tLH )) and heading Ψ̂car (t + tLH ), at lookahead time tLH . The position and heading feedback are
independently tuned with gains D and P, respectively.
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The prediction is made for a constant steering wheel input with initial conditions:
the bicycle model states x(t ), car heading Ψcar (t ) and position (Xcar (t ),Ycar (t )), iter-
ating the bicycle dynamics tLH s ahead. Two independent feedback loops that correct
for the predicted errors∆sl at and∆Ψ are weighted separately by gains D and P before
being multiplied by the feedback gain K f , to result in the total meshed torque TM (t ).
The values for the gains used in this controller are given in Table 7.1 and taken from
[129].

Framing this controller within the FDCA framework, it is like having an HCR that is
the road centerline tLH s ahead, with a quickened (controlling on lookahead time tLH

rather than current time t ) SoHF block, without any LoHS and with the same LoHA as
implemented in FDC-HSC.

7.3. CONTROL-THEORETIC DRIVER MODEL
In this chapter, the HCRs were realised by offline model identification, using a modi-
fication of the Mars driver model [116], which was assessed in Chapter 3. This model
was used instead of a more ’descriptive’ model due to the chronology of this thesis; i.e.,
this chapter was completed before Chapter 3 was started.

Hc =
Kc

v
TLs+1
Tls+1

Kp

e−τps

Vehicle

Dynamics

BSD,ESD

Road, tfar

Road, ls

θfar

θnear

HNM = 1
TNs+1Krv

Kt

δ̂s

δs

Neuro-muscular System

Figure 7.4: This driver-model is used to generate the references and is based on the work from [116]. The
near and far angles are the input in the driver-model and Kc and Kp determine their influence respectively.

A modified driver model of [116] illustrated in Fig. 7.4, combines feedback and
feedforward loops, assuming that driver’s act upon a near angle θnear that is compen-
sated for and far angle θ f ar that is anticipated. The components in the model include
the visual compensation (Kc , Tl , TL) and anticipation (Kp ), processing delay (τp ), an-
gle to torque coefficient (Kr ), gain of the stretch reflex (Kt ) and neuromuscular time
constant (TN ). Out of these parameters, only Kc and Kp are considered degrees of
freedom because these parameters influence the resulting trajectory most.

As opposed to [116], which is assessed in Chapter 3, small-angle approximations
are not used in the evaluation of the model in this chapter, resulting in a body-to-
global-transformation (Euler rotation matrices are used instead of linear approxima-
tions of sl at ). This means that an actual calculation on a physical road is executed
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every time the world is transformed around the body of the car. Compared to small-
angle approximations and linearisation, this is more in line with how an autonomous
vehicle senses the world at every time step. Finally, an alternative non-linear method
of calculating θnear and θ f ar is used.

Figure 7.5: Visual representation of the near point (blue dot) and far point (orange dot) over the length of the
curve, the tangent point is indicated with the green dot. The steering initiation distances before the begin
and end of the curve are indicated with respectively BSD and ESD. In the most right plot t f ar determines
how far in the future the far point is located.

Here θnear is determined as the physical angle (no approximations) the car makes
to the near point: a point that is ls m in front of the car on the road centerline. The θ f ar

angle is computed using the road data and three additional parameters: BSD, ESD and
t f ar . The working principle of these additional parameters is visualised in Fig. 7.5.
The lookahead-time t f ar acts as a searching horizon, looking to find a tangent point,
and, when found, the far point becomes a point closely offset from the tangent point, a
reachable target point [30]. When not found, the far point is a point tLH ahead on road
centre. The far angle θ f ar is then the angle the car makes to the far point (equivalent
to the target point). The target point can be geometrically detected 5s before curve
entry; however, this is not when we would want the car to start steering into the curve.
Hereby, the Begin Steer Distance (BSD) and End Steer Distance (ESD) are both thresh-
old values that control initiation and halting of steering behaviour before curve entry
and after curve exit.

7.4. EXPERIMENT

7.4.1. CONTROL TASK

Subjects performed a curve negotiation (lateral control) driving task in a fixed-base
simulator. They were asked to drive with a fixed speed of 24 m/s on a road of width
3.6 m. Subjects negotiated five left and five right clothoidal curves with 240 m straight
sections in between curves. The curve radius was 300 m with a curve length of 108 m
including two clothoidal transitions of 18 m at beginning and end, with a total road
length of 3.7 km.

A heavy single-track sedan of 1.8 m wide was used to visually simulate the vehicle,
with a vehicle dynamics identical to previous investigations [129] approximated by a
bicycle model.
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Figure 7.6: Two-phase experiment design. The first phase comprises manual driving, where the individual
drivers’ trajectory behaviour was recorded. This data was used to generate the pHCR and oHCR. In the
second phase four different experimental conditions were tested: P the personalised HCR with FDC-HSC,
O the ’One-Size-Fits-All’ HCR with FDC-HSC, M the Meshed HSC and D the Driver only (without HSC).

7.4.2. APPARATUS
The driving task was performed in the fixed-based driving simulator at the Human-
Machine-Interaction Laboratory at Delft University of Technology. The scenery was
presented using three LCD projectors covering a horizontal field-of-view of 180 de-
grees and a vertical field-of-view of 40 degrees, with an update rate of 50Hz and an
image generation delay of 10 ms.

A MOOG FCS Ecol8000S Actuator running at 2500 Hz was used for generating hap-
tic torques on the steering wheel. Its stiffness was set to 4.2 Nm/rad over the complete
deflection range: steering wheel inertia was set to 0.3 Nm/rad, and the damping coef-
ficient was 2 Nms/rad.

7.4.3. EXPERIMENTAL CONDITIONS
This study investigates one independent variable, namely: the type of haptic shared
controller, comprising four levels:

D No shared control, i.e., unaided Driver steering behaviour.

M The conventional Meshed HSC

O The newly implemented FDC HSC with a ’One-Size-Fits-All’ HCR (oHCR)

P The newly implemented FDC HSC with a Personalised HCR (pHCR)

7.4.4. EXPERIMENTAL-SETUP AND PROCEDURE
As shown in Fig. 7.6, the experiment had two phases. The first phase was used to mea-
sure two controller references: 1) the average driver behaviour across all participants
(One-Size-Fits-All) and, 2) the average driver behaviour per participant across 5 curves
(Personalised). These references were used to generate oHCR and pHCR, explained in
Section 7.4.6.

In the second experiment phase, the experimental conditions elaborated in Sec-
tion 7.4.3 are presented to the driver in randomised order, following a Latin square
design. During both experimentation phases, the participants were given a familiari-
sation run of 160 s before collecting data for each condition. After each run (compris-
ing 180 s) during the second phase, the subjects were asked to fill out subjective ratings
using a Van Der Laan acceptance questionnaire [176] to assess the satisfaction and the
usefulness of the guidance subjectively.
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Table 7.2: Driver model parameter ranges for HCR fitting along with the right and left curve fit values.

Parameter Range Right Curve Fit Left Curve Fit

Kp [-] 2:0.125:3.25 2.5 2.375
Kc [ms−1] 0:1:5 4 0
BSD [m] 2.5:2.5:25 12.5 5
ESD [m] 40:5:55 55 40
t f ar [sec] 2:0.5:3.5 3.5 3.5

7.4.5. SUBJECTS AND INSTRUCTIONS
The experiment was performed by sixteen subjects between the age of 23 and 28 years
(average of 26.5 years), all owned a valid driver’s license. They were instructed to drive
as they normally would and to hold their hands on the steering wheel at a "ten-to-two"
position.

7.4.6. FITTING THE HCR
Two types of HCRs are considered in this chapter: the ’One-Size-Fits-All’ reference
(oHCR) and the personalised reference (pHCR). Both HCRs are generated by first es-
timating the model parameters that best describe the average driver and individual
drivers. Then those model parameters were used to generate the model response. The
model used to generate the HCR is the Mars model defined in Section 7.3. Two types
of reference data (in the lateral position domain sl at and steering angle domain δs )
from phase 1 of the experiment are used for identification: 1) the average reference of
the sixteen drivers for oHCR and, 2) the average personal reference for pHCR (where
only data from a single driver is used). Note that the left and right curves were treated
separately.

These trajectories are used to find the parameter vector P (Kc , Kp , ESD , BSD and
τ f ar ) that results in the best fit. The driver modelling outputs are generated by using
the road defined in Section 7.4.1 as input with a parameter range outlined in Table
7.2. The best fit of the lateral position sl at trajectories, was optimised for using a cost
function outlined in Eq. (7.1). This optimisation was constrained within the range
defined in Table 7.2 to keep the identification results within realistic boundaries.

P̂ = argmin
P

n∑
i=1

(ŝl at (P )− sl at (i ))2 (7.1)

The parameters of the driver steering model considered as constants are taken
from [116]: Tl = 1s, TL = 3s, τp = 0.03s, Kr = 0.3, Kt = 0.5, TN = 0.1s and ls = 5m.

Fig 7.7 illustrates the oHCR fit results. The RMSE between the average trajectories
of all drivers and the oHCR reference in the lateral position domain is 0.04 m for right
curves and 0.17 m for left curves during the curve part. In terms of the Variance Ac-
counted For (VAF) (a model fit validation metric, where 100% means the model can
describe 100% of the data), the quality of fit for right curves is 95% and for left curves it
is 0%. This low percentage stems from the VAF giving offsets like the one observed for
the left fit, a high penalty.
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Figure 7.7: This figure illustrates the average driver behaviour in black and the oHCR in blue. The measured
lateral position sl at is shown in the first row and steering angle δs time traces in the second row. The pre-
sented driver data is averaged over all participants during phase 1, with the curvature profile κ on the right
axis.

Figure 7.8: This figure illustrates the average behaviour of Subject 3 in black, the oHCR in blue and the pHCR
of Subject 3 in green. The measured lateral position sl at is illustrated in the first row and steering angle δs
time traces in the second row. The presented data of Subject 3 is averaged over 5 runs during phase 1, with
the curvature profile κ on the right axis.

Fig. 7.8 illustrates the pHCR fit results for Subject 3 only. The RMSE between this
driver and the oHCR is 0.37 m for right curves and 0.22 m for left curves, whereas the
RMSE for the pHCR is 0.19 m for right curves and 0.17 m for left curves. In terms of
the VAF for the oHCR, 49% is achieved for right curves and 0% for left curves. For the
pHCR, 85% is achieved for right curves and 36% for left curves, which is still not good
according to the descriptiveness criteria defined in Chapter 3. Nevertheless, the pHCR
has a better fit to the individual subject data than the oHCR. So, this also means that
the personalised HCRs can be considered ’limited’ in terms of the level of personalisa-
tion, outlined in the Introduction Fig. 1.5.
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The improvement in fit results for pHCR is generally reflected in Fig. 7.9, which
illustrates the VAF values for the oHCR and pHCR, per subject and curve direction.
The right curves generally obtain better fits than left curves, even with pHCR. This is
predominantly because the considered model does not account for any prepositioning
behaviour. As was found in Chapter 5, the prepositioning on left curves is significantly
more pronounced than for right curves, with an average prepositioning displacement
∆ymax increase of 0.08 m. This may stem from drivers exhibiting a natural bias on
the road. In phase 1, the average road bias is -0.1 m, and the average ∆ymax is 0.1 m
towards the outer part of the curve. This resulted in only minor offsets for right curve
entries and a -0.2 m offset for left curve entry. Due to the driver model’s inability to
account for this, an in-balance in model fit performance is evident.

oHCR pHCR oHCR pHCR
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Figure 7.9: The VAF of the manual driving behaviour of each subject compared to oHCR and thier person-
alised pHCR, per curve direction

7.4.7. DEPENDENT VARIABLES
The dependent variables are used to evaluate both objective and subjective accep-
tance of the driver to the different HSC implementations outlined in Section 7.4.3. The
considered dependent variables are:

OBJECTIVE ACCEPTANCE MEASURES

Objective acceptance is quantified using two metrics: driver torque, and conflict oc-
currence, described in the following:

1. The physical workload is quantified by the mean driver torque applied (TD ) in
the curve.

2. The conflict measure in this study is quantified by occurrence of conflicts, deter-
mined when the driver torque and the HSC torque are opposite in direction. For
a value of 0, the HSC torque is aligned with the driver.

Oc =
{

0 if si g n(TD ) = si g n(THSC )

1 if si g n(TD ) 6= si g n(THSC )
(7.2)
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The occurrence of conflict Oc is evaluated as a percentage of time the HSC con-
flicts with the driver in the curve phase, i.e. THSC has an opposing direction and
thereby sign to TD .

SUBJECTIVE ACCEPTANCE MEASURE

To assess the subjective acceptance of the system, the questionnaire from Van der Laan
[176] is used, which uses two dimensions: a usefulness scale and a satisfaction scale.
The questionnaire consists of nine items; each is graded with a score between -2 to +2:

1. Useful - Useless

2. Pleasant - Unpleasant

3. Bad - Good

4. Nice - Annoying

5. Effective - Superfluous

6. Irritating - Likeable

7. Assisting - Worthless

8. Undesirable - Desirable

9. Raising Alertness - Sleep-inducing

The usefulness score is determined through the average of items 1, 3, 5 and 7. The
satisfactory score is determined by the average of items 2, 4, 6 and 8.

7.4.8. STATISTICS
To evaluate the statistical significance of the dependent variables defined in Section
7.4.7, a two-way repeated-measures ANOVA was performed taking the controller type
and curve direction as factors. Post-hoc pairwise comparisons were also conducted.

7.4.9. HYPOTHESES
Five hypotheses were formulated for this experiment:

H.I A decrease in the occurrence of conflicts Ocon f l i ct with the oHCR FDC-HSC com-
pared to M-HSC.

H.II A decrease in the occurrence of conflicts Ocon f l i ct with the pHCR FDC-HSC com-
pared to oHCR FDC-HSC.

H.III A decrease in driver torque TD with both the oHCR and pHCR FDC-HSC com-
pared to both the M-HSC and manual driving.

H.IV Higher subjective usefulness and satisfaction scores for the oHCR FDC-HSC com-
pared to M-HSC.
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Figure 7.10: Mean absolute occurrence of conflicts
during curve negotiation. D - unaided Driver, M -
Meshed-HSC, O - FDC-HSC with oHCR and P - FDC-
HSC with pHCR.
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Figure 7.11: Mean driver torque during curve negoti-
ation. D - unaided Driver, M - Meshed-HSC, O - FDC-
HSC with oHCR and P - FDC-HSC with pHCR.

H.V Higher subjective usefulness and satisfaction scores for the pHCR FDC-HSC com-
pared to oHCR FDC-HSC.

H.I and H.IV are hypothesised because it is expected that the inherent control
construct of the FDC shared-controller reduces conflicts and thereby improves accep-
tance ratings. H.II and H.V are hypothesised because it is expected that personalising
the HCR will increase acceptance and thereby reduces conflicts compared to a One-
Size-Fits-All reference. H.III is hypothesised because it is expected that the feedfor-
ward torque contribution of the FDC controller would be accepted and consequently
decrease the driver’s input.

7.5. RESULTS AND DISCUSSION
Conflicts between human and HSC, quantified by the occurrence of conflicts Oc shown
in Fig. 7.10, show a significant effect for HSC type (F(3,10) = 212, p<0.01) and curve di-
rection (F(1,10) = 84, p<0.01). The pairwise comparisons show a significant decrease
for both curve directions in Oc for O compared to M, with an average of 27% (p<0.01).
There is also a significant decrease (in both curve directions) found in Oc , for P com-
pared to M, with an average of 28% (p<0.01). However, no significant difference be-
tween O and P is found, see Fig. 7.10. Hereby, we find a significant decrease in con-
flicts for the FDC-HSC (both P and O) compared to Meshed-HSC for both right and
left curves (p<0.01) with an average reduction factor of 2.3. This accepts H.I and re-
jects H.II.

The driver torque TD shown in Fig. 7.11, shows a significant effect for HSC type
(F(3,10) = 425, p<0.01) and curve direction (F(1,10) = 96, p<0.01). The pairwise com-
parisons show a significant decrease in TD for both curve directions when comparing
O and M, with an average of 0.9 Nm (p<0.01). There is also a significant decrease (with
both curve directions) found in TD for P compared to M, with an average of 0.91 Nm
(p<0.01). Again, no significant difference between O and P is found. Therefore, driver
torque with the FDC-HSC (both P and O) significantly decreases with respect to both
M-HSC and manual driving (p<0.01), with average reduction factors of 3.2 and 2.8, re-
spectively. As a result of this, H.III is accepted. To steer through a given curve a certain
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Figure 7.12: Mean and STD of the Usefulness and Satisfaction score from ’Van der Laan’ questionnaire. D -
unaided Driver, M - Meshed-HSC, O - FDC-HSC with oHCR and P - FDC-HSC with pHCR.

amount of torque is needed, the fact that driver torques were much smaller during
FDC-HSC reflects not only that the FDC is contributing with feedforward torque, but
also that the driver accepts this torque. If the driver did not accept these guidance
torques, he would be fighting the system, which means not only a rise in conflict but
also larger driver torques. Moreover, there is a significant increase in driver torque with
the Meshed-HSC compared to manual driving during the right curves (p<0.01), in line
with previous findings [129].

Figure 7.12 shows the subjective Usefulness and Satisfaction scores obtained from
the Van der Laan questionnaire. For Usefulness and Satisfaction, there are significant
effects for HSC type: (F(3,10) = 5.35, p<0.05) and (F(3,10) = 5.68, p<0.01). From the
pairwise comparisons, this significance stems from a difference between M and P only.
There is no significant difference between O and P. For Usefulness there is a significant
increase of on average 1.3 points with P compared to M. For Satisfaction, there is a
significant increase of on average 0.8 points with P compared to M. These results indi-
cate that H.IV and H.V can not be accepted. With a better driver model that can fully
describe driver behaviour as outlined in Chapter 3, a difference between O and P may
become significant. Nevertheless, there is an insignificant average increase that shows
a trend between M and O and also between O and P.

As illustrated in Figs. 7.10, 7.11 and 7.14 the variability (standard deviation) of
the occurrence of conflicts is significantly larger for the M than it is for both O and
P (p<0.01). A concrete reason for this is not found yet. The significant increase in the
standard deviation of driver torque (p<0.01) for M compared to both P and O is bet-
ter understood when related to Motor Unit Recruitment principles. In this principle,
when the driver exerts more force, more driver muscle neurons (motor neurons) are
activated, which results in more muscle fibres being activated, where the variability
of the strength of each of these recruited muscle fibres add up. This is clear when we
understand that the amount of driver torque increases with a stronger dynamic haptic
feedback [115] and that the M has larger feedback gains than both O and P, as given in
Table 7.1.

From a control-theoretic point of view, a good controller follows its reference ac-
curately. Likewise, the FDC-HSC should guide the driver to drive along its reference:
the modelled average driver (oHCR) or the personalised reference (pHCR). However,



7

156
7. FOUR DESIGN CHOICE HAPTIC SHARED CONTROLLER TO INCREASE DRIVER

ACCEPTANCE

Figure 7.13: Illustration of lateral position for both left and right curves, showing the oHCR and the outcomes
the the driver with M-HSC and O-HSC a)-b). An example of Subject 3 is illustrated for the Personalised case,
showing this subjects’ pHCR and the outcome of Subject 3 with P-HSC.

Figure 7.14: The occurence of conflicts averaged over all drivers, the haptic feedback torque TF B , total HSC
torque THSC and applied human driver torque TD are shown for left and right curves, for the M-HSC, O-HSC
and P-HSC respectively a)-h).
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since the driver can reject the guidance by giving opposing torques, we see that fol-
lowing the HCR only happens when the driver accepts the guidance. From Fig. 7.13, it
can be seen that for the left curves, the average of all drivers closely follows the oHCR.
However, this is not found to be the case for the right curves. Consequently, we see
that for the right curves there are significantly more conflicts than left curves, which
is true for both O and P. This results in a moderately strong correlation between the
extent to which the FDC-HSC follows its HCR in the curve and conflicts in torque (r =
0.55).

The FDC-HSC combines feedback with feedforward (both with respect to the HCR),
as shown in Fig. 7.2, whereas the Meshed controller consists of a haptic feedback loop
with respect to the road centre tLH s ahead, as shown in Fig. 7.3. From Fig. 7.14c)-
d), the magnitude of the feedback torque TF B is seen to be very similar (especially for
right curves) between all HSC implementations. This implies that from a torque per-
spective, the improvement in acceptance between M and both FDC implementations
likely stems from the feedforward torque. From Fig. 7.14e)-h), it is clear that the added
feedforward torque results in a largely diminished driver torque. The driver’s percep-
tion of these two different types of guidance in a dynamic closed loop is very different,
however, analogous to a teacher who continuously corrects each small deviation you
make (feedback), to a teacher who "shows you the way" (feedforward). This is simi-
lar to the metaphor for haptic shared control: "the instructor-student during aviation
lessons" [58] [77]. The instructor can assist the student using two different types of
guidance: 1) active, by exerting torques on the system to execute manoeuvres which
helps the student learn by example (feedforward), or 2) passive, by monitoring the
student and intervening when he/she errs (feedback). This confirms that the Level of
Haptic Support (i.e., the feedforward component) may be crucial for the acceptance of
the system.

One would expect that right curves have fewer conflicts than left curves because
the HCR is a (much) better fit for right curves for both oHCR and pHCR as shown in Fig.
7.9. However, the opposite is true: conflicts for left curves are found to be much lower.
This is evident from Fig. 7.13a)-b), which shows that the average trajectory driven
with O for left curves is a closer match with its reference (oHCR), implying agreement
between driver and HSC. Conversely, for right curves, the HCR seems less accepted,
resulting in a large adaptation of trajectory as shown in Fig. 7.13a). This unintuitive
result proves that the occurrence of conflicts is not singularly dependent on the accu-
racy of replicating the exact human driver behaviour for the HCR. It is possible that
the driver was more accepting of the (inaccurate) left curve oHCR and pHCR triggered
guidance because the left curve entry offset means that the HCR is in the direction
of curve-cutting. This allows for the driver’s initial intent to curve-cut at curve-entry,
which builds trust, to the extent that the drivers later follow a trajectory that does not
represent their (average) driver style. This allowance and agreement with the HSC is
also evident from a significant decrease in absolute feedback torque compared to right
curves, shown in Fig. 7.14c)-d). Again, this is not unique for the FDC-HSC, as the M-
HSC, also shows less occurrence of conflicts for left curves. Hereby, when the first
torque experience matches expectations, drivers are more likely to accept and follow.
If a conflict is experienced right at the start of the curve, then that sets the driver up
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for constant conflict and thus low acceptance. Hence, as long as the (initial) direction
of the driver intended trajectory is supported, the human driver will experience fewer
conflicts.

