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viil Preface

The dynamic analysis of DC-to-DC power converters is a well established design
tool which led to the improved modulation and control design of this class of power
converters. Having the disposal of its counterpart for AC power converters would
be of great value and therefore, in autumn 1990 the objective of this research
project was to find and analyze a method for dynamic analysis of AC power
converters.

In fact, this work started with recognizing the problems concerning the modulation
process of a three-phase-to-three-phase series-resonant converter and its input
power factor control. These problems led to a search for a suitable modelling
technique. Although the research started as a search for a solution for a specific
converter topology of a series resonant converter, the obtained solution proved to
be generally valid. Because of the lack of any modelling techniques in the area of
three-phase AC power converters, the research interest did not cover only the
resonant link converters but was extended for the entire class of three-phase AC
power conversion.

Two modelling techniques of the switching operation of switches in a bridge
configuration are suggested: a switching function and a switching space phasor.
Dynamic models of pulse-width modulated and discrete-pulse modulated
converters based on these modelling techniques are established. Especially the
switching space phasor modelling technique is proved to be suitable for the design
of the modulation and the control of three-phase power converters. Idea of a
switching space phasor brings also a new understanding of a power conversion and
its switching behaviour. Between others, the desired modulation process of a
three-phase-to-three-phase series-resonant converter is solved with a switching
space phasor. The original research path with many detours was straightened to
a logical line in this thesis.

During four years of research many people were of great help to me. I would like
to thank in particular:

. Prof. W.Deleroi and Dr J.B. Klaassens who gave me freedom in exploring
my topic,

. Members of the promotion committee: prof. P.P.J. van den Bosch, prof. W.1.
Kling, prof. J.A.A. Melkebeek, prof. J.A. Schot, prof. A.J.A. Vandenput for
their purposful suggestions and comments,

R Schoevaars for his help, friendship and mental encouragement,
F. de Beer, D. Antic, P.J. van Duijsen and E. van Dijk for friendship and
collegiality,

. The staff of the Laboratory for Power Electronics and Electrical Machines
who surrounded me with a friendly working atmosphere,

. My wife and my family for their support and help.
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INTRODUCTION



2 Introduction

1.1 General

Electric power is processed by electronic power converters to make it acceptable
for various applications such as regulated DC and AC power supplies,
electrochemical processes, heating, lighting, electrical machine drives, electronic
welding, active power line filtering, static var compensation and many other
applications. Power processing includes the conversion of waveforms (DC-to-AC,
AC-t0-DC, DC-to-DC and AC-to-AC) employing power semiconductor switches.
Besides the semiconductor switches, the essential elements of switching converters
are energy storage components like inductors and capacitors. The dynamic
behaviour of the converter itself is dominated by the elements storing energy and
by the semiconductor switches that control the flow of energy between the input
and the output terminals.

In recent years, significant advances in AC conversion have been reported. The
wide acceptance of gate turnoff devices has encouraged the development of power
converters for many areas of application. A significant application is formed by
variable speed drives. The ruggedness and cheapness of AC machines have also
contributed to the evolution of AC converters using pulse-width modulation and
vector control.

The development of static power converters has reached the stage where further
improvement of switching devices and their control networks will yield only a
marginal gain. Consequently, the research in the area of AC conversion has been
shifted towards improving the process of power conversion by improving also the
quality of the input and output waveforms and the control strategies.

Increased attention is being paid to the dynamic behaviour and the control
algorithm of the converters to achieve a high performance level. A central issue
involved in the study of the dynamics of a converter is the model of the system.
Models are simplified, abstracted concepts used to predict a system’s behaviour
[Karnopp, et.al. 1990]. The development of new resonant converter topologies
applying soft-switching and pulse modulation techniques, increased the need for
accurate models and analysis. The design of a control without understanding the
operation principles of a model is difficult. Another problem is the power factor
correction of polyphase converters.

The most accurate and simple dynamic model is developed from a set of
differential equations prescribing the propagation of the power in the converter.
Due to the switching behaviour, these differential equations are discontinuous and
difficult to solve. Therefore, new ways of model development based on
simplifications are looked for.

In Fig. 1.1 a generalized model of a dynamical conversion system is shown. The
dynamic system (DS) is characterized by a set of state variables x, which are
influenced by a set of input variables s representing the action of the system’s
environment. This type of dynamic system model is useful in three ways:
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— DYNAMIC

input . SYSTEM . output
variables s . D,S . variables o
. state variables x .

Fig. 1.1 General model of dynamic system

1. Analysis
For a given s, while x describes the present state of a model DS, the future
of 0 is predicted. Under the assumption that the system model is an accurate
representation of the actual system, the analysis predicts the system
behaviour.

2. Identification
For given time histories of s and o usually obtained by experimental work on
an actual system, a model DS and state variables x are found for the system,
which is consistent with s and o. This is the essence of scientific experiments.
Clearly, a reliable model is a model that is consistent for a great variety of
s’s and o’s.

3. Synthesis

For a given s and some desired o, a model DS has to be found in such a way
that s acting on DS will produce o. Primarily, engineering deals with
synthesis but only in limited contexts where direct synthesis methods are
available. Often we must be content to accomplish the synthesis of systems
through a trial-and-error process of repetitive analysis of a series of candidate
systems. In this regard, a dynamic model plays a vital role since progress
would be slow if one had to construct each candidate system in the laboratory
to discover its properties.

In this thesis we concentrate on establishing converter models and predicting the
behaviour of the converter by analytical and/or computational techniques. It is
important to remember that the techniques are useful to employ for solving
identification problems. The major challenge for an engineer is to synthesize the
described system which is also the subject of our interest. The dynamic system in
our case is embodied by an AC power converter.,

In the past, a converter has often been presented as an amplifier with a specific
gain and if possible with a time delay. To fully use the potential of the converter
and to account the uncertainties in the system, it is important to understand and
qualify the dynamic performances of the converter especially in the presence of
parameter variations and disturbances. The arguments leading to the requirement
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for a dynamic model and a dynamic analysis of power converters is summarized
in the following:

1. The designed control system must be able to deal with the consequences of
the inevitable disturbances or errors that cause circuit operation to deviate
from its rated operation. These disturbances include variations and
uncertainties in the source, load and circuit parameters, perturbation in the
switching time and events such as start-up and shut-down. Therefore an
analysis based on a dynamic model has to be established.

2. The analysis and modelling of the converter control and operation lead to an
improved control design. This is understood as the synthesis of the dynamic
model.

3. Power converters are a part of a complex system, e.g. an electrical drive or
a power supply. For the design of the converter control and regulation, a
mathematical representation of the converter is required. An accurate
mathematical solution even for the cyclic-stable mode of operation can involve
an unmanageable set of equations. A designer of the controller needs a model
that represents the dynamic effects. The steady-state mathematical solution
of converter quantities (voltages and current) does not help in the proper
design of the converter control and regulation if the dynamic behaviour
describing the variations is unknown.

The analysis and synthesis is focused on the dynamic processes. The operation of
the semiconductor devices must be considered ideal to avoid complexity. Thus the
analysis and synthesis of the converter operation and the dynamic behaviour
becomes much easier. This approach has the advantage that the details of device
operation will not obscure the primary operation of the converter, and therefore,
the important converter characteristics are more clearly understood. With the
advance in power semiconductor devices in industrially manufactured drives and
the improvements in protection networks (like snubbers) for these devices, the
switching operation is approaching close to the ideal. The switching operation has
therefore a little influence on the dynamic behaviour of the converter and is
considered as ideal.

A lot of valuable work has been done in the field of the dynamic modelling of DC-
to-DC converters. However, this work is not readily transferred to the analysis of
AC converters because the system has a fundamental time-varying frequency
component. Thus, alternative methods have to be looked for, or existing methods
have to be extended. The complexity of AC power converters is much greater than
the complexity of DC converters and so is the analysis of their operation and
dynamics.

The purpose of this thesis is to establish a systematic approach to the methods of
dynamic modelling and analysis for three-phase AC power converters. Recent
developments in AC power conversion (converters with soft-switching of the
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semiconductor switches) and the application of different pulse modulation
techniques only increased the need for dynamic modelling.

The proposed method of approach to the problem is to:

1. Examine the existing DC-to-DC modelling techniques and investigate the
possibility of extending the techniques to AC converter analysis, -

2. Classify systematically AC converter topologies and related control techniques
to study the control system configuration.

1.2 Survey of modelling techniques for DC-to-DC conversion

The dynamic analysis of DC-to-DC converters has already been accepted as a
design tool [Kassakian et.al., 1991]. All methods are based on the step of
averaging and/or linearization. Once accomplished, a process of averaging
eliminates the influence of the exact waveshapes on the mathematical relationship
between averaged quantities. This fact can lead to a dramatic simplification of the
mathematical expressions. Although a relationship between the averaged models
and the original systems is unclear, the comparison of predicted and measured
parameters proves the accuracy and reliability of these methods.

Averaging steps often yield a nonlinear network model. The assessment of the
stability and the design of the controllers for nonlinear models is usually difficult.
The linearization yields a linear model that approximately describes small
perturbations and deviations from the nominal operation of the system. The
stability of the linearized models, often called small-signal models, shows that the
rated operating condition is stable for small perturbations at least.

Modelling techniques are equation-oriented (the result is an averaged and
linearized set of equations) and circuit-oriented, where the circuit components are
replaced by their averaged and linearized equivalents. Circuit-oriented techniques
are occasionally more illustrative but in a broader context they are equivalent to
the equation-oriented techniques. Therefore, in the following survey the equation-
oriented model is subject of our interest.

The extended injected-absorbed-current analysis method [Kislovski, 1983, 1985] is
one of the simplest linear methods. The validity of this method is limited to the
investigation of low-frequency, small-amplitude phenomena. The method of
analysis implicitly admits the existence of a linear relationship between the small
increments of the involved quantities. This idea is mathematically expressed, and
applied to the functions of the averaged input "injected" current and output
"absorbed” current, resulting in total differentials (See Fig. 1.2).
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u "~ POWER
s CONVERTER

X
Fig. 1.2 Power converter
ig = ig(x,ug,ug) (1.1
Iy = bo(X,Uug,Ug) (1.2)
. . au 3
dig = s v 5 gy + O gy, (1.3)
ox dug ou,
. 3 .
di, = _al_odx+__i°_ us+_z_hidu0 (14
ox dug du,
where

- input "injected" current,
i, - output "absorbed" current,
u, - input (source) voltage,
u, - output voltage,
x - control quantities.

Partial derivations are constants for a given operating point, so that the equations
(1.3) and (1.4) are linear relations. From the obtained linear equations, the model
of the switching cell and the transfer functions can be developed.

In case that the input and the output current depend also on an additional
quantity, e.g. inductor current, an additional equation is necessary. This is
characteristic for the continuous mode of operation for which the stored energy is
transferred from one switching cycle to the other. The additional equation
represents the derivation of this quantity.
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The application of the injected-absorbed-current analysis method to AC power
converters is difficult. The relation between injected (input) and absorbed (output)
current is established by simplified linearized waveforms. A similar procedure
cannot be realized for AC converters. The injected-absorbed-current method fails
to predict the stability of the phase-controlled resonant converters where a linear
approximation does not hold.

The state-space averaging modelling method [Cuk, Middlebrook, 1976, 1977] has
the virtue of starting from a standardized and general system representation,
namely a state-space description of the circuit for each of its equivalent switch
configurations. The basic principle is to replace the state-space description of the
linear equivalent circuits (two or more) by a single state-space description that
represents the average effect of the system through one cycle of operation. In
matrix notation, set of state-space equations, e.g. two configurations, is as follows:

% =Aix+Bju (1.5)
£ = Agx+Bou (1.6)
where:
x - vector of state variables,
u - vector of independent sources,
AB{,A5B, - system matrices for two different configurations of a
switching network.

The basic idea in state-space averaging is the replacement of two sets of state-
space equations by a single equivalent set:

% = Ax+Bu (1.7)

The equivalent matrices A and B are the weighted averages of the actual matrices
that alternately describe the switched system:

A =dA;+(1 -d)Ag (1.8)
B = dBy+(1-d)By 1.9)
where:

d - duty ratio.

The steady-state solution for which DC values are shown in capital letters is
obtained by setting £ = 0 in (1.7);

X =-A -IBU (1.10)
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The AC small-signal solution is found by linearization using the perturbation of
vgﬁables and substitution in the usual way:

u=U+i
x=X+% (1.11)
d =D+d

where the capital letters denote DC steady-state values and the lower case letters
with a tilde denote the perturbations around the steady-state operation.

After subtracting the DC terms and omitting the second-order terms (small-signal
restriction), the resulting equation is:

% = A +Bil +de (1.12)
By = [(A1-Ap)X+(B;-By)U)

By Laplace transformation the solution can be written:

#s) = (sI-A)"YBa(s)+B gd(s)] (1.13)

where:
I - identity matrix.

A required transfer function can be developed in the frequency domain based on
equation (1.13).

For the discontinuous current mode, the state-space equation is supplemented by
equations for the additional constraints. These equations contain averaged
discontinuous state variables. State-space averaging was originally proposed to
model a pulse-width modulated converter. The natural frequency of each linear
circuit of a PWM converter is much lower than the switching frequency. This
provides the justification of the linear ripple assumption. This method does not
work on resonant converters where the energy of the state variables is carried
mainly by the switching frequency and not by the DC components. State-space
averaging fails to predict the high-frequency response of current-programmed
converter systems [Lau, Middlebrook, 1986).

Sampled-data modelling [Verghese, et al, 1986] was developed to overcome the
problem encountered when using the state-space averaging method to calculate
the frequency response of current-programmed converter systems. A sampled-data
model describes the evolution of state variables for one cycle of operation from the
beginning to the beginning of the next one. For every model the state vector is
calculated from the previous state:

t
sty = A4 a_ e [FTOB@d (1.14)
ti-1
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where:
.:Z-, B. - system matrixes in time interval i,
1 - vector of the state variable in instant L1

x(t;) - vector of the state variable in instant ¢;,
u; - vector of the sources in time interval i 1.,
d. - duty cycle in interval i,

7’ - period of the switching cycle.

A small-signal model is developed by applying a Taylor-series expansion and
retaining only the linear forms. For an exact solution of the state equations in the
time-domain, the steady-state trajectory is found under given operating conditions.
Perturbation of the periodic trajectory provides the small-signal evolution of the
dynamicbehaviour represented by a linear time-invariant difference equation with
the sample interval equal to the switching period. A similar approach to sampled-
data modelling is studied in [Visser, van den Bosch, 1991].

Sampled-data modelling is a general method which is valid for all converters with
periodic operating trajectories. Because there is no linear ripple assumption made,
the method is valid also for resonant converters [Elbuluk, et al, 1988]. The
effectivity of sampled-data modelling for AC converters is limited because of the
large number of switching states.

The use of sampled-data modelling for resonant converters [Verghese, 1982] yields
a small-signal model for the underlying resonant converter with the perturbation
in the switching frequency as the input. The complication in this approach is the
requirement to obtain a nominal periodic solution as a first step in the analysis.

The phase-plane method [Oruganti, Lee, 1985] is a basic approach to obtain a
steady-state solution for resonant converters. The control scheme based on this
method is evidently effective [Oruganti, Lee, 1987]. A limitation of this approach
is its restriction to second-order systems. It is not obvious how to include
additional state variables that are associated with the load or source filters.
Therefore, the application of the method in polyphase resonant converters is not
effective. An extension of the method has been reported in recent literature
[Cheron, Foch, 1993]. The inclusion of the snubbers in the analysis results in a
discontinuous phase plane.

Small-signal analysis of resonant converters [Cuk, Vorperian, 1977] has been
developed primarily for application in resonant converter systems. This method
employs state-space analysis without the linear ripple approximation, since such
an approximation is clearly not valid for resonant converters. The crux of the
analysis requires the retention of terms of the form e‘x %, and linearjzation under
small-signal assumption requires retention of terms of the form A% which arise
from small-signal perturbations #; of the steady-state switching time T,. This is
summarized by the following equatxon

Aty _ A(Tg+i) _ AT Al AT

3 ST +AZ] (1.15)
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The justification of the linearization in the last step simply requires !5 to be small
compared to the time constants of the circuit and the switching time T,. Since for
resonant converters 7. cannot be considered small compared to the natural time
constants of the circuit as in PWM converters, the approximation of ATS is not
valid in this case. Another reason why resonant topologies present more
difficulties for small-signal analysis than the minimum element topologies (buck,
buck-boost and boost converters) resides in the fact that resonant topologies have
one state variable more. The small-signal model for the resonant converter became
a challenging task and was realized by several authors [King, Stuart, 1985],
[Nakahara, et al, 1989], [Witulski, Hernandez, 1987, 1991], [Vorperian, 1989].

Because of the switching behaviour, power converters are nonlinear, time-varying
systems. Dynamic modelling and analysis for these classes of systems is not
studied extensively in comparison to linear time-invariant systems. The step of
averaging and linearization when applied to the analysis of the DC-to-DC power
conversion simplifies the nonlinear time-varying model of a converter. The
obtained model is a linear, time-invariant (LTI) or a piecewise-linear time-
invariant system (PLTI).

The small-signal analysis method, based on an averaged model, establishes
efficiency and accuracy. The justification of the method of averaging was defined
by a small-ripple condition and linear ripple approximation. With the small-ripple
approximation, it is assumed that a Fourier series expansion for a finite segment
of a circuit waveform is dominated by its DC term. Therefore, the averaging
methods are not directly applicable for AC power converters.

Since the steady-state solutions for AC power converters are time-varying
functions, a small-signal model cannot be obtained by straightforward
linearization. There is an analogy between averaging and linearization. In the
broader context, averaging and linearization can be classified as a perturbation
method that yields a simple approximated model. Linearization provides a linear
approximation of a nonlinear system, while averaging provides a time-invariant
approximation to a time-varying system. In both cases, the simpler approximate
model is exact at some rated operating points. Linearization considers a
neighbourhood in the state-space and averaging considers a neighbourhood in the
parameter space.

1.3 Classification of AC power converters

There are many procedures used to classify converters. They include the
classification according to the type of semiconductor device used, to the function
of the converter and to the method used to switch devices in the converters. The
classification of AC converters according to the modelling and analysis differs from
the conventional classification because the modelling problems are different.

A generalized classification of AC converters on a functional basis leads to a
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division into AC-to-DC converters (rectifiers), DC-to-AC converters (inverters) and
AC-to-AC converters. A practical power system may comprise more than one
conversion system. An AC-to-AC converter with a voltage or current DC link
combines an AC-to-DC and a DC-to-AC converter.

Some insight can be gained by classifying converters according to the way in which
the semiconductor devices in the converter are switched [Mohan, et.al., 1989].
There are two possible categories.

1. Line frequency converters, where the source voltages present at one side of the
converter facilitates the turnoff of the power semiconductor devices. Similarly,
the devices are turned on, locked in phase to the source voltage waveform.
Therefore the devices switch on and off at the line frequency of 50 or 60 Hz.

2. Switching converters, where the controllable switches in the converter are
turned on and off at frequencies that are usually high compared to the line
frequency. In spite of the internal switching frequency of the converter, the
converter output may be either DC or at a frequency comparable to the line
frequency.

These two categories can be further divided into subcategories according to the
type of conversion. Switching converters with high switching frequency are subject
of our interest in this thesis. For the purpose of analysis, the important aspect to
study is the control system configuration.

Control system configuration

Proposed analysis methods in the literature differ with respect to the control
system configuration. Power converters are usually a part of a complex system,
e.g. an electrical drive or a power supply. The control and regulation of the entire
system is a separate problem. The term control is assigned only to the control of
a power converter [Kassakian, 1991]. A typical control system configuration is
depicted in Fig. 1.3. It should be noted that this figure depicts only a power
converter with the inverter loop controller. The required operation is related to the
reference voltage or current which results from the outer loop controller (not
shown in Fig. 1.3). The purpose of the inner loop controller is the translation of
the required operation into a switching action of semiconductor switches. The
outer loop controller is a matter of interest in control engineering and results in
a PID controller or other, more sophisticated regulation schemes. However, the
inner loop controller is a vital part of a power converter. Therefore, in this thesis
the inner loop controller is a matter of further study.

The terms modulation and modulator are often used to establish the method for
creation of the converter waveforms. The term "controller” is more general and its
use emphasize the inclusion of both open-loop and closed-loop operation.

For a simple open-loop control, the controller does not provide information about
the system during operation, although the construction of the open-loop controller
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feedforward disturbances

required
converter
output

operation
controller power
(modulator) circuit

feedback
Fig. 1.3 Typical control system configuration

may be based on a prior information or models. In an open-loop control with
feedforward, the control employs measured information about disturbances
affecting the system. Feedforward alone is usually insufficient to obtain a
satisfactory performance of the power converter. For the closed-loop control or
feedback control, the controller manipulates the measurements that reveal the
behaviour of a circuit. The controller can assess the extent of the departure from
the required behaviour by employing the measurements and choosing the control
actions aimed at a fast and safe restoration of the system to its required operation.

AC topologies
AC topologies are usually classified into categories depending on the type of the
intermediate power transfer link (DC link, AC link or direct link).

Another widely used method of classification is the classification into DC link,
resonant link and direct link or, more recently, into hard-switched and soft-
switched power converters.

These classifications are based on the traditional converter topologies. A review
of topologies is shown in Fig. 1.4. There is some overlap between the different
groups of converters. An example of this phenomenon is the soft-switched,
resonant direct link converter as presented by [Cho, Cho, 1992].

For the dynamic analysis and modelling, the AC converter topology and the
related control techniques are divided into three basic groups.
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AC-AC CONVERTER TOPOLOGY
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Fig. 1.4 Review AC-to-AC power converter topology

Pulse-width modulated (PWM) AC-to-DC or DC-to-AC converters

The common feature of this group is the DC current or DC voltage link. This
group includes also soft-switching PWM converters. The PWM method is
presented as an open-loop method with the possibility of applying a
feedforward control.

Discrete-pulse modulated converters

The common topological feature is the high-frequency resonant-link based on
a series-resonant or parallel-resonant circuit. Various pulse modulation
techniques are applied. The hysteresis PWM or sliding PWM is a element of
this group.

Direct link converters

The dynamics of this last group of converters (matrix converter, cyclo-
converter) are provided by their switching function since no dynamic elements
(energy storage elements) are involved in the conversion process. The analysis
of the matrix converter is studied in detail in [Gyugy, Pelly, 1976]. Therefore,
in this work we do not deal with this class of power converters.
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In the following, the group of pulse-width modulated converters and discrete-pulse
modulated converters is evaluated more in details.

Pulse-width modulated converters

For PWM converters, the procedure of feedback is usually used for regulation and
not for synthesis of the low-frequency waveforms. It is thus an open-loop control
with the possible use of feedforward.

PWM converters with soft-switching features are also part of the group referred
to. Soft-switching is achieved by introducing additional components and it does not
influence the energy transfer or the dynamic behaviour of a converter. As stated
at the beginning of this section, the switching power converter transfers the
energy and achieves the required shape of an electrical quantity (current, voltage)
via pulses with a high repetition frequency. An example of a pulse-width
modulated electrical quantity is shown in Fig. 1.5. Pulse-width modulation can
change the width T, i of the kth pulse in a required way while the period 7'y,
is kept constant:

Tonj # Tonk+1 (1.16)
Tsw,k = Tsw,k+1

onk on,k+1
I3 Yt t—s
» Tow Tow

Fig. 1.5 Pulse-width modulated waveform

The degree of freedom that changes the pulse width is used to reach the required
value of the electrical quantities such as the amplitude, frequency and phase-shift
of the external waveforms of the converter.

Discrete-pulse modulated soft-switching resonant converters

For discrete-pulse modulated converters the width T, of energy pulse is kept
constant and equal to the half of the resonant link frequency period. The pulse
time interval Tgy i and possibly the pulse amplitude change:

There are two variables (pulse frequency and amplitude) that determine the value
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Tonk = Tong+1 1.17)
Towp # Towp+1
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Fig. 1.6 Pulse frequency modulated waveform

of the transferred electrical quantities (voltage or current). The mentioned
parameters depend in the most cases on each other, so a simple precalculation of
the switching pattern is no longer possible. Therefore, this class of modulation is
not used in an open-loop control. In soft-switching pulse-modulated converters, the
feedback serves not only as a means of regulation but also as a means of synthesis
of the low-frequency waveforms. Therefore, a different pulse modulation technique
is applied compared with PWM converters.

The terminology "pulse frequency modulation” (PFM) is often used to identify this
category of modulation techniques. It is due to the fact that this principle of
modulation technique is similar to PFM, originally described for DC-to-DC
converters but hardly used for AC conversion. In difference with the PFM
modulated of resonant converters, in the case of discrete-pulse modulated soft-
switching resonant converters, the amplitude of the pulses also varies. Therefore,
it is not possible to precalculate a switching pattern.

An example of pulse frequency modulation is presented in Fig. 1.6. The pulses
shown in Fig. 1.6 have a rectangular shape. Since the energy is transferred via a
high-frequency resonant link, the shape of the modulated pulses is often sinusoidal
with changing amplitudes. Soft-switching pulse-modulated converters are in fact
resonant converters where each switching action depends on the instantaneous
value of the state variables. Therefore, new approaches to the dynamic analysis
and modelling should be considered.

Currently used modulation methods for soft-switched resonant converters can be
also considered as sliding-mode control methods. They approach sliding-mode
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control with a few differences which are referred to later. Polyphase, soft-switching
resonant converters are in nature multi-input, variable-structure and discrete
systems (discrete-pulse modulated).

173
-]
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]
®

load

controller

references

Fig. 1.7 Three-phase-to-three-phase power converter

Generalized conversion system

A general configuration of a three-phase-to-three-phase power converter is shown
in Fig. 1.7. The used converter topology and the related control techniques depend
on the character of the passive network located between the switching matrices
and on the character of the filters as well.

The character of the passive network and the character of the filters provides the
character of the converter (in terms of DC-to-DC power conversion: boost, buck,
buck-boost topologies). In the case of DC link converters, the analysis is divided
into two parts (AC-to-DC and DC-to-AC). This is because of the energy storage in
the link (buffer), which makes power conversion twofold.

1.4 Conclusions

Power converters are mostly nonlinear systems because of their inherent switching
operation. When looking at the averaging methods applied to the analysis of the
DC-to-DC power converters, we see that the averaging method simplifies the
nonlinear, time-varying, discontinuous model of a converter by creating a linear
time-invariant (LTI) system (or by obtaining an LTI model from a piecewise LTI
model). The averaging step is, however, not applicable to AC converters, so a
different approach should be considered. We also concluded that the dynamic
model cannot be obtained by linearization.
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To enable the study of AC power converters, a generalized classification of the
converter topology and their related modulation techniques are presented. Two
basic groups according to the control configuration are defined: pulse-width
modulated converters and discrete-pulse modulated converters. These groups are
investigated separately. The focus is on soft-switching resonant power conversion
since there were no methods for analysis available so far.

