Modeling tree topology effects on wind

Runnan Fu

Supervisors:

Clara Garcia Sanchez Ivan Pađen

Contents

- Motivation
- Research questions
- Methodology
- Implementation
- Results & Analysis
- Conclusion

Trees effect and Computational Fluid Dynamics (CFD)

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

Improve/or negatively affect air quality, Mitigate urban heat island effects, Improve pedestrian wind comfort Reduce buildings energy consumption

CFD simulations: wind effects around buildings, before and after trees are modeled.

Implicit tree modeling approach

Implicit tree modeling approach: porous zones

- Mark finite volume cells that roughly account for trees as porous zones.
- Tree drag is defined as a source and/or sink term in the momentum equation and turbulence equations.

 $S_{ui} = -\rho C_d LAD U_i \mathbf{U} \left[\frac{N}{m^3}\right]$ $S_k = \rho C_d LAD \left(\beta_p \mathbf{U}^3 - \beta_d \mathbf{U}k\right) \left[\frac{W}{m^3}\right]$ $S_{\varepsilon} = \rho C_d LAD \frac{\varepsilon}{k} \left(C_{\varepsilon 4}\beta_p \mathbf{U}^3 - C_{\varepsilon 5}\beta_d \mathbf{U}k\right) \left[\frac{W}{m^3}\right]$

 C_d (leaf drag coefficient): Values vary between 0.1~0.3, with 0.2 being the most commonly used. LAD (leaf area density): Depends on tree species and varies with height over the tree crown;

Motivation

Research questions

Methodology

Implementation 8 Verification

Results & Analysis

Explicit tree modeling approach

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

Explicit tree modeling approach: geometric modeling

- Trees are geometrically modeled as objects.
- Wind will be blocked by the surface of the tree model.

Explicit: has no cells within the tree model

Implicit:

cells are still present but marked as porous medium

Explicit VS Implicit? Tree shapes & LoDs?

Explicit VS Implicit?

Motivatior

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

Very high values of

$$S_{ui} = -\rho C_d LAD U_i \mathbf{U} \left[\frac{N}{m^3}\right]$$
$$S_k = \rho C_d LAD \left(\beta_p \mathbf{U}^3 - \beta_d \mathbf{U}k\right) \left[\frac{W}{m^3}\right]$$
$$S_{\varepsilon} = \rho C_d LAD \frac{\varepsilon}{k} \left(C_{\varepsilon 4} \beta_p \mathbf{U}^3 - C_{\varepsilon 5} \beta_d \mathbf{U}k\right) \left[\frac{W}{m^3}\right]$$

Explicit VS Implicit? Tree shapes & LoDs?

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

Explicit VS Implicit?

Very high values of

Tree LoDs & shapes?

Most studies use simple regular cylinders or prisms to represent trees, or assume that all trees within the study area are of the same shape

?

Research questions

The main research question for this thesis is:

what is the impact of tree topology modeling for urban flow simulations?

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

To answer this, the following sub-questions will be relevant:

- How to obtain implicit tree models and explicit tree models from point cloud?
- What is the difference between simulation results using <u>implicit tree models and</u> <u>explicit tree models</u>?
- What is the impact of tree LoDs on urban wind flow simulations?
- Does changing the <u>tree shapes (broadleaf or conifer</u>) make any difference to the impact of tree LoDs?
- Does changing the <u>LAD value</u> or <u>wind direction</u> make any difference to the impact of tree LoDs?

A general workflow of this thesis

Test cases design and set up: <u>Isolated tree</u>

Two LoDs : LoD 2 and LoD 3

TUDelft

Two tree shapes: Broadleaf and Conifer

Tree models are obtained using the reconstruction algorithm introduced by [de Groot, 2020]

Test cases design and set up: <u>Idealized street canyon</u>

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Test cases design and set up: <u>Realistic urban geometry</u>

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Test cases design and set up: <u>Realistic urban geometry</u>

Measures for quantitative analysis

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

Non-dimensional velocity magnitude difference

$$C_{ex-im} = \frac{(U_{ex} - U_{im})}{U_{ref}}$$
 $C_{l2-l3} = \frac{(U_{lod2} - U_{lod3})}{U_{ref}}$