Unexpectedly, no significant differences were found between P and O in any of
the considered metrics. Nevertheless, the subjective ratings demonstrate the expected
trend, with satisfaction scores increasing 0.6 scores on average with (p = 0.3) and use-
fulness scores improving 0.7 scores on average with (p = 0.27). The insignificant ef-
fect could be related to the minor improvement in fit between oHCR and pHCR. For
oHCR, the average VAF is 19.2% whereas for pHCR it is 39.5%. This poor fit is a result
of using the Mars model, whose descriptiveness (capacity to describe different driver
behaviour) is only 16% (Chapter 3). The main bottleneck for this model’s poor descrip-
tiveness is the inability to describe prepositioning behaviour (driver behaviour before
curve entry). Hereby, this model is unable to describe a large portion of the drivers
considered, evident with only two pHCR fits achieving a VAF> 80%. Although the P
condition is labelled ’personalised’, the driver model’s lacking ability to describe driver
behaviour questions whether one can consider this condition as personalised. There-
fore, to obtain a fully personalised HCR, it is recommended to use the Van Paassen
model with a prepositioning extension (outlined in Chapter 6), which has a descrip-
tiveness of 100%.

7.6. CONCLUSION
The goal of this study was to evaluate an implementation of the Four-Design-Choice-
Architecture (FDCA) haptic shared controller: the FDC-HSC, in terms of occurrence of
opposition torques (conflicts) between human driver and controller. A human-in-the-
loop simulator experiment was conducted comparing three HSC implementations: 1)
the FDC with a ’One-Size-Fits-All’ controller reference (O), 2) the FDC with a Person-
alised controller reference (P) and, 3) a previously developed Meshed haptic shared
controller (M-HSC).

The personalised FDC-HSC (P) resulted in significantly higher usefulness and sat-
isfaction than the M-HSC implementation with average improvements of 1.3 and 0.8
scores on a -2 to 2 scale, respectively. For all metrics, there is no significant improve-
ment between O and P. In general, the FDC-HSC (both O and P ) significantly reduces
occurrence of conflicts by an average factor of 2.3 (43%), and significantly reduces
driver torque by an average factor of factor 3.2 (31%) compared to the M-HSC. Detailed
analysis of steering wheel torque data shows that this can be attributed to two inher-
ent design elements in the FDC-HSC: the independent feedforward (LoHS) contribu-
tion and an HCR that supports (future) curve entry intentions (i.e., the acceptance
depends on whether the initial HSC torques at curve entry are perceived as resistance
or as guidance). This proves that the Four-Design-Choice-Architecture is effective and
has (larger) potential for acceptance with different design choice settings and a ’fully’
personalised HCR.
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EVALUATION OF PERSONALISED

HAPTIC SHARED CONTROL

Good design, when it’s done well, becomes invisible. It’s only when it’s done poorly that we notice
it

Jared Spool

Current haptic shared control (HSC) implementations for curve driving suffer from user accep-
tance issues: there exists disagreement between haptic shared controller and driver, reflected by
opposing torques on the steering wheel, a phenomenon called a haptic (torque) conflict. A promis-
ing solution to enhance driver acceptance is minimizing misalignment between controller and
driver by personalising the controller’s reference trajectory to that of the driver. Chapter 7 intro-
duced the first attempt to personalise the trajectories of the FDC shared controller, however, due
to the limitations of both the driver model used to generate the personalised controller references
and the limited controllers ability to accurately track its reference, a satisfactory implementation
of personalisation was lacking. This chapter aims to evaluate the potential benefit of fully per-
sonalised guidance to class average and centreline. Additionally, the personalisation guidances
are evaluated at different levels of haptic support.

The contents of this chapter are to be published as:

Barendswaard, S., Ghys, E., Van Paassen, M.M., Boer, E.R., Abbink, D.A., Pool, D.M. ’Per-
sonalised Haptic Shared Control Approaches to Improve Driver Acceptance in Curve
Driving’, IEEE Transactions on Human Machine Systems, In preparation.
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8.1. INTRODUCTION
Conventional human-automation interaction is based on trading control between human and
automation, resulting in intermittent supervisory control. Continuous sharing control through
haptics is an alternative approach that mitigates many of the classic ’ironies of automation’ [15]
that arise from traded control in highly automated vehicles [59][137], such as loss of situation
awareness [122], complacency, misuse [135] and skill degradation [45]. Haptic Shared Control
(HSC) is a type of Advanced Driver Assistance System that supports drivers in the steering task
by providing assisting torques on an actuated steering wheel. The driver and automation share
control of the vehicle by jointly exerting torques on the steering wheel or gas pedal [129]. Sev-
eral studies with different HSC implementations have shown that compared to manual driving,
driving with HSC increases safety margins [67] and decreases control effort [137].

Although HSC has proven beneficial in terms of improved performance (safer driving) and
reduced effort in curves [129], it is also proven that current systems suffer from user accep-
tance issues [137]. With the existing controllers, user experiences report guidance that is per-
ceived as too strong [45], or trajectories that feel ’un-natural’ [31]. These non-human-like, non-
personalised controllers result in disagreement between haptic shared controller and driver, ev-
ident from opposing torques on the control interface, a phenomenon called a haptic (torque)
conflict [6]. This means that the driver fights the shared controller, which causes annoyance,
mistrust and rejection of the system altogether.

Currently, most HSC systems guide drivers towards the centerline or a One-size-Fits-All path
[146]. However, humans drive differently and exhibit different preferences. Driver classification
studies find that there are not only numerous ways to classify different drivers [107] [179], some
studies also identify over 50 clusters of driving styles [76]. To increase driver acceptance of HSC,
it is essential for the automation to understand the individual driver [27] and adapt the system
accordingly, i.e. personalise the system.

The personalisation of HSC for steering support has not been attempted in literature yet.
However, other advanced driver assistance systems have. In general, personalisation improves
the driving experience with ADAS [101], enhancing driver comfort and safety [97]. A driver’s
safety is found to be strongly correlated to the individual’s style [143], where ADAS adaptations
to a driver’s style improve performance and safety [94]. Acceptance of autopilot systems is im-
proved by predicting individual driver behaviour through driver modelling [188]. Satisfaction
increases by 30% when including individualised driver behaviour models in a lane departure
warning algorithm [189]. Therefore, to increase the acceptance of the driver, personalisation of
HSC is a promising option.

There are, however, multiple ways in which the personalisation can be achieved with haptic
shared control for steering through curves. Personalising the haptic shared controller’s refer-
ence can be achieved on basis of 1) the unique individual, through driver identification [189]
(’full’ personalisation) or 2) on the more general ’style’, through driver classification [94] (’class-
average’ personalisation). The high-level differences between these two different types or ’levels
of personalisation’ are outlined in Fig. 8.1. Moreover, specifically for the considered ’Four De-
sign Choice’ HSC introduced in Chapter 7, the personalised controller reference can be ’served
to’ or ’imposed on’ the driver in different ways. This is determined by the ’Level of Haptic Sup-
port’, which is the feedforward gain of the haptic controller. With different personalisation ap-
proaches available, it is still unknown which approach achieves the best driver acceptance, or
whether acceptance changes at all. Hereby, this study investigates the effect of the ’level of per-
sonalisation’ and ’level of haptic support’ on driver acceptance.

For the sake of effective statistical analysis, two driver groups, each falling within a spe-
cific trajectory style, are considered: a) the offset-driver group and, b) curve-cutters group. The
7-class rule-based trajectory classifier from Chapter 4 defines these groups. A two-phase simu-
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Figure 8.1: Illustration of personalisation levels. The class-average considers the average of a class as person-
alised reference, Class A and Class B are examples or arbitrary classes. Whereas fully personalised considers
the unique individual’s behaviour as reference.

lator experiment is carried out, where the first phase is needed to collect empirical driver data to
select the desired driver groups and to generate the personalised controller references. During
the second phase, eight different conditions are tested comprising four controller references and
two levels of haptic support. The four tested controller references per driver group are: 1) the
’fully’ personalised reference, 2) a ’class-average’ personalised reference, 3) the centerline refer-
ence (which is the industry standard [98] [55], and baseline condition) and, 4) the class-average
of the other driver group. It is hypothesised that the difference between ’full’ and ’class-average’
personalisation will be small in terms of acceptance, but that both would be a clear improve-
ment compared to the centreline reference. The two levels of haptic support considered are 1)
0.5, where the controller provides 50% of the steering task (a straight forward implementation
of shared control) and, 2) 0.92, where the controller provides 92% of the required steering in-
puts (the equivalent share used in [152] [178] [196]). Here 100% translates to a hands-free mode.
The differences between these eight haptic shared control realisations are measured in terms of
subjective ratings, driver torque and conflicts.

This chapter is structured as follows: Section 8.2 explains an upgrade made to the ’Four De-
sign Choice’ HSC to facilitate appropriate personalisation. Section 8.3 provides the details of the
experimental design, experimental conditions and the metrics used to evaluate acceptance. In
Section 8.4 the results of the experiment are presented, followed by the discussion and conclu-
sion in Sections 8.5 and 8.6.

8.2. UPGRADED FOUR DESIGN CHOICE HSC IMPLEMENTA-
TION

For appropriate personalisation, a HSC system that is capable to accurately track its (person-
alised) controller reference is essential. For this study the ’Four Design Choice’ (FDC) controller
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is chosen due to its greater acceptance rate compared to conventional controllers (as found in
Chapter 7).

More importantly, this specific controller has shown the potential for accurate personalisa-
tion, due to the separation between the controllers reference (which includes the trajectory) and
the haptic controller in the HSC architecture [177]. However, the previous implementations of
the FDC HSC in Chapter 7 and in [196] [178] were, in hindsight, not able to accurately follow the
set controller reference. Therefore, this study has upgraded the FDC from Chapter 7 to ensure
accurate reference tracking, which is essential to test personalisation accurately.

The FDC HSC as introduced in Chapter 7 consists of four design choices as illustrated in
Fig. 8.2. These are: 1) the Human Compatible Reference (HCR), which is the haptic shared con-
troller’s reference consisting of a trajectory (~XR (t ),~YR (t )), heading (~ΨR (t )) and steering angles
(~δR (t )) of a (modelled/selected) driver. 2) The Strength of Haptic Feedback (SoHF) determines
the strength by which the control system corrects the driver after the vehicle deviates from the
reference path. 3) The Level of Haptic Support (LoHS) is where the HCR’s steering angles are
feedforwarded to provide trajectory-following guidance. Essentially, it regulates how much the
control system steers the vehicle in the reference direction without being affected by the car’s
position and orientation. This loop guides the driver with anticipatory torques to drive on the
designated reference. 4) The Level of Haptic Authority (LoHA), although not implemented in
this thesis, regulates the balance between the torque input of the human and the torque input
of the controller by adjusting the stiffness of the steering wheel around the optimal control angle
(explored in [196]).

The upgrade made to the FDC HSC for the current experiment comprises the addition of the
inverse of the steering wheel dynamics H−1

s (s) in the LoHS feedforward loop, the third design
choice, as highlighted in purple in Fig. 8.2. This compensates for the steering wheel dynamics
Hs (s). The reference HCR steering δR (t ) is (pre) filtered by the inverse steering wheel dynamics,
which produces the necessary reference torque TR (t ) that would produce the desired reference
HCR steering (for KLoHS = 1, ideally δs (t ) = δR (t )). The reference torque TR (t ) is scaled by
KLoHS to obtain the resulting feedforward torque TLoHS (t ).

This inverse not only facilitates accurate controller reference tracking, but also transforms
the meaning of the parameter KLoHS . Now, the parameter KLoHS indicates the fraction of
torque that the feedforward path uses to drive the reference. When KLoHS = 1, then 100% of
the driving task is performed by the HSC.

8.2.1. STEERING WHEEL DYNAMICS
The transfer function Hs (s) of the physical steering wheel dynamics in the experimental set-up
was identified in the frequency domain by assuming LTI mass-spring-damper dynamics. This
was achieved through exciting the steering wheel with sinusoidal force perturbations. Ten si-
nusoids were tested ranging from 0.1 to 10 rad/s. The driven speed of the simulation was kept
constant at 80km/h. The mass-spring-damper system considered is given in Eq. (8.1).

Hs (s) = 1

Jw s2 +Bw s +Kw
(8.1)

The identification results show that for the steering wheel used in this experiment Jw = 0.026
kg m2, Bw = 0.11 N ms/r ad and Kw = 0.49 N m/r ad .



8

164
8

.E
V

A
L

U
A

T
IO

N
O

F
P

E
R

S
O

N
A

L
IS

E
D

H
A

P
T

IC
S

H
A

R
E

D
C

O
N

T
R

O
L

Xcar(t), Ycar(t)

Ψcar(t)

XR(t), YR(t)

ΨR(t)

δR(t)

TFDC(t)

Ttot(t)

TD(t)

Driver

Hs(s)
Vehicle

Dynamics
δs(t)

~ΨR

~δR

~XR, ~YR
Controller
Reference

∆slat

∆Ψ

2. Strength of Haptic Feedback

TSoHF (t)

(SoHF)

Reference
Selector

∆ Ks

Kψ

KSoHF

3. Level of Haptic Support

TLoHS(t)

(LoHS)

TR(t)
KLoHSH−1

s (s)
1. Human Compatible Reference

(HCR)

Figure 8.2: A control diagram of the upgraded Four-Design-Choice (FDC) Haptic Shared Controller from Chapter 7. The Human Compatible Reference (HCR) is the
FDC haptic controllers reference that comprises of a trajectory (~XR ,~YR ), heading ~ΨR and steering angles~δR . This reference can be generated by a driver model or be a
play-back of recorded data. The Strength of Haptic Feedback (SoHF) regulates the feedback strength of controller based on the lateral error to the trajectory reference
∆sl at and the heading error ∆Ψ. Note the ∆ operator signifies the Euclidean distance between, in this case, (XR (t ),YR (t )) and (Xcar (t ), Ycar (t )). The Level of Haptic
Support (LoHS) guides the driver with anticipatory feedforward torques, determined by the controller reference’s steering angles δR (t ). The (inverted) steering wheel
dynamics is highlighted in purple and compensates for the steering wheel dynamics of the physical steering wheel.
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8.2.2. VERIFICATION
The upgraded haptic shared controller was verified using the driving simulator apparatus de-
fined in Section 8.3.7. Two realisations of the FDC were tested for the data from all 45 subjects
driving on curve 3 from Chapter 4 (which is the same road used in this study, as described in
Section 8.3.1). Subject 14, a curve cutter, is taken as an example and is plotted with the HCR
as reference for comparison: with the inverse steering dynamics H−1

s (s) and without, as illus-
trated in Fig. 8.3a. The figure illustrates the tracking performance of the HCR for a left and right
curve, where the curve entry and exit points are indicated by vertical grey lines. The VAF fit value
across all 45 subjects, with and without H−1

s (s) is given in Fig. 8.3b, here a VAF of 100% means
the vehicle’s trajectory matches the HCR perfectly. The controller tracking performance for the
upgraded FDC clearly outperforms the FDC without H−1

s (s). This improvement is reflected by
the VAF improving from 34% to 99% when including H−1

s (s). This difference stems from two
sources: 1) a heuristically tuned gain for KLoHS equal to 0.45 N m/r ad , which should be 0.49
N m/r ad to achieve 100% of steering contribution according the identified steering wheel stiff-
ness in Section 8.2.1 and, 2) a lag that is clearly present in the steering response between the red
and blue response in Fig. 8.3a. The lag in the steering angles is small, however, the effect on the
driven trajectory is larger. Therefore, the introduced upgraded form of the FDC provides a clear
improvement compared to the conventional FDC implementation.
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Figure 8.3: Verification of the addition of H−1
s (s). For these results, the controller parameter values are

KLoHS = 1 for the response with inverse dynamics and for the response without the values were taken from
Chapter 7, KLoHS = 0.45. All other parameter values (Ks , Kpsi , KSoHF ) are taken from Chapter 7. On the
left, a comparison is illustrated of the tracking performance of the FDC HSC with and without the inverse
steering wheel dynamics H−1

s (s). The HCR is Subject 14 from the dataset of Chapter 4, with the same road
design, i.e., the minimum radius is 204 m and velocity is 80 km/h. On the right, a comparison of the HCR
tracking performance in terms of VAF across the tracking performance of 45 drivers from the dataset in
Chapter 4.

8.3. EXPERIMENT

8.3.1. ROAD DESIGN
For the current experiment the driven road is identical to curve 3 in Chapter 4. The curves are
designed to be clothoidal having 2 seconds for curve entry and exit transitions and 2 seconds at
the maximum curvature, making the total in-curve time 6 s. The maximum curvature was 0.0049
m−1 (radius of 204 m), which with a fixed speed of 80 km/h means that a maximum lateral
acceleration of 2.41 ms−2 is achieved, which is the maximum allowable lateral acceleration in
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a curve to avoid tire slip or nonlinear vehicle dynamics operation [151]. The straight sections
inbetween curves are 10 s each, with each curve repeated 5 times, i.e., 5 right curves and 5 left
curves, in alternating order. The road is designed to be a single lane with a width of 3.6 m wide.
The width of the car is 1.8 m, making the ’effective’ road width 1.8 m.

8.3.2. DRIVER TRAJECTORY CLASS GROUPS
The experiment is designed to focus on two trajectory-class groups with very different curve-
negotiation styles. The classifier used is the 7-class classifier, which, is used due to its enhanced
consistency and its intended empirical application, as discussed in Chapter 4. The trajectory
class groups are defined by the combination of the drivers’ class in the right and left curves.
The convention used in this chapter to refer to a class combination is RxLy, where x refers to
the considered class for right curves, and y refers to the considered class for left curves. The
two considered trajectory classes are: the offset-drivers (R3L5) and the curve-cutters (R2L1 &
R2L2). Sixteen participants were considered for each driver group, i.e., 16 offset-drivers and 16
curve-cutters. The motivation to select these groups is elaborated in the following:

Offset-drivers� The R3L5 class combination is the most commonly occurring driver tra-
jectory class combination in the dataset of Chapter 4, comprising 36% of tested drivers. This
class of drivers performs biased inner curve negotiation on right curves and biased outer curve
negotiation on left curves.

Curve-cutters� The R2L1 class combination represents the class combination of drivers
that cut curves the most in the dataset of Chapter 4. This comprises normal curve-cutting for
right curves and severe curve-cutting for left curves. Due to the scarcity of drivers that fall into
the R2L1 class combination (see Fig. 8.4), R2L2 drivers are included in the driver group to con-
duct a statistically powerful experiment. The R2L2 group is seen as a relevant addition because
both R2L1 and R2L2 are curve-cutting drivers. These drivers efficiently negotiate a curve by tak-
ing a trajectory that exhibits a larger radius than that of the curve. Thereby they optimise the
amount they steer, which is reflected by a decrease in the driven curvature, lateral acceleration
[30] and an increase in Time-to-Line-Crossing, as outlined in Chapter 5.

8.3.3. EXPERIMENT CONDITIONS
This experiment tests two factors: 1) the HCR type, comprising four levels and 2) the KLoHS ,
comprising two levels. This results in 4 x 2 = 8 conditions in total. The considered HCRs are
elaborated in the following:

CL The CenterLine HCR, equivalent to R4L4. This HCR represents the baseline condition be-
cause it represents the industry standard.

OD The class-average of Offset-Drivers, equivalent to the R3L5 HCR. This HCR is considered as
’class-average’ personalisation for the offset-drivers trajectory-class group. This trajec-
tory class combination is highlighted in blue for right and left curves in Fig. 8.5.

CC The class-average of Curve-Cutters, equivalent to the R2L1 HCR. This HCR is considered as
’class-average’ personalisation for the curve-cutters (R2L1 and R2L2 drivers). This trajec-
tory class combination is highlighted in yellow for right and left curves in Fig. 8.5.

P This ’fully’ Personalised HCR is defined separately for each driver and represents the level
’full’ personalisation.

The second factor in the experiment is the value of KLoHS which determines the share of
control torques that the HSC provides the driver, i.e., with a value of 1 the driver can resort to
a ’hands free’ mode. Hence KLoHS determines the fraction of control share in the driving task.
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Figure 8.4: The class combination outcomes (classification of each participant for the right and left curves
combined) of the manual driving experiment in the first session (n = 85). The numbers in the grid indicate
the number of drivers that are classified in each class combination.

The precise share required for haptic shared control is not (yet) precisely defined as given in [5].
Hence, in this experiment two values for KLoHS are tested:

• KLoHS = 0.5: An implementation of haptic shared control with equal share of torque con-
tributions from the driver and automation.

• KLoHS = 0.92: The corresponding support share for the conventional FDC which trans-
lates to 92% share of control. This particular support share with the conventional FDC
implementation was previously used in [152] [178] [196], and has proven to improve
driver acceptance.

8.3.4. DETERMINATION OF HCRS
The HCRs considered in this chapter are determined in two ways: through driver modelling
and through averaging (classified) recorded data. To generate the CL reference, a non-linear
two-parameter driver model from [17] was used. Recorded data was not used due to the lack of
driver occurrence in this class from the dataset in Chapter 4.

For the ’class-average’ HCRs, i.e. OD and CC, a representative driver that best represents the
average data of drivers (averaged over 12 repetitions) that fall into these trajectory-class combi-
nations in the dataset (of the 7-class classifier outcome in Chapter 4) is selected. For the fully
personalised HCRs the driven trajectories per individual participant, are averaged over the 12
curve repetitions. For all recorded averaging, the section covers averaging over 12 seconds: 3
seconds before curve entry, 6 seconds during the curve, 3 seconds after the curve. Then the
HCR spanning the full road scenario (comprising of six left and right curves) is reconstructed by
repeating the averaged right and left curve references along the full road scenario. The straight
sections in-between the 12 seconds averaged references are smoothly interpolated. The (recon-
structed) averaged reference comprises the trajectory positions (~XR , ~YR ), heading (~ΨR (t )) and
steering angles (~δR ).
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Figure 8.5: Outline of the selected trajectory classes combinations for the ’class-average’ HCR. The classes
are based on the trajectory classifier of [21]. The selected class combination for offset-driving (R3L5) is
highlighted in blue, whereas for curve-cutting (R2L1) it is highlighted in yellow.

PERSONALISED HCRS

For the two selected driver class groups (16 offset-drivers and 16 curve-cutters), the 16 per-
sonalised and single class-average trajectories are illustrated for comparison in Figure 8.6. The
class-averaged trajectories are shown in black. For some drivers, the class-average trajectory is
similar to the average of their respective recorded trajectories, but still, drivers within the same
class can show quite a bit of variability in driven trajectories.

8.3.5. EXPERIMENTAL SETUP & PROCEDURE
The experiment was carried out in two sessions. In between sessions, the data collected from the
first session was processed, to select the desired trajectory class combination groups outlined in
Section 8.3.2. The procedure is elaborated in the following:

FIRST SESSION

In this session, participants drove a specified road scenario defined in Section 8.3.1 without hap-
tic support. The first session consisted of one training run comprising six left and right curves
for familiarisation, and two more identical runs for data collection. This means that data was
gathered for twelve left and right curves per participant. In total 85 participants performed this
first session, of which only 32 were also invited for the second session.

