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To ensure efficient and reliable operation of power amplifiers it is very important to precisely 
measure and control the power of the signal they transmit. A device most often used to do precise 
power measurements of RF systems is the so-called RF power detector. As this detector is used as 
measurement device the precise measurement ability of the RF power detector is very important. 
For the precise predictability of the output power of power amplifiers the transfer of the RF 
power detector has to be fixed and accurately known. 
 
In this thesis we develop a new calibration method for the transfer stabilization of logarithmic 
power detectors. Via thorough investigation at system level and circuit level it is shown that the 
proposed method can be used to continuously calibrate the transfer of a logarithmic RF power 
detector to a predefined and fixed position over mismatch, part-to-part spread, temperature and 
input frequency.  
 
The method depends on a novel switching algorithm around a log device that is capable to do 
continuous slope, intercept and dynamic range correction on the transfer of the logarithmic power 
detector. When accurate enough, the method would make calibration of each individual device 
unnecessary. Furthermore a new method is presented that can be used to extend the dynamic 
range of log detectors. System simulations show that the calibration method leads to the wanted 
transfer stabilization of the logarithmic power detector. 
 
A critical part of the new logarithmic transfer calibration method is the need of an accurate 
multiplication procedure at the input of the logarithmic device. For this accurate multiplication a 
new  accurate gain fixation procedure for a non-linear high bandwidth gain stage was developed. 
A big part of the thesis is dedicated to the investigation and circuit implementation of this new 
accurate and fast gain fixation procedure. The gain stabilization method leads to the 
implementation of a new innovative gain fixation system, including several new architectural 
innovations. One of these innovations is the implementation of a new accurate ripple blocking 
system with relative small form factor and fast response time. Simulation results of the circuit 
implementation of the gain stabilization system prove that the accuracy of the gain stabilization of 
the non-linear high bandwidth gain stage is well within the required specifications. 
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1 Introduction 

1.1 RF Power Detection 

People nowadays are used to communicate with anyone, at any time, from any place. This is only 
possible through the aid of wireless technology [1]. Various wireless technologies have literally 
changed the way we live. Cell phones, Wireless LAN, Bluetooth, and GPS are examples of 
technologies that reached must-have status with consumers worldwide.  
 
When information is transmitted over Radio Frequencies (RF), power amplifiers are utilized. To 
ensure efficient and reliable operation of these power amplifiers it is very important to precisely 
measure and control the power of the signal they transmit. RF-power measurements and control 
inside for example a mobile communication system is needed to continuously adjust power levels 
to ensure reliable and efficient communication between the mobile handsets and wireless base 
stations. 
 
RF power management allows the transmitted power to be precisely adjusted to the minimum 
required power level, which is of great importance in mobile communications system because it 
reduces the possible occasion of so-called co-channel interference and minimizes the power 
consumption. Minimizing the power consumption is particularly important for handsets, as most 
handsets operate on batteries which have a finite amount of power storage. Minimizing the power 
consumption will extend battery life, prolonging the usage time for portable handsets. Especially 
nowadays minimizing the power consumption is increasingly getting more important, because 
consumers are doing more with their handsets than ever before. Where mobile phones in the past 
where only used for voice communications, today mobile phones are also increasingly used for to 
connect to the internet over long and short distance wireless data connections to transmit and 
receive multimedia content. Emerging telecommunications applications such as music download, 
multimedia streaming, content browsing and on-line gaming are popular examples of the digital 
revolution we have been facing as the world gets connected. As consumers increase their use of 
multimedia content, the demand for high throughput with robust wireless connectivity continues 
to grow rapidly. As a result mobile phones requires more power to operate than ever before, 
thereby setting the need for high power energy efficiency.  
 
In base stations, which are responsible for handling traffic and signaling of mobile phones, 
accurate RF power management is also of great importance. Monitoring and controlling the 
performance of power amplifiers inside these base stations makes it possible to maximize the 
output power while achieving optimal linearity and efficiency [2]. Reduced overall energy 
consumption of base stations not only minimizes their impact on the environment, but also gives 
financial benefits to telecom industry because of lower energy cost. 

1.2 The RF power detector 

A device which is most often used to do precise power measurements of RF systems is the so-
called RF power detector. An RF power detector is a device that produces a DC output voltage 
which is proportional to the RF power level of the signal applied to its input. Figure 1.1 shows a 
typical modern communications signal chain where the transmit and receive sections are 
measured and controlled by RF power detectors [3]. 
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Figure 1.1 Typical modern communications signal chain 

Both detectors are part of a so-called Automatic Gain Control (AGC) system. The AGC system in 
the receiver section (upper ellipse) is used to control the received signal strength. The signal 
strength is a key factor in maintaining optimal sensitivity and selectivity which is necessary for 
reliable communication . The AGC loop in the transmitter section (lower ellipse) is used to 
control the amount of power transmitted. The amount of power transmitted is critical for 
maintaining the range and reliability of the radio link but also to assure compliance with 
government regulations. 

1.3 The definition of signal power in RF systems 

Before we go into more detail about power detectors we first have to know more about the 
definition of signal power in RF systems. 
 
The signal power in watts is most commonly inferred from a measurement of the Root Mean 
Square (RMS) voltage squared, divided by the load impedance, as shown by following equation 
[4] 
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In RF systems the signal power is usually specified in dBm. The dBm unit is defined as the power 
in dB relative to 1 mW and can be calculated as follows 
  

 
2

_
1010log 1IN RMS

dBm

V
P mW

R

  
       

 (1.2) 

  
From Equation (1.2) it follows that 0 dBm occurs at 1mW, +10 dBm corresponds to 10 mW, +30 
dBm corresponds to 1 W, etc. Because impedance is a parameter of this equation, it is always 
necessary to specify load impedance when talking about dBm levels. For RF power 

ADC 

ADC 

DAC 

DAC 

Power 
Control

 
 

IO 
DEMO

D 

 
 

IO 
MOD 

 

RSSIVCO/SYNT

MIXER

MIXER

VGA

VGARF VGA PA 

Power  
Detect

LNA 
Diff. 
Amp



 18

measurements it is common to use an RF load impedance level of 50 ohm. Because most RF 
systems have a constant load and source impedance of 50Ω, we only need to know the RMS 
voltage to calculate the power [3]. As a result, many practical power measurement circuits rely on 
measuring RMS voltage. 
 
The RMS voltage is a fundamental measurement of the magnitude of an AC signal and can be 
defined both practically and mathematically.  
 
Defined practically:  
The RMS voltage value assigned to an AC signal is the amount of DC voltage required to 
produce an equivalent amount of heat in the same load. For example: an AC signal of 1 volt RMS 
will produce the same amount of heat in a resistor as a 1 volt DC signal [3]. 
 
Defined mathematically:  
The RMS value of a voltage is defined as: 
 

  21
RMSV V t dt

T
   (1.3) 

 
According to this definition, the average power is a metric for the average energy content of a 
signal and is independent of the waveform of the signal in time.  
 
According to Equations (1.1-1.2) a RF power detector should measure the RMS value of the input 
signal. However, depending on the internal detection mechanism of the RF power detectors, as 
will be discussed in later sections, there are detectors which do not respond to the RMS value of 
the signal but rather to some other average. As a consequence these non-RMS responding 
detectors will be waveform dependent, resulting in different measurement readings at the detector 
output, for input signals of equal RMS power but different shape. e.g. for a 0 dBm WCDMA 
signal the output is different from an 0 dBm signal with an unmodulated carrier.  

1.4 Signal Crest-Factor 

 Especially for input signals that exhibit a high crest-factor, the non-RMS responding detectors 
will cause errors in their output reading. When we talk about the crest factor of a signal, we are 
referring to the ratio of peak voltage to the RMS value of the signal. For an RF system this 
corresponds to the envelope’s peak to average power ratio  (PAR) [4] [5]. DC voltages have a 
crest factor of 1 since the RMS and the peak amplitude are equal, which also holds for a 
amplitude symmetrical square wave. Other waveforms, more complex in nature, have higher crest 
factors, as shown in Table 1.1. [6] 
 
 

Waveform 1 Volt Peak VRMS Crest Factor 

Undistorted Sine-wave peakpeak VV  707.02/  / 1.414peak RMSV V   

Symmetrical Square-wave peakpeak VV 1/  / 1peak RMSV V   

Undistorted triangle-Wave peakpeak VV  580.03/  / 1.73peak RMSV V   

Table 1.1  Known proportionalities between RMS and average values 
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In general we can say that an error in the interpretation of the log detector output will occur if the 
waveform of the signal is unknown. However from Table 1.1 we can see that when the signal 
shape is known, the crest factor of the signal can be used to calculate the real power of the signal. 
The known proportionality between the RMS and peak values is a very interesting property for 
power detectors in which the internal detection mechanism is based on peak voltage detection.  
 
When these type of power detectors are dealing with a known input signal shape with relative low 
crest-factor the peak-to-average ratio can be used to cancel out the error during production, by 
means of calibration. However, for signals with varying crest factor it will be difficult to use 
calibration. A calibration method to correct the measurement error caused by the varying crest 
factor is to make use of look-up tables. Calibration using look-up tables is often attempted to 
correct for simple modulated waveforms. However for signals that are modulated and 
multiplexed with techniques like higher-order Quadrature Amplitude Modulation (QAM) [5], the 
use of look-up tables becomes very difficult to cancel out the error [7] [8] [9]. This is because of 
their complex waveforms with high crest-factors which are changing over time [10]. Especially 
the changing crest factors over time, which is common in wireless cellular networks due to the 
ever changing number of calls being carried by a cellular base station [11], makes it difficult to 
use look-up tables [3]. Removing  the error at the output of such systems requires keeping track 
of how many users are on the system, tight control of which Walsh codes are being used, and a 
very large look up table in order to know the peak-to-average ratio of the signal at a particular 
time.  
 
For complex signals used in for example WCDMA cellular systems or next generation wireless 
communications systems using Orthogonal Frequency Division Multiplexing (OFDM) signals 
[12], such as WiMAX and LTE [13], which employ multiple carriers, each modulated with high-
order QAM modulation,  the use of look-up tables is becoming inadequate. These types of 
signals, can have crest factors as high as 10 to 13 dB and changing over time  [14]. 
 
In systems were such high-crest-factor signals have to be precisely measured and controlled, a 
true RMS detector is generally more desirable, since these detectors are largely immune to 
variations in crest factors. As the name of this detector already indicates they perform a true RMS 
measurement. A true RMS detector provides a ‘DC’ output voltage equal to the RMS value of its 
input voltage, independently of the input signal wave shape. 
 
From the previous discussion, it can be concluded that, depending on the complexity of the signal 
to be measured, RMS or non-RMS RF power detectors can be chosen to provide the optimum 
solution for precise power measurement.  
 

1.5 Importance of precise power measurements 

Precise measurement ability of the RF power detector is very important because it determines the 
accuracy of the output power of the system that it controls. The precision and stability of the 
measurement is therefore dependent upon the accuracy and predictability of the input to output 
transfer of the detector. The accuracy and predictability of the transfer of the detector is a 
considerable challenge to designers of power detectors. To reach high quality performance, 
designers have to minimize the drift of the detector transfer over various conditions, most 
importantly temperature. Errors due to temperature dependence of elements from which power 
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Figure 1.3 I-V characteristic of a diode with some scales expanded and others compressed in order to reveal details 

Figure 1.3 shows the I-V characteristic of a diode. We have to note that the scales of the axes in 
this figure are modified in order to reveal details. When a diode is reverse biased, very less 
current passes through unless the reverse breakdown voltage is exceeded. When forward biased 
and after exceeding the cut-in voltage of the diode, the current starts increasing rapidly. The 
diode-detector transfer function can be divided into two distinct regions, which are known as 
"square law" and "linear" region. For larger input signals, the detector works in the "linear" 
region. In this region the output signal varies linearly with the input-signal envelope, as is shown 
in Figure 1.2. The square-law region is operative for very small input-signal levels. In this region, 
the output VOUT is proportional to the square of the RF input voltage VIN, which means that VOUT is 
proportional to the input power [16]: 
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Where n is the proportionality constant. The proportionality constant n depends on how “curved” 
the diode's I-V curve is [17]. Diodes with a sharp I-V curve will give more output sensitivity, as 
can be seen in Figure 1.4. 

 

Figure 1.4 I-V characteristic of a different type of diodes 

Before we will discuss some non-idealities of the diode we first will clarify the quadratic and 
linear behaviour of the diode mentioned before.  
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For the linear region when operating at higher signal levels we have to take a look at a more 
complex model of the diode. The more complex model of the diode is depicted in Figure 1.5(b). 
 
 

 

Figure 1.5 The (a) ideal diode and (b) the more realistic diode model 

 
As shown in Figure 1.5(b) the more realistic diode model includes an internal series resistance RS 
and a parasitic capacitance CD. However, when we look at Equation (1.5) it is shown that the 
diode equation doesn't describe the influence of these elements.  So, actually, this diode equation 
is only an approximation of a more complex I-V characteristic of a diode. 
 
The linear operation of the diode detector at higher signal levels can now be explained as follows. 
At high input signals the small signal resistance of the diode will be very small. From the model 
in Figure 1.5(b) it can be shown that in this situation the resistor RS will start to dominate. In this 
situation the current will be limited by the internal resistance RS. Since the resistance RS is V/I the 
resulting signal will be linear.  
 
Real-world diodes exhibit a small amount of capacitance between their two terminals [18]. The 
capacitor CD parallel with the intrinsic diode as shown in Figure 1.5(b) models the parasitic 
capacitance. This so-called parasitic capacitance of a diode is important to take into account, 
because it limits the maximum frequency of the signal that can be measured accurately by the 
diode detector. At higher frequencies, the impedance of the capacitance is low, resulting that 
current will leak away through the capacitance instead of the low-pass filter of the detector (R2 
and C from Figure 1.2). Because some of the current flows through capacitance CD and never 
reaches the low-pass filter, the detected voltage will be reduced. 
 
The forward voltage is another important characteristic of a diode.  A large forward voltage limits 
the sensitivity for very small signals, because the detector only works when the peak RF voltage 
is greater than this voltage. Therefore, the best choice for the diode seems to be a very low barrier 
device. 
 
The characteristics as described previously depend on the type of diode that is used [19]. 
 
  

(a)                              (b)
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One of these types is the so-called point-contact diode. An advantage of this type of diode is that 
it has a very low forward voltage and has very small parasitic capacitance. However it also has a 
disadvantage: it is quite fragile and is difficult to manufacture in a repeatable manner. 
 
A type of diode that has a larger forward voltage but is easier to be manufacture is the pn junction 
diode. However, compared to a point-contact diode, the junction capacitance of a pn diodes can 
be an order of magnitude  higher.  
 
Another type of diode is the Silicon Schottky diode [20]. It is commercially available in four 
different versions, offering forward voltages of approximately 600 mV for high barrier, 330 mV 
for medium barrier, 280 mV for low barrier, and 180 mV for zero-bias detectors. GaAs Schottky 
diodes produce a forward voltage of approximately 700 mV. Because a Schottky diode's junction 
can be made very small, therefore, the junction capacitance would be quite small.  
 
Besides the drawback of their limited range as was described earlier, diodes have another 
problem, which becomes clear when we look again at Equation (1.5). This equation shows that 
the current through the diode not only depends on the voltage VD across the diode but also on its 
junction temperature. Consequently, the output rectified voltage of the diode detector, will vary 
with temperature. Since detectors are also used in feedback loops, this temperature dependence is 
highly undesirable. However, with additional components, the temperature dependence can be 
minimized. [21] [22] [3] When we implement a second identical diode and resistor, as shown in 
Figure 1.6, we can, in principle, eliminate the temperature variation.  
 

 
Figure 1.6 A temperature compensated diode detector 

That this implementation eliminates the temperature variation can be shown with following 
analysis.  When we assume the currents entering en leaving the VOUT node are the same and 
resistor R1 and R2 are identical, we can say 
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Because both resistors are identical, we can simplify the equation to 
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Since diode D1 and D2 are identical, a temperature variation will cause equal voltage drop over 
both diodes.  Because voltage VD1 and VD2 are matched, Equation (1.10) can be simplified to 
  

 
2

ˆ
IN

OUT

V
V   (1.11) 

 
From Equation (1.11) it is clear that the temperature dependence of the diode detector is 
eliminated. From the same equation it becomes clear that diode detectors actually measure the 
peak power instead of the RMS power. So, because of their non-RMS measure, their response 
will depend on the signal shape or modulation as was discussed in Section 1.1.  
 
There is one practical note for the temperature compensated circuit we discussed. A sensing 
circuit at VOUT should not load this node too much, because this will lead to a different current 
through the diodes which will defeat the temperature compensation.  
 

 

Figure 1.7 A power detector with one FET 

Earlier in this section we already mentioned the non-linear characteristic of a FET. This non-
linear characteristic can also be used to implement power detection [23] [24]. The circuit 
implementation of a power detector with one FET is shown in Figure 1.7.  
 
In this circuit the drain voltage of M1 is close to zero. So if the gate-source voltage VGS is set 
slightly higher than VTH, it will bias M1 at the borderline between the triode and saturation region.  
 
The standard equation for the drain current of a FET transistor in saturation region is  
 

  2

2D GS TH

K
I V V   (1.12) 

 
where K is the device parameter that includes the physical dimensions of the device, electron 
mobility and oxide capacitance. 
 
Since the drain voltage of M1 is close to zero and VGS is set slightly higher than VTH we can say 
VGS = VDS + VTH. In this situation we can simplify Equation (1.12) to 
 

  2

2D DS

K
I V  (1.13) 
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Equation (1.13) shows that a square law relationship between input RF signal, VDS, and output 
rectified current ID is established. This is why the RF input is applied at the drain of M1 and not at 
is gate. The rectified output current goes through load resistor R3 to establish the output voltage. 
R3 and C3 form the output low pass filter. 

1.7.2 RMS Detector 

As we can conclude from the previous section, the disadvantage of diode detectors, when used as 
control for transmitted power, is that they are sensitive to input signals with high and time 
varying crest-factors, such as CDMA and W-CDMA. The sensitivity on crest factor of a detector 
can be made independent when its operation is based on direct determination of the average 
power and not – like the diode detector – on the peak power. A detector that makes use of this 
operation principle is the so-called true RMS detector. These detectors provide a ‘DC’ output 
voltage equal to the RMS value of its input voltage, independently of the input signal crest factor.  
 
There are different approaches to implement the true RMS measurement principle. The first 
approach to be discussed is measuring power by thermal detection . [4] [6] 
 
Thermal detection essentially involves the implementation of the practical definition of RMS that 
was discussed in the introduction [3]. “Thermal detectors like bolometers (e.g. thermistors or 
thermo-couplers) convert the electrical power of RF signal into thermal energy using a resistive 
component, and then measure the temperature variation with respect to the ambient temperature.” 
[4]. Figure 1.8 shows a thermal based approach with thermal detectors, wherein a thermal 
measurement and control circuit is used to measure the heating power dissipation of the input RF 
signal. 

 

Figure 1.8 Thermal based approach with thermal detectors 

“In this circuit, an unknown signal and a known calibrated reference voltage each heat identical 
resistors. Adjacent to each resistor are thermocouples the output voltages of which are 
proportional to the respective temperatures. The voltage difference between the two sensors 
represents a scaled measure of the unknown power relative to the reference power. A similar 
result can be achieved using two thermistors in a bridge configuration. These schemes can be 
very accurate and provide RMS detection since the temperature difference is proportional to the 
power dissipation. Because operation depends on thermal symmetry, care must be taken in 
matching the sensors and keeping them thermally isolated while electrically connected. This 
system is also sensitive to temperature gradients caused by adjacent objects, or circuits. 
Furthermore, the response time is limited by the slow thermal time-constants and the system is 
not readily integrated” [4].  
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An integrated thermal detection method is shown in Figure 1.9. 
 

 

Figure 1.9 Integrated thermal detection method [25] 

A simpler method to implement the RMS-DC conversion is to put the mathematical definition of 
RMS, as shown by Equation (1.3), in silicon. According to Equation (1.3), we have to build a 
circuit that squares the signal, takes the average, and obtains the square root. 
 
RMS detectors typically fall into one of two categories; explicit or implicit. [6] 
 
The explicit RMS detector can be recognised by its straight-forward manner of performing the 
functions of squaring, averaging, and square rooting. 
 
 

 

Figure 1.10 Computation method used in explicit RMS detectors 

 
The explicit RMS detector circuitry is shown in Figure 1.10. As shown by this figure it explicitly 
perform the RMS calculation by first squaring the input signal by a squarer, then averaging it by 
the filter, and finally computing the square root by the square root block . Although the explicit 
computation seems to be the most obvious method, it has its disadvantage. Squaring the input 
signal reduces the dynamic range of the detector, because the stages following the squarer must 
try to deal with a signal that is twice as large in dB. On the other hand, this method can achieve 
excellent bandwidth. 
 
A generally better approach is the computation method used in implicit RMS detectors. Implicit 
RMS detectors incorporate indirect computation of the square root, accomplished, for example, 
by means of feedback and analog division at the input of the circuit as shown in Figure 1.11. [6] 



 28

 
 

 

Figure 1.11 Computation method used in implicit RMS detectors 

 
Divided by the average of the output, the average signal level now varies linearly (instead of 
quadratically) with the RMS level of the input. The feedback mechanism considerably increases 
the dynamic range of the implicit circuit, as compared to explicit RMS circuits. Unfortunately, 
because of the negative feedback topology the high frequency performance of the implicit 
detector is limited. As a consequence the practical bandwidth of these types of detectors is 
generally less than the thermal or the explicit computation method.  
 
 

 

Figure 1.12 RMS responding detector 

 
An RMS detector that uses squaring-cells is shown in Figure 1.12. [4] [26] [27] 
 
The high gain of the op-amp forces the signal delivered from the feedback squaring-cell detector 
to become  equal to the mean voltage of VIN squared across the low-pass filter. As a consequence 
the voltage at the input of the feedback squaring cell has to be equal to the root of the mean 
squared value of VIN. This results in an output that represents the RMS value of the input. Thus, in 
an implicit manner, the op-amp forces the detected output to be precisely the RMS value of the 
input signal.  
 
When both squaring cells are identical, several benefits arise. First, scaling effects in these cells 
cancel; thus, the overall calibration may be accurate. Furthermore, the response of both cells is 
very similar over temperature, leading to excellent temperature stability. 
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Figure 1.15 Log Detector input/output transfer [31] 

This linear in dB response makes this detector very useful for measuring RF power levels in 
communications systems, because most communication standards specify transmit power levels 
in dBm, as was already mentioned in Section 1.3 
 
Actually a log detector itself does not respond to power levels, but to the voltage applied to its 
input. The reason that the input level can be stated as equivalent power, in dBm, is because the 
input power level is inferred from a measurement of the RMS voltage across the input impedance 
of the detector. As a consequence the input impedance has to be known. For example, with the 
use of Equation (1.2), we can see that for an input impedance of 50Ω,  0 dBm (1mW) corresponds 
to a sinusoidal amplitude of 316.2 mV (223.6 mV RMS).  
 
When we look at the input/output transfer a was shown in Figure 1.15, we can see that the 
essential purpose of a log detector is to compress signals of wide dynamic range to its decibel 
equivalent. When the input/output transfer of the log detector is fixed we can actually say it’s a 
measurement device, which expresses the AC amplitude of the input signal in the logarithmic 
domain.  
 
An advantage of the logarithmic detection compared to square-law detection is that large changes 
in input-signal voltages can be represented by relative small changes in detector output voltages, 
as is shown in Figure 1.16.  
 
 

 
 
 

Figure 1.16 Input burst and their associated log output [32] 

The operation of log detectors does not depend on the nonlinearity of a semiconductor device, 
like diode detectors. To achieve the desired logarithmic conversion, most high speed high 
dynamic range detectors use the combined outputs of a cascade of low-gain high-frequency 
nonlinear limiting gain stages, so-called A/0 cells, to approximate the logarithmic transfer 
function [33]. Figure 1.17 shows a simplified architecture of a so-called successive approximation 
log detector. Actually, in literature more names are used for this type of structure. Progressive 

 

Log. 
Det. 



 31

compression log-amp, demodulating log amp and successive compression logarithmic amplifier 
are some examples of names, which are used in literature. From now on we will use the name 
successive detection logarithmic amplifier or simply log detector. 

 

Figure 1.17 Simplified architecture of a successive approximation logarithmic detector 

With the structure as shown in Figure 1.17, the input signal of the detector is subjected through a 
process of progressive compression, which leads to an approximation of the logarithmic transfer 
in a piecewise linear manner.  
 
The operation of this system can be explained as follows: 
As the amplitude of the input signal, VIN, is increased, each of the A/0 stages goes into 
compression. This compression starts at the output stage and progresses toward the input stage. 
The detectors stages, so-called G/0 stages that are connected to the outputs of the A/0  stages and 
at the input of the first A/0 stage, produce currents that are proportional to the signal voltages at 
these points. These currents, I1, I2 …, IN, are summed simply by connecting the outputs of all the 
G/0 stages in parallel. The sum of these output currents, IS, is logarithmically related to the input 
signal’s magnitude, which is converted back to voltage by using resistor RS. 
 
As was already mentioned, the architecture of the successive detection logarithmic amplifier used 
in this example is actually a simplified architecture. This architecture will only work for a quasi-
DC input voltage. Practical RF power detectors convert an AC input signal into a pulsed DC 
output as was shown in Figure 1.16. To include this functionality in the system, most commonly 
full-wave rectification of the signals I1, I2 …, IN is applied. To implement the rectification 
function, the G/0 stages are modified such that they will output the absolute value of their AC 
input voltage. The output current is now a strictly positive current which is still fluctuating. Low-
pass filtering is then used to remove the ripple of the rectified signal at the output. The RC time 
constant of this filter determines the maximum rise time of the output. More in-depth information 
about the operation of this log detector can be found in Chapter 2 of this report. 
 
The high gain needed to achieve operation down to low signal levels is distributed over the 
cascade of low-gain stages. The individual gain stages are set at low gain, typically between 6 and 
12 dB, to achieve a high small-signal bandwidth. As a consequence, the overall bandwidth can be 
very high. As a result of the high overall gain and high overall bandwidth, the gain bandwidth 
product (GBW) of the cascade architecture can be much higher than that of a typical op amp. This 
very high GBW is essential for accurate operation under small signal conditions and at high 
frequencies.  
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The manufacturer can choose the dynamic range and dynamic performance of each stage to 
achieve a good compromise in overall performance; by using enough stages in the cascade, it is 
possible to build an architecture that achieves a dynamic range greater than 100 dB. The low end 
of this dynamic range is limited by the internally generated noise of the cascade. The cascaded 
amplification of this noise causes that the output stage is already near compression, even if there 
is no input signal applied to the first amplifier stage. The top end is limited due to voltage 
limitations.  
 
A log detector can have a fast response time, but it is not difficult to see that it will have a slower 
response than the diode detector. While the diode detector only consists of one detector diode, the 
log detector described above is built by a cascade of limiting amplifiers. Because the signal has to 
pass through all N limiting amplifiers, the signal will suffer from a delay in each stage. 
 
A successive approximation logarithmic detector is not RMS-responding. As we know from 
Section 1.1 this will mean that the output response of this detector will be waveform dependent.  
The waveform-dependence is a consequence of the internal peak detection mechanism and the 
averaging behaviour of the post-detection low-pass filter, as will be shown in more detail in 
Section 2.1. A different waveform will result in a vertical shift of the log detector’s transfer 
function, which means the shift will not affect the logarithmic slope [26]. In Table 1.2 the output 
shift for several waveforms is represented as relative error in dB compared to the transfer 
function when using a DC input waveform. 
 
 
Table 1.2  The relative horizontal shift in dB of the log detector’s transfer for different signal waveforms 

 
 
 

1.7.4 Conclusion 

In previous sections we have discussed the different detector types. From this discussion became 
clear that each detector type has its advantages and disadvantages. Table 1.3 shows an overview 
of these fundamental differences. 
  

