

Hongjie Huang // 4713974
Architectural Engineering Graduation Studio 22 // TU Delft
Tutors: Mo Smit // Engbert van der Zaag // Tanya Tsui.
Delegate of the Board of Examiners: Steven Steenbruggen
24-01-2020

Context

Location

Context

Limited resources

Sint Maarten:

Population: 40911; Area: 34 km²; Main Town: Philipsburg

A lot of resources depend on imports.

ContextHurricane Issue

Table 4. Summary of Damages, Losses, and Needs by NRRP Components

	Cost (USD)		
	Damages	Losses	Needs
Community			
Housing *	442,000,000	22,101,000	533,750,000
Health	4,267,000	1,916,000	50,212,000
Education, Culture, Youth, and Sport	60,228,000	1,711,000	119,978,000
Sanitation and Solid Waste Management	604,000		195,360,000
Employment, Livelihoods, and Social Protection		91,004,000	101,767,000
Environment, Ecology, and Biodiversity	574,000	5,423,000	5,840,000
Community Totals	507,673,000	122,155,000	1,006,907,000

Sint Maarten gets 'brushed or hit' by a hurricane every 2.67 years.

Hurricane Irma hit the island in September 2017, hitting the houses, infrastructure and economy.

Reconstruction Situation

Coastal communities (Tourist-oriented)

The construction is basically completed, and the number of tourists increases year by year.

Reconstruction Situation

Inland communities (Resident-oriented)

The construction process is pretty slow, many people still need help to fix their room, especially the roof.

Focus Point

Belvedere Community

Design pilot

Sint Maarten Map Bervedere Map

Belvedere Community

Who lives there

Private Housing

Local family (Local business // home industry // Farmer)

Social Housing

Volunteers // The seniors // Poor people

This community is inhabited by people of all social classes.

Belvedere Community

The example of community repairing

Housing repairs have been completed

Well-planned and public buildings

It is an example and goal of the government for community reconstruction

Public Spaces

Mark on the map // Three types of public spaces.

Social Issue

Low use of public space

Public spaces are there but people are not there.

Social Issue

Limited public activity and space

Some buildings are only open in a fixed time.

Social Issue

Missing management and maintenance

The green lands were deserted and turned into a canteen for animals.

Water Issue

Large water demand

The monthly water consumption in Sint Maarten is **4.5-5.5** m³ per person which is quite large of clean water demand.

The drinking water supply on the island has been **increased by 60 m³ a day** after hurricane Irma.

GEBE. NV. is the clean water provider for residents.

Water Issue

Limited water amount

Cole Bay Plant: 3.3-3.6 million gallons
Point Blanch Plant: 2.2 million gallons
Cupecoy Plant: 1.1 million gallons.

Seven Seas Water Company provides 6.6-6.9 million gallons water (approximate max. 26119 m³) in total per day.

As the main source of fresh water, desalination does not fully meet the needs of Sint Maarten.

Sint Maarten has no money and no place for a new desalination plant. Which means the clean water amount cannot be larger in a short term.

Water Issues

Current water flow

We can find opportunity by improving the current water flow.

Find Problems

Problems in the current water flow

Water Issues

Water pollution and poor water quality

Water pollution has become one of the most serious pollution problems.

It can also be partly solved during the wastewater purification process.

Water Issues

Incomplete water infrastructure

Useless roof gutter

Wastewater tnaks under construction

Both household and community water management facilities are very old and incomplete.

The hurricane has also caused a certain degree of damage to water infrastructure. The municipality cannot support enough money for all the upgradings.

Research Question

Technical questions

Water Infrastructure

Decentralized water management system

How can a cluster scale decentralized water management system solve water challenges in the hurricane-prone environment of Sint Maarten?

Find problems

Find out the problems in current water flow.

Study about technical methods

Research to the working process of different water management facilities.

Draw conclusion

Conclude a proposed new water system to improve the local water environment.

Case Study

Research to different water facility

Agua Carioca, Brazil

Anil Agarwal Environmental Training Institute, New Deli.

Accar Water Management System Project, Ghana.

Case Study

Research to different water facility

Agua Carioca, Brazil

Anil Agarwal Environmental Training Institute, New Deli.

Accar Water Management System Project, Ghana.

Improved Water Flow

Apply to a new water flow

Provide opportunities

Water Tanks:

Water storage

Water tower:

Water storage

Biogas Reactor:

Biogas production

ABR/AF:

Water purification

Wetlands:

Crops and trees

There are many opportunities not only to improve the current water environment

but also improve ecological and economic aspects.

What can the system brings back to the community?

Water ambition

Installing the system in clusters as a basic unit to collect rainwater and reuse wastewater

Ecology ambition

Create a healthy ecosystem in which people, animals and plants coexist.

Production ambition

Public-Living ambition

system is combined, making them more valuable.

