PHYSICAL REVIEW E

VOLUME 48, NUMBER 3

SEPTEMBER 1993
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Results are presented of seven inelastic-neutron-scattering experiments on dense gas mixtures of heli-
um and neon, performed on the Interfaculty Reactor Institute time-of-flight spectrometer RKS2. The
concentration ratio of neon in the mixture is varied from 0 to 1 at 47 K and 285 bar. The neutron spec-
tra S (k,®), obtained for wave numbers 2.5 <k <30 nm™ !, are centered around the frequency w=0 with
half widths wg(k). The experimental wy (k) agree well with the revised Enskog theory for equivalent
binary hard-sphere fluid mixtures and show de Gennes minima similar to those in monoatomic fluids.

PACS number(s): 61.12.—q, 05.20.—y, 61.20.Lc

I. INTRODUCTION

It has been shown before [1] that the half width wy (k)
of the experimentally observed (wave number k and fre-
quency w dependent) dynamic structure factor S (k,w) of
dense monoatomic fluids in equilibrium can be described
very well by the revised Enskog theory [2] (RET) for
equivalent hard-sphere fluids. Here the equivalent hard-
sphere diameters o are determined such that the static
structure factors S (k) of the monoatomic fluid and the
hard-sphere gas (which are very similar) agree best. One
finds for increasing number densities that wy(k) shows
an increasingly deeper and more pronounced so-called de
Gennes minimum at wave number Kk =k * =27 /0, where
S (k) has its first maximum. This implies that plane-wave
density fluctuations with k near k* decay very slowly in
time, which is the so-called “‘cage effect” [3]. One con-
cludes from the good overall agreement between theory
and experiment for wy (k) that the decay of such micro-
scopic density fluctuations in simple dense monoatomic
fluids is caused mainly by the strong repulsive (hard-
sphere-like) part of the interparticle potentials. Thus, the
cage effect is due to the hard core of the potential which
causes the particles to be locked up in cages of size o,
corresponding to wave numbers k*~2w /0. Therefore,
oy (k*), which is the inverse lifetime of a density fluctua-
tion with wave number k*, decreases with increasing
density since the particles then become increasingly more

locked up.

In this paper we make a similar comparison between
theory and experiment for the half width wy (k) of practi-
cally the simplest of all binary mixtures: helium-neon.
We do this to investigate whether the RET might also be
useful to understand the basic microscopic dynamics of
not-too-complicated dense binary mixtures in general. In
particular, we study the de Gennes minimum in wg(k)
for mixtures and its dependence on the total number den-
sity and concentration.

Seven neutron-scattering experiments on dense helium
and neon gas mixtures have been performed ranging from
pure helium to pure neon at temperatures near 47 K and
pressures near 285 bar. In Table I we give for these seven
states HexlNe)cz the precise T and p; the partial number

densities n, n,; the total number density n =n, +n,; and
the concentration x,=n,/n (while x,=n;/n=1—x,).
Throughout this paper the label 1 refers to helium and 2
to neon.

We find that the measured S (k) of all seven states are
very much like those in equivalent hard-sphere mixtures.
The equivalent hard-sphere diameters of helium
(0,=0.245 nm) and neon (0,=0.273 nm) are obtained
by fitting all experimental S (k)’s with the Percus-Yevick
theory for hard-sphere fluid mixtures [4]. These diame-
ters are used in the Enskog calculations of the half widths
wy(k) of the S(k,w)s for binary mixtures of hard
spheres. It then appears that the theoretically calculated

TABLE 1. Thermodynamic parameters of the seven experiments on mixtures of helium (1) and

neon (2).

T P n n, n

K bar nm 3 nm~3 nm 3 X
He 46.9 284 233 0 23.3 0.00
He, 1sNeg 20 472 292 19.1 5.3 24.4 0.22
Heg 73Neg 27 47.3 283 18.1 6.7 24.8 0.27
He, 37Neg 63 47.5 284 10.5 17.9 28.4 0.63
He, ,sNeg 7 47.0 283 72 22.0 29.2 0.75
He, 0sNeg or 47.4 284 2.5 29.2 31.7 0.92
Ne 47.2 283 0 32.5 32.5 1.00
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half widths are in good agreement with the experimental
half widths for all wave numbers and all seven states. We
observe a minimum in g (k) for

k=k*=2mw/o,=27/0,,

which becomes more pronounced when the total number
density n increases. Thus we can conclude that the re-
vised Enskog theory is also relevant to understand the
basic dynamics in not-too-complicated binary mixtures.
In particular, the decay of density fluctuations in dense
binary mixtures like He-Ne might also be dominated by
the strong repulsive hard-sphere-like parts of the inter-
particle potentials. Furthermore, we find that the half
widths wy (k) of the He-Ne mixtures are very similar to
those of a corresponding monoatomic fluid of hard
spheres with average diameter 0 =(x;03+x,03)!/? and
average mass m =x,m,;+x,m, at the same total number
density n and temperature 7. Thus, for mixtures, the
cage effect is again mainly geometrical in origin, i.e.,
determined by the diameters 0,0, (which are close) and
not so much by the large difference in masses m; and
m, (my,=5m).

In Sec. II we give a description of the experiments and
the data reduction. In Sec. III we briefly outline the cal-
culations to determine the dynamical structure factors
for binary mixtures of hard spheres in equilibrium on the
basis of the revised Enskog theory. In Sec. IV we present
the experimental static structure factors S (k) and the ex-
perimental half widths wy (k) of the S (k,w)’s and make a
comparison between theory and experiment. In Sec. V
we end with a short discussion of the results.