Input 
waveform 

Peak 
or RMS 

Error  
(relative to a DC input) 

Square Wave Either 0.00dB 
Sine Wave Peak -6.02dB 
Sine Wave RMS -3.01dB 

Triangular wave Peak -8.68dB 
Triangular wave RMS -3.91dB 
Gaussian Noise RMS -5.52dB 
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1.8 Applications 

In the introduction it has already been stated that a power detector is used to monitor signals 
inside transceivers. [34] [35] In this section we will explain how detectors are applied to receivers 
and transmitters in more detail and give some other applications where detectors can be used. 

1.8.1 Measuring of the output of a transmitter 

 

 

Figure 1.18 Detector used for the power measurement at the output of a power amplifier 

Figure 1.18 shows a simple power measurement setup to measure the output of a power amplifier. 

This configuration is used to monitor the power that is radiated from a radio antenna. Precise 
output power monitoring is important because the maximum emission of power may not exceed 

 
Fundamental differences between power detector types 
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Table 1.3  Fundamental differences between power detector types [77]



 34

officially prescribed limits, e.g., for the United States, levels specified in FCC (Federal 
Communications Commission) regulations. 

For base stations inside a cellular network, minimizing transmit power is necessary to maintain 
the size of its cell to be precisely set to enhance coverage. This is necessary because otherwise 
interference will occur, which results when the same frequencies are reused in adjacent 
neighboring cells. Limiting the emission power will also ensure that the Power Amplifier (PA) 
will not transmit too much RF power or consumes an excessive amount of current which will 
damage the PA by overheating. Because the RF power detector lowers the uncertainty about the 
actual transmitted power the mechanical structure necessary to sink the heat of the RF power 
amplifier can be reduced. For example, if a 50W (47 dBm) power amplifier inside a base station 
has a transmit power uncertainty of just 1 dB, the amplifier must be dimensioned so that it can 
safely (i.e. without overheat) transmit 63 W (48 dBm) [11]. 
 
The operation of the system can be explained as follows: 
A directional coupler is used to collect a part of the energy from the output line of the PA to the 
detector circuit, while having minimal effect on the original RF signal. The detected power is 
digitized by an analog to digital converter (ADC). Once the power measurement is available as a 
digital level, a decision is made based on the measured output power vs. desired output power. 
 
 
 

 

 

Figure 1.19 Dynamic power control 

An alternative approach is dynamic control of the bias. Figure 1.19 shows a method for 
controlling transmitted power using a feedback control circuit. The power detector is incorporated 
within the control loop to control the output power within specified design limits over a wide 
range of conditions. This control system allows the amplifier to maintain the required bias 
condition for optimized performance, despite changes in voltage, temperature, and other 
environmental parameters. In other words, the feedback control eliminates the transfer function of 
the PA from the overall transfer.  
 
The control loop must be stable under varying environmental conditions. Given the detector is 
part of the control loop, the output power level accuracy depends on the RF detector accuracy and 
stability. This dependency puts accuracy requirements on the RF detector. Because temperature 
plays an important role in introducing unwanted deviation in the output of detectors it’s important 
that it is temperature compensated. Detector gain should also be stable over all operating 
conditions. As a side note, for dynamic control considerations, only a detector with relative small 
dynamic range, like a diode detector, is needed if the purpose is to fix the final output power 
level.  
 
Now, let’s examine how this circuit works: to begin with, the output power of the PA  is detected 
using a directional coupler. The detected signal is measured by the log detector, which generates 
an output signal that is compared to a reference voltage. The difference between this measured 
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Det 

PA 
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value and the reference voltage drives an error integrator. The output signal of the integrator 
drives the gain of the amplifier in front of the PA. The output power of the PA will impose the 
measured output from the log detector equals the reference voltage. The reference voltage can be 
used to set the output power at the required level.  

1.8.2 Measuring of the input of a receiver 

 
 
                                   
 
 
 
 
 
 

Figure 1.20 Power detector used as part of automatic gain control to maintain a constant signal at ADC 

At the receiver side, the strength of input signals appearing at the antenna can vary over a large 
dynamic range [31] [36] [3]. For this reason, receivers must be capable of processing signals of 
varying strength. The variation in signal strength is usually caused by movement of the source 
toward or away from the receiver, or by changes in weather conditions [37].  
When the signal is too large it will overdrive the ADC input or waste valuable dynamic range 
when the input signal is too small. To get the highest possible signal-to-noise ratio (SNR) 
performance of the ADC, it is important to have a constant signal power level using the full 
dynamic range of the ADC [11]. In addition, a constant signal level makes it also more suitable 
for demodulation. [14] [38] 
 
To obtain signal levelling in receivers, power detectors are used as part of automatic gain control 
(AGC) loop. An example of a receiver that uses a AGC loop to obtain a constant signal level is 
shown in Figure 1.20. 
 
Power measurement in receivers is usually referred to as received signal strength indicator 
(RSSI). The RSSI signal typically is used to control the receiver-channel gain with an AGC or 
automatic level control (ALC) circuit to maintain a constant signal level. 
As a side note; a typical receiver AGC requires 80 dB or higher gain control, so an RF detector 
with high dynamic range is needed. 

1.8.3 Power gain calculation 

 
 
 
 
 

Figure 1.21 Power gain calculation circuit 
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Power gain calculation is another possible application for logarithmic power detectors [14]. In 
theory the power gain is calculated by dividing the output power reading by the input power 
reading. Dividing is a difficult math operation to implement in analog circuits. Logarithmic 
power detectors can be used to simplify this implementation. When both output power reading 
and input reading are logarithmic quantities, the power gain of a circuit can be calculated by 
simply subtracting the input from the output reading. An example of such an implementation is 
shown in Figure 1.21 
 
The operation of the system can be explained as follows: One directional coupler is used to 
provide a signal proportional to the RF input signal, FRF, and a second coupler provides a signal 
proportional to the IF output signal, FIF. The outputs of both RF log detectors are subtracted from 
each other. 

1.8.4 Voltage standing-wave ratio measurement 

 
 
 
 
 
 
 
 
 

Figure 1.22 Voltage standing-wave ratio (VSWR) measurement. 

Figure 1.22 shows a simplified configuration of a voltage standing-wave ratio (VSWR) 
measurement. The VSWR is a measure of impedance mismatch in a circuit [39]. For 
transmissions in RF systems it is important to have matched termination. Matched termination is 
achieved by proper characteristic impedance at transmitter and receiver side of a link. However, 
in wireless systems this is difficult to achieve. This is because, the surroundings of an antenna can 
change. This is the case, for example, in a cellular phone, which may or may not be next to a 
person’s head during transmission. The surroundings of an antenna can have significant impact 
on the impedance seen at the antenna input port [40] and it’s  therefore difficult to ensure a 
constant optimum load towards the amplifier output.  A large VSWR can cause many problems in 
RF circuits. For example, when there is no constant optimum load towards the amplifier output, a 
part of the transmitted power will be reflected and bounced back towards the power amplifier. 
This will lead to loss of transmitted power or in worse case the amplifier will be damaged. 
Furthermore, standing waves, which are a result of interaction between transmitted and reflected 
power, can attain unacceptable levels which will damage a transmission line. It is essential to 
protect the power amplifier from such problems.  To detect these problems a Voltage Standing 
Wave Ratio (VSWR) measurement is used. Where VSWR is defined as the ratio of the maximum 
voltage divided by the minimum voltage at a certain point on the transmission line: 
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Where Γ denotes the reflection coefficient. 
 
In other words, the reflection coefficient is the reflected power level divided by the forward 
(transmitted) power level.  
 
The operation of the configuration can be explained as follows: A directional coupler is used to 
separate the forward and reflected power waves on the transmission line between the PA and the 
antenna. One secondary output of the coupler provides a signal proportional to the forward power 
wave; the other secondary output provides a signal proportional to the reflected power wave. The 
outputs of both RF logarithmic detectors are subtracted from each other. As already mentioned 
before, subtracting two logarithmic quantities is equal to dividing.  

1.9 Project definition 

The stability of the transfer of logarithmic power detectors is of critical importance. After a 
thorough investigation of the operation of the successive detection logarithmic amplifier, a new 
method was found that could be used to stabilize the Log transfer of the successive detection 
logarithmic amplifier (and possible other log devices) over important parameters like 
temperature, offset, part-to-part variation and frequency, which would normally alter the transfer. 
The method depends on a novel switching algorithm that is used to do continuous slope, intercept 
and dynamic range correction on the transfer of the successive detection logarithmic amplifier. 
When accurate enough, the method would make calibration of each individual device 
unnecessary. As this method seemed to be promising, we decided to do a feasibility study on this 
new method. For the feasibility of the implementation a step by step analysis has to be provided. 
After verification at system level the method has to be implemented and simulated at circuit level. 
The circuit simulations in the end should give an indication about the accuracy and usefulness of 
the method.  

1.10 Outline 

Chapter 2 
In this chapter the operation of a successive detection logarithmic amplifier is explained, followed 
by a theoretical description of the detector’s operation. Furthermore a theoretical explanation of 
the important logarithmic detector transfer characteristics will be discussed 
 
Chapter 3 
This chapter is dedicated to a new slope and dynamic range fixation method used for the overall 
stabilization of the log transfer. First the operation of a method to fixate the so-called intercept of 
the log transfer is explained. This method  that was invented by National Semiconductor [41] will 
be followed by a step by step explanation of the new slope and dynamic range fixation method. In 
same chapter a new dynamic range extension method will be introduced. 
 
Chapter 4 
Inside this chapter the new transfer stabilization method and dynamic range extension method is 
verified at system level. This verification will include system level simulations to show the 
viability of the proposed methods together with sensitivity calculations for non-idealities at the 
system when the system is implemented on circuit level. With the results of the calculation the 
most sensitive parts of the system will be indicated.  
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Chapter 5 
The gathered knowledge about the sensitivity will be used for the implementation strategy 
discussed in Chapter 5. The content of this chapter will be dedicated to the circuit level 
implementation of the most critical system part, which will include some new topologies, used to 
realize the new transfer fixation method. Each circuit will be discussed in detail. To ease the 
understanding of its operation, some of these circuits will first be introduced by its system level 
implementation. 
 
Chapter 6 
Chapter 6 will discuss the circuit simulation results of the system which was treated in Chapter 5.  
 
Chapter 7 
Last chapter will be dedicated to the conclusions and recommendations about the results of the 
proposed fixation method will be discussed.  
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output voltage  which represents the input envelope value of a particular steady-state AC input 
signal. 
 
Till now we didn’t show how the logarithmic response is developed. To show how the logarithm 
of the input signal’s envelope is constructed, let’s consider what happens if the input signal is 
reduced by 10dB. As shown in Figure 2.1, the unfiltered output of the summer is about 2 Vpeak 
(from 3 stages that are limiting and a fourth that is just about to limit.) If we reduce the input 
signal by a factor of 3.16, one less stage will be limiting. The voltage from this stage will reduce 
the output of the summer to approximately 1.5 V. If we reduce the input signal by a further 10 
dB, the summer’s output will drop to about 1 V. As the output is changing by 0.5 V for each 10 
dB change at the input, we can state that the log detector is having a slope of 50 mV/dB. This 
finally shows the linear-in-dB response of a log detector.  
 
In Section 1.2.3 we already noted the waveform dependence of the intercept of this type of 
detector. This waveform dependency is because of the internal peak voltage detection mechanism 
of the Successive Detection Logarithmic Amplifier and averaging behaviour of the post-detection 
low-pass filter.  

2.2 The Ideal log detector transfer function 

Figure 2.2 shows an idealized response of a logarithmic detector. VIN is the input voltage and VOUT 
is the output voltage. VIN is represented along a logarithmic axis. It is shown that over a range of 
several decades, each ratio increase in VIN causes a unit change of VY in the output VOUT. As can 
be seen the ideal transfer is linear for logarithmic inputs, in which VY is the slope. At the value 
VIN=VX the output passes zero. This value VX is called the intercept voltage. The intercept voltage 
is an important variable, since only by knowing the intercept voltage we can determine the actual 
input level [43]. The logarithmic function is valuable because it uniquely provides an output 
which changes by the same amount over any given ratio of input amplitudes. This makes the 
output easy to interpret. 
 
 

 

 

 

 

 

 

 

Figure 2.2 Idealized response of a logarithmic detector. Adding an offset voltage to the output will lower the 
effective intercept voltage. 

    0    +40 +80 -40 (dB above intercept) 

VOFFSET

VX’    VX
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In the usual case where all the variables are voltages, and regardless of the particular structure, 
the relationship between the variables can be expressed as  
 
 

 log IN
OUT Y

X

V
V V

V

 
  

 
 (2.1) 

 

 
Where VOUT  is the output voltage, VY  is the slope voltage, VIN  is the input voltage and VX  is the 
intercept voltage.  
 
The choice of logarithmic base is arbitrary. A change in base merely results in a change in slope 
voltage VY. When the logarithm is to base ten, that statement translates to ‘for each decade change 
in VIN’, so in that particular case VY has the meaning of ‘volts per decade’. 
 
From Equation (2.1), we can see that all log detectors implicitly require two references, in this 
example, VX and VY, to determine the scaling of the circuit. The absolute accuracy of a log 
detector cannot be any better than the accuracy of these two scaling references. A well-designed 
log detector has at least one high-accuracy DC reference source, from which both VY and VX are 
ultimately derived. 
 
We have to note that Equation (2.1) is mathematically incomplete in representing the behaviour 
of a successive detection logarithmic amplifier. However, the basic principles are unaffected, and 
this can be safely used as the starting point in the analyses of log detector scaling.  
 
As can be seen, the idealized log detector function described by Equation (2.1) differs from that 
of a linear amplifier. When we calculating the gain by taking the derivative of equation (2.1) for 

the case where the logarithmic base is   
 
 

 OUT Y

IN IN

V V

V V




  (2.2) 

 
 
As shown the gain δVOUT/δVIN of the log detector is a very strong function of the instantaneous 
value of VIN. The incremental gain is inversely proportional to the instantaneous value of the input 
voltage. This remains true for any logarithmic base, which is chosen as 10 for all decibel related 
purposes. [44] 
 
The highly nonlinear conversion of a log detector has some consequences which may be 
unexpected if the log transformation is not kept clearly in mind. While an attenuator inserted in 
front of a linear amplifier would change the ‘slope’ at the input, it would not affect the slope of 
the output of a log detector. Similarly, an offset voltage at the output of a linear amplifier has no 
relevance to the amplitude of an AC signal, while an offset added to the output of a log detector 
alters the apparent magnitude of its input 
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Example [44]: The red solid line in Figure 2.2 shows that the effect of adding an offset voltage, 
VOFFSET, to the output is to lower the effective intercept voltage, VX. Exactly the same change at 
the output can be achieved by raising the gain (or signal level) ahead of the log detector by the 
factor, VOFFSET/VY. For example, if VY is 500 mV per decade (25 mV/dB), an offset of 150 mV 
added to the output appears to lower the intercept by two-tenths of a decade, or 6 dB. Adding an 
offset to the output is thus indistinguishable from applying an input level that is 6 dB higher.  

2.3 Piecewise Linear Approximation of the LOG-function 

The principle of successive approximation logarithmic detectors is to approximate a logarithmic 
transfer by a piece-wise linear function. To develop the theory, we first will consider a scheme 
slightly different from that employed in a typical successive approximation log detector, but 
simpler to explain and mathematically more straightforward to analyse. This approach is based on 
a nonlinear amplifier unit, called an A/1 cell [31]. Due to the design difficulties of A/1 cell, 
designers use a different type of amplifier stage, called A/0 gain stages. In a later section we will 
focus on the architecture of the detector built from A/0 stages. 

2.3.1 Implementation with A/1 gain-cells 

 
 
 

 
 
 
 
 
 

 

Figure 2.3 (a) The symbol of the A/1 cell and (b) the transfer function of a A/1 cell. 

The transfer characteristic of an A/1 cell is shown in Figure 2.3(b). As shown by this figure the 
local small signal gain δy/δx of an A/1 cell is A, and is maintained for all inputs up to the knee 
voltage EK. Above EK the incremental gain of an A/1 cell drops to unity. Actually the function of 
the A/1 cell is symmetrical: the same drop in gain occurs for instantaneous values of VIN less than 
–EK. So, the large signal gain has a value of A for inputs in the range −EK  ≤ x ≤ +EK, but falls 
asymptotically toward unity for very large inputs.  
 
 

 (1 ) ky x A E     for Kx E   (2.3a) 

 y Ax         for xK KE E    (2.3b) 

 ( 1) ky x A E    for Kx E  (2.3c) 
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Figure 2.4 An n-cell cascade built with A/1 cells 

Now we start to analyse the overall nonlinear behaviour of an n-stage cascade built with A/1 
cells, as is shown in Figure 2.4. When the signal travels through the cascade it will be amplified 
by A each time it passes a non-saturated gain cell. From this knowledge, it’s not difficult to see 
that from all gain stages in the cascade, the n-th gain stage will experience the highest input value 
and will be the first that saturates. For a very low input signal at the cascade none of the n gain 
cells will saturate. In this situation all cells delivering a gain of A, resulting in an overall gain of 
An, which leads to an output voltage of VOUT = An VIN.  
 
At a certain value of VIN, the input to the n-th stage, Xn−1, is exactly equal to its knee voltage EK. 

Using Equation (2.3b) the output voltage can be calculated to be VOUT = AEK. 
Because there are n−1 non-saturated cells with gain of A in front of n-th cell, the input voltage for 
which the n-th cell starts to saturate can be calculated as follows 
 

 
1

K
IN n

E
V

A   (2.4) 

 
As the gain of the n-th cell drops to unity for signals higher than its knee voltage a transition of 
the overall gain from An to An-1 will occur. Another transition in the overall gain will be reached 
as the input is increased further to a signal level for which input to the (n-1)-th stage exceeds its 
knee voltage, that is, when VIN= EK/An-2. More theoretically speaking we can say that the k-stage 
is the stage that starts to saturate when the input of this stage, Xk-1, reaches the value EK. Because 
there are k−1 stages of gain A in front of the k-th stage, the input value for which the k-stage 
saturates is, 
 

  
1k

K
IN k

E
V

A      (2.5) 

 
As the output of each stage is connected to the input of a proceeding stage we can calculate the 
overall transfer function of the complete system by substituting the transfer functions of the 
individual gain stages. Noting that we have a total of n stages, in which k stages are non-saturated 
and n-k stages that are saturated, 
 

 ( )( 1) ( )( 1)
k k

k
OUT k K IN KV x n k A E A V n k A E          (2.6) 

 
Combining Equation (2.6) and (2.5) simplifies (2.6) to 
 

  ( 1) ( )
kOUT KV n k A k n E      (2.7) 

 
Equation (2.5) and (2.7) can be used to calculate the input and output value of the transition point 
when the k-th stage starts to saturate.  

x2A/1
x1 xk-1 xn-1 yn=VOUT A/1 A/1 A/1 A/1

Stage 1 Stage 2 Stage k Stage n-1 Stage n

xk xn-2VIN=x0 
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If we take a cascade of 4 gain stages (n=4) it’s not difficult to see that the transfer will be 
characterized by a total of 4 transitions. As already stated the last stage, in this case the 4th stage, 
is the first that reaches its EK saturation level. Substitution of 4k n   into Equation (2.5) and 
(2.7), leads to 
 

 
1 1 3

K K
IN n

E E
V

A A   
1OUT KV AE  (2.8) 

 
When we further increase the input value a level will be reached for which the (n-1)-th stage 
starts to saturate.  
 
Substitution of 1k n   into Equation (2.5) and (2.7) leads to 
 

 
2 2 2

K K
IN n

E E
V

A A    
2

2 1OUT KV A E   (2.9) 

 
Continuing this line of reasoning, the next input and output of the transitions will be 
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(3 2)OUT KV A E   (2.10) 

 
and, 
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K
IN Kn

E
V E
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4

(4 3)OUT KV A E   (2.11) 

 
If we take these input values with corresponding output value of the transition points and 
interpolate linearly in between these points an piece-wise linear curve can be constructed as 
depicted in Figure 2.5 (blue line). From this figure it becomes clear that the piece-wise linear 
curve is an approximation of a logarithmic transfer where the transition points match the ideal  
log transfer (black curve). 
  
 
 
 
 
 
 
 
 
 

Figure 2.5 Piece-wise linear approximation of a logarithmic transfer 

As shown in Figure 2.5 the gain of the logarithmic detector equals the slope of the various 
segments in the piece-wise linear curve. From Figure 2.5 and the previous analysis, it becomes 
clear that VOUT changes by an amount (A−1)EK for each ratio change of A in VIN.  
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If we now represent VIN along a logarithmic axis, the transitions occur at equal linear increments 
on that axis as shown in Figure 2.6. Represented along a logarithmic axis, the deviation of the 
device's piece-wise transfer function to the ideal log function becomes clearer. In later sections 
we will discuss this deviation, the so called conformance error, in more detail.  

Figure 2.6 Piece-wise linear approximation for logarithmic representation of VIN 

When we discussed the ideal log detector transfer in Section 2.2 we already mentioned the 
importance of the intercept voltage VX and slope voltage VY.  
To calculate the intercept voltage VX and slope voltage VY of the piece-wise linear curve, we can 
simply use the values of the transition points, that are known to be matching the ideal log transfer. 
 
If we use base 10 logarithms for the logarithmic axis, the ‘ratio change of A’ can now be read as a 
‘decade change’. We can therefore state that for a decade change of log10(A) in VIN, the output 
voltage VOUT will change with an amount of  (A−1)EK .  
 
From this knowledge we can develop the slope function of the output, which is 
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
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This shows that the slope voltage VY, which now can be read as ‘volt per decade’, depends only 
on the cell gain A and the knee voltage, EK, while n, the number of stages, is unimportant.  
 
To develop an equation for the intercept, we first need to substitute Equation (2.12) into Equation 
(2.1), which leads to 
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As the output voltage VOUT for corresponding VIN is known at the transition points, we can take 
the VIN and VOUT at one of these n transition points to complete Equation (2.13) 
Using the first transition point corresponding to VIN=EK/An-1 and VOUT=AEK, results in 
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Solving for intercept voltage VX leads to 
 

 
1

1

K
X

n
A

E
V

A
   

  (2.15) 

 
We have to be careful about the interpretation of this intercept voltage. In section 2.2 it was 
defined as the input voltage at which the output passes through zero (see Figure 2.2). Closer 
analysis, in Section 2.4.1, will show that the voltage given by Equation (2.15) actually represents 
the extrapolated, rather than actual, intercept.  

2.3.2 Implementation with A/0 gain-cells 

As noted earlier a typical successive approximation log detector is not constructed out of A/1 gain 
stages. Due to the design difficulties of these gain stages, designers use a different type of 
amplifier stage, called A/0 gain stages. Before we discuss the design difficulties, we will first 
focus on the architecture of the detector built out of A/0 stages.  
 
The transfer function of the A/0 cell differs from that of an A/1 cell. Instead of falling to a gain of 
1 above the knee voltage EK, the gain of an A/0 cell falls to zero, as shown by the black solid line 
in Figure 2.7(b).  
 
 
 
 
 
 
 

 

Figure 2.7 (a) The symbol of the A/0 cell and (b) the transfer function of a A/0 cell. 

When we replace the A/1 gain stages of the previous discussed log detector by A/0 gain stages, 
the output of the last stage can no longer provide the logarithmic output, as the output will be 
insensitive for all inputs at the cascade for which the input of the last stage is above its knee 
voltage. The logarithmic approximation is now developed by summing the outputs of all of the 
stages, as shown in Figure 2.8 
 

 
 
 
 
 
 
 

Figure 2.8 Logarithmic approximation by summing the outputs of all of the stages 
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As the input signal of each A/0 cell is added to its output signal a linear path with unity gain is 
created around the cell. As a result the transfer after each summation point becomes similar to the 
transfer of the A/1 gain stage. This results in a transfer that has a gain (A+1) below the knee-
voltage, EK, and unity gain above.  
 
With the same procedure as for the A/1 log-detector, the slope voltage, VY, and intercept voltage, 
VX, of this circuit can be found. Analogous to the A/1-based amplifier, the k-th gain stage in the 
chain saturates at an input signal level 

 
1k

K
IN k

E
V

A   (2.16) 

 
Noting that we have a total of n stages, in which ‘k’ stages are non-saturated and n-k stages are 
saturated, the log detector output signal at this level equals: 
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Combining Equation (2.16) and (2.17) simplifies this equation to 
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The slope and intercept are then found to be: 
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This implementation has one problem. When we look at Equation (2.19), we can see that the 
slope is dependent on the index ‘k’. As a consequence the slope voltage VY slightly reduces at the 
top-end of the range.  
 
This problem can be solved by modification of the weighing coefficient of the signal bypass 
around the first A/0 gain stage, as depicted in Figure 2.9. 
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Figure 2.9 Weighing coefficient of the signal bypass around first A/0 stage for top-end correction of the dynamic 
range 

With this modification, the log-slope and intercept can now be found to equal exactly: 
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Equation (2.21) and (2.22) show that for a logarithmic amplifier based on A/0 cells, both the 
slope voltage and the intercept voltage depend on the voltage EK. As a consequence we cannot set 
the slope and intercept voltage separately by simply adjusting the voltage EK. Furthermore the 
voltage EK will be temperature dependent, as will be shown in next Subsection. To achieve the 
separation of the basic references used to determine VY and VX the so-called G/0 cells can be used. 
Before we will discuss the G/0 cell we first will look at the circuit implementation of an A/0 cell. 

2.3.3 Circuit implementation of an A/0 cell 

At the beginning of Subsection 2.3.2 we noted the preference for the A/0 style of log detector 
over one using A/1 cells. One of the considerations to choose for the A/0 cell style is because the 
circuit of an A/0 cell can be very simple. In its simplest form it can be constructed by a (bipolar 
transistor) differential pair, having resistive loads, RC, and a tail current source, It, as shown in 
Figure 2.10 
 

 

Figure 2.10 Differential amplifier is used as A/0 cell 
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For ideal transistors, the small-signal gain of this differential amplifier is 
 

 2C t TA R I V  (2.23)     

And the peak differential output is 
 

 OUT_max C tV R I    (2.24)     

 
Substituting Equation (2.23) into Equation (2.24) results in 
 

 2OUT_max TV V A    (2.25)     

 
An amplifier with a gain of A, which limits at an output of 2VTA, leads to a knee voltage 
 

 2 2K T

kT
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q
   (2.26)     

 
It is well-known that the full form of the transfer function is 
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This shows that the large signal transfer function is the hyperbolic tangent. As a consequence 
there will be a deviation from the ideal A/0 cell ( see red dashed line in Figure 2.7(b) ). This 
deviation is not detrimental for the operation of the log detector. In fact, the tanh function is 
highly desirable as it results in a lower ripple in the logarithmic transfer than that obtained using 
an ideal A/0 function, as will be shown in Section 2.4.2 of this report. A less desirable property is 
that the transfer function is temperature dependent. 
 
A valuable property of the differential structure is that these cells can be directly connected to one 
another without using coupling capacitors between the stages. Coupling capacitors, which 
typically have a chip area equal to that of a basic gain cell, can considerably increase die size and 
lower the bandwidth of the system. Because a successive approximation log detector composed of 
these cells is fully differential in structure it can be rendered very insensitive to disturbances on 
the supply lines and, with careful design, to temperature variations.  