PROCESSING FIRST SESSION DATA

The trajectories of all drivers from the first session were averaged over the 12 right and left curves
separately, per driver. Consequently, each of these trajectories per driver were run through the
7-class classifier of Chapter 4. Each driver’s class was determined by the most frequently oc-
curring trajectory class (per curve direction). Only the drivers with a desired trajectory class
combination (16 offset-drivers and 16 curve-cutters) were re-invited for the second session and
for further processing. The recorded trajectories, heading and steering angles of the selected
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Figure 8.6: Time traces of the fully personalised HCR’s and class-averaged HCR’s for left and right curves, for
both considered driver-groups. These are the curve-cutters falling in both R2L1 and R2L2, and offset-drivers
falling in R3L5 (driving with an offset to the centreline).

drivers were averaged over each curve direction separately, to obtain the ’fine-tuned’ person-
alised HCRs.

SECOND SESSION

In this session, the re-invited driver trajectory class groups (16 offset-drivers and 16 curve-
cutters) drove the same road scenario as in the first session with different haptic guidance set-
tings. Specifically, the four HCRs and two KLoHS were altered, as defined in the Conditions
Section 8.3.3.

8.3.6. PARTICIPANTS AND INSTRUCTIONS
Eighty-five subjects (13 women and 72 men) participated in the first session. The driver’s ages
ranged between 19 to 60 years (median = 24 years, inter-quartile-range (IQR) = 3 years) and all
were in possession of a driving license for at least a year (median = 6.2 years, IQR = 3.7 years).
Before the start of the experiment in the first session, the drivers signed a consent form and were
informed about the goal of the research, and that based on their manual trajectory style, they
might be asked to return for the second session. After classification and selection, 32 drivers
returned for the second session. In the second session, participants tested all conditions in ran-
domised order, determined by a 8x8 Latin square matrix. Each participant performed two train-
ing runs: one run of manual driving and one driving with the ’baseline’ HSC condition (HCR =
CL, & KLoHS = 0.92). All subjects participated on a voluntary basis and no financial compen-
sation was provided. Participants were asked to keep their hands at a "ten-to-two" position on
the steering wheel and to drive as they normally would. After the participants completed each
condition run, they were asked to fill in the Van der Laan [176] and CARS [93] questionnaires.
The experiment was approved by the Human Research Ethics Committee (HREC) of the Delft
University of Technology (application number: 991).

8.3.7. APPARATUS
The human-in-the-loop experiment was performed in the fixed-base driving simulator at the
Human-Machine Interaction Laboratory (HMILab) at Delft University of Technology. The visual
scenery was displayed using three LCD projectors, each covering a horizontal field-of-view of
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180 deg and a vertical field-of view of 40 deg, at an update rate of 50 Hz and an image generation
delay of 10 ms. A MOOG FCS Ecol800S actuator, operating at a rate of 2500 Hz, was employed
for the generation of haptic torques on the steering wheel.

8.3.8. DEPENDENT VARIABLES & METRICS
The dependent variables used to analyse the drivers’ acceptance over the different experiment
conditions in the second session, are divided in two categories: objective metrics and subjective.
The objective metrics consist of driver torque, feedback torque, conflict time and conflict torque
while the subjective variables are the results of the CARS and Van der Laan questionnaires.

OBJECTIVE VARIABLES

• Driver torque: The driver torque is the torque exerted by the driver on the steering wheel
while driving with guidance. It is an indication of the driver’s effort and willingness to
comply to the guidance.

• Feedback torque: The feedback torque is a contributor to the total FDC HSC torque, which
is the summation of both feedback and feedforward torques. The feedback contribution
is generally perceived as penalising by the driver, as it directly attempts to correct any
deviation from the reference, as deduced in Chapter 7. A high feedback torque is an in-
dication of disagreement, because the feedback torque is computed (just as indicated in
Fig. 8.2) as a summation of the deviation in trajectory and heading compared to the HCR.

• Conflict time: For each time step in the experiment, it is determined whether or not the
driver and FDC haptic support are in conflict. Instances of conflict arise when the driver
torque TD is opposite to the total controller torque THSC with an magnitude larger than
10% of THSC (just noticeable difference denoted by the Weber fraction [90]). The quali-
tative definition of conflict is augmented from Chapter 7 and is:

Ocon f l i ct =


1, if TD ·THSC < 0

and TD > 0.1 · |THSC |
0, otherwise

The conflict time gives an indication of objective acceptance. The conflict time is cal-
culated from Ocon f l i ct of each time step and is expressed as a percentage of time that
Ocon f l i ct = 1.

• Conflict torque: The conflict torque equals the difference between the driver torque TD
and HSC torque THSC when a conflict is present. Conflict torque is complementary to
conflict time.

These objective metrics are analysed separately per curve direction and curve phase. Curve
direction (left and right) is treated separately because the designed HCRs are also different for
each curve direction (with the exception to CL). Two phases of curve negotiation are consid-
ered: the prepositioning phase (analysed across 7s before curve entry [21]) and the in-curve
phase. It is important to separate these because the prepositioning phase is previously postu-
lated to affect in-curve acceptance, in Chapter 7. For both these phases the average of the above
mentioned objective metrics is taken over 5 runs.

SUBJECTIVE VARIABLES

• Controller Acceptance Rating Scale (CARS): The CARS scale [93] is a subjective rating sys-
tem, with scores ranging between 1 and 10. A score of 1 indicates that the system is
untrustworthy and improvement is necessary to guarantee safe operation, whereas a 10
shows that deficiencies are rare and the driver does not need to compensate for errors.



8.4. RESULTS

8

171

• Van der Laan: The Van der Laan questionnaire [176] subjectively determines the "useful-
ness" and "satisfaction" of a particular haptic support setting. This is determined through
nine features, four to describe the satisfaction level and five for the usefulness, which are
graded by each participant with a score between −2 and 2 (the full scale is given in Chap-
ter 7).

8.3.9. STATISTICAL ANALYSIS
For the objective measures, a between-subject two-way repeated-measures ANOVA is performed.
The two factors tested are HCR type and KLoHS feedforward gain, as defined in Section 8.3.3,
whereas between-subject is included to account for the two driver groups tested, outlined in
Section 8.3.2. Instead of a three-way ANOVA to account for curve direction, the proposed two-
way ANOVA was repeated for each curve direction separately. This is because the designed
HCRs are also different in each curve direction. The normality of the data was checked us-
ing the Shapiro-Wilk test, whereas sphericity is checked and if needed, corrected for using the
Greenhouse-Geisser correction. To perform pair-wise comparisons, a post hoc test was done
comparing the main effects with a Bonferroni adjustment. The significance of the subjective
measures was tested using the non-parametric Friedman test, based on the final rating of ac-
ceptance, usefulness and satisfaction per condition. The pairwise comparisons were also tested
for the non-parametric results with Bonferroni corrections.

8.3.10. HYPOTHESES
The following three hypothesis were tested with the experiment:

H.I No significant difference in acceptance exists between support based on a class-averaged
HCR or based on a fully-personalised HCR.

H.II Support based on a centerline (CL) HCR will cause the highest conflict torques and will
have the worst subjective ratings, leading to a low acceptance rate.

H.III A higher feedforward gain KLoHS decreases conflict time and torque whilst receiving in-
creased subjective acceptance.

H.I is based on previous research, which found that during an automated over-take ma-
noeuvre drivers like their own overtake style played back to them as much as a similar style [66].
H.II is based on previous research that found that centerline driving is not a style exhibited by
any driver [18]. Moreover, drivers seem to prefer similar driving styles to their own [66]. H.III is
based on findings from Chapter 7, where it was concluded that the feedforward component in
the FDC significantly contributes to conflict reduction, even though more torque is provided by
the HSC system.

8.4. RESULTS

8.4.1. OBJECTIVE MEASURES
The objective measures are presented in two parts, where each part focuses on the effect of one
of the two examined factors: 1) HCR type and 2) KLoHS (FF) level. With respect to the presented
hypothesis, H.I and H.II both relate to HCR type, whereas H.III relates to the effect of KLoHS .

The objective measures presented are driver torque and conflict time. These objective mea-
sures are analysed independently per curve direction, i.e. left and right curves, and per curve



8

172 8. EVALUATION OF PERSONALISED HAPTIC SHARED CONTROL

phase, i.e. prepositioning and in-curve phases. For the sake of brevity feedback torque and
conflict torque are presented in Fig. D.5 and Fig. D.6 in the Appendix.

As an example, the time series of all objective measures, with HSC torque included, are il-
lustrated in Fig. D.1 for a curve-cutter and Fig. D.2 for an offset-driver, both in Appendix D.1.
For each driver the average values of twelve left and right curves are shown, where a positive
curvature, κ, represents a left curve.

EFFECT OF HCR TYPE

This section focuses on the effects of HCR type in the two tested driver groups. To illustrate the
observed trends without excess data clutter, only the KLoHS = 0.92 is illustrated in Figures 8.7
and 8.8. The data for KLoHS = 0.5 can be found in Fig. D.3 and Fig. D.4 and follows similar trends
as with KLoHS (FF) = 0.92.

The driver torque TD during prepositioning for right curves, illustrated in Fig. 8.7 a) shows
a different trend for each driver group. The highest median torque of 0.4 Nm is achieved with
curve-cutting guidance for offset-drivers, whereas the highest median torque of 0.36 Nm is
achieved with offset-driving guidance for curve-cutters. For both driver groups the fully per-
sonalised condition results in the lowest driver torque at an average median torque of 0.13 Nm.
Statistics shows that TD is significantly affected by HCR (F(1.9,58.9) = 10.9, p<0.01). A significant
interaction between HCR and driver group is found in this phase (F(1.9,48.9) = 12.4, p<0.01). For
curve-cutters, pairwise comparisons show that this effect stems from a significant increase be-
tween CL and OD with an average of 0.13 Nm (p<0.05) and a significant decrease between OD
and P with an average of 0.23 Nm (p<0.01). For offset-drivers, this effect stems from a signifi-
cant increase between CL and CC with and average of 0.32 Nm (p<0.01), a significant increase
between OD and CC with an average of 0.28 Nm (p<0.05) and a significant decrease between
CC and P with an average of 0.3 Nm (p<0.01). For both driver groups there is no significant
difference between class-average and P even though class-average has a higher median torque
(supporting H.I). For both driver groups CL does not result in the highest driver torque (oppos-
ing H.II).

The driver torque during the prepositioning phase in left curves, illustrated in Fig. 8.8 a)
shows no particular change in trend between driver groups. Both groups exhibit the lowest
driver torque for the fully personalised condition at an average median of 0.13 Nm and simi-
lar median torques for all the other conditions at an average median of 0.3 Nm. Statistics shows
that TD is significantly affected by HCR (F(1.4,41.4) = 5.3, p<0.05). Contrary to right curves, for
left curves there is no significant interaction effect between HCR and driver group in the prepo-
sitioning phase. Pairwise comparisons show that there is a significant decrease between CL and
P with an average of 0.18 Nm (p<0.01), a significant decrease between OD and P with an average
of 0.15 Nm (p<0.01) and a significant decrease between CC and P with an average of 0.16 Nm
(p<0.01). Here, the lowest torque is found for P, with the other HCRs having no significant dif-
ferences from eachother. This is expected because both an CC and OD preposition toward the
outer part of the left curve. Both driver groups experience significant differences between class
average and P (opposing H.I) and CL does not instigate the largest driver torque (opposing H.II).

The driver torque TD during the curve in right curves, illustrated in Fig. 8.7 b) shows no
particular change in trend between driver groups. Both driver groups exhibit the largest driver
torque for the centerline guidance at an average median of 0.7 Nm, whereas the smallest driver
torque results from both offset driving (at average median of 0.32 Nm) and fully personalised
guidance (at average median of 0.35 Nm). Statistics shows that TD is significantly affected by
HCR type (F(2.1,61.7) = 81.9, p<0.01). There is no significant interaction between driver group
and HCR. Pairwise comparisons show that this effect stems from a significant decrease between
CL and OD with an average of 0.46 Nm (p<0.01), a significant decrease between CL and CC with
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an average of 0.29 Nm (p<0.01), a significant decrease between CL and P with an average of
0.33Nm (p<0.01), a significant increase between OD and CC with an average of 0.16 Nm and a
significant increase between OD and P with an average increase of 0.12 Nm. For offset-drivers
there is a small but significant difference between class-average and P, where the driver torque
is even higher for P (opposing H.I). For curve-cutters there is no significant difference between
class average and P (supporting H.I). The highest median driver torque (thereby highest driver
effort) is found for CL compared to the other HCRs (supporting H.II).

The driver torque during the curve in left curves is illustrated in Fig. 8.8 b). For both driver
groups the highest driver torque is found for offset driving guidance at an average median of
0.6 Nm. For offset drivers the lowest driver torque is found for centreline guidance at a median
of 0.28 Nm, followed by curve-cutting guidance at 0.32 Nm, an unexpected trend. For curve-
cutters the lowest median torque is found for the fully personalised guidance at 0.3 Nm followed
closely by curve-cutting guidance at 0.34 Nm. Statistics shows that TD is significantly affected
by HCR (F(2.4,70.8) = 80.2, p<0.01). There is a significant interaction between driver group and
HCR (F(2.3,70.2) = 12.9, p<0.01). For curve-cutters, pairwise comparisons show that this effect
stems from a significant increase between CL and OD with an average of 0.26 Nm (p<0.01), a
significant decrease between CL and CC with an average of 0.14 Nm (p<0.01), a significant de-
crease between CL and P with an average of 0.11 Nm (p<0.01), a significant decrease between
OD and CC with an average of 0.39 Nm (p<0.01) and a significant decrease between OD and P
with an average of 0.37 Nm (p<0.01). For offset-drivers, this effect stems from a significant in-
crease between CL and OD with an average of 0.29 Nm (p<0.01), a significant increase between
CL and P with an average of 0.16 Nm (p<0.01), a significant decrease between OD and CC with
an average of 0.32 Nm (p<0.01) and a significant increase between CC and P with an average of
0.2 Nm (p<0.01). For both driver groups there is no significant effect between class-average and
P (supporting H.I), nor does CL instigate the largest driver torque (opposing H.II).

The conflict time Oc during prepositioning in right curves, illustrated in Fig. 8.7 c), shows
is a clear difference in trends between driver groups. For curve-cutters the largest conflict time
stems from offset-driving guidance at median of 82% whereas for offset-drivers the largest con-
flict time stems from curve-cutting guidance at median of 67%. For both driver groups the low-
est conflict times stem from the fully personalised guidance at median of 0%. Statistics shows
that Oc is significantly affected by HCR (F(1,30) = 9.2, p<0.01). There is a significant interaction
between HCR and driver group (F(1,30) = 7.8, p<0.01). For curve cutters, pairwise comparisons
show that this effect stems from a significant increase between CL and OD with an average of
30% (p<0.01) and a significant decrease between OD and P with an average of 57% (p<0.01). For
offset-drivers, this effect stems from a significant increase between CL and CC with an average
of 52% (p<0.01) and a significant decrease between CC and P with an average of 42% (p<0.01).
Both driver groups achieve the lowest conflict time with P with no significant difference to class-
average (supporting H.I). Here, the curve-cutters achieve significantly the highest conflict time
with OD and the offset-drivers achieve significantly the highest conflict time with CC (opposing
H.II).

The conflict time Oc during the prepositioning phase in left curves, illustrated in Fig. 8.8 c),
shows no difference in trend between driver groups. For both driver groups the highest median
conflict time is found for offset driving at around 78%, followed by centreline at around 60%,
whereas the lowest conflict time is evident for the fully personalised condition at average me-
dian of 5%. Statistics show that Oc is significantly affected by HCR (F(1.6,49.1) = 5.4, p<0.05).
There is no significant interaction between driver group and HCR. Pairwise comparisons show
that there is a significant decrease between OD and CC with an average of 12 % (p<0.01), a sig-
nificant decrease between OD and P with an average of 38% (p<0.01) and a significant decrease
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Figure 8.7: This figure illustrates the conflict occurrence Oc and driver torque TD trends across HCR type for
right curves, where the HCRs on the x-axis are Center-Line (CL), Offset-Driving (OD), Curve-Cutting (CC)
and fully Personalised (P). The driver torque TD is given in a) & b) and the conflict time Oc is given in c) & d).
The measures in the prepositioning phase are presented in a) & c) and in the curve phase in b) & d). These
results are exclusively for Right curves, with FF = 0.92. The overall results including FF = 0.5 included are
presented in Fig. D.3.

between CC and P with an average of 20% (p<0.05). Conflict time is lowest with P with signifi-
cant increase for only the class-average HCRs for both driver groups (opposing H.I and H.II).

The conflict time Oc during the curve in right curves, illustrated in Fig. 8.7 d), shows no
difference in trends between driver groups. The offset-driving guidance results in the largest
median torque at 12 %, with all other conditions achieving similar (minimal) conflict time.
Statistics shows that Oc is significantly affected by HCR (F(1.6,48.5) = 4.29, p<0.01). There is
a non-significant interaction between driver group and HCR. Pairwise comparisons show that
this stems from a significant decrease between OD and P with an average of 9.1% (p<0.05). For
curve-cutters this supports H.I, whereas for offset drivers it opposes H.I. The CL does not result
in largest conflict time (opposing H.II).

The conflict time Oc during the curve in left curves, illustrated in Fig. 8.8 d) shows different
trends between driver groups. For curve-cutters the fully personalised guidance achieves lowest
conflict time at a median of 0% with other conditions exhibiting a similar (larger) median con-
flict around 10%. Offset drivers exhibit the largest conflict time with curve-cutting at median 8%,
other conditions show similar minimal median conflict times around 2%. Statistics show that
Oc is significantly affected by HCR (F(2.4,70.2) = 7.5, p<0.01). There is however no significant in-
teraction between driver group and HCR. Pairwise comparisons show that there is a significant
decrease between OD and P with on average 5.4 % (p<0.01) and a significant decrease between
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Figure 8.8: This figure illustrates the Oc and driver torque TD trend across HCR type for left curves , where
the HCRs on the x-axis are Center-Line (CL), Offset-Driving (OD), Curve-Cutting (CC) and fully Personalised
(P). The driver torque TD is given in a) & b) and the conflict time Oc is given in c) & d). The measures in the
prepositioning phase are presented in a) & c) and in the curve phase in b) & d). These results are exclusively
for Right curves, with FF = 0.92. The overall results including FF = 0.5 included are presented in Fig. D.4.

CC and P with on average 8.4 % (p<0.01). Conflict time is lowest with P with significant increase
for only the class-average HCRs for both driver groups (opposing H.I and H.II).

Since the reference trajectories for right and left curves are different, clear differences in ac-
ceptance across the considered driver groups are present with curve direction. For right curves
significant interaction between HCR type and driver group is only present in the preposition-
ing phase, whereas for left curves a significant interaction is only found for the in-curve phase.
This is relatable to the similarities in the class-average trajectories during the prepositioning and
in-curve phases, as can be observed in Fig. 8.5. More analysis is presented in the Discussion.

EFFECT OF LEVEL OF HAPTIC SUPPORT (FF)
This section focuses on the effects of variations in the Level of Haptic Support, determined by
the KLoHS gain of the FDC HSC, also known as the FeedForward (FF) gain, in the two tested
driver groups. To illustrate the observed trends without excess data clutter, all the four driven
HCRs at particular KLoHS gain are presented together, with the grand averages indicated by a
thick line, as illustrated in Fig. 8.9 and Fig. 8.10.

The driver torque TD during prepositioning is shown in Fig. 8.9 a) for right curves and Fig.
8.10 a) for left curves. In both curve directions TD is not significantly affected by the Level of
Haptic Support. A significant change in driver torque is not present during the prepositioning
phase, due to the contribution of feedforward torque being small.
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Figure 8.9: For right curves, the driver torque TD is given in a) & b) and conflict time Oc is given in c) &
d). The measures in the prepositioning phase are presented in a) & c) and in the curve phase in b) & d).
Four columns of data are presented per driver group per FF level, each of these columns represent one of
the four tested HCRs in the following order: Center-Line (CL), Offset-Driving (OD), Curve-Cutting (CC) and
Personalised (P).

The driver torque during the curve phase, illustrated in Fig. 8.9 b) for right curves and Fig.
8.10 b) for left curves. In both curve directions TD , shows a decrease which is also significant
with increasing KLoHS (FF), right – gain (F(1,30) = 1122.4, p<0.01) and left – (F(1,30) = 707.8,
p<0.01). For right curves, an average decrease of 0.66 Nm is found for curve cutters and an
average decrease of 0.68 Nm is found for offset-drivers (supporting H.III). For left curves, an
average decrease of 0.62Nm is found for curve cutters and an average decrease of 0.61Nm is
found for offset-drivers, also supporting H.III.

The conflict time Oc during prepositioning is illustrated in Fig. 8.9 c) for right curves and
Fig. 8.10 c) for left curves. In both curve directions Oc shows a decrease which is significant with
increasing KLoHS (FF) gain, right – (F(1.6,48.5) = 4.29, p<0.01) and left – (F(1,30) = 27.8, p<0.01).
For right curves, an average decrease of 12.8% is found for curve-cutters and 20.1% for offset-
drivers, when increasing the KLoHS gain (supporting H.III). For left curves an average decrease
of 16% is found for curve cutters and 18% for offset drivers, when increasing the KLoHS gain,
also supporting H.III.

The conflict time Oc during the curve, illustrated in Fig. 8.9 d) for right curves and Fig. 8.10
d) for left curves. In both curve directions Oc is not significantly affected by the Level of Haptic
Support. Unlike the effects found for HCR type, the driver torque and conflict occurrence across
right and left curves with variations in KLoHS , are equivalent.
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Figure 8.10: For left curves, the driver torque TD is given in a) & b) and conflict time Oc is given in c) &
d). The measures in the prepositioning phase are presented in a) & c) and in the curve phase in b) & d).
Four columns of data are presented per driver group per FF level, each of these columns represent one of
the four tested HCRs in the following order: Center-Line (CL), Offset-Driving (OD), Curve-Cutting (CC) and
Personalised (P).

8.4.2. SUBJECTIVE MEASURES
This section first presents the CARS ratings and then the usefulness and satisfaction scores ob-
tained from the Van der Laan questionnaire. The measures are presented in the order of the
hypothesis, i.e. first the effects of HCR type, thereafter the effect of KLoHS (FF) gain.

CARS SCORE

The CARS scores provided by all thirty-two drivers is illustrated in a cumulative distribution
in Figure 8.11. The corresponding median CARS score is indicated with a vertical dashed line.
The CARS rating is categorised as follows: 1 means the system is not perceived as safe, 2-4:
support system is barely controllable to maintain safety, 5-7: support system is unsatisfactory,
8-10: support system is satisfactory.