 U_{ref}

Measures for quantitative analysis

Non-dimensional velocity magnitude difference

Measures for quantitative analysis

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

ŤUDelft

Pedestrian wind comfort criteria

Category	Description	Mean and GEM wind speed at 1.75 m height (m/s)	Effect	Acceptable activities
Α	Calm	0.0–0.1		Eroquent outdoor sitting use
В	Light air	0.2–1.0	No noticeable wind	a g restaurant café
С	Light breeze	1.1–2.3	Wind felt on face;	e.g. lestaulant, cale.
D	Gentle breeze	2.4–3.8	Hair disturbed, clothing flaps, newspaper difficult to read;	Occasional outdoor seating, e.g. general public outdoor spaces, balconies and terraces intended for occasional use, etc.
Е	Moderate breeze	3.9–5.5	Raises dust and loose paper, hair disarranged;	Entrances, bus stops, covered walkways or passageways beneath buildings.
F	Fresh breeze	5.6–7.5	Force of wind felt on body, danger of stumbling when entering a windy zone;	External pavements, walkways
G	Strong breeze	7.6–9.7	Umbrellas used with difficulty, hair blown straight, difficult to walk steadily, sideways wind force about equal to forwards walking force, wind noise on ears unpleasant;	Not comfortable for regular pedestrian access

based on the work by [of London Corporation, 2019; Blocken and Carmeliet, 2004; Lawson, 1978]

Gust Equivalent Mean (GEM) wind speed

Maximum mean wind speed

OpenFOAM programming to add source/sink terms

Modify the source code of the standard $k - \varepsilon$ turbulence model and the *simpleFoam* solver in OpenFOAM. Based on the work by [Haukur, 2009] and [Maldonado J, 2012].

```
// Turbulent kinetic energy equation
                                                                              The main modified parts of the
tmp<fvScalarMatrix> kEgn
                                                                              standard k - \varepsilon turbulence model
    fvm::ddt(alpha, rho, k_)
  + fvm::div(alphaRhoPhi, k_)
  - fvm::laplacian(alpha*rho*DkEff(), k_)
    alpha()*rho()*G
  - fvm::SuSp((2.0/3.0)*alpha()*rho()*divU, k_)
  - fvm::Sp(alpha()*rho()*epsilon_()/k_(), k_)
  + fvm::Sp(plantCd_() *leafAreaDensity_() / k_()*(betaP_ * pow(mag(U()),3)- betaD_ * k_() * mag(U())), k_)//Source Term
  + kSource()
  + fvOptions(alpha, rho, k_)
);
```

OpenFOAM programming to add source/sink terms

Modify the source code of the standard $k - \varepsilon$ turbulence model and the *simpleFoam* solver in OpenFOAM. Based on the work by [Haukur, 2009] and [Maldonado J, 2012].

 $S_{\varepsilon} = \rho C_d LAD \frac{\varepsilon}{k} \left(C_{\varepsilon 4} \beta_p \mathbf{U}^3 - C_{\varepsilon 5} \beta_d \mathbf{U} k \right) \left[\frac{W}{m^3} \right]$

18

```
// Dissipation equation
                                                                                 The main modified parts of the
tmp<fvScalarMatrix> epsEqn
                                                                                 standard k - \varepsilon turbulence model
   fvm::ddt(alpha, rho, epsilon_)
 + fvm::div(alphaRhoPhi, epsilon_)
  - fvm::laplacian(alpha*rho*DepsilonEff(), epsilon_)
   C1_*alpha()*rho()*G*epsilon_()/k_()
  - fvm::SuSp(((2.0/3.0)*C1_ - C3_)*alpha()*rho()*divU, epsilon_)
  - fvm::Sp(C2_*alpha()*rho()*epsilon_()/k_(), epsilon_)
 + fvm::Sp(plantCd_()*leafAreaDensity_()/k_()*(C4_*betaP_*pow(mag(U()),3)- C5_*betaD_*k_()*mag(U())), epsilon_) //Source Term
  + epsilonSource()
 + fvOptions(alpha, rho, epsilon_)
```

OpenFOAM programming to add source/sink terms

Modify the source code of the standard $k - \varepsilon$ turbulence model and the *simpleFoam* solver in OpenFOAM. Based on the work by [Haukur, 2009] and [Maldonado J, 2012].