2.3.4 G/0 stages to decouple the slope calibration 

From Equation (2.26) it is shown that the knee voltage EK of A/0 stages, constructed with the 
transistor differential pair, is proportional to the absolute temperature. As in all the structures 
considered so far the knee voltage EK is part of the slope equation, the slope will be sensitive to 
variation in temperature. This highly undesirable property can be solved with a simple 
modification. By adding a transconductance (G/0) stage at each node along the chain, as shown in 
Figure 2.11, complete control over the magnitude and temperature behaviour of the logarithmic 
slope becomes possible. This will become clear from the following analysis. 
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Figure 2.11 A/0 successive approximation log detector structure using G/0 stages for summation 

The transfer function of the G/0 stages is similar to that of the A/0 gain stages. For a G/0 stage the 
parameter corresponding to the gain A is now the transconductance G. A voltage input Vj at the 
input of a G/0 stage generates a current output, GVj at its output. Furthermore, the maximum 
output current of a G/0 stage is GEK, which is fully analogous to the maximum output voltage 
AEK of the A/0 stage. 
 
An advantage of the current mode output of the G/0 stages is that they can be summed by simply 
connecting the output of all stages together. The total current is converted back to a voltage by a 
transresistance stage or a simple load resistor to generate the logarithmic output, as shown in 
Figure 2.11. 
 
The knee voltage, EK, at which this G/0 abruptly drops to zero might differ from the 
corresponding voltage for the A/0 amplifier stage, but for the clarity of the mathematics the G/0 
stages in this example have exactly the same knee voltage as the A/0 stages. 
 
The analysis is very similar to that previously presented. The input to the last G/0 cell stage is the 
output from the n-th A/0 stage. Since this G/0 stage also has a knee at EK, the first transition 
occurs at a system input VIN which now is A times lower than in either of the two earlier log 
detector structures. The next transition occurs when the input to the n-th A/0 stage reaches its 
knee voltage, which is also the voltage at which the n-th G/0 stage reaches its knee voltage. 
 
The system input for which the k-th stage reaches its knee voltage is: 
 

 
k

K
IN k

E
V

A
  (2.28)     

 
We have a total of n G/0 stages, in which ‘k’ stages are non-saturated and n-k stages are saturated. 
As the currents of these stages are summed and converted back to a voltage by a load resistor RS , 
the output voltage at a saturation level can be calculated by: 
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Substituting Equation (2.28) into Equation (2.29) leads to 
 

 
1 1

( )
1k

k
K

OUT S Kk

GEA
V R n k GE

A A

 
    

 (2.30)     

 
This can be simplified to 
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1 1
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1k

k

OUT S K k

A
V R GE n k

A A

 
     

 (2.31)     

 
Equation (2.31) shows that the slope would have the same dependency on the index ‘k’ as was 
discussed earlier. A small adjustment to the transconductance of the first G/0 cell can be used to 
improve the linearity of the log transfer at the top-end of the range. With this modification, the 
slope voltage and intercept voltage can now be found to be equal exactly: 
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  (2.32)     
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 (2.33)     

 
This shows that the intercept VX remains traceable to the knee voltage of the A/0 and G/0 stages; 
while the slope voltage VY now depends on a decoupled peak current GEK of the G/0 stages. 
Because the peak current GEK can be controlled by the bias current of the G/0 cells, the slope 
voltage can be controlled through a proper choice of the bias current.  
 
Instead of only performing summation, the G/0 stages can also be altered to implement the 
rectification function of the detectors as was discussed in Section 2.1. This will produce an output 
current independent of the sign of the voltage applied to the input of each stage, implementing the 
absolute value function. An example of an detector cell implementation of the G/0 cell and its 
operation can be found in Appendix B of this thesis report. 
 

2.4 Important transfer function characteristics 

2.4.1 Slope and Intercept 

From previous sections we know that the log slope is the change in the output voltage per change 
in the input power. Figure 2.12 shows an example of a real log detector transfer. Over the linear 
operating range of this transfer, which is from about -65 dBm to about 0 dBm in this case, the 
output voltage changes by about 180 mV for a 10dB change at the input. Therefore we can state 
that the slope of this transfer function is 18mV/dB. 
  



 53

 
 

 

 

 

 
 

 

Figure 2.12 Example of a practical log detector transfer [34] [42] [45] 

At the end of subsection 2.3.1 we developed the equation to calculated  the intercept voltage VX. 
The intercept of an ideal log transfer, discussed in Section 2.2, was defined as the input for which 
the output is zero, knowing the ideal response is a straight line over infinite input range. This 
interpretation is not valid for non-ideal transfers, as is the case for a real life log detector.  If we 
look at the non-ideal transfer in Figure 2.12, we can see that for input signals below about -65 
dBm, the transfer begins to deviate from the straight line response. Therefore the early definition 
of the intercept cannot be used anymore. In our example, the intercept is the extrapolated point at 
which the transfer function would intersect the horizontal axis, if it were capable of doing so. 
With this knowledge, the intercept of the transfer shown in Figure 2.12, depicted by Pintercept, is 
about -94 dBm. 
 
The curved response of the transfer at small signals is caused because of the following reasons. 
At the end of Section 2.2 we noted that the incremental gain was inversely proportional to the 
instantaneous value of the input voltage. For an ideal transfer this would mean that for an 
infinitely small input signal the gain of the log detector should be infinite. As infinite gain is not 
practically feasible this already shows why a deviation from the ideal transfer will happen. In 
practice the output of a log detector will never reach zero. Because of the very high gain, even 
with no input signal, a very small amount of thermal noise at the input of a log amp causes a 
finite output [46]. 
 
The slope of a log detector is determined by doing a simple two-point calibration [42]. For the 
two-point calibration the output voltage is measured for two known input levels that are within 
the linear operating range. The slope is simply,  
 

 2 1

2 1
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V V
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P P





 (2.34)     

 
The intercept is given by the equation, 
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   (2.35)     
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Once we know the slope and intercept of a particular device we can calculate the ideal output 
voltage of the log detector for any input level within the linear range using the simple equation, 
 

  _OUT ideal IN interceptV slope P P   (2.36)     

 
If we take for example an input signal of -30dBm the ideal output voltage of the log detector will 
be equal to, 
 

   VdBmdBmdBmVV idealOUT 15.19430/18_   

 
In a practical system we will be using the log detector to estimate an (unknown) input signal 
based upon the measured output voltage.  
 
With the knowledge of Equation (2.36) we can develop the following equation to estimate the 
input signal power from the measured output voltage, 
 

 _OUT measured
est intercept

V
P P

slope

 
  
 

 (2.37)     

2.4.2 Log-conformance error 

The measuring quality of a logarithmic detector is referred to as the log linearity. It seems to be 
somewhat confusing to talk about linearity of a log, knowing it is actually a highly non-linear 
function. However, if we again represent the logarithmic input function along a logarithmic axis it 
immediately becomes clear where the name log linearity is coming from. When we talk about the 
log linearity of a log detector, we actually say that we are interested in the conformance of its 
transfer function to the ideal log(x) mathematical function. More specifically, the Log 
Conformance error is a measure of how much the amplitude, in decibels, of the actual response of 
the log detector deviates from the ideal straight line response.  
 
An example of a Log Conformance error measurement result is also shown in Figure 2.12. In this 
figure the Log Conformance at 3 different temperatures of the actual log detector over the full 
dynamic range are shown. From this figure it becomes clear that the actual response of the device 
under test shows some deviation from the ideal response and changes over temperature. 
 
When Pest denotes the actual response and PIN denotes the ideal straight response, the log 
conformance error can be calculated as follows: 
 

 LCE est INE P P   (2.38)     

 
Substituting Equation (2.37) into Equation (2.38) we obtain 
 

  _
int

OUT measured
LCE IN ercept

V
E P P

slope
    (2.39)     
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Substituting Equation (2.36) into Equation (2.39) yields 
 

 
_ _OUT measured OUT ideal

LCE

V V
E

slope


  (2.40)     

 
The conformance error curve serves to more closely examine the logarithmic detector’s 
performance. It shows the range over which the device maintains its constant slope and also 
shows the ripple or any non-linearity over the input range. This range is called the dynamic range 
of the log detector. As the output of the log detector always exhibits some ripple over the range, 
the dynamic range is usually defined as the power range for which the log-conformance error is 
smaller than a specified error band for which the deviation from the log(x) function is still 
acceptable. For the industry, a log linearity of +/- 1.0 dB is commonly used. In Figure 2.13 for 
example, the 1 dB dynamic range is approximately 95 dB.  
 

 

Figure 2.13 Log Conformance example shows a dynamic range of approximately 95 dB for a log linearity of +/- 
1dB [4] [42] 

In Section 2.3.1 we already talked about the deviation of the piece wise linear curve from the 
straight line of the ideal log curve, as was shown in Figure 2.5. The Log Conformance of a piece-
wise linear curve for which the gain A of the A/0 cells is set to 4 is shown (red line) in Figure 
2.14.  
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Figure 2.15 Response of a logarithmic detector at a temperature of -40°C, 25°C and +85°C [48] 

Figure 2.15 shows the transfer function of a logarithmic detector at a temperature of -40°C, 25°C   
and +85°C. Inside the same figure the logarithmic conformance error curves of each transfer is 
plotted.  
 
As the linear equation was calculated from the transfer at 25°C, it speaks for itself that the 
conformance curve at 25°C shows the smallest deviation from the 0 dB error line. At the other 
temperature conditions the log conformance show some minor slope and intercept shifts. The 
figure shows that over temperature the log conformance error of this single device stays within 
±0.5 dB across the detection range of 0dBm till -40dBm. At a temperature of +85°C, the transfer 
function will fall out of the detection range.  
 
As was stated at the end of Section 1.2.3, the logarithmic slope is in principle, independent of the 
waveform. In practice, we have to note it usually falls off somewhat at higher frequencies as is 
shown in Figure 2.16. The cause of this effect can be found in the declining gain of the amplifier 
stages and some other effects in the detector cells at higher frequencies. 
 

 

Figure 2.16 Response of the logarithmic detector at a temperature of -40°C, 25°C and +85°C at higher frequency 
input signal [48] 
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Because of temperature compensation techniques used in log detectors individual devices may 
have high accuracy over temperature; however, minor part-to-part variations inherent in 
semiconductor processing can be an obstacle to precise RF power management. 
 
The log conformance error caused by part-to-part variations can be greatly reduced by means of 
calibration of each device, i.e. if the slope and intercept are determined for each individual 
detector device (at room temperature). Figure 2.17 shows the distribution of logarithmic 
conformance error curves of 80 individually calibrated log detectors. The sampling of log 
detectors spans various lots to demonstrate process variations. Although there is a clear variation 
from part to part, the distribution is very tight.  
 

 

Figure 2.17 Distribution of logarithmic conformance error curves of 80 individually calibrated log detectors. [48] 

  



 59

  



 60

3 Stabilizing the Log Detector Transfer 

In Section 2.2 we noted that the accuracy of a logarithmic amplifier transfer relies on the 
accuracy of the parameters VX (intercept voltage) and VY (slope voltage). As shown in Section 
2.3.3, the derived equations for VX and VY are both depending on knee voltage EK. When we 
consider A/0 stages implemented by a differential pair Equation (2.26) showed us that EK is 
temperature dependent. As a result VX and VY will be PTAT (Proportional to Absolute 
Temperature). For accurate operation of the log detector it is important to stabilize this 
temperature dependency. Different approaches for stabilizing the intercept voltage and the slope 
of the transfer over temperature have been proposed in the past [49] [50]. 
 
In Section 2.3.3 it was shown that by the addition of the G/0 cells at the output of each A/0 cell 
(shown in Figure 2.11) we created a possibility to control the slope voltage VY through the choice 
of an appropriate bias current for those G/0 cells. Because the bias current sets the peak current 
GEK of the G/0 stages, the PTAT dependency of the peak current GEK can be corrected by 
controlling the transconductance G with a PTAT bias current. So the addition of G/0 cells not 
only opened the possibility to set the transfer’s slope at the wanted position but also makes it 
possible to correct for temperature. 
 
The intercept voltage VX is more difficult to stabilize over temperature. Different attempts have 
been made to stabilize VX. One attempt was done by making VIN PTAT [49]. VIN can be made to 
be PTAT by using a resistive divider with a PTAT transfer or an amplifier with a PTAT transfer. 
This method is capable of making the log conformance temperature independent, but the circuits 
used for this method also needed to cope with the full bandwidth of the circuit. Another method 
uses output compensation [51] [49], which relies on adding an offset voltage with the required 
temperature behaviour.   
 
To observe that this is possible, consider that VX can be expressed as 
 

 X XR
R

T
V V

T

 
  
 

  (3.1) 

 
Where T is the actual temperature, TR is the reference temperature at which VX is specified and 
VXR is the desired fixed intercept. Substituting (3.1) into (2.1) will give us 
 

 log logIN
OUT Y Y

XR R

V T
V V V

V T

   
    

   
 (3.2) 

 
This shows that compensation can be achieved by adding at the output a voltage equal to the 
second term. This immediately shows the difficulty of this method, as it requires that the 
temperature behaviour of the correction voltage is dependent on log(T/TR), and for accurate 
compensation the log-slope VY has to be accurately known. In practice, the log-slope is also 
subject to small part-to-part variations (and variations over other operating conditions such as 
temperature, frequency, etc.)  
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During State 1 the output of logarithmic device can be expressed as: 
 

 
 








 


X

IN
YOUT V

V
VV

1
log1  (3.4) 

 
And during State 2 the output can be expressed as 
 

 
 _

2

1
log REF I

OUT Y
X

V
V V

V

 
  

 
  (3.5) 

 
The signal after the switching operation is shown in Figure 3.2 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Signal Vc seen at output of logarithmic device 

Using the logarithmic identity logb(AC)=logb(A)+logb(C) the gain error at both states can be 

written as a separate component VYlog(1+) as is shown in Figure 3.2. As the input signals, VIN 
and VREF_I, experience the same gain error at the input of the logarithmic device, both will have 

equal addition of VYlog(1+)  at the output. From this figure it can be seen that the gain error at 

the input translates to an output offset equal to VYlog(1+). Although the gain error  in the 
picture is visualized as a positive quantity it could also be negative. 
 
The next operation of the method is to switch the polarity of the output signal of logarithmic 
device at the moment that the logarithmic device is receiving VREF_I at its input. This results in a 
signal which is graphically represented by Figure 3.3. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 Signal Vd seen at output of the inverting switch 
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Finally the last operation of the method is to produce the DC equivalent of this alternating signal. 
To produce the DC equivalent of the signal, the high-frequency components of the signal are 
removed by a low pass filter. The low-pass filter approximately averages the signal over each 
period, which can be simplified to the average of state 1 and state 2 of the signal. 
 
To find the average, first state 1 and state 2 signals are summed: 
 

    _log log 1 log log 1REF IIN
OUT Y Y Y Y

X X

VV
V V V V V

V V
 

   
        

   
 (3.6) 

 

Because the VYlog(1+) components are opposite in sign, Equation (3.6) can be simplified to 
 

 _

_

log log logREF IIN IN
OUT Y Y Y

X X REF I

VV V
V V V V

V V V

    
              

 (3.7) 

 
Because the output signal at each state is available for only 50% of period time (with 50% duty 
cycle) the signal is divided in half as a result of the averaging process, leaving the output of low-
pass filter to be: 
 

 
_

1
log

2
IN
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V
V V

V

 
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 
 (3.8) 

 
Equation (3.8) shows that the resulting output is completely independent of any input gain error 

() or output offset. Furthermore, the device parameter dependent intercept voltage (VX) is 
eliminated from the transfer and replaced by the accurately known reference voltage VREF_I 
 
This method enables the correction of errors in logarithmic devices without the need to accurately 
reproduce and/or compensate individual error effects and requires no knowledge of the precise 
temperature and device dependence of the errors 

3.2 Slope fixation 

In this section we will introduce a new method that can be used to fixate the slope and intercept 
of a logarithmic device. The method is used to fixate the slope and intercept at an accurate and 
known value, without the need for manual calibration. This method would make it possible to 
have an identical transfer for each individual logarithmic device. The method relies on a 
continuous automatic calibration algorithm which makes the transfer insensitive to mismatches, 
temperature- and process variations. The method allows compensating for the frequency 
dependency of the input signal that it processes. 
 
To explain the method we first have to look at Equation (2.34). This equation showes how to 
determine the slope of the transfer of a logarithmic device. For two known input values the 
corresponding output levels are measured. With the input en output values known the slope can 
be derived. The method to be described is related to this procedure. The basic principle of the 
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The output change, VOUT, in response to the input change VIN1A-VIN1, is the difference between 
Equation (3.11) and Equation (3.10) 
 

 1 1log log
log( )

S K IN IN
OUT S K

X X

R GE V A V
V R GE

A V V

    
            

 (3.12) 

 
The reason to choose for a factor equal to the small signal gain A is because it makes the method 
insensitive to the ripples in between the transition points of the transfer function. To see this, 
consider that we have VIN2, shown in Figure 3.4, as our input signal. When we multiply VIN2 with 

a factor A, it happens to be that VOUT is exactly same as it was for VIN1, even when the real 
transfer (red solid line) at VIN2 deviates from the ideal transfer (black solid line). This shows that 

VOUT is insensitive to the ripples of the real transfer. 
 
From Equation (2.32) it is shown that the slope of the transfer was sensitive to the parameters RS, 
G and EK. As we don't know the exact value of RS, G, and EK, because of deviations caused by 
non-idealities, like process and/or temperature variations etc. deviations in RS, G and EK cause the 
slope of the transfer to deviate from the expected slope.  
 
The red dotted line in Figure 3.4 represents one example of a transfer that deviates from the 
expected transfer (red solid line). Now, if we use the same multiplication factor A for this 

deviated transfer, VOUT will be bigger, as indicated by VOUT’ in Figure 3.4. Using Equation 
(3.12) and representing the deviated values of RS, G and EK by respectively RS’, G’ and EK’, 

VOUT becomes equal to RS’G’EK’. In other words, VOUT provides some useful information on 
the present slope of the transfer. 
 
To show how the method uses this information to correct the slope, we first have to define a 
wanted slope and the gain of the individual A/0 stages of the logarithmic device. 
Let’s assume we want to have a slope with a sensitivity of 40mV/dBm. As the gain of the A/0 
stages is limited by the needed bandwidth of the log device we for example have to use gain 
stages with a maximum gain of 3.16x or 10dB. As explained before, the method uses this gain 
also as its multiplication factor at the input. So, with a multiplication factor of 10dB, the expected 

output change, VOUT, for a transfer with a 40mV/dB slope will be exactly 400 mV.  
 
The idea of the correction method is to represent this expected output change by an accurate 

400mV voltage reference and use it to compare it with the actual VOUT measured at the output of 
the non-ideal log device. Any deviation from the 400mV voltage reference means a deviation 
from the required 40mV/dB slope. 
 
At the beginning of Chapter 3 we showed the possibility to correct the slope over temperature by 
controlling the transconductance G of the G/0 cells by PTAT current sources. The method 
proposed in this paragraph also corrects the slope by controlling the transconductance G, but now 

by means of a control loop which acts upon the deviation from the expected VOUT. This results in 
a system which continually nullifies the overall error caused by deviation in RS, G and the 
temperature dependent parameter EK. 
 



 

The 

we 
subj
the m
 

A pr
foun
that 
 
 

 

 

 

 

 

 

Figu

In S
loga
VREF

Taki
inter
tran
 

explanation 

have not ye
ected to a m
multiplicatio

rocedure to 
nd by combin
was explain

ure 3.5 System 

Section 3.1 w
arithmic devi

F_I. This led 
ing this figu
rcept fixatio
sfer’s interce

 so far is a si

et explained 
multiplication
on. 

measure V
ning the slop

ned in Section

including inte

we showed th
ice between 
to the outpu

ure in mind, 
n method in
ept, slope an

implified ver

how to me
n of A the no

VOUT at the ou
pe fixation m
n 3.1. The pr

rcept and slope

hat the interc
the actual in

ut signal at th
we now sta

nto an overa
d dynamic ra

 

66

rsion of the f

easure VOU

ormal output 

utput and at 
method explai
rocedure is v

e fixation meth

cept fixation
nput signal a
he output of

art to explain
all method, w
ange.  

final operatio

UT. Furthermo
readout of th

the same tim
ined so far w

visualized in 

hod 

n method reli
and an accur
f the log dev
n how to com
which is cap

on of the met

ore, because
he log devic

me restore th
with the inter
Figure 3.5.  

ies on switch
ate and know

vice as was s
mbine the sl

pable to cont

thod. At this 

e the input 
ce will chang

he normal re
rcept fixation

hing the inp
wn reference
shown in Fig
lope fixation
tinually calib

moment 

signal is 
ge during 

eadout is 
n method 

ut of the 
e voltage 
gure 3.2. 

n and the 
brate the 



 67

 
 
 
 
 
  
 
 

 

Figure 3.6 Signal Vc seen at the output of the logarithmic device 

As discussed in this section and shown by Equation (3.12) the slope fixation method relies on the 
multiplication of the actual input signal of the log device by a factor A and compare the output 
with the situation without the input multiplication. The same procedure can be integrated into the 
intercept fixation method by subsequently multiplying input signals VIN and VREF_I by a factor A, 
as shown in Figure 3.5. With the knowledge gained from Section 3.1 it can be shown that this 
will result in a signal at the output of the log device which has an additional component VYLog(A) 
at State 1 and State 2 as graphical represented by the red blocks in Figure 3.6. As shown in this 
figure, the output will experience 4 states at different time periods. From this figure we can 
immediately see that the difference between State 1 and State 3 is equal to VYLog(A). The same 
story holds for the difference between State 2 and State 4. As indicated by Figure 3.6 and shown 
by Equation (2.32) and Equation (3.12) the additional components VYLog(A) in the signal 

represents the VOUT in which we are interested.  
 

Before we will explain how VOUT can be measured, we first show how the intercept method 
actually safeguard the multiplication factor modulation from the log readout, VOUT¯¯¯¯ . As we know 
from the intercept fixation method, a switching device followed by a low-pass filter, is positioned 
at the output of the logarithmic device. Furthermore we know that the switching device is used to 
switch the polarity at the moment that the logarithmic device receives VREF_I at its input. If this 
same procedure is applied to the signal shown in Figure 3.6 the resulting signal will be as shown 
in Figure 3.7. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 Signal Vd seen at the output of the inverting switch 
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Looking at this figure, we can see that the two components VYLog(A) now have opposite sign. 
Here the beneficial property is becoming clear. When this signal passes through the low pass 
filter, the resulting output signal happens to be equal to the output as it was for the intercept 
fixation method. This shows that the readout becomes insensitive to the multiplication routine at 
the input. Furthermore the intercept fixated method is still working. 
 

So, now we have an output which can be used for normal readout. But, what about VOUT, in 

which we are also interested? To measure VOUT we have to add an extra switching device and 
low pass filter to the output of the logarithmic device, as shown in Figure 3.5. The newly added 
switching device switches the polarity at the moment that the logarithmic device receives the 
input signals that are not modified by the multiplication factor. This results in a signal as shown 
in Figure 3.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Signal Ve seen at the output of second inverting switch 

As shown by this figure the VYLog(A) components represents the VOUT as discussed earlier. 
Now, when we average this signal with the low pass filter, all pairs of equivalent components but 
with opposite polarity found at state 1 till 4 will cancel out. This results in an average signal 
which is defined by the two residual positive VYLog(A) components. As the period of the signal is 
equal to the time span of the 4 states, the resulting average signal at the output of the filter 
happens to be equal to 
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When we look at Equation (3.12), it can be seen that the voltage VOUT_S shown by Equation (3.13) 

actually represents the half of VOUT. With this knowledge in mind and looking back at Figure 3.5 
we can see that we have created two simultaneous outputs from the same measurement structure: 
the normal log read-out output VOUT¯¯¯¯  and the voltage output VOUT_S which gives us information 
about the slope. Another important thing to note is that the use of the actual input VIN for the two 
point measurement makes that the calibration can work continuously over time.  
 

The next operation of the method is to compare the slope information voltage VOUT_S with a 
reference value VREF_S which represents the wanted slope information voltage. So, the next 
operation of the method is to control the transconductance of the G/0 stages, to nullify the 
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As result of the DC reference the error amplifier can now be optimized for DC operation. As high 
DC loop gain is much easier to realize, the quality of the loop can be much higher.  
 
When we look at this architecture we can see that the divider block is now positioned in front of 
the multiplication cell instead of at the its output. The reason to put it in front of the 
multiplication cell is because DC reference VREF_A  can now be B times higher than it was for the 
architecture depicted in Figure 3.11.  As a result the input voltages of amplifier 0A1 will be B 
times higher than in the previous architecture, making it less sensitive to its input offset voltage.  
This method allows a B times higher VREF_A, without increasing the linearity error of the 
multiplication cell. Linear operation of the multiplication cell is important as will become clear in 
the following discussion  
 
At the start of the discussion on the last architecture we mentioned the lower offset sensitivity as 
result of the higher and fixed DC input voltage, which was defined as VREF_A/B.  
We have to note that in this configuration we still have to take the offset into account. This is 
because there is a limitation on the maximum voltage level the reference voltage, VREF_A, can 
have. VREF_A  is limited because the copy of the multiplication cell, Mcopy, has to operate in the 
linear range. This linear range is only valid at relatively small input signals, as will become clear 
later in this section.  When the input signal of Mcopy is too large the gain of Mcopy will drop. As the 
control loop will compensate for this gain the small signal gain of the other A/0 cells, including 
the multiplication cell Mreal, will rise to a wrong value.  
 
To get a clear understanding of the linear range of the multiplication cells we now will start to 
analyse the transfer of the A/0 cells.  
 
In Section 2.3.2 we discussed the implementation of practical A/0 cells. From that section we 
learned that the large signal transfer function of an actual A/0 cell is the hyperbolic tangent. 
Because of this hyperbolic tangent function, the real A/0 cell does not have a linear transfer till it 
reaches its knee voltage EK, as was the case for ideal A/0 cells. Instead it already loses small 
signal operation for much lower input signals [53]. This can be shown by following analysis. 
 
First we have to convert the output voltage in Equation 2.27 towards an output current, by 
neglecting the load resistors RC: 
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The differential definition of the transconductance is: 
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Substituting Equation (3.14) into (3.15), we find: 
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From Equation (3.16) it is shown that the transconductance of the differential pair is anything but 
constant, depending both on temperature and input voltage. 
 
As VINdiff, in our situation is actually the voltage defined by VREF_A/B, we can rewrite Equation 
(3.16) to 
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The mathematical function, sech2, of Equation (3.17) is a bell shaped curve that equals 1 at zero 
input, falling off rapidly at both sides and asymptotically approaches zero.  

 
Because there is no linearity error for zero input we can use this as reference to calculate the 
linearity error for a particular input by the following equation  
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The small signal gain equation of the bipolar transistor differential pair shown in Figure 2.10 is 

 

 Cmd RgA   (3.19) 

 
As gm is part of this equation, the small signal gain Ad, which is in our case the wanted  
multiplication factor, will have the same non-linearity behaviour as described by Equation (3.18) 
 

 
mgmf    (3.20) 

 
Therefore we can use Equation (3.18) to plot the error in the multiplication factor for different 
input values, as shown in Figure 3.14.  
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Figure 3.14 The error in percentage of the multiplication factor  vs. the normalized input voltage VREF_A/B 

To show the temperature dependency of the multiplication factor error we plotted in the same 
figure the non-linearity for the temperatures -50ºC, 25ºC and 100ºC. From this we find for 
example that to keep the error below 1%, the differential input voltage defined by VREF_A/B, is 
limited to 5mV at 25 ºC,  and is limited to approximately 3.75mV at -50ºC. Which means that 
reference voltage, VREF_A, is limited to a voltage level which is B times higher than those voltages. 
Where B is the attenuation factor, which is known to be equal to the wanted multiplication factor.  
 
Figure 3.14 shows us that the input linear range of real implemented A/0 cells is much smaller 
than the knee voltage, EK, of the differential pair, defined by Equation 2.26.  
 
From the discussion above we can conclude that the value to choose for VREF_A depends on how 
much error we are willing to tolerate. The maximum error that can be tolerated is part of the 
discussion in Chapter 4.  
 