Design Elements

In a cluster scale

Design Strategy

Water infrastructure

Item	Formula	Number			
Daily water consumption					
Proposed households numbers in a cluster		12-15			
Max.Population		60			
Water amount per person per month		4.5 m ³			
Monthly water consumption amount	4.5×60	270 m ³			
Monthly greywater amount	0.1325×60×30	238.5 m ³			
Toilet waste	0.0015×60×30	2.7 m ³			
Monthly black water amount	0.03×60×30	54 m³			
	54-2.7	51.3 m ³			
ABR, AF and BR water loss	51.3x(100-15%)	43.61 m ³			
Proposed volume of community ABR, AF		44-45 m³			
Proposed number and size of ABR, AF	3x15 m ³	3x2.5x2 m			
	2x22 m³	3.6x2.8x2.2 m			
Wastewater amount	43.61+238.5	282.11 m ³			
CW water loss and water amount for reuse	282.11x80%	225.70 m ³			
Reused water for each household	225.70/15	15.05 m ³			
Proposed size of household water tanks					
Minimum CW area in total	(225.70/lx10) /30 m ²	Min. 80 m ²			
Minimum rainwater harvesting in hurricane season					
Number of days		15			
Minimum water demand per person per day		0.05 m ³			
15 days minimum water storage amount	0.05×60×15	45 m ³			
Average monthly rainfall		0.087 m ³			
Minimum catchment surface	45/0.087	517 m ²			
Back-up tanks volume	3.14x1.2 ² x2	9 m³			
Back-up tanks amount		3			

Water Consumption Calculation

Objective	Cost	Load Capacity	
Constructed Wetlands	80-100 euro per m ²	 A surface area of about I-3 m² per person is usually required. I m³ water needs I0m² land per day. 	
ABR and AF	2800-3500 euro for an ABR; 900-1200 euro for an AF;	 In general the daily inflow is 2-200 m³. the following aspects. The hydraulic retention time should be 48-72 hours. 	
Biogas Reactor	110-130 euro for a household BR	The hydrostatic residence time should be at least 15 days in hot climates.	
Water	500-600 euro for a concrete	50-70 euro for a 3-4 m ³ household	
Tower	water tower.	water tank.	
Household	60-70 euro for a 3 m ³	3-5 years need to maintain or	
water tank	household water tank	replace the water tank.	

Cost-benefit and Load Capacity Calculation

Design Strategy

Water infrastructure

Conclusion of a cluster scale

Residents:

max.60

ABR/AF: 3~4 for 1 cluster 44-45 m³

Biogas Reactor: I for I house I.2x2.5x2=6 m³

Wetlands: I for I~2 clusters min. 80 m²

Water Tanks: I for I house min. 5 m³

Water tower: 2 for 1 cluster min. 150 m²

Vertical and horizontal water flow in new facilities

Design

How a cluster?

Method --- Follow the streets and rivers

Design Strategy

Water infrastructure

Cluster Division

Design Strategy

Water infrastructure

Water facilities in a cluster

Building structure

Water infrastructure

Water Tanks:

Biogas Reactor

Leisure functions meet, play

Ecological fuctions birds nest, planters.

Public functions schools, sports center, medical center...

Economical functions workshop, shops, restaurant. Connection functions Service, logistics

Spatial fuctions

Three Types

Type I: Node

Traditional Caribbean HousesFloor plan and structure

Shape and Measurement of a Node type

Type I: Node

The Ground Floor

System Room Processing Room Shop

Type I: Node

The First Floor

Food & Material Workshop

Common Room

Type I: Node

Individual Buildings

Plastic water tank (lightweight and flxible to store a bit more water)

Water Tower with a kitchen of a Cafe

Type I: Node

Individual Buildings

Type 2: Connection

Bridge type I

Bridge type 2

Type 3: Wetland

Constructed Wetland & processing room

Landscape

Design Strategy Steps

Install the system

Steps

Choose "Node" from shoplist

Steps

Add individual buildings (water towe and public buildings)

DesignOverview

Add "Connection" between "Node"

Design

Birdview

Add Landscape

Design

Site Plan

Two routes with different atmosphere

Two routes with different atmosphere

Path through the building visually and physically

Path through the building visually and physically

Small squares that follow the shape of existing houses

Path through the building visually and physically

Layout of the ground floor

Path through the building visually and physically

Layout of the first floor

Views on the first floor

Material strategy

Climate and structural strategy

Sloping roof and skylight

Good for rainwater harvesting and stack ventilation.

Strong foundation and raise building up

Raise the building 150mm and gutters nearby can prevent water and flooding.

Open and long narrow floor plan Locate openings on opposite side of building

These can help to promote natural ventilation.

Climate and structural strategy

Louvers on the window

The main method of sunshading.