The DC-to-DC power converter topologies mostly consist of a single power
semiconductor switch. The averaging operation is applied to the switching cycle
of a switch during the switching period. The AC converter topologies consist of a
considerably high number of semiconductor switches. Therefore, the first step in
the analysis is the study of the mathematical model of a generalized converter.
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2.1 Introduction

The study of three-phase-to-three-phase AC power converters for all modes of
operation requires the establishment of a set of dynamic equations. In other
words, it is essential to adopt a mathematical model that involves the dynamic
effects in the physical quantities of the converter and relates them to each other.
The selection of a mathematical model is a crucial point in the analysis of the
converter operation. However, the selected mathematical model and the control
mechanism are related to each other. As shown in Chapter 1, in the survey of the
modelling techniques for DC-to-DC converters, the obtained models have reduced
accuracy due to the introduced simplifications. The accuracy should normally be
sufficient for practical purposes.

The dynamic equations of the system involving energy storage elements (inductors
and capacitors) result in a set of differential equations. The order of the
differential equations is equal to the number of independent state variables. The
development of the differential equations for an electrical network containing
active and reactive components is routine work that involves the application of the
definition of circuit elements and the rules of network theory.

The conventional approach to the inspection of the converter network, including
switches, is to analyse the operation from one time interval to another time
interval. Each alteration of the topology results in a new configuration and
another set of differential equations. A sampled-data model based on the solution
of the equations for each individual interval has no practical solution because the
number of topologies can be extremely large.

Another approach is to avoid the topological details by introducing a model that
applies nonlinear discontinuous switching functions that perform the switching
operation of semiconductor switches. Because of the switching action of the
semiconductor power devices, the obtained differential equations are nonlinear
with discontinuous excitation. Mathematical science does not offer a satisfactory
solution for differential equations with discontinuous right side. Therefore,
creating a mathematical model of switches and a model of the switching behaviour
is the first step in the analysis.

The model of a direct AC-to-AC converter that is not involving energy storage
elements is quite simple and straightforward [Gyugyi, Pelly, 1976]. The input and
output of the converter are connected via semiconductor switches:

uy(t) = H®) ug(t) 2.1
i = HY®)iyt) (2.2)
where:

u, -output voltage vector,
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e

-output current vector,

zgs -input voltage vector,

i; -input current vector,

H_ -existence matrix,

HT _transferred existence matrix.

The output voltage u, is a combination of input voltages u and the source current
i is a combination o? output load currents i,. The existence matrix H defines the
relationship between the input and output quantities of the converter and thus
specifies the operation of the power switches. Similarly, equations (2.1) and (2.2)
represent a transfer function. The existence matrix is a simple model for a
switching matrix of semiconductor switches.

Compared to a direct converter, mathematical model of the converter shown in
Fig. 1.7 results in a set of differential equations because it contains energy storing
elements. The switching matrices SM1 and SM2 represent the switches in the
bridge configuration (Fig. 2.1). The number of the possible network configurations
in a three-phase system is large. The number of possible switching states for a
network containing n switches is in general 2". However, not all possible switching
states create an allowed and meaningful configuration. In fact, the number of
meaningful and allowed switching states is small as shown later. A meaningful or
active switching state is that in which energy transfer between the three-phase
terminals and the one-phase side of the switching bridge takes place. The allowed
switching state configuration is one that does not result in failure of the
semiconductor switches. Depending on the network as connected to the three-
phase side and the one-phase side of the bridge, there are only 6 meaningful and
active states. The investigation is focused on the converter topologies using a
three-phase bridge configuration.

Two approaches are discussed:
1. the switching function for each single leg of a switching bridge SM,
2. the switching phasor for a switching bridge SM.

Another possibility would be the assignment of a switching function for each single
switch in the switching matrix. This possibility is not studied because switches in
the switching bridge are functionally related to each other, which means that none
of the switches operates separately.

2.2 Configuration

The general topology of a three-phase-to-three-phase converter is shown in Fig.
1.7. The source and the load are presented in a star configuration. The character
of the input and output filters depends on the character of the passive network in
the link. The switching matrices SM1 and SM2 are realized by a three-phase
switching bridge. A scheme of such a switching bridge is shown in Fig. 2.1. In this
figure, a DC side is shown although it does not need to be a DC link in the
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classical way of understanding. The three-phase switching bridge generally
performs a three-phase to single-phase conversion. In this thesis, the three-phase
side is assigned as the AC side and the single-phase side will be assigned as the
DC side or link.

In Fig. 2.1a, a rectifier (AC-to-DC) is depicted and in Fig.2.1b, an inverter (DC-to-
AC) is depicted. Although, the topology of a rectifier is a mirror picture of an
inverter, the control mechanism differs and depends on the configuration as it is
explained further. Voltages of the three-phase AC side u; ) for j=s,0 and k=ab,c
are defined with respect to the starpoint of a three-phase Source or a three-phase
load as defined in Fig. 1.7.

The character of the AC side or the DC side is described by the character of a
voltage source or current source. The character of the AC side and the DC side are
always complimentary. A three-phase AC current source or AC filters with
inductive character are connected to a one-phase DC voltage source or filters with
capacitive character via a switching bridge. A three-phase AC voltage source or AC
filters with capacitive character are connected via a switching bridge to a one-
phase DC current source or filters with inductive character.

a. b.

lde ige

1
\Ser oo \lscp \Ser \lsbp \Se

isa loa
- —
Usqg . Uoa
b tob
—_—
U u
dc dc
Ugh B Uob
Isc loc
b —
Usc Uoe

\Lson }Sbn iscn ‘} ‘} ﬁson ﬁsbn }Scn

Fig. 2.1 Three-phase switching bridge
a, rectifier
b, inverter

Depending on the character of the filters and the passive network of the link,
there are two different configurations:

1. current configuration, where a path is created for the current in each phase
of the AC side. The impedance of a three-phase AC side is large compared to
the impedance of one-phase DC side.
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2. voltage configuration, where a line voltage is connected to the link. The
impedance of a three-phase AC side is low compared to the impedance of a
one-phase DC side.

Current configuration

An active configuration requires the creation of a path for the current of each
individual phase and energy transfer between the AC and the DC sides. Current
configuration means a configuration that creates nonzero currents in the switching
bridge. This constraint on the switching functions is analytically expressed as:

Sap + San = 1
Spp + Spn = 1 (2.3)
Sep *+ Sen =1

where:

S =1 - closed switch,
S;k =0 - open switch,
for j=a,b,c and k=p,n.

The constraint (2.3) defines six active and two allowed switching states. This
configuration for the three-phase switching bridge is identified as a current
configuration.

Voltage configuration

The other active configuration requires two closed switches in the switching
bridge. It is always one switch from the upper group (Sap, pr, Scp) and one
switch from the lower group (Sans Spns S.n)- This constraint on the switching
functions is analytically expressed as:

Sap * Spp + Sep = 1 (2.4)
San + Spn + Sen =1

The constraint (2.4) defines six active and three allowed switching states. Since

only two switches from the switching bridge are closed, this configuration is a

voltage configuration.

2.3 Switching function

One switching leg of a switching bridge is shown in Fig. 2.2. The canonical cell of
one leg of the switching bridge connects one phase of the AC side of the converter
to the DC side (or link) via two switches Sp and S .

A possible method to characterize the switching behaviour of a three-phase
converter is a switching function or duty ratio concept. Similarly to DC-to-DC
modelling techniques, the on and off states of a semiconductor switch are modelled
by a switching function:
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() = Sp-Sn (2.5)
where:

S(t) - switching function (duty cycle) of a bridge leg,
S.=1 - closed switch (j=p,n),
S; =0 - opened switch (j=p,n).

By applying the model to a switching leg, it is possible to establish a mathematical
model for a three-phase switching bridge. The mathematical model shows that
there is a relation between the AC and the DC sides.

The switching function 8() introduced in equation (2.5) has now three values:
3(t)= 1 - if the phase is connected to the pole of the link,
8()=-1 - if the phase is connected to the zero of the link,
8t)= 0 - if the phase is disconnected (switches Sj, j=p,n are closed).

.

idc
®
p

S'm \
Fig. 2.2 One leg of a switching bridge (i=a,5,¢)

The relation between the AC and the DC sides of one switching bridge leg is
defined by equation:

ug = _;. {Si(t)-% ¥ Si(t)] Ude (2.6)

i=a,be

where:
ug - phase voltage of the AC side,
Uge - voltage of the DC link,
8,(t) - switching function of i phase (i=a,b,c).
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Equation (2.6) is valid for a current configuration of a rectifier and an inverter.

The term ZSi(t) represents the influence of the actual switching position of the
other two legs of a three-phase switching bridge. In the case of the voltage
configuration, this term is always zero. This fact is derived from (2.4) and (2.5).
The general expression valid for an inverter and a rectifier in a voltage
configuration is:

uge = Y, 8itlug 2.7
i=abe

The general expression valid for DC and AC currents of an inverter and a rectifier
in the voltage and the current configuration follows:

ide =_;_ Y 5ig (2.8)

i=ab,c

where:
iqe - current of the DC side of a bridge,
iy - current of the AC side of a bridge.
Because the DC link current for a voltage configuration flows through two
connected phases, expression (2.8) can be simplified for a rectifier and an inverter:

isi = si(t)idc (2.9

The current configuration offers another definition of the switching function. This
is possible because of the complimentary switching of the switches in a switching
bridge leg:

8t) =1 - if the phase is connected to the pole of the link,
&) = 0 - if the phase is connected to the null point of the link.

Equation (2.6) for a current configuration is then changed:

Ugi = [Si(t)—% E Si(t)} Uge (2.10)

i=ab,c

To summarize, a multi-terminal block of a three-phase switching bridge
constructed from three individual switching bridge legs is shown in Fig. 2.3. The
introduced mathematical model of the switching function is applicable in the case
when each phase is modulated separately. A possible modulation method is the
suboscillation PWM method [Holtz, 1992].

Equations (2.6) and (2.7) yield that the currents and voltages at both sides of a
switching bridge leg depend on all three switching functions 8.() (i=a,b,c). This
model is very useful for the analysis of existing classes of modulation but limited
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Fig. 2.3 Model of a switching bridge with switching function §;(2) (i i=a,b,c)

for the process of synthesis, as shown in the following chapters.

It would be advantageous to develop a model where the switching action is
prescribed by only one function. Therefore, an advanced mathematical model is
introduced as a space phasor representation of a complex switching bridge. The
fundamental harmonics of the steady-state values of the AC side currents and
voltages of the converter circuits vary sinusoidally in time. These values can be
found by means of the Cartesian projection of an oriented segment in a complex
plane (time phasor).

When dealing with three-phase circuits, three sinusoidal waveforms are presented
by phasors in a complex plane with an electrical phase shift of 21/3. A combined
representation is possible by a space phasor prescription. A space phasor is
defined as an oriented segment in the complex plane that characterizes at every
moment the spatial distribution of an internal quantity of an electrical machine.
Because the three-phase power converter is often loaded by three-phase electrical
machines, a space phasor representation of a three-phase circuit is an
advantageous choice. Thus is compatibility with the theory of electrical machines
maintained.

2.4 Space phasor definition

The space phasor representation of three-phase circuits has been proved to have
considerable advantages over conventional circuit analysis methods [Kovacs, Racz,
1959]. The complex notation of the state variables facilitates easy transformation
into various coordinate systems as it is common practice in the dynamic analysis
of AC machines. In the following, a space phasor definition is given. An analysis
of a three-phase switching bridge enables the definition of a switching phasor s
which supervises the interaction between the AC side and the DC side of a bridge.
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There is lot of misunderstanding in the literature related to the phasor-vector
theory. Term phasor is used because of the complex notation of the function in this
work.

For the three balanced time-varying functions x,1), xy()) and x.(?), the
instantaneous space phasor x(2) is defined as:

x(t) = % (4(8) +ap()eP +x(t)e TP) @.11)
where: I

x(t) - instantaneous space phasor,

x;(t) - (i = a,b,c) time-varying functions of a balanced three-phase system,

p = 27/3 - angle.

‘Xbejp

Fig. 2.4 Space phasor in a,b,c coordinate system in a two dimensional plane

If the sum of the three functions is zero (they are components of a balanced three-
phase system), the inverse transformation exists and %4(t), x,(¢) and x(t) can be
reconstructed from the space phasor representation (Fig. 2.4). The main
assumption made in the analysis is that all three-phase variables are balanced so
they can be uniquely represented by an instantaneous space phasor. A three-phase
system is defined as balanced when both the currents and the voltages are
symmetrical. Generally, a set of polyphase quantities (phase currents, phase
voltages, etc.) is balanced, if they are sinusoidal in time, they have identical
amplitudes and they are shifted in time with respect to each other by identical
phase angles [IEEE Standard 100-1972].

By the projection of the resulting phasor x(¢) in the direction of each axis, an
instantaneous value of the components is given. The resulting space phasor is with
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Fig. 2.5 Space phasor in o, coordinate system

advantage expressed in o,B coordinate system. This coordinate system is linked
with one of the axes of the a,b,c coordinate system. On Fig. 2.5, a and a axes are
linked together.

The transformation of the coordinates between the a,b,c and the o,p frames of
reference is defined by the transformation matrix T, 5 (2.13). This transformation
is named the Park transformation known from the theory of AC electrical
machines.

cos(0) cos(_zf.) cos(sz-)
T _ 2 3 3 (2.12)
o T3

3 | sin(0) sin(E;i) sin(.__.g_n.

By using a space phasor definition (2.11) for three-phase time-varying functions,
the resulting phasor is also time varying. It is convenient to transform the
obtained phasor to a coordinate system rotating with the same angular speed ©
as the three-phase functions. This system is called the d,¢ coordinate system. It
must be noted that the name of the coordinate system rotating with frequency @
comes from the theory of the electrical machine. The transformation of the phasor
from the a,p to the d,q coordinate system shown in Fig. 2.6, is defined by the
transformation matrix Td,q:
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' cos® sind (2.13)
Td,q = .
-sin@ cosO
where:
9 = fmdt o ' (2.14)

Fig. 2.6 Space phasor in d,q coordinate system

Transformation of the coordinates of the phasor from a,b,c to d,q coordinates is
given by equation:

X4,q=TdqTa,pXab,c (2.15)

The resulting space phasor appears in this new coordinate system as a stationary
phasor (if x; for i=a,b,c is sinusoidal).

2.5 Switching space phasor

A switching space phasor is defined according to the definition of an instantaneous
space phasor. This switching space phasor prescribes the configuration of a three-
phase bridge:

s = Z[(Sap~San)+ (St ~Spn) e +(Sep-Sene | (2.16)
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The function Sij fori=a,b,c and j=p,n prescribes the actual position of the switches
in a three-phase switching bridge Fig. 2.1. Therefore, the resulting switching
phasor s (2.16) appears as stationary in the o,B coordinate system. The positions
and amplitudes of the switching space phasors for current and voltage

configurations are studied later.

The input and the output three-phase currents and voltages are also defined by
space phasor definition:

by = _?}_(usa+usbeip +usce_jp) 2.17)

I = 'g‘(isa * isbeip + is.ce_jp ) (2.18)

By = —g'(uoa +uobeip +uoce—jp ) (2.19)

iy = 'g(ioa +iobeip *ioce_jp ) (2.20)
where:

u; - space phasor voltage,

i; - space phasor current,

Uy - phase voltage,

iij - phase current,

s - AC side of rectifier (source),

o - AC side of inverter (output),
for i=s,0 and j=a,b,c.

The obtained phasors of currents or voltages are in the o, coordinate system
rotationary (rotating with an angular frequency of the three-phase voltages or
currents) or stationary.

2.5.1 Current configuration

Using the notation of a switching bridge from Fig. 2.1 and considering the
switching constraint defined in equation (2.3), a set of 7 switching space phasors
can be defined. As stated in the introduction of this chapter, there are 6 active and
meaningful switching states. The set of 6 switching phasors is presented in Table
2.1. The positions of the switching phasors in Table 2.1 are presented in Fig. 2.7.

The seventh phasor defined by the switching constraint (2.3) is a zero phasor s,
(Fig. 2.7), that means the real and imaginary values of the switching phasor are
equal to zero. The zero phasor g prescribes two allowed switching states.
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Table 2.1

n | Closed switches Switching phasor s,

1 | S, Senr Spp |81 =23 (1+ 0P - e¥P) |2/3 (-2¢7P)

2 | Seps Spp San |82=2/3 (-1 +¢P-eP) |2/3 (26P)

3 | Spp San Sep |83 = 2/3 -1+ &P + 9P) [2/3 (-2)

4 | Sup Sep Spn |84= 23 (1- &P + &) |2/3 (2¢9P)

5 | Sep Spr Sap |85 =283 (1-P +eP) [2/3(-20P)

6 | Spy Sap Sen [86=2/3(1-6P-eIP) |2/3(2)
S.=

- —_4
s4=3e S5=-3¢€

Fig. 2.7 Switching space phasors from Table 2.1 and zero phasor S

The current configuration is applied for three-phase voltage source inverters and
boost (current source) rectifiers, that means converters with current character of
the AC side and voltage character of the DC side. The relation between the AC

and the DC sides can be found in the case of an inverter (Fig. 2.1b) as a set of
equations:

1
Uy = 5 S Ude (2.21)
ige = %Re{g*go} (2.22)
where:

u, - space phasor of the AC voltages,
ige - current in the DC link,
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i, - space phasor of the AC current,
ug. - voltage of the DC side,

s, - switching space phasor,

s - conjugate switching space phasor.

In the equations and the schematic shown in Fig. 2.1, the DC side is assigned
although it is not a DC link as classically understood.

Proof of the equations (2.21) and (2.22):

In the following equations (2.21) and (2.22) are proved. If the switches Sap, Sy
S.n of the three-phase switching bridge shown in Fig. 2.1b are closed, the
adequate switching phasor s=s; according to Table 2.1 is:

8y = -%e_fp (2.23)

According to the space phasor definition (2.12) the output voltage y, is:

2,1 1 1 2 —j
U = 2(2uge+—ugee? -Zugz.e 7P
=0~ 373 de 3 de 3 de )

-.ge'jpudc (2.24)

1
= _su
5= de
The result of equation (2.24) is identical to equation (2.21) which proves the
validity of (2.21). The switching space phasor s is a normalized phasor of the
output voltages. Therefore, the graphic representation of the voltage phasor 1, is
in the same form as the graphic representation of the switching space phasor.

For the selected configuration, the link current is equal to the current in the odd
phase, that means iy =-i .. Based on the defined equation (2.22) and the selected
switching space phasor, equation (2.25) is obtained:
. 3 ,
ige = .ZRe{_s_ Yig)
= BRel-2e/P2(i,, +ighe'® +ige TP)}
4 3 3 (2.25)

—_g.Re(ioaeip vigpedP +iyg)

2, 1. 1. . ,
- E( ~toa~glob +ige) = ~lgc

The graphic interpretation of equation (2.25) is depicted in Fig. 2.8. The position
of the switching space phasors s is in case of a current configuration identical with
the position of the a,b,c axes. This is due to the fact that the a,b,¢ components of
the switching space phasor in a current configuration are nonzero as summarized
in (2.3). Then the phase of the switching space phasors s;...s; is equal to the
integer multiple of p, which is identical to the phase of the a,b,c coordinates in
o, P system. The phase of the switching phasors s;...5¢4 is then the same as one of
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B

C
Fig. 2.8 Graphic interpretation of equation (2.25)

the coordinates a,b,c.

As a result of the multiplication, the space phasor of the current i_ is rotated by
the phase @ ; of the conjugate of the selected switching space phasor $1- The
switching space phasor s; is multiplied in Fig. 2.8 by the coefficient 3/4 in order
to obtain a phasor with a unity length. This coefficient is compensated in equation
(2.22). Thus, the current space phasor i, is rotated by the phase of a conjugate of
a switching space phasor but its amplitude stays the same. The real part of the
resulting phasor 3/4{s, 1,} performs the link current i ¢~ In this particular case,
the current iy, is positive and equal to -i,. The graplqlic solution automatically
takes the right polarity because of the projection of the resulting phasor in the
direction of each axis. By rotating the single triangle L. 1,0 by the phase angle
951, the i = -i,e7P enters the real axis.

The rotation of the current phasor 1, with respect to the other switching phasors
can be similarly documented. In Fig. 2.9, the current L, switched by all possible
switching phasors s;...s¢ for the current configuration, is depicted. Generally, by
taking any space phasor of three-phase balanced currents, its components (phase
currents) are projections in the a,b,c axes. By multiplying such a current phasor
by the conjugate of any of the defined switching phasors, a projection to one of the
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Fig. 2.9 Current iz, with current configuration switching space phasors

coordinates a,b,¢ enters into a real axis. This is because the phase of the switching
phasors is identical with the phase of the a,b,c coordinates. This means that the
current iy, is always equal to the absolute value of the current in one of the
phases. This fact corresponds with the definition of a current configuration and
proves the validity of the defined expressions for any current phasor.

In the case of a rectifier presented in Fig. 2.1a, the relation between the AC and
the DC sides is as in equation (2.26):

ige = %Re{é* i) ' (2.26)

Because it is the same expression as in the case of an inverter, it does not require
an additional proof.
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2.5.2 Voltage configuration

A set of switching space phasors 8, can be similarly defined also for voltage
configuration. For the switching constraint defined in (2.4), it is the set of 6
switching space phasors of active states in Table 2.2.

Table 2.2

n | Closed switches | Switching phasor s,
1 Sap Sen S =28 (1-eP)

2 Sens pr 83=2/3 (P -eIP)

3 Spp San  |84=23(1+&P)

4 Sans Sep |85 =2/8(-1+e7P)

5 Sepr s,Dn sg=2/3 (eI - eP)
6 Sap Spn |81 =28(1-P)

S,
$3=2(e"-1) 51=2(1-¢7*)

54-3(e7-1)

%(1 e}P)

s Z%(G—Jp_ejp)

Fig. 2.10 Switching space phasors from Table 2.2 and zero phasor o

The position of the switching space phasors from Table 2.2 is shown in Fig. 2.10.
The seventh phasor defined by the switching constraint (2.4) is a zero phasor S
(Fig. 2.10). The voltage configuration is applied for three-phase converters with a
voltage character of the AC side and a current character of the DC side.

The relation between the AC and the DC sides of a rectifier in Fig. 2.1a can be
found as:
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3
i = $ige (228

Proof of equations (2.27) and (2.28):
Take for example the switching configuration with closed switches Sap, Sy- The
resulting voltage u 4, in the link is then ug,-ug,:

Uge = %Re{g*gs}

%Re{_'f;_(l - e‘fP)_';i(usa +ugpe!P +uge 7P) (2.29)

1 1 1 1
(ugq - Eusb ) Uge Eusa ~Ugh + —2-usc) = Uga~Ush

c

Fig. 2.11 Graphic interpretation of equation (2.29)

The graphic interpretation of equation (2.29) is depicted in Fig. 2.11. The phase
of the switching space phasors is in the case of a voltage configuration different
from the phase of the a,b,c axes. The modulus of the switching space phasor is
(2/3V3 (Table 2.2). The constant 2/3 is compensated by the constant 3/2 in
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Fig. 2.12 Voltages of the link created from voltage u, with
switching phasors of the voltage configuration

equation (2.27). The modulus of the switching space phasor shown in Fig. 2.11 is
then V3. Thus the modulus of the voltage space phasor is increased by a factor V3.
The switching space phasor modulus brings back the phase-line voltage relation.
As known, the ratio between line and phase voltages for a three-phase system is
equal to V3.

The phasor u, in Fig. 2.11 is rotated by the angle ¢y of the conjugate of a
selected switching space phasor sg. The real part of the resulting phasor 3/2{s ug
is the DC voltage of the link. The resulting voltage of a DC link using other
switching phasors is depicted in Fig. 2.12. As in the previous case, the DC link
voltage is given by projection of the resulting phasor in the real axis. In Fig. 2.11
all possibilities of creating a DC link voltage switching phasors $1..-8g from a
voltage source phasor u are presented. As a result there are three DC voltages
with positive polarity and three DC voltages with negative polarity.
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The current in phase a and b is for the selected configuration identical to the
current ig.. The construction of the current space phasor i according to the
definition of the instantaneous space phasor results in:

= -g:(idc'idcejp) (2.30)

i

According to equation (2.28), current phasor is equal to:

. . 2 i~ 2. - i

i, =sige = §.(l—e’p)zdc = g(ldc’ldce}p) (2.31)
The obtained result is identical to equation (2.30) which proves the validity of
equation (2.28). Since the switching space phasor is a normalized phasor of the
source current i, the graphic representation of the current phasor i is identical
to the switching space phasors from Fig. 2.10.

The same relations (2.27) and (2.28) between the AC and the DC sides are also
valid for inverters with a current character of the DC side and a voltage character
of the AC side. This is the case e.g. of a boost inverter. Let us investigate the case
of an inverter (see Fig. 2.1b) with a voltage character of the DC side which applies
a voltage configuration. The relation between the AC and the DC sides is as
follows:

_ 1
u, = E§ Uge (2.32)
ige = _ZRe{gfLo} (2.33)

Proof of equations (2.32) and (2.33):

For the same configuration of the switches Sap’ Spns the voltage phasor of the AC

side is:
—-0

u =§( udc'%udceip) (2.34)

2| b

According equation (2.32) the voltage phasor is equal to:

o124 j
4y = 5351 ePiug, (2.35)
Once again, the graphical interpretation of the voltage phasors u, (2.32) is
identical to the switching space phasors s;...s5 from Fig. 2.7. The switching space
phasor is a phasor of normalized voltages.

Similarly, the AC current with the closed switches S, Sy, is according to the
space phasor definition equal to:
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. 2,. . i
Io = 3de~iaee™) (2.36)
According to equation (2.33) the current in the link is equal to:
ige = %Re{%(l— e_jp)éidc(l—ejp)} = ige (2.37)
B
b
le S

The phase of the current phasor i, is in this particular case equal to the phase of
the switching phasor s; (Fig. 2.13). The modulus of the phasor i is 2/N3 of the
components of the phasor (phase currents). Since the modulus (;? the switching
phasor is also 2/Y3, by multiplication, the resulting phasor has modulus 4/3. This
coefficient is compensated in equation (2.33) by coefficient 3/4. The resulting
phasor has a zero phase and the modulus is equal to the components of the phasor
{(phase currents). The phase of the selected switching space phasor is always
identical to the phase of i . Therefore, equation (2.33) can be rewritten in the form:

idc=%§* i (2.38)

Equation (2.38) is valid only for an inverter in a voltage configuration because the
phase of the current phasor  is identical to the phase of the selected switching

|

C
Fig. 2.13 Graphic interpretation of equation (2.37)
phasor.
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2.6 Instantaneous power in three-phase switching circuits

Nonlinear equations (2.21), (2.22), (2.26), (2.27), (2.28), (2.32) and (2.33) define the
relation between the AC and the DC sides of a switching bridge with the use of a
switching phasor. It is important to relate the obtained set of nonlinear equations
to the power flow in the converter.

The conventional theory of active and reactive power in one phase of a three-phase
system is based on an averaged value concept. It makes it impossible to define
instantaneous active and reactive power in a real sense for three-phase circuits.
Therefore, a new definition based on an instantaneous value concept has been
proposed [Akagi, Nabae, 1984] and recently extended for nonsinusoidal conditions
[Akagi, Nabae, 1993].

Fig. 2.14 Instantaneous space phasors of a three-phase system

The instantaneous power in a three-phase system is obtained from its three-phase
voltages and currents as:

P = Uggisa +Ushish *Usclsc (2.39)
The instantaneous power is defined in the o, coordinates as:
3, . .
= Z(ugliy +ugl (2.40)
D 2( oo B ﬁ)

Similarly, in a d,q coordinate system the instantaneous power is equal to:
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p= —g-(udid"-uqid) (2.41)

Expressions coincide with the definition of the Park real component of the power
[Ferrero, et.al., 1993].