Now that we know the error spread over temperature for a particular input voltage, we can use 
this knowledge to minimize the error in the multiplication factor by slightly modifying the 
attenuation factor B of the attenuation block. For example, when looking at the graphs at Figure 
3.14, we can see that for a 5mV input signal the error in the multiplication factor will range from 
0.6% at -50ºC to 1.7% at 100ºC. Now, by making the attenuation factor B 1.15% lower than the 
wanted multiplication factor (0.6%+(1.7%-0.6%)/2) , the error in the multiplication factor for a 
input voltage of 5mV will now be shifted to -0.55% at -50ºC and +0.55% at 100ºC, as shown in 
Figure 3.15 
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Figure 3.15 The error in percentage of the multiplication factor with correction of 1.15% in B vs. the normalized 
input voltage VREF_A/B 

This shows that the error at the temperature extremes for an input of 5mV is considerably lower 
than the situation without the modification of B and can be even zero for a temperature which is 
somewhere in the middle of the temperature range of -50 ºC and 100 ºC.  
 
When we look at Figure 3.14 and 3.15 again, it can be derived that the operation of the 
multiplication cell is almost linear for an input signal VREF_A/B smaller than 1mV. So, why not 
using an input voltage which is lower than this level? As was already mentioned the input voltage 
level should not be too small because of the expected input offset levels of the amplifiers. In 
Chapter 5 it will become clear that we have to use an offset cancelation technique to lower the 
effective offset, such that we can lower the input voltage of the multiplication cell.  
 
Because the control loop will be affected by the non-linear operation of the multiplication cell, we 
have to see how much this effect will disturb the slope fixation method. As we know now, for too 
large input signals, the multiplication factor starts to decrease. This will result in a smaller than 
expected slope information voltage VOUT_S. 
 
The equation of the slope information voltage, including the non-linearity equation results in 
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The percentage error in VOUT_S will be 
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For simplicity of the signal the multiplication factor system and gain error are excluded from this 
signal example. The red part of the signal in Figure 3.17 denotes the result of the negatively 
switched reference voltage VREF_I and the green linearly changing signal part is the result of the 
logarithmically increasing switched input signal VIN . As can be seen, at time t1 the AAC starts to 
attenuate the reference signal (red) and input signal (green) because the input signal almost 
reached the non-linear range of the multiplication cell, Mreal. As a result of the logarithmic 
operation, the attenuation will cause both signal parts to be decreased by the same amount, as can 
be seen at time t1. Now, when we subtract the green signal part from the red signal part we will 
get the signal as depicted by the black dotted line. As we already mentioned before the whole 
signal is actually an alternating signal with a duty cycle of 50%. Because of this duty cycle the 
output of the filter will result in a signal, VOUT¯¯¯¯ , as depicted by the solid blue line. Because the 
integration time of the filter normally is much longer compared to the duration of the pulses, the 
effect of switching the attenuation on both outputs will be very small, resulting in a transfer 
without interruption. 
 
As we pointed out earlier, there is an interesting and useful side-effect when using this attenuation 
method. Looking at time t2 we can see that when we not attenuate, the upper end of the dynamic 
range would be reached. While attenuation results in that the upper dynamic range is shifted to 
the input value that is reached at time t4.  
 
Now that we have shown the basic consequences of the mechanism on the small signal and 
dynamic range, we still have to take a closer look at the effect on the log transfer itself. When 
looking into what is actually happening with the transfer we can show why we have to choose an 
attenuation factor equal to the multiplication factor or a multiple of it. When the attenuation factor 
is chosen equal to the multiplication factor, the levels of VIN for which an A/0 cell starts clipping 
will be shifted exactly one multiplication factor, A, higher. This can be seen on logarithmic scale 
as a shift to the right of the transfer (blue solid line) as shown in Figure 3.18 Now, because the 
intercept fixed is still functioning and unaltered with the attenuation procedure the transfer will be 
shifted upward to joining the same intercept as was for the non-attenuated transfer. This is 
visualised with the blue dotted line in Figure 3.18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.18 Dynamic range shift when attenuation with value of A is used. Dynamic range in higher range will be 
extended by a factor A 
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So, the red dotted line shows the transfer without attenuation and the blue dotted line shows the 
transfer with an attenuation factor equal to A. For input values below the attenuation activation  
input value the output will follow the red dotted transfer and for values higher than the activation 
value the output will follow the blue dotted transfer. As a result the total dynamic range, is 
extended.  
 
As shown, there will be no interruption in the rippled shape of the transfer. The reason that there 
is no interruption in the ripple shape can be found in the attenuation value we used. As we have 
chosen this value to be equal to the multiplication factor, both transfers will have equal transition 
point values in the dynamic range they share. As the transition points are the values for which the 
transfer has exactly the value of the ideal straight line response, as shown in Figure 3.18, the 
intercept stays unchanged. 
 
However, when the attenuation value does not correspond to the multiplication factor, the transfer 
would show an interruption. This is can be shown when we take a look at Figure 3.19. In this 
figure the attenuation is chosen to be smaller than the multiplication factor. As a result the shift to 
the right will be smaller than A. Because of the intercept fixation the transfer will again shift 
upward such that this transfer has the wanted intercept. As shown by Figure 3.19, the transfers 
will have the same intercept, but the transition points in the combined dynamic range now don’t 
overlap. When we look to Figure 3.19 we can see that because of the ripple the ideal strait line 
transfer will be shifted up to high. While both transfers intersect the horizontal axes at the wanted 
intercept, the actual intercept of the straight line response is now shifted to a lower value. It is not 
difficult to see that, when switching between both transfers an interruption of the ripple shaped 
transfer will occur. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.19 Interruption of transfer will occur when attenuation with value different than A is used. 

Of course we have to mention that the ripple in the transfer for the piecewise approximation log 
detector implemented with tanh A/0 cells is much smaller than the one implemented by ideal A/0 
cells. In that situation an attenuation with a different factor than the multiplication factor will not 
lead to a large unwanted intercept shift. But for best results we still have to take the right 
attenuation factors which because of the sinusoidal shape of the log conformance transfer is now 
A(sqrt(A))K, with K is 0 or a positive integer. This is possible because the sinusoid intercepts the 
ideal log transfer 2 times per period, while the parabolic shaped transfer only hits the ideal line at 
the transition points, which is one time per period. 
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Actually there is a limit on the maximum upper range of the dynamic range to which it can be 
extended by the attenuation switching method. This is because we have to be sure that the lower 
end of the dynamic range of the attenuated transfer does not exceed the fixed intercept value. 
Otherwise the transfer will start to shift to the right. So, switching to other attenuation factor, to 
extend the transfer to higher range, is only possible as long as the fixed intercept is in the linear 
log range of the attenuated detector transfer. 
 
There is one extra consideration that has to be taken into account:  we have to prevent rapid 
switching between the transfers when the input voltage, VIN, drifts around the attenuation 
switching point. We can solve this problem by introducing hysteresis, i.e., with a mechanism that 
uses two attenuation switching points; let’s say at voltage VIN1 and a slightly higher voltage VIN2. 
The attenuation has to turn on when the input voltage rises above input voltage VIN2, but not turn 
off until the input voltage drops below input voltage VIN1. This means that the on/off switching of 
the attenuation, when the voltage is between VIN1 and VIN2, depends on the history of the input 
voltage.  
 
From this section we can conclude that the attenuation method not only can be used to keep the 
multiplication cell, Mreal, in small signal operation but can also be used to extend the dynamic 
range to higher input regions. 

3.3 Switching frequency considerations 

As we know, the slope and intercept fixation method is based on switching of the signal that the 
log device processes. Although the log device itself has a relatively high bandwidth there is a 
limit for the switching frequency that can be used. We have to be sure that the frequency used to 
switch between VIN and VREF_I should be such that the sum of the switching frequency and the 
highest frequency of interest in VIN is lower than the highest frequency that the log device can 
reliably process. This criterion also holds for the sum of the switching frequency and the 
frequency of the reference signal VREF_I. In practice, the switching frequency will be chosen 
several decades above the highest intended output signal, which in the case of a log detector is the 
envelope frequency of the RF input signal. This allows for effective removal of unintended output 
signal frequency components at the switching frequency (e.g. the DC output offset of the log 
detector is converted to this frequency by the output polarity switch). The filter should pass the 
highest intended output signal frequency of interest in the log detector output signal, but suppress 
frequency components introduced by the chopping/polarity switch. 
 
Finally we have to discuss the error in the slope information voltage VOUT_S in relation with the 
switching frequency. In Equation (3.12) we considered a constant input voltage. However, if we 
consider the real implementation it is shown that we actually have an input signal VIN which is 

changing over time. So, if VIN changes to VIN during the second switching period, VOUT_S will be 

defined by a input change of VIN-(VIN)A instead of VIN-VINA. With the knowledge that the value 
of VOUT_S actually represents ∆VOUT  the effect on VOUT_S can be calculated  with the use of 
Equation (3.12),  
 

 
 




























X

IN

X

INKS
OUT V

V

V

AV

A

GER
V loglog

)log(
'


 (3.25) 

  



 82

This can be simplified to 
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The percentage error can be calculated as follows 
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We now need to see how large we can expect the change in VIN, , to be. When we take a look at 
Figure 3.7 it was shown that only state 1 and 3 depend on the input signal VIN. For best results 
both states should have equal value of VIN. To get a small difference in VIN we have to ensure to 
make the duration of the states as small as possible, such that the change in VIN  between both 
stages is small. This shows that a fast switching frequency is necessary. As the switching 
frequency will be chosen several decades larger than the frequency of the envelope of VIN, the 

parameter  in Equation 3.20 will be very small. Actually, the influence of  will be even smaller 
than discussed. When we look again at Figure 3.7 we can see that the signal not only includes the 
varying VIN but also includes the fixed reference voltage, VREF_I. Hence VREF_I will not generate an 
input error between state 2 and 4, because it has a constant value.  
 
This means that after filtering the mean value of the error will be two times lower.  
 

 

 
 

%100*
2

1
log

log

_












A

A

SOUTV



  (3.28) 

 
Although this error will be already very small a last choice can be made to make it even smaller. 
First we have to look at Figure 3.20, which shows an overview of the signal modulation of the 
complete method as described in this chapter.  Now, when we exchange the switching frequency 
of the clocks CLK1 and CLK2 in Figure 3.16 the signal modulations will be as shown in Figure 
3.21. When we compare Figure 3.20 and 3.21 we can see that the values of the states between t1 
and t3 of signal Ve are exchanged. As a result the states including VIN (the states which include the 
light blue component) are placed side by side. This will lead to a smaller difference in VIN during 
both states.   
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Figure 3.20 Overview of signalling of the overall intercept and slope fixation method 
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Figure 3.21 When clock frequency CLK1 and CLK2  are exchanged, the values of the states between t1 and t3 of 
signal Ve will exchange 
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Which can be rewritten as 
 

 KSSOUT GERV 1_ 4

1  (3.31) 

where  
 

 
1

2

S

S

R

R
  (3.32) 

 
The ratio α can be accurately set with matched resistors. The ability to set the slope information 
voltage VOUT_S  to higher value without altering the output voltage VOUT¯¯¯¯  makes it possible to 
increase the reference voltage VREF_S to favourable values which will set the accuracy of the 
system, as will be clarified in the next chapter. 
 
The slope through which the ideal slope fixation system should settle can be configured with the 
use of following equation. 
 

 
)log(20 B

V
Slope REF_S





 (3.33) 

 
This equation shows that the slope can be set by three accurate parameters: the ratio α between 
the resistor value of RS1 and RS2, the voltage reference VREF_S and the attenuation factor B of the 
divider block. The equation also shows that the ratio between the resistors can be used to set the 
reference voltage VREF_S  to an arbitrary value.  
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In Figure 4.7 we have depicted the most important parts of the proposed overall fixation system. 
On the left side of this figure we see the control system of the A/0 stages and at the right side the 
control sytem of the G/0 stages. In this figure we have included the error sources which will alter 
the accuracy of the overall system. These error sources originate from the non-idealities that the 
system faces when implemented by transistors.  
 
 
For the control system of the A/0 stages system, which has to control the multiplication cells 
MCOPY, MREAL and the cascaded A/0 cells to a gain of A, we can list the following non-idealities:  
 
 

 Deviation in the attenuation factor  
The attenuation that has to be performed by divider block should be equal to B. However 
we can expect some deviation in the wanted attenuation caused by mismatch between 
resistive elements inside the divider as will be shown in Chapter 5. To model the 
deviation error in the divider block we have included parameter ψB as shown in Figure 
4.7 

 
 

 Input offset of the multiplication cell Mcopy  
When we implement the multiplication cell MCOPY at transistor level we can expect 
mismatch in the amplifiers internal transistors and resistors. To account for this, the net 
error is modelled as an input referred offset voltage. As shown in Figure 4.7 we will 
model this offset with parameter VOS1 

 
 

 Input offset of the error amplifier OA1.  
The error amplifier OA1 has to compare both of its input voltages and force them by 
means of negative feedback to be equal. However, as it was for the multiplication cell 
MCOPY, the error amplifier will also suffer from mismatch of internal components, when 
implemented by transistors. This error is also modelled by an input referred offset. 
Taking this offset into account, as indicated by VOS2 in Figure 4.7, it is not that difficult to 
see that the error amplifier will force the output of MCOPY to a wrong value.   
  

 

 Mismatch between MREAL and MCOPY 
In ideal case the gain stage MREAL will be an exact copy of MCOPY and both should be 
independent of their load conditions. In this situation an equal bias voltage at both gain 
stages would result in exactly the same multiplication factor. However in reality this 
situation will not occur. We can expect a mismatch between the multiplication cell MCOPY 
and MREAL and different load conditions for both stages. Because of this both stages will 
have different gain for the same bias signal, leading to a wrong multiplication factor of 
MREAL. In our system we will model this error source with parameter ψA  
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At the control system of the G/0 stages, which is used to control the transconductance of the G/0 
stages, the non-idealities are represented by  
 
 

 The input offset of the error amplifier OA2 
As it was for the other amplifiers, the error amplifier OA2 will also suffer from internal 
mismatch of its components leading to an input referred offset. In our system this error is 
represented by parameter VOS3 

 

 Deviation in the voltage reference VREF_S 
The reference voltage VREF_S at the input of the error amplifier OA2 is supposed to be 
equal to the expected reference voltage. In reality this reference can also deviate from the 
expected value. This error is modelled by parameter ∆VREF_S  
 

 Deviation of the resistor ratio between the integrator resistors RS1 and RS2.  
Resistor mismatch in the ratio α between the resistors RS1 and RS2 is another issue which 
will alter the accuracy of the slope fixation system. As the resistor ratio α is one of the 
parameters that is used to set the slope of the log device it should be accurately set. How 
accurate the ratio can be set depends on the layout technique used as will be discussed in 
Subsection 5.2.2.3. This error is modelled by the expression RS1α(1+ψR), where the 
parameter ψR is the relative mismatch error, between the both resistors. 

 

 Unbalanced current splitting  
The output current of the log device should be split exactly by 50% such that the ratio 
between both currents is 1. Any deviation would lead to an error in the slope control. The 
splitting error is modelled by the parameter ψI. 
 

4.3.1 Sensitivity to deviations in the control systems 

Because the accuracy of logarithmic devices is examined by the conformance error which is 
expressed in dB we first have to translate deviations in the control system of the A/0 cells to a log 
conformance error. The same holds for the deviation in the control system of the G/0 cells. 
 
As we know from Section 3.2.1 the accuracy of the slope fixation method relies on how 
accurately we can set the multiplication factor A. We will first investigate how sensitive the log 
conformance or accuracy is for a deviation in A. As reference we will use the log conformance 
curve of the device under test which was controlled by the ideal control system, which was shown 
by the black solid line in Figure 4.5. This log conformance curve (black line) is now also plotted 
in Figure 4.8. When we change the multiplication factor A by some percentage, the log 
conformance will start to deviate from the log conformance (black line) of the transfer with the 
wanted 40mV/dB slope, as can been seen from the change in log conformance (green lines) 
depicted in Figure 4.8.  

  



 

 

 

 

 

 

 

 

Figu

As a
inter
0dB
ends
thes
mult
in th
 
As w
(3.2
also
of th
 
To s
cells
tran
depi
 
 

 

 

 

 

 

 

Figu

ure 4.8 Deviati

a side note, i
rcept fixation

B and stays th
s of the dyn
e ends. How
tiplication fa
he transcondu

we know, th
9) and Equa
 relies on ho
hese cells.  

see the sensit
s we have p
sconductane
icted in Figu

ure 4.9 Deviati

Lo
g 

C
on

fo
rm

an
ce

 E
rr

or
 

Lo
g 

C
on

fo
rm

an
ce

 E
rr

or
 

ion of log confo

f we look at 
n method. A
here unchang
namic range. 
wever, before
actor A,  we 
uctance G.  

he transcond
ation (3.30). F
ow accurately

tivety on the
plotted the c
 G of the G

ure 4.9 

ion of log confo

ormance cause

this figure w
t the predefin

ged. As can b
To examine

e we use Figu
first will loo

ductance of t
From these e
y the bias co

e log conform
onformance 

G/0 cells res

ormance cause

-6% 

6% 

7% 

-6% 

95

ed by a -6% to 7

we now even
ined intercep
be seen the l
e the accura
ure 4.8 to ex
ok at the dep

the G/0 cell
equations we
ontrol system

mance for a d
for severall

sults in the 

ed by a -6% to 6

PIN     

PIN     

7% change in th

n can see mor
pt value of -3
log conforma
cy of the sy

xamine the se
pendency of t

s are definin
e can see tha

m of the G/0 

deviation in
l transcondu
log conform

6% change in tr

                     

                     

he multiplicatio

re clearly the
0.75dBm the
ance deviates
ystem we hav
ensitivety to 
the log confo

ng the param
at that the acc
cells can con

the  transcon
ctance value

mance deviat

ransconductan

                     

                     

on factor A 

e effectivene
e log conform
s the most at

ave to look a
the deviatio

formence for 

meter G of E
curacy of th
ntrol to the r

nductance of
es G. The ch
tions (blue 

nce G 

 (dBm) 

 (dBm) 

ess of the 
mance is 
t the two 
at one of 
ns in the 
changes 

Equation 
e system 

right bias 

f the G/0 
hange in 
lines) as 



 

Aga
conf
and 
the m
but i
of th
look
the d
4.9. 
stay
50dB
 
By t
line 

Figu
trans

The 
mult
repr
pow
 
The 
boun
the 
logc
syste
conf
 
From
nega
G. W
in F
Con

ain we can se
formance de
lower end o
middle of th
in opposite d
he log confo
king only at t
dynamic ran
 From both 

ys between +
Bm till -10dB

taking the va
at -50dBm i

ure 4.10 Log co
sconductance G

green line 
tiplication fa

recents log c
wer of -50dBm

horizontal b
nderies. Now
multiplicati

conformance
em is allow
formance bet

m Figure 4.1
ative deviatio
With this kno
igure 4.19 0

nfomance Err

Lo
g 

C
on

fo
rm

an
ce

 E
rr

or
 @

-5
0d

B
m

 

ee that the in
viates the m

of the dynam
he dynamic r
directions. B
rmance for d
the lower or
ge is defined
figures we c

+1 and -1dB 
Bm) will be 

alues of the 
in Figure 4.8

onformance @
G (blue line) 

in this figu
actor (and ga
conformance
m.  

black dotted 
w when we l
ion factor A
 between -1

wed to devia
tween +1dB 

10 we can co
ons in the m
owledge we c
.20dB upwa
ror. This can

tercept is cor
most at the up
mic range def
range the log
ecause of the
deviations in
r upper end o
d at -50dBm,
an see that a
the log con

obtained. 

intersection 
 and 4.9 we 

@-50dBm, for de

ure reprecen
ain of the A/
e over percen

lines in Figu
ook at this fi
A is alowed
dB and +1d

ate between 
and -1dBm.

onclude that 
multiplication

can observe a
rd such that 
n be obtaine

Deviation G

96

rrectly fixate
pper and low
fine the total
g conforman
e symmetrica

n the multipli
of the dynam
, as indicated

as long as the
nformance re

point of the 
can construc

eviations in mu

nts log conf
A/0 cells) at t

ntage deviat

ure 4.10 dep
figure, we ca
d to deviat

dB. In same 
4% and -6.
  

the acuracy
n factor A and
a possible ac
the figure be

ed when we

Percentage

ed. Furtherm
wer end of th

dynamic ran
nce at both en
al behavour 
ication factor

mic range. Le
d by the left r
e log conform
equirements 

logconform
ct the graph a

ultiplication fac

formance ov
the -50dBm
tions in the 

pict the -1dB
an clearly see
te between 
figure it is 

.3% in trans

y of the fixat
d positive de
ccuracy impr
ecomes more

e modify the

De

e deviation     

more we can s
he dynamic r
nge. As the i
nds deviates
we can inves
r and the bia
et’s assume t
red vertical l

mance at the 
over the ful

ance curves 
as shown in F

ctor A (green lin

er percentag
input power
transconduc

Bm and +1dB
e that at the -

-3.7% and
shown that 

sconductance

tion method 
eviations in t
rovement: we
e symatrical 

e attenuation

viation A 

                     

see that again
range. The up
intercept is p
s almost sym
stigate the se
as of the G/0
that the lowe
line in Figure
input power 
ll dyanamic 

with the ver
Figure 4.10. 

ine) and 

ge deviation
r, while the b
ctance G at 

Bm log conf
-50dBm inpu

d +7% to o
the detector

e G to obta

is most sens
the transcond
e can lift bot
around the 0

n parameter B

                     

n the log 
pper end 
placed in 

metrically 
ensitivity 
0 cells by 
er end of 
e 4.8 and 
-50dBm 
range (-

rtical red 
  

ns in the 
blue line 
an input 

formance 
ut power 
obtain a 
r biasing 

ain a log 

sitive for 
ductance 
th graphs 
0dB Log 
B of the 

  



 97

devider block by 1.7% such that the modified multiplication factor A’ is set to a 1.7% higher 
value than A. With a +0.2dB correction at the graph of A in Figure 4.10 we can see that the 
allowed +7% deviation will be decreased to +5.5%. However for a negative deviation the 
maximal -3.7% deviation in A is now increased to -4.5% for A’. A similar reasoning can be aplied 
for the maximum allowed deviation in G for the transconductance control system. For the 
maximal deviation in G the positive deviation is increased from 4.1% to 5.2% while the -6.2% is 
decreaced to -5.2%. So with the +0.2dB correction we now can allow a deviation between -4.50% 
and +5.50% from the modified multiplication factor A’ and a deviation of -5.2% and +5.2% from 
the modified transconductance G’ to obtain a log conformance between -1dB and 1dB. 
 
Of course we should expect that a possible deviation in multiplication factor A and 
transconductance G will be present at the same time. So, deviations at both system parts will 
contribute to an overall deviation. So, to put the accuracy of the method within the 1 dB log 
conformance error band without the need for manual calibration, it is important that both control 
system parts contribute less than the maximum allowed deviations as just stated.  
 
Let’s assume that it is possible to minimize the maximum expected deviation of the modified 
multiplication factor (A’=A+0.017A) between +2.5% and -2.5%. From the graph in Figure 4.7 it 
is shown that a -0.8% deviation in A’ (a result of +1.7%-2.5%) represents a log conformance error 
(at an input of -50dBm) of -0.37dB. This means that an extra contribution to the log conformance 
error caused by a positive deviation in the transconductance is limited to -0.63dB to put the 
system at the edge of the -1dB error band. From Figure 4.7 we can use the graph of the deviation 
in G to find the maximum percentage deviation in transconductance for an additional log 
conformance error of -0.63dB. The graph shows that -0.63dB represents a +2.2% deviation in 
transconductance G. So, by using the graphs in Figure 4.7 we found that a -2.5% deviation in the 
multiplication system and a +2.2% deviation in the transconductance control system will put the 
system at the edge of the -1dB error band.  
 
Not discussed, but also possible, is to modify the allowed deviation is by modifing the reference 
voltage VREF_S . 
 
The procedure to convert from the dB scale towards a percental change of both system parts, as 
was explained above, will be used in reversed manner in the following subsections to translate the 
percentage deviation caused by a non-ideality to the log conformance  dB scale. 
 

4.3.1.1 Sensitivity of the system accuracy to the individual error sources  
The effect of the non-idealities on the accuracy of the overall system will be discussed in this and 
the following subsections. From the previous section we got some insight into the sensitivity of 
the  method for deviations in the A/0 control system and the G/0 control system. With that 
knowledge in mind we now will start looking into the dominance of the individual error sources 
that are causing these deviations.  
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4.3.1.1.1 Sensitivity to the individual error sources of the A/0 control system 
 
At first we start by analysing the control loop of the A/0 cells shown on the left side of Figure 4.7. 
 
The open loop transfer from VREF_A  to Y1 is 
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and the closed loop equation is 
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Solving for Y1 leads to 
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Now, by substituting Equation (4.3) into Equation (4.1) and isolating VREF_A  the resulting 
equation becomes 
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When assuming a high loop gain, so 11  , Equation (4.4) can be simplified to  
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Now, by isolating the multiplication factor, A, from Equation (4.5), we get the final equation 
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This equation shows the dependency of the multiplication factor of the multiplier cell MCOPY on 
the errors in the system. 
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In the ideal case, i.e., if there are no errors, we can simplify Equation (4.6) to  
 

   B
V

B

V
VVVfA

AREF

AREF
BAREFOSOSA 

_

_
_210 1

0,0,0,0  (4.7) 

 
So, as expected, in the ideal case the multiplication factor will be forced to be exactly equal to the 
attenuation factor B of the divider block. 
 
Now that we have Equation (4.6) and Equation (4.7) we can start to examine the individual error 
contributions of the non-idealities to the deviation in the multiplication factor A. 

Input offset voltage at error amplifier OA1 
First we will look at the contribution to the deviation of the multiplication factor caused by the 
input offset voltage of amplifier OA1. As indicated by Figure 4.7 we model the input offset of 
amplifier OA1 by parameter VOS2.  
 
Taking only offset voltage VOS2 into account, Equation (4.6) simplifies to 
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Using Equation (4.7) and (4.8) we can calculate the relative change in the multiplication factor 
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This can be represented in a percentage deviation by 
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From this equation it becomes clear that VREF_A  should be chosen as high as possible to minimize 
the influence of VOS2 on the deviation of the multiplication factor. As discussed in Section 3.2.1 
the magnitude of the DC reference VREF_A  should not be too high  because it has to be limited to 
put MCOPY in its small signal operating range. For example when we look at the graphs in Figure 
3.15 it was shown that we should not go higher than a input voltage of approximately 5mV to 
have an error contribution of maximally 0.55% in the multiplication factor at the temperature 
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extremes of -50 ºC and 100ºC. Note that we obtained these relative low error values for an input 
of 5mV by reducing the value of B by 1.15%, as was discussed in Section 3.2.1. 
Knowing that the input voltage at the input of Mcopy has to be limited to 5 mV and the attenuation 
factor, including the reduction, of the divider block equals B(1-0.0115), voltage VREF_A is limited 
to 
 

 mVBV AREF 5)0115.01(max_   (4.11) 

 
In our example of Section 4.1, the attenuation factor was chosen to be equal to 10dB or 3.16x. 
Using Equation (4.11) shows us that the reference voltage VREF is thus limited to 15.62mV. 
 
By isolating VOS2 from Equation (4.10) we now can calculate the maximum allowable offset 
voltage VOS2 
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Now, the graph for the multiplication factor in Figure 4.10 can be used to convert the percentage 
values obtained in Equation (4.12) to the log conformance error contribution in dB. With this 
knowledge the graph for the maximal allowable offset for a typical accuracy in dB can be plotted 
as shown by the pink line in Figure 4.11.  
 