Wooden framework construction

Permeable structure for airflow and open routing.

Connection method

Roof --- Hurricane strap Structure --- Screw

Connection method (water tower)

Bracing method

Window panels as a bracing

An extra tranglar bracing in stairs

Facade

Windows and doors in the traditional Caribbean housings

Rhythm of the windows and doors

Window and door

- Plywood frame
 Old elm wooden plank
 Plywood Window frame
- 5- Plywood Windowsill

Window demoubntability

Window and door

- $I\hbox{- Installing the supporting columns;}\\$
- 2- Attach panels to them.

For 4.4m span

Typology and material

Construction sequences

Construction sequences

Secondary structure

Wooden floor and supporting beams

Fence and infill walls

Construction sequences

Roof truss and rafters Roof purlins Plywood plank and shingles

A Global Issue

UN 17 sustainable development goals

CONSUMPTION AND PRODUCTION

2 BILLION PEOPLE LIVE IN COUNTRIES EXPERIENCING HIGH WATER STRESS

FACILITY WITH SOAP AND WATER **AT HOME** (2017)

673 MILLION PEOPLE (9% OF THE **GLOBAL POPULATION)** STILL PRACTISE **OPEN DEFECATION** THE MAJORITY OF THEM ARE IN SOUTHERN ASIA

Clean Water And Sanitation

Goal 6 targets

Home About v Campaig	gns V Goals V Take Action	∨ Partnerships ∨ News And Mo	edia v Learn More v
	Facts and figures	Goal 6 targets	Links
	 6.1 By 2030, achieve universal and defecation, paying special attentions. 6.2 By 2030, achieve access to addefecation, paying special attentions. 6.3 By 2030, improve water quality of hazardous chemicals and mate substantially increasing recycling. 6.4 By 2030, substantially increase withdrawals and supply of freshwall people suffering from water scare. 6.5 By 2030, implement integrate transboundary cooperation as apply of the substantial properties. 6.6 By 2020, protect and restore wrivers, aquifers and lakes. 6.A By 2030, expand international water- and sanitation-related act water efficiency, wastewater treater. 	d equitable access to safe and afford dequate and equitable sanitation and on to the needs of women and girls a by by reducing pollution, eliminating derials, halving the proportion of untreason and safe reuse globally see water-use efficiency across all secretary and safe to address water scarcity and so that the same proportion of untreason across all secretary and safe to address water scarcity and so that the same proportion of untreason across all secretary and safe to address water scarcity and so that the same proportion of untreason across all secretary and safe and equitable sanitation and across all secretary across all secretary and safe across across all secretary and safe across across all secretary and safe across across all secretary across all secretary across all secretary across all secretary across	hygiene for all and end open and those in vulnerable situations dumping and minimizing release ated wastewater and ctors and ensure sustainable ubstantially reduce the number of levels, including through mountains, forests, wetlands, support to developing countries in ater harvesting, desalination, lies
	management		

Safe and affordable drinking water			
Sanitation and hygiene			
Improve water quality			
Increase water-use efficiency			
Implement integrated water resources management			
Protect and restore water-related ecosystems			
Water harvesting, desalination, water efficiency, wastewater treatment, recycling and reuse technologies			
The participation of local communities			

Stakeholders

Phase I-2

- I-2 Months
- + Government cleans and re-plans existing green spaces
- + Resident fundraising for primary facilities

Phase 3-4

6-8 Months

- + Water collection facilities are completed first (community water tower//household water tanks).
- + Construction of the planned green space begins.

Phase 5-6

10-12 Months

- + Construction of all facilities is completed and the water system is normally used.
- + Planned green space are put in use (community parks and playgrounds).

Phase I-2

I-I.5 Years

- + The construction of the basic building (Node) is completed, restaurants and shops are opened, and the common room in the community is used.
- + Residents saved a lot of water bills, and some residents were maintained by training and learning systems.

Phase I-2

2 Years

- + Residents' own businesses and wetland crops began to make profit.
- + Trees increased and living environment improved.

Phase I-2

2.5-3 Years

- + Residents chose to build Connections to create more public space.
- + People accept and like this system which is popular.

Suitable Context

Improve water-use condition (Especially for water shortage areas)

Revitalise the community

Other Community

Different residents and demand

Other Context

Developing countries

Developing Regions

Urban

Housing

Infrastructure

Construction

People can easily learn to build their house but they will not to build the infrastructure.

Water

Energy

Vegetation

Decentralized water management method

A school which is capable of treating sewage for the whole community.

Other Context

Developed regions

Developed Regions

Each house has the ability to treat wastewater independently.

Clarify their respective responsibilities in management and maintenance.

Self-managing and planning functions to public spaces with the help of municipality.

P5 PRESENTATION

A Cluster Scale Decentralized Water Management System in Sint Maarten

Hongjie Huang 24-01-2020