The Park real component of the power and consequently the imaginary component
of the power were introduced for the first time mainly to investigate the behaviour
of a three-phase static compensator.

Fig. 2.14 shows the instantaneous space phasors of a power of a three-phase
system in a vector diagram. The instantaneous imaginary part of the space phasor
is defined as:

q = Ugip -up i, (2.42)
As shown in Fig. 2.14, the space phasor of the imaginary power is the imaginary
axis phasor and is perpendicular to the real plane on the &, B coordinates.
Considering that ut%is in parallel to i, and ug to ig, and that u,, is perpendicular

to iﬁ’ and ug to i, the conventional instantaneous power p and the instantaneous
imaginary power ¢, which is the amplitude of space phasor g, are expressed by:

[P} 3| Yo ¥ |lta (2.43)
q 2 |-up uq||ip

The instantaneous complex power is than defined as:

a= _g.gac*gac (2.44)
where:

Uy, - Park voltage phasors of AC voltages (&, or U),

L, - Park current phasors of AC phasors @5 or i)
The instantaneous real power is defined as :

p = Rela} = %Re{gac*gac} (2.45)

The physical interpretation of the instantaneous real and imaginary part is given
in [Akagi, Nabae, 1993). It is possible to prove that the instantaneous imaginary
power, also identified as reactive power, does not contribute to the power flow
between the input and output of the converter.

Equation (2.43) results into the following equation:
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; -1
o | g Y UB p (2.46)
ig 8 | -up ug, q
The instantaneous currents i, and iz in the o,p coordinate system are separated
into two different instantaneous current components:

P]z %uﬂ*Pyz{%uqJP]
iB 3 .—ug Uy 0 3 “Up Ug q (2.47)

_2|fp | 2 taq
3 iﬁp 3 qu
iap is the a-axis instantaneous active current:
. Ug,
lgp = 5 p (2.48)
ua +uB

laq is the o-axis instantaneous reactive current:

. _ -ug
ag = =4 (2.49)
ua + Uﬁ

i is the B-axis instantaneous active current:
Bp

iB =_B p
PT 3 (2.50)
ua +eﬁ

ia. is the B-axis instantaneous reactive current:
Ba

. Ug,
Bq = _E—é-q (2.51)
ua +uB

Let the instantaneous power in the a-axis and B-axis be p, and pgs respectively.
They are given by the following expression:

GHsssslgl
pp ug i up igp | | up ipg

The instantaneous real power in the three-phase circuit p is expressed by equation
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(2.53) by using the equations (2.47) and (2.52):

P = Pa+Pp
2 2
= ua D+ uB p |+ “Uo, UB + Yo UB q (253)
2 . 2 . 2 . 2 2 + 2
ua uB ua uﬂ ua Uﬁ ua uB

The sum of the third and fourth term on the right side of equation (2.53) is zero.
We obtain then the following equations:

P = Uqgigp+Uigp = Pop *Php (2.54)
0 = ugiaq*upipq = Pag*Ppq

Inspection of equation (2.54) leads to the following essential conclusions.

1. The sum of the instantaneous power p,, and pg, coincides with
instantaneous real power in a three-phase circuit. Therefore, p, . and pa . are
- . ap Pp
named instantaneous active power.

2. The instantaneous power p,. and Pgq cancel each other out and have no
contribution to the instantaneous power flow from the source to the load.
Therefore, Pag and bpq are named instantaneous reactive power.

If there are neither storage components nor losses in the static power converter,
the following relationship exists between the instantaneous imaginary power q
on the input side and the instantaneous imaginary power on the output side g,

s * Qo (2.55)

The instantaneous powers have no contribution to the instantaneous power flow
from the source to the load. To the contrary, the following relationship is valid for
the instantaneous real power p, on the input side and instantaneous real power
P, on the output side of the converter:

Ps = Bo (2.56)

With the use of equation (2.45), the following expression is valid for the power
balance between the AC and the DC sides of the three-phase bridge:

3 , 3 , .
ERE{ oo Ly = 'z'Re{ Updlae” ) = Udclde (2.57)
The model of the bridge is shown in Fig. 2.15.

Based on the power balance equation, all relations between the AC and DC sides
can be reviewed. The relation between the AC and DC sides was defined for
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Fig. 2.15 Switching space phasor model of the switching bridge

current configuration as (2.21) and (2.20). By eliminating the switching space
phasor s, the power balance equation is obtained:

udcide = SRelty,"iy) (2.58)
For a voltage configuration, the relation between the AC and the DC sides for a
rectifier is (2.27) and (2.28) and for an inverter (2.32) and (2.33). Both sets are in
coincidence with the power balance equation. The difference between the set of
equations for a rectifier and an inverter is in the control mechanism. In the case
of a rectifier, the given quantity is the AC line voltage u,. The DC voltage is a
result of the action of the control phasor s as well as the_XC current. In the case
of an inverter, the given input quantity is the DC bus voltage. The AC voltage and
the DC current are obtained as the result of an action of the control phasor s.

2.7 Relation between switching leg function and switching space phasor

Two different models of a three-phase switching bridge are defined. The model of
a switching bridge leg represents the bridge with three switching functions 3,
for i=a,b,c. The model of a switching space phasor represents the three-phase
switching bridge with one space phasor s.

The question remains as to whether there is a relation between these models. Let
us assume that the design of a modulation process is provided on the base of both
models. By determining three switching functions §;(%) (i=a,b,c) and with switching
strategy applied to each switching function separately, the configuration of a
three-phase switching bridge is determined. With the use of the transformation
matrix Ta,B (2.13), a space phasor can be constructed. The obtained phasor will
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be one from the set presented in Chapter 2.5. Derivation of a space phasor from
three switching functions is thus straightforward and unique.

The model of a switching bridge with a switching space phasor assumes that a
switching bridge configuration is represented by a space phasor. Let us assume
that as a result of the dynamic equations, an arbitrary switching space phasor is
calculated. The transformation matrix between a,b,c and d,q respectively o,
coordinates has two rows and three columns. The switching function for each
switching leg is the subject of our interest. Calculating d,q respectively o,p
coordinates of the arbitrary switching space phasor does not allow a unique
selection of a switching space phasor and this way solution for 8,(t) (i=a,b,c). When
the switching strategy is decided (PWM, PFM, hysteretic control, sliding mode),
there is no unique solution too, as will be shown in Chapter 6 for sliding mode.
Additional constraints must be added to overcome this ambiguity in the switching
pattern. This additional degree of freedom (or redundancy) explains why there is
a possibility to create the required (calculated) switching space phasor in an
unlimited number of ways. Comparing it to the model of the switching bridge leg,
this results in a unique solution. The mentioned redundancy gives room for the
switching pattern selection and optimization.

2.8 Conclusions

A mathematical model for the three-phase switching bridge has been
recommended. Two different classes of configurations for a three-phase switching
bridge have been defined:

- current configuration
- voltage configuration.

The switching constraint of the semiconductor switches defines the configuration.
Two mathematical models have been described for both configurations.

The first mathematical model is a switching function of a switching leg. The
switching leg contains two semiconductor switches and is a basic unit connecting
one phase of a three-phase system with a link. The mathematical expression
prescribing the relation between the AC and the DC sides of a switching leg
contains the switching function of all three switching legs. Therefore, the operation
of one leg is not completely independent and it is influenced by the position of the
switches of two additional legs.

The second model isa space phasor representation for the three-phase switching
bridge. The application of the space phasor representation for the three-phase
switching bridge has been studied. Relations between the AC and the DC side of
the three-phase switching bridge have been found and proved. The defined
relations correlate with the power flow in the three-phase circuits and the power
flow in the converter. The defined relations coincide with the power balance.
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The link between the switching function model and the space switching phasor has
been established. On the basis of the obtained equations, the dynamic equations
for a three-phase-to-three-phase converter can be obtained as routine work. The
defined relations allow the writing of a set of differential equations for the
investigated topology without going into topological details. The required dynamic
analysis and synthesis are based on the obtained set of equations.
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3.1 Introduction

Pulse-width modulation techniques (PWM) for AC power converters have been the
subject of intensive research throughout the last two decades. A wide variety of
methods, different in concept and performance, has been developed and described.
Several authors have studied the aspects of PWM modulation in detail. The
applied performance criterion is the harmonic spectrum of the implemented PWM:
the harmonics content of the current and torque. A comprehensive review of PWM
methods can be found in recent papers [Holtz, 1992, 1993]. The best known
method is the carrier modulation feedforward method, which is treated in this
chapter.

A method of dynamic analysis is provided. The setting up of the dynamic analysis
of the converter with a three-phase switching bridge with the use of the
mathematical model as defined in Chapter 2 is reported. Based on the obtained
dynamic model, the process of modulation is analysed. It is shown that the
modulations under study are open-loop. Transfer functions of a converter’s
behaviour are matters of interest. In the realized dynamic analysis there are two
types of transfer functions that are interesting to know when designing a
controller:

1. control-to-output
The control-to-output transfer function determines how the variation in the
switching time influences the output waveforms.

2. input-to-output
The input-to-output transfer function determines how the variation of an
independent source effects the output waveforms.

The terms output and input need a more precise explanation. Their interpretation
is not so obvious as in the case of DC-to-DC power converters. Therefore, this
problem is also treated later.

As stated in Chapter 1, two basic problems are recognized in the analysis of AC
converters.

1. The system is discontinuous due to the switching behaviour. It is not possible
to employ the method of averaging applied to DC-to-DC converter analysis.

2. The steady-state waveforms are time-varying waveforms. Therefore, the
dynamic model cannot be obtained by linearization.

First, the topology of AC-to-DC and DC-to-AC power conversion and their basic
control principles are explored. Then the solution for the above-stated problems
is suggested and documented in examples.
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8.2 AC-t0-DC and DC-t0o-AC PWM converters

Topologies for AC-to-DC and DC-to-AC three-phase power converters
There are two basic topologies: the topology with the DC voltage link and the
topology with the DC current link. The duality of the DC voltage link and the DC
current link is well known. Only the DC voltage link converters are studied since
the solution for a current link is dual.

Two conventional PWM converters widely used in three-phase AC-to-DC
applications are: the three-phase buck rectifier with a second-order filter (Fig. 3.1)
and the three-phase boost rectifier with a source-side inductor (Fig. 3.2).
Depending on the pulse modulation process, both converters provide a source
current with reduced low-frequency harmonics. In the boost topology, the
continuous source current minimizes the requirements for additional filtering. In
the buck converter a source filter is necessary to eliminate the switching frequency
harmonics. The buck power converter shown in Fig. 3.1 applies a second-order
filter but also higher order filters are applicable. The three-phase AC-to-DC buck
converter applies a voltage configuration to transfer energy from the AC side to
the DC side or vice versa. The three-phase AC-to-DC boost converter applies a
current configuration to transfer energy from the AC side to the DC side or vice
versa.
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Fig. 3.1 Three phase AC-to-DC buck converter

The configuration of the DC-to-AC power converter is similar. A diagram of a
voltage source inverter with output filters is shown in Fig. 3.3. A diagram of a
current controlled voltage source inverter is shown in Fig. 3.4. The voltage phasor
4, in both cases is defined with respect to the middle point of the load connected
in the star configuration.

Control principles and definition of the input and output
Although a rectifier and an inverter have identical circuit topologies, the control
mechanisms are different. In the inverter control scheme, the input quantity is the
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Fig. 3.2 Three phase AC-to-DC boost rectifier
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Fig. 3.3 Voltage source inverter

DC-bus voltage (voltage of the DC link) and the controlled quantity is the AC side
voltage (or current). Consequently, the output quantities are defined as the
harmonic components of the AC voltage and current. In a rectifier, the input
quantity is the AC line voltage and the controlled quantity is usually the DC-bus
voltage and the harmonic content of the AC line current. This means that the
input quantity is the AC voltage and the output is the DC voltage or current and
the harmonic contents of AC currents. In both cases the control is performed by
the function of the pulse modulator. Due to the large number of existing
modifications of PWM, it serves no purpose to make a survey of PWM methods.
The first selection criteria of a PWM method are the possible power of an applied
converter and the related switching frequency. The harmonic distortion of the AC
currents reduces almost linearly with the switching frequency. Yet the switching
frequency cannot deliberately be increased for the following reasons:
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Fig. 3.4 Current controlled voltage source inverter

1. The switching losses of semiconductor devices increase proportionally to the
switching frequency.

2. Semiconductor switches for higher power generally produce higher switching
frequency losses. This limits the switching frequency for bipolar transistors
and IGBT modules for higher power rating to a few kHz. The maximum
switching frequency for GTOs is only a few 100 Hz. The problem of switching
losses is treated in detail in Chapter 4.

The investigated PWM methods are feedforward modulation methods operating
at switching frequencies up to 10 kHz and applied for low and medium power
levels. The situation differs at power levels above 1 MW, where the harmonic
elimination method is used almost exclusively and the switching frequency is
maintained well below 500 Hz.

The most popular control strategies for PWM feedforward modulated converters
are methods based on carrier modulation:

- suboscillation carrier PWM,
- space phasor PWM.

3.2.1 Suboscillation carrier PWM

Many PWM techniques have been presented and the sinusoidal PWM has become
quite common. The analog implementation of the suboscillation carrier PWM is
realized by a triangular carrier waveform u_, . that is being compared with a
sinusoidal reference signal u_ . The crossover points determine the instants of
commutation of the semiconductor switches as shown by the voltage u,in Fig. 3.5.
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The amplitude of the fundamental output voltage varies according to the
modulation index. Modulation index is defined as the ration of the reference
sinusoid u ¢ and the fundamental voltage of the six step waveform [Holtz, 1992].
If the modtﬁation index is less than unity, except the basic harmonics, only carrier
frequency harmonics with fundamental related side bands appear at the output.
The voltage can be increased beyond the modulation index of unity until the
maximum voltage is obtained in the square wave mode.

u ref

ref ,* saw

0 —_—
J:
L—— -uO L u

Fig. 3.5 Suboscillation carrier PWM

SM

Fig. 3.6 Signal flow diagram for PWM modulator of one phase

The suboscillation method employs individual modulators for each of the three
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phases as shown in Fig. 3.6. Due to the individual modulation, asymmetry can
arise in a three-phase circuit but this is not studied here.

Since the modulator for each phase works independently, the model of a switching
leg defined in Chapter 2 is suitable. The carrier reference Uper can be modulated
in several ways and the presented example illustrates only tile principle.

3.2.2 Space phasor PWM

A different approach to PWM modulation is based on the space phasor
presentation of the reference and inverter (rectifier) voltages. Since this method
of modulation is also identified as space vector modulation, this terminology can
also be used. However, the term phasor is more appropriate since the results are
presented in a d,q reference frame. The name vector commonly used in literature
is therefore not really appropriate.

PWM modulation generated in a space phasor representation has the advantage
of lower harmonics and a possible higher modulation index than the three-phase
suboscillation PWM method [Holtz, 1992]. Since the space phasor modulation is
more suitable for a digital implementation than the carrier modulation, it is
gaining more popularity.

Because of the space phasor representation of AC voltages and currents, the model
of a switching bridge with a switching space phasor is suitable. The space phasor
modulation technique averages three consecutive switching state phasors over an
interval of a switching cycle T The reference switching phasor Spef 18 realized
by computing the duty ratios (fraction of the switching period) for two switching
phasors s, and sy, ;:

-s—refTSW = §ka +§k+1Tk+l 8.1)
where:
Syef - reference switching phasor for PWM,

Si» Sk,1 - Switching phasor of k and k+1 switching interval,
Tx» Tk, 1 - time interval spent on 8y and s 4, respectively.

To keep the switching frequency constant, the remaining part T,, of the switching
period T, is spent on the zero state. This means:

Ty = Tsw-Tk-Tka1 (3.2)
where:

Tow - switching period of PWM,

Ty - interval with phasor s,

T - ?nterval wjth phasor g4,
Ty - interval with zero phasor.
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The reference switching phasor s,..r composed of two adjacent switching phasors
81, 89 is depicted in Fig. 3.8. The decomposition of the reference switching phasor
$,f Into existing phasors is possible in general in unlimited number of ways.

Sreflsw=Sk Ik T Sk+1Tk+1

Sref |
BRI D

Im
So
Sref
S
$1
»-—
Re —»

Fig. 3.8 Space phasor PWM

In the literature [Holtz, 1992], [Profumo, 1992], the space phasor modulation is
explained with the use of voltage phasors. This means that not a reference
switching phasor is accomplished by modulation, but an inverter voltage phasor
or rectifier current phasor. Further explanation of the modulation process in the
above-mentioned literature does not differ from the method defined in Fig. 3.7.

The inverter voltage phasors for current configuration are:
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Jkrn
2
3
=0

k=0,7

& F

where:
Y, - voltage phasor of the inverter output,
Uy, - inverter DC link voltage.

The obtained phasors coincide with equation (2.21) and Table 2.1 as presented in
Chapter 2. In practice, there is no difference if the switching phasor or current or
voltage phasors are modulated. The model of the switching bridge links the
switching phasor with current or voltage phasor. However, the modulation as it
is defined here is more general and is valid for all configurations (current and
voltage) and rectifier and inverter as well. Therefore, Fig. 3.7 and Fig. 3.8
illustrate all space phasor methods.

3.2.3 Summary of control principles

A survey of topologies for the three-phase AC-to-DC and DC-to-AC power
converters is presented. Pulse-width modulation methods are applied to modulate
AC waveforms. The best known PWM methods are revealed: suboscillation carrier
PWM and space phasor PWM. ’

For the method suboscillation carrier PWM, the mathematical model for a
switching leg is suitable, because each individual phase of a three-phase system
operates individually.

For space phasor modulation, a space phasor model of a three-phase bridge is
eligible.

Because the mathematical models differ for two modulation methods, a further
analysis is now separately executed.

First, a space phasor modulation is studied. Two problems concerning the analysis
of AC power converters are defined in Introduction 3.1: the discontinuous
switching behaviour of power converters and time varying waveforms in the steady
state. To perform a dynamic analysis and to develop the required transfer
functions, the mentioned problems must be solved. First, a general theoretical
solution is given and then it is documented with reference to an example of a
space phasor modulated AC-to-DC power converter.

The same steps are performed for the modulation methods based on a
mathematical model of a switching bridge leg.

= UdceT k= 1,2, ...0 (3-3) '
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3.3 Space phasor PWM in rotating reference frame

The mathematical model of a space phasor modulated PWM AC converter with the
use of a switching space phasor as defined in Chapter 2 is established. AC voltages
and currents of the converter are presented by space phasors.

In general, the behaviour of the AC power stage of any converter with space
phasor modulation is represented by a nonlinear state equation:

% = Fx,u,5()) (3.4)

where:

x - phasor of the state variables usually formed by inductor currents and
capacitor voltages,

u - phasor of AC voltages,

s(t) - discontinuous switching phasor,

F() - function of the variables.

The general form of equation (3.4) depends on the converter topology. Since the
modulation of the converter waveforms is an open-loop modulation and s(?) is a
precalculated function, expression (3.4) can be expanded into a Fourier series:

0= Emgkeik‘”t (3.5)
T »
8 = % s(t)e TRty (3.6)
0
o= 2r 3.7
T
where;

T - period of modulated fundamental harmonics,
S - Fourier coefficient of the kth harmonics (k= ~x,...,0,...0),
® - angular frequency of modulated fundamental harmonics.

By substituting (3.5) in (3.4), the obtained model contains a continuous Fourier
series representation of a switching phasor s(). The dominant coefficient is
observed for the frequency o, which is the low-frequency component of the PWM.
In the following, only the fundamental harmonics term sle’ is considered.

The phasor of the state variables x(¢) of the AC side and the phasor of the AC
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voltages are periodic functions of the angle wt in the steady state:
() = Xe/® (3.8)

This property allows the rotation of the set (3.4) into a complex d,q reference
frame rotating with an angular speed w. The defined space phasor modulation is
open-looped with a possible use of feedforward. The modulation is based on the
assumption that the system is in the cyclic steady-state. The reference switching
phasor is calculated by inserting equations (3.8) and (3.9) into (3.4). The derivative
of the phasor x contains only the steady-state term:

After transformation to the d,q reference frame, a linear equation is obtained and
the reference switching phasor can be calculated from:

Sper = FX,U,0) 3.11)
The term of the input source U performs feedforward. After changing the source
voltage, the reference phasor reach another values.

To perform the dynamic analysis and to develop the transfer functions, the
phasors cannot be considered in the steady-state. The space phasor is therefore
defined as:

() = X(t)e/®t (8.12)

where:
X(t) - time-varying complex quantity.

The derivative of the phasors is then performed in a rotating reference frame as
introduced in Chapter 2:
dx(t) _

d ot d‘X(t) ot | T0'A
— = (X(0)eI) = = I X (e (3.13)
5 dt(_() ) 5 JaX(2)

where :
X(t) - phasor x in a complex d,q coordinate system.

Derivation of the phasor (3.12) contains a steady-state term that is also present
in the equation (3.10) and a transient term. It means, that a dynamic model of the
converter in the d,q reference frame can be obtained. The steady-state term is
constant and the model reflects the dynamics of the converter parameters. The
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state equation (3.4) is changed by the explained procedure into equation:

%ﬁt_’ - P, U6, 50) (3.14)

After splitting the complex quantity into a real and an imaginary part, we get :
dxg(®)

= Flag(t),xy(8), ug(), ug(£),sq()s (1))

3.15
o (3.15)

= Fxg(®),xq(0), ug(®), ug(£),sq(E)s )

All terms at the right hand side of equation (3.15) are functions of the time and
they are constant for the steady state. This equation is equivalent to the state
space equation of a DC-to-DC power converter on which a method of averaging
was performed. This means that both analysis methods for AC power converters
and DC-to-DC power converters are calculated equivalently. After linearization of
equation (3.15) around the steady-state point of operation, the small-signal
dynamic model is obtained and the required transfer function is calculated. This
procedure is documented on the example of a three-phase AC-to-DC buck power
converter.

3.4 AC-to-DC buck converter

The three-phase AC-to-DC buck converter as shown in Fig. 3.1 is introduced to
study the proposed method in a practical way. The converter is constructed as a
full-bridge configuration complete with a three-phase input filter and a DC output
filter. Both filters contain passive elements in the form of inductors and
capacitors. The input source voltages and currents are represented by the
instantaneous space phasors (with the assumption of balanced three-phase
variables):

u, = %(usa-kusbejp +ugeIP) (3.16)
i = %(isa+isbeip +igeIP) 3.17)
u; = %(uia+uibeip +u;eIP) (3.18)
i = %(iia+iibe I +i;0070P) (3.19)

An equivalent circuit of a three-phase AC-to-DC buck converter from Fig. 3.1 is
shown in Fig. 3.9.
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Fig. 3.9 Three-phase AC-to-DC power converter

Equations describing the input source filter using the notation presented in
Fig. 3.1 and Fig. 3.9 are:

di

=s _ 1
= = _l;(y_s+gi) (3.20)
du .
—t-1g_iy (3.21)
dz C, ® i

The buck converter implies the application of a voltage configuration. For this
configuration applied as a rectifier (Chapter 2), the following equations are
obtained:

dio L (3Rels*ut-ug) (3.22)
& I, 2 T "o
i = si (3.23)
du
Co _ i(io‘il) (3.24)
& G,

Equations (3.20)...(3.24) entirely describe the instantaneous operation of a three-
phase AC-to-DC converter. Since the input voltages Ugg Ug, and uy, are
sinusoidally time-varying functions, the phasor of the vo?l‘tages is also time-
varying. Similarly, the phase component of all three-phase variables varies
sinusoidally with the same angular speed o of the source.

The development of a small-signal dynamic model is now reported. According to
(3.12), a space phasor is not in the steady-state and the phasor amplitude is not
constant.

- Jogt _ jat .
u, = U e y;, = Uve (3.25)
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. Jot . g Joxt 9
i, = Lt i = Le (3.26)

Additionally, the switching phasor s is approximated by its low frequency
component:

s = 8, 3.27)

This property allows the performance of the derivation in the d,q reference frame
and the transfer of the set of equations (3.20)...(3.24) into the d,q reference frame.
For reasons of simplicity the subscript d,q is omitted. The transformed equations
into the d,q reference frame rotating with an angular speed o are:

dr
= jel-tu-+lyu (3.28)
dt %5 LS—1+LS—S
au.
1, 1
_t:l = _J%Q1+E—ls—_§ll° (3.29)
) S
Gio L 1 g+ L 3Rels*y) (3.30)
dt I I, 2 i
duge . 1; 1, (3.31)
it GC,° G,

The obtained set of equations is split into the d and ¢ complex components:

digg . 1

di . 1
diq = _O)SLSd+-I:-s-(usq-uiq) (3.33)

d i+ L Gag-iosa) (3.34)
dt 1T,

g | g+ L (g -igse) (3.35)
dt c, 14
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di 1
-Eo_ = f().[_g_(uidsd+uiqsq)—uCo] (3.36)
du
Co _ 2L Gig-ip) (8.37)
i C,

Variables in the obtained set of equations are now perturbed around the steady-
state operation point. A small perturbation is superimposed on the steady-state
component of each input and output:

s =8+§
o = Io+d, (3.38)

The obtained DC equations define a steady-state operating point. The steady-state
operating point gives a reference phasor:

(1-62LsCoL, ~jor Cs U,

s .= (3.39)
=ref T
0

The locus of the reference phasor is a circle in the complex plane. Its radius and
phase angle depend on the load. The parameters of a reference phasor are
parameters of the filter. By switching the switching bridge with a reference phasor
Spef calculated on the basis of required values of currents I, and 1, open-loop
control with feedforward is realized. Feedforward compensates the phase s}uft
created by the filter and compensate the changes of source voltage U,.

After neglecting the higher order terms in perturbed equations (3.32)...(3.37),
small-signal equations are written in matrix form:
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- -
1
0 -— 0 0 0
0 I,
l .7l 0 0 -L 0o 0o |r:
(‘sd Lg lsd
| | |1 5 o o -5 fsq
alzal_|Cs Cs Zig
‘ gl |9 L o o -J1 o Ziq
‘ - Cs Cs -
\ o 383 3S ‘o
ac,] [0 o =2 2% o -1 | ac
N 2L, 2L, L,
| o o o o L -_L
‘ - : Co  Coft] (3.40)
i 1
L o o o
Lg
o L o o
Lg ]
I Usd
0 0 -2 o0 ||z
+ Cs ~sq
I, | |%d
0 0 0 -0 3
C, | L%
o 0 3Uig 3Uiq
2I'O 2LO
0 0 O 0 |
The set of equations (3.40) can be written as:
9 _ Az.Ba (3.41)
dt
where:
# - matrix of state variables,
it - input vector.
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The obtained matrix equation can be Fourier transformed and rearranged:

Xjo) = (oI -A) 1BO(w) (3.42)

where:
I - unity matrix.

The required transfer function can be obtained from equation (3.42).

3.4.1 Transfer function of AC-to-DC buck converter

Calculation of the transfer function

It is possible to calculate the transfer function analytically or numerically. The
calculation requires the computation of an inverse matrix. This possibility is
offered by mathematical software Mathematica. Equation (3.42) is developed into
a symbolic form. The obtained expressions for the transfer function have many
terms and are of no practical importance. Therefore, the transfer function is
calculated by Mathcad in a numerical way.