 

Figure 4.11 Sensitivity of the accuracy for VOS1 and VOS2 

Before we investigate this graph we first will take a look at the offset voltage VOS1 of the 
multiplication cell MCOPY 

Input offset voltage of the multiplication cell MCOPY 
The same mathematical procedure as was we used in previous sub section can be used to find the 
dependence of the multiplication factor, A, on the input offset voltage at the multiplication cell 
MCOPY. As was shown by Figure 4.7 we will model this offset by parameter VOS1 .  
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When we only take VOS1 into account Equation (4.6) can be rewritten as 
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The percentage deviation of the multiplication factor caused by VOS1, becomes  
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Rewriting Equation (4.14), the maximal allowed offset of VOS1 for a particular accuracy will be 
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Translating the percentage error to the log conformance error by using the graph in Figure 4.10 
we can construct the blue graph as shown in Figure 4.11. When we compare VOS1 and VOS2 in this 
graph, we can see that the fixation method is B times more sensitive to offset VOS1 than to VOS2. 
More importantly, what we can learn from this graph is that the values of allowed offsets, for 
accuracy below 1dB, is small even when we consider only one of the offsets at a time. Especially 
offset VOS1 will limit the fixation system accuracy when we don’t take care of this offset. In 
Chapter 5 it will be shown how the sensitivity to these offsets can be considerably lowered. 

Deviation in the attenuation factor of the divider block 
Now we will look into the effect of a deviation in the multiplication factor caused by an error in 
the divider block. As shown by Figure 4.7 we will model this error by the parameter ψB. 
 
Taking only this error into account Equation (4.6) can be rewritten as 
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The percentage error caused by a deviation in the divider block will be  
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The maximal allowed relative error from wanted attenuation factor B for particular percentage 
accuracy, neglecting the other errors,   can become 
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Equation (4.18) shows that the attenuating factor is highly sensitive to a deviation in the 
multiplication factor. This observation is of course not that strange because the attenuation factor 
B itself is used to set the multiplication factor A. We have to note that in practice a divider block 
can be constructed with a relatively high precision, which means that this should not be the 
bottleneck to get a high accuracy fixation system. 

Mismatch between the two multiplication cells 
The last error source to be discussed is the possible mismatch between the two multiplication 
cells, MREAL and MCOPY. 
 
In ideal case the loop will set the multiplication cells Mcopy and Mreal at identical multiplication 
factors. But in reality both cells will differ from each other due to process variations. So, we can 
expect a difference in the gain of both cells. As Mreal is the cell that is doing the real 
multiplication operation of the log device input, we have to take the possible deviation between 
the two multiplication cells into account.  As shown by Figure 4.7 the deviation is modelled by 
parameter ψA. The error in the multiplication factor caused by this deviation can be calculated by 
following equation 
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This equation shows that the error in the multiplication factor of the real multiplication cell is 
proportional to the percentage deviation between the gains of both cells. 
 

4.3.1.1.2 Error sources that alter the accuracy of the bias control system of 
the G/0 cells 

Now that we have examined the error sources in the multiplication system we now will examine 
the error sources in the bias control system of the G/0 cells. This system including the error 
sources is shown at the right hand side of Figure 4.7 
 

When assuming 2  the operation of the bias control system can be described by the following 

equation. 
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Isolation of transconductance G results in  
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This equation shows the dependency of the transconductance on the errors in the G/0 control 
system.  
 
In the ideal case, i.e., if there are no errors, we can simplify Equation (4.21) to  
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Now that we have Equation (4.21) and Equation (4.22) we can start to examine the individual 
error contributions of the non-idealities to the deviation of the transconductance G. 

Deviation in reference voltage of OA2 
The first non-ideality we will investigate is the possible deviation in the reference voltage VREF_S. 
When only the deviation in reference voltage VREF_S is taken into account the transconductance 
will be forced to 
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The percentage error caused by the deviation will be  
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When we isolate VREF_S from this equation we will get 
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Equation (4.25) shows us that the allowed deviation of VREF_S is proportional to VREF_S itself. So, 

when VREF_S  is chosen to be high, a higher deviation VREF_S is allowed, to still meet the accuracy 
requirements.  At the end of Chapter 3 we have shown that by replacing resistor RS by the two 
resistors, RS1 and RS2 the two outputs VOUT_S and VOUT¯¯¯¯ can be set independently. With this feature 
it was shown that we can set RS2 to a higher value in comparison with RS1, resulting in a higher 
slope information voltage VOUT_S, without changing the actual log detector output VOUT¯¯¯¯ . As the 
wanted slope information voltage VOUT_S can be increased by the resistor ratio between RS1 and 
RS2, VREF_S can also be set to higher values. According to Equation (4.25) this will result in much 
less sensitivity to offset in the reference voltage. When, for example RS2 is set to a value such that 



 104

VREF_S can be set to 2 volt, we can reach very low sensitivity in the log conformance error for 
deviations in VREF_S as shown by the blue curve in Figure 4.12 
 

 

 

 

 

 

 

 

 

 

Figure 4.12 Sensitivity of the accuracy for offset voltage VOS3 and deviation in reference voltage VREF_S 

Input offset at OA2 

Next, the sensitivity of the transconductance for the input offset at error amplifier OA2 is 
investigated.  As shown by Figure 4.7 this is modelled by parameter VOS3.  
 
When we only include offset VOS3 in Equation (4.21) the transconductance will be forced to 
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The percentage deviation in transconductance caused by offset voltage VOS3 will be  
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Isolation of VOS3 from Equation (4.27) leads to 
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VOS3 shows exactly the same sensitivity to system accuracy as it was for a deviation in VREF_S. The 
maximum allowed VOS3, to meet a required accuracy also depends on the magnitude of VREF_S. As 
we know from the previous discussion, VREF_S  can be chosen to be relatively high, which means 
that the dependency on the system accuracy for VOS3 can be made very low. When we for 
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example chose again VREF_S is 2 volt, the sensitivity to the log conformance will be as indicated 
by the red dotted graph in Figure 4.12. This graph shows that the offset voltage VOS3 will show 
exactly the same small sensitivity to the log conformance as it was for the deviation in VREF_S  

 

Deviation in the expected ratio between resistors RS1 and RS2 

Apart from the property to drastically lower the sensitivity to offset and deviation in VREF_S by 
implementing two separate resistors, we have to consider the possible deviation in the expected 
ratio between the two resistors, RS1 and RS2. The mismatch will result in a deviation from the 
expected ratio. From Equation (3.31) and Equation (3.32) we know that in the ideal case

2 1S SR R , where  is the wanted resistance ratio between both resistors. When the ratio is not 

, but (1+ψR) we can construct the equation to calculate the percentage error caused by a 
deviation from the expected ratio,  
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From this we can conclude that the sensitivity of the transconductance is proportional to the error 
in the wanted ratio between resistor RS1 and RS2. In Chapter 5 it will be shown that the resistors, 
when proper layout techniques are used, are expected to match very closely.  

 

Splitting error of the current divider 

The last error to be considered is the possible deviation in splitting operation of the current 
splitter. As already indicated earlier and shown in Figure 4.7, this error will be modelled by 
parameter ψI. 
 
With the same analysis procedure used earlier we can develop the following equation for the 
percentage error in the current division 
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From this we can conclude that the sensitivity of the deviation in transconductance G is 
proportional to the percentage deviation in the wanted 50% current division.  
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5.2 Multiplication/gain fixing circuitry  

In this section we will discuss the implementation of the system which is used to fixate the 
multiplication action of MREAL and the small signal gain of the cascaded A/0 cells. In 5.2.1 we 
will focus on a simplified circuit implementation of the multiplication cell MREAL, which will be 
later modified to the final multiplication cell implementation as will be discussed in Subsection 
5.2.6. In 5.2.2 the implementation of the divider block will be discussed. This subsection will be 
followed by subsections in which we will discuss the implementation of the error amplifier and 
its negative feedback configuration. In these sections we will also introduce the so-called chopper 
stabilization technique, which is used to reduce the sensitivity of the fixation system to input 
offset voltages. As this technique results in a modulated output signal, it will be shown that a low 
pass filter is needed to convert the rippled output signal into a useful DC bias voltage. We have 
dedicated one subsection to the implementation of a new filter concept which can be used to 
completely remove the ripple from the modulated output signal. The filter, which can be called a 
synchronized switched capacitor notching filter, uses control signals. The system used to generate 
these control signals will be discussed in a separate subsection. Thereafter a modification to the 
system will be discussed which is used to increase the common-mode rejection of the system. 
And finally in subsection 5.2.6 the fixation system will be extended to its final implementation. 
We will propose in the last section an switching architecture to switch MREAL between two bias 
conditions to obtain the fixed multiplication action of the RF input signal 

5.2.1 The multiplication cell (A/0 cell) 

In Section 2.3.2 we already introduced the basic A/0 cell which was based on the architecture of a 
bipolar differential pair. As stated in earlier sections the A/0 cell architecture will not only be 
used for the limiting gain stages in the cascade of the successive approximation log detector but 
also for MCOPY, and the multiplication cell, MREAL, itself. 
 
In this section we will discuss a simplified A/0 cell architecture. As will be shown it will be a 
modified version of the one discussed in Section 2.3.2. However this will not be the final 
implementation. In section 5.2.6 the final implementation which we used for testing will be 
discussed. Figure 5.3 shows the simplified multiplication cell architecture.  

 

 
Figure 5.3 The circuit implementation of the multiplication cell (A/0 cell)  
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Transistor T7 together with R3 is used as current source, and provides the tail current for transistor 
pair T5-T6. As was shown in Figure 3.12 the A/0 cells share the same voltage node for biasing. 
This means that the base of each A/0 current source will be driven from the same node. To ensure 
accurate matching of the tail currents of all those A/0 cells an emitter degeneration resistor R3 is 
placed. Besides providing better matching the degeneration resistor also raises the output 
resistance of the current source.  
 
To enlarge the driving capability of the differential pair at higher frequencies, the differential pair, 
which in essence comprises two emitter coupled CE stages in a differential fashion, are loaded by 
common base stages T1 and T2. With the knowledge that a CB stage has a low input impedance 
and high output impedance, the loading of a CE stage by an CB stage instead of the resistors R1 or 
R2 , considerably increases the cut-off frequency of the circuit. 
 
As already stated in Section 2.3.2 a favourable property of the A/0 cell based on the bipolar 
differential pair is when configured for normal values of gain (for example 10dB) they can be 
easily DC-coupled and cascaded without saturation problems. However, as can be seen from the 
final A/0 architecture we added emitter follower buffers T3-R4 and T4-R5 at the output. One 
beneficial property of the emitter-followers is that the output impedance of the A/O cell will be 
improved. This will make the gain less sensitive to the mismatch and temperature-dependence of 
the current gain factors of consecutive bipolar transistors. In our situation this will improve the 
gain match between the multiplication cells MCOPY and MREAL, as it will decrease the sensitivity to 
the different loading conditions between both cells.  When looking at the level shifting property 
of the emitter followers it can also been seen that the bandwidth of the cascaded A/0 cell structure 
will usually be higher, because it leads to an higher collector base voltage of the input pair of the 
preceding A/0 cells. However, a disadvantage of including the emitter followers will be their 
extra power consumption. 
 
One may have noticed that during the explanation of the fixation system we didn’t use the 
differential form of the A/0 cell’s. As will become clear in following sections the actual system 
will be in differential form. 

5.2.2 The divider block 

In this section we will discuss the divider block.  From earlier sections it was shown that the 
divider block is used to produce an output voltage that is a known and fixed fraction of the 
reference voltage, VREF_A. In foregoing sections this fraction was called the attenuating factor B. 
Furthermore, in Section 3.2.1, we showed by Equation (4.18) that the wanted multiplication 
factor of Mcopy is set by this attenuating factor. In same section it was shown that the accuracy of 
the multiplication factor depends on how accurate the attenuation factor can be set. So it is 
important to design a divider block that has a precise attenuation factor B.  
 
As noted in the previous subsection, we actually deal with a differential form of the fixation 
system. This means that our system needs a differential reference voltage VREF_A from which the 
divider block has to generate the differential reference voltages VREF_A/B. 
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5.2.2.1 Circuit implementation 
 
In this subsection we will discuss the circuit implementation of the divider block. 
 
The proposed circuit architecture of divider block is shown in Figure 5.4.  
 

 

Figure 5.4 Circuit implementation of the divider block 

In short the circuit operation can be explained as follows. The circuit consists of a current source 
which delivers a reference current IREF_A to a cascoded current mirror. The current mirror supplies 
the mirrored reference current to a resistive voltage divider to set the output voltages of the 
divider.  A common mode voltage adjustment circuit is placed to set the common mode voltages 
of the differential output voltages. Later it will be shown that the common mode adjustment 
circuit can be made self-controllable by means of a feedback signal extracted from the error 
amplifier OA1 that will control current source I2.  
 
After this brief explanation we now will discuss the circuit in more detail 
 

5.2.2.1.1 The resistive ladder 
 
The main building block inside the divider block is the resistive ladder. As shown in Figure 5.4 
the resistive ladder consists of 3 resistors connected in series. The resistive ladder is used as 
voltage divider and will set the attenuation factor.  
 
As we deal with the differential form, the attenuation factor B has to be defined by the ratio 
between the two differential output voltages, VOUTD1 and VOUTD2. 
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where  
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These two differential output voltages are generated by configuring the resistors of the voltage 
divider to 
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and  
 

 RRR  31  (5.5) 

 
such that the total series resistance is B times higher than that of the middle resistor, R2. By 
sending the current IREF_A trough this configuration it is not difficult to see that this will result in 
two differential output voltages with a ratio of B.  
 

5.2.2.1.2 The reference current 
 
Figure 5.4 shows that the reference current IREF_A  is delivered by current source I1 and is mirrored 
by the cascoded current mirror consisting of M1-M4. The cascoded current mirror will be 
necessary to make the reference current of the ladder less dependent of the upper node voltage of 
the ladder. 
 
When we assume that the current IREF_A is send through the full resistive ladder (no loading 
effects), the ratio between the two differential voltages VOUD1 and VOUTD2 can be calculated as 
follows.   
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 (5.6) 

 
As shown by Equation (5.2) the resulting ratio between both differential voltages is exactly the 
wanted attenuation factor B. The magnitude of IREF_A seems not to be that important for the ratio, 
however there is an issue that has to be taken into account. 
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As will become clear in Section 5.2.3 the differential output voltage VOUTD1 will be used to 
provide the input voltage of a so-called DDA (till now indicated by OA1) while the differential 
voltage VOUTD2 will be used to provide the input voltage of the multiplication cell Mcopy. From 
Section 3.2.1. we know that  the input voltage of Mcopy is limited to a maximum voltage of around 
5mV to ensure its linear operation. So, this means that for our divider block the current IREF_A and 
the value of R2 should be chosen in such a way that the voltage VOUTD2 does not exceed this 5 mV. 
This shows that there is a limitation on the magnitude of the reference current, which depends on 
the resistor values of the resistive ladder. The resistors values itself should be chosen low to 
obtain low resistance output impedance seen by the preceding voltage amplifier stages. 
 

5.2.2.1.3 Common mode range bias 
 
As explained in the previous subsection the differential outputs of the resistive ladder will be 
loaded by MCOPY and error amplifier OA1. To shift the differential output voltages VOUTD1 and 
VOUTD2 into the input common mode range of the multiplication cell Mcopy and OA1, transistors 
M5, M6 and current source I2 were added. It can be seen that the common mode voltage in this 
arrangement will be set by the sum of the gate-source voltages of M5 and M6. The gate-source 
voltage of M5 is determined by the reference current IREF_A and the dimensions of M5, while the 
gate source voltage of M6 is determined by the current delivered by current source I2 and the 
dimensions of M6. Later it will be shown that this current source can be replaced by a controlled 
current source, which than can be used to enhance the so-called CMRR of the system. 

5.2.2.2 Loading effect 
 
As the multiplication cell, Mcopy, and OA1 are loading the two differential output ports of the 
divider block the effect of their input impedance has to be investigated. We already know that 
Mcopy has BJT input pairs. In the following section it will be shown that also the input stage of the 
OA1 will consist of BJT input pair. When dealing with BJT’s the finite beta (or finite input 
impedance) has to be taken into account. Because of the finite beta of these BJT’s we have to deal 
with base currents which will affect the current that goes through each resistor of the resistive 
ladder. This effect is shown by Figure 5.5  
 

 
Figure 5.5 Current through resistive voltage divider is effected by the beta’s of the bipolar loads 

From Figure 5.5 it looks like the currents flowing through each individual resistor will 
considerably affect the ratio between the two differential output voltages. But it can be shown that 
because of its configuration the voltage divider proposed here is not that sensitive to the base 
currents of the bipolar loads.  
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To show this we have to rewrite equation 5.2 to following equation. 
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This equation can be simplified to 
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From this equation we can see that the ratio VOUTD1/VOUTD2 is independent from the base currents 
ib1 and ib4. This does not hold for the base currents Ib2 and Ib3. However, when we for example 
assume that VOUTD2 is almost zero and loaded by an ideal differential input pair, the base current 
ib3 can be assumed to be almost equal to ib2. With this assumption Equation (5.4) tells us that the 
ratio of the two differential voltages will closely match to the wanted attenuation factor B. Of 
course the almost zero differential voltage assumption is not a realistic assumption. However, the 
input of the multiplier cell Mcopy will be provided by a voltage of not more than 5mV, which still 
can be assumed to be relatively small. As the voltage difference at the input is limited to 5 mV 
and the gain of Mcopy will be relatively low (will be forced to be equal to B) the base current 
difference between Ib2 and Ib3 can be expected to be relatively small. From Equation 5.4 we can 
also see that the sensitivity to the difference in base currents can be lowered by increasing the 
current IREF_A. A disadvantage of the increase of IREF_A will be the increase of power consumption. 
Furthermore we have to note that for an increase of IREF_A the resistor values of the ladder have to 
be lowered because of the 5mV input limit of Mcopy.  
 
One would notice that we also could choose for MOS input pairs instead of BJTs, as MOS 
transistors don’t have a gate current at DC input voltages. But as discussed earlier the A/0 cells 
are chosen to be BJT input pairs to obtain the tanh transfer. Furthermore there are several 
advantages to choose for BJTs input pair for the implementation of error amplifier OA1 as will be 
discussed later. 

5.2.2.3 Resistor mismatch 
 
The resistive voltage divider is an extremely simple circuit which can be used to obtain a very 
accurate attenuation factor.  The level of accuracy depends on the layouting technique used. This 
is because the accuracy of the resistive voltage divider is determined by the matching of the ratio 
of the resistors instead of the absolute values of the resistors. The absolute value of on chip 
resistors cannot be accurately determined. Depending on the type of resistor used, the absolute 
value of the resistor may be off as much as 40% [54]. Fortunately in case of a resistive divider the 
accuracy is determined by the ratio (or matching) accuracy of resistors. The ratio accuracy 
between resistors can be high because it will only depend on the local variation of parameters, 
which in sub-micron IC technology can be very small. With proper layout techniques the 
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In Figure 5.6 a more detailed picture of the proposed feedback system is shown. As shown the 
two differential output voltages VREF_A and VREF_A/B of the divider block, which was described in a 
previous section, are used as inputs of the feedback system.  
 
As was already discussed in previous sections we are dealing with a differential form of the 
system. Therefore the feedback system differs from the simplified system topology as was shown 
in Figure 3.22. Because of the differential structure of the system the operational amplifier (op-
amp) OA1, used in previous sections, is replaced by a so-called Differential Difference Amplifier 
(DDA) [56]. The feedback operation of the DDA is similar to that of the op-amp, but there are 
some differences which have to be taken into account. For instance, we know that a classical op-
amp acts as a device which, if completed with a negative feedback loop, adjusts its output in 
order to reduce its differential input voltage to a negligible value. When assuming the op amp to 
be ideal, the infinite gain will force this input voltage to zero.  
This means that when calling the non-inverting input VP and the inverted input VN the operation 
principle of the ideal op-amp can be described with following equation 
 

 NP VV   (5.9) 

 
This equation shows that the op-amp operation is useful when we want to compare two single-
ended input voltages. But, since we are dealing with two differential input voltages, the single op-
amp configuration is not useful. To compare two differential inputs the so-called DDA is more 
practical. The symbol of the DDA is shown in Figure 5.6. As can be seen the DDA has 4 input 
terminals. The two input terminals denoted by VPP and VPN  form the non-inverting differential 
input port, and the input terminals VNP and VNN form the inverting differential input port.  
 
The operation of the DDA is to amplify the difference between its two differential input voltages 
as described by the following equation 
 

     NNNPPNPPDDAOUT VVVVAV  0_  (5.10) 

 
Where A0 is the open loop gain of the DDA. For an ideal DDA this open loop gain will be infinite. 
In this ideal situation the difference between the differential voltages will be amplified by an 
infinite amount. When completed with a negative feedback loop, it will adjust its output in order 
to reduce the difference between the two differential input voltages to zero. Thus, when A0 
approaches infinity the operation principle of the DDA with negative feedback can be described 
by  
 

 NNNPPNPP VVVV   (5.11) 

 
Here we can see that, instead of comparing two single-ended input voltages, as it was for a 
classical op-amp, the DDA can be used to compare two differential input voltages. 
 
An issue that has to be taken into account is the difference between the differential input 
condition at a normal opamp and that of the differential inputs of the DDA when used in negative 
feedback configuration. [57] 
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As the voltage at the positive input port of the DDA is B times higher than that of the input of 
MCOPY the condition of Equation (5.11) will only be true for a bias value which sets the 
multiplication factor A, of MCOPY, equal to the attenuation factor B as indicated by  
 

 A
B

V
VVVVV AREF

AREFNNNPPNPP
_

_   (5.12) 

 
5.2.3.2.1 Loop gain of the feedback configuration 

 
The high loop-gain, necessary for accurate comparison of both differential inputs, can be obtained 
by choosing high conversion factors for the transconductance and transimpedance blocks. But, 
these are not the only parameters that contribute to the loop gain; in addition there is actually 
another loop gain parameter. The loop gain also depends on the conversion factor of the internal 
bias source inside MCOPY, since it is also part of the loop.  
 
For example, when we assume that the internal structure of MCOPY is a simple bipolar architecture 
as was shown in Figure 2.10 and take the knowledge from Figure 5.7 that its input is defined by 
VREF_A/B and the output by the differential voltage VNP-VNN we can rewrite Equation (2.27) to 
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in which the tail current of Mcopy is defined as 
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Inserting Equation (5.14) into Equation (5.13) leads to 
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By taking the derivative to the bias voltage, VA0_BIAS, the extra gain delivered by the conversion 
factor of internal current source of  Mcopy can be calculated 
 

 
 
 






























T

AREF

V

V

SC
TBIASA

NNNP

V

B

V

eIR
VVd

VVd
T

BIASA

2
tanh

1
_

_0

_0

 (5.16) 

 



 117

This equation shows that the additional gain to the overall loop gain equals the output voltage of 
MCOPY divided by the thermal voltage VT.  
 
As our system forces the output voltage of MCOPY to be equal to the reference voltage VREF_A, 
Equation (5.16) can be simplified to 
 

 
 
  T

AREF

BIASA

NNNP

V

V

Vd

VVd _

_0




 (5.17) 

 
This shows that the additional gain is proportional to 1/PTAT. Furthermore, the higher the 
reference voltage, the higher the loopgain will be. For a temperature of for example 27ºC and a 
VREF_A of 15.62mV, an additional loopgain of approximately 0.58 times is contributed to the 
overall loopgain. This last observation shows that the conversion factor of the internal current 
source actually leads to a decrease of the overall loop gain. 

5.2.3.3 The importance of matched input transconductance cells 
 
For the derivation of Equation (5.10) we assumed that the differential transconductance stages 
were identical to each other. This implies that this equation can be used, even when the 
transconductance of both identical stages are non-linear and time or temperature dependent. This 
shows that, apart from the loop gain, the system will work properly as long as they are identical to 
each other. Thus it is critical for proper operation of a DDA to match the transconductances of 
both input stages as accurately as possible. 
 
When we deal with differential stages which are not identical to each other and exhibit different 
gains AP and AN Equation (5.10) has to be rewritten as  
 

    NNNPNPNPPPDDAOUT VVAVVAV _  (5.18) 

 
From [56] it can be shown that, when AP ≠ AN, it will lead to a reduction of the common mode 
rejection CMRR.  

5.2.3.4 CMRR of the DDA 
 
When talking about the common mode rejection of the DDA we can actually distinguish three 
CMRRs. The actually non-linear output voltage of the DDA including all CMRR components can 
be written as follows after linearization [56]:   
 

       ]111
[ 0000_ CDCD
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offDDDAOUT VV

CMRR
VV
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VV
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VVAV   

 (5.19) 
where  
 

    NNNPPNPPD VVVVV   (5.20) 
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represents the voltage difference between the two differential input voltages of the DDA, Voff the 
offset voltage at the input of the DDA. VCP0 and VCN0 represent the common-mode voltages at the 
linearization point for the Positive and Negative input ports of the DDA respectively. 
Furthermore VCD0 represent the equal floating voltages at the two input ports and VCP, VCN and 
VCD are the deviations from VCP0, VCN0 and VCD0. The P- and N-common-mode rejection ratios 
(CMRRP,CMRRN) in Equation (5.19) describe the effect of the common mode voltages at the two 
input ports, whereas the D-common-mode rejection ratio (CMRRD), measures the effect of equal 
floating voltages at the two input ports of the DDA. While the dependence of CMRRP, CMRRN 
are well known from the ordinary op amp, the CMRRD is not. This parameter originates from the 
DDA structure and depends on the matching of the transfers of both differential stages. From [56] 
it was shown that this common mode error leads to a constant closed loop gain error. To lower 
the effect of this error one could take a higher loopgain but better is to go for a proper circuit 
implementation to match the transfers of both differential stages. 

5.2.3.5 Circuit implementation of the DDA 
 
In previous section we have discussed the basic DDA operation at system level and showed some 
differences between the operation of an op-amp and a DDA, which were important to know 
before we start to implement a DDA at transistor level. Now that we have discussed the 
characteristics of the DDA we can focus on the circuit implementation of the DDA. In this 
section we start with an introduction of a simplified circuit implementation, which will form the 
basis for the more complex DDA circuit that can fulfil the accuracy requirements as were 
discussed in Section 4.3.  The more complex circuit will be discussed in a later section.  
 
Figure 5.8 shows the simplified circuit architecture of the implemented DDA. 
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Figure 5.8 Simplified circuit architecture of the used DDA implementation 

As shown in Figure 5.8 the circuit consists of two differential input stages T1-T2 and T3-T4 both 
biased by a cascoded current source T7-T10. The differential input stages are cross-connected and 
loaded by the active load M1-M2. A transimpedance stage is implemented by a standard integrator 
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architecture, consisting of a gain stage M3, which is biased and loaded by a cascode current 
source (T13,T14),  a buffer stage (M4) which is biased and loaded by a current source (T16) and a 
feedback capacitor (C1). In the following sections the circuit will be discussed in more detail. 
 

5.2.3.5.1 The differential input stages 
 
The two differential inputs stages T1-T2 and T3-T4 in Figure 5.8 form the transconductance blocks, 
as was shown in the system diagram of Figure 5.7. As shown in Figure 5.8 we have chosen 
bipolar junction transistors (BJTs) as our differential inputs. The reason not to choose MOS but 
BJT transistors depends on several characteristics that are essential when considering differential 
input stages. The most important are the input offset voltage, matching, transconductance, input 
impedance, frequency response, and noise contribution.  
 
Let’s first look at the input offset. In Section 4.3.2 the importance of low input offset in our 
multiplication fixation system was shown. It was shown that the offset degrades the accuracy of 
the multiplication fixation system considerably. So it is very important to choose the right input 
device when aiming for low offset.  
 