HCR type While there is no significant effect for HCR type for curve-cutters, for offset-
drivers there is a significant effect for HCR type (χ2(3)=13.4, p = 0.004, W = 0.15). Pairwise
comparisons show that this effect resulted from the significant difference between P and CC
for KLoHS = 0.92 (p<0.05). The offset-drivers give high acceptance scores with a median of 9 for
CL, OD and P HCR. The significant exception lies with CC, where a strong feedforward gain is
not favored. Fig. 8.11 shows no significant differences between P and the class-average for both
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Figure 8.11: The CARS rating of the curve-cutters are given across a) to b). The CARS rating of the offset-
drivers are given across c) to d). The different levels of haptic support (FF) are plotted separately. The
corresponding medians for each HCR are indicated by dashed vertical lines.

driver groups (supporting H.I). There is also no difference between P, class-average or CL for
both driver groups (opposing H.II).

KLoHS For curve-cutters, a feedforward gain of KLoHS = 0.92 receives significantly higher
subjective acceptance scores than KLoHS = 0.5 (χ2(1)=7.681, p = 0.006, W = 0.12), with a median
increase of 1 point. For offset-drivers, such a significant improvement is not present due to the
low score achieved with CC for KLoHS = 0.92. When the CC HCR is omitted, a feedforward gain
of KLoHS = 0.92 receives significantly higher subjective acceptance scores with the three other
HCRs (χ2(1)=6.429, p = 0.011, W = 0.143), with a median increase of again 1 point. Hereby, a
larger feedforward gain results in significantly better acceptance ratings for P, class-average and
CL (supporting H.III).

SATISFACTION AND USEFULNESS

The subjective satisfaction and usefulness ratings obtained from the Van der Laan questionnaire
are summarised in Fig. 8.12. Here the results of both the usefulness and satisfaction scores are
presented together in one plot, illustrating both the average and standard deviations with error
bars.

Figure 8.12: Satisfaction-Usefulness plots resulting from the Van Der Laan questionnaire for both the curve-
cutters in a) & b) and offset-drivers in c) & d). Here the average ratings are given by the dots with 2 standard
deviations as error bars.
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HCR type For the curve-cutters, there is no significant effect for satisfaction and useful-
ness with HCR type, in line with the CARS scores. For the offset-drivers a significant effect for
satisfaction with HCR type for only the KLoHS = 0.92 case (χ2(3)=8.293, p = 0.04, W = 0.184).
Pairwise comparisons show a significant difference between only P and CC (p<0.05), with an
average decrease of 1.4 scores. There is also a significant effect for usefulness with HCR for
KLoHS = 0.92 (χ2(3)=11.17, p = 0.011, W = 0.248). Pairwise comparisons show a significant effect
between only P and CC (p<0.05), with an average decrease of 0.7 points. Furthermore, no sig-
nificant difference between P and class-average HCRs is found (supporting H.I). Finally, there is
also no difference between P, class-average or CL for both driver groups (opposing H.II).

KLoHS For curve-cutters there is a significant effect for satisfaction with KLoHS level (χ2(1)
= 4.9, p = 0.027, W = 0.077) with an average increase of 0.3 points. There is also a significant ef-
fect for usefulness with KLoHS level (χ2(1)=17.47, p = 0.000, W = 0.273), with an average increase
of 0.47 points. The offset drivers also rate the usefulness of KLoHS = 0.92 conditions signifi-
cantly higher (χ2(1)=4.923, p = 0.027, W = 0.082), at an average increase of 0.4 points. However,
they clearly do not accept a CC HCR at KLoHS =0.92, nevertheless, this HCR becomes indistin-
guishable from other HCRs and thereby acceptable at KLoHS =0.5. The perceived usefulness for
both driver groups significantly increases with increasing feedforward gain (supporting H.III),
whereas the perceived satisfaction significantly increases with an increased feedforward gain
for the curve-cutters only.

8.5. DISCUSSION
The aim of this chapter is to gain an understanding of how to personalise haptic shared control.
This understanding is gained through exploring different levels of personalisation and different
levels of haptic support. An experiment is carried out on two driver groups, curve-cutters and
offset-drivers, classified according to the 7-class classifier in Chapter 4. These two driver groups
were presented with four different controller references: fully personalised, class average per-
sonalised, centreline and the class-average of the other driver group. Additionally, these refer-
ences were presented at a high and low setting of haptic support. This experiment was carefully
designed to gain insight into 1) the level of personalisation (fully personalised, v.s. class average
personalised) and, 2) the level of haptic support required for the best driver acceptance of haptic
shared control. The following three hypotheses were made: 1) no difference in subjective accep-
tance measures or objective conflict is expected between full personalisation and class average
personalisation, 2) the centreline guidance results in lower subjective acceptance and more ex-
tensive duration in conflict than both forms of personalisation and, 3) a higher feedforward gain
is expected to increase acceptance and decrease conflict.

THE ACCEPTANCE OF THE HYPOTHESES
There is no evidence for any differences between class-average and fully personalised HCRs
if you ask participants (accepting H.I). Nevertheless, significant differences between person-
alisation levels are found in the considered objective measures. Where, without doubt, the
fully personalised HCR results in significantly the least conflict reflected by 1) the lowest con-
flict duration, at mean conflict times below 10% of the total driving time (in both the preposi-
tioning and in-curve phases) and, 2) the lowest conflict torques, at mean conflict torque below
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0.2 Nm in both the prepositioning and in-curve phases, for both driver groups. This indicates
the best controller-driver agreement is found for fully personalised HCR in terms of aligning
torques. Contrary to H.I, the class-average personalised guidance is sometimes found to be sig-
nificantly different from fully personalised guidance. The instances when significant differences
are found is summarised in Table 8.1. This objective conflict is found for both curve-cutters in
left curves and offset-drivers for right curves. For curve-cutters a significant in-curve peak in
conflict torque is found for the CC HCR in left curves (illustrated in Fig. D.6), whereas for offset-
drivers a significant peak in conflict time and torque is found for the OD HCR in right curves
(illustrated in Fig. 8.7 & Fig. D.5 ). Careful analysis finds that this unexpected objective conflict
torque and time is dependent on two factors: 1) whether the driver has a similar trajectory to the
HCR used by the HSC and, 2) the adaptiveness of the driver to the provided HCR, i.e. the driver
follows the HCR. Fig. 8.13 illustrates two drivers with similar driving styles and their adaptive-
ness to the CC HCR guidance. The non-adaptive driver (driver 2) receives high conflict time and
torque (43% and 0.9 Nm), whereas the adaptive driver (driver 1) receives low conflict time and
torque (2% and 0.1 Nm). Therefore, the willingness of the driver to adapt is an essential factor
that affects torque alignment and thereby torque conflict.

Table 8.1: The significance of pairwise comparisons between fully personalised and class-average HCRs
for both driver groups. The extra metrics feedback torque TSoHF and conflict torque Tc are given in the
appendix. When σ = -, p > 0.05, when σ = *, p <0.05, when σ = **, p <0.01.

Metric Curve-cutters Offset-drivers
Right Left Right Left

Prep Crv Prep Crv Prep Crv Prep Crv

TD - - ** - - ** ** -
TSoHF - - ** * - - * -

Oc - - * ** - * ** **
Tc - - ** * - - ** -

Figure 8.13: Comparison of two drivers trajectory behaviour and their resulting, driven trajectories when
subjected to CC HCR in left curves. The resulting adaptation is an indication of driver agreement
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The industry standard of centerline guidance for intelligent vehicles [98] [55] is not found
to cause the highest conflict torques, nor does it exhibit the worst subjective ratings, mean-
ing that hypothesis H.II is rejected. In this study, and Chapter 4, there are no drivers whose
trajectory style is centerline driving, which means it is not a ’human-like’ trajectory. In fact,
the highest driver torques and feedback torques are found for CL in right curves. Nevertheless,
both driver groups do not distinguish it from personalised HCRs on the subjective scale, cred-
iting this particular HCR ’human-compatible’. This poses the question of whether acceptance
is affected by what drivers expect from an intelligent vehicle, i.e. whether the guidance is pre-
dictable, rather than only a similarity in trajectory style and aligning torques. In fact, the fifth
guideline of human-centred design is that ’the automation must be predictable by the human’
[27]. Hence, when a guidance reference is predictable, this can build trust, which can leverage
acceptance.

Increasing the level of haptic support KLoHS shows a significant change in perceived accep-
tance. A level of haptic support that has the HSC contribute 92% of the driving task receives sig-
nificantly higher acceptance than the 50% support level, with 1) acceptance ratings significantly
improving by 1 score (on a 1-10 scale), 2) usefulness significantly improving by a factor 1.9 (on
a -2 to 2 scale), 3) in-curve driver torque significantly decreasing by 0.64 Nm, 4) prepositioning
conflict time significantly decreasing by 17% and 5) prepositioning conflict torque significantly
reducing by 0.1 Nm. This finding means that H.III is accepted. A system that has a higher level
of haptic support, i.e., a more substantial feedforward torque, supports the driver with more
guidance, making the ratio between guidance (feedforward) and correction (feedback) torques
larger. Also, a larger feedforward gain is closer to full automation: with a KLoHS =1, the driver
can ’drive’ hands-free, as the support will provide all the torques necessary to drive the curve,
which drivers may find more useful. These findings are in line with the conclusions of Chapter
7, where it was found that the FDC controller increases driver acceptance compared to a pure
feedback haptic controller due to the feedforward torques. Although both are torques, they are
dynamically perceived very differently by drivers. Analogous to coaching, feedback torque is like
a coach who constantly corrects and penalises you after you make a mistake. That is, feedback
provides corrections that require most of the initiation to be done by the driver, where drivers
may end up giving anticipatory torques over correction torques. On the other hand, feedfor-
ward torque is like a coach who guides you with anticipatory advice along the desired path.
Feedforward gives earlier guidance than feedback, especially when entering a curve. When the
timing and the magnitude of the guidance are accurate, acceptance will be high. Hereby, it is
proven that the feedforward torque plays a crucial role in the acceptance of haptic shared con-
trol. Therefore, rather than using KLoHS = 0.92, which was heuristically tuned in Chapter 7, it is
recommended to further investigate the ideal value of the feedforward gain KLoHS for optimal
acceptance.

EFFECT OF TRAJECTORY TYPE ON SUBJECTIVE ACCEPTANCE
No evidence was found that full personalisation is necessary for the FDC haptic shared con-
troller if you ask participants. The subjective measures show that drivers from both tested
groups do not perceive any significant change in acceptance, satisfaction or usefulness when the
guiding controller reference changes between the fully personalised, class-average personalisa-
tion and centerline guidance. Even though subjective questionnaires may not always convey ac-
curate preferences due to possible time-variant artefacts during the experiment such as fatigue
(especially when comparing four different HCRs), these (non-significant) effects and trends be-
tween trajectory types are very consistent across all three subjective questionnaires. This rela-
tive indifference to the level of personalisation and centerline could be caused by the inherent
nature of the FDC controller exhibiting feedforward guiding torques, which allows drivers to



8

182 8. EVALUATION OF PERSONALISED HAPTIC SHARED CONTROL

deviate from the set HCR without much-felt penalty. This is in contrast to pure feedback hap-
tic systems [31] [129] where any deviation is penalised. This allowance of the FDC controller
could then result in no subjectively perceived added benefit to personalisation through aligning
torques.

Although no evidence was found to support the use of the considered personalised HCRs
in this experiment from a subjective stance, this is not to say that HCR type or that personalisa-
tion in the general sense is not important. The goal of personalisation in ADAS is ’to improve the
driving experience and the performance of the assisted drivers by adapting the assistance system to
their preferences and needs’ [72]. Hereby personalisation is not limited to mimicking the driver’s
behaviour (as is considered in this chapter), but rather adapting to their preferences. In fact,
mimicking a driver’s style in automated vehicles is not (always) found to leverage the greatest
acceptance, or fall within a driver’s preferences [149] [71] [22] [193]. Nevertheless, the results of
this experiment indeed do show differing preferences between driver groups. Offset-drivers par-
ticularly show a significant decrease in acceptance, satisfaction and usefulness when presented
with curve-cutting guidance. Curve-cutting guidance is not what offset-drivers expect from a
haptic controller and is out of the ’comfort zone’ of these drivers. In fact, a system that explic-
itly does not guide an offset driver with curve cutting guidance is adapting to their preferences
and is thereby personalised in the general sense [72]. Conversely, curve-cutters readily accept
an offset driving HCR, without any significant difference to fully personalised, class-average or
centerline guidance. Hereby, one could relate the acceptance of HCR to the predictability of
the trajectory, i.e., for curve-cutters, both CL and OD could be more predictable than CC is to an
offset-driver. Therefore, offset-drivers, in contrast to curve-cutters are more sensitive to changes
in guidance trajectory and thereby, may benefit more from systems that explicitly adapt to their
preferences and are thereby personalised (in a general sense).

EFFECT OF DRIVER GROUP
Compared to curve-cutters, the offset-drivers show significantly reduced conflict times, with an
average decrease of 4% and significantly less feedback torque, with an average decrease of 0.2
Nm, across all conditions. This could be a result of their ’willingness to adapt’. Figs. D.8 and D.9
in Appendix D.5 show the six left and right trajectories driven for the eight different test condi-
tions, for a curve-cutter and offset-driver, respectively. The curve-cutter persistently maintains
their trajectory class with guidance, whereas the offset-driver adapts to the presented HCR. With
these adaptations, the conflict received is less. Hereby, driver type can affect the magnitude of
conflict in general. Driver type seems to correlate with adaptation and therefore, further inves-
tigating the adaptiveness of the other the driver types shown in Fig. 8.4, is recommended.

Since the curve-cutter group is comprised of two subgroups of driver types (R2L1 & R2L2,
i.e., in left curves one group is classified as severe curve-cutting and the other normal curve-
cutting), it can be speculated that this is one of the reasons for the increased significant differ-
ences between fully personalised and class-average personalisation in left curves specifically,
given in Table 8.1. In fact, the trend in conflict time and conflict torque does not significantly
change with sub-driver group. Fig. D.7 in Appendix D.4 illustrates that the high conflict stems
from both sub-groups of drivers (R2L2 & R2L1). Rather than a binary difference in class, this
could be related to the fact that the considered L1 is not a class average of the tested drivers,
since it is the average of only 3 drivers from the dataset in Chapter 4.

ACCEPTANCE OF MORE ’EFFICIENT’ HCRS
Driver’s do not readily accept ’more efficient’ HCRs; in fact, the class-average CC HCR exhibits
significantly lower acceptance, satisfaction and usefulness ratings for offset-drivers. The L1 tra-
jectory (the left trajectory of the CC HCR) is a realisation of an ’optimal race-line’ [30], which
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inherently maximises the Time to Line Crossing (thereby safety), minimises the in-curve lateral
acceleration and reduces the driver’s steering effort (as deduced in Chapter 5). Although these
are objective benefits that most drivers would find desirable, when subjected to this ’unconven-
tional’ guidance, the offset-drivers are not accepting of it. Nevertheless, this could be a result of
experimenting in a fixed-base driving simulator, where these drivers cannot perceive the benefit
of following a curve-cutting trajectory that minimises lateral acceleration.

TORQUE ALIGNMENT AND DRIVER GROUP
Controller-driver agreement in terms of aligning torques is generally found during instances
when the driver’s and the HCR’s trajectories are aligned, even without personalised guidance.
This is clearly observed when presented with the other group’s class-average guidance. Curve
cutters try to minimise their lateral acceleration by starting at the outer part of the curve in the
prepositioning phase and gravitate towards the inner part of the curve in the in-curve phase,
this behaviour is seen both for right and left curves. Offset-drivers try to follow a straight path
along the centreline (but not on the centreline), they drive along the inner part of the curve for
right curves and along the outer part of the curve for left curves. More specifically, the offset-
drivers preposition on the inner side of a right curve, whereas curve-cutters preposition on the
outer side of a right curve. Whilst in right curves, both trajectories gravitate towards the inner
curve. Both offset-drivers and curve-cutters preposition towards the outer part of the left curve,
whereas in the left curve offset-drivers stay on the outer curve whereas curve-cutters gravitate
towards the inner part of the curve. This is illustrated graphically in Fig. 8.14. For this reason,
differences between the considered driver groups are reflected in the prepositioning phase for
right curves and in the curve phase for left curves. Whereas during prepositioning in left curves
and being in the curve during right curves, the controller-driver intent is the same, which is
reflected by significantly shorter conflict times and smaller conflict torques.
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Figure 8.14: Similarity and differences between the two driver types

SUBJECTIVE ACCEPTANCE CAN NOT BE EXPLAINED BY OBJECTIVE CON-
FLICT OCCURRENCE
The objective conflict measures considered in this chapter do not show a correlation with the
subjective ratings given by the drivers for the considered FDC controller. For example, the OD
HCR is given high subjective ratings by both groups of drivers. However, the OD HCR results in
the highest in-curve conflict torque for both driver groups, in right curves. Surprisingly, the OD
HCR does result in a low amount of (penalising) feedback torque. Whereas the HCR with the
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highest penalising feedback torque, CL receives minimal conflict. This implies that the com-
puted conflict for OD may result from the feedforward torque (it is, however, not possible to
distinguish precisely whether the driver has a conflict with a feedback or feedforward torque as
they are always provided together). Moreover, we find that with a higher feedforward torque,
which is subjectively favoured, the in-curve conflict torque significantly increases in left curves
with 0.15 Nm on average. However, a ’conflict’ with feedforward torque is not penalising nor
unpleasant. Some drivers may like to ’lean on the system’ and feel the haptic torques, in this
way the opposing torque may feel like the system ’protects’ the driver [168]. However, leaning
behaviour is directly recorded as an objective conflict. Conversely, an offset driver that clearly
’fights’ curve-cutting guidance may struggle with the guidance and receive the same magnitude
of conflict time. Nevertheless, the defining line between ’leaning’ and ’struggling’ may be re-
lated to conflict frequency. Therefore, to bridge the gap between the objective and subjective
acceptance measures, it is essential to investigate different methods to compute conflict in a
way that matches what the driver perceives as conflict, rather than only a computation of op-
posing torques.

8.6. CONCLUSIONS
This chapter investigated different personalisation approaches to improve acceptance of haptic
shared control. It was assumed that when guidance is strongly linked to drivers’ driving style,
acceptance will be higher. The investigation is based on empirical data from two driver groups
with distinct driving styles: the most commonly observed driver type referred to as offset-drivers
and curve-cutters. These drivers are presented with a Haptic Shared Control system that is
driven by four different Human-Compatible-References (HCRs) and two different feedforward
gains (KLoHS ). The four tested HCRs are: 1) a fully personalised reference, 2) a class-average
personalised reference, 3) the centerline reference and, 4) the other driver group’s class-average
reference. These HCRs were applied with two feedforward gains: KLoHS = 0.5 and KLoHS =
0.92. The acceptance is evaluated by both subjective questionnaires and objective measures of
conflict time, conflict torque, feedback torque and driver torque.

The main takeaways from the tested experimental conditions in this chapter are:

1. Full personalisation significantly improves torque alignment between driver and con-
troller which is reflected by 1) significantly the lowest conflict times, at mean conflict
times below 10% and, 2) significantly the lowest conflict torques, at mean conflict torque
below 0.2 Nm in both the prepositioning and in-curve phases, for both driver groups.
Hereby, a class-average HCR leverages significantly larger conflict compared to fully per-
sonalised guidance. This is unexpected and opposes H.I

2. Drivers do not perceive this torque alignment from the fully personalised guidance as
an added benefit. Subjectively, there is no significant change in acceptance, satisfaction
or usefulness when the HCR changes from fully personalised to class-average to center-
line, for both tested driver groups. This means that all drivers accept a HSC that drives
like them, regardless of being fully personalised or class average personalised, which is
expected and supports H.I. The centreline driving guidance (industry’s standard) is also
equally well accepted subjectively, even though objectively, conflict torques are signifi-
cantly higher. This is unexpected and opposes H.II; nevertheless, this acceptance seems
to stem from the predictability of the reference.

3. We find that some (computed) conflict torques are not experienced as ’conflicting’. We
expect that conflict in feedforward torques (exclusive to the FDC HSC) are accepted while
conflict in the form of feedback torques are not accepted.
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4. The level of haptic shared control gain KLoHS plays a crucial role in driver acceptance,
with acceptance ratings significantly improving by 1 score (on a scale of 1-10), usefulness
significantly improving by a factor 1.9, in-curve driver torque significantly decreasing by
0.64 Nm and prepositioning conflict time significantly decreasing by 17%. This result
supports H.III.

The design guidelines that can be extracted from the findings of this paper are fourfold:
1) for most applications personalisation (through mimicking the driver’s trajectory) is not nec-
essary with the FDC controller; instead, the centreline reference achieves equal subjective ac-
ceptance (due to the predictability of this trajectory) and can be used for computationally ef-
ficient HSC implementation, 2) for applications where torque alignment is explicitly necessary
a fully personalised reference should be used, 3) the preference of the majority of drivers, i.e.
offset-drivers, should be considered by not presenting them with curve-cutting guidance and,
4) a feedforward gain of 0.92 should always be used; however, it is recommended to investigate
other gain values that could further improve driver acceptance.





9
CONCLUSIONS AND

RECOMMENDATIONS

This final chapter provides a comprehensive overview of the achievements, the conclusions and
the recommendations of this thesis. The conclusions and recommendations are presented in four
sections. Firstly, a brief overview of the achievements and the key conclusions of each part. Sec-
ondly, the overall conclusions of the thesis. Thirdly, design guidelines for haptic shared control
in curves. Fourthly, possible applications of the developed tools. Finally, the recommendations
section gives a clear description of essential follow-up research in the field of personalisation in
driving automation.
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RECAPITULATION OF RESEARCH GOAL
Most current advancements in driving automation follow a technology-centred approach, plac-
ing their attention on engineering solutions where human cognitive and motoric functions are
ultimately replaced with assisting automation. These systems theoretically improve safety and
comfort; however, in practice, the human has difficulty in adopting, accepting and trusting the
assisting driving automation. This thesis aims to improve driver acceptance in haptic shared
control, a specific type of Advanced Driver Assistance System that provides lane-keeping as-
sistance during lateral control tasks. In this type of assistance, conflicts, which are correcting
torques that indicate opposing intentions, are often reported during curve driving, thereby de-
creasing the acceptance.

This acceptance can be improved by considering the presence of the human driver through
applying human-centred design principles, i.e., integrating the human’s preferences and limita-
tions into the design of HSC to better align the system with the human. With the support pro-
viding a continuous share of the control, which are felt through torques on the steering wheel,
the need for the controller’s reference trajectory to be compatible with the individual driver be-
comes even more relevant. In this thesis, we assume that this compatibility between driver and
automation is best achieved through the notion of personalisation, where, the controller’s ref-
erence trajectory would mimic the trajectory the individual would take when driving manually.
Therefore, the goal of this thesis is to:

Thesis goal

Develop model-based approaches to personalise trajectories for steering through
curves to enhance acceptance in haptic shared control systems.