As stated in the introduction, the main objective is the transfer function of the
control input to an output waveform. The output waveform is now proposed as the
voltage uc, as well as the input current harmonics. Thus, the calculated transfer

functions are ﬁ,l_s_d_,L_iq_

s 8 &
in Fig. 3.10, Fig. 3.11 and Fig. 3.12 altogether with the measured points of
transfer function,

where:

. These calculated transfer functions are presented

calculated transfer function,
x—x—x measured for fSW = 5 kHz,
0—0—0 measured for f, = 10 kHz.

Measured points of transfer function

The calculated transfer functions are compared with the measured results
obtained from the simulated model of a converter. Generally, when a transfer
function is derived theoretically, its validity is checked by comparing it with
experimental results obtained by measurements using a gain/phase analyzer. The
analyzer injects a sinusoidal signal into the circuit under measurement and
evaluates the magnitude and phase of the injected frequency component in the
output spectrum. The same procedure is followed here during simulation in the
time domain. The perturbations are sinusoidal waveforms with a small amplitude.
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Fig. 3.10 Frequency response of transfer function {Co/ §:
a. amplitude,
b. phase.

The model of a three-phase AC-to-DC buck power converter (Fig. 3.1) is applied
in a software simulation tool (Caspoc). The reference phasor that characterizes the
ideal operation of the switching network is sampled with a fixed frequency f,.
The sampled phasor s, is created by the time averaging of two adjacent active
states sy, 8).,1 and zero state as explained in Chapter 3.2.2.
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Fig. 3.11 Frequency response of transfer function stlg:

a. amplitude,

b. phase.

From equation (3.1) we obtain:

Ty =

Im(§k + I)Re(ﬁref) - Re(gk +1)Im@ref)
== Tow (3.43)
e@k )Im(gk ' 1) - Im(s_k)Re(gk + 1)

Re(s, Im(s, ) - Tra(s, Rels, )

(3.44)

Tpn

” RelspIm,, ) -Tmls, Retey, ) >
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Fig. 3.12 Frequency response of transfer function isqlgz

a. amplitude,
b. phase.

Equation (3.2) gives:
To = Tow~Tr-Tp41 (3.45)

The three states are switched on for the calculated time intervals sequentially as
shown in Fig. 3.13.

The reference switching phasor $,..¢ (3.39) is sampled with switching period Tsw'
To decrease the influence of a—ﬁnite T, an averaged switching phasor s 1s
created in the switching network. This pﬁasor leads over an angle o with respect
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—— Re

Fig. 3.13 Phasor control in complex plane

to s,r (Fig. 3.13.b). The established phasor is the sampled reference phasor while
the reference phasor itself continues to rotate. Thus, the steady-state value of the

established switching phasor s is rotated by an angle o with respect to Sref
; [0)
s = ﬁrefe_']a o=_"_ Ny = — (3.46)
Ngw g

where :
Ny - ratio of the switching frequency 00y, and the source frequency Q.

The three-phase-to-DC buck power converter with following parameters is
simulated:

U= Ug=311V Ugo =400V Ry =100 Q
L, =1010%H C, =25108F ®, =250 5’1
L, =100 103 H C, =251006F Ogy = 21 5 103 571

Examples of simulated waveforms are given in Fig. 3.14 and Fig. 3.15, where the
switching bridge switches with sampled reference phasor (3.39) rotate with angle
o (3.46). The reference of the source current I, in equation (3.39) is calculated on
the basis of the power balance equation:

, 2 .
Relu *i} = 3 4Gl (3.47)



68 PWM AC converters

usa \lsb L Y

N

RO

0 4 8 12 16 20
‘ — t [ms]

Fig. 3.14 Example of the simulated source voltages u
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Fig. 3.15 Example of the simulated source current i, and i

Wanting i, and u, in phase, the reference source current is given by:

uc. i
Ig=2 %! (3.48)
3 Uy

The reference switching space phasor s, and the actual switching space phasor
in the o,p coordinates are shown in Fig. 3.16. The reference switching space
phasor creates a circle in the o, plane. The actual switching space phasor s is a
fictive quantity calculated on the basis of equation (3.39), but with the measured
current phasor i and current £

;- (l—a?LsCS.)is ~joCsu, (3.49)

o
The task of the actual switching space phasor is to show, how the switching
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operation represented by an actual switching space phasor g follows its template
Spes- Due to the nature of PWM modulation and the fact that the high order filters
are employed, the actual switching space phasor is distorted and contains
unwanted higher harmonics.

p

1T
—ref

0.5 1

Fig. 3.16 Reference switching space phasor Sref and
actual switching space phasor s

The simulated waveforms show good agreement with the theoretical assumptions.
The three-phase source currents i are in phase with voltage the Ug as expected.
The sinusoidal waveforms of the three-phase source currents ig and the output
current i, are shown in steady state. The simulated model also serves for practical
measurements of the theoretical transfer functions reported in Chapter 3.4.1. The
measured points of transfer functions shown in Fig. 3.10, Fig. 3.11 and Fig. 3.12
are obtained by injecting a 3% perturbation on the switching phasor s and the
source voltages u at different frequencies (5, 10, 25, 50, 100, 250 and 500 Hz).
The influence of the perturbations with the different frequencies on the harmonic
spectra of the source currents i; and the load current i} determines the measured
points of the transfer functions. Since the transfer function points marked by x
measured by simulation differ for the higher frequency range from the calculated
ones, another measurement is performed with a switching frequency twice as high
as the original switching frequency. The second simulation is provided at
perturbation frequencies 100, 250, 500 Hz and the obtained points are marked by
O. From Fig. 3.10 and Fig. 3.11 we see that the curves simulated at the higher
switching frequency are closer to the theoretical curves. This fact corresponds with
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Fig. 3.17 Frequency response of transfer function fsdlg
with varying filters parameters
a.magnitude, b.phase

the expectation that the theoretical curve assumes an ideal switching process. For
an increased switching frequency, the influence of the higher harmonics is
reduced.

Fig. 3.17 plots open-loop response of fsd/_s"_ for the parameters mentioned in this
section (solid line) as well as for varying parameters (dashed line and dotted line).
The filter elements L, and Cg of the source filter create a peak close to the
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resonant frequency. In the z-plane, this peak corresponds to one pair of the
complex poles. This resonance causes the AC line current distortions under the
steady-state operating conditions. The pole placement method might be used to
improve the dynamic performance characteristics. The decrease of the output
inductor filter value L = 40 mH results in a linearized transfer function in a high
frequency region (dashed line). The impact of the source filter inductor change is
shown by the dotted line. By decreasing the source inductor value L, the peak of
the resonance is shifted towards higher frequencies.

The theoretical method studied in Chapter 3.3 is here documented using an
example of an AC-to-DC buck power converter. The model based on a switching
space phasor prescription serves to determinate a steady-state operating point as
well as small-signal transfer functions. The steady-state operating point and the
transfer functions calculated on the basis of a mathematical model are verified by
independent simulation.

3.5 Carrier suboscillation PWM in rotating reference frame

Another mathematical model defined in Chapter 2 is the model of a switching
bridge leg. Each switching leg is controlled separately and individually in the case
of carrier suboscillation PWM as reviewed in 3.2.1. Therefore, a model of a
switching leg with the switching function d(2) is suitable for the analysis of this
PWM method. Next, the mathematical model of a converter based on a switching
bridge leg is studied theoretically and then documented on an example.

Similar to the case of the model with switching space phasor, also here, two basic
problems defined in Chapter 3.1 have to be solved: the discontinuous sw1tchmg
behaviour and the varying nature of the AC waveforms.

Using the state space concept, the system equation is presented by:
& = AWd@®)x() + B@) ult) (8.50)

The matrices A and B contain a discontinuous switching function d, ;(t). Since the
switching pattern is precalculated similar to the space phasor modulatlon a
Fourier transformation can be applied to the switching pattern.

For a carrier pulse-width modulation, the switching points within one switching
period are not symmetrical. However, for a high ratio of the utility frequency
(frequency of the reference) and the switching frequency, the modulating waveform
can be regarded constant in each switching period. Therefore, the switching
pattern is close to a symmetrical waveform as shown in Fig. 3.18.

The Fourier series of the periodical time function is:

fat) = ag+ E a,sin(nox) + E b peos(nax) (3.51)
n=1 n=1
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Fig. 3.18 Method of pulse width modulation.

The switching function within one switching cycle is expressed as (see also

Fig. 3.18):
3; =0 0 <ot <(1-9)n
(1437 < ot < 21 (3.52)
§; =1 (1-8)n < ot < (1+3y)x

Therefore, next equations are valid:

1+8)x
ag = _21; [ s = 3;

(1-8)m (3.53)
a, =0

b, = (-1'_2_sin(nd;1)
nrw

8;* = 8;+ Y (-1"_2sin(nd;m) cos(nayt) (3.54)
n=1 nR

Similar to the case of space-phasor modulation, only the fundamental harmonic
components are considered.

Matrices A and u are time functions of the utility frequency w for AC-to-DC power
converters and matrices A and B are time functions of the utility frequency o for
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DC-to-AC power converters. To make the system time invariant, a rotating
reference frame is applied. The rotating frame always refers to the AC side of a
converter,

The next step is the transformation into the rotating reference frame that is
synchronized with the utility frequency (input or output modulated frequency). A
transformation makes the system time invariant. For a three-phase balanced
system the transformation matrix is:

-

1 e-jmt eicot 0
—jiwt-2%)  jet-2F)
r-1]1 ¢ Pe %o (3.55)
V3 Ges2®)  jor+2F)
1 e 3 e 3 0
L o 0 0 V3]

In an AC-to-DC PWM system, the input vector u(#) consists of a three-phase
voltage system. The PWM pattern is synchronized to the utility frequency of the
three- phase system (the duty cycle is also a function of the utility frequency).
After applying the transformation, the system becomes time-invariant:

x = Tx, x =T lx (3.56)

u=Tu, U, = T 1y (3.57)
The state space equation becomes:

Tx,+T#é, = ATx,+BTu, (3.58)

&p = (T'AT-T )%+ T 1BTu, (3.59)

Because the coefficients of matrix A are functions of the utility frequency, the
result is a time-invariant model.

The procedure for a small-signal analysis is the same as performed for DC
converters. It has to be noted that the high-frequency behaviour was neglected and
the rotating reference frame transforms the part equal to the utility frequency. An
example of a dynamic analysis of an AC-to-DC step up power converter is shown
in reference [Wu et.al., 1991].

The dynamic analysis applied to the resulting LTI system captures the low-
frequency behaviour of such a system. The boundary of this behaviour is set by the
switching frequency. A natural question about the transformation matrix and its
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influence on the system here arises. Let us compare the rotating frame
transformation with a more generally defined Lyapunov transformation [Chen,
1984]. Under certain conditions, the equivalent transformation can be named
Lyapunov because it preserves the property of stability of the system. Finally, we
recognize that the rotating frame transformation is nothing else but a Lyapunov
transformation [Bauer, Klaassens, 1992]. This fact gives an answer to the question
how the transformation should be designed to meet the individual properties of the
system.

3.6 Conclusions

For carrier suboscilation PWM modulation and space phasor modulation, a
dynamic model with the mathematical tools defined in Chapter 2 has been
developed. This model contains a discontinuous time function 8(¢) that presents
the action of a switching leg in a three-phase bridge configuration. For space
phasor modulation, it is a discontinuous switching phasor s that represents the
action of the switching bridge as a whole.

The simplest way to reduce the complex problem of a switching network is the
application of a Fourier transformation at the resulting switching pattern. This
application is possible to establish because the switching pattern is precalculated.
In fact, the averaging methods, where we consider one-cycle average, are nothing
else than a calculation of the DC coefficient in the Fourier series representation:

T+t
=1 (3.60)
#0) = = tf x(s)ds

This fact offers a clear relation between the averaging methods applied to DC-to-
DC power converters reviewed in Chapter 1 and the method suggested here. The
suggested method is a generalization of an averaging method. By using a state-
space description and by calculating the zero Fourier component, the state-space
averaging method is obtained. This means that the state-space averaging is a
special case of the proposed method. The proposed method is applicable to any
open-loop modulated converter.
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4.1 Introduction

A group of discrete-pulse modulated converters is defined in Chapter 1. The
applied method of modulation and the converter topology are strongly related, so
is the discrete-pulse modulation connected to the soft-switching resonant link
topology. The various methods of soft switching are reviewed to understand this
relation.

To develop power converters with improved characteristics for a specific volume,
the quality of the external waveforms, the reliability, the efficiency and the costs,
further increase of the internal switching frequency are desired. Soft switching is
a possible method to increase the internal switching frequency by reducing the
dynamic losses in the power semiconductor switches. To study the dynamic
behaviour of soft-switching converters, first, the topological rules and relations are
examined in this chapter. A survey of topologies and related basic control
principles is accomplished.

In the first part, problems concerning soft-switching converters are identified and
analyzed. Two different approaches are used to modulate the external low
frequency waveforms: pulse-width modulation (PWM) and discrete-pulse
modulation (pulse-frequency modulation (PFM)). Because a resonant circuit is
usually the timing element of the internal waveforms, PFM is often used to control
the power flow. However, PWM applied in combination with soft switching has
advantages over the currently used PFM methods as can be demonstrated. PFM
applied to AC-to-AC converters requires unconventional power factor control and
filter design.

The modelling and dynamic analysis of the introduced converters is demanding
because of the complexity of the networks and their related control techniques.
While PWM is state of the art, the control of three-phase-to-three-phase PFM
modulated converters is far from that. Dynamic analysis is an important step
towards improving the control.

4.2 Hard switching and soft switching

The converter processes power by interrupting the power flow from the source to
the load by control of the duty cycle of each switching interval. This operation
results in pulsating currents and voltages. A typical operation of a hard-switching
semiconductor switch is shown in Fig. 4.1.

A forced interruption of the current through a semiconductor switch in
combination with a substantial voltage over the device (hard switching) will lead
to excessive momentary values of the power during switching (P, and Poﬁ‘)
compared to the conduction losses during the current conduction interval P, ;

The losses are dissipated in the switching elements during the turn-on and turn-
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off intervals. These switching losses (dynamic losses) are the fundamental reason
for the increase in the total losses in the semiconductor switches at an increased
switching frequency. It can be shown that there is a maximum value for the
switching frequency for which the dissipated energy in the semiconductor switch
can no longer be transmitted to its environment when there is a limited
temperature rise (thermal barrier). For semiconductor switches suited for high
voltages and/or high currents, the pulse repetition frequency is in the order of a
few kHz. Also, the necessary complex snubber and protection networks lower the
efficiency and reliability of the converter.
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Fig. 4.1 Voltage over and current through a semiconductor switch
and their related switching losses

4.2.1 Soft switching

The development of power converters with improved characteristics is based on a
further increase of the switching frequency. In the case of hard switching as used
in the basic topologies of choppers and inverters with forced turn-off, the switching
losses are reduced by applying fast-switching power semiconductors such as
IGBTs, FETs, MCTs. It is necessary to include a complex and lossy protection
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networks to counteract the effects of hard switching that result from the presence
of parasitic components in the converter, e.g. parasitic inductances in series with
the switch. Depending on the selected type of switching device, it is necessary to
reduce the rate of voltage rise over the switch. This will often result in significant
losses at higher switching frequencies.

The application of soft-switching methods will minimize or eliminate these
disadvantageous phenomena by a suitable control of the waveforms over and in
the semiconductor switches. Therefore, the rate of current rise through the switch
or the voltage over the switch or both during the turn-on and turn-off interval
have to be reduced at such a rate that the turn-on and turn-off losses become
acceptable. By placing a nondissipative electric network NS in series with the
switch or a non-dissipative network NP in parallel to the switch as shown in
Fig. 4.2, one can realize a method of control for the waveforms of the current or
voltage of the switch.

NP

NS o

Fig. 4.2 A switch and its accompanying electric networks

This method of controlled switching waveforms is often called soft switching.

4.2.2 Hard switching

The load-line trajectory of PWM switches shown in Fig. 4.3 depends on the loading
of the semiconductor switches. The load-line trajectory a crosses the high-stress
region in which the device is subjected simultaneously to high voltage and high
current for inductive load turn-off and capacitive turn-on. This method of
switching is introduced as hard switching. The example of inductive load turn-off
and capacitive turn-on is chosen because it induces the high stress on the
switching device.

The load-line trajectory of a soft-switching device shown as curve b in the same
figure moves along the axis. Since high voltage and high current are not excited
simultaneously, the switching stresses are minimized.



Modulation of soft-switching power converters 79

[U
7/
7
7/
I —

U
-]
Fig. 4.3 Switching load line for:
a. hard-switching converter
b. soft-switching converter
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Fig. 4.4 Tlustration of the turn-off process
a. hard switching,
b. soft switching (zero-current turn-off),
c. soft switching (zero-voltage turn-off).

Fig. 4.4 illustrates the switching waveforms in the time domain at the turnoff of
the semiconductor device. Fig. 4.4a illustrates the method of hard switching. The
methods of soft switching are illustrated in the time domain in Fig. 4.4b and
Fig. 4.4¢ for zero-current and zero-voltage turn-off, respectively.

The combination of a semiconductor switch and an inductor or capacitor makes it
practical to program the waveforms of the switch. To allow a recurrent operation
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of the switch, the circuit is completed as a resonant network.

Resonant converters and PWM soft switching
The soft-switching technique is applied in two basically different ways: as resonant
converters or as soft-switching PWM converters. Resonant converters process
power by using sinusoidal or quasi-sinusoidal internal waveforms. There is a
reduction in switching losses and stresses on the power semiconductors in
comparison with hard-switched PWM converters.

Due to the resonant nature of the current and voltage waveforms, however, a
resonant converter operation usually involves high circulating energy that
increases switch voltage/current stresses and results in a substantial increase in
conduction losses.

Various soft-switching techniques are proposed to combine the advantages of soft
switching and a constant switching frequency as characteristic of pulse width
modulation (PWM). A soft-switching converter uses a resonant circuit to soften the
switching process. The resonant circuit is the timing element of the internal
waveforms. While resonant converters use PFM, this family of soft-switching
converters uses the familiar PWM techniques to modulate voltages and currents
at the external ports of the converter.

4.3 Topologies of the soft-switching power converters

To improve the switching conditions for the semiconductor devices, resonant
techniques which are based on the implementation of parallel-resonant or series-
resonant circuits are proposed. The application of a particular resonant network
creates zero-voltage or zero-current conditions for the semiconductor devices at the
switching instants. The dynamic losses are reduced or abandoned. The increase
in the switching frequency allowed by eliminating switching losses by soft
switching has shown distinctive advantages such as high power density, low EMI,
low acoustic noise and high dynamic performance. The use of a resonant circuit
to achieve soft switching unfortunately involves penalties such as circulating
energy in the converter which produces high values of the internal resonant
waveforms.

During the past several years, many topologies have been suggested and
evaluated. Soft-switching converters received considerable attention for high-
frequency DC-to-DC conversion, including high power applications. They are
increasingly replacing the conventional hard-switched converters in applications
where the demands are high. The attention is now focused on the polyphase AC-
to-AC power converters.

The classification of resonant converters was introduced in Chapter 1 in Fig. 1.4,
A survey of the soft-switching resonant topologies is presented in the literature
[Klaassens, van Weesenbeeck, Bauer 1993]. Switching schemes for the resonant
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link converters can be classified according to whether they involve a resonant AC
voltage or AC current impressed on the link and/or include a pulsating DC voltage
or current component (resonant DC link).

In the case of an AC link, the resonant circuit impresses both polarities of AC
voltage and current in the link. The switches at the input and output sides of the
converter carry both positive and negative current and block both polarities of the
voltage. The switches applied in this class of converters should therefore be
bidirectional switches. These switches are usually realized by two inverse
parallelled BJTs, IGBTs, FETs or thyristors for the parallel or series resonant
circuit. The recent development of the MCT, however, may lead to the realization
of a truly bidirectional switch.

Two different categories of soft-switching converters are introduced as resonant
DC link converters and pole commutated converters. Resonant AC-to-AC
converters are characterized by a passive circuit in the link (Fig. 1.7) including a
resonant tank that is placed at the DC bus of the switching matrix. The DC bus
connected to the switching matrix is forced to oscillate to set up a possible
commutation instant for the semiconductor devices. The result is a zero-voltage
or a zero-current condition at turn-on and/or at turn-off. An example of a resonant
link converter with a series-resonant circuit in the link, is shown in Fig. 4.5.

55 A ir 2 0
T .

SM1 SM2
Fig. 4.5 Series-resonant AC-to-AC converter

The resonant pole inverter features one resonant commutation circuit for each pole
of the switching matrix. In contrast to the resonant link converter, it enables each
phase to operate independently from the other, thus providing PWM capability.

The diagram of a resonant pole commutated converter is shown in Fig. 4.6.

The general topology of a three-phase-to-three-phase converter is presented in Fig.
1.7. The passive network in the link is for resonant converters performed by a
resonant network. The character of the input and output filters coincide with the
nature of the resonant link. This resonant network placed in series or in parallel
to a switch or a group of switches gives the potential of soft switching.
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3-phase

AC source

3-phase
AC load

Fig. 4.6 The resonant pole inverter

The basic classification of soft-switching resonant converters in the series-
resonant, the parallel-resonant or the multi-resonant converter was presented in
Chapter 1 (see also Fig. 1.4). As defined in Chapter 2, the switching bridge can
appear in two possible configurations: current configuration or voltage
configuration. We now investigate the relation between the characteristics of the
resonant link and the possible configuration of the switching bridge.

a. b. c.
S

Suliic

Fig. 4.7 Resonant link variations:
a. series-resonant AC link
b. parallel-resonant AC link
c. resonant DC link

The series-resonant circuit is excited by a voltage source (Fig. 4.7a) to create a
resonant current (Fig. 4.8a). Therefore, the switching bridge with a series-resonant
circuit in the link uses a voltage configuration while the filters have the
characteristics of a voltage source (capacitor).

The parallel-resonant circuit is excited by a current source (Fig. 4.7b) to create a
resonant voltage (Fig. 4.8b). Therefore, the switching bridge with a parallel-
resonant circuit in the link uses a current configuration while the filters have the
characteristics of a current source (inductor).

The third type shown in Fig. 4.7¢ is, in fact, a parallel-loaded series-resonant
circuit. The switch is placed in parallel to the resonant capacitor and allows an
independent control of the energy stored in the resonant tank, thus creating
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Fig. 4.8 Typical voltages and currents in the link:
a. current of the series-resonant AC link
b. voltage of the parallel-resonant AC link
¢. voltage of the resonant DC link

another degree of freedom, Since the switch S is actually one leg of the switching
bridge, it has no additional requirements on hardware. The topologies with this
configuration of resonant elements are shown in literature as the resonant DC
voltage link converters. Typical voltage of the resonant DC link is shown in
(Fig. 4.8¢). There are also possibilities to establish a resonant DC current link. The
series- or parallel-resonant DC link configurations are reviewed in Fig. 4.9. In
Fig. 4.9a the inductor L4 provides a DC bias to the resonant link current while in
Fig. 4.9b the capacitor Cy provides a DC bias to the resonant link voltage. The
link voltage or link current is a DC-biased sinusoidal waveform (Fig. 4.10 a, b).
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Fig. 4.9 a. series-resonant DC link
b. parallel-resonant DC link

An extra switch added to the series- or parallel-resonant circuit allows the
independent control of the energy stored in the resonant link. The control of the
energy in the resonant link is one of the basic problems encountered in the
resonant link converter. At the cost of additional complexity of the resonant
network, the control of the zero-crossing of the resonant voltage or.current can be
provided as will be shown later. The capability of PWM can be thus provided.
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Fig. 4.10 Typical voltages and currents of the resonant link:
a. current of the series-resonant DC link,
b. voltage of the parallel-resonant DC link.

As usual for the operation of resonant converters, two basic problems have to be
dealt with:

1. the control of the power flow from the source to the load or vice versa, and
the generation of the external waveforms at the input and output terminals
of the converter (external control shell),

2. the stabilization of critical waveforms and the control of the energy level in
the high-frequency link (internal control shell).

4.4 Methods of modulation

To control the external waveforms, two basically different approaches are
recognized:

1. pulse-width modulation (PWM)
2. discrete-pulse modulation (pulse frequency modulation: PFM)

Typical waveforms of the reference and modulated voltages (or currents) are
shown in Fig. 4.11.

The converter topologies differ also according to the way the external waveforms
are controlled. The use of a high-frequency resonant circuit, where the voltages or
currents (almost) periodically reach zero, evokes the discrete-pulse modulation.
This means that a pulse modulation technique uses the natural properties of the
resonant circuit. To be able to change the width of a pulse, an additional action
has to be implied. Generally, by the extension of the power part of a resonant
pulse-modulated converter, the PWM capability is obtained. In other words, the
power part of a PFM soft-switching converter is always simpler than the power
part of the PWM soft-switching converter.

Variations of a resonant link are presented in Fig. 4.12. Circuit al in Fig. 4.12
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Fig. 4.11 PWM (a) and PFM (b) modulation
U, - reference voltage,
U, - unfiltered voltage.
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Fig. 4.12 Resonant link with pulse frequency modulation (al, b1, c1)
and resonant link with pulse-width modulation (a2, b2, ¢2)

shows the series-resonant link and circuit a2 shows the same link extended for
PWM techniques. Circuits bl and b2 describe the similar circuits for a parallel-
resonant link and circuits ¢l and ¢2 for a parallel-loaded series-resonant circuit
utilized as applied in the resonant DC-link converter.

The tendency is to decrease the complexity of the power part on the account of an
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increase in the complexity of the control. For this reason, it is more attractive to
employ PFM modulation. The applied PFM modulation is by far not so well
developed as PWM, and always employs additional current or voltage sensors.
This can be also a reason of lower popularity of PFM compared to PWM.

However, the comparison PWM-PFM shows that PWM has certain advantages. In
the case of PWM converters, the harmonic components in the low-frequency
waveforms are found only at the side bands around the multiples of the switching
frequency because of the switching with constant frequency. The unwanted
harmonics are thus well constrained and simple to filter. In contrast, the PFM
modulation creates the unwanted harmonics below the resonant link frequency.
The harmonic content of the unwanted harmonics changes with the modulation
index because of the constant duration of the resonant pulse and variable
frequency which changes to enable a modulation of a time-varying signal. A
classical filter design does not improve the harmonic content of the external
waveforms,

Pulse-width modulation

The performance and cost criteria mainly determine the choice of a PWM method
in a specific application. The conclusion is that PWM is a state-of-the-art method
which is easily applicable and available. The dynamic and static behaviour has
been studied and is understood. It typically operates with an open-loop control (the
modulation itself is an open loop). In Chapter 2, the dynamics of PWM converters
are studied in detail.

Discrete-pulse modulation

PFM converters use single resonant pulses to synthesize the low-frequency
waveforms at the terminals of the converter. The switching process is
synchronized with the (almost) periodically zero-crossings of the resonant
waveforms. With this constraint on the switching operation of the converter, one
half-cycle of the resonant operation becomes the basic unit for the synthesis of the
low-frequency waveforms.