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

tmp• (<fvvectormatrix> tUEqn</fvvectormatrix>	The main modified parts of the <i>simpleFoam</i> solver
	fvm::div(phi, U)	
+	MRF.DDt(U)	
+	<pre>turbulence->divDevReff(U)</pre>	
==		
	fv0ptions(U)	
	<pre>fvm::Sp(plantCd * leafAre</pre>	aDensity * mag(U), U)
);		

$$S_{ui} = -\rho C_d \ LAD \ U_i \mathbf{U} \left[\frac{N}{m^3} \right]$$

Isolated tree

Isolated tree test cases

tivation	Case ID	Tree shape	Tree modeling approach	LoD of tree	LAD value (m 2 m $^{-3}$)
livation	1	Broadleaf	Explicit	2	-
search questions ethodology	2		Lxpileit	3	-
	3			2	1.4
	4	Dioadical	Implicit	3	1.4
	5		Implicit	2	5e10
plementation &	6			3	5e10
rification	7		Evalicit	2	-
	8		Explicit	3	-
sults & Analysis	9	Conifer		2	1.4
	10	Conner	Implicit	3	1.4
nclusion	11		mpnen	2	5e10
	12			3	5e10

Isolated tree Tree Shapes Tree modeling approach LoD LAD ID 2 1 ΕX 2 3 3 2 1.4 Broadleaf 4 3 1.4 IM 5 2 5e10 Cases need to be compared in pairs to get C_{ex-im} 6 3 5e10 7 2 ΕX 8 3 - $C_{ex-im} = \frac{(U_{ex} - U_{im})}{U_{ref}}$ 9 2 1.4 Conifer 10 3 1.4 IM 11 2 5e10 12 3 5e10

 U_{ref}

For example: (Case 1 (LEFT) minus Case 5 (RIGHT) / U_{ref}

21

Isolated tree

Isolated tree test cases

12 U_{ex-im} plots in total. 6 for broadleaf and 6 for conifer.

ID	Tree Shapes	Tree modeling approach	LoD	LAD	ſ		Tree chane	I aD of tree	Explicit case	Implicit case	Magguromont Hoight
1		EV	2	-		C_{ex-im} ID	Tree shupe	LOD OJ HEE	(U _{ex})	(U _{im})	Meusurement Height
2		EA	3	-		A-1′				Case 3 (LAD = 1.4)	Capopy
3			2	1.4		A-1		2	Case 1	Case 5 (LAD = $5e10$)	Сапору
4	Broadleaf	7.6	3	1.4		A-2	Broadleaf			Cuse 5 (EAD = 5010)	Trunk
5	-	IM	2	5e10		B-1′	Dioualcui			Case 4 (LAD = 1.4)	Canopy
6	-		3	5e10		B-1		3	Case 2	Case 6 (LAD = $5e10$)	
7			2			B-2					Trunk
	-	EX	2	-		C-1′				Case 9 (LAD = 1.4)	Canany
8			3	-		C-1	1	2	Case 7		Canopy
9	Conifer		2	1.4	F	C-2				Case II (LAD = $5e10$)	Trunk
10	Connici	IM	3	1.4	F	D-1′	Conifer			Case 10 (LAD = 1.4)	Comon
11			2	5e10	ľ	D-1	1	3	Case 8		Canopy
12			3	5e10	Ē	D-2	1			Case 12 (LAD = $5e10$)	Trunk

The explicit tree models (meshes in red color) and the corresponding implicit tree models (porous cells in white color)

(A-1') difference between LoD2 explict broadleaf & LoD2 implicit broadleaf with LAD = 1.4, measured at canopy; (A-1) difference between LoD2 explict broadleaf & LoD2 implicit broadleaf with LAD = 5e10, measured at canopy;

(A-2) difference between LoD2 explict broadleaf & LoD2 implicit broadleaf with LAD = 5e10, measured at trunk;

(B-1) difference between LoD3 explicit broadleaf & LoD3 implicit broadleaf with LAD = 5e10, measured at canopy;

Research questions

Methodology

Implementation & Verification

Results & Analysis

It is not recommended to model tree trunks, branches or even buildings implicitly rather than explicitly in order to reduce the time spent on designing a good CFD grid/mesh.

- The implicit models always allow some of the wind flow into the porous cells no matter how high the LAD values are.
- For relatively small objects, such as tree trunks, insufficiently refined CFD grid/mesh may lead to abnormal simulation results.

However, the conclusion hold only for the porosity model used in this thesis $(S_{u_i}, S_k \text{ and } S_{\varepsilon})$;

(C-2) difference between LoD2 explicit conifer & LoD2 implicit conifer with LAD = $\frac{5e10}{2}$, measured at trunk;

ŤUDelft

29

 U_{ref}

Isolated tree: EX VS IM at wake

	LoD2 broadle	af tree model	LoD3 broadleaf tree model			
	Measured at canopy	Measured at trunk		Measured at canopy	Measured at trunk	
Case 1 Explicit			Case 2 Explicit			
Case 3 Implicit LAD = 1.4	B		Case 4 Implicit LAD = 1.4	i i		
Case 5 Implicit LAD = 5e1	c		Case 6 Implicit LAD = 5e1	0		
T	UDelft					