First let’s consider the input offset voltage of BJTs. For a BJT differential stage the input offset 
can be described by following equation [58] 
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The error introduced in Equation (5.21) by the IC terms is due to the mismatch in the different 
loads seen at both collectors of the input transistors. The error by the IS-terms is mainly due to 
mismatches in the area of the emitter and the width and doping of the base. The value of kT/q is 
temperature dependent (e.g., approximately 26 mV at 27 ºC). This term has the largest influence 
on the input offset and its drift with temperature. The offset drift over time is low for bjt input 
stages and typically ranges from a few uV/month down to a few nV/month [58].  
 
For an MOS differential pair the input offset can be described by following equation  
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As shown by this equation the input offset for MOS differential pair is primarily due to difference 
in the threshold voltage, VTH, caused by variation in the width, length, thickness and doping levels 
of the channel in the transistors [58]. Typically, the offset drift over time is of the order of nano 
volts per month. 
 
The primary reason we have chosen BJTs as input is that MOS transistors are more sensitive to 
layout mismatch in terms of their threshold voltage (for BJTs the cut-in voltage is determined by 
the thermal voltage). Because of the threshold voltage variations from device to device, the MOS 
differential stage often exhibits a higher input offset and an poorer common-mode rejection ratio 
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when compared to the BJT differential stage [58]. For balanced BJTs the input offset can be in 
the order of 0.2mV and for MOS transistors in weak inversion in the order of 2mV [59]  
 
As discussed earlier, the BJT normally exhibits better matching then MOS and therefore lower 
offset voltage. There are several techniques to improve matching of the input pair such that even 
lower offsets can be achieved. We used large input transistor sizes to achieve better matching 
characteristics in the differential input pair [60]. Another way, which can be done on layout level, 
is to use a common centroid configuration, where the devices are symmetrically arranged so that 
their centre of mass lies in the centre [61]. This is typically implemented in combination with 
cross coupled multiple transistors in parallel. Emitter degeneration is yet another technique for 
improving matching at the expense of transconductance degradation, thus lowering the loop gain 
[62]. 
 
Another reason to choose for BJT’s instead of MOS transistors can be the fact that a significantly 
higher transconductance can be achieved for the same bias current. This is because the gm of the 
BJT is directly proportional to the bias current as opposed to the square root relation of the MOS 
transistor [62]. The higher transconductance can be used for higher loop gain or for lower power 
consumption when a lower current is used. 
 
When the differential stages consist of MOS input pairs we have to take the geometry-dependent 
transconductance into account. In these circumstances matching of both differential stages is not 
only important for reducing the input offset but also to have improved matching of the 
transconductance. As was discussed earlier this can be accomplished by special layout techniques. 
However, as discussed before we have chosen for bipolar input pairs. In the case of bipolar input 
pairs the matching is of less importance for matching of the transconductance because the 
transconductance of each BJT stage depends mainly on its bias current and thermal voltage. 
While temperature differences between both differential stages in submicron IC technology can 
be expected to be very small a deviation between the bias currents delivered by the two tail-
current sources can be expected due to the finite resistance of a practical current source, as will be 
discussed in the following subsection. 
 
Another advantage of BJT is the lower noise for low RS signal sources. As the voltage divider in 
our system is actually used as voltage source knowing to have a low source resistance RS the BJT 
input pair will be to our advantage. When considering noise the significant higher 
transconductance of the bipolar differential stage as discussed earlier, can be also an advantage. A 
high gain at the input stages makes the noise of the intermediate stages less important, such that it 
improves the minimal detectible input signal range. As the operation of BJT is normally 
underneath the surface the input referred noise voltage is already lower than that of MOS 
transistors (For MOS, 1/f noise dominates at low frequency). Fortunately the limit on the minimal 
input will not be an issue in our system, because we use constant DC references which have 
considerably higher voltages levels than the expected noise floor of the BJT input pairs. However 
something what can take into account is the effect of the noise from the input pair to the noise at 
the output of the DDA. As we know the output signal of the DDA is used to bias also the 
cascaded A/0 cells inside the successive approximation RF power detector. When there is 
excessive noise at the bias of the cascaded A/0 cells, it may influence the performance of the RF 
power detector as it will multiply into the signal that the RF power detector processes. 
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As the differential input stages of the DDA are used as voltage sensors the high input impedance 
of a MOS input pair would have the advantage over its bipolar counterpart. However for our 
implementation the finite input impedance of the BJT can be used in our advantage, because it 
can be used to increase the precision to which the loop controls to the right gain of MREAL. To be 
more precisely, MREAL, the one that is placed outside the control loop and is used for the actual 
multiplication of the RF input signal, is loaded by the BJT input pairs of the first stage of the 
cascaded A/0 cells and a G/0 cell. When the loading and sinking conditions of Mcopy and Mreal can 
be made comparable the gain behaviour of both cells will be the same when controlled with same  
bias signal.  
 
In Table 5.1 an overview of the differences between MOS and BJT differential pair is shown.  
 

Table 5.1 Differential Pair Comparison [62] 

 
5.2.3.5.2 The tail current sources 

 
The output impedance of a current source can be defined as 
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This definition shows that an ideal current source, knowing to have an infinite output resistance, 
provide a constant output current IO over different output voltages. However, the assumption of 
infinite output resistance doesn’t hold for practical current sources. 
 
When dealing with the practical current sources as in our DDA their finite output resistance has to 
be taken into account [63]. The finite output resistance of these current sources determines the 
sensitivity to the common-mode voltages on the input port that it biases. Because of the finite 
resistance unequal common-mode voltages on the two input ports will lead to a difference 
between both tail currents which ultimately results in a mismatch between the transconductance 
elements. As we discussed earlier a mismatch between both transconductance elements should be 
minimized for optimal performance of the DDA. 
 
From literature [64] we know that the output impedance of a current source can be greatly 
increased by applying the cascoding principle. As shown in Figure 5.8 we implemented BJT 
cascode current sources (T7,T8) and (T9,T10). The reason to choose for the BJT instead of MOS is 
the possibility for better matching between both current sources [59]. As shown, the current I1 to 
be delivered by the current sources is mirrored from the transistors T5,T6. However, when 
mirroring is accomplished with BJT transistors the base currents has to be taken into account [63]. 

Quality Comparison MOS BJT 
High gm  X 
High Rin X  
Matching  X 
Voltage Offset  X 
Better Frequency Response  X 
Noise  X 
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Because of the base currents there will be a current mirroring error between cascoded current 
source T5-T6 and the cascoded tail current sources. Fortunately this error will not alter the 
accuracy of our system that much, because matching is more important than absolute value of the 
common-mode output current. When the tail current sources are matched and have very high 
output impedance both tail currents will be matched. The current mirroring error will only lead to 
a lower or higher tail current at both input stages. It only influences the closed-loop gain because 
of change in the matched transconductance of both input pairs. When loop gain is high the current 
mirroring error will not influence the accuracy of the system that much. To reduce the sensitivity 
of loopgain over temperature for the temperature dependent base impedance an MOS transistor 
M5 is placed from the collector to the base of T5. In this configuration the temperature dependent 
base currents of T5, T7 and T9 are supplied by M5 such that the full current I1 is forced through 
transistor T5. Of course the error caused by base currents of the transistor T6, T8 and T10 can be 
solved with the same method. But this will be at the expense of an extra voltage drop VGS which 
will lowering the input voltage swing. 
 

5.2.3.5.3 The Active load 
 
Next sub-circuit to be discussed is the active load (M1,M2). As shown in Figure 5.8 this active 
load loads the cross-coupled differential pairs T1-T2 and T3-T4. The active load, which actually 
operates as a current mirror, is used to obtain the subtraction action to convert the differential 
current into a single-ended current, as was performed by the substraction block in the system 
block diagram depicted Figure 5.7. For the implementation of the active load we have chosen for 
MOS devices. The reason to choose for MOS was to solve the current error, as was discussed 
earlier. Now it’s not only about the finite output impedance of the current mirror but also about 
another error that dominates. This additional error, as we already discussed at previous subsection, 
originates from the base current. As we know the MOS transistor has no DC gate current due to 
the isolated gate. Overall the MOS transistor seems to be the best choice for the active load. 
 
To achieve better matching, for this current mirror, we used large MOS transistor sizes. A 
disadvantage of the large geometries, as we propose, can be bandwidth limitation caused by the 
increased parasitic capacitance. Fortunately, in the system discussed till now the low bandwidth 
will be no problem, as the system has to process a signal that is close to DC.  
 

5.2.3.5.4 The trans-impedance stage 
 
The next part to be discussed is the trans-impedance stage. As can be seen in Figure 5.8, the 
trans-impedance stage is implemented by a standard integrator, consisting of the gain stage M3, 
which is biased and loaded by the cascode current source (T13,T14),  a buffer stage (M4) which is 
biased and loaded by the current source (T16) and the feedback capacitor (C1). When looking at 
this configuration, one will notice that we actually implemented an integrating trans-impedance 
amplifier.  
 
The gain stage is constructed by a MOS input transistor to obtain very high input impedance for 
the DC signal it has to process such that a high DC loop gain for our DC signal is obtained. The 
buffer stage minimizes the loading effects from the proceeding stage by provides a low-
impedance output such that the operation point of the gain stage is much less dependent of the 
output current of the DDA. This is necessary because the output has to supply the base currents of 
the BJT current sources of Mcopy, Mreal and all the cascaded A/0 stages of the log detector. The 
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The Fourier series of this time-domain definition is given as 
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When we incorporate Equation (5.27) into Equation (5.24) and (5.25) we get  
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and  
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This shows that the differential DC input signals Vid1 and Vid2 are modulated to the fundamental 
and every odd harmonics of the chopper frequency fch while Vn1(t), Vn2(t)  and Vn3(t) still reside at 
baseband.  
 
When looking at the first term of Equation (5.25), an important result of the modulation action of 
modulator CH2, can be seen. As will be shown by further analysis the superposition of the noise 
sources will hold for all linear amplifiers inside the system and is the fundamental idea behind the 
chopping technique. 
 
According to Equation (5.24) and (5.25) we now have two modulated differential voltages Vid1m(t) 
and Vid2m(t) in front of the DDA. These modulated voltages are transformed to currents via the 
transconductance cells with a transconductance Gm. When using the time domain expression from 
Equation (5.24) and (5.25) these two differential currents can be written as 
 

 ∆       tVtmVGtI nidmm 111   (5.30) 

 

 ∆          tVtVtmVAGtI nnidmm 3222   (5.31) 

 
As shown in Figure 5.9 the direct and cross connection of the two differential current outputs 
results in the modulated differential current, 
 

   )()( 213 tItItI mmm   (5.32) 

 
at the input of demodulator CH3. 
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With Equation (5.30) and (5.31) this differential current can be rewritten as 
 

               tVtVtmVAGtVtmVGtI nnidmnidmm 322113   (5.33) 

 
From Figure 5.9 it is shown that chopper CH3 demodulates this current into a differential current 
∆I4 which subsequently will be converted to a single ended current I5(t) by the substraction block.  
This will result in the single ended current 
 

                tVtVtmVAtVtmVGtmtI nnidnidm 322115 )(   (5.34) 

 
This can be rearranged into 
 

                )()()()()( 322115 tmtVtmtVtmtmVAtmtVtmtmVGtI nnidnidm 
  
  (5.35) 
 
From Equation (5.26) we know that 
 

     1 tmtm  (5.36) 

 
With this knowledge we can simplify Equation (5.35) to 
 

            )()()( 322115 tmtVtmtVVAtmtVVGtI nnidnidm   (5.37) 

 
This can be rewritten as 
 

             )(321215 tmtVtAVtVGVAVGtI nnnmididm   (5.38) 

 
This shows that the current I5 is composed of two parts. The first term represents the wanted 
signal at baseband, while the second term contains the contribution of the noise sources, which 
are now located at the chopping frequency fch and every odd harmonics of fch as indicated by (5.27) 
 
When assuming an linear trans-impedance (for simplicity of the analysis we neglect the 
integration action of the trans impedance) with a trans impedance factor of K  the current I5(t) is 
converted into voltage signal V6(t) as shown by following equation  
 

             )(321216 tmtVtAVtVGKVAVGKtV nnnmididm   (5.39) 

 
In time, the signal described by Equation (5.39), can be depicted as shown by the red solid line in 
Figure 5.11.  
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Another approach to have better suppression of the unwanted components can be the use of a 
higher chopping frequency. This approach would shift the unwanted frequency components to 
higher frequencies such that the filter can suppress them more. However a higher chopper 
frequency would introduce other difficulties as will discussed in a later section. 
 
As we know, the time constant of the RC filter depends on the product of the resistance and a 
capacitor value. In sub-micron IC technology resistance and capacitance values do not track each 
other. As a result the time constant of a RC filter is not well defined over variations in process, 
supply and temperature. Furthermore, as already stated earlier, for very low cut off frequencies 
the feature size of the resistor and capacitor would get much too big for monolithic integration. A 
type of filter that doesn’t have these short comes is the so-called Switched Capacitor filter 

5.2.4.2.1.2 Switched capacitor filter 

 
[70] A switched capacitor filter can have a very low cut-off frequency, while maintaining small 
feature sizes. Another advantage of this type of filter is that it has an accurate and easy tuneable 
cut-off frequency and can have low sensitivity to temperature changes. This allows consistent, 
repeatable filter designs. The operation principle of a switched capacitor will be shown by 
following example. 

 

 

Figure 5.16 The step response (a) applied to a switched capacitor low pass filter (b) for two different switching 
frequencies results in the output response (c) 

A simple switched capacitor filter is shown in Figure 5.16. Briefly said the operation of this filter 
is based on a track and hold operation of sampling capacitor CS followed by a charge-
redistribution to capacitor C. As shown by Figure 5.16 this operation is performed by alternately 
connecting node A and B with an accurate and predefined frequency f to the upper plate of 
capacitor CS.  
 
The average current flowing from A to B is then determined by the charge moved in one clock 
period. 
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This can be rearranged as 
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(a)                                       (b)                                                         (c) 
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So actually by switching capacitor CS with a frequency f we mimic a resistor with a value equal to 
 

 
fC

R
S

SC

1
  (5.43) 

 
Capacitor C together with the resistance RSC forms the switched capacitor low pass filter’s time 
constant. When comparing Figures 5.14(c) and 5.16(c) it shows an equivalent step response. This 
shows that two capacitors and one switch can perform the same function as a RC network.  
 

From the previous discussion we can see that a switched-capacitor filter is actually a clocked, 
sampled-data system. The input signal is sampled at a high rate and is processed in discrete time, 
rather than continuously as it was for the RC filter. 
 
The time constant of a SC filter is determined by the ratio of capacitor values and the clock 
frequency. If the capacitors have the same properties, the ratio is well controlled even when the 
absolute values are poorly controlled. As the time constant is determined by the ratio of 
capacitors, very high time constants can be obtained with low capacitance values. This shows that 
switched-capacitor integrator can be well implemented in sub-micron IC technology. The clock 
frequency of an SC filter can be set by an external clock with accurate frequency, for example a 
crystal oscillator.  
 
As will be shown in a later section the switched capacitor filter will form the basis of a new filter 
concept that we have implemented. Since the clock frequency can be precisely set by the 
chopping clock we use for our fixation system, it will be shown that a crystal oscillator will be 
not necessary. But before we introduce our new switched capacitor filter we first will discuss the 
limitations and non-idealities of the chopped fixation system. 

5.2.4.3 Limitations and non-idealities of the chopping circuit 
 
When we look at Figure 5.11, we can see that the chopping action resulted in an ideal rectangular 
signal (neglecting the noise) with a duty-cycle of 50%. With this assumption the extraction of the 
mean value of the signal by an ideal filter will lead to the correct DC component. Of course the 
assumption of an ideal rectangular signal is not correct, when dealing with the practical 
implementation of the system. The signal shown in Figure 5.11 is actually an idealized waveform, 
resulting from the ideal chopping and filtering conditions. For practical implementation of the 
chopping and filter circuit we have to examine some of the limitations and non-idealities that are 
known from chopping.  
 

5.2.4.3.1 Limited bandwidth of the system 
 
One of the limitations is the limited bandwidth of the system that has to be chopped. When we 
implement the chopper architecture around a system with finite bandwidth the system will 
attenuate the higher order harmonics of the square wave signal which lie higher than this system 
bandwidth. Secondly, a possible non-linear transfer of the system will introduce some spectral 
components around the odd harmonics of chopper frequency. As was shown by Equation 5.22, a 
pure rectangular signal should only consist of odd harmonics of the chopping frequency. 
Existence of attenuated odd harmonics and/or other spectral components will undoubtedly result 
in a non-rectangular output signal. Furthermore a limited bandwidth of the system in between the 
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5.2.4.3.3 Non-idealities of MOS transistors switches 
 
In Figure 5.10 we showed the internal structure of the chopper. The chopper switches were 
represented by ideal switches. In reality MOS transistors are used as switch. As MOS transistors 
behave differently from ideal switches a discussion on their second-order behaviour is in order.  
 
One of the differences is that a CMOS switch has a finite impedance when it is turned off and a 
non-zero impedance when it is turned on. The on-resistance of a MOS switch depends on the 
input level and its aspect ratio W/L. A PMOS switch exhibits an on-resistance that decreases as 
the input voltage at the drain becomes more positive, whereas the on-resistance of an NMOS 
decreases for inputs at the drain that becomes more negative. When a current is flowing through a 
closed MOS switch with a too high on-resistance it will lead to a non-negligible voltage drop. 
The on-resistance will also limit the maximum switching speed. 
 
Other non-idealities of the MOS switch are the clock feed-through caused by its parasitic 
capacitances and the redistribution of channel charge when it is turned off. These two non-
idealities will contribute to a residual offset as explained previously.  

 
 

 

 

 

 

 

 

Figure 5.20 The clock feed-through generated by a MOS implemented chopper modelled by the gate-drain and gate 
source capacitances Cgd and Cgs  

Besides the clock feedthrough between the clock line and signal path known as crosstalk a MOS 
switch itself is also a cause of clock feedthrough. The clock feedthrough generated by a MOS 
switch is caused by the clock transitions that couple into the signal path through the gate-drain or 
gate-source overlap capacitance. This means that the clock feedthrough caused by these parasitic 
capacitances can be modelled by the gate-to-source and gate-to-drain capacitance, Cgs and Cgd, as 
shown in Figure 5.20. The crosstalk capacitance as discussed earlier is also included in this model. 
As shown in this figure we can model the crosstalk capacitance between clock line and the input 
path of the chopper by capacitor CCS and the crosstalk capacitance between clock line and the 
output path of the chopper by capacitor CCL. Both are placed in parallel with the parasitic 
capacitances of one of the chopper transistors [71]. This clarifies that, as it was for the cross talk 
capacitors, the gate-to-source and gate-to-drain parasitic capacitance will also contribute to the 
residual offset. Because of parasitic capacitances the gate signal not only drives the on or off state 
of the transistor but it also disturbs the drain, source and bulk of the transistor.  
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Figure 5.21 Redistribution of channel charge each time the chopper clock switches polarity.  

The other non-ideality of the MOS switch is the redistribution of channel charge during switching. 
The redistribution of channel charge of the MOS switches is graphically depicted in Figure 5.21. 
This figure shows that when a MOS transistor is on, a layer of channel charge exists under the 
gate between the source and drain of the transistor. When the transistor is turned off the channel 
charge has to go somewhere. Depending on the structure of the switch and the load at the drain or 
source, it will partially flow to the input of the chopper and partially flow to the output of the 
chopper. As both nodes of the input port and both nodes of the output port contain two MOS 
transistors these injections will happen each time the chopper clock switches. This means that this 
charge is applied two times per clock period, as can be shown in Figure 5.21. 
This again shows the trade-off between speed and accuracy.  
 
 
As it was for crosstalk the charge injection caused by the channel charge distribution should have 
no influence, since the switches of the input choppers, when assumed identical, inject or 
withdraw the same amount of charge at both inputs. But, there is actually a condition that will 
make this assumption not fully correct. This is because both the capacitive coupling and the 
redistribution of the channel charge effect has a non-linear dependency on the gate-source voltage, 
VGS, of the MOS transistor. As both nodes of the differential input will have a different voltage, 
the VGS of the MOS switches will differ from each other, such that the charge injection caused by 
capacitive coupling and channel charge contribution will not be exactly common mode.  
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5.2.5 Circuit implementation of the chopped gain fixation system 

 

Figure 5.22 Chopped Gain fixation system 
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Figure 5.23 Implementation of the chopper stabilized DDA  

Figures 5.22 and 5.23 show the complete gain fixation system discussed so far. It is interesting to 
note that we used the chopping technique in such a way that we only use 3 choppers in total to 
remove the input offset and noise from the DDA and gain stage Mcopy. 
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When we incorporate the feedback resistor R1 into the loop, as was shown in the DDA circuit  
depicted in Figure 5.22, the output will approach a more rectangular signal instead of the 
triangular signal. An example of the final output signal of the trans-impedance stage, from now 
on called V6’, is depicted by the blue curve shown in Figure 5.24. The resulting signal shape of V6’ 
is caused by the frequency compensation we applied to the system. The resistor R1 in series with 
the integrating capacitor C1 leads to a so-called zero in the frequency response of the overall 
fixation loop. At a particular frequency the resistor R1 will start to dominate such that the 
frequency components of the rectangular shaped input current higher than the zero experience a 
flat band frequency response instead of a -20dB/Decade roll off by the capacitor C1. This is why 
this procedure is also known as frequency compensation. Frequency compensation is necessary to 
make the feedback loop of the chopped fixation system stable. The positive phase shift added to 
the higher frequency components, as a result of the frequency compensation, leads to a bigger 
phase margin, which was necessary for stable operation of the feedback loop [72]. The voltage 
ramp-up and ramp-down of V6’ is still defined by Equation (5.44) while the magnitude of the fast 
voltage transitions is defined by the voltage drop across R1. The value of the voltage up and down 
transitions depends on the direction and magnitude of the rectangular input current I5.  
 
As indicated by the middle dotted line in Figure 5.24 we can see that an averaging action of V6’ 
by an ideal low pass filter will still lead to the same DC bias voltage as was for the rectangular 
shaped input signal V6 discussed earlier. However, as already discussed earlier an ideal filter 
doesn’t exist. In next section a new filter approach will be proposed which will show a possibility 
to reconstruct a pure DC component from the modulated input signal V6’. 

5.2.5.2 Novel output ripple blocking system for chopped systems 
 
In Subsection 5.2.4.2.1.2 we introduced the switched capacitor filter and showed the advantages 
over the RC filter. It was shown that the operation was based on sampling the input signal with a 
high rate and processing it in discrete time. In this section we will propose a new Switched-
Capacitor (SC) filter including a so-called notching operation. A fundamental difference between 
the switched capacitor operation discussed earlier and the new filter that will be proposed now is 
that it takes two synchronized samples of its input signal instead of one un-synchronized sample 
before it is processed. It will be shown that when the two sample values of the input signal are 
synchronized with the chopping control signal followed by discrete-time processing it can 
completely notch the unwanted frequency components from the modulated input signal. 
Furthermore the filter will include a modification to supress spikes and other non-ideal effects 
from the output of the filter. The proposed filter has a fast response time, which is necessary for 
the biasing of the chopped fixation system. The filter can easily be implemented with on-chip 
capacitors and maintains the benefits of chopping while notching the ripple at fch from the output 
signal of the chopped system.  
The switched capacitor filter will make use of a switching algorithm which is exactly 
synchronized with the chopper control signal, which means that the system doesn’t need an 
external highly accurate off-chip oscillator. 
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chopper clock transition, switch S2 is opened, such that a charge Q2=C2VIN2 will remain on the top 
plate of capacitor C2, where VIN2 is the sampled value of V6’ at the moment switch S2 opens. So, in 
this situation capacitors C1 holds a sampled value VIN1 and C2 holds a sampled value VIN2 of the 
input signal V6’(t). From Figure 5.27 we can see that the value corresponding to the DC 
component of the input signal V6’ is located exactly in the middle of the sampled values VIN1 and 
VIN2. So this shows that after one clock cycle of the chopper control signal the mean value of the 
sampled voltages is already the wanted DC component of the input signal V6’.   
 
Now that we know the principle to get two sampled values exactly mirrored around the DC 
component of the input signal, the following is to examine the operation procedure of the filter 
that results in the mean value of two sampled voltages at the output of the filter. 
 

 

 

Figure 5.28 The configuration for charge balancing operation between the capacitors C1, C2 and C3 

As indicated by Figure 5.26, at the moment that switch S2 is opened the switches S3 and S4 will be 
closed simultaneously. This will result in the situation as shown by Figure 5.28. We can see that 
in this situation both capacitors, C1 and C2, will be connected to capacitor C3. So charge 
redistribution between the capacitors C1, C2 and C3, will occur till a charge balance between the 
three capacitors is reached.  

 
When after a short time the charge is equally distributed over the three capacitors a steady state 
voltage will be reached which equals 
 
 

 























321

332211

321

321
3

)1(
)(

CCC

CnVCVCV

CCC

QQQ
nV CININ

C
 (5.46) 

 
 
Where VC3(n-1)  in Equation (5.46) denotes the voltage over C3 before it was connected to 
capacitors C1 and C2.  

 
Next operation of the system is to open switch S3 and S4 simultaneously, such that capacitor C3 
will hold the steady state voltage, VC3(n). When S3 and S4 are opened, S5 will be closed such that 
charge redistribution between capacitors C3 and C4 is accomplished.  
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When the charge is balanced the steady state voltage over C3 and C4 will be 
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where VOUT_FILTER(n-1) denotes the voltage over the output capacitor C4 before S5 was closed. 
 
From Equation (5.46) and (5.47) we can see that after the first cycle (n=1), assuming that the 
voltages VC3(0) and VOUT_FILTER(0) were initially zero, capacitor C4 is only charged to a fraction of 
the final output value of the filter. However, it can be shown that when repeating the foregoing 
switching procedure the output of the filter will approach the DC component of the input signal.  
 
We can show this by first rewriting Equation (5.46) to 
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As can be seen we have replaced VC3(n-1) by VOUT_FILTER(n-1) as they are actually representing the 
same voltage. With the use of Equations (5.47) and (5.48) we can now build an overall equation 
for VOUT_FILTER(n).   
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This can be rewritten to 
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Now, when we assume  
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equation (5.50) can be simplified to 
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The difference in percentage, from the expected DC output voltage VDC_Expected, after n cycles, can 
be calculated by 
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where 
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Now let’s put Equations (5.53) and (5.54) into practice. Let’s assume that the values of the 
capacitors are chosen to be C1=C2=0.5pF and C3=C4=1pF and that the input signal is a 10MHz 
chopper modulated voltage with an modulation amplitude of 300mV superposed on top of a DC 
voltage of let’s say 1V. Furthermore, assume that the sampled values of the input signal are 
exactly mirrored around the 1V DC component of the input signal.  Let’s say VIN1=1.2V and 
VIN2=0.8V.   
 
 

 

 

 

 

 

 

Figure 5.29 Idealized filter response for C1=C2=0.5pF and C3=C4=1pF 

 
Now, when we plot the result of Equation (5.53) and (5.55)  into Figure 5.29, we can see that 
after some cycles the filter converges towards the wanted 1V DC component of the input signal. 
 
Equation (5.54) shows us that the filter will take about n=18 cycles to get to 99.4% of the final 
value. With a chopping frequency of 10MHz, Equation (5.45) will show us that in this situation 
the filter response would take around 3.6μS to reach the ripple free DC output voltage of 1V. 
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5.2.5.2.2 Response time 

 

 

 

 

 

Figure 5.30 Idealized filter response for C1=C2=1pF and C3=C4=0.5pF 

When we repeat the procedure of the previous example, but now with capacitor values of 
C1=C2=1pF and C3=C4=0.5pF, the filter will take about n=10 cycles to get to 99.4% of the final 
DC output voltage, as shown in Figure 5.30. With a chopping frequency of 10MHz the filter 
would take in this situation around 2μS to converge towards its final value. 
 