II. EXPERIMENTS AND DATA REDUCTION

The neutron-scattering experiments are performed on
the rotating-crystal time-of-flight (TOF) spectrometer
RKS2 at the 2-MW reactor of *he Interfaculty Reactor
Institute (IRI) in Delft. The pulsed monochromatic in-
cident beam of neutrons on the sample had a cross sec-
tion 2.5X10 cm? and an intensity I,=800 neutrons
cm %~ !, The wavelength A,=0.200 nm of the neutrons
(corresponding to an energy of E;=20.45 meV) in the in-
cident beam is selected by a rotating pyrolytic graphite
crystal (18750 rpm) using the (004) Bragg reflection
(Bragg angle 65 =36.6°). Reflections from other lattice
planes are suppressed by two Fermi choppers in front of,
and running in phase with, the crystal.

The sample container used in all experiments was a sin-
gle aluminum cylinder with length 11 cm, diameter 2 cm,
and wall thickness 0.1 cm subdivided into six parts with
disks of boron nitride (a pure absorber) to reduce multiple
scattering. This sample cell could sustain pressures up to
300 bar. Hence, the choice of pressures p =~285 bar given
in Table I. The temperatures T'=~47 K are chosen just
above the critical temperature of neon (44 K) to avoid
phase separation, but still allowing high densities.

While measuring the pressure, we first filled the sample
container with purified neon and then with pure “He.
The number densities of neon are then given by tabulated
p-n-T data for neon [5] and the number densities of heli-
um are derived from mass-spectroscopy measurements
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which agree with those calculated from the Van der
Waals equation (Appendix A). In Table I, the density of
the pure He state is taken from Ref. [6].

To determine the TOF spectra of scattered neutrons,
we used 79 detectors located at a distance 1.503 m from
the center of the sample at angles —17.6°<¢ < 72.5° with
|¢| >4.4°, and the spectra were recorded in 512 time
channels of 1.55 us width.

Our experiment consisted of seven sample runs in
which the sample TOF spectra were determined and two
dummy runs with corresponding TOF spectra. The first
dummy run was for an empty container and the second
for a container filled with a very small amount of *He gas
(a pure and strong absorber). We used a straightforward
interpolation of the two dummy measurements to deter-
mine the background spectrum of the empty container
filled with that amount of *He that absorbs as many neu-
trons as the HexlNex2 sample scatters and absorbs.

To obtain the total dynamic structure factor S(k,w)
from these TOF spectra, we have used the correction pro-
grams of Ref. [7]. These programs corrected the spectra
for the background, the efficiency of the detectors, the
resolution of the spectrometer, and the self-shielding of
the sample. They also normalize the spectra to a refer-
ence standard, and interpolate from constant scattering
angle ¢ to constant wave number k. Finally, the spectra
are symmetrized in ® using the quasiclassical approxima-
tion [7].

The resolution of the spectrometer was measured using
a vanadium sample (vanadium is an incoherent scatterer)
which had the same scattering geometry as the actual
samples. These spectra were corrected for background,
detector efficiency, and multiple scattering. The resolu-
tion function has an energy width at half maximum
AE;=1.3 meV (Awy,=1.9 ps~!). The vanadium sample
is also used for absolute normalization.

Thus we obtain the absolutely normalized symmetric
total dynamic structure factor S (k,w) of the He-Ne mix-
tures as a function of frequency w for wave numbers
2.5<k <30 nm~!. The average measuring time was
about 90 h per state. The pressure and temperature vari-
ation was less than 1% during the measurements.

The total dynamic structure factor is given by

S(k,w)=x,b}2S,,(k,0)+x,b3S,,(k,0)
+2(x,x,)1?%b b3S, (ko) , (1)

with x,=n,/(n;+n,) the number concentration of He,
Xx,=n,/(n;+n,) the number concentration of Ne, and
b} the normalized scattering length of species j, i.e.,

b;:bj/(xlb%_'_xzb%)l/z s (2)

with b, the scattering length of He and b, the scattering
length of Ne. In Eq. (1) the S;; (k,®) are the partial dy-
namic structure factors given by

Sutko)=>= [~ dt e F, ) , 3)

with j or /=1,2, and the Fjl(k,t) are the intermediate
partial scattering functions
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Fj(k,t)={8n;(k,0)*8n,(k,1)) . 4)

Here the angular brackets denote the equilibrium canoni-
cal ensemble average, the asterisk denotes complex conju-
gation, k is a wave vector with length k, and 6n,(k,t) is a
microscopic plane-wave density fluctuation of species
=1 or 2 at time ¢, given for k<0 by
1 b
on;(k,t)=—— exp[ik-t¥(#)], (5)
1 VN ,El plik-r/(2)]

with N, the number of particles of species / and r'?(z) the
position of particle p of species / at time ¢.

The half width wy (k) of the total S(k,w) as function
of wave number k is defined by

S(k,05(k))=1S (k,0) 6

and is the decay frequency (or inverse lifetime) of a linear
combination of He- and Ne-density fluctuations in the
mixture. In fact, since b, =3.26 fm and b,=4.55 fm are
not too different, wy (k) is practically the decay frequency
of a fluctuation in the total number of He and Ne parti-
cles. We show this in Fig. 1 where we compare the
coefficients x,b 72, x,b%?% and 2(x;x,)"?b}b% of the to-
tal S(k,0) in Eq. (1) with those for the idealized case
where He and Ne scatter equally, i.e., where b, =b, or,

1.0 T
NN (a)

*
x,b}? .