1

Part I: Driver Model 
Assessment

Part II: Driver 
Trajectory

Classification

Part III: Driver 
Prepositioning 

Quantification and
Modelling

Part IV: Application 
with Haptic Shared 

Control

Driver Steering and Trajectory Modelling Application

1 2 ..N

Figure 9.1: This figure shows the four parts of the research carried out in this thesis.

To realise an improvement in acceptance through personalisation, the following four re-
search parts are considered, see Fig. 9.1:

I Driver Model Assessment This part aims to develop a selection technique to objectively deter-
mine what model(s) are most suitable to describe and identify individual drivers.

II Driver Trajectory Classification This part aims to develop a classifier that can categorise the
different types of observable driver trajectory styles in the driving population.

III Driver Prepositioning Quantification and Modelling This part aims to develop a control-
theoretic driver steering and trajectory model technique that can describe individual tra-
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jectories, which can only be achieved by incorporating prepositioning. This individu-
alised driver model can facilitate a high level of personalisation.

IV Haptic Shared Control Application This part applies and evaluates the developed person-
alised driver steering and trajectory model(s) in a haptic shared controller, that allows for
personalisation.

Driver steering and trajectory modelling are dealt within the first three parts, which, focus
on improving and developing methods for modelling of personalised steering and trajectories
using accurate control-theoretic modelling and rule-based trajectory classification. Part IV, Ap-
plication, deals with applying the outcomes of Part I-III into a final study to compare the impact
of personalised driving assistance on driver behaviour and acceptance. These two components
are shown in Fig. 9.1.

The following sections include an overview of the achievements in the research parts (Chap-
ters 2-8), summarising the key conclusions. In addition, the overall thesis conclusions, design
guidelines, developed tools and recommendations for further research are discussed.

9.1. OVERVIEW OF RESEARCH PARTS

9.1.1. PART I: DRIVER MODEL ASSESSMENT

CHAPTER 2: DRIVER MODEL ASSESSMENT METHOD

This chapter has introduced a novel assessment methodology for driver models that produce
steering profiles and trajectories. Three criteria are developed based on understanding the re-
quirements for identifying individual driver behaviour in an efficient and meaningful way. The
three developed criteria are descriptiveness, identifiability and realism. Descriptiveness quanti-
fies to what extent the model can capture different driver trajectories in a curve, where a larger
descriptiveness value is good. Identifiability evaluates the extent to which the mapping between
a given driver steering behaviour and a parameter set is unique. A smaller identifiability space
is means a more unique solution which is desirable. Finally, realism determines the parameter
space that results in realistic driver steering behaviour (i.e., remains within road boundaries and
limited steering wheel reversals), where, a large realistic parameter space implies a model with
many feasible solutions, which is desirable.

The effectiveness of this assessment method is demonstrated on two simple (i.e., compris-
ing only a single feedback loop) driver steering and trajectory models. One model uses linear
prediction (with information of current time only) for future lateral error estimation, whereas
the other model uses non-linear prediction (with explicit preview information). The assessment
methodology was able to discriminate between these two models’ performance for all three cri-
teria. The non-linear model outperforms the linear model in all three criteria, i.e., it shows: 1)
twice as large descriptiveness, 2) twice as good model identifiability for steering angle, and 3) a
50 times better ability for unique mapping between parameter set and modelled lateral trajec-
tory position.

Apart from these differences between driver models, the assessment method revealed an
essential result: fitting on steering angles will always give an accurate fit value, given that the
resulting trajectory remains within the boundaries of the road. As a result, for capturing all
individual differences in steering behaviour, fitting on steering angles alone is not sufficient.
Including trajectories in identification will make the distinction between individual drivers valid
since trajectories provide a refined way of discriminating successfully between drivers.

CHAPTER 3: ASSESSMENT OF THREE CONTROL-THEORETIC DRIVER MODELS

The main contribution of this chapter is an upgrade of the model assessment introduced in
Chapter 2, making it both standardised and trajectory-class dependent. In Chapter 2, three cri-
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teria were developed, whereas in Chapter 3 these are compacted to two criteria via standardi-
sation. Here, the calculated identifiability is standardised with a model’s realism space, intro-
ducing the metric ’Realistic Identifiability’. Moreover, a meticulous process chain is designed to
obtain these metrics in a data-driven way, i.e., dependent on each trajectory class (as defined
in Chapter 4). Hereby, descriptiveness is defined as the degree to which the model can capture
(reproduce) driver behaviour within a specific trajectory class. In the updated methodology,
the realistic identifiability is evaluated only for the driver classes that the model can adequately
capture.

The upgraded methodology is used to assess three different driver steering models: the Mars
model, the Van der El model and the Van Paassen Model. These models are different than those
assessed in Chapter 2 as they exhibit both feedback and feedforward components, compared
to the pure feedback models considered in Chapter 2. The descriptiveness results are the Mars
model (16%), Van der El model (17%) and the Van Paassen model (17%). These low descriptive-
ness values are caused by the models’ inability to describe driver behaviour before curve entry:
prepositioning. The corresponding weighted average fit values (i.e., each model has a fit per
class and each class has a different percentage of occurrence) are the Mars model (72%), the
Van der El model (64%) and the Van Paassen model (74%). The average realistic identifiability
in the trajectory domain are the Mars model (9%), the Van der El model (2.35%) and the Van
Paassen model (0.055%). The assessment results imply that the Van Paassen model exhibits the
best descriptiveness and also the best realistic identifiability. With high realistic identifiability
and low descriptiveness, Van Paassen however, is ’under-parametrised’. It is recommended to
extend the Van Paassen model to account for prepositioning as this is identified as the biggest
bottleneck for all considered models. Here an extension does not imply merely an addition of
parameters, but a structural extension of the model.

Part I: Key conclusions

• The developed driver model assessment methodology quantifies the ability of
any control-theoretic driver model to produce trajectories and steering angles
that can capture a wide range of individual driver behaviours (descriptiveness),
as well as be parsimonious to allow for identification (identifiability).

• According to the developed driver model assessment procedure, the Van Paassen
model, is most suitable for identifying individual driver steering and trajectory
behaviour.

• The main aspect that all tested models can not capture is the drivers’ anticipat-
ing and preparing for curve entry (prepositioning), which severely degrades the
descriptiveness of these models. A driver model extension is needed to account
for this.

9.1.2. PART II: DRIVER TRAJECTORY CLASSIFICATION

CHAPTER 4: DRIVER TRAJECTORY CLASSIFICATION

How differently do drivers take curves? Can individual trajectories be categorised, and used as
templates for personalisation? The lack of a mathematical algorithm to categorise such driver
trajectories in literature was the driving force in this research to develop novel rule-based tra-
jectory classifiers for curve driving. Two novel rule-based classifiers that categorise 7 and 11
different trajectory styles are introduced. The classifiers distinguish drivers based on two main
decision nodes: 1) where drivers start at curve onset, and 2) the number of crossings along the
lane centre during the curve. The two classifiers categorise different trajectory types, ranging
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from severe curve-cutting to severe counter curve-cutting. The classifiers are applied to a dataset
of 45 drivers negotiating three different curves in a fixed-base driving simulator, each with dif-
ferent curvature and fixed velocity.

The classification results show that for the experimental conditions studied normal curve
cutting and offset inner curve negotiation are the most prevalent classes for right curves, mak-
ing up for 86% of class occurrence for the 7-class classifier and 77% for the 11-class classifier, on
average. Offset outer curve negotiation and normal curve cutting are the most prevalent classes
for left curves, making up 69% of class occurrence for the 7-class classifier and 65% for the 11-
class classifier on average. The 11-class classifier was introduced to distinguish the drivers that
start at centreline, these make up 7% of left curves on average and 17% of right curves on aver-
age.

Ultimately, these classifiers formalise the types of driver trajectory behaviour in curves avail-
able in the driving population and give insight into types of driver trajectories that are important
to predict, based on prevalence.

Out of the two introduced classifiers, one does not outperform the other. Rather, the 7-class
classifier is intended to be used for empirical data classification, whereas the 11-class classi-
fier is necessary when classifying trajectories generated by conventional control-theoretic driver
models. Control-theoretic models all assume that drivers start at lane centre at curve entry, to
account for this, the 11 class classifier is introduced.

Part II: Key conclusions

• The developed algorithms for trajectory classification can be used as an alterna-
tive to control-theoretic driver modelling, and be directly applied in personalised
ADAS.

• Centerline trajectory is not a human-like trajectory, as the data from the driving
simulator study shows that no drivers fall into this class.

• When personalising ADAS, left and right curves should be treated independently,
as drivers drive different trajectories on the left and right curves because they
exhibit a non-zero straight section bias.

9.1.3. PART III: DRIVER PREPOSITIONING

CHAPTER 5: DRIVER PREPOSITIONING QUANTIFICATION

This chapter has dealt with the impact of curve radius and driving velocity on driver steering
and trajectory behaviour before curve entry, i.e., prepositioning. The findings of this chapter,
based on data from a dedicated driving simulator experiment, are 1) the maximum preposition-
ing displacement consistently increases with increasing (fixed) velocity and increases with in-
creasing road curvature, 2) prepositioning behaviour is evident for 88% of the driven curves and,
3) drivers adapt their prepositioning to the perceived centreline Time-to-Line-Crossing (TLC),
where the driver increases their TLC by following the optimal race-line, which, inherently ex-
hibits prepositioning. This means that many drivers preposition, however, they do not always
end up harvesting the full potential benefit of prepositioning.

Incorporating the findings of this chapter in future driver modelling (e.g., Chapter 6) will
bridge the gap between straight road and in-curve driving behaviour, thereby bolstering the
descriptive capacity of these models.
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CHAPTER 6: DRIVER PREPOSITIONING MODELLING AND INTEGRATION

This chapter has introduced a new prepositioning path generation model for drivers’ lateral
position changes before curve entry with parameters that have geometrical significance.

The prepositioning path model is used to augment the Van Paassen control-theoretic driver
model (the best model from the model assessment in Chapter 3) by adding a prepositioning
component in the form of a prepositioning reference trajectory and reference prepositioning
curvature prior to curve entry. The descriptiveness of the Van Paassen model with and without
the prepositioning augmentation is assessed. The Van Paassen model without prepositioning
can accurately describe 17% of drivers in right curves and 7% of drivers in left curves, less than
a fifth of the drivers considered. The Van Paassen model with prepositioning can sufficiently
describe 100% of drivers in both right and left curves.

Part III: Key conclusions

• Prepositioning displacement significantly increases with velocity and curvature.

• Prepositioning is a phenomenon that is triggered by the objective of the driver to
maximise the time-to-line-crossing.

• Incorporating prepositioning behaviour is vital to bridge the gap between
straight and in-curve driver steering and trajectory modelling.

• Combining the developed prepositioning path model with the Van Paassen
control-theoretic driver steering model results in a model that can accurately
predict all driver class trajectories that were experimentally measured as part of
this thesis.

9.1.4. PART IV: APPLICATION

CHAPTER 7: FOUR DESIGN CHOICE IMPLEMENTATION

The goal of this chapter is to implement and evaluate the Four-Design-Choice (FDC) haptic
shared controller, the first explicitly personalisable HSC in the literature. The implemented FDC
in this thesis is the (first) realisation of the ’Four-Design-Choice-Architecture’ [177] for haptic
shared control.

One of the four design choices is critical for personalisation: the Human-Compatible Ref-
erence (HCR), i.e., the independent controller reference comprising of trajectory, heading and
steering angles. In this chapter, two variations of the HCR are evaluated with the FDC: 1) a One-
Size-Fits-All (OSFA) and, 2) a personalised HCR. These HCRs are generated by the Mars driver
model [116] using coefficients identified by fitting the model to observed trajectories. Note that
due to the limitations of the Mars model (found in Chapter 3), the prepositioning phase could
not be modelled. Hereby, prepositioning is not taken into account in the HSC implementations
of this chapter. The two HSC implementations are compared to a conventional (quickened)
pure feedback haptic shared controller (from the Delft Haptics Lab), where reference trajectory
and strength of haptic assistance are inseparable, i.e., the Meshed (M) HSC [31].

Results show that the personalised haptic shared controller resulted in significantly higher
subjective ratings of usefulness and satisfaction than the M-HSC, with average improvements of
1.3 and 0.8 (on a -2 to 2 scale), respectively. For all metrics, there is no significant improvement
between OSFA and personalised reference trajectory in the FDC. In general, the FDC-HSC (both
OSFA and personalised) significantly reduces the occurrence of conflicts by an average factor
of 2.3 and significantly reduces driver torque by an average factor of factor 3.2 compared to the
M-HSC. Detailed analysis of steering wheel torque data shows that this can be attributed to two
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inherent design elements in the FDC-HSC. Compared to the M-HSC (which is a pure feedback
HSC), the FDC-HSC has an independent feedforward contribution and an HCR that supports
(future) curve entry intentions. This highlights the improved effectiveness of the Four-Design-
Choice-Architecture and its (larger) potential for acceptance with different design choice set-
tings and a fully personalised HCR.

CHAPTER 8: EVALUATION OF PERSONALISED HAPTIC SHARED CONTROL

This chapter investigated different personalisation approaches to improve acceptance of hap-
tic shared control. The different approaches are realised through considering different levels of
personalisation (which include prepositioning) and different levels of haptic support. The in-
vestigation is based on empirical data from two driver groups with distinct driving styles: the
most commonly observed driver type referred to as offset drivers, as well as curve cutters. These
drivers are presented with a FDC-HSC that is driven by four different Human-Compatible- Ref-
erences (HCR) and two different feedforward gains (KLoHS ). The four tested HCRs are: 1) a fully
personalised reference, 2) a class-average personalised reference, 3) a centerline reference and,
4) the other driver group’s class-average reference. The fully personalised references are gener-
ated by averaging recorded driver data, the class-average references are generated by classifi-
cation data, the centreline reference is generated using the non-linear driver model in Chapter
2. These HCRs were applied with two FDC HSC feedforward gains: KLoHS = 0.5 and KLoHS =
0.92. The acceptance is evaluated by both subjective questionnaires and objective measures of
conflict time, conflict torque, feedback torque and driver torque.

Full personalisation successfully improves the alignment of torques between driver and
controller which is reflected by 1) significantly the lowest conflict times, at mean conflict times
below 10% and, 2) significantly the lowest conflict torques, at mean conflict torque below 0.2Nm
in both the prepositioning and in-curve phases, for both driver groups. Hereby, a class-average
HCR does not leverage the same objective results as fully personalised. Nevertheless, drivers
do not perceive this torque alignment as an added benefit. Subjectively, there is no significant
change in acceptance, satisfaction or usefulness when the HCR changes from fully personalised
to class-average to centerline, for both tested driver groups. This is attributable to two reasons:
1) the centreline being a predictable trajectory and, 2) the feedforward guiding torque gives the
driver the allowance to deviate from the reference without penalty.

The level of haptic shared control gain KLoHS plays a crucial role in driver acceptance, with
acceptance ratings significantly improving by 1 score (on a scale of 1-10), usefulness signifi-
cantly improving by a factor 1.9, in-curve driver torque significantly decreasing by 0.64 Nm and
prepositioning conflict time significantly decreasing by 17%.

Part IV: Key conclusions

• Compared to a conventional HSC (Chapter 7), the FDC HSC significantly reduces
conflict torque and driver torque, which is attributable to the feedforward guid-
ance torque.

• Torque alignment between driver and controller is substantially improved with
a fully personalised HCR in the FDC HSC.

• Drivers do not perceive any subjective difference between full personalisation,
class-average personalisation and centerline guidance.

• A higher level of haptic support (stronger feedforward guidance) significantly re-
duces conflict time and improves subjective acceptance measures.
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9.2. OVERALL CONCLUSIONS
This thesis provides novel tools and solutions to personalise haptic shared control in curves,
as a means to increase user acceptance. Overall, eight main conclusions can be drawn from
the different research parts of this thesis that can be of importance to relevant researchers and
industry.

DRIVER MODEL ASSESSMENT IS NEEDED TO DETERMINE WHETHER A DRIVER

MODEL IS SUITABLE FOR FULL PERSONALISATION

To determine whether a driver steering and trajectory model is suitable for full personalisation,
detailed model assessment is indispensable, as shown in Chapters 2 & 3. The attempt to in-
dividualise with a driver model incapable of successfully capturing individual driver steering
and trajectory behaviour is shown to have no significant additional benefits in conflict reduc-
tion (Chapter 7). In fact, the model assessment procedure has demonstrated that all control-
theoretic models in literature are not sufficient to provide full personalisation, with the maxi-
mum amount of driver classes they can reproduce amounting to 17% (Chapter 3). Moreover,
the assessment analysis offers the opportunity for a trade-off between the accuracy of capturing
the spectrum of drivers found in the driving population and, the identifiability of these models
per driver class.

IDENTIFYING INDIVIDUAL DRIVERS REALISTICALLY CAN ONLY BE DONE

BY CONSIDERING both STEERING ANGLES AND TRAJECTORIES

When validating a model for capturing individual driver steering behaviour, this validation should
never only be performed using the model’s capacity for matching steering angle data. In fact,
it is also possible to simply penalise oscillatory steering and solely focus on trajectory fit, as is
done in Chapter 3. Unfortunately, many driver identification works in literature make this mis-
take. From Chapter 2, it is evident that the identifiability space of all models in the steering
angle domain is at least 15 times larger than that for the trajectory. Whereas in Chapter 3, it is
formalised that having a VAF of 90% or higher in the steering angle domain implies two things:
1) 0 lane boundary crossings and 2) do not exhibit more than six steering reversals. These find-
ings are found for identification in the curve phase. Hence, having a proper steering angle fit
only means that the resulting trajectory is within the curve boundaries without excessive os-
cillations. Fitting on trajectories is found to provide a more accurate prediction of trajectory
behaviour. Nevertheless, the steering behaviour should still be taken into account in the iden-
tification procedure, as fitting on only trajectory can result in steering oscillations as seen in
Chapter 2.

THE VAN PAASSEN CONTROL-THEORETIC DRIVER STEERING MODEL HAS

THE BEST DESCRIPTIVENESS AND REALISTIC IDENTIFIABILITY IN LITER-
ATURE

The Van Paassen model has the best descriptiveness and realistic identifiability out of the mod-
els tested in Chapter 3. Three elements discern this model from others in terms of structural
components: 1) an independent feedforward loop providing the needed steering to get through
the curve, 2) an anticipatory feedback reference that is a curve cutting distance, facilitating (fine-
tuned) trajectory tracking on trajectories other than road centreline and 3) explicit preview on
road curvature.
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DRIVER PREPOSITIONING IS A FUNDAMENTAL CHARACTERISTIC OF DRIVER

STEERING THAT SHOULD BE INCLUDED IN DRIVER STEERING AND TRA-
JECTORY BEHAVIOUR MODELS

Although most parametric driver behaviour models do not account for any prepositioning be-
fore curve entry, in this thesis, it is found that prepositioning forms an essential part of curve
driving. Prepositioning behaviour is found to occur for 88% of the driving simulator data of
Chapter 5. Moreover, the extent of prepositioning is directly linked to what style of curve nego-
tiation you may take, shown in Chapter 4. It is in the prepositioning phase where drivers obtain
their ’first impression’ of a haptic shared controller, where they may be inclined to accept or re-
ject the guidance in the curve (Chapter 7). The importance of modelling prepositioning is high-
lighted in Chapter 3, where the omission of this phenomenon in the respective control-theoretic
models tested resulted in that they can only replicate 17% of the driving population sufficiently.
Therefore, prepositioning is very important for individualised driver modelling and, when per-
sonalisation is aimed for in driver assistance.

THE BEST MODEL FOR FULL PERSONALISATION IS THE COMBINATION OF

THE PREPOSITIONING PATH MODEL AND THE VAN PAASSEN CONTROL-
THEORETIC DRIVER MODEL.

When the trajectory that a model produces after it has been identified on a trajectory (of a repre-
sentative driver) in a particular class, falls within the same class and has a VAF greater than 80%
(VAF is a validation metric where 100% means the model is able to describe 100% of the data),
then the model is capable of describing that class sufficiently. The model is also assumed to be
able to describe all the drivers in that particular class.

Without prepositioning, the Van Paassen model can only describe 17% of drivers (Chapter
3). After adding a prepositioning path model extension to the Van Paassen model (Chapter 6)
100% of the drivers are sufficiently described.

DRIVER STEERING AND TRAJECTORY BEHAVIOUR IS ASYMMETRIC FOR RIGHT

AND LEFT CURVES.

Contrary to the symmetric output of current state-of-art control-theoretic driver steering mod-
els, driver trajectory class outcomes are found to be highly asymmetric between right and left
curves in all data collected in this thesis. This implies inherently different behaviour on the
right and left curves. Evident from Chapter 4, where the most popular class outcome for the
right curves is class 3 (inner curve negotiation), while for left curves, it is class 5 (outer curve ne-
gotiation). Moreover, class consistency (drivers exhibiting the same trajectory class in different
types of curves) levels are different, with 18% of drivers being more consistent for right than left
curves. In Chapter 5 the prepositioning displacement for left curves is significantly larger than
for right curves for all conditions tested. Even the occurrence of conflict for the symmetric hap-
tic shared controller (Meshed controller) from Chapter 7 is asymmetric between left and right
curves. These differences could stem from the driver already exhibiting a straight section bias,
which inherently makes his response to equivalent curves in different directions asymmetric.
This intriguing result indicates that driver behaviour modelling, and support, for left and right
curves should always be treated independently.



9

196 9. CONCLUSIONS AND RECOMMENDATIONS

DESPITE FULL PERSONALISATION ACHIEVING TORQUE ALIGNMENT, IT DOES

NOT IMPROVE SUBJECTIVE ACCEPTANCE WITH THE FDC HSC.
Personalisation is about the automation understanding the driver’s preferences and limitations
and adapting to them. In this thesis personalisation is realised through adapting an indepen-
dent controller reference to the behaviour of the individual driver, i.e., this means that the con-
troller ends up ’mimicking’ the driver. There are two levels of personalisation considered in
Chapter 8, that of adapting to class-average (of the 7-class classifier outlined in Chapter 4) and
that of full personalisation. Full personalisation is objectively found to minimise torque con-
flicts, where, torque alignment between controller and driver is significantly improved. How-
ever, this torque alignment is not perceived as an added benefit by drivers, as in terms of sub-
jective preference there is no significant difference between full personalisation, class-average
personalisation and even centreline guidance. Accommodating to the individual’s preferences
and limitations is the fundamental principle of personalisation, however, realising this accom-
modation by mimicking the individual driver’s behaviour (as is done with personalisation in this
thesis) does not lead to significant improvement. The drivers’ preferences are not limited to the
controller mimicking their behaviour; therefore, centreline guidance (for the two tested driver
groups only) can also be considered personalised.