As expected from the knowledge we gathered from the section about switched capacitor filers, 
the response time will depend on the ratio between the capacitors that are used.  The values taken 
for the examples above were arbitrary. For the condition (C1+C2)>C3>C4 the amount of charge 
delivered per cycle n to C4 will be higher than for the condition (C1+C2)<C3<C4. It is not difficult 
to see that first condition will lead to a faster response time. Not shown, but already discussed in 
the section about switched capacitor filters, is that an increase of the chopper frequency will also 
result in a faster response.  
 
As the response depends on the ratios rather than on the capacitor values, the ripple blocking can 
be obtained with relatively small sized capacitors. This shows that a low pass filter with a fast 
response time and very low cut-off frequency can easily be implemented with on chip capacitors.  
 
Of course when incorporated inside the DDA feedback loop the time constant of the filter has to 
be taken into account. The time constant of the integrating trans-impedance stage and ripple 
blocking system together has to be chosen in such a way that a stable feedback system is realized. 
This shows that when implemented inside the negative feedback system we don’t have all the 
freedom to choose the capacitor ratio.   
 
Fortunately we can expect a considerably faster start-up time of the filter when placed inside the 
loop of the feed-back system, even for the condition (C1+C2)<C3<C4. This is a result of the 
overshoot of the filter input signal when incorporated in the DDA feedback system. As the 
overshoot at the input is higher than the final input signal the amount of charge transported to 
capacitor C4 during this overshoot can be expected to be much higher than when there is no 
overshoot. So, the voltage build up at C4 is increased during the overshoot at the input, which will 
lead to a faster approach of the final filter output signal, in comparison with a critically damped 
system. 
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Figure 5.31 Start-up configuration to boost response time of the notching switched capacitor filter. 

We have to note that there is a small modification possible in the switching algorithm which can 
possibly give a faster response time during start up. This performance boost can be obtained by 
closing switch S1, S3 and S5 for a small time before the switching cycle, as discussed earlier, is 
started. The start situation is shown in Figure 5.31. As can be seen from this figure the capacitors 
C1, C3 and C4 are put in tracking mode during start up. Because of the tracking mode, the initial 
voltages VC3(0) and VOUT_FILTER(0) will already be charged to the input voltage V6’(t). In this 
situation the output of the filter can be set closer to the expected DC output voltage before the 
switching algorithm is started. This method can give a tremendous response time boost when 
relatively small rippled input signals have to be filtered or when it is known how an initial value 
close to the final output voltage can be obtained. 
 

For example when we used this method for second last example (C1=C2=0.5pF C3=C4=1pF) by 
assuming an initial voltages of 0.8V, a start-up response as shown in Figure 5.32 will be obtained. 
Where it first took 18 cycles to reach 99.4% of its output voltage it will now only take 12 cycles. 
Let’s say we take 1 clock cycle of the 10MHz chopper clock to initialise, known to be Tchop, the 
total time to converge towards its final value will now take around 2,5uS instead of 3.6uS. This 
shows that the start-up time can be decreased with this modification. 
 

 

Figure 5.32 Output response (red) of the notching switched capacitor filter with boosted response time. 
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Figure 5.35 shows the final circuit implementation of the new filter concept. As shown by this 
figure the switches S1 and S2 are replaced by transmission gates M1-M2 and M3-M4. These 
transmission gates obtain low on-resistance and decrease the amount of charge injection. With the 
same reasoning the switches S3 and S4 were replaced by a transmission gate. The output switch S5 
is replaced by three single MOS switches, M9, M10 and M11, where M9 and M11 are used as 
dummy switches, to circumvent that channel charge of M10 is injected into capacitor C4.  
 

5.2.5.2.6.1 Non-idealities in the ripple blocking system 

 
As already indicated in the previous circuit description, we have to deal with component non-
idealities in the system. In following sub sections more of these non-idealities and the way how 
we solved them will be discussed. 
 

On resistance of the track and hold switches 

 
One of the various non-idealities which have to be taken into account is the on-resistance of the 
track and hold switches. In Subsection 5.2.5.2.1 we assumed ideal switches with zero on-
resistance and a zero output impedance of the trans-impedance stage. In this circumstance the 
track and hold capacitors C1 and C2 are charged infinitely fast to the voltage of interest. However, 
when switch S1 and S2 are replaced by real MOS switches, which are known to have non-zero on-
resistance, the characteristics of the filter system will change.  
 
 
The on-resistance of a MOS switch together with the capacitance of the track-and-hold capacitor 
C1 or C2 will form a time constant. The bigger the capacitance of the track and hold capacitor 
and/or on-resistance of the MOS switch the longer the charging time of the capacitor will be. In 
other words the time constant increases. When the frequency of the chopper clock is too fast in 
comparison with this time constant, the capacitors will not completely charge. This will lead to a 
slower response than that of the ideal filter because the amount of charge delivered to C4 per 
cycle n will be lower.  
 
 
It is very interesting to note that the accuracy of the system itself will not decrease with large time 
constants. The output will still get to the correct DC component of the input signal. When the 
capacitors C1 and C2 cannot exactly track the input signal at the moment of sampling this will 
result in sampled values which will still be exactly mirrored around the wanted DC component of 
the modulated input signal, as is shown in Figure 5.36. This means that the capacitor values for 
C1 and C2 can be relatively big. 
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Figure 5.36 The slow tracking response as result of big but equal time constants seen at the upper plates of C1 (red 
line) and C2 (purple line) doesn’t lead to a wrong final output signal (gray signal). 

We have to note that both time constants in this situation should be equal to each other. As the 
time constant will add a phase shift to the tracked signal, different time constants will lead to 
sampled values which are not exactly mirrored around the DC component.  
 
In the previous explanation the on-resistance of the switches were assumed to be constant. However, 
when the switches S1 and S2 are replaced by a simple MOS switch, the on-resistances of the switches 
during tracking depend very much on their VGS. As we deal with an input signal with unknown ripple 
values, the sample values can be almost anywhere in-between VDD or VSS. As the VGS of a single MOS 
switches depends on the input signal V6’(t) and the control signal value at the gate, the on-resistance 
of a single MOS switch will greatly vary with the input voltage. This would mean that both track and 
hold switches would have different on-resistance at the moment of sampling resulting in different 
time constants. To guarantee a low on-resistance and thus acceptable and matched time constants 
over a broad input signal range transmission gates were implemented.  
 
The transmission gate implementation of switch S1 is shown in Figure 5.37. 
 
 
 
 
 
 
 
 

Figure 5.37 Switch S1 implemented as transmission gate to guarantee low on-resistance over the full voltage range 
of the filter input signal V6’. 

Instead of one MOS transistor the transmission gates uses two MOS transistors in parallel. The 
control signal of both transistors are complimentary. Because of the complimentary control signal, 
both transistors will be on or off at the same time. Knowing that the PMOS has low on-resistance 
for high values of V6’ while the NMOS has low on resistance for low values of V6’ the parallel 
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connection of both devices, will result in a more constant and low on resistance over the full 
voltage range of V6’, as shown in Figure 5.38.  
 
 
 

 
 
 
 
 
 

 

Figure 5.38 On-resistance of transmission gate (black dotted line) shows more constant and low on-resistance over 
the full voltage range of V6’ 

Charge injection by the sample and hold switches 
 
Charge injection originating from clock feedthrough and channel distribution, as discussed in the 
section about the chopper switches, can be another concern. When S1 and S2 are replaced by their 
MOS counterparts they will generate spikes during their switching operation. The spikes itself 
will not be seen at the output of the filter. However, the output is affected in a different way. The 
charge spikes lead to an additional voltage at capacitors C1 and C2. In this case the sampled 
values will not exactly mirror around the DC component of the input signal V6’. The additional 
voltages on both track and hold capacitors translate into a disturbance of the filter output voltage 
in the form of a DC shift. To decrease this voltage shift error we can increase the capacitance of 
capacitor C1 and C2. However there is another possibility that can help to decrease the problem. 
Actually the problem is already decreased by the implementation of the complimentary switch 
discussed in the previous subsection. From the previous subsection we know that the 
complimentary switch structure is used to lower the on-resistance. Fortunately the complimentary 
architecture of the switch is also useful to lower its charge injection. How the complimentary 
switches reduce the charge injection can be seen at the implementation of switch S1 in Figure 5.39. 

 
 

 

 

 

 

Figure 5.39 Transmission gate reduces the effect of charge injection which is a result of the recombination of 
opposite charged channel carriers  

As shown by this figure the opposite charge packets (positively charged holes and negatively 
charged electrons) injected by the two MOS transistors cancel each other. However, from [64] we 
know that complete cancellation will only occur for one particular input level. 

 

V6’ 
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Another feature of transmission gates is that it suppresses spikes originating from clock feed-
through. As the clocking signal of the PMOS and NMOS are complimentary the spikes resulting 
from the fast clock transitions will be in opposite direction such that they will cancel each other. 
However, as it was for charge cancelation operation of the transmission gate the cancelation of 
the spikes will only occur at one particular input voltage. To reduce spike and charge injection in 
this situation one could think about using so-called bootstrapping. 

Mismatch between the track and hold capacitors 
 
Another point of concern can be the possible mismatch between capacitors C1 and C2. Mismatch 
can be reduced at layout level by using big geometry capacitors, interleaving, cross coupling and 
common centroid structures. As we can conclude from earlier discussions mismatch between the 
two track and hold capacitors C1 and C2 will lead to different time constants during both tracking 
moments. But, more importantly, it will result in a deviation of the wanted DC output in the form 
of a DC voltage shift. The percentage error from a matched situation can be calculated by the 
following equation. 
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As shown by Equation (5.56), the amount of error caused by un-equal capacitor values depends 
on the sampled values. The closer the sampled values are mirrored around the DC component of 
the filter input signal the smaller the error caused by the mismatch. As we know, the sampled 
values itself depend on the amplitude of the modulation ripple and the moment that it is sampled.  

 

 

 

 

 

 

 

 

Figure 5.40 Input signal V6’ (green line) correctly tracked and sampled by C 1 (purple line) and C2 (red line). Final 
output signal (gray line) shows a 7 percentage deviation from wanted DC output signal (black dotted line) for a 200 
percentage mismatch between the capacitors C1 and C2  

When for example the capacitance of C1 is two times bigger than that of C2 (mismatch of 200%) 
while the sampled values are correctly mirrored around the wanted DC value, for example 

Wanted DC output voltage
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1.213V and 0.787V, the DC output voltage of the filter will deviate 7% from the 1 volt DC 
component. The signal and resulting output of the filter is shown in Figure 5.40. As shown by this 
figure a (unrealistic) big mismatch (C2/C1=0.5) between both capacitors doesn’t have to mean that 
the deviation from the expected DC component will be that big. It all depends on the ripple 
magnitude and the moment of sampling. Fortunately, the DC shift error at the output of the filter, 
caused by capacitor mismatch, will be tremendously reduced because of the negative feedback 
configuration of the DDA, as will be shown later.  
 

On-resistance of the charge redistribution switches 
 
As we know from previous the switches S3 and S4 are used for redistributing the charge of 
capacitors C1, C2 and C3. When implemented by their MOS counter parts their on resistance has 
to be taken into account. As was the case for the track and hold switches the voltages that 
switches S3 and S4 have to process can be anywhere in between VDD and VSS. So, to ensure low on-
resistance over the full voltage range of the possible sample values we implemented transmission 
gates as switches. 
 

A-symmetrical discharge of the track and hold capacitors 
 
When the capacitors C1 and C2 have different values the voltage change over both capacitors 
during their charge redistribution to C3 will not proceed symmetrically around the final value 
before charge balance occurs. When we take a closer look at previous figure we can see that 
during the a-symmetric discharge the voltage on C3 jumps shortly.   
 
 
 
 
 
 

 

 

 

 

 

Figure 5.41 Voltage jump at capacitor C3 (gray dotted line) as a result of unequal charge distribution between 
capacitor C1 and C2 

In Figure 5.41 we have zoomed in on this phenomenon. 
 
Beside that differences in capacitance of C1 and C2 will lead to this phenomenon, more non-
idealities (such as unequal switching timing and difference in on-resistance of the complimentary 
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MOS switches M5-M6 and M7-M8), will lead to a-symmetrical discharge. Fortunately, as long as 
the capacitors C1 and C2 are matched these non-idealities will not lead to a corrupted value of the 
steady state DC at the output of the filter. 
To prevent that the voltage jump at C3 is passing through the output of the filter, switch S5 and 
capacitor C4 have been added. How this can help to prevent the jump not to reach the output of 
the filter can be explained as follows. 
 
 
From earlier discussions we know that S5 is still open during charge balancing of C1, C2 and C3. 
As switch S5 is open during this operation it actually isolates the output of the filter from 
capacitors C1, C2 and C3. So, with this implementation we give these capacitors the time to reach 
their steady state voltage value before the charge of C3 is redistributed to output capacitor C4. 
When at the next clock cycle switches S3 and S4 are opened, immediately followed by a closing 
action of switch S5, charge balancing will now only occur between capacitors C3 and C4. Once the 
output of the filter has reached its final DC value there will be in the ideal case no longer charge 
balancing between C3 and C4. This will result in a ripple-free output, as shown by the grey solid 
line in Figure 5.41.  
 
 
When the final output voltage of the filter is reached there will be a charge balance between the 
matched capacitors C3 and C4. In this situation there will be no current flowing through MOS 
switch M10. As in this situation the on-resistance of this switch will be of no concern in terms of 
voltage drop one could think to implement the switch by a single transistor. However as already 
introduced earlier the output switch S5 is replaced by the MOS switches M9, M10 and M11. The 
reason to use 3 switches to implement the operation of the output switch will be explained in the 
following section. 
 

Charge injection caused by the output the switch 
 
One of the non-idealities of switch S5 we have to take into account is the charge injection when it 
is replaced by its real MOS implementation. When S5 is replaced by a single MOS transistor, it 
will inject a part of its channel charge onto capacitor C4 when it is switched off. This injected 
charge will add an additional voltage onto capacitor C4 resulting in a wrong value at the output of 
the filter. As the filter is incorporated inside the loop of the fixation system, the feedback loop 
will try to correct for this wrong output value. However, because of the discrete nature of the loop 
it will not be able to nullify this error, resulting in an alternating output, where the resulting ripple 
will depend on the amount of charge injected by the MOS switch. One solution to lower this 
ripple would be the choice of a bigger capacitance of C4. Fortunately there was another solution 
found which showed a better performance and can be implemented with a relatively small 
capacitor value. The solution, as already note earlier, is to add so-called dummy switches and 
ensure that C3 and C4 are properly matched [65]. Note that capacitors can be matched with high 
accuracy, even better than 0.1% [55]. The ultimate configuration is shown in Figure 5.42. 
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Figure 5.42 When the impedances at both sides of MOS switch M10 are equal the injected channel charge during 
switching will be forced to split almost equally between the source and the drain. Half sized dummy switches M9 and 
M11 will use these halve sized channel charge packages to create their own channel.  

During the fast clock transitions of Clk_S5 the impedance levels of capacitors C3 and C4 will 
dominate. Because of the matched low impedance levels of the capacitors during the switching 
action the channel charge of M10 will be forced to split almost equally between the source and 
drain of M10. By adding half-sized dummy switches M9 and M11 (in comparison with MOS switch 
M10), controlled by a clock signal, which is complementary to the clock signal of MOS switch 
M10, the injected 50% channel charge of switch M10 will be completely used to generate a channel 
in dummy switch M9 and M11. As a result no additional charge will be injected into C4. 
Furthermore, for even better matching the capacitor values of C3 and C4 should be chosen much 
bigger than the expected parasitic capacitances connected at each node of the source and the drain 
of M10 

Switching timing of the track and hold switches 
 
Apart from a precise timing of the control signal itself, non-ideal switches will have a finite turn-
on and turn-off switching time which can deviate per switch. So, in reality, very precise timing 
between the opening of switch S1 and the opening of switch S2 will be difficult to obtain. As we 
explained earlier this timing is important, in order to have two sampled values, VIN1 and VIN2, 
which are exactly mirrored around the wanted DC output.  
 

An interesting property of the new filter concept is that when the input of the filter approaches a 
rectangular waveform the timing of the switches doesn’t have to be that accurate, because the 
value to be sampled will not change that much over small deviations of the switches closing time. 
So, according to Equation (5.44) the DDA circuit shown in Figure 5.23 can lower the effect of 
switching timing error by increasing the value of its integrating capacitor C1.  

Voltage offset at the output of the filter 
 
For the most accurate operation it is important to have as less as possible voltage offset at the 
output of the filter. However it can be shown that this mainly holds when it is used in an open 
loop configuration. The voltage disturbance at the output of the filter, caused by for example the 
charge injection or unmatched capacitors C1 and C2, will be of much less concern when the filter 
is incorporated in the feedback loop of the DDA. This is because, when incorporated inside the 
loop of the negative feedback system, the high loopgain will decrease the effect of this error 

C3 C4

M10

Clk_S5 Clk_S5Clk_S5

M11M9

VOUT_FILTERVC3
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considerably. The favourable effect of high loop gain can be explained by the following simple 
example. In Figure 5.43 an example of a negative feedback loop configuration is shown. As 
shown in this system we included a disturbance voltage at the output of the error amplifier.  

 

 
Figure 5.43 Voltage offset VDISTURBANCE at the output of an high gain differential amplifier in negative feedback 
configuration. 

When analysing the system the following equation can be constructed 
 
  ioVEDISTURBANCo VVAVV    (5.57) 

 
Solving for the output voltage Vo leads to 
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This equation shows that VDISTURBANCE is suppressed by factor 1/(1+AVβ), where AVβ is the 
loopgain. This means that the effect of an additional voltage shift at the output of the filter will be 
reduced by the loop gain of the system. Thus, the high loop gain of the negative feedback 
configuration relaxes the need of matching the capacitors C1 and C2 and the need of accurate 
charge compensation of both capacitors. 
 
Now that we have discussed the operation principle of the new filter we will now start to discuss 
the implementation of the timing circuit that we used to generate the needed switching sequence. 

5.2.5.3 Clock generator (CG) circuit for the notching switch capacitor filter 
 
In this section the Clock Generator (CG) circuit, used for controlling the switches of the Notching 
Switched Capacitor Filter (NSC-F), will be discussed. As we discussed in the previous section the 
switches of the notching switched capacitor filter, as was shown in Figure 5.35, has to follow a 
predefined turn-on and turn-off sequence, which has to be synchronized with the chopper clock. 
The logic circuitry to generate this synchronized turn on and turn off sequence is shown in Figure 
5.44 
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Figure 5.44 The proposed control circuit for the notching switched capacitor filter 

As shown in this figure, we have implemented two delay blocks. Furthermore we implemented a 
Data Flip Flop (D-FF) configured as Toggle Flip Flop such that it acts as a clock divider. The 
clock divider configuration we used is the same as was discussed in Section 5.1. Furthermore we 
have implemented 4 NAND ports followed by an inverter, to generate 4 complimentary clock 
outputs. 
 
The cross coupled inverter configuration at the complimentary output of NAND 4 is implemented 
to obtain a more symmetrical differential clocking signal with faster transitions at the switch M10 
and the two dummy switches M9 and M11 shown in Figure 5.35. This implementation will increase 
the chance of the 50% channel redistribution to both sides of the MOS switch M10, such that it 

increases the effectives of the charge cancelation by the dummy switches [65].  
 
One critical property of the circuit is that it can produces glitches at differential outputs. These 
glitches which usually are unwanted voltage spikes are a result of the unbalanced propagation 
delays of the gates [73]. The voltage spikes can corrupt the on-off states of the switches of the 
switched capacitor filter. However it can be shown that by the implementation of the delay blocks 
the glitches can be removed from the critical outputs nodes. Without the delay blocks the spike 
would happen at capacitor C1 (Figure 5.35), at the moment that C1 is already holding the sampled 
voltage VIN1. In this situation the spike will add extra charge to capacitor C1 which will result in an 
additional voltage superimposed on voltage VIN1. However, with the delay blocks, the spike and 
thus charge injection will not happen at C1 but at capacitor C2. Fortunately in this situation the 
charge injection will occur at the moment that the sampling capacitor C2 is still waiting for its 
tracking operation. As the tracking mode of C2 will be activated at the next clock transition of the 
chopper clock, the added voltage caused by the charge injection will be nullified during this 
mode. The spike at NAND 4 will not harm because of another reason. The spike processed by 
NAND 4 is blocked by the cross coupled inverter configuration at the output of NAND 4.  
 
Now that we have discussed the full architecture of the clock generator we now can look at the 
rest of its operation principle. As shown in Figure 5.44 one side of the delayed control signal is 
connected to NAND-port a1 and NAND-port a3 while the other side of the delayed clock signal 
is connected to NAND-port a2 and NAND-port a4. In same figure it is shown that the clock 
divider will impose half of the time a positive input at NAND-port b1 and NAND-port b2 and the 
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other half at NAND-port b3 and NAND-port b4. This will cause the output of NAND1 and 
NAND2 to convey the delayed control signal at the input terminal to the output for half of the 
period of the divided clock signal, while NAND3 and NAND4 will do the same during the other 
half. This results in the wanted complementary control signals for the 5 switches shown in Figure 
5.35. 

5.2.6 Final circuit implementation 

In this section the final circuit implementation of the multiplication fixation system will be 
discussed. Figure 5.45 shows the top level of the final implementation of the gain stabilization 
circuit. The circuit implementation of the chopper stabilized DDA is shown in Figure 5.46 

 

Figure 5.45 Final circuit implementation of the gain fixation system 

 

 

 

 

 

 

 

 

 

Figure 5.46 Final circuit implementation of the DDA 
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M13 are turned off, the bias voltage VA0_BIAS, will be held on capacitor CA0_BIAS_1. So, now capacitor 
CA0_BIAS_1 is holding the correct bias voltage for the buffering operation of the multiplication cell 
MREAL, while capacitor CA0_BIAS_A is holding a correct bias voltage for the multiplication action of 
MREAL and the right gain A of the cascaded A/0 cells.  
 
The foregoing procedure can be repeated to refresh both bias voltages. However, the moment that 
a capacitor can be connected to the loop should be limited at predefined periods. This is necessary 
to isolate the response of the loop from the capacitors during the stabilization time of the loop 
when the resistive divider is switched. As capacitors CA0_BIAS_A and CA0_BIAS_1 are already charged 
in a forgoing charging period we can expect relatively less disturbance of the loop when the 
voltage over the capacitors CA0_BIAS_1 or CA0_BIAS_A are refreshed during the stable periods of the 
loop. 
 

 
Figure 5.51 Final circuit implementation of the A/0 cells 

Figure 5.51 shows the final circuit implementation of the A/0 cells and MCOPY. As shown by this 
figure we also use MOS current sources inside these cells. Furthermore we have used an dummy 
switch M1-M2. With this A/0 cell configuration we obtain a matched gain stage structure with the 
multiplication cell MREAL 
 
With the use of (matched) MOS current sources for MCOPY, MREAL and the other A/0 cells we can 
conclude another possible feature of the refreshing system. As frequently refreshing of the 
sampling capacitors CA0_BIAS_1 or CA0_BIAS_A is only necessary for time variant parameters as for 
example temperature and leakage of the bias capacitors it is plausible that the fixation system can 
be completely turned off till refreshment is expected to be needed. As temperature is a relatively 
slowly varying parameter and leakage of the capacitors is minimized by the MOS current sources 
(draw no DC gate current), the frequency of refreshments can be set relatively very low. This 
shows an opportunity to lower the mean power consumption of the gain/multiplication fixation 
system tremendously. Furthermore, a low noise contribution to the bias voltage can be obtained 
when relatively big geometries of the MOS current sources are used.  
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5.2.6.2 Automatic common mode input voltage adjustment circuit  
The common mode voltage at the negative input port of the DDA is defined by the internal 
structure of the multiplication cell MCOPY, while the common mode voltage at the positive input 
port of the DDA is defined by the divider block. For better performance of the DDA the common 
mode voltage at both inputs of the DDA should be placed close to each other such that the closely 
matched tail current sources of both DDA input pairs are affected by the same load conditions. 
The matched load conditions of both current sources will lead to closely matched tail currents, 
which is an important design issue as was discussed in Sub Section 5.2.3.5.2. From Figure 5.46 
we can see that both tail current sources of the DDA are implemented as cascodes which actually 
already lowers the effect of different load conditions. However, beside equal input common mode 
voltages of both input pairs of the DDA the input common mode voltage of the multiplication cell 
MCOPY is also important. The input common mode voltage of MCOPY should be close to the input 
common mode voltages of the other cascaded A/0 cells, such that the effect of finite output 
impedance of the current sources on the gain of these cells is the same as it is for MCOPY, leading 
to a  better gain match of the stages. 
 
To obtain closely matched common mode voltages at both differential inputs of the DDA and 
obtain equal common mode voltages at the multiplication cell MCOPY and the other A/0 cells the 
circuitry of the fixation system is modified as shown in Figure 5.45 and Figure 5.46 
 
As already noted in the introduction of the final circuit implementation, opamp OA3 is part of a 
negative-feedback configuration which forces the magnitude of the voltages Vee1 and Vee2 
(Figure 5.46) to be close to each other by adjusting the gate voltage at M7 (Figure 5.45). When we 
take a closer look at the circuit depicted in Figure 5.45 we can see that the control of the gate of 
M7 by opamp OA3 will lead to an adjustment of the current delivered by current source M7. As 
this current is sent through M6 it will set the VGS voltage of M6. This VGS together with the VGS of 
M5, which is defined by reference current I1, will define the voltage at the bottom of the resistive 
divider. So, while the current source I1 still defines the two differential output voltages of the 
divider block, the VGS of M6 plus that of M7 will now define the common mode voltage of both 
differential voltages of the divider. From above explanation we can see that the common mode 
voltage of the positive input port of the DDA and that of MCOPY is controlled by opamp OA3. The 
output common mode voltage of MCOPY and thus the input common mode voltage at the negative 
input of the DDA is still defined by the internal structure of MCOPY. Because of the negative 
feedback configuration of opamp OA3 the voltage Vee1 and Vee2 will be forced to be  close to 
each other, which will result in the matched input common mode voltages of MCOPY, the other A/0 
cells and both input pairs of the DDA. 
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6 Simulation results 

In this chapter we will discuss the simulation results of the final circuit implementation which 
was discussed in Chapter 5. For the simulation setup we used a chopper clock frequency of 
10MHz. Furthermore we configured the resistive divider of the divider block to generate a 
differential voltages of 4.3mV and 13.60mV such that an attenuation factor B equal to 3.162 is 
obtained. With the following simulation results we will show how close the gain of MCOPY, the 
gain of the A/0 cells and the multiplication factor of MREAL are set to their expected value of 
3.162 over input offset, temperature and power supply variations. 
 
Figure 6.1 shows the gain of MCOPY over time for an input offset VOS1 of 1mV during the 3.162 
attenuation mode of the divider block. Note that the input voltage of MCOPY is 4.3mV 

 

Figure 6.1 Gain of MCOPY over time for an input offset voltage VOS1 of 1mV at MCOPY 

As shown by this figure the gain doesn’t look constant at all. However from the chopper 
technique discussed in Section 5.2.4.1 we know that this is a result of the frequency translated DC 
offset caused by the modulation of the chopper at the input of MCOPY. For the real gain of MCOPY 
we have to look at the mean value of the gain in Figure 6.1.  
 

 

Figure 6.2 The gain of MCOPY for different input offsets at the input of MCOPY over time during the 3.16 gain mode 

VOS1=2mV 

VOS1=1.5mV 

VOS1=1mV 

VOS1=0.5mV 

VOS1=0mV 
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Figure 6.2 shows the gain of MCOPY for different input offsets when the divider block is 
configured in the 3.162 attenuation mode. As shown by this figure the mean gain value 
approaches the expected 3.162 gain with 0.25% error. 
 