Pulse modulation techniques are applied to synthesize the low-frequency
waveforms. An ASDTIC controller (Analog-Signal-to-Discrete-Time Interval-
Converter) [Schwarz, 1974] was the first pulse modulation technique applied. The
controller continuously integrates the current error and fires the next resonant
pulse to decrease this error. The ASDTIC created a modulation philosophy that
was modified later by many engineers and used to control external waveforms of
pulse-modulated converters.

Delta-modulation or area comparison-integral PWM is the best known. The
Synchronous-Sigma-Delta-Modulation system is based on a feedback of the output
signal. The filtered error signal is fed to a comparator the output of which is
sampled at a constant clock frequency f,.

The output of the modulator s(#) determines the state of the switches of the
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Fig. 4.13 Single-phase sigma-delta modulator.

respective inverter phase leg and is only changed at instants synchronous to the
internal clock. Using the resonant link as a clock, the modulators are perfectly
suited to control resonant link converters. The modulator has also been used in
combination with a conventional hard-switching inverter. The performance
analysis of a three-phase inverter controlled by delta modulation is provided in
[Mertens, 1992,a] and the performance of a delta modulator in terms of harmonic
distortion is given in [Mertens, 1992,b]. Delta modulation is applied in converters
using a current configuration.

The fact, that the modulator in Fig. 4.13 utilizes the feedback of the output signal
and compares it with a reference, makes the modulation resemble to a sliding
mode control principle. Variable structure systems and sliding mode control are
well defined subjects [Utkin, 1978]. To explore the relation between pulse-
modulation techniques and sliding mode control, this relation is investigated in
next chapter.

There are topologies for which a choice has to be made between the phases to
select the conducting phase for the next cycle. This selection process is typical for
converter topologies using a voltage configuration as defined in Chapter 2.

The commonly suggested control philosophy is based on the static error. This error
is defined as a difference between the line voltage or current and a reference value
of this voltage or current, respectively. The phase with a positive or negative
maximum error is selected to conduct in the next cycle. First, the errors between
the reference voltages and the capacitor voltages of a three-phase converter are
calculated. Then phases with a positive and negative error are determined. In this
case the positive maximum error phase is the one in which an error is maximum
among the three phases and similarly, the negative maximum error phase is the
one in which the error is maximum with negative polarity. The next resonant
pulse is created the way to compensate the created errors. This philosophy is
suggested in [Kim, Cho, 1990], [Woo, et.al., 1990]. In the examples referred to, the
resonant link energy is independently controlled and the pulse width is varying.
A similar approach for the selection of the input/output bridge was also taken in
[De Beer, Klaassens, 1991]. The control principles suggested in the mentioned
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paper resemble the fuzzy logic control.

A discussion over AC-to-AC converter control with a series-resonant link has to
consider the evolution of the resonant capacitor voltage. The maximum voltage
over the resonant capacitor is physically limited and the selection of the input and
output phases is then even more complex.

Finally two problems of soft-switching resonant AC power conversion can be
encountered:

1. Filtering problem
The conventional design of a filter is not very effective since the harmonics
are not very well located. Therefore, it is preferable to include the filter
behaviour in the dynamic model. The modulation process has to be based on
this model. Thus, the passive filter becomes a part of an active filter process.

2. Selection problem
The selection of the conducting phase is based on the static error (current or
voltage). The AC-AC pulse-modulated resonant converter can be compared to
a matrix converter, where the energy is transferred by high-frequency pulses
only. The selection of a conducting phase in the input bridge SM1 has a direct
influence on the current at the output of the converter.

The same problem occurs in the opposite situation. The selection of an output
conducting phase has a direct influence on the input. In addition, the
selection of the input and output determines what is called the mirror
voltage, which has a direct impact on the energy in the resonant link.

To solve the encountered problems, a modulation process based on a mathematical
description of the entire converter has to be studied. The suggested way is a space
phasor description.

4.5 Conclusions

The soft-switching converter topologies and control principles have been reviewed.
Two strategies: PWM and PFM are applied for the modulation of the external
waveforms. The dynamic analysis of the PWM converter is essentially the same
as for the hard-switched converters studied in Chapter 3. Therefore, the PWM
soft-switched converters do not need further attention. The group of pulse-
modulated resonant converters are addressed in the following chapters. The
dynamic synthesis with the use of model defined in Chapter 2 is documented. Two
typical examples: a zero-current switching series-resonant converter and a zero-
voltage switching parallel-resonant converter are selected as typical
representatives.

Filtering problems and selection problems concerning soft-switching resonant
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pulse-modulated converters have also been encountered. A state-of-the-art
modulation process for AC-to-AC resonant converter is based on the static error.
So far, there is no method that could prescribe the dynamic behaviour of pulse-
modulated converters. The modulation process based on the mathematical model
of the complete converter has to be studied. The behaviour of the filter has to be
included in that model to explore active filtering. The suggested method is to
investigate the dynamic behaviour by the application of a mathematical model
defined in Chapter 2. It is recognized that the pulse-modulation process of soft-
switching resonant converters is approaching the sliding mode principle. To
understand this relation, the variable structure control and the sliding mode are
studied in the following chapter.
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5.1 Introduction

As indicated in Chapter 4, most of the currently used control methods for pulse
modulated soft-switching resonant-link converters are based on the principles of
the sliding mode control. However, they are not designed as sliding mode
controllers as will be explained in Chapter 5.3. In fact, the methods fulfil the
conditions and the characteristics of a sliding mode control for discrete systems.

Sliding mode control is reviewed in the first part of this chapter. It is recognized
that the AC-to-AC pulse modulated converter is a multiple-input/multiple-output
discrete, nonlinear system. In the following part, the link between sliding mode
control and existing control methods is established. An ASDTIC controller, a
philosophy applied to modulate the external waveforms of a series-resonant
converter, is compared with sliding mode control. The possibility to design a pulse
modulator based on a sliding mode control with the use of a switching bridge
model defined in Chapter 2 is investigated.

5.2 Variable structure control - survey

Variable structure control (VSC), including sliding mode [V.Utkin,1978], has been
extended into a general design method applied for a wide spectrum of systems
including nonlinear systems, multiple-input/multiple-output systems, discrete time
models, ete. [J.Y.Hung, 1992].

The most distinguished feature of VSC is its ability to establish very robust control
systems: in many cases invariant control. The term "invariant” indicates that the
system is insensitive to parametric uncertainties and external disturbances.

In AC-to-AC pulse modulated resonant converters we are considering a multiple-
input/multiple-output system. Further, the system has a discrete nature where
discretization is originated from the generation of repetitive pulses. It is known
that a discrete system can only undergo the quasi-sliding mode: the state of the
system can only approach the switching surface but cannot stay on this surface.
This is because the control action can only be activated at sampling instants and
the control effort is constant over each sampling period. However, this is not
totally valid for pulse modulation techniques. In spite of the discrete nature of
resonant pulse modulation, the possibility to change the pulse position adds a
continuous variable to discrete processes.

Next, a definition of a variable structure control follows. A given control system
is represented by state equation:

& = A(x,t)+Bx,Du (5.1)

with:
n - dimension of state variable x,
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m - dimension of control input u.

The task of sliding mode control is to find:
1. m switching surface functions presented in vector form as s(x),
2. a variable structure control input:

u(xt) = ut(xt)  when 8(x)>0,

u(x,t) = u(x,t) when 8(x)<0,

so that the reaching modes satisfy the reaching condition. The physical
interpretation of the statement above is:

1. to design a switching surface s(x)=0 which represents the desired system
dynamics that is of a lower order than the given plant.

2. to design a variable structure control u(x,f) so that any state x outside the
switching surface is driven to reach the surface in a finite time. The sliding
mode follows the desired system dynamics on the switching surface. In this
way the complete VSC system is globally asymptotically stable.

Xn1

s(x)=0

—

X
1
Fig. 5.1 Sliding mode and the sliding surface
For the existence of the sliding motion, it is necessary that the state trajectories

near the switching surface point towards the surface $(x)=0 shown in Fig. 5.1. The
condition for the existence of a sliding mode for switch (i) is:

lim $;(x) >0
s;2)T0 ' 5.2)
and:
lim $;(x) <0
s )0 l (5.3)

or:
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$;(x)s;(x) < 0 (5.4)

Once the system is in the sliding mode, the system satisfies two conditions. First,
the state of the system in sliding mode moves on the switching surface:

s(x) =0 (5.5)

Secondly, the state will not leave the switching surface. This means that for the
sliding mode, the following equation is valid:

§(x) =0 (5.6)

Conditions (5.5) and (5.6) are valid for ideal sliding mode. In the case of a quasi-
sliding mode, the state of the system does not move strictly on the sliding surface.

5.2.1 Multiple-input variable structure system

For a multiple-input system, more than one switching surface can be defined, each
acting on a single switch. The sliding movement can start in a different number
of ways called a switching scheme. Since a resonant pulse modulated three-phase
resonant converter performs according to a multiple-input variable structure
control, it is important to investigate a possible switching scheme. Next, different
switching schemes are summarized.

Fixed-order switching scheme

In this scheme, the sliding mode takes place in a preassigned order as the system
state traverses the state space. For example, the state can first move from the
initial state x; to the switching surface S, that has the dimension n-1. Then the
sliding mode moves to the surface S;9=(S;nSy) which has a dimension n-2.

The sliding mode moves to progressively lower dimensional sliding surfaces and
eventually reaches the surface Sy that has a dimension n-m:

x9 =81 =(S1NSg) —(81NSNS3) —..—»SE (6.7

where:
Sg - sliding mode surface.

This early scheme has been called the hierarchical VSC scheme. The VSC scheme
has several weaknesses: a slow and poor transient response in general which
necessitates a large control effort and gives difficulty in its solution.

Free-order switching scheme
The order of sliding modes is not preassigned but follows a natural trajectory for
a first-reach-first-switch scheme. Switching takes place according to the location
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of the initial state in the state space. This scheme is more plausible than the fixed-
order scheme for three reasons. Firstly, this solution of VSC is easy to find.
Secondly, the reaching mode possesses better dynamic characteristics. Finally, the
resulting control effort is smaller in magnitude so saturation is less likely to occur.

Eventual sliding mode switching scheme

In this scheme the state is driven from any initial state to the eventual sliding
surface Sg on which the sliding mode control takes place. However, this method
does not guarantee good transient characteristics [J.Y.Hung, 1992].

Decentralized switching scheme

The system is treated as a subsystem with m-single inputs, where each has a
scalar switching function and the associated switching mode. This scheme is
suitable for the synthesis of the modulator based on the switching function model
of a switching leg for current and voltage configuration [J.Y.Hung, 1992].

State-of-the-art conirol and switching scheme

The comparison between the sliding mode switching scheme and a state-of-the-art
pulse modulation for three-phase resonant converters shows that the fixed-order
and the free-order schemes are applied. The switching scheme is related to the
source and load sliding surfaces and sliding surfaces of a three-phase system of
currents or voltages. »

The fixed-order switching scheme in the state-of-the-art methods means that first
currents and voltages of one side (either source or load) are investigated. There is
thus preference given to one side of a three-phase-to-three-phase converter. The
free-order switching scheme is applied in cases where the source or load side is
switching in dependence of which the sliding surface is reached first.

The switching scheme can be related to the three-phase system of currents or
voltages. In the case of an application of a switching leg model, each phase current
or voltage creates a sliding line. In the case of application of a model of a space
switching phasor, d,q coordinates of a three-phase system of currents or voltages
create a sliding surface. Different switching schemes can also be applied.

5.3 Resonant pulse modulation techniques and sliding mode

The control of resonant converters and the sliding mode surveyed in the previous
section have a strong relation. The first known modulator for a resonant converter
ASDTIC (Analog-Signal-To-Discrete-Time Interval Converter) is based on the
integral of the difference between the reference current and the actual resonant
current. The zero state ASDTIC was originally developed for DC-to-DC converters
[Schwarz, 1974], [Schwarz, 1976] and later extended to DC-to-AC and AC-to-DC
applications [Klaassens, 1986], [Klaassens, 1987], [Klaassens, 1991].

The integral of the resonant current i; in i-phase over one cycle [xy, x) ] is
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compared to a reference signal i ¢

Xk+1 Xk+l
e= [ irgrdr - [ iridx=0 (5.8)
Xk Xk

where:
iref - reference current,
i, - resonant current,
€ - error signal.

Firing pulses for the switch are generated at the instants in which the average
resonant current i, is equal to the prescribed value of the control signal i ¢ The
integral of the resonant inductor current presents, in fact, the transferred c‘ilarge.
The sliding surface is created as a difference between the reference charge and the
actual charge transferred to the required terminal of the converter.
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Fig. 5.2 Simulation of a resonant link current i and
the error signal € of an ASDTIC modulator
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Simulated waveforms of a DC-to-three-phase series-resonant converter with
ASDTIC regulation [Weesenbeek, Klaassens, 1993] are shown in Fig. 5.2. To
maintain the energy in the resonant link on a required level, a pair of resonant
pulses is used. In Fig. 5.2, a resonant link current i, and error signal ¢ of the
ASDTIC modulator are shown. One can see that whenever the difference of two
integrals from (5.8) reaches zero, resonant pulses are initiated to reduce the error
that arises. However, it can happen that the resonant pulse is initiated with time
delay because the resonant pulse in the different phase is still on, as shown in
Fig. 5.2 at the pulse in the time instant x 5. Because the modulator is applied to
each phase of a three-phase AC system, it is in fact a free-order switching scheme.
In the mentioned reference, the ASDTIC is applied for each phase separately.
During the time interval of the resonant pulse, the controller cannot influence the
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energy transfer. The sliding mode, thus, operates with a sampling frequency twice
as big as the resonant-pulse frequency. The ASDTIC philosophy is inherently
identical to a sliding mode control with the limitation of a discrete sampling
instant during a resonant pulse. Therefore, the control is considered to be a quasi-
sliding control mode. The application of ASDTIC and the related modulation
philosophy for polyphase resonant converters is limited. ASDTIC, originally
developed for single-phase converters, does not dirrectly offer a solution for the
selection problem defined in Chapter 4.

The dynamic analysis for resonant converters investigated in the following
chapters can be considered as an extension of the ASDTIC philosophy based on a
sliding mode control. It is shown, that a control design based on the sliding mode
contains ASDTIC elements.

Next, the utilization of a design of a modulator for a three-phase soft-switching
resonant power converter based on the quasi-sliding mode is investigated. The
topologies under consideration are the ones with a three-phase switching bridge.
As mentioned in Chapter 4, further attention is paid to a three-phase-to-three-
phase series-resonant converter and a parallel-resonant converter. The application
of a three-phase switching bridge for a quasi-sliding mode control is studied.

5.4 Quasi-sliding mode modulators and models of a thrée-phase
switching bridge

To design a modulator based on a quasi-sliding mode, a switching surface s(x) and
a control input for a three-phase switching bridge have to be defined. In the case
of a power converter, the switching surface is usually defined as the difference
between the reference and the actual values of currents or voltages.

The switching action of a variable structure system is prescribed by its control
input u(x,t). Let us relate the control input u(x,t) to the switching action of a three-
phase switching bridge. In Chapter 2, two different models of the switching action
of switches in the bridge configuration are defined.

The following discussion is ment for the design of quasi-sliding mode modulators
for resonant pulse-modulated converters and sliding mode modulators for PWM
converters. The AC PWM converter topologies were discussed in Chapter 3. Let
us summarize the ultimate goal of the control action of a quasi-sliding mode
modulator. The investigated topologies use switches in a bridge configuration as
defined in Chapter 2. The goal of a switching action is to transfer the energy from
the AC side of a bridge to the DC side or vice versa. The electrical quantities
(voltages and currents) at the AC side are usually required with sinusoidal shape
to achieve desired power factor. The control action of the modulator has to assure
that the AC and the DC side voltages (or currents) track their reference. At the
same time the required energy should be transferred from the AC to the DC side
or vice versa.
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Switching function model of a switching leg

The switching function §,(¢) defined for a switching leg is in the case of the current
configuration identical to a sliding mode control input. The switching function ,(2)
obtains values +1 and -1 that coincide with the definition of the control input
ufx,t) for sliding mode. By defining a sliding switching surface s(x) for each
switching leg terminal a quasi-sliding mode is defined. The switching surface of
the sliding mode is created by three reference currents of a three-phase system.
The power balance of a three-phase switching bridge (equation (2.58)) shows that
by selecting the AC reference current (voltage), DC values are determined. The
actual position of the switching leg is calculated on the basis of equation (2.6). The
term X.5:(¥) in this equation represents the actual position of two other legs and
makes the calculation of the switching function cumbersome. The result of the
term 1/3X3.(¢) is a constant equal to 1/3 or 2/3 with positive or negative sign.
However, the sign of the resulting calculated switching function §;(¢) does not
change with the value or sign of the term 1/3X3,(2). Based on the calculated value
of the switching function §;(), a discrete value of the switching function §(?) (+1
or -1) is selected. The value of the selected switching function () depends on the
sign of the calculated switching function which is not influenced by the term
1/3%8,(t). The switching function model is, thus, easy to apply for the dynamic
synthesis of a quasi-sliding modulator of converter with current configuration of
a switching bridge as shown in Chapter 7.

In the case of a voltage configuration, the application of a switching function is
more complicated. Since the constraint (2.4) is imposed on the switches, the
switching function 3.(#) can have 3 values: +1,0,-1. This time, the selection of the
switching function éi(t) for i=a,b,c cannot be based only on the signum of the
calculated switching function as in case the case of a current configuration. The
design of the quasi-sliding modulator is possible only with the use of a fuzzy terms
and fuzzy logic control. It is not advantageous to derive a switching function from
equations defined in Chapter 2 for a voltage configuration.

Switching space phasor model

The switching space phasor model is more suitable for the design of a quasi-sliding
modulator for current or voltage configuration than the switching function model
of a switching leg. The reason is that the switching phasor represents the position
of the switches in all three phases at the same time. The problem is to find a
suitable strategy since the selection of a switching space phasor from the sets
defined in Table 2.1 and Table 2.2 is a complex problem. The selected switching
space phasor has to drive the currents and voltages of the system towards its
templates to fulfil the condition expressed in equation (5.4). This problem is
studied in details on an example of a three-phase-to-three-phase series-resonant
converter in Chapter 6. The control input u(x,t) for a sliding mode is in this case
performed by d,q or o, coordinates of the switching space phasor s. The switching
surface of a sliding mode s(x) is performed by d,q or o,p coordinates of the
reference

current or voltage space phasor.
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5.5 Conclusions

The application of a sliding mode control for discrete systems such as resonant
pulse-modulation converters has been discussed. A three-phase-to-three-phase
resonant link converter is considered to be a multiple-input/multiple-output
system. An eventual sliding mode switching scheme is requested for modulation
of desired waveforms at the source and the load sides of a converter. In
transforming this condition (an eventual sliding mode scheme) into a switching
philosophy of a three-phase-to-three-phase resonant converter, the sliding mode
must occur at the source and the load sides of the converter simultaneously.

The discrete nature of the resonant pulse modulator results in a quasi-sliding
mode. The disadvantage of a quasi-sliding mode is that the system does not stay
on the sliding surface as it does in the case of ideal sliding motion. The deviation
from the ideal sliding surface arises within the sampling period of the sliding
modulator. The chattering which is a disadvantageous property of the ideal sliding
motion does not occur in the case of a quasi-sliding motion.

There is a relation between existing resonant pulse-modulation techniques and
sliding mode. It is proved that an ASDTIC is in fact a quasi-sliding mode
modulator. The ASDTIC modulator, that was originally developed for single phase
converters, however, does not solve the selection problem. Therefore, it is
suggested to solve the modulation process of a three-phase-to-three-phase power
converter by introducing a sliding mode principle.

The usefulness of the models defined in Chapter 2 for the design of a quasi-sliding
mode modulator is investigated. It is concluded that the switching function model
of a switching leg is eligible for converters with use of a current configuration. The
switching space phasor model is more general and it is applicable for converters
using either a current or a voltage configuration.
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6.1 Introduction

The series-resonant converter that was originally developed for DC-to-DC
applications has recently also been applied for AC-to-AC power conversion.

Conventional series-resonant converters are classified according to their method
of control. One method is a frequency control where the external waveforms are
controlled by the ratio of the switching frequency and the frequency of the
resonant circuit. The other method is a phase-domain control where the control is
achieved by the difference in phase between two switching matrixes while the
switching frequency of each matrix is fixed.

The resonant converters with fixed frequency control and zero-phase are designed
for AC applications. Soft-switching is achieved by the occurrence of the zero-
crossing of the resonant current. Since the switching occurs at the zero-crossing
instants of the link current, the current via the semiconductor switch drops below
the holding current (when a thyristor is used as a switch). The natural turn-off
ability is, thus, used for commutation (zero-current turn off). Thus, high power
thyristors can be used with a minimal switching loss. The switching frequency of
a thyristor is, however, limited by the reverse recovery time. Therefore, for
applications where high-frequency operation is required, IGBTs or MCTs are
appropriate. The principle of operation remains the same. The resonant current
pulse becomes a basic unit for the transfer of energy.

The converter dynamics and converter modelling are crutial for the study of the
application of a suitable feedback algorithm for closed loop modulation of the
converter voltages and currents. Modelling of resonant converters is a difficult
task because of the nonlinear characteristics of a switched resonant circuit. To
understand the operation of the converter, its analysis is crucial. The dynamic
synthesis of a converter modulation leads to improved control and modulation
design as shown in this chapter.

The analysis of single-phase converters is straightforward. For polyphase series-
resonant converters, the problems of the filtering and the selection of switches are
serious. As explained in Chapter 4, the analysis of a polyphase series-resonant
converter is based on a single-phase model. There is no extended model
prescribing the dynamics of this converter. Its analysis is considered to be a
demanding job. Modulation methods based on a single-phase model do not
guarantee the solution for the described filtering and selection problem.

In this chapter we develop a dynamic model of a series-resonant converter. This
model is also the first dynamic model for polyphase resonant converters with
switches in a bridge configuration.
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6.2 A three-phase-to-three-phase series-resonant converter

The schematic of a three-phase-to-three-phase series-resonant converter is shown
in Fig. 6.1.
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Fig. 6.1 Three-phase-to-three-phase series-resonant converter

The schematic corresponds with the general schematic of a three-phase-to-three-
phase power converter scheme as mentioned in Chapter 1. The passive network
from Fig. 1.7. is realized with a series-resonant circuit composed of the passive
elements L, and C. The switching matrices SM1 and SM2 are realized by three-
phase switching bridges. The second order filter L Cj is used at the source side
and capacitors C, are placed at the output (load) side. In Fig. 6.1 an inductive-
resistive load R, L is depicted.

The converter is characterized as an AC series-resonant link converter.
Bidirectional switches in the three-phase switching bridge are therefore required.
Second-order filters with capacitive characteristics are applied. According to the
definitions in Chapter 2, the switching matrices SM1 and SM2 employ the voltage
configuration. Due to the complexity of the schematic and the lack of
mathematical tools, there is no dynamic model available. The switching philosophy
is developed on the base of a simple model as reviewed in Chapter 4. The
usefulness of the models defined in Chapter 2 is documented on an example of a
three-phase-to-three-phase series-resonant converter. As stated previously,
dynamic effects must be included to obtain an accurate model. The usefulness of
a dynamic analysis and a dynamic model is shown on an example of a converter
which modulation and the control is a matter of intensive research,

In Chapter 2, two different models for a three-phase switching bridge are
suggested. Now, based on these models, the selection problem defined in Chapter
4 has be solved. The filtering problem (Chapter 4) requires the insertion of the
used passive filters in the model. Therefore, the model with the use of a switching
space phasor is obviously suitable. Using the switching space phasor model from
Chapter 2, a set of dynamic equations for the three-phase-to-three-phase series-
resonant converter can be established.
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6.3 Dynamic equations of a three-phase-to-three-phase
series-resonant converter

A set of differential equations is presented for a three-phase-to-three-phase series-
resonant converter shown in Fig. 6.1 The switching behaviour of the switching
matrices SM1 and SM2 is represented by a space-switching phasor s; and sp;
respectively. The switching matrix is presented by the switches in a bridge
configuration. In Chapter 2, the nonlinear equations relating the voltages and the
currents between the AC and the DC sides of a switching bridge are defined. With
the use of these relations, a set of differential equations describing a dynamic
model is now created as routine work. Only the voltage configuration defined in
Chapter 2 is applied for the investigated converter topology because of the
character of the filters and the resonant link. Because the switching bridge SM1
behaves as a rectifier, equations (2.27) and (2.28) are valid. These equations define
the relation between the AC and the DC sides of the bridge. The relations between
the voltage u; and the voltage phasor y;, and the current i, and the current
phasor j; are:

uy = %Re{gl*y_i} (6.1)

=84 (6.2)

The selection of the equations for the switching matrix SM2 needs an additional
explanation. The amplitude and polarity of the resonant current depend on the
selected voltage u,. The output current per phase i, results from a resonant
current pulse i, and the selected switching phasor syy. T‘iﬁs means that a switching
matrix SM2 behaves as a current source inverter. Because of the principle of

duality, the same relation for SM1 can be used.

After the selection of the equation is achieved, the construction of a dynamic model
is elementary. The set of equations is as follows:

Cogpr = o™k = srrr g 6.3)
di

Ls§ =u -y (6.4)
du.

Cs_d_“tl = i - = i -sqir (6.5)

ug = %Re{.gn*y_o} (6.6)
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1 dip
— |tpdt+Lype ™ = uy- 6.7
C; lpdi +Ly i uy-ug

The dynamic model of the three-phase-to-three-phase series-resonant converter is
shown in Fig. 6.2.

Fig. 6.2 Dynamic model of a series-resonant converter

The definition of the problem is simple. We have to find a switching phasor s; and
sy in such a way that the currents i; and jj follow their references within the

required degree of accuracy.

Another criterium that has to be considered is the value of resonant current i, and
the value of resonant capacitor voltage u(y,.. These quantities are physically limited
by the current and voltage limitations of the applied components of the converter.
The set of equations (6.1)...(6.7) is difficult to solve analytically. Therefore, these
equations are analyzed and, as for all previous modelling methods, simplifications
are introduced. At first glance it is obvious that the difficulties of obtaining a
solution begin with the integrodifferential equation (6.7) prescribing the dynamics
of the resonant link current. Therefore, further attention is paid to the resonant
link current.

6.4 Resonant link current and quantum transformation

Each resonant current pulse is generated by the resonant circuit by excitation by
one or two voltage sources. The voltages u, and u, are the results of the switching
action of the switching matrices SM1 and SM2. The connection of two sources uy
and ug to a single resonant circuit transfers electrical energy from one source to
another. The simple single-phase model shown in Fig. 6.3 represents this circuit.

The control of polyphase resonant converters mentioned in literature is based on
this simple model that reflects the evolution of the resonant current. This model
is not suitable for calculation of the external waveforms of the converter. However.
as already explained in Chapter 4, the state-of-the-art control is based on such a
model.
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Fig. 6.3 One-phase model of a series-resonant converter

The set of dynamic equations of a three-phase-to-three-phase series-resonant
converter involves fast varying quantities: voltages and currents of the resonant
circuit. However, the natural frequency of the resonant link is half of the
switching frequency. The natural frequency of the input and output filters is below
the switching frequency. The external waveforms present slowly varying
waveforms compared to the internal waveforms with the switching frequency,
which is inherently double of the resonant frequency. Consequently, it is possible
to consider the system of equations on two different time scales. The time scale ¢
is the actual time scale. The phasors of input and output quantities are presented
in this time scale. Time scale ¢’ is related to the start of a resonant pulse and is
reset whenever a resonant pulse is completed.