AS LONG AS THE GUIDANCE TRAJECTORY IS PREDICTABLE TO THE HUMAN

AND THE CONTROLLER IS NOT CORRECTING, DRIVERS WILL ACCEPT THE

HSC AS A USEFUL AND SATISFACTORY SYSTEM.
From Chapter 8, we find that centreline is a predictable trajectory and is equally acceptable to
full personalisation, if you ask participants. Analysis shows that this indifference to centreline,
although it is not a human-like way to drive (Chapter 4), could stem from the centreline being
a predictable trajectory and, could also stem from the guidance provided by the feedforward
torque. Being predictable is important for acceptance and is one of the human-centred design
guidelines ’the automation must be predictable by the human.’ [27]. Whereas, when deviating
from the feedforward guidance, unlike the correcting feedback guidance, the driver is not pe-
nalised. Hereby the feedforward torque provides a certain ’allowance’ to deviate from the refer-
ence trajectory. Nevertheless, this does not mean that drivers accept any kind of trajectory in the
presence of feedforward guidance, because offset drivers particularly give low ratings to a curve-
cutting trajectory (Chapter 8). Therefore it seems that for drivers to accept a HSC guidance, the
reference trajectory must be predictable and the controller should not (only) be correcting.

9.3. PROPOSED DESIGN GUIDELINES
The results of Part IV (Application) of this thesis has lead to three design guidelines that can be
used for future implementation of haptic shared control and other driving automation. It should
be stressed, that the proposed design guidelines are all based on the findings from this thesis and
thus specific experiments, i.e., with fixed-speed driving, performed in a fixed-based simulator
(no accelerations felt), exploring a single curve type and, negotiating curves on a single lane
road. Moreover, curve negotiation may be different in the presence of road-side furniture and
oncoming traffic.

FULL PERSONALISATION (ACCURATELY MIMICKING DRIVER BEHAVIOUR)
IS NECESSARY ONLY FOR TORQUE ALIGNMENT
In Chapter 8, full personalisation was achieved with a controller that is proven to track its refer-
ence (HCR) accurately. The results in that chapter have shown that full personalisation has re-
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sulted in the lowest conflict time and conflict torques. Therefore, for applications where torque
alignment is explicitly necessary, full personalisation is required. Such systems are, for example,
the FDC with a low setting of feedforward, or a pure haptic feedback system. Here the feedfor-
ward allowance is low or absent, which enhances the need for torque alignment.

Other examples of systems that may need full personalisation is a lane departure warning
system. To avoid false alarms, the corrective prediction to depart the lane needs to be fully per-
sonalised. One does not want to be penalised for normal and sufficiently safe behaviour. On the
other hand, the (continuous) guidance systems along the curve, like lane-keeping assistance,
may only need to fall within the driver’s preferences, which, may not be limited to mimicking
the driver.

A CENTRELINE REFERENCE TRAJECTORY WITH THE FDC HSC IS AN EFFI-
CIENT HCR IMPLEMENTATION THAT RESULTS IN HIGH ACCEPTANCE
Chapter 8 found that there was no significant effect (p<0.05) nor trend (p<0.2) between full per-
sonalisation, class average personalisation and centreline guidance, for any of the subjective
ratings. This means that for the tested conditions, drivers do not perceive any difference with
centerline guidance compared to personalised, or just do not mind. This does not mean that
drivers are indifferent to the controller’s reference in general, when an offset driver is given a
curve-cutting reference, a clear conflict is present and subjective low ratings are given. There-
fore, for an efficient implementation of the FDC, which is equally acceptable as a fully person-
alised FDC, it is recommended to use the centreline reference.

Nevertheless, this guideline is to be taken with caution, because the finding is valid for the
specific road examined in Chapter 8, with the particular driver groups (curve cutters and off-
set drivers amounting to 52% of the driving population together). We find in Chapter 4 that a
driver’s trajectory style changes when the curve length and road conditions change. Specifically,
more drivers curve-cut when the curve length is shorter. Therefore, it is also likely that a driver’s
preferences may also change when the road type changes. For example, with a very demanding
curve, the centreline may not be preferred any more. Therefore, an explicit experiment would
be needed to test how a driver’s preferences may change with road type.

A HIGH FEEDFORWARD GAIN IN THE FDC HSC BENEFITS ACCEPTANCE
The feedforward gain (level of haptic support) in the FDC HSC is found to play a key role in
driver acceptance. One of the most significant differences between the conventional Meshed
shared controller and the implemented FDC controller is the use of an independent feedforward
torque (see Chapter 7). Analysis (in Chapter 7 & 8) has shown that this type of torque is perceived
fundamentally different from feedback torque, resulting in less user conflict.

Adding feedforward torque reduces the penalising nature of a haptic shared controller, in-
creasing acceptance (Chapter 7). In Chapter 8 two different feedforward gains are tested: 1) 0.92
and 2) 0.5. Meaning that, whilst negotiating a curve 92% (0.92) or 50% (0.5) of the total torque is
the share provided by the haptic shared controller. The results show that a feedforward gain of
0.92 results in significantly improved subjective acceptance, usefulness and satisfaction. These
improved subjective ratings can be explained through the significant reduction of conflict oc-
currence, conflict torque and driver torque when applying more feedforward torque.

Furthermore, the haptic shared controller is synonymous to a coach. Where the feedback
torques are penalising in nature, like a coach who corrects you, feedforward is guiding in nature,
like a coach who can show you how it should be done. Moreover, there is a difference in timing
between the two torques, one corrects you after you make a mistake, whereas the other offers
anticipatory guidance. The feedforward torque allows the driver to deviate from the controller’s
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reference without penalty. Hereby, this torque is a double-edged sword, i.e., the favourable re-
sult is that the allowance it provides increases acceptance, the unfavourable consequence is
that the added benefit of personalisation (by mimicking the driver) is diminished. Nevetheless,
this can also be seen as a win-win situation for the higher level goal of acceptance, with a high
feedforward gain, higher acceptance is achieved with an easy design. Nevertheless, as a design
guideline, a high feedforward gain is advised.

9.4. POSSIBLE APPLICATIONS OF DEVELOPED TOOLS

MODEL ASSESSMENT METHODOLOGY
The model assessment methodology is a tool developed in Part I of this thesis. The standardised
assessment methodology from Chapter 3 comprises two metrics: Descriptiveness and Realis-
tic Identifiability. These two metrics have been developed to assess whether a control-theoretic
model is suitable for identifying individual behaviour with meaningful parameters. This assess-
ment methodology can be used for other types of models as well. The realistic identifiability,
which determines whether the model is capable identifying driver behaviour with meaningful
parameters, can also be used with any other modelling framework that exhibits static parame-
ters, such as analytical models [25] [157]. The descriptiveness, which determines the capacity of
a model to describe individual driver behaviour, has a much broader application field. Descrip-
tiveness can be used to assess the descriptive capacity of any model, be it one based on neural
networks [11], deep learning [39] or model predictive control [85].

TRAJECTORY CLASSIFIER
The trajectory classifier is a tool developed in Part II of this thesis. There are two classifiers
developed. The first one categorises empirical driver the behaviour, whereas the second one
is an extension of the first, to account for trajectories that start exactly at centreline. This is
done for categorising the trajectories produced by conventional control-theoretic models whose
trajectories always start at the centerline.

The empirical classifier (7-class classifier) was used in Chapter 8 to generate the class-average
HCRs which were necessary to produce class-average personalisation. This type of trajectory-
style personalisation using the classifier developed in this thesis is not limited to haptic shared
control. In fact, it can be applied to other lane-keeping assistance and lane-departure warning
systems. Moreover, it can also be used for autonomous driving. These seven different trajec-
tory categories, or guidance styles, can simply be selected through a knob-like interface, which
would then provide explicit personalisation.

INDIVIDUALISED CONTROL-THEORETIC MODEL
The individualised control-theoretic driver model is a developed tool (from Part III) of this the-
sis. This model is the integration of the newly developed prepositioning path model (from Chap-
ter 6) with the Van Paassen driver model (assessed in Chapter 3). The integration of the prepo-
sitioning path model with the Van Paassen model is given in Chapter 6. This novel augmented
Van Paassen model has a descriptiveness of 100%, which is the highest achievable descriptive
grade. Moreover, the Van Paassen model exhibits the best realistic identifiability (from Chapter
3), achieving values lower than 1%, which means that 1% of the realistic parameter space can
describe a specified driving behaviour, uniquely. Hereby, this combined model can be used to
identify individual drivers in ADAS applications. Not only that, due to the good realistic identifi-
ability, the model can be used to identify driver behaviour in real-time when using an unscented
Kalman filter [25] [141]. The identified parameters can infer information about an individual’s
attentiveness, or fluctuations in steering behaviour, or even a change in trajectory strategy.
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PERSONALISABLE FDC HAPTIC SHARED CONTROLLER

The personalisable FDC haptic shared controller is a tool developed in Part IV of this thesis.
This tool is capable of following a (personalised) reference trajectory with an accuracy above
80% VAF (Chapter 8). This personalised trajectory tracking does not necessarily need to be used
with haptics; it can also be used with input-mixing haptic shared controllers [99], i.e., systems
with mechanically uncoupled steering systems [112].

Outside the field of shared control, this (personalisable) reference tracking can easily be im-
plemented for full automation by setting the feedforward gain to a value of 1 and increasing the
level of haptic authority, such that inputs from the driver do not contribute to steering. Natu-
rally, this tracking algorithm can also be used to establish accurate lane-departure warnings and
lane-keeping assistance.

9.5. RECOMMENDATIONS
The research carried out in this thesis brings forward eleven recommendations for further re-
search.

RECOMMENDATION 1: PERSONALISATION AS AN ADAPTATION TO DRIVER

PREFERENCE, RATHER THAN TORQUE ALIGNMENT

An essential part of personalisation, is understanding the preferences and limitations of indi-
vidual drivers and adapting to these. In this thesis, personalisation was realised as the controller
mimicking the individual trajectory, i.e., personalisation is achieved through driver controller
torque alignment. However, providing personalised guidance is, in fact, broader than this. We
find from Chapter 8 that a driver’s preference is not limited to his/her own fully personalised,
nor his/her class-average personalised reference. The centreline guidance results in equal ac-
ceptance, even though it is not found to be a ’human-like’ way to drive (Chapter 4). Nevertheless,
different driver types are found to have different preferences. A curve cutter is accepting of off-
set driver guidance, whereas an offset driver does not accept curve-cutting guidance. Therefore,
rather than fully personalising reference trajectories, there may be other factors that affect the
preference of individual drivers. For example, Chapter 8 shows that providing more feedforward
torque results in a significant improvement in acceptance. It is expected that this is mostly due
to the strong feed forward in the FDC controller. This may not hold for corrective HSCs.

Thus, to better understand where, when and how to personalise, it is recommended to in-
vestigate other factors such as feedforward gain, feedback gain which may affect acceptance.
Moreover, it is also recommended to explore different driver types (other than curve-cutters
and offset drivers), to investigate their differing preferences and how these should be accounted
for in HSC design.

RECOMMENDATION 2: PERSONALISATION OF ADAS WITH REAL-TIME ADAP-
TATION USING DRIVER CLASSIFICATION

From Chapter 8, we find that information about an individual driver class is essential when pre-
dicting whether a driver may subjectively accept or reject certain guidance, i.e., offset drivers
particularly give low acceptance ratings for curve-cutting guidance. However, from driver tra-
jectory classification across different curves (Chapter 4), we find that drivers drive differently
when the road environment changes. Only 63% is consistent in their class throughout all three
tested right curves, and 44% is consistent in style across left curves. In real-time inertial classifi-
cation studies, a single driver can exhibit multiple styles within a single curve [76] [24], whereas,
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for the trajectory classification introduced in this thesis, a single driver may exhibit different
trajectory styles across different curves.

In fact, some (a minority of) researchers believe that personalisation is only achieved af-
ter a cyclic process of ’Understand-Deliver-Measure’ [9]. Translated to the driving domain this
would mean 1) understanding the driver (through modelling/classification), 2) delivering the
personalised guidance to the driver and 3) measuring the impact and adjusting where needed.
Although an iterative approach to personalisation is not done for haptic shared steering con-
trol in the automotive domain, an iterative approach or ’cyclic personalisation’ [72] has been at-
tempted for haptic telemanipulation with significant conflict reduction compared to only (stat-
ically) personalised [43]. Therefore, rather than classifying or identifying a driver for a single
curve, it is recommended to take a real-time approach to take into account the changes that the
time-variant, road variant human may undertake.

An experiment to test this should consist of 2 phases, similar to Chapter 8, with the same
road and fixed velocity profile. In the first phase, the driver’s manual style is recorded and clas-
sified. During the second phase, the driver has to drive two conditions, one with a static driver
reference and another with the real-time updated driver class reference, where a subsequent
curve could be driven based on the classification of the previous curve (of the same curve type),
this is done to improve mismatch until convergence. Hereby the classification results of the first
phase are used to define the static reference trajectory and used as the initial class guidance
for the first curve. Alternatively, using reinforcement learning, a trajectory can be iteratively
learned by minimising conflict occurrence online (using a conflict measure that is consistent
with subjective perception). Such an experiment tests the benefit of iteratively adapting to a
driver’s trajectory. Whereas for a practical HSC implementation machine learning techniques
will be essential in mapping the preferred guidance with the changing road environment.

RECOMMENDATION 3: EXPLICIT PERSONALISATION OF ADAS

Since not all drivers are consistent with their style along the same curve, a real-time personali-
sation algorithm may cause the driver to mistrust the system. Once the driver has built a mental
model of the working principle of the system, his mental model may be continuously falsified,
due to the variable nature of a real-time HSC algorithm. Such variable behaviour is naturally ex-
pected from humans, but it is not desirable from machines. Such a real-time update may make
the guidance less tangible, graspable and understandable (transparent) to the human, which is
a key point in Billings human-centred design guideline ’the automation must be predictable by
the human.’ [27]. Current studies support the need for the human to understand how the guid-
ance operates [23], e.g., ’the automation is only as good as the user’s capability to understand it’
[60].

Since drivers equally accept full personalisation as class average and centreline (Chapter
8). The driver can also choose the guidance trajectories himself through ’explicit’ personalisa-
tion. Here, with a fixed series of trajectory types that the driver can select himself, the driver
may quickly develop a mental model of the system that they can trust. Moreover, although this
method needs a ’pre-driven’ database, it is less computationally burdensome compared to real-
time driver model identification. To examine the added benefit of explicit personalisation to
implicit personalisation, it is recommended to perform a two-phase experiment as performed
in Chapter 7 wherein the second phase drivers are guided both implicitly and can choose their
personalised guidance explicitly.
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RECOMMENDATION 4: FINDING THE OPTIMAL LEVEL OF HAPTIC SUP-
PORT
In Chapter 8, it is found that a 92% torque fraction is significantly better than 50% for driver
acceptance. However, it is recommended to investigate precisely which torque fraction results
in the most optimal acceptance.

An experiment is suggested where six different levels of haptic support are considered. The
HCR used can be centreline, given its easy implementation and high acceptance ratings. The
feedforward gains must include a gain of 0 (a pure haptic feedback system) and 1 (autonomous
driving with shared control). These feedforward gains, however, should be carefully tuned with
the strength of haptic feedback. Further reducing the feedforward gain with the current feed-
back gain strength may bring the system into instability when introducing an impulse response.
Therefore, investigating the desired space of ’realistic’ gains is also recommended, i.e., stability
analysis of the FDC HSC as a function of the feedforward and feedback gains. Moreover, there
may be an interaction between level of personalisation and level of haptic support; the weaker
the haptic support and the stronger the haptic feedback, the higher the required level of person-
alisation.

RECOMMENDATION 5: EXPLORE A METRIC THAT CAN PREDICT SUBJEC-
TIVE ACCEPTANCE
Currently, there is a mismatch between perceived subjective acceptance and objective torque
conflict computation, as for instance shown in Chapter 8. Here, the total haptic shared con-
trol torque, which is the summation of feedback and feedforward torques, was used in conflict
computation. However, a conflict with feedforward torques is not perceived by the driver as
penalising. With this feedforward, drivers could be comfortably ’leaning’ on the shared con-
troller, which is recorded as a torque conflict. Conversely, a driver that is clearly ’fighting’ a
given guidance may receive the same magnitude of torque conflict. Nevertheless, the defin-
ing line between ’leaning’ and ’struggling’ may be related to conflict frequency, a dimension not
considered in this thesis. It is therefore recommended to further investigate a metric that can
accurately predict a driver’s subjective ratings. This way, we can truly understand what con-
tributes to acceptance and deduce an objectively measurable metric that can predict whether a
specific guidance will be accepted or not, without having to resort to time-consuming subjective
questionnaires.

RECOMMENDATION 6: THE EFFECT OF PREPOSITIONING PHASE ON IN-
CURVE ACCEPTANCE
In Chapter 7 it was found that with the FDC HSC, left curves result in less occurrence of conflict
than right curves. This is unexpected because the HCR fit (using the Mars model) to right curves
was substantially better compared to left curves, with an increase of 27% in VAF on average. The
result was explained by the left HCR pulling the driver towards the inner part of the curve at the
curve entry phase, thereby abiding the driver’s intentions.

These driver ’intentions’ are motivated by a general trend (common denominator) found
across the majority of drivers. From Chapter 4 and Chapter 6 we find that, with exception to
severe counter curve-cutting (1.5% of the total curves driven), after curve entry, drivers travel
towards the inner part of the curve, even if they don’t make it to the inner part of the curve. To
facilitate such travel towards the inner part of the curve, the controller reference (HCR) in the
prepositioning phase is essential. In Chapter 7 the controller reference for left curves starts at
the centerline, moreover, the majority of drivers preposition towards the outer part of the curve
for left curves (Chapter 6). Hereby the HCR that starts at centerline for left curves, pulls the
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driver towards the inner part of the curve, which is in line with what is comfortable to drivers,
thereby decreasing the experienced conflict.

However, this developed interpretation/theory from Chapter 7 is not confirmed in Chapter
8. In Chapter 8 the highest in-curve conflict for both driver groups stems from the class average
inner curve negotiation reference in right curves, which is unexpected. This ’class-average’ HCR,
(which is actually the class average of drivers from Chapter 4), prepositions more to the inner
part of the curve than all but one participant. Already prepositioning so far into the inner part of
the curve would also facilitate ’travel’ towards the inner part of the curve. Nevertheless, careful
analysis shows that this increase in conflict results from conflict with the feedforward torque
(Chapter 8).

Therefore, it is recommended to explicitly investigate the effect of the prepositioning phase
on the acceptance and, whether designing the prepositioning phase of the HCR to facilitate
’travel’ towards the inner part of the curve is essential to diminish in-curve conflict. I propose
a between-subject study, with curve cutters and offset drivers, that tests 5 different trajecto-
ries with the FDC HSC. These trajectories preposition, and once in the curve, tend towards the
centreline. Therefore, these trajectories are to be generated by the driver model developed in
Chapter 6. All prepositioning path trajectories should have a standard prepositioning time of 7
s (average prepositioning time found in Chapter 5) and a 0 m bias. The first trajectory exhibits
outer prepositioning to 0.8 m, the second trajectory: outer prepositioning to 0.4 m, third trajec-
tory: 0 m prepositioning, fourth trajectory: inner prepositioning to 0.4 m, and fifth trajectory:
inner prepositioning to 0.8 m.

RECOMMENDATION 7: TRAJECTORY PREFERENCES IN AD
If we consider full automation or autonomous driving (AD), the driver is a ’passive’ controller.
The closest form to this type of control with HSC is with a feedforward gain of 1. Therefore, the
subjectively perceived acceptance with FF of 0.92 could generalise to AD. What is fundamen-
tally different with AD is that the driver is out of the loop and is passive. Conflicts will not be
perceived through opposing torques, but through comfort level, i.e., in AD, conflict may mani-
fest as an uncomfortable vestibular cue. With passive driving, driving-styles that are safer and
even less aggressive to a driver’s style are more preferred [22] [193]. This is expected because as
a passive driver, you do not experience sensory cancellation [132], nor can you prepare for the
steering inputs given (expectation management). A similar outcome is not found from the fixed-
based, fixed speed results in Chapter 8 however, where fully personalised guidance results in the
highest levels of acceptance. Nevertheless, ’driver style’ in AD is mostly quantified in terms of
felt accelerations and jerk in a manoeuvre [22] [193]. Within the context and limitations of this
thesis, less aggressive, i.e., less lateral acceleration in the curve, can be achieved by preposition-
ing more or slowing down (as found in Chapter 5). Therefore, it is recommended to investigate
trajectory preferences in AD in either a moving-base driving simulator or a real test track.

RECOMMENDATION 8: INVESTIGATE THE DRIVERS’ INDIVIDUAL OBJEC-
TIVES.
If we want to understand the driver properly, as is the sixth guideline of Billings ’the automation
must monitor and understand the human’ [27], we need to know how drivers drive in many
contexts. The developed classes and control-theoretic modelling techniques are descriptive of
behaviour in a particular context. However, these are not generalisable to other contexts. For
example, in Chapter 4, we find that more drivers take a severe curve cutting trajectory style when
negotiating a curve that is more demanding (larger curvature). In Chapter 5, we find that drivers
preposition more in curves with larger curvature and at larger speeds, as an attempt to improve
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their TLCs. However, the developed individualised control theoretic model does not predict this.
We don’t understand why a particular driver drives in a certain way. Driver models that describe
and successfully predict general trends found in driving based on the optimisation of specific
costs and driver perceived risks to the environment are available in literature [87]. However, this
prediction is not accurate at a personalised level where maybe these costs are even changing
with time or, there is some non-linear contextual effects. It is recommended to further develop
such models which can predict behaviour in multiple scenarios [87][86], to account for personal
differences. Once this is understood, we can generalise a particular driver to different scenarios.
Therefore, it is recommended to investigate the objectives of individual drivers and whether
these may generalise to other contexts.

RECOMMENDATION 9: MOVING TO FREE-SPEED
Throughout this thesis, a fixed-speed assumption is made for analysing curve-driving. Although
this may apply to a particular type of driving, i.e., with cruise control on, this assumption is gen-
erally unrealistic. The premise is made due to simplification purposes. To be able to model and
understand human driver behaviour, fixed-speed scenarios are necessary to avoid the interfer-
ences that will arise when executing free speed. From the results of this thesis, we already do see
that velocity has an impact. In fact, the class outcomes change with changing velocity (Chapter
4) and prepositioning is found to scale with velocity (Chapter 5).