 

Figure 6.3 The gain of MCOPY for different input offsets at the input of MCOPY over time during the unity gain mode 

Figure 6.3 shows the gain of MCOPY for different input offsets when the divider block is 
configured in the unity gain mode. Here we can clearly see that the mean gain of MCOPY 
approaches unity gain with a 0.1% error. Side note: The big spikes in above figures are a result of 
the mathematical operation obtained to calculate the gain of MCOPY. As the output is a little 
delayed in comparison with the input signal as a result of the finite bandwidth of MCOPY, the 
output/input division resulted in the spikes.   
 
Before we analyse the gain and multiplication operation of MREAL we will first look at simulation 
that verify the operation of the new Notching Switched Capacitor  Filter.  
 

 

Figure 6.4 Input signal (red curve) and output signal (blue curve) of the new Notching switched Capacitor Filter 
for an input offset of 1.5 mV at the input of MCOPY 

VOS1=2mV 

VOS1=1.5mV 

VOS1=1mV 

VOS1=0.5mV 

VOS1=0mV 
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Figure 6.4 shows the input signal (red curve) and output signal (blue curve) of the filter for an 
input offset VOS1 of 1.5mV at the input of MCOPY.  
 
In Figure 6.4 we can clearly see the two different biasing modes over time. The difference in the 
ripple between both modes is a result of the input offset that is amplified by MCOPY. The lower 
ripple amplitude is a result of the unity gain amplification of the offset at MCOPY during the unity 
gain biasing mode, and the higher magnitude ripple results from the 3.162 amplification of the 
offset during the 3.162 gain biasing mode. 
 

 

Figure 6.5 A close up view of the input voltage (red) and output voltage (blue) of the Notching Switched Capacitor 
Filter for an input voltage of 1.5 mV at the input of MCOPY 

Figure 6.5 shows a close up of the  input signal (red curve) and output signal (blue curve) of the 
filter during the 3.162 amplification mode. The input signal shows the expected shape as was 
discussed in Section 5.2.5.1. As shown by the input signal the modulators used for chopping are 
introducing spikes during the switching operation. The effect of the slowdown in voltage 
transitions is a result of the changing time constant during the tracking modes of the track-and-
hold capacitors of the filter.  When we look at the output voltage of the filter in Figure 6.5 it looks 
like that the output signal contains no ripple. Close inspection of the output signal of the filter 
showed an residual peak to peak ripple of around 6uV as shown in Figure 6.6. The low residual 
ripple is a cause of the small charge injection that is left after the imperfect charge cancelation by 
the dummy switches, which we discussed in Subsection 5.2.5.2.6.1. 
 

 
Figure 6.6 The close up view of the output signal of the Notching Switched Capacitor Filter shows a very low 
residual ripple  
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Figure 6.7 Transient of the DDA output voltage for different temperatures. 

Next to be investigated is the loop response over temperature. Figure 6.7 shows the transient of 
the output signal of the DDA for the temperatures -55°C, 27°C and 120°C. As we know from a 
previous chapter the output signal of the DDA is the actual biasing signal of the multiplication 
cell MCOPY. From the output responses of the DDA as shown in Figure 6.7 we can see that the 
chopper stabilized fixation system reaches its stable output in less than 5us over the full 
temperature range of -55°C to 120°C. The maximum time needed to stabilise at the temperature 
extreme of 120°C was us used to set the turn-on timing of the biasing capacitors switches. When 
we look in Figure 6.7 at 5us and 13us we can clearly see the response of the loop as result of the 
switching mechanism of the capacitors switches. 
 

 

Figure 6.8 Loop response at output DDA (red curve) and the voltage over the sampling capacitors CBIAS_A0_1 (blue 
curve) and CBIAS_A0_A (pink curve) 

Figure 6.8 shows the loop response including the sampling action of the sampling capacitors at a 
temperature of 27°C. The pink transient is the voltage over CBIAS_A0_A while the blue transient is 
the voltage over biasing capacitor CBIAS_A0_1. In Figure 6.8 we can clearly see that the correct 
timing of the sampling switches result in  sampling voltage over both capacitors that are sampled 
during the stable region of the loop responses. From Figure 6.8 we can also see that the 
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27°C 

-55°C 

VOUT_DDA 

Voltage over CBIAS_A0_1 

Voltage over CBIAS_A0_1 



 168

refreshment of capacitor CBIAS_A0_A at 21us does not disturb the loop response as it already charged 
during the previous charging cycle.  
 
As we know from Section 5.2.6.1, both sampled bias voltages are used to bias the multiplication 
cell MCOPY alternately to an gain of 3.162 and unity gain. Furthermore we know that the sampled 
bias voltage over capacitor CBIAS_A0_A  will also be used for the bias of the other cascaded A/0 cells. 
To see that the alternating bias condition result in the wanted multiplication operation of MREAL, 

we have to look at the simulation results of the differential gain of MREAL as shown in Figure 6.9. 
Note that for this simulation we used an input voltage at MREAL of 10uV. 
 

 

Figure 6.9 The alternating differential output voltage of MREAL during an 1.5 mV offset at MCOPY 

As expected from Figure 6.8, the gain of MREAL start to switch alternatingly between the two gain 
modes at the moment that both sampling capacitors have sampled the correct bias voltages from 
the loop response. That both gain modes closely match the expected 3.162 gain and unity gain is 
shown in Figure 6.10 
 

 

Figure 6.10 Close up view of the alternating gain of MREAL 

3.1619

1.003
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Now that we have shown the correct operation of the gain/multiplication fixation procedure.  We 
now will investigated the sensitivity of the multiplication factor obtained by MREAL, and the gain 
obtained by the A/0 cells to the 3 input offsets in the gain/multiplication fixation system. 
Furthermore we will look at the sensitivity to temperature and power supply variation. The results 
of these simulations will now be discussed. 
 
Figure 6.11 shows the sensitivity of the multiplication factor for different input offsets at MCOPY 
over the differential input voltage of MREAL 

 

 

Figure 6.11 The multiplication factor of MREAL over its differential input voltage for different input offsets at the 
cell MCOPY 

Figure 6.12 shows the sensitivity of the multiplication factor for different input offsets at MCOPY 
for an differential input voltage of 10uV at MREAL  

 

 

Figure 6.12 The multiplication factor of MREAL for an input voltage of 10uV over the input offset at the cell MCOPY 
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Figure 6.13 shows the sensitivity of the gain for different input offsets at MCOPY over the 
differential input voltage of an A/0 cell 

 

 

Figure 6.13 The gain of an A/0 cell over its differential input voltage for different input offsets at the cell MCOPY 

 
 
 
Figure 6.14 shows the sensitivity of the gain over input offset at MCOPY for an differential input 
voltage of 10uV at an A/0 cell  

 

 

Figure 6.14 The gain of an A/0 cell for an input voltage of 10uV over the input offset at the multiplication cell 
MCOPY  
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Figure 6.15 shows the sensitivity of the multiplication factor obtained by MREAL for different 
input offsets at the negative input of the DDA. 

 

 

Figure 6.15 The multiplication factor of MREAL over its differential input voltage for different input offsets at the 
negative input port of the DDA 

 
Figure 6.16 shows the sensitivity of the multiplication factor over input offset at the negative 
input port of the DDA for an differential input voltage of 10uV at MREAL  

 

 
 

Figure 6.16 The multiplication factor of MREAL for an input voltage of 10uV over the input offset at the negative 
input port of the DDA  

Figure 6.16 shows that the multiplication factor A is highly in-sensitive for input offsets at the 
DDA. 
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Figure 6.17 shows the sensitivity of the A/0 cell gain for different input offsets at the negative 
input port of the DDA over the differential input voltage of an A/0 cell 
 

 

Figure 6.17 The gain of an A/0 cell over its differential input voltage for different input offsets at the negative 
input port of the DDA 

 
 
 
Figure 6.18 shows the sensitivity of the gain over input offset at the negative input port of the 
DDA for an differential input voltage of 10uV at an A/0 cell  
 

 

Figure 6.18 The gain of an A/0 cell for an input voltage of 10uV over the input offset at the negative input port of 
the DDA 
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Figure 6.19 shows the sensitivity of the multiplication factor obtained by MREAL for different 
input offsets at MREAL. 
 

 

Figure 6.19 The multiplication factor of MREAL over its differential input voltage for different input offsets at 
MREAL 

As shown by Figure 6.19 the multiplication factor obtained by MCOPY is very in-sensitive for its 
input offset. 
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From the change in the responses of the control loop showed in Figure 6.7 we already observed 
the change in the two biasing voltages over temperature. That these bias voltages resulted in the 
wanted multiplication of MCOPY and gain of the A/0 cells can be seen by the following figures. 
 
Figure 6.20 shows the resulting multiplication factor obtained by MREAL for different 
temperatures. 
 

 

Figure 6.20 The multiplication factor of MREAL over its differential input voltage for different temperatures 

 
 
Figure 6.21 shows the resulting multiplication factor obtained by MREAL over the temperature 
range from -55°C to 120°C. 
 
 

 

Figure 6.21 Multiplication factor of MREAL for an input voltage of 10uV over the temperature range from -55°C to 
120°C 
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Figure 6.22 shows the sensitivity of the A/0 cell gain for different temperatures. 

 

Figure 6.22 The gain of an A/0 cell over its differential input voltage for different temperatures 

 
 
Figure 6.23 shows the sensitivity of the A/0 cell gain over the temperature range -55°C to 120°C. 
 
 

 

Figure 6.23 The gain of an A/0 cell for an input voltage of 10uV over the temperature range from -55°C to 120°C 
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Figure 6.24 shows the resulting multiplication factor obtained by MREAL for different power 
supply voltages. 
 

 

Figure 6.24 The multiplication factor of MREAL over its differential input power for different supply voltages 

Figure 6.25 shows the resulting multiplication factor obtained by MREAL over the power supply 
voltage range 3.6V to 4.4V. 
 

 
Figure 6.25 Multiplication factor of MREAL for an input voltage of 10uV over the power supply range from 3.6V to 
4.4V   
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Figure 6.26 shows the sensitivity of the A/0 cell gain over different power supply voltages. 

 

Figure 6.26 The gain of an A/0 cell over its differential input voltage for different power supply voltages 

 
 
 
Figure 6.27 shows the sensitivity of the A/0 cell gain for an input voltage of 10uV over the power 
supply voltage 3.6V to 4.4V. 

 

Figure 6.27 The gain of an A/0 cell for an input voltage of 10uV over the power supply range from 3.6V to 4.4V 
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Figure 6.28 shows the bar graph gathered from a 119 runs Monte Carlo simulation of the gain of 
MCOPY during the 3.162 gain mode. 
 

 
 

Figure 6.28 Bar graph of the percentage deviation from the expected gain (3.162) of MCOPY 

As we already observed from Figure 6.6 the gain fixation system obtained a fixation around 
3.154x for MCOPY instead of the expected 3.162x. This static error resulted in a shift from the zero 
percentage in Figure 6.27. [74] The static error can be solved by altering the attenuation factor B 
of the divider block.  
 

 
 

Figure 6.29 Bar graph of the percentage deviation from the expected unity gain of MCOPY 

Both plots show accurate operation of the gain fixation system over the 119 montecarlo runs 
The overall error is much lower than the maximum allowed deviation in the multiplication factor 
A which is -4.5% and 5.5% as was discussed in Section 4.3.1  

Percentage deviation from the expected 3.162 gain           (%) 

Percentage deviation from the expected unity gain of MCOPY       (%) 
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7 Conclusions 

In Subsections 1.5, 1.6, and 2.4.2 the importance of an accurate log transfer of the RF power 
detector was explained. We have shown that the precise measurement ability of the RF power 
detector is very important because for example it determines the accuracy of the output power of 
the system that it controls. For the precise predictability of the output power of such a system it 
was shown that the log transfer of the RF power detector has to be fixed and accurately known.  
 
In Chapter 3 we have proposed a new method that possibly can be used to continuously calibrate 
the transfer of a RF power detector to a predefined and fixed position over mismatch, part to part 
spread, temperature and input frequency. It was shown (Figure 3.22) that this calibration method 
is based on a smart switching algorithm around a log device. With the inclusion of the switching 
algorithm it was shown that we can obtain two simultaneous output voltages (denoted in Figure 
3.22 by VOUT¯¯¯¯ and VOUT_S ) from one single log device, both containing different information 
content. It was shown that the voltage VOUT¯¯¯¯ resulted in a slope, dynamic range and intercept 
fixated log read-out while the voltage VOUT_S at the same time gives a measure about the slope of 
the device log transfer. It was stated that the slope information voltage VOUT_S , which is obtained 
by an accurate multiplication switching operation (Section 3.2) at the switched input of the log 
device, can be used to automatically control the slope of the log device transfer to correct values. 
This multiplication used for the multiplication switching operation was called the multiplication 
factor A. 
  
The system level simulations in Section 4.2 have proved that the slope, intercept and dynamic 
range of the log device transfer can be fixed by the new calibration method. However in Section 
4.2 it was also shown that the slope fixation procedure, without further modification, introduced a 
negative side effect. Namely, it decreased the dynamic range at the higher input range. 
Fortunately a new dynamic range extension method (Section 3.2.2) was found that can be used to 
extend the dynamic range to higher input levels.  
 
The new dynamic range extension method showed us the capability to extend the dynamic range 
without the use of two highly matched log devices which is normally used to obtain a higher 
dynamic range. As was shown in Figure 3.16 the dynamic range extension can be obtained by 
placing a so-called Automatic Attenuation Control (AAC) circuit after the switched input of the 
logarithmic device. The system simulation (Figure 4.5) in Section 4.2 proved the operation of the 
new extension method. It was shown that the AAC can be automatically switched to attenuation 
operation when the input of the logarithmic device reaches a critical level. With the graphical 
representation of the dynamic range extension procedure depicted in Figure 3.17 we have shown 
that the switching procedure will result in a negligible disturbance of the log read-out.  
Furthermore we have shown that the exact level for which the attenuation can be activated was 
not critical. In the same section we have shown that the limit to which the dynamic range can be 
extended is limited by the magnitude of the intercept reference voltage VREF_I that is used. 
 
Equation (3.33), which we have developed in Section 3.4, described the slope calibration 
parameters of the overall fixation system depicted in Figure 3.22. This equation showed us that 
we can set the slope of the log transfer, by setting the parameters α, B and VREF_S, where 
parameter α represented the ratio between the two resistance values of the resistors RS1 and RS2, B 
represented the attenuation factor B which is set by the differential resistor ratio of the resistors 
inside the divider block and VREF_S represented the reference voltage which is used to set the 
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wanted slope information voltage VOUT_S. In Subsection 5.2.2.3, where we discussed the resistor 
mismatch of the new proposed divider block, we have explained that the ratio between resistors 
can be obtained with very high accuracy. With the knowledge that very high accuracy in resistor 
ratios can be obtained, Equation (3.33) showed us that the slope calibration accuracy will mostly 
depend on how accurate the reference voltage VREF_S can be set. However in Section 3.2.1 we 
have shown that this assumption can only come true when we obtain an accurate multiplication 
factor A.  
 
We explained that when VREF_S is delivered by an accurate off chip voltage reference the slope 
can be manually set to an accurate and arbitrary value while in the meantime the fixation system 
will maintain the slope, intercept and dynamic range fixation. From this we concluded that a 
possible deviation in the expected multiplication factor A can be compensated. However as was 
stated in Section 4 the slope fixation system can also be used to automatically set the slope to a 
correct fixed and predefined value without the use of manual calibration if the slope fixation 
system can be made less sensitive to non-idealities. From Subsection 2.4.2 we know that the 
accuracy or log linearity of logarithmic devices is examined by the conformance error. In that 
section we pointed out that the conformance error has to stay between +1.0 dB and -1.0 dB. So, to 
make calibration after production unnecessary, we have to make sure that the error contributions 
of the non-idealities in the system are low enough, such that the log device does not exceed these 
log conformance requirements.  
 
With the system level simulations in Section 4.3 we have investigated the sensitivity to the non-
idealities like input offsets, deviations in reference voltages and resistor ratios. It was shown 
(Figure 4.7) that for the analysis of the sensitivity to these non-idealities, the system can be 
divided into two system parts; the control system that is responsible for setting the multiplication 
factor A (and the gain of the cascaded A/0 cells) and the system part which is responsible for 
controlling the transconductance of the G/0 cells. The graphs in Figure 4.10 showed us the 
maximum allowed deviation of the multiplication factor and the maximum allowed deviation in 
G/0 cell transconductance, for a particular limit in the conformance error. From this figure we 
concluded that, to reach a log conformance between the -1dB and 1dB band over the full dynamic 
range, the effect of non-idealities in the multiplication control system should be minimized to 
levels that result in a maximum of 3.8% deviation in the multiplication factor A. Fortunately we 
found a procedure (Subsection 4.3.1)   to increase this maximum allowed deviation. It was shown 
that by slightly modifying the attenuation factor B of the divider block the maximum deviation of 
the multiplication factor can be extended to 4.5%. Furthermore it was shown that, to obtain the 
better than 1 dB log conformance over the full dynamic range, the effect of non idealities in the 
transconductance control system should be limited to levels which will minimize the deviation in 
the transconductance of the G/0 cells below 5.2%. 
 
In Subsection 4.3.1.1.2.1 and 4.3.1.1.2.2 we have shown that the sensitivity to input offset of the 
error amplifier OA2 and deviation in the reference voltage VREF_S can easily be reduced. For this 
reduction we have proposed an architecture (Figure 3.22) that made it possible to increase the 
reference voltage VREF_S to much higher magnitudes than the expected input offset of the error 
amplifier OA2. It was shown that with the proposed architecture the reference voltage VREF_S can 
be increased with the same ratio as the resistance ratio α between the resistors RS1 and RS2 without 
altering the actual slope of the log transfer. As was shown by the graphs in Figure 4.12 the system 
can reach negligible sensitivity for input offset and deviation of the reference voltage when for 
example VREF_S is set to 2V.  
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The accuracy of the multiplication system was more difficult to obtain as we were constrained by 
the limited input voltage of the multiplication cell MCOPY. The limited input of MCOPY was 
necessary to make the error amplifier OA1 sensing the small signal gain of the cell MCOPY. As 
was shown by Figure 4.11, the limited input signal resulted in a multiplication control system 
which was highly sensitive for input offsets in the multiplication control system.  
 
To reduce the sensitivity to input offset in the multiplication control system we have developed 
an control system in which the offset sensitivity is minimized. To reach low sensitivity for the 
input offsets we incorporated the chopping technique into the circuit implementation of the 
fixation system (Figure 5.9). For the implementation of the chopping architecture we came up 
with a new output demodulation concept. It was shown that the output chopper (CH3 in Figure 
5.23) can be used to switch the gate connected node and output node of the active load (M1-M2 
in Figure 5.23) in such a way that it resulted in a single ended demodulated output signal. 
However, later literature showed that this implementation was already used in another work. 
 
We have shown that the resulting signal of the chopped system contains a residual ripple from 
which the magnitude of the ripple depends on the offsets inside the chopped gain fixation system. 
To remove the residual ripple from the demodulated signal we have introduced in Section 5.2.5.2 
a new filter concept. System simulations in Subsection 5.2.5.2.2 have shown that the new filter 
(Figure 5.35) is capable of completely removing the residual ripple from the demodulated output 
signal of the chopped system while attaining a fast response and small feature sizes.  
 
As was stated earlier the effect of the expected input offsets at the multiplication cell MCOPY and 
the DDA had to be minimized to obtain a maximum deviation in the control signal well below 
5.5%. Simulation results (Chapter 6) of the final gain fixation circuit implementation (Figures 
5.45-5.46) have shown that we could limit the deviation to much lower levels than this maximum 
allowed deviation. Furthermore it was shown that the circuitry is stable and accurate over the 
temperature range from -55°C to 125°C. With the knowledge that the maximum deviation in the 
control signal obtained by the G/0 control system can be minimized easily with the use of an high 
reference voltage VREF_S (Figure 4.12) we can conclude that the deviation in the G/0 
transconductance control system can be minimized to levels much below the maximum allowed 
deviation (Subsection 4.3.1)  of 5.2%  
 
As both system parts show a possibility for very low sensitivity to non- idealities in comparison 
with the allowed deviations we expect that the new overall fixation system can be implemented to 
obtain a slope, intercept and dynamic range fixated transfer of the log device which falls in-
between the 1dB and -1dB log conformance band without the need for manual calibration.  
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8 Recommendations 

8.1 Preventing hang up of detector control system 

In Appendix B the circuitry of the detector cell is discussed. When using this cell we recommend 
to ensure that during start-up of the G/0 control loop the base of BJT Q4 (Figure B.) does not 
exceed the value for which the transistor starts to work in saturation region. When Vbe of this 
transistor exceeds the VCE voltage of Q4 the control loop will switch to feed forward operation 
instead of negative feedback, resulting in a latch up of the system 
 

8.2 Current Splitting 

In Figure 3.22 we have shown that the current output of the log device has to be split into two 
equal currents. For the implementation of the current splitter we recommend the configuration as 
shown in Figure 8.1.  
 
 
 
 
 
 
 
 

 

 

Figure 8.1 Current splitting architecture 

The 4 bipolar transistors (in Figure 8.1 assumed to have infinite beta) are configured as common 
base stages, knowing to have low input impedance and high output impedance. 
 

8.3 Commutating switch 

For the commutating switches as shown in Figure 3.22, we recommend the circuit configuration 
as shown in Figure 8.2 
 
 
 
 
 
 

 

Figure 8.2 Example of the commutating switch in Figure 3.22 
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[75] For the bipolar switches to work correctly in the fixation system the clock has to switch 
between levels for which the npn-transistors switch between their forward active and cut-off 
region. 

8.4 Current split/commutating switches 

For the current split operation and inverting operation we recommend the investigation of an 
architecture that can combine the split and commutating operation. The proposed architecture is 
shown in Figure 8.3 
 

 
 
 
 
 
 
 

 

 

 

Figure 8.3 Current splitting architecture with inverting operation 

This architecture maybe helpfully when more voltage headroom in the signal path is required. 

8.5 Ripple reduction of the output signals 

In Section 3.2 we assumed that the resulting output signal VOUT¯¯¯¯ and VOUT_S were pure DC output 
signals. However a pure DC signal is only obtained when the frequency components of the 
modulated input currents (Id and Ie in Figure 3.22) are fully supressed by the integrators. For high 
suppression of the ripple the integrator capacitors sizes have to very be big.  For a significant 
reduction of these capacitors sizes and still obtain complete suppression we recommend to 
investigate the possibility to place the new ripple blocking system (discussed in Section 5.2.5.2) 
at the output of each of the integrators. In this situation the allowed ripple magnitude at the output 
of the integrators can be increased, which shows a possibility for much smaller capacitor sizes. 
The residual ripple at the output of the integrator can be blocked by the ripple blocking system.  

8.6 Full CMOS implementation 

We recommend the investigation of a full MOS implementation of the system. This may result in 
a more accurate system as the system will not suffer from base currents. Several tanh cell 
implementations in MOS technology exist. As MOS gates don’t suffer from DC current leakage 
the  sensitivity to loading effects may be solved 
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Appendix A Overall accuracy analysis 

 
In this appendix we will develop an overall equation that will include all errors treated in section 
4.3.1.1. 
 
To have a clear overview we will first obtain multiple equations to determine the deviation in the 
multiplication factor for each error. Hereafter we combine them to one overall equation. 
 
We start by taking the derivative of Equation (4.6) to all the error parameters, followed by a 
multiplication with the value of the expected error. This result in the following equations 
 
 

    
12

1
_

_2
11

'
1 OS

OS
MREF

MREFOS
OSOSAA V

V
B

V

VV
VVf 












  (A.1) 

 

   22

1
_

22
'

2

1
OS

OS
MREF

OSOSAA V

V
B

V
VVf 











  (A.2) 

 

    
B

B

V

V
B

V

VV
BBf MREF

OS
MREF

OSMREF
AA 


































2

_

2

1
_

2_'
3  (A.3) 

 
Now, if we want to know the worst case of the possible change of the multiplication factor we 
could simply add the absolute values of Equations (A.1-A.3). But, because we are dealing with 
random errors, it is better to look for the expected change. To calculate the expected change, we 
first have to square Equation (A.1-A.3), after which we have to add them and then take the square 
root of the total sum. With this knowledge we construct the equation for calculating the 
percentage change in the multiplication when including all important errors. 
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The same procedure will be used to develop the equation to calculate the percentage change in the 
transconductance of the detectors.  
 
So, again we take the derivative to all errors but now for Equation (4.21). Multiplying these 
derivatives with the expected error, we construct the equation for calculating the change caused 
by each error 
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From which we can construct the equation to calculate the percentage change in the 
transconductance 
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Section 4.32 and Section 4.33 showed the equations to calculate the error εmultiplication_cell caused by 
mismatch between the multiplication cells (Equation (4.19)) and the mismatch εΔR between the 
expected ratio of the resistors RS1 and RS2 (Equation (4.29)). Furthermore we developed the 
equation for the current splitting error ψI (Equation (5.23)).With those equations in mind we now 
have all the important equations to complete the overall equation. Because of the random nature 
of the deviations we can construct the overall formula as follows 
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Where the division by 4.5% and 5.2% are the percentage deviations in the multiplication control 
circuit and the G/0 control circuit respectively, for which the log conformance at -50dBm was 1 
or -1dB as was discussed in Section 4.3.1 
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Appendix B The detector cell 

In this appendix we will discuss the detector cell. From Section 2.1 we know that the detector 
cells are used to perform the rectification or absolute function over their RF input voltage.  With 
the absolute function we mean that the detector (in this case an rectifying transconductance cell) 
has to generate the same differential output current for differential input voltages which are equal 
in value but contrary in polarity.  
 
A detector cell is shown in Figure B.1. This detector cell was invented by [76]. 

  
Figure B.0.1 The implementation of a detector cell 

As shown by Figure B.1 the differential input voltage VIN is applied across the bases of transistor 
Q1 and Q3. At the same time the base of Q2 is held at the midpoint of VIN by the resistive voltage 
divider which is formed by matched resistors R1 and R2.  
 
The transistor Q4 is used as current source and provide the tail current, IT, for the transistors T1-T3. 
To ensure accurate matching of the tail currents of all detector cells a emitter degeneration 
resistor R3 is placed. 
 
The current IP together with current IN constitute the differential output current of the detector. 
As shown by Figure B.1 the current IP is the sum of the collector currents of transistor Q1 and Q3, 
while the output current IN is simply the collector current of Q2.  
 
To see how the resistive divider together with the tree transistors Q1-Q3 performs the actual 
rectification of the differential input signal, we will first examine the situation for zero differential 
input. When a zero differential input voltage is applied to the detector it should output a zero 
differential current. So, for zero differential input voltage, IP should be equal to IN. To obtain this, 
it can be shown that the emitter area of Q2 has to be two times bigger than that of the emitter area 
of Q1 and Q3.  
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Introduction to the Successive 
Compression Logarithmic Amplifier
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Gain fixation
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System simulation results
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System simulation results
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System simulation results

Divider block

‐4.5% deviation in the expected
multiplication factor of MREAL

+5.2% deviation in the expected
transconductance of the G/0 cells

This value is limited to small value 
because of tanh transfer of MCOPY
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Divider block
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Notching switched capacitor filter (NSC‐F)

Circuit implementation of the gain fixation method
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Simulation results of the gain fixation method

Temperature (˚C)

Differential Input voltage at MREAL (mV)
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Simulation results of the gain fixation method
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New logarithmic Transfer stabilization method
• Intercept fixation
Original contribution
• Slope fixation
• Dynamic range extension
• Gain fixation
• Dynamic range fixation
• Ripple blocking 

Conclusions

Temperature ‐55˚C till 120˚C
Power supply 3.6V till 4.4V 

Low offset sensitivity

Multiplication(<<4.5%)
+0.03%  ‐0.79%
‐0.41%  +0.19%

Gain A/0 cells
‐0.016%  +0.12%
‐0.15%  +0.11%
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Questions?
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Gain obtained by MREAL
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3.1619
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