T ) Ucr(k+1)
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Fig. 6.4 Resonant current and resonant capacitor voltage

The voltages u; and uq are time-varying waveforms. The usual approximation for
the analysis o% the series-resonant converter assumes that these voltages are
constant during the length of one resonant pulse. This approximation is justified
by the fact that the frequency of the resonant current is several orders of
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magnitude higher than the frequency of the external waveforms.

By solving equation (6.7) for z; and u, quasi constant, we obtain the dynamic
relations that establish the evolution of the resonant voltage and the shape of the
resonant current as shown in Fig. 6.4.

ey - 2O

7 sin(oy£ ?) (6.8)

ucrt?) = ~(~ucH0)+uy -ug) cos(wyt?)+uy-ug (6.9)

where:
Z,. - characteristic impedance of the resonant circuit:

f L./C, (6.10)

o, - angular resonant frequency:

Zy

O = = T, : (6.11)

uc0) - resonant capacitor voltage at the beginning of resonant pulse t'=0.

Equations (6.8) and (6.9) provide an exact solution of equation (6.7) assuming that
the voltages u4 and us are constant during the resonant pulse The voltage u 12
that are applied to the resonant L C_ circuit is called in literature the mirror
voltage. Voltage ug (0) is the resonant capacitor voltage at #’=0 being the initial
condition for the d1ﬁ'erentlal equation (6.9). The current at ¢’=0 is zero. The time
interval between two resonant pulses t; , 1-(t; +1/2T,) is called the interpulse time
(Fig. 6.4). Assuming that the voltages uq an]é ug are constant during a resonant
pulse, a sampled model is obtained for the resonant capacitor voltage and resonant
inductor current for the k-th pulse ( Fig. 6.4):

ucplk+1) = - uCr(k) +2(u1 -u9) (6.12)

-ucrk) +uy -ug

r

ik) = sin(wy.£?) (6.13)

where:
uc k) - the resonant capacitor voltage at the beginning of the k-th pulse.

Equations (6.12) and (6.13) prescribe the change in the resonant current. The
exact shape of the resonant capacitor voltage u,. is not important. The initial
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values of the resonant capacitor voltage for each successive phase are simple to
calculate on the basis of equation (6.12).

The sampled model is obtained by replacing equation (6.7) by the obtained solution
(6.12) and (6.13). The resonant link current is approximated by a sinusoidal
waveform and the influence of the slowly varying voltages u; and u, is neglected.

Quantum transformation
The second approximation used for the analysis of the resonant converter is a
linearization of the charge transferred by the resonant current.

ir [ Ir i
lAV --------------------------------------

— t’
Fig. 6.5 Resonant current i, and charge @, transferred by
the resonant current

In Fig. 6.5, the resonant current i, and the transferred charge of the resonant
curcuit are depicted. The dotted line @, is the result of the approximation obtained
by linearization Q,(t). The linearization of the transferred charge means that the
sinusoidal waveform i_ is approximated by its average value i,y. Thus, the
influence of the wave sfnape of the resonant current on the external waveforms is
neglected. The approximation is also justified by the difference in frequency
between the external waveforms and the resonant current. The sampled equation
(6.12) is, however, still the cause of the existance of a discontinuous dynamic
model.

Therefore next, the quantum transformation [Joung et.al., 1992], that partially
solves the problem of the discontinuity, is studied. The amplitude of the resonant
capacitor voltage is related to the stored energy in the resonant capacitor C,. The
average value of the inductor current i,y is related to the stored energy in the
resonant inductor L. Now, the state variables u, and i, are selected as new
variables for the linearized circuit:
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ucr () = lucek)| (6.14)
i(k) = |iav(k)]
where:
uc k) - peak value of the resonant capacitor voltage at the beginning of
. the &th cycle,
iay(k) - average value of the resonant current during the AL cycle.

The value of the averaged resonant current throughout half of a period of a
resonance is equal to:

o UGy R+ (uy ~ug) (- 101

r
where (¢4-us);is mirror voltage in rth cycle.
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Fig. 6.6 Simulated waveforms of the resonant circuit

The sampled value of the resonant capacitor voltage (6.12) with the use of the new
state variable uq,. (k) is equal to:

ucy (k+1) = ugp*(k)+2(u1 -ug) k(-1)k+1 (6.16)



The resonant current i (#) excited by the mirror voltage u-u, is depicted in
Fig. 6.6. The mirror voftage Uq-Ug is in this case synchronized with the zero-
crossing points of the resonant current. The time interval between two pulses
ey 1-(t+ /2T, is here equal to zero. The quantum transformation investigates
how the increase of the energy of the resonant circuit or the amplitude of the
resonant current depends on the applied mirror voltage. The energy of the
resonant circuit and the amplitude of the resonant current are independent of
interpulse time. So, the quantum transformation is not influenced by this time
interval. As said before, the interpulse time is neglected in Fig. 6.6. During the
time intervals when the mirror voltage u-u, is in phase with the resonant current
i(t), the peak value and the average value of the resonant current rise as shown

110 Series-resonant converter

in Fig. 6.6. Energy is added to the resonant L C. circuit. Whenever the mirror

voltage uy-u, has the opposite polarity to the resonant current i (2), the energy

stored in the resonant circuit decreases. The amplitude of the resonant current

and the averaged value of the resonant current i, (k) also decrease. Knowing this,
the resonant L C, link is modelled as a single inductor Leq in Fig. 6.7.

The mirror voltage V1Yo in phase with the resonant current is equivalent to the
positive voltage u; -uy applied to the inductor Leq (see Fig.6.6). The mirror
voltage in oppgsite phase to the resonant current 15 equivalent to a negative
voltage u, -uy applied to inductor L. The derivative of the discrete current
value i, (k) from pulse to pulse expressed ax%alytically_ at the sampling instants is
the same as the derivative of the current i (t), (Fig.6.8):

| Fig. 6.7 Series-resonant L C, link and equivalent inductor Leq

dig*®) i keD-ifR) (92 (ug-ug)y, (-1
a T B

.1 L,

(6.17)

(2R u1*-ug”
—| =5
where:

ir*it) , - current of an equivalent inductor,
uq -ug - equivalent mirror voltage.

The equivalent inductance then has the value:

Leg = (%TL,. (6.18)
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Fig. 6.8 Absolute value of the resonant current i(t), its average value ir*(k)
and current of the equivalent inductor i (t)

The defined quantum transformation allows the replacement of the resonant L,.C..
circuit with nonlinear characteristics (voltages and currents) by a linear
inductance L . By this procedure, a step of lowering the order of the switching
circuit is provi%ed. The equation (6.7) is replaced by:

di,*(t)

L - (ul* __uz*) ' (6.19)

eq

In the further analysis, the current of the equivalent inductor ir*(t) represents the
absolute value of the mean pulse current of the resonant circuit. The replacement
of the second order differential equation (6.7) by the first order differential
equation (6.19) offers further simplification of the analysis and a better
understanding of the operation of a three-phase-to-three-phase series-resonant
converter. In further analysis the resonant current i,(t) is replaced by current of
the equivalent inductor i, (t).

6.5 Phasor transformation

A three-phase-to-three-phase series-resonant converter is represented by a set of
equations of the dynamic model (6.1)...(6.7) and (6.19). The three-phase voltages
and currents are represented by space phasors, and the switching operation of the
switches in the bridge configuration is represented by switching space phasors.

The conventional phasor represents the magnitude and phase of a sinusoidal
waveform in the steady state. The space phasor presentation represents a three-
phase sinusoidal system for which the formal mathematical prescription is the
same. However, a conventional phasor description cannot represent circuit
quantities in a transient state. For voltage or current space phasors, the solution
in the form of equation (6.20) is assumed:
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() = X$)e/® (6.20)

where:
® - angular frequency of the rotating phasor X(t).

The first derivation to time of the phasor x(¢) in a transient state is equal to:
26 = XD/ +jaX(t)el® (6.21)

With a system prescribed by equation in the form (6.21):
(2) = Flx(®),5(0)] (6.22)

it is possible to extract the fundamental harmonics of interest and to obtain a
system that is transformed into (6.23) that shows the same frequency on the both
sides:

XHeT® = F[X(),S()]e 7 (6.23)

The complex amplitude X(#) of the phasor x(¢) is not considered to be constant in
modulus and argument. It is a time function of the state variable and may include
a harmonic function with different frequencies. Equation (6.23) contains the
derivative of the phasor and a steady-state term. The ultimate aim of a control
action is to find a switching phasor s(¢) which would create the required behaviour.
This means to find a switching phasor s(#) which assures that the derivation of the
voltage or current phasor is as required in Fig. 6.8.

q
I Xret®)
} Ax(®)
X(t)
—d

Fig. 6.9 Derivation of the phasor X{(t) in d,q coordinates
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In the ideal stationary case, the derivation of the phasor X(?) is zero. Then the
phasors X(#) and X (?) are identical and the phasors are constant in the d,q
reference frame.

The described procedure corresponds to the transformation into the d,q rotating
reference frame as mentioned in Chapters 2 and 3. The principle of the
transformation into a d,q reference frame is based on finding a stationary circuit
for a given rotationary frame. The procedure is described in Chapter 3 for PWM
converters where the transformation of a rotating phasor into steady-state
operation is dealt with. Afterwards, a small signal linearization is provided to
obtain a dynamic behaviour of the model.

For a polyphase resonant converter, the steady-state operation in the conventional
way of understanding does not exist or is difficult to find. Therefore, the described
strategy is comparable to the harmonic elimination and the process of generalized
averaging [Sanders et al, 1991] or phasor transformation [Rim et al, 1991]. The
phasor transformation in the mentioned references is only applicable to the
converter operating in the continuous conduction mode. This condition is not
supposed here.

The phasor X(t) depicted in Fig. 6.8 is time dependent. Next step is linearization
which assumes a linear derivation between two operating points and results in a
constant phasor Ax(?). The trajectory between two phasors for a sinusoidal change
is depicted in Fig. 6.8 by a dashed line. To solve equation (6.23), the derivation of
the phasor is considered as a difference Ax(?) between an actual position X(?) and
a required reference position X, (t) over the time interval. The other possibility
is to know the shape of the current or the voltage and to take the actual
derivation. In the case of a resonant converter, the derivation is given by a
sinusoidal shape of the resonant current. The investigated phasors are in general
functions of time. For the sake of simplicity, the notation of the time function is
omitted.

Let us apply the method suggested here to the set of equations (6.1)...(6.7). The
assumed solution for phasor y is:

= ] JN 6.24
u, = U 6249
where:

U, - transformed phasor,

o, - required frequency of the output voltage.

For an ideal operation, the transformed phasor U, has a constant value equal to

U, e The derivation of the phasor &, is performed according to equation (6.21):
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du au_ ; ;
=0 _ o Jat Joot .
= e +j6 U e (6 25)
Introduction into equation (6.3) leads to the following expression:
au_ _ ot _ .
Col—26" +ja, U e’™) = spip* - ]ej © : (6.26)

with:

f_I_I = SIIe"tZ 6.27)
where:
sy1 - required switching phasor of the switching bridge SM2 with amplitude
Sy and time dependent phase ¢o.

By extracting the basic harmonic with frequency @, and rotating the equation
(6.26) into the d,q reference frame, we obtain:

aw,
Col—gm Uy *h (6.28)

. ¥
Iy

(o - Wot)
SHeJ¢2 Wt =

and into d and ¢ components:

dUyq
C 9 - U
G o ol %Uod 8 | (6.29)
1id —
ir
dUu,
C % U, I
s ) 0( I +ay Od)"'__lq (6.30)
Iiq x
T

Equations (6.4) and (6.5) prescribe the dynamics of the source filter of the
converter. By derivation of equation (6.4) and substitution of u; from (6.5), we get
the following equation:

a%i du

Thus, the filter voltage y; is eliminated. The phasor transformation is also
performed with equation (6.31).
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The source y is considered to be an ideal voltage source, that means gs=Usei‘DSt.
Therefore the derivative contains only the steady-state term:

_duj = jo Usejmst (6.32)

Next, we construct the derivative of the current i :

di dI. ;
_5 = ____s.e‘mst +ja -I-s s (6.33)
dt
%, a2 . ; :

s _ J@st +2jeg o _ 0)2s L e.l@st (6.34)
@2 a? dz

By using expressions (6.32), (6.33) and (6.34), the equation (6.31) yields:
2
T dI du ;
d*L Jmst Jms Jmst =3 _y Jot . .

where:
sy - required switching phasor of the switching bridge SM1 with amplitude
St and phase yy.
The solution of equation (6.35) is:
d?r

Cels—
dr

: d :
+2J(DSCSLS'dT +ls(1 —(DZSCSLS) _JmSCSUS (636)

Slej(wl—cost) -
it

By assuming the first derivative of the source current I; to be constant, the second
derivative is zero. Equation (6.36) in d,g coordmates is then equal to:

Igq(1-oPCsLg) - 205CsLs dj‘l

P
Iy

(6.37)

S1q =

-aCsUs

dr,
I - ?sCiLg) + 20 CsLy did (6.38)

. ox
Ir
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Assuming that the phasor I in the d,g coordinates is equal to the constant

reference phasor L .. equations (6.37) and (6.38) are reduced to:

Sy = Isrefd(l"’)zsCsLs) : (6.39)

it

1, srefq(1 - "stCsLs) -a,CUs
Iqg = 5
Iy

(6.40)

Expressions (6.39) and (6.40) are the equivalent switching space phasors for the
sliding mode. Since a discrete system such as a series-resonant converter is
considered to be a quasi-sliding mode system, the actual switching space phasor
does not move on a defined sliding surface. The actual switching space phasor is
understood as the phasor calculated with the actual current I, based on equations
(6.39) and (6.40). With the assumption of an infinite swit-ciljng frequency and
infinite resonant frequency, the actual switching phasor and equivalent switching
space phasor are identical.

Expressions (6.39) and (6.40) are equal to expression (3.39) which defines the
reference phasor for a PWM modulator. For an infinite PWM switching frequency
(Chapter 3), the actual phasor follows the reference phasor exactly. Expressions
(6.39), (6.40) and (3.39) create a link between PWM modulation and the quasi-
sliding mode studied here, PWM and PFM modulation principles of external
waveforms are identical for an infinite switching frequency and an infinite
resonant frequency.

The derivation of the resonant link current is starting from equation (6.19),
expressed as:

di," 3 3 Ralc® 6.41

Leq— -5 Rels;"w) = - S Relsu) (6.41)
Using equation (6.4), equation (6.41) is written as:
4" 3 oy -agd) a .

Leq— = gReiSie (Us Lo el )] (6.42)

(Yo - @ut)
—%Re{Sne’ V2 %t_go}

Obtained equations (6.28), (6.36) and (6.42) have variables sy and sy rotating with
speed ©, and ,, respectively. An adequate strategy has to {m applied in order to
be able to select the switching space phasor from the set defined in Chapter 2. The
three-phase voltages U and currents [ are in steady state stationary phasors in
their d,q reference frames. Generally, they are time-varying functions.
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6.6 Switching space phasor selection

Equations (6.28), (6.36) and (6.42) yield a solution for a dynamic model defined in
Chapter 6.2. The obtained expressions for the phasors s; and syj define the ideal
phasors (located arbitrarily in the complex plane). The switching phasors s; and
sy have to be selected from the set of defined phasors for a voltage configuration.
A suitable strategy has to be applied to be able to select from Table 2.2 a defined
phasor for a voltage configuration or a zero phasor s;. The switching matrixes
SM1 and SM2 switched by the switching phasors s; and $y7 connect a resonant
circuit to the terminals of the three-phase source and the three-phase load. A
resonant pulse is thus generated by excitation of the resonant circuit. A resonant
pulse must contribute to the energy transfer in such a way that the voltages and
the currents at the converter terminals track the reference waveforms.

Since it is recognized that pulse modulators for resonant converters are quasi-
sliding mode controllers, in the following, a sliding mode theory is introduced.
Because of the discrete character of the resonant pulse, a quasi-sliding mode is
achieved as noted in Chapter 5. The selection of a switching phasor defined for a
voltage configuration (Chapter 2, Table 2.2) results in a discrete resonant pulse
and gives the modulator a discrete character. However, the operation has a
continuous character after selecting a zero phasor as shown later. This is because
the duration of the zero phasor is not constant and does not depend on the
resonant frequency. The selected switching phasor has to drive the converter
voltages and currents towards its template. This means that the selection of s; has
to assure that the current i; tracks its template, and the selection of g1 has to
assure that the voltage u, tracks its reference. To select a switching space phasor
on the basis of a calculated one for equations (6.28), (6.36) and (6.42) does not
appear to be an easy task. These equations define an ideal switching space phasor,
but the criterium to select one to track the reference is missing. In the following,
this problem is studied.

Selection of a switching space phasor s
The application of a sliding mode condition (5.4) for a filter capacitor voltage
yields:

duiref _ dtik | _ o (6.43)
dt da )

sgn[Ujkref ~ Uik] [
for k=d,qoroaf

The condition is applied either for d,q or for o, coordinates separately. The
condition is applicable in a d,q plane as well as in an o, plane, whichever is more
convenient for switching space phasor selection. The single terms of equation
(6.43) in a complex P plane are further analyzed. The voltage u; .r is the
reference voltage of a capacitor input filter C; and is expressed with the use of
(6.4) as:
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-y - ref 6.44
Yiref = Yg Ly & ¢ )
where: .
Lgref - phasor of the required source current; ismf:lsrefel “’“; L os=const.

The phasor y; is a phasor of the measured capacitor voltage. The time derivative
of u; ..ris expressed as:
dit;per
dz

= (JoUs + msstlsref) o/ (6.45)

The time derivation of the capacitor voltage expressed by equation (6.5) depends
on the selected switching space phasor as:

du, .
1, .. 1 . wy JOGE
- " _C_s(z -i) = _C_S(I -8 ir")e (6.46)

Equations (6.43)...(6.46) yield the condition for the selection of the switching space
phasor g

I —0132L Csl  ~jo,C U
(sI) P <3 S S—.sref sYs eJ('kt
° Iy 647

. dr .
sgnl(Uy -Le—32 - 1) ¥ 1) g

The inequality (6.47) is applied for o, coordinates of sy separately as indicated by
the initial condition (6.43). The second part of this inequality influences the
condition only by sgn of its expression giving the direction for the required motion.
The selection itself appears more convenient in the o,p reference frame because
the switching phasors are in this frame in reality. The set of the switching phasors
together with the switching phasor yielded by equation (6.47) are shown in
Fig. 6.10.

The inequality (6.47) gives one of the quadrants marked I...IV from which the
switching space phasor is selected. This way, having the required switching phasor
in quadrant I, the switching space phasor s, is selected. In quadrant II phasor s,
in quadrant III phasor s, (zero phasor) and in quadrant IV phasor s, are selectgs.
The quadrant III offers the possibility to select also a switching space phasor s,
or sg. These phasors fulfill the condition (6.47) too. However, the zero phasor s,
results in lower ripple of the voltage of the filter capacitor C_ as it yields from
(6.46). Consequently, also the ripple of the source current amf the excursions of
the resonant current i and the resonant voltage u(,. are lower. Therefore in this
thesis a zero switching space phasor is used in the ambiguous cases like this, This
ambiguity is mentioned also in Chapter 2 and gives space for optimalization.
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Fig. 6.10 Switching space phasor selection

Similarly for other positions of the calculated switching space phasor gy from
(6.47), a switching space phasor from the set defined for a voltage configuration
or a zero phasor is selected.

Selection of a switching space phasor sy
Using the same principle, the switching space phasor gyy is calculated:

L +jo,C, U . .
Erpop 2 iﬁi"_:@rf_fefc%t sgnl(,, U, )eﬂoot]]] (6.48)
T :B

The inequality (6.48) gives the selection of a switching space phasor for switching
bridge SM2 and is applied for the o, coordinates of the switching space phasor
sy separately.

Inequalities (6.47) and (6.48) give position of the required switching space phasor.
By selecting a switching space phasor according to these inequalities, the source
and load currents follow their template. If L =L ..cand U =U_ ..¢, equations (6.47)
and (6.48) are identical to equations which give an equivalent phasor. Equation
(6.47) gives the same result as equations (6.39) and (6.40), and equation (6.48)
gives the same result as (6.29) and (6.30). This is correct because if currents and
voltages follow the reference, there is a zero deviation of the switching space phasor.
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6.7 Simulation results

To verify the suggested modulation principle, a converter with the following
parameters is simulated:

U =311V L,=10103H ;=5 O'GF
Ly =2510%H C =5 (08 ¥ L, =10103
o, = 2750 s , = 27100 s'l

The selection of the value of the equivalent inductor L, depends on the values of
the resonant circuit elements. The quantum transforme% converter acts as an AC-

to-AC converter with DC current link. The selection of the value of the link
inductor L, eq for this type of current link converter would be one order higher
because the value of the link inductor is unproportional to the switching
frequency.

u
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e —
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L
o f f J ]
4 8 12 16 t[ms]
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Fig. 6.11 Source and load voltages, source currents and current
of the equivalent inductor iLeq

The applied switching frequency of the bridges SM1 and SM2 and the value of the
link inductor determine the ripple of the current in the link and the stability of
the system. According to the quantum transformation, the value of an equivalent
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inductor L, and the value of the resonant inductor L, are related. The value of
L, determines the impedance of the resonant c1rcu1t and, consequently, the
maxlmum power of the series-resonant link converter Therefore, the value of an
equivalent inductor L, was chosen as 1.25 1073H and the switching frequency
close to the double of t(ile resonant frequency of the resonant link circuit @, given
by equation (6.11).

The waveforms obtained by simulation of a quantum transformed model are
shown in Fig. 6.11. The load voltage u, with the frequency 100 Hz is presented for
all three phases a,b,c. The 50 Hz source current ig is in phase with the source
voltages u,. The current of the quantum inductor L is also depicted. The current
ofan eqmvalent inductor L, is stable as a result oﬁhe properly cyosen reference
source current phasor i.. T?le amphtude of the current iy, = i. (t) is given by
selecting the reference source current i_. Therefore, we expect that the resonant
current and resonant capacitor voltage are also stable. This will be proved later.

After the modulation is verified on the quantum transformed model, the inductor
L q is replaced by a series resonant circuit with the parameters L =0.5 102 H,
C=31.6 10°3 F. The selection of the switching space phasor 81 and sH is the same
as for the quantum transformed converter. The current i,. has an alternating
polarity, but equations of phasor s; (6.47) and s;; (6.48) consuier this fact. The
simulation results are shown in Flg 6.12, Fig. 6.13, Fig. 6.14 and Fig. 6.15.

In Fig. 6.12, the source current iy, and the current i;, of the same phase a are
depicted. The source filter creates a smooth source current from current i; that
contains the resonant current pulses.

ialA
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Fig. 6.12 Unfiltered current i;, and source current i,
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Fig. 6.13 Three-phase source currents and resonant current

The three-phase currents i; and the resonant current i, are shown in Fig. 6.13.
The amplitude of the resonant current i. stays stable with a ripple which is

comparable to the ripple of the current of the quantum resonant inductor L

i [A]

12 AUB — t[y,s]

Fig. 6.14 Resonant current i, and error signals Az, and AuB

The details of the resonant current i, Au,, and Aug which are the differences y, ¢
u; in o,p coordinates are shown in F1g 6.14. It can be seen that the second
resonant pulse is not initiated because the errors of the voltage u; are decreasing
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as a result of the dynamic behaviour of the filter L,C,. The next pulse is initiated
after the a coordinate of error signal Au  increases.

The amplitude of the resonant capacitor voltage stays within the acceptable limits
as shown in Fig. 6.15. According to equation (6.12), the values of the capacitor
voltage depend on the applied mirror voltage. Therefore, for high power
applications, an independent control of the resonant capacitor voltage is necessary.
This can be achieved by placing a switching network across the resonant link
elements L C_ as shown in [Murray, et.al., 1989].
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Fig. 6.15 Resonant current i, and resonant capacitor voltage ug,

The simulated waveforms verify the good working of the suggested modulation
principle.

6.8 Conclusions

A dynamic model of a three-phase-to-three-phase series-resonant converter is
given. This model is based on the switching space phasors and the space phasors
of the three-phase voltages and currents. The series-resonant link is prescribed by
integrodifferential equations.

First, a sampled model is suggested to calculate the resonant capacitor voltage at
the end of a resonant pulse and the resonant current is approximated by a half of
the sinewave.

As the second approximation, linearization of the resonant current is provided.
The transformation called quantum transformation allows the replacement of a
resonant circuit by an equivalent inductor. This approximation makes the dynamic
synthesis simple and readable. The selection of the switching phasors s; and spp
is first provided for the quantum transformed model. The relation between the



124 Series-resonant converter

quantum transformed model and the original dynamic model is presented and
explained. The calculated switching space phasor under the assumption of an
infinite resonant frequency and an infinite switching frequency is identical with
the reference switching space phasor of PWM presented in Chapter 3. This fact
gives a link between the already defined PWM and the described quasi-sliding
pulse modulation. The linearization and rotation into a d,q reference frame (or
harmonic elimination) are the steps made to solve the dynamic model. The result
of the dynamic synthesis is a modulation process for a three-phase-to-three-phase
series-resonant converter. The new modulator creates output voltages and source
currents with unity power factor. The resonant link energy is maintained at the
required level. It is the first modulation to solve the control of this converter

topology.
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7.1 Introduction

In Chapter 4, two basic groups of resonant converters are defined: zero-voltage
switching and zero-current switching converters. A zero-current switching
converter and the dynamic analysis and synthesis of a modulation process are
studied in details in Chapter 6. The alternative is a zero-voltage switching that
can be realized as a parallel-resonant converter. Because the space phasor model
was utilized in Chapter 6 to provide a dynamic synthesis of the modulation of the
converter waveforms, here, the switching function model of a switching bridge leg
is considered. The dynamic synthesis provided on the basis of this model is
explained. The parallel-resonant link is not so well studied in literature as its
counterpart, the series-resonant link. A new control principle is investigated.

For parallel-resonant link converters, the total energy is transferred via the
resonant circuit in four steps [Kim, Cho, 1990]. In the initial solutions of pulse-
density modulated converters {Sood, Lipo, 1988], integral-PWM modulated
converters [Divan, 1986] or quantum converters [Joung, et.al., 1990], the load was
connected directly in parallel to the resonant link which appears to be a
disadvantage because the load strongly affects the resonance phenomena.
Reference [Mohan, 1991] gives a solution of a DC-link converter which utilizes a
parallel resonant circuit to separate the conventional voltage link from the three-
phase PWM inverter during the switching instants.

In Chapter 4, two basic problems of resonant techniques were encountered: the
generating of the external waveforms at the input and output of the converter and
the stabilization of the critical quantities (the control of energy level in the high-
frequency link). The parallel load connected directly parallel to a resonant circuit
strongly affects the resonance phenomena and makes the stabilization of critical
waveforms difficult. Therefore, to solve the second condition, a new control
principle is suggested [Bauer, Klaassens, 1992]. The process of the synthesis of the
external waveforms is studied with the help of a switching bridge leg model
defined in Chapter 2.