Adding another axis of control can cause issues such as task interference, which may clut-
ter the understanding and modelling of steering behaviour alone [20]. Now that a sufficient
method of modelling driver steering behaviour is established, it is recommended to analyse the
behaviour of longitudinal driver behaviour through driver identification (using the developed
model in Chapter 6) in combination with the interference it may cause with steering behaviour.
This can be carried out in a step-like approach by first investigating different fixed speeds. Then
investigating speed-scheduled scenarios whilst scheduling the velocity in the bicycle dynam-
ics model as a linear parameter varying model. Finally investigating free speed without any
scheduling.

RECOMMENDATION 10: INVESTIGATE AGE GROUP RELATED BEHAVIOUR,
MODELLING AND SUPPORT
Although there is evidence from literature that age affects driving style [127], this thesis has not
explicitly analysed or tested different age groups for different outcomes of trajectory styles. It
is generally found that older drivers exhibit the safest driving strategies [50], maintaining con-
siderably larger car-following distances [164], but also needing longer decision times [126]. In
Chapter 5 it is found that when comparing a small group of mature drivers (having a drivers
license for 40 years) and novice drivers, the mature drivers preposition significantly more, with
on average 0.47 m larger prepositioning displacements. Mature drivers may gravitate towards
a single (defensive) style, which is essential information that can easily be used for adaptation
and personalisation of HSC to increase acceptance for drivers of all ages.

RECOMMENDATION 11: REAL-WORLD DRIVING
Data from a fixed-base simulator can result in an inaccurate representation of how human
drivers drive, especially when negotiating curves of different velocity and radii. Apart from visual
and proprioceptive (haptic) feedback, humans also respond to vestibular cues [187]. Not being
able to sense the vestibular and vibratory feedback, may cause drivers to drive more ’aggres-
sively,’ i.e., using trajectories that exhibit inherently larger lateral accelerations and higher jerk
levels. Whereas when drivers are able to sense this acceleration, they may want to diminish it by



9

204 9. CONCLUSIONS AND RECOMMENDATIONS

driving a different trajectory. In the real-world, would drivers preposition more with the percep-
tion of lateral acceleration? Would the class division outcomes change? Would drivers still be
asymmetric with respect to their trajectory in right and left curves? These are all essential open
questions that need to be addressed for successfully personalised HSC implementations in real
cars or in a high performance moving base driving simulator.
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A
CHAPTER 2 APPENDIX

A.1. VEHICLE DYNAMICS
The vehicle dynamics used in Chapter 2 is a linear approximation of the vehicle dynamics in
the the simulator of [31], which is a modified bicycle model with non-linear tire dynamics. The
linearly identified discrete state-space vehicle dynamics used in Chapter 2 is given in Eqs. A.1
and A.2. This is the elaboration of the VehicleDyn() function in Algorithm 1 presented in Chapter
2. [

x1(k +1)
x2(k +1)

]
=

[
0.8665 −0.0385
0.1313 0.9824

][
x1(k)
x2(k)

]
+

[−14.2392
23.6425

]
δs (k) (A.1)

[
vl at (k)
ψ̇g (k)

]
=

[−0.2920 −0.1938
−0.0006 0.0283

][
x1(k)
x2(k)

]
+

[
0
0

]
δs (k) (A.2)

Note that the state vector output in Fig. 2.7 xvd (t ) = [x1(k +1) x2(k +1)]T , which is used as
input to the discrete VehicleDyn() function.

A.2. BODY TO GLOBAL TRANSFORMATION
The body to global transformation takes the body lateral velocity vl at that comes from the ve-
hicle dynamics and the constant longitudinal velocity vlong and transforms these to vx and vy
components, given an angle ψg in the global reference frame. The angle ψg is taken from the
cartesian positive axis, counter-clockwise as positive. Thereby, the angle needed to rotate the
vehicle back to the positive x axis is −ψg . the correct rotation matrix calculation is thereby given
in Eq. A.3. Afterwhich, the positions are obtained by integration.[

vy
vx

]
=

[
cos(−ψg ) −sin(−ψg )
sin(−ψg ) cos(−ψg )

][
vl at

vlong

]
(A.3)

X (t ) =
∫ t

0
vx (t )d t (A.4)

Y (t ) =
∫ t

0
vy (t )d t (A.5)
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CHAPTER 3 APPENDIX

B.1. VEHICLE DYNAMICS AND NEUROMUSCULAR CONSTANTS
This appendix gives the equations used for the vehicle dynamics coefficients and the respec-
tive parameter values for the vehicle dynamics constants and neuromuscular dynamics time
constant. The coefficients of the bicycle dynamics used, are given below:

a11 =−
2(cr + c f )

mV
(B.1)

a12 =
2(cr lr + c f l f )

mV 2
−1 (B.2)

a21 =
2(cr lr − c f l f )

J
(B.3)

a22 =
2(cr l 2

r − c f l 2
f )

JV
(B.4)

a15 =
2c f

mV Rs
(B.5)

a25 =
2c f l f

JRs
(B.6)

In Eq. (B.1)-Eq. (B.6) cr and c f are the cornering stiffness of the front and rear tires, l f and lr
are the distance of the front and rear axles from the center of gravity. J is the moment of inertia
about the yaw axis, m is the vehicle mass, V is the longitudinal velocity and Rs the steering ratio.

The values for these parameters as used in Chapter 3, are given in Table B.1.

B.2. MARS MODEL GEOMETRIC DERIVATION
This appendix explains the geometric derivations for the near and far angles in the Mars Model.
The linear approximations for the near angle θnear and the far angle θ f ar are derived using
geometric approximations. The approximations are based on different assumptions. These as-
sumptions become clear when understanding the geometric relations that resulted in Eq. (3.4)
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Table B.1: Constants used in both Vehicle/road dynamics and neuromuscular dynamics

Parameter interpretation Value
l f distance from gravity center to front axle 1.127 m
lr distance from gravity center to rear axle 1.485m
m vehicle mass 1476 Kg
J moment of inertia around yaw axis 1810 Kgm2

c f Cornering stiffness of front tire 65000 N/rad
cr Cornering stiffness of rear tire 5700 N/rad
Rs steering ratio 16
ls look ahead distance 5

TN Neuromuscular time constant 0.1

and Eq. (3.3), shown in Fig. B.1. For the near angle, θnear the ’lookahead’ distance ls is constant,
with a value of 5 m. Within those 5m ahead of the car, it is assumed that the curvature is zero.
Based on this, θnear is computed with a small angle approximation, and is the summation of
the angle from the center of gravity of the car to the waypoint ahead sl at

ls
and the heading error

ψL , as given in Eq. (B.7).

θnear = tan(
sl at

ls
)+ψL ≈ sl at

ls
+ψL (B.7)

lsψL

Rδ

Dfar

θfar

θfar

a) Near angle θnear b) Far angle θfar

θnear

slat

Figure B.1: This figure illustrates a geometric interpretation of the linear near and far angle approximation
in the Mars Model. This figure illustrates the assumptions made to realise the Model

For the far angle θ f ar , depicted in Fig. B.1, the equation exhibits a small angle approxi-
mation, in other words, the estimation of the far angle is more accurate for roads with small
curvature (large R), as shown in Eq. (B.8). Moreover, this geometric approximation can only be
valid for constant radii curves. This assumption is taken through to the computation of the dis-
tance to tangent point D f ar , another constant, shown in Eq. (B.9). D f ar is essentially a function
of curvature κ (or radius R) and distance from the road boundary δ. Since D f ar is constant and
R is also constant, δ has to be assumed constant as well. In this Chapter a centerline position is
assumed as a value for δ, this is equal to half the road width Wr

2 .

θ f ar = t an(
D f ar

R
)

≈ D f arκ (B.8)
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(δ+R)2 = R2 +D2
f ar

D f ar =
√
δ2 +2δR (B.9)

B.3. VAN DER EL MODEL TRANSFORMATION
This appendix explains and derives the needed transformations for the Van der El model to ap-
ply it to a practical driving simulation.

The input signals of the original model, given in Fig. B.2, are not compatible with a practical
driving situation. The signal yc represents the lateral distance of the centreline of the road in
global reference, i.e. from the beginning of the simulation. Likewise, the signal y is the lateral
position of the vehicle in the global reference frame as well. Moreover, the absolute heading of
the carψ is also used as input; however, would produce unrealistic feedback inputs when driving
on a roundabout. The lateral position is corrected by subtracting y from yc when driving north
from the start of the simulation; any deviation from centerline would produce correct lateral
deviation values. However, when driving towards the east and making lateral deviations from
the centerline, using the Van der El model’s original inputs, the recorded deviation would be
almost 0.

To make this formulation work practically, the road would have to make relatively small lat-
eral deviations from the start point, which is achievable when considering a road that is a sum of
sinusoids (as is done in [173]), rather than a realistic road. Therefore, there is a need to transform
these theoretical inputs, to that of realistic driver input signals. Through algebraic manipulation
we have changed the input signals to feedforward on the road heading ψc , feedback on the lat-
eral position relative to centerline yL and current heading relative to the road heading ψL . The
algebraic derivation that leads to this manipulation is shown in Eq. (B.10), Eq. (B.11), Eq. (B.12),
Eq. (B.13) and Eq. (B.14).

ψL =ψc −ψ
sl at = yc − y

yc =ψc
V

s

δs = Hyc yc −Hy y −Hψψ

= Hycψc
V

s
−Hy (yc − sl at )−Hψ(ψc −ψL)

= Hycψc
V

s
−Hy (ψc

V

s
− sl at )−Hψ(ψc −ψL)

= (Hyc

V

s
−Hy

V

s
−Hψ)ψc +Hy sl at +HψψL (B.10)

From Eq. (B.10) and Fig. B.2, we can see that to formulate the adapted inputs, the transfer
functions Hψc , Hsl at and HψL need to be defined. To make such an algebraic inference, the
definitions of the original functions Hψ, Hy and Hyc from [173] are the following:
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u u

Original Adapted

yc

y

ψ

Hyc

Hy

Hψ

ψc

slat

ψL

Hψc

Hslat

HψL

Figure B.2: The algebraic conversion from the original Van der El model which has inputs centerline position
yc (relative to starting point in the global reference frame), car position y and heading ψ. These inputs and
transfer functions were deduced from an abstract experiment, therefore, to make the model more practically
applicable, the transfer functions are algebraically restructured to facilitate the inputs: the road headingψc ,
lateral position relative to centerline sl at and heading error ψL .

Hψ = Ke (1+TL s)e−τv s

Hy = Ky Hψ wher e Ky = 1

V τ

Hyc = K f
1

1+Tl , f s
eτ f s Hy Hψ (B.11)

Using Eq. (B.10) and the algebraic expressions in Eq. (B.11), we can substitute the following
to compute the transfer function Hψc accompanying the input ψc . The substitutions result in
Eq. (B.12).

Hψc = Hyc

V

s
−Hy

V

s
−Hψ

= K f
1

1+Tl , f s
eτ f s Ky Ke (1+TL s)e−τv s V

s
...

−Ky Ke (1+TL s)e−τv s V

s
−Ke (1+TL s)e−τv s

= (K f
1

1+Tl , f s
eτ f s −1)Ky Ke (1+TL s)e−τv s V

s
...

−Ke (1+TL s)e−τv s

wi th Ky = 1

V τ

= (K f
1

1+Tl , f s
eτ f s −1)

1

τs
Ke (1+TL s)e−τv s ...

−Ke (1+TL s)e−τv s

= ((K f
1

1+Tl , f s
eτ f s −1)

1

τs
−1)Ke (1+TL s)e−τv s (B.12)
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Using Eq. (B.10) and the algebraic expressions in Eq. (B.11), we can substitute the following
to compute the transfer function Hsl at accompanying the input sl at . The substitutions result in
Eq. (B.13).

Hsl at =−Hy

= Ky Ke (1+TL s)e−τv s

= 1

τs
Ke (1+TL s)e−τv s (B.13)

Finally, using Eq. (B.10) and the algebraic expressions in Eq. (B.11), we can substitute the
following to compute the transfer function HψL accompanying the input ψL . The substitutions
result in Eq. (B.14).

HψL =−Hψ

=−Ke (1+TL s)e−τv s (B.14)

a) Van der El Model original

road centerline
road boundary

yc(t+ τf )

e∗

b) Van der El Model transformed

road centerline
road boundary

slat
ψc(t)

ψc(t+ τf )

θ1

θ2 V τ
ψL

Figure B.3: The right figure illustrates the original Van der El model concept. The left figure illustrates the
transformed Van der El model concept. Presented are the three angles summed to obtain e∗ in the trans-
formed Van der El model: θ1, θ2 and ψL . See Fig. 3.2 for the corresponding control diagram.

Fig. B.3 illustrates the concept of the three angles that make up e∗ in the transformed Van
der El model.

B.4. VAN PAASSEN CURVE CUTTING DISTANCE DERIVATION
This appendix derives the curve cutting distance ycc using a geometry. The feedback reference
signal ycc is given in Eq. (B.15) as a function of curvature κ, velocity V and preview time τ f . The
geometric background for this formulation is given in Fig. B.4. The derivation is the following:



B

226 B. CHAPTER 3 APPENDIX

sin(θ) =
τ f V

R

cos(θ) = R − ycc

R

From these equations it can be seen that the radial angle θ is a function of preview time τ f .
Using the 2nd order Taylor expansions:

sin(θ) = θ

cos(θ) = 1− θ2

2!

R

ycc

ycc R− ycc

τfV

θ

Figure B.4: The geometric interpretation the curve cutting distance ycc , used as feedback reference in the
Van Paassen model.

Substituting results in the following to get ycc :

θ =
τ f V

R

1− 1

2!
(
τ f V

R
)2 = R − ycc

R

R − 1

2
(τ f V )2 1

R
= R − ycc

ycc = 1

2
(τ f V )2 1

R

ycc = 1

2
(τ f V )2κ (B.15)

From Eq. (B.15) we see that the curve cutting distance ycc is a function of the road curvature
κ. In this equation, we assume that the vehicles trajectory radius (dotted line in Fig. B.4) equals
the radius of the road. For most cases this is a good approximation, nevertheless can be highly
violated when taking race-line trajectories.
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B.5. REASONS FOR REFINEMENT OF ASSESSMENT METHOD-
OLOGY

In Chapter 2, there were three criteria defined:

• Descriptiveness: the model’s ability to capture different types of steering behaviour.

• Identifiability: the ability of the model for unique mapping between a steering behaviour
and a parameter combination.

• Realism: the parameter combination space resulting in realistic steering behaviour, where
realistic behaviour is defined as a model output whose trajectory stays within road bound-
aries and does not exhibit oscillatory steering angles.

Descriptiveness was realised as a metric through the area which the model’s realistic trajec-
tories can span along a curve. Identifiability was realised through the comparison of a model
output of a given parameter combination with all the resulting model outputs from a selected
parameter span Pspan . Realism was evaluated as the realistic space of parameters within the
selected parameter span Pspan .

There is however some weaknesses identified with the way these metrics are realised: 1)
for defining the descriptiveness of a model, the area which the realistic trajectories can span
along a curve completely obscures information about the different patterns of trajectories that
the model may need to capture. 2) The selected parameter span Pspan may or may not reveal
the complete identifiability or realistic space, as was shown in the results of Chapter 2. 3) The
conventional identifiability space and realism space is a volume of N dimensional space (where
N is the number of parameters considered as a Degree of Freedom (DoF)). This volume has units
that is a multiplication of all the DoF parameter units. This is problematic when comparing
models that exhibit different number of DoF parameters and different parameter units. That
is, there is no way to establish a valid comparison, as not only would the units of the space be
different, the dimension of the identifiability and realism volume would also be different.

To solve these weaknesses, the methodology presented is refined. This update tackles 1) the
way in-which descriptiveness is computed 2) the determination of Pspan 3) the combination of
identifiability and realism to formulate realistic identifiability and, 4) the evaluation of realistic
identifiability being limited to the trajectory types that the model can actually describe.

The descriptiveness of the model is now evaluated through the extent to which a model
can capture different driver trajectory categories, with the trajectory classes defined in Chapter
4. Hereby the methodology clearly outlines the different types of trajectories available in the
driving population and reveals the types of generic behaviour the model can capture, thereby
making the methodology data-driven. The Pspan is explored, instead of selected, thereby mak-
ing sure that all realistic parameter combinations are tested. To facilitate a fair comparison be-
tween models of different number and/or type of parameters, the resulting identifiability space
is made dimensionless through normalisation by the realism space, to obtain a new metric ’Re-
alistic Identifiability’. Moreover, the Realistic Identifiability is only evaluated for the parameter
combinations of real trajectory types (classes) that the model can sufficiently capture.

B.6. IDENTIFIED PARAMETERS
This appendix gives the identified parameters per class for each model. The Mars model in
Table. B.2, the Van der El model in Table B.3 and, the Van Paassen model in Table B.4.
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Table B.2: Mars Model identified parameters per class, the classes which the model can sufficiently capture
are given in bold.

Class Kp (-) Kc (-)
1 2.7 24
2 1.8 6
3 1.2 30
7 3 21
8 1.8 23
9 3 21

10 2.7 30

Table B.3: Van der El Model identified parameters per class, the classes which the model can sufficiently
capture are given in bold.

Class Tl f (s) τ f (s) Ke (-) TL (s)
1 0.032 1.2 3.4 1.1
2 0.25 0.32 7.1 0.083
3 0.09 0.30 4.93 0.35
7 0.056 1.3 5.3 0.01
8 0.095 1.07 4.5 0.78
9 0.07 1.38 5.7 0.01

10 0.05 1.64 2.74 0.05

Table B.4: Van Paassen Model identified parameters per class, the classes which the model can sufficiently
capture are given in bold.

Class KF F (-) KF B (-) τ f (s) Ths (s) τn (s)
1 0.005 0.12 1.6 0.45 1.3
2 0 1.3 0.005 0.46 0.75
3 0.0014 1.8 1.1 0.28 0.17
7 0.0040 0.25 1.8 0.78 1.2
8 0.0001 0.12 1.3 0.34 1.2
9 0.44 1.1 1.6 0.62 0.87

10 0.29 0.12 0.97 0.24 0.28
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Figure B.5: A 2-dimensional representation of Realistic Parameter space of the Van der El model, showing
the error gain Ke and the look-ahead time t f .(a) presents the first RBC constraint, whether sl at is within the
road boundaries Wr , (b) presents the second RBC constraint, the number of steering reversals.
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Figure B.6: A 2-dimensional representation of Realistic Parameter space of the Van Paassen model, showing
the feedforward gain KF F and the feedback gain KF B . (a) presents the first RBC constraint, whether sl at is
within the road boundaries Wr , (b) presents the second RBC constraint, the number of steering reversals.

Parameter Combinations Realistic Identifiability (%)
Class 7 Class 8
δs sl at δs sl at

Ke τ f 100 16 100 0.73
Ke TL 100 12.7 100 1.3

Ke Tl , f 100 54 100 1.4
τ f TL 98 17.1 98 6
τ f Tl , f 100 21 100 2.1
TL Tl , f 100 53 100 16

Table B.5: The equivalent two-parameter set, Parameter Sensitivity values for Class 7 and 8, for the Van der
El Model. They are given for the respective classes that the model can sufficiently replicate, in both the
steering wheel δs and lateral position sl at domains.

B.7. REALISM PLOTS

B.8. 2-DIMENSIONAL VAN DER EL AND VAN PAASSEN PARAM-
ETER REALISTIC IDENTIFIABILITY VALUES

This appendix describes the 2-dimensional realistic identifiability spaces for Van der El and Van
Paassen models. This is needed to facilitate comparison with the Mars model in the same di-
mension. These equivalent 2-dimensional realistic identifiability areas are computed with other
parameters fixed; the fixed parameters take the values of class 7 and 8. The two-dimensional val-
ues for the Van der El model are given in Table B.5 and those of the Van Paassen model are given
in Table B.6.

B.9. 4-DIMENSIONAL VAN PAASSEN MODEL REALISTIC IDEN-
TIFIABILITY VALUES

This appendix gives the 4-dimensional Van Paassen Realistic Identifiability values for compar-
ison with the Van der El model on the same dimension. One parameter is kept fixed at a time,
outlined on the description row in Table B.7.
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Parameter Combinations Realistic Identifiability (%)
Class 7 Class 8
δs sl at δs sl at

KF F KF B 100 50 100 50
KF F τLH 57 28 69 23
KF F τp 72 6.1 63 5.6
KF F Ths 98 0.5 99 0.4
KF B τLH 75 12 66 11
KF B τp 95 4.4 92 1.2
KF B Ths 100 0.5 92 0.5
τLH τp 81 2.3 57 3.3
τLH Ths 96 1.3 97 2
τp Ths 89 0.7 70 0.6

Table B.6: The equivalent two-parameter set, Parameter Sensitivity values for Class 7 and 8, for the Van
Paassen Model. They are given for the respective classes that the model can sufficiently replicate, in both
the steering wheel δs and lateral position sl at domains.