0.5 SN

0.0
1.0

*2 e

X,b, -~ ()
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0.0
1.0

2 (x,xz)”zbjb;
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0.0
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FIG. 1. The coefficients (a) x,b{2, (b) x,b3% and (c)
2(x,x,)"?b¥b5 of Eq. (1) as functions of x, (solid curves). The
dashed curves are for the idealized case of equal scattering
b,=b,.
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equivalently, where b} =b3 =1.
We show the experimental results for wy(k) (uncer-
tainty =10%) in Sec. IV.

III. ENSKOG THEORY FOR BINARY MIXTURES

To understand the experimentally observed behavior of
wy(k) as a function of k, concentration x,, and total
number density n, we use Enskog’s theory for dense
hard-sphere fluid mixtures. This so-called, revised En-
skog theory (as revised by Van Beijeren and Ernst in 1973
[2]) is a natural and straightforward extension of
Boltzmann’s theory for dilute gas mixtures to higher den-
sities n. Like the Boltzmann theory, the RET predicts all
macroscopic quantities of a mixture (like the transport
coefficients) and microscopic quantities [like S (k,)] and
expresses them in terms of the static properties of the full
mixture in equilibrium and the dynamics of two isolated
particles, while no adjustable parameters are involved.
As such, the RET is a unique theory for dense mixtures,
although it is restricted to hard-sphere model interactions
only. The RET neglects the (small) effect of persistent
correlations which occur between collisions at separated
(long) time differences, i.e., the so-called mode-coupling
contributions due to recollision effects [8]. Therefore, the
RET is exact for short times (large ), small distances
(large k), and approximate (but reliable) in the remaining
k-w plane.

Using the revised Enskog theory for binary mixtures,
the N-particle correlation functions Fj;(k,?) of Eq. (4) are
approximated by corresponding kinetic two-particle
correlation functions Fﬁ(k,t)zFﬂ(k,t), which can be cal-
culated numerically. This is achieved explicitly (as in the
Boltzmann theory [9]) by first expressing the F;(k,?) in
terms of the single-particle nonequilibrium distribution
functions f;(r,v,¢) which give the number of particles of
species 1 (i=1) and 2 (i =2) at r with velocity v at time
t. Next, one assumes that the time evolution of the
fi(r,v,t) is determined by the revised Enskog equation of
Ref. [2]. As a result, the Fﬁ(k,t) are for t =20 given by
(j=1,2and [=1,2) [10,11]

FE, )= (¢;(k)-e"®-¢,(k)) ), . )
Here the brackets (( ),;), labeled 1 and 2 represent

Gaussian averages over the velocities v; and v, and re-
place the N-particle average { ) of Eq. (4):

(OY)y=[dv, [dvVv)¢P(v,) - -+, (8)
where
3/2 2
¢(j)(,v): m; exp —m—]v (9)
27ky T 2k T

is the Maxwell velocity distribution for the species j =1
or 2, with kz Boltzmann’s constant, m; the mass of the
He particles, and m, the mass of the Ne particles.

The (real) two-dimensional vectors ¢;(k) and ¢,(k) in
Eq. (7) replace the (complex) densities 6n;(k,0)* and
6n,(k,0), respectively, of Eq. (4) and are given by
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. 1 cosa(k)
$(RI=ISnOT | gina(k) | -
(10)
. . sina(k)
$2(k) =[S (k)] cosa(k) |’
with
alk)=Lsin "' {8 ,(k)/[S;(k)Sy(k)]'?}, (11

where the partial static structure factor
Sy(k)= [ doS;k,0)=F;(k,0)

is the area of S;;(k,®) in Eq. (1). We note that in Eq. (7)
for t =0,

Fji(k,0)=F;(k,0)=S;(k) ,

which is a consequence of the fact that the RET is exact
for short times.

The Enskog streaming operator exp{tL£(k)} in Eq. (7)
replaces the N-particle time evolution of Eq. (4) exactly
up to order ¢ and approximately for t— . Here, the
inhomogeneous Enskog operator LZ(k) is a 2 X2 matrix
operator acting on two-dimensional vectors depending on
v, and v, and transforming them into vectors of the same
type. LE(k) is given by the sum of three 2X2 matrix
operators, i.e.,

LEk)=V(k)+Mk)+Ak) . (12)

Here, V(k) is due to free streaming (as in an ideal-gas
mixture). The mean-field operator M (k) is a correction
to free streaming, due to the fact that the partial static
structure factors S;(k) are not those of an ideal-gas mix-
ture [where S;;(k)=S,,(k)=1 and S,(k)=0]. The
operator A(k) is due to binary collisions. The matrix
operators V(k), M(k), and A(k) are given in Appendix
B.

We obtain the partial dynamic structure factors
Sﬂ(k,w) in the Enskog theory from Egs. (3) and (7), i.e.,

1 —1
S (k,w)=—R (k) —————¢,(k . 13
Jl( @) T e<<¢j( ) io+LEKk) 4 )>1>2 13

We evaluate these expressions numerically using the so-
called Bhatnagar-Gross-Krook (BGK) approximation of
order M (=4,5,..., ). This BGK method, discussed
in [12], treats the free-streaming term F(k) and the
mean-field operator M (k) in Eq. (12) exactly for any M.
In each step M the collision operator A(k) in Eq. (12) is
in fact approximated by a numerical M XM matrix con-
sisting of the elements of this operator between the first
M two-dimensional vectors in v; and v, of a complete or-
dered set. One finds that the BGK method converges
rapidly when M =10 [12]. In the results presented in this
paper we use M =10 throughout.

From the numerical results for Sjl(k,w), we determine
the half widths o}(k) of S,(k,0) and w@'(k) of
S,,(k,®) defined by

S,k (k)1=1S,(k,0) (j=1,2) (14)

and the half width wy (k) of the total dynamic structure

factor S (k,w) [cf. Eq. (1)] as defined in Eq. (6). We calcu-
late the dynamical structure factors and the half widths
for the seven experimental states using the parameters
given in Table I. All the results are given in Sec. IV.
Here we discuss their general behavior, as illustrated by
the results of the state Heg ;;Neg 3.