The proposed solution differs from known solutions by the fact that the resonant-
link serves mainly to create the zero-voltage switching conditions while the main
power is not transferred through the passive components of the resonant link, The
operational principle is explained on the example of a three-phase-to-DC step-up
converter and a three-phase-to-three-phase converter. The parallel-resonant link
converters were classified according to whether they involve a resonant AC voltage
in the link or incorporate a pulsating DC voltage, e.g. the link is DC resonant
[Divan, 1986]. The suggested control principle can be used for the parallel-
resonant AC and the resonant-DC link concept. The new control principle for
stabilizing critical waveforms is explained on an example of a AC-to-DC step up
power converter.
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7.2 AC-to-DC parallel-resonant DC link step-up power converter
Circuit operational principle

Fig. 7.1 shows the schematic of a three-phase AC-to-DC step-up (boost) parallel-
resonant DC-link power converter.
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Fig. 7.1 Three-phase-to-DC parallel-resonant DC link converter

A three-phase power source with voltages uy, (n=ab,) is connected to the
switches in a bridge configuration SM1 via inductors Ls (n=a,b,c) composing a
current source (Fig. 7.1). A high-frequency parallel L C. link is excited and creates
a zero-voltage condition for the switches in the sw1tchmg bridge SM1 when the
proper switches of the H-bridge are closed. The switches of the H-bridge are
switching alternatively as there is an unipolar voltage in the resonant DC link.
The switching of the bridge SM1 is restricted to the moment of the zero-crossing
of the resonant capacitor voltage uc,. The process of waveshaping of the input
currents iy, (n=a,b,c) is a discrete process and is explained later. The input
currents are required with unity power factor. To simplify the presentation, we
replace the input voltage sources including the inductor Ly, by a single DC
current source with current IS as shown in Fig. 7.2 This current source performs
a resulting current flowing into the link. It is allowed to introduce this current
source, because all three input phases are simultaneously connected to the link
to control the source currents. The equivalent current source has a DC value since
the low-frequency input current remains quasi constant during a period of the
high-frequency link. The switches in the H-bridge are switching alternatively to
obtain a unipolar voltage in the link and connect or disconnect the resonant circuit
from the link. The H-bridge is, therefore, replaced by a single switch Sy which
connects or disconnects the parallel resonant circuit. The output filter capacitor
C, is connected to the link via switch S.

To shape the voltage on the output capacitor, we use forward or reverse operation
as will be explained.
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Fig. 7.2 Equivalent circuit

7.2.1 Forward operation
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The forward operation is active, when switching bridge SM1 and switch S connect
the input current source I to the output capacitor C, (C; >> C,) to increase the
loaded output capacitor voltage u,. The parallel-resonant circuit is mainly used
to create the zero-voltage switching conditions. The principle of operation is
described for one switching cycle of the resonant pulse. Each switching cycle is
divided into five modes. In Fig. 7.3..Fig. 7.6, the equivalent networks are shown
for the four different positions of the switches Sy; and S. Fig. 7.7 shows how the
duration of certain modes depends on the ratio of the voltages of the capacitors C
and C..
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Mode 1:

In mode 1 (time interval T, Fig. 7.3 and Fig. 7.7), the current source is connected
to the link with the selected polarity at the instant, when the resonant capacitor
voltage is at a zero-crossing point (creating a zero-voltage condition). The switch
Sy is closed and the current source I is supplying the parallel-resonant L C_
circuit. The switch S is opened and the output capacitor CQ is disconnected from

the link. Thus, for mode 1, the input power source is powering the resonant L C,.
tank.

Mode 2:

At the instant ¢, (Fig. 7.4 and Fig. 7.7) when the resonant capacitor voltage uc,
reaches the value of the voltage of the output capacitor C,, the switch S is closing
with zero-voltage conditions. Output capacitor C, is connected via switch S to the
resonant capacitor C,. Capacitor C  and C_ have the same polarity. Switch Sy can
be disconnected at any time also under zero-voltage conditions. In mode 2
(Fig. 7.4), the resonant capacitor is clamped by the output capacitor. The energy
in the resonant tank will decrease.

Mode 3: :

(Time interval T3, Fig. 7.5 and Fig. 7.7) Mode 3 starts when switch Spy disconnects
the parallel resonant tank from the link. In mode 3, the current source powers the
output capacitor C, via a switching bridge SM1, the link and the switch S. This
mode continues until the resonant capacitor voltage reaches the same value as the
one of the voltage of capacitor C,. A zero-voltage switching condition for switch Sy
is created again.

Mode 4: .

In mode 4 (time interval Ty, Fig. 7.4), the resonant capacitor C, is clamped by the
output capacitor. Thus, the energy in the resonant tank can be increased. The
switch S can be opened any time under zero-voltage conditions.

Mode 5:

At the time instant ¢, switch S is opened (mode 5, Fig. 7.6 and Fig. 7.7). Current
source I, is powering the resonant circuit. As seen in Fig. 7.7, the duration of
certain modes depends on the ratio of the voltages u, and u, of the capacitors C,
and C,. In Fig. 7.7 mode 2 and mode 4 have zero time duration.

Analysis and design considerations
The analysis and design for the forward operation presented in this section are
based on the following simplifying assumptions:

all components are ideal,

the input current I; remains constant during a resonant pulse,

the output capacitor voltage Ug, stays constant during a resonant pulse,
mode 2 and mode 4 have zero time duration (time interval To=74=0),

the resonant capacitor waveform shape is approximated as half of the
sinusoid.

oooDao
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Fig. 7.7 Resonant capacitor voltage ug, and output capacitor voltage Ug,

Fig. 7.7 shows the voltage of the resonant capacitor C, and the voltage of the
output capamtor C,- During the time interval 0-¢ (Tl) and t4-t (T’5) the resonant
capacitor C,. is powered (mode 1 and mode 5) and in the time mterval oty (T3)
the output capacltor C, is powered (mode 3). Based on the s1mphtymg assumptions
T=Ty, itis mterestmg to see how the amount of energy is transferred to the link
and to the output. If the amplitude of the resonant capacitor voltage is increased
(dashed line), the time intervals T, and T’5 are shorter (the intersection point of
the voltages yields shorter mterva.][s T and Ty). Hence, the output capacitor is
powered for a longer time. If the resonant capacltor voltage is lower, the output
is powered for a shorter time. Thus, there is a stable point of operation, an
operating pomt for which the resonant L C,-link seeks. The assumption which we
will prove is that the operating point Whlch the resonant link will maintain is
reached when the time intervals of all the modes stay constant, this means the
increment in the both voltages stays proportional.

We assign the increment of the amplitude of the resonant capacitor voltage during
a pulse AUp,p., and the increment of the output voltage AU,

AUGrmaxSin(Ty) = AUG, .1)

Charge delivered to the resonant link with constant current [ = is:
Q1 =2ITy (7.2)

Charge delivered to the unloaded output capacltor with constant current [ is:
Q2 = ITs (7.3)

The increments in voltages over C,. and C, are:
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Q 2IT,
AU, =<1 (7.4)
Crmax Cr Cr
AUgq = _QE = I_TE (7.5)
Co G
Equations (7.1), (7.4) and (7.5) yield:
_zﬂsin(Tl) = _C.f_ (7.6)
Ty C'o

The result is that the operating point for non-load conditions depends on the ratio
of the two capacitors. The above-mentioned consideration was based on the
assumption that the switching instant ¢5 appears in the nearest intersection point
of the voltages ug, and ug, (at the nearest zero-voltage condition). Since the
resonant circuit does not rea(ily participate in the energy transfer, mode 3 can be
prolonged and the switching can take place after several resonant pulses. Mode
3 has then a duration T3+1t.k\/(LrCr) where £ is an integer number. The resonant
circuit is employed only when a change in a converter status is required. The
resonant circuit serves as a snubber for all switches. In dependence on the
modulation of the source currents or on general external waveforms, switching
occurs after each pulse or several pulses.

Control of the energy in the resonant link

The load may change significantly and the power added to the load and to the link
is dictated by the ratio of the two voltages: amplitude of the resonant capacitor
voltage and output voltage.

Generally the resonant link voltage may reach a value which appears to be too
high or too low. Therefore, an active control loop for the resonant capacitor voltage
is necessary. During the time interval Ty (mode 2), energy can be withdrawn from
the resonant circuit. To keep the energy in the resonant tank on a constant level,
mode 2 continues until the resonant inductor current ij . reaches the value
prescribed by the maximum energy in the tank:

. C
ILr = \l_f,z Wormax® - uce) 7.7
r
where:
Ucrmax - @mplitude of the link voltage.

The same way, energy can be added to the resonant tank during the time interval
T4. In Fig. 7.7, the time intervals Ty and T have zero values.
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7.2.2 Reverse operation

Reverse operation is obtained when switching matrix SM1 and switch S connect
the input current source I and the output capacitor C, to decrease the output
voltage. Energy is withdrawn from the output capacltor Reverse operation also
consists of five modes. The configurations of the switches and modes are the same
as for forward operation (Fig.7.3...Fig.7.6). The only difference is that the input
current source is connected in the opposite way in order to withdraw energy from
the output. In mode 1 and mode 5 energy is withdrawn from the resonant tank
and in mode 3 from the output capacitor. It is possible to see that mode 4 is used
mainly for the reverse operation (to add energy to the resonant tank) and mode
2 for the forward operation (to withdraw energy from the resonant tank).

7.3 Modulation of source currents based on a switching function

The control is discrete because the switching instants of the switching bridge SM1
are restricted to the zero-crossing points of the resonant capacitor voltage. Thus,
a sliding mode control condition of infinite switching frequency is not possible
because of the duration of a resonant pulse. The variable-structure control model
for one phase reflecting the time-varying nature of the input voltage is given by
equation:

di .
Lgn dstn ) ';_ [8 i® -% ) si(t)] uCo * Usmaxsin(wt +¢p) (7.8)
: i=ab,c
where:

&) - switching function representing the positions of the switches
of the leg in the bridge SM1 and reaching values in the
discrete set -1,1. &8,(t) performs a control input of the
variable structure control,

Usmax - magnitude of the source phase voltage u  , n=a,b,c,

isn - phase current of the phase n, n=a,b,c,

0 - phase shift of the voltage in the phase n with respect to the phase

a.
Equation (7.8) can be rewritten in the form:
disn . (7 9)
Lsn—-d-t— = 3i(®kuco + Usmaxsin(wt +¢p) :

The coefficient £ depends on the switching of the other legs of the input bridge and
the value of % is 1/3 or 2/3. For the existence of a sliding motion it is necessary
that the state trajectories near the switching surface point toward the surface. The
switching surface can be represented by the time-varying error signal of the phase
currents:
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s(isn) = isn —Ismax Sin((l)t +(Pn) (7_10)
where:
) magnitude of the reference current iy . ¢

The sufficient. conditions for the sliding-mode to exist on s(iy,) are expressed
mathematically in Chapter 5 by equations (5.2) and (5.3):

lim 3 5 0 (7.11)
sTO

im 3 <o (7.12)
slo dt

and applied to our particular case:

. Asigy) 1, .
I = L 80 kuce+U, (0t +¢p)
lim R = 7 [-8i{0kuco+ Usmaxsin(ot + o) (7.13)

-0 I axcos(0t +¢p) > 0

lim ds(isn)
sl0

L [-8i0)kugy+ Usmaxsin(@t +9g)] 110
Lsn .
- Igmaxcos(t +¢,) < 0

This condition leads to the selection of §,() = +1 for s>0 and §;(?) = -1 for s<0.
Equations (7.13), (7.14) yield the following condition as a sufficient condition for
the existence of a sliding motion on s(iy):

‘-l—uCo+Usmax < -0LgnIgmax < @LgnIgmaxycos(®t +@p) <
3 (7.15)

1
OLgnI smax < 3 uCo~Usmax
or briefly:

oLgnIgmax * Usmax < %uCo (7.16)

Equation (7.16) determines the amplitude of the allowable reference current. The
importance of equation (7.16) is that it shows a relation between the frequency o
of the modulated current, the value of the inductive filter and maximum current
which is possible to modulate by this control principle. The physical limitations of
the power of the investigated topology depend on the values of the converter
components. An increase of the value of the inductor of the source filter on one
side decreases the source current ripple, on the other side limits the maximum
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modulated current and this way the power of the converter.

7.4 Simulation of an AC-to-DC converter

To verify the operation principle and the predicted features, the proposed
converter from Fig. 7.1 was simulated. The control to keep the maximum voltage
on the resonant capacitor constant and sliding mode control of the source currents
was applied. The converter was simulated with the following parameters:

Lgy= Lop= Le=10 109 |

Le= 50 uH, €= 05 105 F

C,=600 10" F

load: R =100 Q, L= 103H

In Fig. 7.8, one resonant pulse and the active control of the resonant tank energy

for forward operation are depicted.

uc,[V] 1200 - u.

u Cr [V] w00 L uco /"——\

| L
0 10 20 30
— t[us]
-800
-1200

Fig. 7.8 Resonant capacitor voltage u(,. and output capacitor voltage v,
for forward operation

In Fig. 7.9, one resonant pulse and active control of the resonant tank energy for
reverse operation is shown.

The time intervals T9 and T, during which the output capacitor voltage is
clamped to the resonant capacitor voltage are good visible. During these time
intervals switch S is commutating with the switches of the H-bridge.

In Fig. 7.10, the reference current of phase a i ,..r and the measured current iy
of phase a are shown. In the same figure, the voltage over the switches o?
switching bridge SM1 and switching function §,(2) are displayed. The switching
function is derived from the switching surface equations (7.13) and (7.14).
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ucolV] 1200 - u
‘ 800 - Co

0 } i }
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400 |-
—— t[us]

00 |

1200 -

Fig. 7.9 Resonant capacitor voltage uq,. and output capacitor voltage ug,
for a reverse operation
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Fig. 7.10 The reference current i, ..r and current i ,, voltage ugpy
and switching function Sléf

Whenever a switching instant occurs, the parallel-resonant link takes over the
voltage in the bus and creates a required zero-voltage condition. As it is possible
to see in Fig. 7.10, the voltage ugyr over the semiconductor switches of a
switching bridge SM1 has zero value during the switching interval. This voltage
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in case of a classical converter would have a constant value equal to the value of
the DC bus. The current i , follows the required reference as shown in Fig. 7.10.

Whenever the current i, reaches the reference, a change in the configuration of
the switches of SM1 occurs. Generally, the change happens with some time delay
because the change in a switching configuration can happen only at a zero-crossing
of the bus voltage ugyr;. The maximum switching frequency of the switching
bridge SM1 is thus limited by the resonant frequency of the L C, circuit.
Therefore, the "ringing" or "chattering”" known by sliding mode controllers cannot
occur here. The resonant frequency is in this case chosen as 36 kHz.

In Fig. 7.11, the load current and the low-frequency source currents and the
voltages for a powering mode are shown.

i1 [A] iy

| , , .

0 i T 1
- 5 10 15 — t[ms]

‘ 161 ig ish isc

— t[ms]

— t[ms]

Fig. 7.11 Typical waveforms of an AC-to-DC converter for a powering mode
(forward operation)

In Fig. 7.12, the load current and the low-frequency source currents and the
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voltages for a regenerating mode are depicted.
ij[A]
I
0 - } —+ i
iy 5 10 15 — t{ms]
8

u 5 10 15

— t{ms]
8L
16 +
U, [V]
400 L. Ugq Ugh Usc
200
D | ; — t[ms]

Fig. 7.12 Typical waveforms of an AC-to-DC converter
for a generating mode (reverse operation)

The same waveforms (load current and low frequency input currents and voltages)
for an abrupt change from a regenerating to a powering mode are shown in

Fig. 7.13.
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Fig. 7.13 Simulated waveforms for an abrupt change from a regenerating
to a powering mode

7.5 A three-phase-to-three-phase parallel-resonant converter

The introduced control principle can be also used for polyphase AC power
converters. The schematic of a three-phase-to-three-phase AC-to-AC power
converter with resonant AC link is shown in Fig. 7.14 (the parallel-resonant DC
link requires additional switches). Because the voltage in the link is AC the input
bridge SM1 and the output bridge SM2 must have switches with bidirectional
blocking and conducting capability. _

By the suggested novel control principle [Bauer, Klaassens, 1992], the source and
the load have always complimentary character. That means that one switching
bridge uses a voltage configuration as defined in Chapter 2 and the other one uses
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a current configuration because the parallel-resonant circuit in the suggested
control principle serves as a rotating snubber between current and voltage source.
The converter in Fig. 7.14 has source side filters with voltage character and the
switching bridge SM1 uses a voltage configuration while the load has current
character and SM2 uses a current configuration of the switches. By changing the
character of the source and load filters, a step-up AC power converter is again
obtained by using the suggested novel control principle.

The switching leg model is not practical for converters which use a voltage
configuration as concluded in Chapter 5. Therefore for the design of a modulation
of an AC-to-AC parallel-resonant converter, a switching space phasor model is
necessary.

For a parallel-resonant converter in Fig. 7.14, the following set of equations can
be found:

di

= _ 1

di

S R, + 1L 1lg 3Resw) (7.18)
s Lo I, 2°173 =i :

W1, 1 g 38Ry %) (7.19)
F A R St '

Fig. 7.14 A three-phase-to-three-phase parallel-resonant converter

In the equations (7.17)...(7.19) influence of the current of parallel resonant circuit
is neglected since the parallel resonant circuit serves as a snubber. Its energy is
refreshed after each change op the configuration and kept on the constant level.
The definition of the problem is the same as in Chapter 6: to find such switching
phasors Sy and S} that the currents i; and j; follow the corresponding reference
currents within t;xe required degree o_tsaccuracy.
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Because the parallel-resonant circuit does not participate on the energy transfer
and the energy of the resonant link is independently controlled, the set of
equations (7.17)...(7.19) is simpler than the set of equations for a series-resonant
converter studied in Chapter 6. However with the use of a quantum
transformation which is defined olso for parallel resonant circuit [Joung et.al.,
1992], it is possible to introduce the quantum transformed circuit influence in the
set of equations (7.17)...(7.19).

As a result of the equations (7.17)...(7.19), the switching phasors Sy and S;
calculated. The ideal switching phasors have to be related to a suitable sw1tc
strategy, e.g. the sliding mode control. we will not repeat it here because it is the
same procedure as in Chapter 6. The switching phasors S;and Sy; have to be
selected from the set of phasors defined for a voltage configuration (phasor Sp) and
a current configuration (phasor Syy) .

7.6 Conclusions

The usefulness of a parallel-resonant circuit to achieve soft switching is studied.
A novel control principle of a parallel-resonant converter is suggested and
documented on an example of a three-phase-to-DC step up power converter. The
main difference between existing control principles and the suggested principle is
that the resonant circuit does not participate on the energy transfer and serves as
a rotating snubber.

The usefulness of a switching function model for the design of a modulation of
three-phase currents is investigated and introduced on an example of an AC-to-DC
step-up power converter. Because a current configuration of semiconductor
switches is utilized, the switching function model is eligible. The dynamic analysis
based on this model gives a mathematical relation between the filter inductor
value and the modulated currents and output voltage.

The concept of the novel control principle of a parallel-resonant converter is
extended for three-phase-to-three-phase converters. Complimentary, the character
of the switching bridges SM1 and SM2 allows to design a step-down as well as a
step-up AC-to-AC power converter. A dynamic model based on the switching space
phasor model is given for a three-phase-to-three-phase parallel-resonant link
power converter.
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The main objective of the thesis is to report on the study of three-phase AC
switching power converters. The work on the analysis of polyphase AC switching
power converters includes the desire to develop methods which enable to study the
interaction between power semiconductor devices and dynamic elements of the
converter, the source and the load.

The investigated topologies of the AC converter are embodied by semiconductor
switches in a bridge configuration including passive dynamic components in the
link and filters. The switching networks of the specified three-phase AC-to-AC
power converter consist of at least twelve semiconductor switches. The switching
networks fulfil the required criteria to generate converter waveforms with a
prescribed degree of accuracy. Without a special handling, the number of switches
operating at a high frequency is causing a cumbersome analysis and synthesis.

The performance and the quality of the power conversion depend on the
interaction between the converter elements. This is the main reason to establish
a good design of the power converter elements and to use a good dynamic model
for the converter control. The purpose of the thesis is to provide a model and
method of dynamic analysis and synthesis of three-phase AC power converters.

At the beginning of the study of the dynamics of AC power converters, a survey
of topologies and applied methods of modulation is made.

O Two groups of AC converters are defined according to the control system
configuration:

1. open-loop controlled AC converter (typical for pulse-width modulation
(PWM)), v

2. closed-loop controlled AC converter (typical for discrete-pulse modulation
(PFM)). ‘

The investigation is restricted to converter configurations using a three-phase
switching bridge. It is a complicated network that has many different
configurations. Not all configurations are allowed and active.

A mathematical model of a converter is suggested in Chapter 2 to perform the
dynamic analysis. The current and voltage configurations of a three-phase bridge
are defined. Two different models of a semiconductor switch in the bridge
configuration are suggested and further investigated.

First, the selected switching matrix with switches in a bridge configuration is
composed of switching functions 3() for each switching leg that contains two
switches. A switching leg is the basic element connecting the three-phase side to
the one-phase side of a bridge. The operation of both switches is not independent
and a switching function &) is a basic modulation function for one phase. A three-
phase switching bridge is consequently represented by three switching functions
8,®), By(t) and 3(1).
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Another model of a three-phase bridge is based on a space switching phasor
representation. A three-phase switching bridge is represented by a switching space
phasor s(z). The defined relations between the AC and the DC sides of a switching
bridge allow the construction of a dynamic model more or less as a routine work.
The defined relations are related to the power flow in a converter.

The relation between both models, the switching functions § ( 1, Sb( ?), 8,(t) and
the switching space phasor s(f) is established. By deﬁnmg three sw1tch1ng
functions 8,(#) for i=a,b,c and by applying the o,p transformation, a switching
space phasor s(t) is constructed. On the other hand, by appointing an arbitrary
switching space phasor g, there is no unique solution for a switching function 8,(%).
This ambiguity gives space to optimization. Therefore, dynamic models presented
as a switching space phasor are more suitable for the synthesization of a
modulation process of a three-phase power converter. The mathematical models
are generally valid and suitable for various classes of converters with a three-
phase switching bridge.

The dynamic modelling of the selected examples of converters is based on
developed mathematical models. As a typical example of an open-loop modulation,
the carrier PWM is selected. Transfer functions are matter of interest of a
dynamic analysis. As typical examples of a closed-loop modulated converter, soft-
switching resonant converters (series resonant link and parallel resonant link
converter) are selected. The dynamic synthesis of a modulation process is a matter
of our interest.

8.1 Open-loop modulated converters

A typical example of an open-loop modulated converter is the carrier PWM
converter with a possible feedforward control. The modulation pattern is
predefined. The dynamic analysis of the selected families of converters is provided.

The topologies of three-phase PWM power converters and methods of carrier PWM
are reviewed in Chapter 3. These topologies are typical examples of open-loop
modulated converters. The selection of a mathematical model depends on a type
of the used modulation.

0O The switching function model of a bridge leg is suitable in the case where
each phase of a three-phase circuit is modulated individually. The
switching functions §i(t) for i=a,b,c determine the sw1tch1ng action of a
bridge leg. An example of such a modulation method is a carrier
suboscillation method.

O The model of a switching space phasor is suitable for space phasor
modulated three-phase converters. In case of space phasor modulation, the
phasors for the voltages resp. currents are modulated at the three-phase
side of the converter. The switching space phasor is in fact a normalized
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phasor for the modulated currents or voltages. Therefore, the switching
space phasor model represents all space phasor modulated PWM
converters.

The open-loop modulated converters have a precalculated switching pattern that
allows Fourier analysis.

O The Fourier series represents the discontinuous switching behaviour of the
converter switches.

O The dynamic model of the system in a rotating reference frame is
stationary in the steady-state.

O By linearization of the model, a small-signal transfer function for
perturbations around a certain point is developed. The verification by
measurements require a phase-gain analyser that is difficult to apply in
power circuits. The calculated transfer functions are compared to
experimental data obtained from simulation. The calculated transfer
functions are accurate in the low-frequency region. For higher switching
frequencies, the fidelity of the calculated curve is raising.

The described method is documented for both models of switches in a bridge
configuration. Using this method, the transfer functions of AC power converters
are calculated. The transfer functions are difficult to obtain from experimental
methods.

The defined method performs a general approach to dynamic modelling.
Conmdermg only the zero-frequency component of a Fourier series, the state-space
averaging method is obtained. State-space averaging is just a spec1a1 case of the
method investigated in this thesis.

8.2 Closed-loop modulated converters

A typical example of a closed-loop modulated converter is the group of soft-
switching resonant converters. A survey of topologies and modulation principles
is made to clarify the relation between the individual members of the group.

O PWM and PFM modulation methods are investigated. It is concluded that
PFM is the natural modulation method for resonant converters.

O Filtering and selection problems are defined. For three-phase resonant
converter topologies with a voltage configuration, the modulation is process
of selection of the state of the switches in the configuration of the switching
bridge. The conventional approach to filtering process is not appropriate
because of the fluctuating harmonics of the spectrum of the modulated
waveforms.
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Two topologies: a zero-current switching series-resonant link converter and a zero-
voltage switching parallel-resonant link converter are selected for further study.

There is a relation between resonant pulse-modulation techniques and a sliding
mode control. It is proved that an ASDTIC is in fact a quasi-sliding mode
modulator. The ASDTIC modulator, originally developed for single phase
converters, however, does not solve the selection problem. Therefore, it is
suggested to solve the modulation process of a three-phase-to-three-phase power
converter with a sliding mode principle.

The discrete nature of the resonant pulse modulator results in a quasi-sliding
mode. The disadvantage of a quasi-sliding mode is that the system does not stay
on the sliding surface as it does in the case of an ideal sliding motion. The
deviation from the ideal sliding surface arises within the sampling period of the
sliding modulator. The chattering, which is a disadvantageous property of an ideal
sliding motion, does not occur in the case of a quasi-sliding motion. A three-phase-
to-three-phase resonant link converter is a multiple-input/multiple-output system.
An eventual sliding mode switching scheme is desirable. By transforming this
condition (an eventual sliding mode scheme) into a switching philosophy for a
three-phase-to-three-phase resonant converter, the sliding mode has to occur at
the source and the load sides of the converter simultaneously.

The application of models for the switches in a bridge configuration for the design
of a quasi-sliding mode modulator is investigated. The conclusion is that a
switching function model of a switching leg is suitable for converters with a
current configuration. The switching space phasor model is more general and it
is suitable for converters using either a current or a voltage configuration.

The dynamic model for discrete-pulse modulated converters is set up with the
defined mathematical model of a switching space phasor. The switching space
phasor model offers the possibility of a dynamic synthesis. The nonlinear resonant
circuit is replaced by a linear inductor for the purpose of analysis and synthesis
of modulation using the quantum transformation. Here, the quantum
transformation is proved for a series-resonant circuit. A quantum transformed
parallel-resonant circuit exists as well.

The modulation process based up to now on intuition is now supported by a
dynamic model. The suggested modulation shows the application of the dynamic
model.

O To avoid a model with time-varying parameters, a harmonic elimination
process is provided. The harmonic component with the utility frequency is
extracted. The procedure is essentially identical to the transformation into
a rotating reference frame.