Isolated tree: EX VS IM at wake

	LoD2 conifer	tree model		LoD3 conifer tree model			
	Measured at canopy	Measured at trunk		Measured at canopy	Measured at trunk		
Case 7 Explicit			Case 8 Explicit				
Case 9 Implicit LAD = 1.4			Case 10 Implicit LAD = 1.4				
Case 11 Implicit LAD = 5e	0		Case 12 Implicit LAD = 5e1	0			
Ťl	JDelft						

Idealized street canyon

Case ID	Inflow direction	Tree shape	LoD of tree	LAD value (m 2 m $^{-3}$)	Measurement Height
13		Broadloaf	2		
14	Perpendicular to	Dioauleai	3	0.2,	1.75m,
15	buildings	Conifor	2	0.6,	6m,
16		Conner	3	1.0,	9m,
17		Broadloaf	2	1.4,	12m,
18	Parallel to	Dioauleai	3	1.8,	15m,
19	buildings	Conifor	2	2.2	18m
20		Cormer	3		

Cases need to be compared in pairs to get

$$C_{l2-l3} = \frac{(U_{lod2} - U_{lod3})}{U_{ref}}$$

Idealized street canyon: Cl2-l3 Example

Idealized street canyon: Cl2-l3 Example

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

• The differences between these C_{l2-l3} plots are difficult to distinguish clearly with the naked eye and need to be described in a more quantitative way.

The mean and 95 % confidence interval of $C_{l_2-l_3}$ using the broadleaf and conifer tree models.

• For most scenarios, average velocity magnitude of LoD2 cases (U_{lod2}) within the street canyon is greater than that of LoD3 cases (U_{lod3}). As most of the *C*₁₂₋₁₃ values are higher than 0.

- The influence of LAD can be more noticeable when its value is lower than 1.4.
- The maximum or minimum values of C_{12-13} for broadleaf cases and conifer cases occurred at different heights.
- The difference between U_{lod2} and U_{lod3} , i.e. the absolute magnitude of *C*₁₂₋₁₃ values, is generally lower in cases using conifer tree models than those using broadleaf tree models. 37

Methodology

Implementation 8 Verification

Results & Analysis

Violin plots examples for C_{l2-l3} within the street canyon at different height

Motivation

Research questions

```
Methodology
```

Implementation & Verification

Results & Analysis

Conclusion

 Differences between LAD values of 2.2 and 1.8 are smaller than the differences between LAD values of 1.2 and 0.6. This proves that the influence of LAD can be more noticeable when it has lower value.

• Value of *C*₁₂₋₁₃ is higher at locations closer to tree models.

Idealized street canyon: Inflow direction <u>parallel</u> to buildings

The mean and 95 % confidence interval of $C_{l_2-l_3}$ using the broadleaf and conifer tree models.

Results & Analysis

- Similarly, the changing of slope of each line is greater when LAD value is below 1.4. C12-13 values are generally lower in cases using conifer tree models than those using broadleaf tree models.
 - However, some *C*₁₂₋₁₃ values are lower than 0. So LoD2 cases have lower velocity magnitude than LoD3 cases.
 - When the inflow direction is parallel to the building, the difference between LoD2 cases and LoD3 cases is larger.

buildings, the distribution of Cl2-l3 values is more spread out.

at locations closer to tree models.

Idealized street canyon: conclusions so far

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

٠

- For a given measurement height, the average velocity magnitude of the cases using LoD2 tree models is faster or slower than that of the cases using LoD3 tree models, depending not only on the tree shapes, but also on LAD values and wind direction.
- The impact of tree LoDs on wind flow within the street canyon is generally more significant in the cases where the inflow direction is parallel to the buildings than in the case where the inflow direction is perpendicular to the buildings.
- Changing the LAD values does make difference to the impact of tree LoDs, and the influence of LAD can be more noticeable when its value is lower than 1.4 *m*² *m*-3.
- Also, the larger the LAD, the more spread out the distribution of CI2–I3 values within the street canyon.
- The maximum or minimum values of Cl2-l3 appear at different heights for cases using broadleaf models and those using conifer models.

Realistic urban geometry: wind speed & wind direction

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

- Wind direction: all four weather stations show the average wind direction of <u>SSW</u> in 2021
- GEM wind speed: The maximum 5-minute average wind speed from SSW direction measured at the nearest weather station (Rijnhaven) is used to calculate the GEM wind speed, which is around <u>3.7</u> m/s at 2 m height above the terrain.