In Fig. 2 we show for He,;,Nej¢; the half widths
0P(k), @ (k), and wg(k) as a function of k. We consid-
er their large- and small-k behavior separately.

For large k (=20 nm~!), one observes in Fig. 2 a ten-
dency of the half widths w$’(k) and »'(k) towards the
corresponding ideal-gas values, i.e.,

172
(1) — 21n2 —1
o ()= | S8 | k(10K D],
(15)
172
(2) — 21n2 —1
o (k)= | S | k(40K )
(k— ) .

One also observes in Fig. 2 a tendency of wy(k) to its
corresponding ideal-gas behavior wy (k) (k— o) that is
calculated numerically from Egs. (1) and (6) using the fact
that S,;(k,®) and S,,(k,w) are, for k— oo, ideal-gas
Gaussians in o, while S,(k,0)=0 then. The results for
wy(k) (k— o) are shown in Fig. 3 as a function of x,.
One sees that wpy(o) is always intermediate between
0y(0) and w@(w) and very close to w@(w) for
x,20.5.

Thus we can understand, in part, the general global
behavior of the half widths o\ (k), 0@’ (k), and wy(k)
predicted by the Enskog theory for large k (=20 nm '),
namely, that

0P (k) <wyk) <o@(k) . (16)

This basic relation follows from the fact that w2 (k) is
(much) smaller than w)(k) since in Eq. (15) the thermal
speed (Bm,) 1”2 of the heavy Ne particles is (much)
smaller than the thermal speed (Bm )~ '/? of the light He
particles. Furthermore, wy(k) is intermediate between

16
(k) /
12 | e
(ps™) gl
8 L "’ 4
e ’ /
st T e
/”‘
0 —— . .
0 10 20 30 40
k (nm™)

FIG. 2. Theoretical Enskog half widths w'}’(k) (upper dashed
curve), wg(k) (solid curve), and w?(k) (lower dashed curve) as
functions of k for He, 3;Neg ¢3. The solid straight lines at large
k are the corresponding ideal-gas predictions for o$'(k), wy(k),
and w?'(k) (from top to bottom).
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1.0
W ()

1
wi()

0.5

0.0

0.0 0.5 1.0

X2
FIG. 3. Reduced half width wg(®)/wi( ) as function of
X, (solid curve). The dashed straight line is @3 0 ) /0( ) so
that () <wg( o) <of( o) [cf. Eq. (16)].

o'P(k) and 0¥ (k), which is an exact consequence of Eq.
(1) as long as S,(k,®) is negligibly small (as in ideal
gases).

The rather obvious and ‘“‘natural”” behavior of the half
widths given by Eq. (16) is further illustrated in Fig. 4.
There we show the Enskog results for Sﬂ(k,w) and
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S(k,w) as a function of @ at k=20 nm~! for

He ;7Neg ¢3. One observes in Fig. 4 that S,(k,®) is very
small indeed and that S,(k,w) and S, (k,0) show a
Gaussian behavior in w, with very different half widths
wg)(k) << w}})(k), due to the differences in masses. Thus,
Eq. (16) is clearly satisfied.

For small k (k <12 nm™!), one observes in Fig. 2 a
completely different, and not so immediately obvious,
behavior for the half widths. From the Enskog theory we
find for small k that

oy (k)=0@ (k) <<wgy(k) . a7
Thus, peculiarly, the half width of the total S (k,®) in Eq.
(1) is much larger than the half widths of S,,(k,») and
Sy, (k,w), which are equal. We illustrate this behavior in
Fig. 4. There we show the Enskog results for S;(k,)
and S (k,w) at k=2 nm ! for He, ;;Ne, ¢3. One sees in
Fig. 4 sharp central positive peaks in S,;(k,») and
S,,(k,@) with equal widths o}’ (k)=w?(k) which cancel
in the total S(k,w) the strong sharp negative contribu-
tion in S,(k, ), so that

k =20 nm’ k= 2nm’
1.8
S(k.w) 2
(ps)
0.8 0.6
°-: 0.0
0. 40
Si(k.w)
FIG. 4. Theoretical Enskog
(ps) results (He, 37Neg ;) for S(k,w),
0.4 20 Si(k,w), Sy (k,0),and S, (k,w)
as functions of w (solid curves).
Left column: kK =20 nm~!. Note
that S,(k,w) is very small and
0.0 0 hat o2 (1)
) 2.0 20 that wy'(k) < wy(k) < 0y’(k) [cf.
Szz(k,(ﬂ Eq. (16)]. Right column: k=2
(ps) nm~!. Note that S,,(k,w) is
P strongly negative and that
1.0 10 0P (k)=0W(k)<<wy(k)  [cf.
Eq. (17)]. The side peak in
S(k,w) at ®=1.3 ps™! (=cgk)
0.0 o is due to the sound mode.
S,z(k,(l)) 0.04 10.0
(ps) \
0.00 N —— =
-0.04 -50.
o 5 10 (1] 1 2
. -1
® (pshH o (ps)
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TABLE II. Enskog values for the heat diffusion ag, the concentration diffusion D, the sound damp-
ing 'z, and the sound velocity cg (c is the actual sound velocity and c,qw that from the van der Waals
equation). The total reduced density n* =n,03+n,03 and I ~! is the inverse averaged mean free path.
a is the actual heat diffusion.

lA]

a ag Dy T'g Ccg Cyaw c

n* nm™! (1072 nm?/ps) ms ™! ms™! ms~!
He 0.34 10.1 11.3 11.7 1.94 11.1 841 788 750
Heo_7gNeoA 22 0.39 12.3 8.7 1.68 11.6 679 587
He,sNeg,,  0.40 12.7 8.2 1.60 11.0 666 565
Heo s/ Neges  0.52 19.7 6.5 1.16 8.7 671 504
Heo,sNegss  0.55 21.8 64 108 8.6 680 485
HeosNego,  0.63 28.7 7.1 0.92 10.2 767 551
Ne 0.66 31.7 5.4 7.7 0.86 11.1 802 578 571

1953

oW k)=w@(k) <<wgy(k)

indeed.