O The modulation methods and control are analysed for a model with
attention to the filtering and selection problems.
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O The space phasor mapping based on the quasi-sliding mode is designed.
The criteria of mapping are discussed and analysed generally. The
switching process based on the dynamic model is accompanied by
simulation results.

O An improved modulation process is designed for a series-resonant link
converter. The designed modulation process is only an elementary example,
By selecting the modulation criteria, more sophisticated modulations based
on the model can be designed.

The dynamic model of a discrete-pulse modulated converter is based on an
equivalent control equation which presents the averaged behaviour of the
switching action. The equivalent switching phasor under the assumption of an
infinite resonant frequency and infinite switching frequency is equal to a PWM
reference phasor. This fact defines a link between PWM and a quasi-sliding
modulation defined in the thesis.

The utilization of a switching function model is shown on an example of a parallel-
resonant converter. A novel control principle of a parallel-resonant converter is
suggested and documented on an example of a three-phase-to-DC step up power
converter. The main difference between the existing control principles and the
suggested principle is that the resonant circuit does not participate in the energy
transfer and serves as a rotating snubber. This opens a way to construct
converters with a higher efficiency than is usual for resonant converters. The
dynamic analysis based on the switching function model of a switching bridge leg
gives a mathematical relation between the filter inductor value and modulated the
currents or output voltage.

The dynamic model for both groups (open- and closed-loop modulated converters)
results in an approximated model. The harmonic content of the converter
waveforms is the basis for the approximation for both groups. These models
include only the utility frequency. The switching function or switching space
phasor is thus approximated by the low-frequency component.

The methods of dynamic modelling for both groups of converters have a common
base: equations in a d,q reference frame that rotate with a utility frequency.

The switching function model of a switching leg is suitable for analysis of existing
modulations based on this model. The application of this model for dynamic
synthesis is limited to a current configuration.

The switching space phasor model of switches in a bridge configuration is a
suitable tool for dynamic analysis and synthesis of the converters with a three-
phase switching bridge topology. The use of this model for dynamic synthesis of
new modulation techniques can be recommended.




BIBLIOGRAPHY



148

Bibliography

[1]

[2]

(3]

[4]

[ 5]

[ 6]

71

[ 8]

[9]

[10]

[11]

{12]

[13]

Akagi H., Nabae A.: The p-q theory in three-phase systems under non-
sinusoidal conditions; ETEP, Vol.3, No.1, Jan.-Feb. 1993, pp. 27-31.

Akagi H., Kanazava Y., Nabae A.: Instantaneous reactive power
compensators comprising switching devices without energy storage
components; IEEE Transactions on Industry applications, Vol.IA-20, No.3,
May-June 1984, pp. 625-630.

Bauer P., Klaassens J.B.: A Novel Control Principle for Parallel Resonant
Voltage Link Converters; International Conference on Electrical Drives and
Power Electronics, Kosice, Czechoslovakia, Sept. 1992, pp. 457-461.

Bauer P., Klaassens J.B.: A Method to Dynamical Analysis of AC Power
Converters; International Conference on Electrical Drives and Power
Electronics, Kosice, Czechoslovakia, Sept. 1992, pp. 180-183.

Bauer P., Klaassens J.B.: A Novel Control Principle for Parallel Resonant
Voltage Link Converters; IEEE 1992 IAS Conference, Houston, Texas, USA,
Oct. 1992, pp. 796-800.

Bauer P., Klaassens J. B.: Dynamic Modelling of AC Power Converters;
Power Conversion Conference, Yokohama, Japan, April 1993, pp. 502-507.

Bauer P., van Duijsen P.J.. Large Signal and Small Signal Modeling
Techniques for AC-AC Power Converters; Power Conversion Conference,
Yokohama, Japan, April 1993, pp. 520-525.

Bauer P., Klaassens J.B.: Space vector based power control of resonant
converters; EPE Conference, Brighton, Sept. 1993, No.377, Vol.3, pp. 338-
342,

Bauer P., Klaassens J.B.: Dynamics and analysis of three phase AC power
converters; EPE Conference, Brighton, Sept. 1993, No.377, Vol 4, pp. 77-81.

Bauer P.: Space vector based power factor control of pulse modulated soft-
switching converters; PCIM 94, Nurnberg, Germany, June 1994, pp. 89-102

Bauer P.: Mathematical model of a three-phase converter; Int. Conf.
Electrical drives and Power Electronics, Slovakia, Oct. 1994, pp. 147-153.

Bauer P.: Transfer functions of PWM three-phase converter; Int.
Conf.Electrical drives and Power Electronics, Slovakia, Oct. 1994, pp. 13-18.

Bauer P.:. Synthesis of the modulation mechanism for AC-to-AC series
resonant converter; Int. Conf. Electr.Drives and Power Electronics, Slovakia,
Oct. 1994, pp. 169-174.




Bibliography 149

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Bauer P.: Modulation of low frequency waveforms by AC/AC resonant
converter; Intelec 94, Vancouver, Canada, Oct.-Nov. 1994, pp. 643-648.

Boudjema F., Abatut J.L.: Sliding mode - a new way to control series
resonant converters; IEEE Annual Meeting, 1990, pp. 938-943.

Bose B.K.; Recent Advances in Power Electronics; IEEE Transactions on
Power Electronics, Vol.PE-7, No.1, Jan. 1992, pp. 2-16.

Chen C.T.: Linear system theory and design. Holt, Renehart and Winslon,
N.Y. 1984.

Cheron Y., Foch H.: Series resonant converters; EPE Tutorial resonant
converters, Brighton, Great Britain, 1993, pp. 15-32.

Cho J.G., Cho G.H.: Soft switched matrix converter for high frequency
direct AC-to-AC power conversion; EPE, 1991, Firenze, pp. 196-201.

Cuk S., Middlebrook R.D.: A general unified approach to modeling switching
dec-dc converters in discontinuous conduction mode; PESC, 1977, pp. 36-57.

Divan D.M.: The Resonant DC Link Converter - A New Concept in Static
Power Conversion; IEEE-IAS Annual Conference Record, 1986, pp. 648-656.

Divan D.M., Venkataramanan G.: Comparative evaluation of soft switching
inverter topologies; EPE, 1991, Firenze, pp. 13-18.

Venkataramanan G., Divan D.M.: Pulse Width Modulation with Resonant
DC Link Converters; IEEE-IAS Annual Conference Record, 1990, pp. 1215-
1221.

Elbuluk M.E,, Verghese G.C., Kassakian L.G.: Sampled data modeling and
digital control of resonant converters; IEEE Transactions on Power
Electronics, No.3, 1988.

Ferrero A., Morando A.P., Ottoboni R., Superti-Furga G.: On the meaning
of the Park Power Components in three-phase systems under non-sinusoidal
conditions; ETEP, Vol.3, No.1, Jan.-Feb. 1993, pp. 33-43.

Gyugyi L., Pelly B.R.: Static power frequency changers - Theory,
performance and application; John Wiley & Sons, 1976.

Holtz J.H.: Pulse width Modulation - A survey; IEEE-IAS Annual Meeting,
Vol.2, March 1992, pp. 11-18.



150

Bibliography

[28]

f29]

[30]

[31]

[31]

(33]

[34]

[35]

(36l

(371

[38]

(391

[40]

He Jin, Mohan N., Wold B.: Zero Voltage Switching PWM Inverter for High
Frequency DC-AC Power Conversion; IEEE-IAS Annual Conference Record,
1990, pp. 1215-1221.

Hung J.Y., Gao W., Hung J.C.: Variable structure control: A survey; IEEE
Transactions on Industry Applications, 1992.

Joung G.B., Cho J.G., Cho G.H.: A generalized quantum resonant converter
using a new quantum resonant module; IEEE Trans. on Power Electronics,
QOct. 1992, pp. 666-672.

Karnopp D.C., Margolis D.L., Rosenberg R.C.: System Dynamics, A unified
approach; Wiley, New York, 1990.

Kassakian J.G., Schlecht M.F., Verghese G.C.:. Principles of Power
electronics; Addison-Wesley Publishing Company, 1991.

Kim LD., Cho G.H.: New bilateral zero voltage switching ac/ac converter
using high frequency partial resonant link; JECON, 1990, pp. 857-862.

King R.J., Stuart T.A.: Small-signal model for the series resonant converter;
IEEE Transactions on Aerospace and Electronic Systems, May 1985, pp.
301-319.

Kislovski A.S.: Dynamical analysis of switching DC-DC converters; EWV
Engineering, No.1, Bern, Switzerland, 1985.

Kislovski A.S.: Current mode control. A unified model for open loop
instability; APEC, 1991, pp. 459-472.

Kislovski A.S.: Controlled quantity concept in small signal analysis of
switching power cells; IEEE Transactions on Aerospace and Electronics
Systems, No.3, 1983, pp. 438-446.

Klaassens J.B., de Beer F.G.: Three-phase AC-to-AC series-resonant power
converter with a reduced number of thyristors; IEEE Transactions on Power
Electronics, Vol. PE-6, No.3, June1991, pp. 346-355.

Klaassens J.B., van Wesenbeeck M.P.N., Lauw H.K.: Series resonant single-
phase AC-to-DC power supply with active power factor control; EPE,
Aachen, 1989, pp. 1-6.

Klaassens J.B.: DC-AC series resonant converter system with high internal
frequency generating multiphase AC waveforms for multikilowatt power
levels; IEEE Transaction on Power Electronics, Vol.PE-2, No.3, 1987, pp.
247-256,




Bibliography 151

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

Klaassens J.B., van Wesenbeeck M.P.N., Bauer P.: Soft Switching : From
Idea to Reality; International Conference on Electrical Drives and Power
Electronics, Kosice, Czechoslovakia, Sept. 14-16, 1992, pp. 187-192.

Klaassens J B, van Wesenbeeck M.P.N., Bauer P.: Soft Switching Power
Conversion; EPE Journal, Sept. 1993, Vol.3, No.3, pp. 155-166.

Klaassens J.B., van Wesenbeeck M.P.N., Bauer P.: Soft Switching Power
Conversion; EPE Tutorial Resonant Converters, Brighton, Sept. 1993, pp.1-
14,

Klaassens J.B., van Wesenbeeck M.P.N., Lauw H.K.: AC-AC Converters
with Soft-Switching; Proceeding of the 4th European Conference on Power
Electronics and Applications, Vol.4, Firenze, Sept. 1991, pp. 151-157.

Kovacs K.P., Racz I.: Transiente vorgange in Wechselstrommaschinen;
Akademia Kiado, Budapest, Hungary, 1959.

Lau B.Y., Middlebrook R.D.: Small signal frequency response theory for
piecewise constant two switched network dc to dc converter systems; PESC,
1986, pp. 186-200.

Lee F.C., Tabisz W.A, Javanovic M.M.; Recent Developments in High-
Frequency Quasi-Resonant and Multi-Resonant Converter Technology; EPE,
Aachen, Germany, Oct. 1989, pp. 401-410.

Mertens A.: Performance analysis of three-phase inverters controlled by
Synchronuous Delta-Modulation systems; IEEE-TAS Annual Meeting, Vol.1,
1992, pp. 779-788 (a).

Mertens A.: Harmonic distorsion in three-phase inverters controlled by
synchronuous Sigma-Delta-Modulation; ETEP, Vol.2, 1992, pp. 351-358 (b).

Middlebrook R.D.: Small signal modeling of pulse-width modulated switched
power converters; Proceedings of IEEE, No.4, 1988, pp. 343-354.

Mohan N., Undeland T.M., Robbins W.P.: Power Electronics: Converters,
Applicatons, and Design; John Wiley & Sons, 1989.

Murai Y., Mochizuki 8., Caldeira P., Lipo T.A: Current Pulse Control of
High Frequency Series Resonant DC Link Power Converter; IEEE-IAS
Annual Conference Record, 1989, pp. 1021-1030.

Nakahara M., Higashi T., Ninomiya T., Horada K.: Dynamic characteristics
and stability analysis of resonant converters; PESC, 1989, pp. 7562-759.



152

Bibliography

[54]
[55]
[56]
[67]
[58]

(591
[60]
[61]

[62]

(63

[64]
[65]

[66]

[67]

Ngo K.D.T.: Low frequency characterization of PWM converters; IEEE
Transactions on Power Electronics, Oct. 1986, pp. 223-230.

Oruganti R., Lee F.C.: Implementation of optimal trajectory control of series
resonant converter; PESC, 1987, pp. 451-459.

Oruganti R., Lee F.C.: State plane analysis of parallel resonant converter;
PESC, 1985, pp. 56-73.

Redl R.: Small signal analysis of the free-running current-mode-controlled
converter; PESC, 1991, pp. 897-906.

Rim C.T., Hu D.Y., Cho G.H.: The graphical D-Q transformation of general
power switching converters; IEEE-IAS Annual Meeting, 1988, pp. 940-945.

Rim C.T., Hu D.Y., Cho G.H.: General proofs and D-Q transformation based
analyses; IEEE Transactions on Industrial Applications, July 1990, pp. 777-
784.

Rim C.T., Cho G.H.: Phasor transformation and its application to the dc ac
analyses of frequency phase controlled SRC; IEEE Transactions on Power
Electronics, April 1990, pp. 201-221.

Sanders S.R., Noworolski J.M., Liu X.Z., Verghese G.C.. Generalized
averaging method for power conversion circuits; IJEEE Transactions on
Power Electronics, Feb. 1991, pp. 333-339.

Schwarz F.C.: Engineering information on an analog signal to discrete time
interval converter; NASA CR-1344544, 1974, pp. 175.

Schwarz F.C.: An improved method of resonant current pulse modulation
for power converters; IEEE Transactions on Industrial Electronics and
Control Instrumentation, Vol IECI-23, No.2, May 1976, pp. 133-141.

Stefanovic V.R.: Industrial AC Drives Status of Technology; EPE Journal,
4 Vol.2, No.1, March 1992, pp. 7-24.

Utkin V.I.: Variable structure systems with sliding modes; IEEE
Transactions on Automatic Control, April 1977, pp. 212-219.

Venkataramanan G., Divan D.M.: Discrete time integral sliding mode
control for discrete pulse modulated converters; PESC, 1990, pp. 67-73.

Vergese G.C., Elbuluk M.E., Kassakian J.G.: A general approach to sampled
data modeling for power electronic circuits; IEEE Transactions on Power
Electronics, No.4, 1986, pp. 76-87.




Bibliography 153

[68]

(691

[70]

(711

[72]

[73]

[74]

[75]

Visser H.R., Van den Bosch P.P.J.: Modelling of periodically switching
networks; PESC, 1991, pp. 1-8.

Vorperian V., Cuk S.: Small signal analysis of resonant converters; PESC,
1983, pp. 269-282.

Vorperian V.: Aproximate small signal analysis of the series and parallel
resonant converters; IEEE Transactions on Power Electronics, Jan. 1989,
pp. 15-24.

Witulski A.F., Ericson R.W.: Small signal AC equivalent circuit modelling
of the series resonant converter; IEEE IAS Annual Meeting, 1987, pp. 693-
704,

Witulski A.F., Hernandez A.F., Ericson R.W.: Small signal equivalent circuit
modeling of resonant converters; IEEE Transactions on Power Electronics,
No.1, 1991, pp. 11-16.

Woo B.O., Kim LD., Cho G.H.: Zero voltage switching AC/DC/AC converter
using modified high frequency DC-link; JEEE-IAS Annual Conference, 1990,
Pp- 1243-1250.

Wu R., Dewan S.B., Slemon G.R.: Analysis of a PWM ac to dc voltage source
converter under the predicted current control with a fixed switching
frequency; IEEE Transactions on Industrial Applications, No.4, 1991,
pp.756-764

WuR., Dewan S.B., Slemon G.R.: Analysis of a PWM ac to dc voltage source
converter using PWM with phase and amplitude control; IEEE Transactions
on Industrial Applications, No.3, 1991, pp. 355-364.



154 Bibliography




LIST OF NOTATIONS
AND SYMBOLS



156 List of notations and symbols

instantaneous phasor of a complex power
system matrix

alternating current

DTIC analog-signal-to-discrete-time-interval converter
input matrix

capacitor

diode

direct current

duty cycle

frequency

function of varible x

steady-state value of the current
instantaneous value of the current

current phasor

existence matrix

inductor

nondissipative electrical network in series
nondissipative electrical network in parallel
pulse-width modulation

pulse-frequency modulation, discrete-pulse modulation
time

period

transformation matrix

thyristor

switching period of PWM

switching phasor in of and dq coordinates
switch

switching bridge

switch in phase i (i = a,b,c) and (j = n,p ) p-upper group, n-lower group
switching matrix

safe operating area

steady state value of the voltage
instantaneous value of the voltage

voltage phasor

power

instantaneous active (real) power
instantaneous reactive (imaginary) power
inbstantaneous complex power

switching function

phase of the switching phasor in aff coordinates
scaling factor

polarity of the voltage
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a,b,c three-phase a,b,c coordinate system
ac ac side
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c absorbed

cond conducting

d d phasor coordinate in d,q coordinate system
de dc side

e injected

eq equivalent

o output

off switching off

OFF time interval with the switch off

on switching on

ON time interval with the switch on

q q phasor coordinate in d,q coordinate system
r resonant

ref reference

s source

saw sawtooth waveform

o o phasor coordinate in «,p coordinate system

B B phasor coordinate in o, coordinate system
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160 Summary

Three-phase AC power converters create an important class of power converters.
In the recent years, significant advances in three-phase AC converter topologies
and applied semiconductor devices have been reported. Increased attention is paid
to the dynamics and control of the converters to achieve a high performance. The
development of new converter topologies with soft-switching techniques and with
pulse-modulation techniques increased the necessity for modelling and analysis.

In the past, for control purposes, the converter has often been represented as a
gain, possibly with a time delay. To fully utilize the potential of the converter and
to account the uncertainties in the system, it is important to really understand
and qualify the dynamic performances of the converter, especially in the presence
of parameters of variations and disturbances.

Much valuable work has been done in the field of the analysis of DC-to-DC
converters. However, this work cannot immediately be transferred to the analysis
of AC converters because the system have a fundamental time- varying frequency
component. Thus, alternative methods have to be sought or existing methods have
to be extended. The complexity of AC power converters is much higher than the
one of DC converters and so is the analysis of their operation and dynamics.

The converter topologies and related control techniques depend on the character
of the passive network located between the switching matrixes and the character
of the filters. The research work is dealing with pulse-width modulated (PWM)
and discrete-pulse modulated techniques (PFM). For the purpose of dynamic
analysis and modelling, the AC converter topologies and related control techniques
are classified.

The study of the dynamic behaviour of three-phase AC power converters for all
modes of operation require the establishment of a set of dynamic equations. The
development of a dynamic model applying differential equations is a well described
subject. However, three-phase AC power converters include a substantial number
of semiconductor switches. Therefore, defining a mathematical model for the
operation of the switches is a crucial point. Two methods are investigated. One of
them is a switching function model of a switching bridge leg and the other one is
the application of a switching space phasor. The mathematical relations between
the AC and the DC sides of the switching bridge based on the instantaneous real
power are found and proved for both models. Defined models of switches in a
bridge configuration allow to derive a dynamic model for any converter that
utilizes this topology. The establishment of such a model is a first step to design
a control and modulation system of the converter with this topology.

As a typical example of an open-loop modulation, carrier PWM method is selected.
For carrier suboscillation PWM modulation and space phasor modulation, a
dynamic model with the defined mathematical models has been developed. This
model contains a discontinuous time function 8() that represents the action of a
switching leg in a three-phase bridge configuration. For space phasor modulation,
it is a discontinuous switching phasor s that represents the action of the switching
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bridge.

To reduce the complex problem of a switching network, a Fourier transformation
at the resulting switching pattern is applied. This application is possible to
establish because the switching pattern is precalculated. In fact, the averaging
methods, where we consider one-cycle average, require a calculation of the DC
coefficient in the Fourier series representation.

This fact offers a clear relation between the averaging methods applied to DC-to-
DC power converters and the method suggested here. The suggested method is a
generalization of an existing averaging method. By using a state-space description
and by calculating the zero Fourier component, the state-space averaging method
is obtained. This means that the state-space averaging is a special case of the
proposed method.

As a typical example of a closed-loop modulation, a modulation process of a soft-
switching resonant link converter is selected. A survey of topologies and
modulation principles is .made to clarify the relation between the individual
members. Two examples: a three-phase-to-three-phase converter with series-
resonant link and a three-phase-to-three-phase converter with parallel-resonant
link are explored in details. The dynamic synthesis for both examples is provided.

The switching space phasor model offers the possibility of a dynamic synthesis.
The modulation process for a three-phase-to-three-phase series-resonant converter
based so far on intuition is now supported by a dynamic model. The mapping of
the switching space phasor based on a quasi-sliding mode is designed. The criteria
of the mapping are discussed and analyzed in general. The switching process
based on a dynamic model is accompanied by results of simulation.

The utilization of a switching function model is shown on the example of a
parallel-resonant converter.

The designed modulation process is only an elementary example. By selecting the
modulation criteria, more sophisticated modulations based on the models can be
designed for any converter utilizing the topology with the switches in a bridge
configuration.
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Dynamische Analyse van Drie-Fasen AC Omzetters

Driefasen AC vermogensomzetters vormen een groep van betekenis binnen de
vermogensomzetters. In de afgelopen jaren zijn er belangrijke ontwikkelingen op
het gebied van deze driefasen AC omzetters en de daarin toegepaste
halfgeleiderelementen gerapporteerd. In toenemende mate wordt er aandacht
gegeven aan de regeling en de dynamica van omzetters om een hoge prestatie te
kunnen leveren. De ontwikkeling van nieuwe resonante omzetters die
pulsmodulatie technicken met een methode voor soft-switching combineren,
vergroot de behoefte aan verbeterde technieken voor de modelvorming en de
analyse. In het verleden is de omzetter vaak voorgesteld door een
versterkingsfactor al of niet in combinatie met een tijdvertraging. Om de
potentiéle mogelijkheden van de omzetter volledig te kunnen benutten en rekening
te kunnen houden met verstoringen in het systeem, is het belangrijk het
dynamische bedrag van de omzetter te kunnen bepalen in bijzonder voor
veranderende parameters.

Veel waardevol werk is gedaan op het gebied van de analyse van DC omzetters.
Dit werk is echter niet geschikt om de analyse aan AC omzetters uitvoeren omdat
het basisprobleem het bestaan van een grondharmonische tijdvariabele golfvorm
is. Er moet naar alternatieve methoden worden gezocht of bestaande methoden
moeten worden uitgebreid. De complexiteit van AC vermogensomzetters is veel
groter dan die van DC vermogensomzetters, hetgeen ook geldt voor de analyse van
de functies en het dynamische gedrag.

De eigenschappen van converternetwerken en de daarbij behorende regelsystemen
hangen af van de eigenschappen van de passieve netwerken welke zijn geplaatst
tussen de schakelmatrices en van de eigenschappen van de filters.

Het uitgevoerde onderzoek is gericht op pulsbreedte modulatie (PBM) en discrete
pulsmodulatie technieken (zoals PFM). Ten behoeve van de analyse van het
dynamische gedrag en de modelvorming, worden de netwerken voor AC omzetters
en de bijbehorende regeltechnieken geclassificeerd.

De studie naar het dynamisch gedrag van driefasen AC omzetters voor alle
bedrijfsomstandigheden, vereist de ontwikkeling van een stelsel dynamisch
vergelijkingen. De ontwikkeling van een dynamisch model door toepassing van
differentiaal vergelijkingen is een onderwerp dat goed is bestudeerd en
beschreven.

De driefasen AC omzetter omvat echter een substanticel aantal
halfgeleiderschakelaars. Daarom is een mathematisch model dat de werking van
de schakelaar beschrijft, een cruciaal punt. Er worden twee methoden
geintroduceerd. Eén van deze methoden is het model van de schakelfunctie
(switching function) zoals gedefinieerd voor een brugschakeling. Het andere model
betreft de toepassing van schakelende ruimtefasor (switching space phasor).

De wiskundige relaties tussen de wisselspanningszijde en de gelijkspanningszijde
van de brugschakeling baseren zich op het momentane reéle vermogen en worden
voor beide modellen uitgewerkt. De geintroduceerde modellen voor de schakelaars
in een brugconfiguratie maken het mogelijk om een dynamisch model te
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ontwikkelen voor iedere omzetter die gebruik maakt van de aangegeven topologie.

Het introduceren van een dergelijk model is de eerste stap om een regeling en een
modulatiemethode te kunnen ontwerpen voor de omzetter. Als een karakteristiek
voorbeeld van de open-loop modulatie methode wordt de "Carrier PWM Method"
uitgekozen. Voor de "Carrier Suboscillation PWM Modulation” en "Space Phasor
Modulation" wordt een dynamisch model ontwikkeld met behulp van de
gedefinieerde mathematische modellen. Het model bevat een discontinué
tijdfunctie d(¥) welke de actie van een schakelpoot in een brugconfiguratie
voorstelt. Voor Space Phasor Modulation bestaat er een discontinué schakelfasor
s, welke de actie van de schakelbrug presenteert. Om de problemen van een
schakelend netwerk te reduceren wordt er een Fourier transformatie op het
resulterend pulspatroon toegepast. Een dergelijke transformatie kan worden
toegepast omdat het pulspatroon is voorberekend. In feite verlangen
middelingsmethoden met een middelingsproces over één periode, de berekening
van de gelijkspanningscoéfficiént van een Fourier reeks. Dit levert een duidelijke
relatie tussen middelingsmethoden toegepast op DC omzetters en de hier
voorgestelde methode. De voorgestelde methode is een veralgemening van een
middelingsmethode. Door gebruik te maken van een beschrijving in de
toestandsruimte en door het berekenen van de nul-component in de Fourier reeks,
wordt een toestandmiddelingsmethode gerealiseerd. Dat betekent dat de
middelingsmethode in de toestandsruimte een speciaal geval is van voorgestelde
methode.

Als een karakteristiek voorbeeld van een modulatie methode met een gesloten lus,
wordt een soft-switching resonant-link omzetter uitgekozen. Een overzicht van de
netwerken en de modulatiemethoden is nodig om de relatie tussen de individuele
onderdelen duidelijk te maken. Twee voorbeelden: een driefasen omzetter met een
serie-resonante link en een driefasen omzetter met een parallel-resonantie link
worden uitgebreid beschreven. Een dynamische synthese wordt voor beide
voorbeelden uvitgewerkt.

Het model van de switching space phasor biedt de mogelijkheid van een
dynamische synthese. Het modulatieproces voor een driefasen serie-resonante
omzetter is tot nu toe gebaseerd op intuitie en word nu gedragen door een
dynamisch model. Een mapping methode van de switching space fasor is
uitgewerkt op basis van een quasi-sliding mode. De criteria voor het mapping
proces worden in het algemeen besproken en geanalyseerd. Het schakelproces
gebaseerd op het dynamische model wordt vergezeld van simulatieresultaten.
Het gebruik van schakelfuncties (switching functions) wordt verder
gedemonstreerd aan de hand van het voorbeeld van een parallel-resonant omzetter.
Het ontworpen modulatie proces is slechts een elementair voorbeeld. Door het
selecteren van modulatiecriteria kunnen geavanceerde modulatiemethoden voor
iedere omzetter die gebruik maakt van de topologie van een brugschakeling,
worden ontwikkeld.
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