Table B.7: 4-dimensional equivalent realistic identifiability values of Van Paassen model

Class Fixed Parameter
KF F KF B Ths τ f τn

δs sl at δs sl at δs sl at δs sl at δs sl at

1 64 0.01 12 0.05 11 0.4 3 0.1 0.2 0.04
2 84 0.2 100 0.08 88 6 86 0.3 90 1.1
3 97 13 99 50 88 0.1 93 7 96 11
7 13 0.02 46 0.04 12 0.2 36 0.2 9 0.1
8 89 0.02 40 0.02 56 0.2 95 0.1 89 0.02
9 90 0.01 99 0.01 60 0.3 83 0.1 92 0.03

10 5 0.01 7 0.01 15 0.04 4 0.03 4 0.006
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C.1. PREPOSITIONING PATH MODEL RESPONSES

Figure C.1: This figure illustrates all data the from Chapter 5 in light blue. The corresponding model fits of all
trajectories are given in dark green. The figure is sectioned by curve direction and prepositioning category:
Outer, Middle and Inner. The percentage of drivers falling into a given prepositioning category is indicated
by the Occurence (O).
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C.2. IDENTIFIED PARAMETERS

Table C.1: The identified model parameters for the different classes, with and without prepositioning

Class KF F (-) KF B (-) τ f (s) Ths (s) τn (s) g1 (m) τ1 (s) a1 (m/s) a2 (m/s) yb (m)
NP P NP P NP P NP P NP P

R1 0.005 0.16 0.091 0.069 1.56 0.93 0.36 0.13 1.33 0.98 0.51 1.72 0.51 2.00 0.28
R2 0.006 0.005 1.28 1.85 0.005 0.008 0.46 1.34 0.75 0.80 0.67 0.78 1.03 1.96 0.12
R3 0.001 0.002 1.79 0.07 1.08 0.52 0.29 0.02 0.17 0.14 0.45 4.65 0.54 1.99 0.53
R7 0.004 0.012 0.25 0.08 1.81 1.62 0.78 0.65 1.15 1.53 -0.018 3.56 0.72 2.00 0.03
R8 0.008 0.003 0.12 0.04 1.27 0.45 0.35 0.02 1.17 1.84 0.29 8.01 0.93 1.75 -0.19
R9 0.44 0.21 0.11 0.27 1.59 2.42 0.63 1.41 0.87 1.07 0.05 8.52 0.08 1.96 -0.18

R10 0.29 0.31 0.12 0.10 0.97 0.69 0.24 0.17 0.28 0.01 -0.04 9.20 2.57 2.00 -0.27
L1 0.003 0.14 0.06 0.14 0.32 1.12 0.01 0.18 1.55 0.72 -0.80 4.01 0.53 1.99 -0.75
L2 0.004 0.003 0.38 0.25 0.002 0.005 0.16 0.01 0.71 0.85 -0.30 3.26 0.61 2.0 -0.31
L3 0.002 0.006 0.32 0.12 0.005 0.005 0.05 0.01 0.19 0.92 -0.52 2.82 0.71 2.0 -0.43
L4 0.07 0.25 0.44 0.06 1.14 0.53 0.18 0.20 0.29 0.29 -0.05 7.02 5.85 1.12 0.03
L5 0.08 0.14 0.008 0.006 0.21 0.47 0.02 0.15 3.51 3.1 -0.07 0.00 1.05 1.12 -0.01
L7 0.005 0.005 1.20 1.16 1.95 2.17 0.95 1.2 1.04 1.21 0.02 7.12 7.90 0.57 0.02
L8 0.001 0.001 0.05 0.06 1.25 1.12 0.58 0.53 1.57 1.56 -0.12 1.21 0.86 2.0 0.15
L9 1.52 2.18 2.23 1.85 2.19 1.68 1.75 1.86 0.63 0.27 0.15 0.37 3.41 0.99 0.24

L10 0.16 0.22 0.35 0.06 0.98 0.57 0.16 0.21 0.43 0.62 0.18 0.72 1.68 1.51 0.09
L11 0.005 0.20 0.02 0.04 0.05 0.40 0.02 0.22 2.72 1.1 0.16 2.74 1.47 2.00 0.10
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D.1. OBJECTIVE MEASURES TIME SERIES

Figure D.1: This figure illustrates the averaged timeseries (across 5 repetitions) of a R3L5 driver subjected to
the eight different experiment conditions.

D.2. COMPLETE RESULTS OF DRIVER TORQUE AND CONFLICT

TIME

D.2.1. RIGHT CURVES
The driver torque TD , illustrated in Fig. D.3a) & b), is significantly affected by HCR type in
the curve phase (F(2.1,61.7) = 81.9, p<0.01). There is no significant interaction between driver
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Figure D.2: This figure illustrates the averaged timeseries (across 5 repetitions) of a curve cutter (R2L1) sub-
jected to the eight different experiment conditions.

group and HCR. Pairwise comparisons show that this effect stems from a significant decrease
between CL and OD with an average of 0.46 Nm (p<0.01), a significant decrease between CL
and CC with an average of 0.29 Nm (p<0.01), a significant decrease between CL and P with
an average of 0.33Nm (p<0.01), a significant increase between OD and CC with an average of
0.16 Nm and a significant increase between OD and P with an average increase of 0.12 Nm. A
significant effect is not found between CC and P. The highest median driver torque is found for
CL and the lowest for both OD and P. For offset-drivers there is a significant difference between
class-average and P (opposing H.I), whereas for curve-cutters there is no significant difference
between class average and P (supporting H.I). The highest median driver torque (thereby highest
driver effort) is found for CL compared to the other HCRs (supporting H.II).

Driver torque is significantly affected by HCR in the prepositioning phase (F(1.9,58.9) =
10.9, p<0.01). A significant interaction between HCR and driver group is found in this phase
(F(1.9,48.9) = 12.4, p<0.01). For curve-cutters, pairwise comparisons show that this effect stems
from a significant increase between CL and OD with an average of 0.13 Nm (p<0.05) and a sig-
nificant decrease between OD and P with an average of 0.23 Nm (p<0.01). For offset-drivers,
this effect stems from a significant increase between CL and CC with and average of 0.32 Nm
(p<0.01), a significant increase between OD and CC with an average of 0.28 Nm (p<0.05) and
a significant decrease between CC and P with an average of 0.3 Nm (p<0.01). For curve cutters
there is no significant difference between class-average and P (supporting H.I), for offset-drivers
there is also no significant difference between class-average and P (supporting H.I). For both
driver group CL does not result in the highest driver torque (opposing H.II).

Driver torque significantly decreases with increasing KLoHS (FF) gain for the curve phase
only (F(1,30) = 1122.4, p<0.01). Here, an average decrease of 0.66 Nm is found for curve cut-
ters and an average decrease of 0.68 Nm is found for offset-drivers (supporting H.III). A similar
significant decrease is not present for the prepositioning phase, due to the contribution of feed-
forward torque in this phase being relatively small.
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Figure D.3: For right curves, the data of the curve-cutters are given across a) to d). The data of the offset-
drivers are given across e) to h). The driver torque TD is given in a) & e), feedback torque TSoHF is given
in b) & f), conflict time Oc is given in c) & g) and conflict torque Tc is given in d) & h). These results are
exclusively for Left curves, presented separately for each level of haptic support, FF = 0.5 and FF = 0.92 and,
for the ’Prep’ prepositioning phase and ’Curve’ in-curve phase separately. The HCRs are Center-Line (CL),
Offset-Driving (OD), Curve-Cutting (CC) and Personalised (P).

The conflict time Oc , illustrated in Fig. D.3 c) & d), is significantly affected by HCR in the
curve (F(1.6,48.5) = 4.29, p<0.01). There is a non-significant interaction between driver group
and HCR. Pairwise comparisons show that this stems from a significant decrease between OD
and P with an average of 9.1% (p<0.05). For curve-cutters is supports H.I, whereas for offset
drivers it opposes H.I. The CL does not result in largest conflict time (opposing H.II).

The conflict time is significantly affected by HCR during prepositioning (F(1,30) = 9.2, p<0.01).
There is a significant interaction between HCR and driver group (F(1,30) = 7.8, p<0.01). For
curve cutters, pairwise comparisons show that this effect stems from a significant increase be-
tween CL and OD with an average of 30% (p<0.01) and a significant decrease between OD and P
with an average of 57% (p<0.01). For offset-drivers, this effect stems from a significant increase
between CL and CC with an average of 52% (p<0.01) and a significant decrease between CC and
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P with an average of 42% (p<0.01). Both driver groups achieve the lowest conflict time with P
with no significant difference to class-average (supporting H.I). Here, the curve-cutters achieve
the highest conflict time with OD and the offset-drivers achieve the highest conflict time with
an CC (opposing H.II).

Conflict time significantly decreases with increasing KLoHS (FF) gain in the prepositioning
phase only (F(1.6,48.5) = 4.29, p<0.01). Here, an average decrease of 12.8% is found for curve
cutters and 20.1% for R3L5 drivers, when increasing the KLoHS gain (supporting H.III).

LEFT CURVES

The driver torque, illustrated in Fig. D.4 a) & b), is significantly affected by HCR in the curve
(F(2.4,70.8) = 80.2, p<0.01). There is a significant interaction between driver group and HCR
(F(2.3,70.2) = 12.9, p<0.01). For curve cutters, pairwise comparisons show that this effect stems
from a significant increase between CL and OD with an average of 0.26 Nm (p<0.01), a signifi-
cant decrease between CL and CC with an average of 0.14 Nm (p<0.01), a significant decrease
between CL and P with an average of 0.11 Nm (p<0.01), a significant decrease between OD and
CC with an average of 0.39 Nm (p<0.01) and a significant decrease between OD and P with an
average of 0.37 Nm (p<0.01). For offset-drivers, this effect stems from a significant increase be-
tween CL and OD with an average of 0.29 Nm (p<0.01), a significant increase between CL and
P with an average of 0.16 Nm (p<0.01), a significant decrease between OD and CC with an av-
erage of 0.32 Nm (p<0.01) and a significant increase between CC and P with an average of 0.2
Nm (p<0.01). For curve cutters the highest driver torque is found for OD and the lowest for both
CC and P, whereas for R3L5 drivers the highest driver torque is also found for OD and the lowest
for CL and CC. For both driver groups there is no significant effect between class-average and P
(supporting H.I), nor does CL instigate the largest driver torque (opposing H.II).

Driver torque is significantly affected by HCR in the prepositioning phase (F(1.4,41.4) = 5.3,
p<0.05). Contrary to right curves, for left curves there is no interaction effect between HCR and
driver group in the prepositioning phase. Pairwise comparisons show that there is a significant
decrease between CL and P with an average of 0.18 Nm (p<0.01), a significant decrease between
OD and P with an average of 0.15 Nm (p<0.01) and a significant decrease between CC and P
with an average of 0.16 Nm (p<0.01). Here, the lowest torque is found for P, with the other HCRs
having no significant differences from eachother. This is expected because both an CC and OD
preposition toward the outer part of the left curve. Both driver groups experience significant
differences between class average and P (opposing H.I) and CL does not instigate the largest
driver torque (opposing H.II).

Driver torque significantly decreases with increasing KLoHS (FF) gain for the curve phase
only (F(1,30) = 707.8, p<0.01). Here, an average decrease of 0.62Nm is found for curve cutters
and an average decrease of 0.61Nm is found for offset-drivers, supporting H.III. A similar de-
crease in driver torque due to KLoHS (FF) gain is not present for the prepositioning phase.

The conflict time, illustrated in Fig. D.4 c) & d), is significantly affected by HCR in the curve
(F(2.4,70.2) = 7.5, p<0.01). There is no significant interaction between driver group and HCR.
Pairwise comparisons show that there is a significant decrease between OD and P with on aver-
age 5.4 % (p<0.01) and a significant decrease between CC and P with on average 8.4 % (p<0.01).
Conflict time is lowest with P with significant increase for only the class-average HCR for both
driver groups (opposing H.I and H.II).

The conflict time is significantly affected by HCR in the prepositioning phase (F(1.6,49.1) =
5.4, p<0.05). There is no significant interaction between driver group and HCR. Pairwise com-
parisons show that there is a significant decrease between OD and CC with an average of 12 %
(p<0.01), a significant decrease between OD and P with an average of 38% (p<0.01) and a signif-
icant decrease between CC and P with an average of 20% (p<0.05). Conflict time is lowest with
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Figure D.4: For left curves, the data of the curve-cutters are given across a) to d). The data of the offset-
drivers are given across e) to h). The driver torque TD is given in a) & e), feedback torque TSoHF is given
in b) & f), conflict time Oc is given in c) & g) and conflict torque Tc is given in d) & h). These results are
exclusively for Left curves, presented separately for each level of haptic support, FF = 0.5 and FF = 0.92 and,
for the ’Prep’ prepositioning phase and ’Curve’ in-curve phase separately. The HCRs are Center-Line (CL),
Offset-Driving (OD), Curve-Cutting (CC) and Personalised (P).

P with significant increase for only the class-average HCR for both driver groups (opposing H.I
and H.II). Here, the highest conflict time is found for OD and the lowest for P.

D.3. COMPLETE RESULTS OF FEEDBACK TORQUE AND CON-
FLICT TORQUE

D.3.1. RIGHT CURVES
The feedback torque TSoHF in the prepositioning phase, illustrated in Fig. D.5 a), is significantly
affected by HCR in the prepositioning phase (F(1.9,56.6) = 9.7, p<0.01). There is a significant in-
teraction between HCR and driver group (F(1.8,56.7) = 13.7, p<0.01). For curve-cutters, pairwise
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comparisons show that this effect stems from a significant increase between CL and OD with an
average of 0.17 Nm (p<0.05) and a significant decrease between OD and P with an average of
0.32 Nm(p<0.01). For offset-drivers, this effect stems from a significant increase between CL
and CC with an average of 0.4 Nm (p<0.01), a significant increase between OD and CC with an
average of 0.34 Nm (p<0.01) and a significant decrease between CC and P with an average of
0.35 Nm (p<0.01). Hereby, the highest feedback torque is achieved with OD for curve-cutters
and with CC for offset-drivers. For both driver groups there is no significant difference found
between class-average and P (supporting H.I), nor does CL instigate the largest feedback torque
(opposing H.II).

The feedback torque TSoHF in the curve, illustrated in Fig. D.5 b), is significantly affected by
HCR type in the (F(1.6,46.6) = 13.4, p<0.01). There is no significant interaction between driver
group and HCR. Pairwise comparisons show that this stems from a significant decrease between
CL and OD with and average of 0.21 Nm (p<0.05), a significant decrease between CL and CC with
an average of 0.22 Nm (p<0.01) and a significant decrease between CL and P with an average of
0.27 Nm (p<0.01). The lowest feedback torque is found for P, however there is no significant
difference between P, CC and OD (supporting H.I). The highest feedback torque is found for CL
(supporting H.II). The feedback torque is also significantly affected by driver group in the curve
(F(1,30) = 7.5, p<0.01), curve-cutters experience 0.17 Nm more feedback torque on average than
offset-drivers.

Feedback torque significantly increases with increasing KLoHS (FF) gain for the curve phase
only (F(1,30) = 4.2, p<0.05). Here, an average increase of 0.04 Nm is found for curve cutters,
whereas an average increase of 0.05 Nm is found for R3L5 drivers (opposing H.III).

The conflict torque, illustrated in Fig D.5 c), is significantly affected by HCR during the
prepositioning phase (F(1.6,50.9) = 4.99, p<0.01). There is a significant interaction between HCR
and driver group (F(1.9,58.3) = 11.8, p<0.01). For curve cutters, pairwise comparisons show
that this effect stems from a significant increase between CL and OD with an average of 0.4 Nm
(p<0.01) and a significant decrease between OD and P with an average of 0.69 Nm (p<0.01). For
offset-drivers, this effect stems from a significant increase between CL and CC with an average
of 0.71 Nm (p<0.01) and a significant decrease between CC and P with an average of 0.67 Nm
(p<0.01). For both driver groups there is no significant difference between class average and P
(supporting H.I), nor does CL instigate the highest driver torque (opposing H.II).

The conflict torque, illustrated in Fig D.5 d), is significantly affected by HCR in the curve
(F(1.6,50.9) = 4.99, p<0.05). There is a non-significant interaction between driver group and
HCR. Pairwise comparisons show that this stems from a significant decrease between OD and
CC with an average of 0.24 Nm (p<0.05), this supports H.I & H.II.

Conflict torque significantly decreases with increasing KLoHS (FF) gain in the preposition-
ing phase only (F(1.6,48.5) = 4.29, p<0.01), for both driver groups. Here, an average decrease of
0.08Nm is found for curve cutters and 0.12Nm for R3L5 drivers, when increasing KLoHS (sup-
porting H.III).

D.3.2. LEFT CURVES
The feedback torque in the prepositioning phase, illustrated in Fig. D.6 a), is significantly af-
fected by HCR (F(1.4,41.4) = 6.4, p<0.01). No significant interaction between driver group and
HCR is found. Pairwise comparisons show that there is a significant increase between CL and
CC with an average of 0.25 Nm (p<0.01), a significant increase between OD and CC with an av-
erage of 0.07 Nm (p<0.01), a significant decrease between OD and P with an average of 0.15 Nm
(p<0.01) and a significant decrease between CC and P with an average of 0.22 Nm (p<0.01), op-
posing H.I. Here we see the lowest feedback torque is achieved for the P, whereas the highest is
achieved for CC for both driver groups, opposing H.II.
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Figure D.5: For right curves, the feedback torque TSoHF and conflict torque Tc

The feedback torque in the curve, illustrated in Fig. D.6 b), is significantly affected by HCR
(F(1.7,50.6) = 18.8, p<0.01). There is a significant interaction between driver group and HCR
(F(1.6,50.6) = 6.8, p<0.01). For curve-cutters pairwise comparisons show that this effect stems
from a significant increase between CL and OD with an average of 0.18 Nm (p<0.01), a signif-
icant decrease between CL and P with an average of 0.15 Nm (p<0.01), a significant decrease
between OD and P with an average of 0.32 Nm (p<0.01) and a significant decrease between CC
and P with an average of 0.24 Nm (p<0.05). For offset-drivers, this effect stems from a signif-
icant increase between CL and CC with an average of 0.44 Nm (p<0.01), a significant increase
between OD and CC with an average of 0.32 Nm (p<0.05) and a significant decrease between CC
and P with an average of 0.43 Nm (p<0.05). For curve-cutters, a significant difference between
class average and P is found (opposing H.II), whereas for offset-drivers such a significance is not
found (supporting H.II). For the curve-cutters, the highest feedback torque is achieved for OD,
whereas for offset drivers the highest feedback torque is achieved for CC, opposing H.II.

Feedback torque significantly increases with increasing KLoHS gain for the curve phase only
(F(1,30) = 8.91, p<0.01). Here, an average increase of 0.08Nm is found for curve cutters, whereas
an average increase of 0.03Nm is found for R3L5 drivers, opposing H.III.
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Figure D.6: For left curves, the feedback torque TSoHF and conflict torque Tc

The conflict torque in the prepositioning phase, illustrated in Fig D.6 c), is significantly af-
fected by HCR (F(1.3,40.8) = 5.4, p<0.05). There is no significant interaction between driver
group and HCR. Pairwise comparisons show that there is a significant decrease between CL and
P with an average of 0.46 Nm (p<0.01), a significant decrease between OD and P with an average
of 0.36 Nm (p<0.01) and a significant decrease between CC and P with an average of 0.33 Nm
(p<0.01). For both driver groups the class-average exhibits significantly more conflict torque
than P (opposes H.I). The smallest conflict torque is found for P, whereas the other HCRs are not
significantly different from one another (opposes H.II).

The conflict torque in the curve, illustrated in Fig D.6 d), is significantly affected by HCR
(F(1.4,41.4) = 7.4, p<0.01). There is no significant interaction between driver group and HCR.
Pairwise comparisons show that there is a significant increase between CL and CC with an av-
erage of 0.22 Nm and a significant decrease between CC and P with an average of 0.28 Nm. For
both driver groups a significant peak in conflict exists for CC, which opposes H.I for curve cut-
ters, supports H.I for offset-drivers and opposes H.II.

Conflict torque significantly decreases with increasing KLoHS (FF) gain in the preposition-
ing phase (F(1,30) = 10, p<0.01), whereas conflict torque increases with increasing gain in the
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curve phase (F(1,30) = 8.3, p<0.01). Here, an average decrease in conflict torque of 0.06Nm is
found for curve cutters and 0.15Nm for offset-drivers, when increasing KLoHS in the preposi-
tioning phase, supporting H.III. Whereas, an average increase of 0.13Nm is found for curve cut-
ters and 0.16Nm for R3L5 drivers, when increasing KLoHS in the curve phase, opposing H.III.

D.4. SEPARATED L1 AND L2 GROUPS

Figure D.7: Side-by-side analysis of conflict times and torques for R2L1 and R2L2 drivers in left curves.

D.5. CONSISTENCY IN STYLE

Figure D.8: Driven trajectories by an R2L1 driver subjected to the eight different experiment conditions.
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Figure D.9: Driven trajectories by an R2L1 driver subjected to the eight different experiment conditions.
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D.5.1. TRAJECTORY RECLASSIFICIATION
This appendix presents the analysis of reclassification of the driven trajectories for both driver
groups and per condition, to analyse the adaptations made. The results are summarised in Fig-
ures D.10, D.11, D.12 and D.13, each representing a different HCR. The R2L1 HCR is shown in
Figure D.10. It presents the drivers trajectory on in the first session of the experiment, separately
for the left and right curves and feedforward gains and the reclassification after the driver is sub-
jected to a specific HCR. Figure D.10 shows how the curve cutters, both R2L1 and R2L2 drivers,
are 84.38% consistent for right curves and 59.38% for left curves with R2L1 guidance. The R3L5
drivers on the other hand adapt to follow the guidance and end up in more ’efficient’ classes,
i.e., trajectories that result in a higher TLC. A significant portion, 43.75% for FF 0.5 and 50.00%
for FF 0.92, of the R3L5 drivers reclassifies as R2L1 drivers when following this guidance.

The adaptations made when drivers are subjected to the R3L5 HCR is given in Figure D.10.
Here it can be seen that the R3L5 drivers most often stick to their own class after reclassification,
with 37.50% changing their trajectory to class 2 for left curves. Conversely, 25 % the curve cutters
reclassify to a class 5 with a 0.5 feed forward gain.

The adaptations made when drivers are subjected to the R4L4 HCR is given in Fig. D.12.
Here it can be seen that the R4L4 has a large effect on both groups of drivers. In right curves, 50
% of curve cutters adapt to a class 3 for the low feedforward gain. In left curves, 31 % of curve
cutters adapt to class 3 for 0.92 feedforward gain and 25% adapt to a class 5 for 0.5 feedforward
gain. Conversely, some R3L5 drivers however, gain efficiency and reclassify as more ’efficient’
classes for left curves with R4L4 guidance.

The adaptations made when drivers are subjected to a personalised HCR seems to induce
the most adaptation for left curves. Infact, many of the R3L5 drivers reclassify as class 1 or 2
(25.00% for FF 0.50 and 56.25% for FF 0.92) and the R2L2 drivers, part of the curve cutters, some-
times reclassify as class 1.

Table D.1: Consistency of the different driver groups towards their manual driving class.

Driver Group Curve Consistency

R2L1 drivers
Right 65%
Left 72.50%

R2L2 drivers
Right 67.50
Left 52.60%

R3L5 drivers
Right 80.68%
Left 43.18%

Finally, Table D.1 summarises the overall consistency of the different driver groups. It shows
how consistent the drivers are in retaining their natural driving style after being subjected to all
the different conditions. This as an attempt to see which driver groups are less willing to adapt to
the HSC than others. It seems that most drivers, regardless of their manual driving class, change
their driving habits when subjected to haptic shared control. Some groups are very adamant
about the continuation of their own trajectory, such as R2L1 drivers in left curves, while other
groups are more adaptive, such as R3L5 drivers in left curves. Furthermore, the analysis of the
left curves of R3L5 drivers showed low conflict values for all conditions, resulting in overall low
conflict values. This might be linked to the R3L5 drivers being very willing to adapt their left
curve behaviour as their consistency is only 43.18%.
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Figure D.10: This figure illustrated the reclassification results of all drivers after driving the R2L1 guidance.
On the y-axis lie the classification results for day 1 and on the x-axis for day 2.
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Figure D.11: This figure illustrated the reclassification of all drivers after driving the R3L5 guidance. On the
y-axis lie the classification results for day 1 and on the x-axis for day 2.
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Figure D.12: This figure illustrated the reclassification of all drivers after driving the R4L4 guidance. On the
y-axis lie the classification results for day 1 and on the x-axis for day 2.
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Figure D.13: This figure illustrated the reclassification of all drivers after driving the Personalised guidance.
On the y-axis lie the classification results for day 1 and on the x-axis for day 2.
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