Physically, Eq. (17) can be understood from hydro-
dynamics, valid for k—0. For small k, the Enskog
operator LE(k) of Eq. (12) has four hydrodynamic eigen-
modes, i.e., eigenvectors ¥,(k) and corresponding eigen-

values zy(k) (which vanish for k=0), labeled
‘I.L=C,h,+,—,
LEK)W, (k)= —z,(k)¥,(k) . (18)

Here, p=c refers to the concentration diffusion mode,
p=h to the heat mode, and u=-+ and — to the two
sound modes. These four hydrodynamic eigenmodes of
LE(k) determine all S;;(k,) for k —0 completely.

The eigenvalues are for small k£ given by

z.(k)=Dgk>+0(k*),
zy(k)=agk*+0 (k%) ,
zi(k)=ticgk +Tgk>+0(k3),

(19)

where Dy is the concentration diffusion coefficient, a
the heat diffusivity, ¢y the hydrodynamic speed of sound
and I'y the sound damping. These (Enskog) parameters
are given in Table II and in Fig. 5, where one sees that
ag >>Dyg, as is typical for dense fluid mixtures.

It follows from Eqgs. (18) and (13) that all partial dy-
namic structure factors S ﬂ(k,w) are given by a sum of
four Lorentzian lines (k —0):

S,(k0)="1R A0 20)
@ o7 eF:c’hz,Jrﬁ —iw+tz,(k) ’
with amplitudes given by
A}["(k)Z<<¢j(k)-‘1/#(k)>1>2<<\l’“(k)-¢l(k)>l>2 1)

Therefore, in all three Sj,(k,w) and in the total S(k,w),
there are two Brillouin lines located at tcgk with equal
half width T' k2 due to the two sound modes, one central
line with half width z,(k)=Dgk? due to the concentra-
tion diffusion mode, and one central line with half width
z,(k)=agk? due to the heat mode. The sound modes are

not very relevant for the half widths, since they appear in
the sidewings of S;(k,w). In practice, the half widths are
determined by an interplay of the amplitude Aj(-f)(k) of
the (narrow) central concentration-diffusion-mode contri-
bution and the amplitude A }f‘)(k) of the (broad) central
heat-mode contribution. We find for all three Sj,(k,w)

0.0
15.0 T

(b)
['g,ag,Dg

7.5}
(102 nm%/ps)

1. ——

0.0

1000
CE E\S&vﬂﬂgy{:
500 |

(m/s)

o .
0.0 0.5 1.0
X

FIG. 5. Total reduced density n*=n,03}+n,03 as a function
of x, for the states He,clNe,‘2 of Table I [open circles in (a)].

The solid curve in (a) is a smooth interpolation. Enskog sound
damping I'; [triangles in (b)], heat diffusion ay [circles in (b)],
concentration diffusion coefficients Dy [squares in (b)], and
sound velocity ¢z [squares in (c)], as functions of x,, for
He:,‘lNex2 (cf. Table II). The solid curves in (b) and (c) are

theoretical, using n* as a function of x, from (a).
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that the amplitudes 4 }f)(k) of the concentration diffusion
mode are considerable so that for k —0,

oW (k)=w@(k)=z,(k)=Dgk? . (22)

For the total S(k,w) we find a negligible contribution
of the concentration diffusion mode. This is due to the
fact that in S (k,w) fluctuations in the total number of
particles are mainly observed as discussed under Eq. (6).
Therefore, the central part of S (k,w) is determined dom-
inantly by the heat mode (which includes these fluctua-
tions in the total number of particles). Hence, for k —0,

oy(k)=z,(k)=agk?, (23)

so that wy(k) is much larger than ol (k)=w? (k) since
ap >>Dg (see Fig. 5). We conclude therefore that the
behavior of the half widths given by Eq. (17) is typical for
hydrodynamics, due to the fact that in dense fluid mix-
tures the heat diffusion coefficient a is much larger than
the concentration diffusion coefficient D.

We find from the Enskog theory for mixtures with
0<x, <1 that the hydrodynamiclike behavior given by
Eq. (17) occurs when kI <1 (k <1~ the particles under-
go “many” collisions over long distances), while the

ideal-gas-like behavior given by Eq. (16) holds when
kI>1 (k>1""!; the particles move “freely’” over short
distances). Here, / is the averaged mean free path be-
tween collisions in the binary mixture, defined as the
mean free path in the corresponding simple fluid with to-
tal number density n=n;+n, and averaged diameter
o=(x,03+x,03)!3. The values of /™! are given in
Table II.

As can be read in Table II, the Enskog theory yields
realistic values for the actual sound velocity ¢ and heat
diffusivity a [13], implying that the theory might be
representative for the real He, Ne,, mixtures in the hy-
drodynamic region (k—0). In Sec. IV we compare the
theoretical Enskog results for wy (k) with experiment for
microscopic k values of the order of / ~L.