Realistic urban geometry: LoD2 tree models

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

ID	Inflow wind speed at 2 m height (m s ^{-1})	LoD of trees	Tree modeling approach	LAD values (m 2 m $^{-3}$)
21		without trees		
22	3.7	LoD2	Canony: implicit:	Broadloaft 16
23		LoD3	Trunk: explicit:	Conifor: 1.4:
24	71	LoD2	nuik. explicit,	Conmer. 1.4,
25	/.4	LoD3		

LoD2 tree models

Realistic urban geometry: LoD3 tree models

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

ID	Inflow wind speed at 2 m height (m s ^{-1})	LoD of trees	Tree modeling approach	LAD values (m 2 m $^{-3}$)
21		without trees		
22	3.7	LoD2	Conony implicit	Broadloof, 16.
23		LoD3	Trunk: explicit:	Conifor: 14:
24	71	LoD2	nuik. explicit,	Conmer. 1.4,
25	/.4	LoD3		

LoD3 tree models

Realistic urban geometry: pedestrian wind comfort classification

Case 22: LoD2 tree models

Category	Description	Mean and GEM wind speed at 1.75 m height (m/s)	Effect	Acceptable activities
Α	Calm	0.0-0.1		Erequent outdoor sitting use
В	Light air	0.2–1.0	No noticeable wind	e g restaurant café
C	Light breeze	1.1–2.3	Wind felt on face;	e.g. restaurant, care.
D	Gentle breeze	2.4-3.8	Hair disturbed, clothing flaps, newspaper difficult to read;	Occasional outdoor seating, e.g. general public outdoor spaces, balconies and terraces intended for occasional use, etc.
Е	Moderate breeze	3.9–5.5	Raises dust and loose paper, hair disarranged;	Entrances, bus stops, covered walkways or passageways beneath buildings.
F	Fresh breeze	5.6–7.5	Force of wind felt on body, danger of stumbling when entering a windy zone;	External pavements, walkways
G	Strong breeze	7.6–9.7	Umbrellas used with difficulty, hair blown straight, difficult to walk steadily, sideways wind force about equal to forwards walking force, wind noise on ears unpleasant;	Not comfortable for regular pedestrian access

Case 23: LoD3 tree models

Case 22: LoD2 tree models

Case 23: LoD3 tree models

Case 24: LoD2 tree models

Case 25: LoD3 tree models

Realistic urban geometry: C12-13

- Increasing the inflow velocity does not change the impact of tree LoDs on wind.
- **TU**Delft
- The velocity magnitude differences between the LoD2 case and the LoD3 case is rather limited in most areas, with maximum differences in the order of 0.5 m/s. Thus, for a larger urban area like the Noordereiland, it may be good enough to have the LoD2 tree model for wind environment studies.

Realistic urban geometry: C₁₂₋₁₃

Results & Analysis

Conclusions

The main research question for this thesis was:

What is the impact of tree topology modelling for urban flow simulations?

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Conclusion

1. Different tree modeling approaches and tree LoDs lead to very diverse wind patterns.

- the implicit tree models always allow some of the wind flow into the porous cells.
- the velocity magnitude differences between the LoD2 cases and the LoD3 cases is rather limited for the idealized street canyon and realistic urban geometry test cases simulated in this thesis.
- 2. Differences in tree shapes, LAD values and wind directions do change the effects of tree modeling approaches and tree LoDs.
 - for a given measurement height, the average velocity magnitude of the cases using LoD2 tree models is faster or slower than that of the cases using LoD3 tree models, depending not only on the tree shapes, but also on LAD values and wind direction.
 - It is conceivable from the data trend that the degree of changing of C_{l2-l3} values will continue to decrease as the LAD values increase, and may eventually reach stability.

Further improvements

Additional tree models with diverse shapes and heights can be tried for simulation.

we can get more knowledge about whether variations in tree features such as height, width, or canopy shape result in different characteristics of velocity, C_{ex-im} , C_{l2-l3} , pedestrian wind comfort.

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Further improvements

Improve the 3D models of the realistic urban geometry cases.

in order to save time, I simplified the 3D models of the realistic urban geometry cases. This may led to a relatively high discrepancy between the analysis results of this thesis and the real situation.

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

Further improvements

Besides wind velocity magnitude, cases can also be compared in terms of turbulent kinetic energy. This may further support some conclusions of this thesis.

Further studies can use the results of this thesis as a reference to investigate the effect of tree topology on gas/heat diffusion and numerous other concerns.

Motivation

Research questions

Methodology

Implementation & Verification

Results & Analysis