1IV. EXPERIMENTAL AND THEORETICAL
RESULTS

In this section we present the experimental and
theoretical results for the total static structure factors
S(k) and the half widths wg(k) of the total dynamic
structure factors S(k,w) for the seven He, Ne, states

given in Table I. We start with the total static structure

1.2
0.8
0.4
0.0
1.2
FIG. 6. Total experimental
0.8 static structure factors S (k) as
functions of k for the HexlNsz
0.4 mixtures of Table I (open cir-
0.0 cles). The solid curves are from
: the Percus-Yevick theory for
corresponding binary mixtures
1.5 He,;;Neg o 1 45 | Ne [s of hard spheres and the dashed
o S curves for corresponding
1.0 1.0 A monoatomic fluids of hard
> spheres. The solid and dashed
0.5 0.5 curves are virtually indistin-
guishable.
0.0 0.0
0 10 20 30 40
-1
He, ;;Ne k nm
1.5t 0.37 0.63 . ( )
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factor S (k) given by [cf. Eq. (1)]
Stk)=[" doS(kw)
=x,b¥2S,,(k)+x,b32S,,(k)
+20x,x,)V2b b3S, (k) . (24)

In Fig. 6 the seven experimental S (k)’s are plotted as a
function of k. One observes in Fig. 6 that the first peak
in S(k)at k=k*=~23 nm™~! gets more pronounced when
X, increases from O to 1 (top to bottom). We find that the
experimental S (k)’s are similar to those of hard-sphere
mixtures. From the experimental S(k)’s we obtained
equivalent hard-sphere diameters of the helium and neon
particles by fitting with the theoretical Percus-Yevick
hard-sphere-mixture S (k)’s [4]. Simultaneous best fits
are obtained when ¢,=0.245 nm and 0,=0.273 nm.
The hard-sphere Percus-Yevick S (k)’s (using these best-
fit diameters) are shown in Fig. 6, as solid curves. We
also find that the Percus-Yevick-mixture S(k)’s are
virtually indistinguishable from those in an equivalent
monoatomic fluid of hard spheres with diameter
o=(x,03+x,03)!/3 at the same density n (Fig. 6). Thus,
also, the reduced densities n*=no’=n,0}+n,o} are

the same in the mixture and the monoatomic fluid.
Therefore, we conclude that when x, increases, the peak
in S (k) becomes more pronounced due to the increase in
reduced density »n *, rather than in x, (cf. Table II).

Next we present the experimental results for the half
widths wy(k) of the total S(k,w). For all states the ex-
perimental wy(k) are plotted in Figs. 7 and 8 (left
columns) as a function of k. All half widths tend to have
a minimum at k*=~20 nm~! corresponding to where
S (k) has a maximum (see Fig. 6). Also, one observes in
Figs. 7 and 8 that the minimum in w4 (k) near 20 nm ™!
becomes more pronounced when the total reduced densi-
ty n*=n,0}+n,0} increases (from He to Ne; see Table
II). In addition, the minimum value wgy(k*) decreases
with increasing n*. This can be seen most clearly in Fig.
9(a) where we plot wy(k*) as a function of n*.

The solid curves in the figures in the left columns of
Figs. 7 and 8 are the theoretical results for wy (k) of the
Enskog calculations (see Sec. III). For all states the En-
skog half widths agree well with experiment—in particu-
lar, at small k values (for most mixture states up to 10
nm ™ !) and at the k values around 20 nm ™! where S (k)
has its maximum. One notices that the increasingly more
pronounced minima in the experimental wy(k) with in-

12

FIG. 7. Half widths wy(k) of
the total dynamic structure fac-

tors as functions of k for the

~~ 6 r
‘v
jB
N
0
—~
=
4l
.
0 =

He-Ne experiments with x, =0,
0.22, 0.27, and 0.63 of Table I
(open circles in the left column).
The dashed curves in the left
column are the w7 (k) of the cor-
responding monoatomic hard-
sphere fluids. The solid curves
in the left and right columns are

from the Enskog theory for cor-

responding binary mixtures of
hard spheres. In the right
column the upper dashed curves
are the theoretical w%'(k) for the
He component and the lower
dashed curves are the theoretical
o3 (k) for the Ne component.

For x,=0, the dashed curve is

for one neon particle in pure
helium. The jump in wgy(k)
=w(k) at k=2 nm ™! is due to
interference of the sound mode
with the central line.

Kk @mh
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8
6 |  HegsNeyss
_?'\ 4 FIG. 8. Half widths wy(k)
w2 of the total dynamic structure
e 2r factors as functions of k for
the He-Ne experiments with
—_ 9 x,=0.75, 0.92, and 1.0 of Table
- I (open circles in the left
\-:_: column). The dashed curves in
3 6 the left column are the (k) of
the corresponding monoatomic
47 hard-sphere fluids. The solid
curves (left and right columns)
2 are from the Enskog theory for
corresponding binary mixtures
0 , of hard spheres. Right column,
x,7%1 and k>20 nm™!; the
6 Ne upper and lower dashed curves
e ’ are the theoretical w%}’(k) for the
4 o He component and o%'(k) for
o the Ne component, respectively.
2 ~Ta X, Right column, x, =1; the dashed
K curve [w4(k)] is for one helium
0 - . particle in pure neon.
0 10 20 30 0 10 20 30

k (nm™)

creasing n* are well represented by the theoretical calcu-
lations. To study how the wy (k) of mixtures are similar
to those of monoatomic fluids, we have calculated the
half widths w}(k) of the corresponding monoatomic
fluids of hard spheres [diameter 0 =(x,0}+x,03)!/? and
mass m =x;m; +x,m,]. The results are shown in Figs.

&1 1 (@ ]
O)H(k*) | 1 ]
47 3 |
(ps™) i .
2 L3 . .
0
. : : . :
O)H(k )to T (b)
2 -
1 -
0
0.3 0.4 0.5 0.6 0.7
n*

FIG. 9. Experimental half widths wy(k*) for k=k™* as a
function of n* for the seven He-Ne mixtures of Table I [solid
circles in (a)]. In (b) the experimental reduced half widths (solid
circles) are compared with the theoretical prediction (solid
curve) for corresponding monoatomic fluids of hard spheres.

kK @m

7 and 8 (dashed curves in the left columns). One sees that
the wy (k) of the He,clNex2 mixtures are indeed similar to

the of(k) of monoatomic fluids. In particular, the
deepening and sharpening of the de Gennes minimum
with increasing n* seen in mixtures is virtually the same
as that observed in simple fluids. This is further illustrat-
ed in Fig. 9(b) where we plot the reduced wy(k*)t, and
wh(k)t, as functions of n*. Here, t, =1(Bm)!?c is the
average time an average particle needs to transverse o
with average thermal speed (8m)~!/%. We conclude from
Fig. 9(b) that the effect of de Gennes narrowing is virtual-
ly the same in He-Ne mixtures and in simple monoatomic
fluids.

In the figures in the right columns of Figs. 7 and 8, the
solid curve is again the theoretical Enskog half width
op(k). The dashed curves are the theoretical half widths
w(}?(k) of the partial dynamic structure factors
S;i(k,®) [i=1 for helium and i =2 for neon; see Eq.
17n].

Apparently, for increasing x, > 0.2 the theoretical half
widths wg(k) are increasingly determined by the neon
contribution S,,(k,) when k >1 "1, with I the averaged
mean free path between collisions (see Table II), and then
satisfy the basic relation

0P (k)<wy(k)<<w@ (k)

[Eq. (16)]. For small k (k <I~!) one observes in Figs. 7
and 8 the typical hydrodynamiclike behavior

oP(k)= 0@ (k) <<wgy(k)

[Eq. (17)]. Therefore, for k <I~!, wy(k) is determined
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by heat diffusion wy(k)=~azk? and not by the helium or
neon components that both behave as

oW (k)= (k)=Dgk? .

Due to the good agreement between theory and experi-
ment, we expect also that the experimental wy(k) are
dominated by the neon contribution for k >I"! and by
collective heat diffusion for k <I~!. This conclusion
differs from that in Ref. [14] where it was conjectured
that the experimental half widths wy (k) are dominated
by the neon particles for all microscopic k relevant in
neutron scattering.

V. DISCUSSION

We find that the experimental half widths wy(k) for
seven neutron spectra of He-Ne mixtures agree well with
the revised Enskog theory. The agreement is the more
surprising since no adjustable parameters are involved in
the comparison. Thus we have established the relevance
of the revised Enskog theory for dense binary mixtures
on the microscopic level, i.e., for wave numbers k corre-
sponding to distances of the order of interparticle separa-
tions.

Due to the good agreement for wy(k), one can have
some confidence in the predictions of the RET for the dy-
namics of the separate He and Ne components in the
mixture, i.e., for the corresponding w(I})(k) and cu(,?(k),
respectively. Over short distances (k >1"!) the light He
particles move much faster than the heavy Ne particles
so that w?)(k) <<w@(k) [Eq. (16)]. Over long distances
(k <I71) the He and Ne particles move equally fast:

o'P(k)=w@(k)=Dgk?,

with Dy the concentration diffusion coefficient [Eq. (22)].
Clearly, a He (or Ne) particle can move around only
when its emptied space is filled with a Ne (or He) particle
whereby the total density is constant.

According to the RET, the experimentally observed
half width wy(k) is the decay frequency of a fluctuation
in the total number of He and Ne particles. Therefore,
for small k (k<I7'), wy(k)=agk? [with ag the heat
diffusivity; see Eq. (23)] is much larger than

oW (k)=w@(k)=Dgk? .

It appears that a fluctuation in the total number of parti-
cles relaxes fast due to the fact that the particles can push
each other away, as in heat diffusion (they do not have to
pass each other, as in concentration diffusion). For large
k (k>1"1), wy(k) is dominated by the slow-moving Ne
particles so that

0P (k) <oy(k) << (k) .

In the transition from small-k to large-k behavior, wy (k)
develops a de Gennes minimum near k~20 nm ! (see
Figs. 7 and 8), the behavior of which is very similar to
that observed in simple monoatomic fluids [see Fig. 9(b)].

Unfortunately, the peculiar theoretical predictions for
o'P(k) and 0¥(k) cannot be tested with neutron scatter-
ing on He-Ne mixtures since there are no appropriate iso-

topes. However, they have been verified recently from
molecular-dynamics simulations of He-Ne mixtures [15].
A verification could also come from neutron scattering
on mixtures like He-Ar, since the isotopes 3°Ar and “°Ar
of Ar scatter in a vastly different manner. For such mix-
tures all three halfwidths w(l})(k), a)(ﬁ)(k), and wy(k) can
be determined experimentally and tested with theory.

APPENDIX A: THE VAN DER WAALS EQUATION
FOR BINARY MIXTURES

The van der Waals model for binary mixtures, some-
times called the one-fluid model, is used to determine the
composition of the He-Ne mixture states and to estimate
the sound velocity. Here, the van der Waals equation of
state for mixtures reads [16]

nkgT

== Al
l—nbvdw ( )

2
p —aywh,
with n =n, +n, the total number density of the mixture.

The parameters a 4w and b 4w are given by
- 2 2
aygw=apx|t2apx,x;+ayx;,

(A2)
bvdw=b11x%+2b12x1x2+b22x% .

Here, x,=n,/n, x,=n,/n, and the parameters a,, b,
and a,,, by, and the van der Waals parameters of pure
helium and pure neon, respectively. The cross-

coefficients a;, and b, are functions of the pure fluid pa-
rameters

ap=(ayay)'’? (A3)

and

b12=%(b%1/3+b%3)3 . (A4)

From tabulated p-n-T data for pressures p near 280 bar
and temperatures 7 near 47 K, we determined the
coefficients a; and b; (i =1,2) (Refs. [5,6]) for pure heli-
um (1) and pure neon (2). For helium, we find

a;;=0.361xX10"2 Jnm3
(=0.0361 nm® bar), b;; =0.0215 nm® and for neon,
a,,=4.76 X103 Jnm?

(=0.476 nm® bar), b,, =0.0226 nm>. From these data we
calculate the concentrations x, given in Table I.

We determine the sound velocity ¢ 4w from
1/2

Y

mnkrp

(AS)

Cydw =

with m =x,;m,+x,m, the averaged mass of a particle,
kp=(0n /3p);/n the isothermal compressibility, and
Y =c,/c, the ratio of specific heats per particle at con-
stant pressure (c,) and constant volume (c, ) that satisfies

P
the thermodynamic relation

Ta?
nkrc, ’

y=1+ (A6)
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with a=—(0n/dT),/n the thermal expansion
coefficient. To obtain c 4w, We calculate k; and a from
Eq. (Al) and we use that in the van der Waals theory
c¢,=3kp /2, as in an ideal gas. The results for c, 4y are
given in Table II.

APPENDIX B: THE ENSKOG OPERATOR

We give the explicit expression for the inhomogeneous
Enskog operator LE(k) of Eq. (12), i.e.,

LEk)=V(k)+M (k)+A(k) . (B1)

Here, LE(k), V(k), M(k), and A(k) are 2X2 matrix
operators acting on two-dimensional vectors of the type
[f(v,),g(v,)] and transforming them into vectors of the
same type [ f'(v,),g'(v,)], where f(v,) and g(v,) are ar-
bitrary functions of v, and v,, respectively.

The 2 X2 free-streaming matrix operator ¥V (k) is given
by

—ik'vl 0

VIO=1 0o —ikw,

(B2)

The 2 X2 mean-field matrix operator M (k) is given by

My (k) M, (k)

MU= 6,00 M)

. (B3)

The four operators M; (k) with j or /=1,2 transform
functions of v, into functions of v;,. For an arbitrary
function f(v;) of v;, one has [10]
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M,(k)f(v))
= [ dvipV(vy)[ik-v;8s; (k) +ik-v3ds;(K)1f (v3)
(B4)

with ¢'”(v) the Maxwell velocity distribution of Eq. (9).
The four functions 8s,,(k), 8s,,(k), 8s,;(k), and 8s,(k)
depend on the deviations of S,;(k), S,(k)=S,,(k), and
S,,(k) from their ideal-gas values (1, 0, 1, respectively):

8s;;(k)=1—[§,;(k)]™"*cosal k) (B5)
and

8s;(k)=[S8; (k)] *sina(k) (j#I), (B6)
with

5 (k=5 (k) S KSn ()= S, k) (B7)
i Ji S11(k)Sy, (k)

and a(k) given by Eq. (11). Therefore, 8s;,(k)=0 and
M ;(k)=0 for ideal gases.

The collision operator A(k) in Eq. (B1) is given by
A(k) Apk)

Azi(k) Ag(k)

Alk)= (B8)

where A (k) transforms functions f(v;) of v, into func-
tions of v, ie.,

A f (v)=AuK)f (v))— (A (k) f(v))); . (BY)

The four collision operators A (k) are

Rn()f (v)=nyxy [ d8 [dviPe VI C @) fIviP1+e T [v])

+nyx1, [ d8 [ aviPsPWENCHN (@) f 1],

(B10)

Rn(K)f (v)=ny)p, [ d8 [ a2 CE @) f VP ] +e T2 [40])

+nixp [d6 [dviPe e (8 )f v,

and, for j#I.

Kjl(k)f(vl)=(”1n2)l/zXlzfd‘/T\e*ik.aufdv51)¢”)(v(ll))C]§/’)(c'r\)f[vgl)] ,

Here, & is a unit vector.
(B13)
(B14)

- A
0;=0;0,

Ujli(0j+01)/2 ,

so that o,;=0,, 0,=0, and o,=(0;1+0,)/2.
Xjp=gjloy), with g;(r) the partial equilibrium pair-
correlation functions of the mixture. In Egs.
(B10)-(B12), v/ is the velocity of particle number p of
species j=1,2, and we set v//'=v, after the integrations
have been performed.

The operator C}[’q)(c’r\) describes the collision of particle

p of species j with particle g of species [:

(B11)

(B12)

[
CPP(8)=0;|v§?-0 |00 ) [b)P5)—1],

(B15)

where O(x) is the Heaviside step function and

v%q)=vﬁp)—v(,q) . (B16)

The substitution operator bjf?(&) in Eq. (B15) acts on
functions f (v, vi?) of v\’ and v{?’ as

b}f‘”(&)f(v}p),v‘,q))Zf(VEP)*,v(,q)*) , (B17)

where
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b;fw(a)v;m:v;w=v;.m—z-’;14 V9616 (B18)
J

b}fq)(a')v(lq)Z’V(Iq)*='V(1q)_27}1[1’(l?m'0]0 , (B19)
1

with the reduced masses pu;; given by

= M (B20)
Hit™ m jtm
The vﬁf’)* and v\9* in Eq. (B17) are the velocities after a
binary collision of particles p and g when they have initial

velocities v}” ) and vgq), respectively.
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