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Executive Summary

Displacement control is of utmost importance in deep excavation design and is usually based on numeri-
cal modelling, e.g. Finite Element Method (FEM). Numerical methods tend to be more conservative when
analysing soil behaviour during deep excavation, whereas for practical and economic reasons this is not
favoured. The inverse analysis allows for the identification of the soil parameter set that can provide the
measurements observed in the monitoring when it is applied in the model. When performed in a probabilis-
tic concept, it reduces parameter uncertainty and enables the stochastic prediction of future soil behaviour.

In this thesis, capabilities and limitations of difference advanced constitutive models are investigated. The
Generalized Hardening Soil Small strain model (GHS) presented a positive aspect in modelling soil behaviour
during deep excavation with its various stress/strain dependency settings. Its configuration GHS1120 cap-
tured the stiffness in the small-strain range best from all four material models considered for the presented
soil data.

Because of the uncertainties originating from the size of the domain and limitations of site investigation,
the soil parameters can only be shown as probability distributions. To make that distribution more accurate,
comparative selection together with a simple physical model governed by coupled spring equation is used to
choose the best-fit inverse analysis optimisation algorithm. Due to its robustness, efficiency, no need for of a
gradient vector of multiple outputs and insight into well-propagated sample variance the chosen algorithm
was the Ensemble Kalman Filter

Thereafter, the choice of the relevant parameters is done based on the conducted sensitivity analysis and
engineering judgement. Having the most competitive optimization approach selected, remote scripting with
Python is used to utilise Finite Element (FE) modelling in the 2D Plaxis software.

The script developed in Python environment is used to perform automatic runs, which iteratively updated
the input parameters with response observation (diaphragm wall deflections) using the Ensemble Kalman
filter optimisation algorithm based on a chosen excavation stage. The re-calibrated parameters are checked
with the data, which was used to create synthetic measurements made using the same FE, to perform relia-
bility assessment of the developed Python-based algorithm and investigate its capabilities and limitations.

The sensitivity studies based on multiple runs of the algorithm with different targets, observation types and
configurations of the script allowed to draw solid conclusions regarding the application of the algorithm in
feedback-loop oriented design. This touched upon the issues of the type and volume of required observa-
tions to be gathered from the field monitoring system, the influence of the soil conditions on the efficiency
of the estimations and the connection between the optimisation process and the required site investigation
program.

The further development of the presented optimisation method is expected to increase certainty in setting
alarm thresholds in the applications of the Observational Method.
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1
Introduction

1.1. Motivation and case background
Nowadays, due to congested urban environments, the construction of deep building pits is more and more
demanding for engineers. Factors such as ground movements induced by the excavation, heterogeneity of
soil conditions and many others need to be taken into account and reliably assessed. To satisfy the require-
ments of the growing number and importance of involved stakeholders and to avoid risks of growing value
such as potential damage to surrounding high-rise buildings, the design procedure requires careful consid-
eration of the strength and stability of the structural elements concerning all of the stages during the con-
struction process [23]. In the geotechnical design of such constructions, usually theoretical and empirical
methods and advanced numerical analyses are used, where laboratory tests, field measurements are utilized.

During the excavation process, the induced ground displacements by the construction works of the station
should remain within strict limits to avoid damages to the adjacent buildings. In order to limit the displace-
ments, excavation occurs within the protection of diaphragm walls, supported by struts placed at different
levels. The project is characterised by a very high cost of risks connected with the uncertainties in soil param-
eters prediction, soil variability and design solutions that are not fully optimal.

The numerical modelling is an effective way to investigate the soil-structure interaction mechanisms in deep
excavations, and it can provide all the required information for design purposes [23]. Since the excavation
geometry is not always typical two-dimensional (2D) problem, in most cases, a detailed three-dimensional
(3D) model is required to attain a satisfactory numerical model of the performance of deep excavation [38,
56, 100]. Another critical issue in the modelling process, is the material model for the soil, structures, and the
soil-structure interface, which allows taking the initial stress state in the ground [75], and small strain non-
linearity of soils into account [76, 84]. The numerical modelling, when combined with the installation of a
field monitoring system, can allow monitoring the performance of deep excavations during the construction
process, and can provide immediate feedback to engineers to ensure the safety of the project [23]. However,
the shape functions used in the 3D models to create the triangular finite element cause a need to use very
fine mesh refinement hence is very time-consuming. Therefore, in this report, only 2D modelling is used.

The main issue to be addressed is how to deal with the uncertainties and what could be done in order to
improve the certainty in foreseeing the deformations. To investigate which model aspects are the most crit-
ical, several element need to be taken into account such as approach, reliability, observational method and
accuracy of the model performance. For the assessment on how safe and well cost-optimised the employed
construction design is, Observational Method (OM) was applied, so to learn from experiences gained in the
less critical sections, and to allow to optimise the pit design at adjacent more critical sections. It requires
some confidence in model performance, including the extrapolation from one section to the other.

Another aspect is that the actual soil behaviour is a point of discussion, i.e. whether should it be fully drained,
undrained and how to decide on safe, but not over-conservative, upper and lower boundaries in OM ap-
proach. A special point of attention is the reliability of the predictions since the vertical displacements of the

1
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surrounding terrain appeared to be much larger than adopted in the building damage predictions.

1.2. Research objectives
1.2.1. Analysis of the geomechanical factors related to heave phenomenon
Considering that the heave appears to be much larger than in the Finite-Element (FE) computations, the
research on what could be the potential reason for it is performed. The focus is on the clay layer of low
and high plasticity, and the main goal is to understand what might be the potential aspects influencing the
expansiveness of the sub-soil. An important question is if the swelling behavior can be treated as coupled,
and how should it be included in the computations of the geomechanical soil parameters.

1.2.2. Validation of the material models
The focus of this part is to investigate the advantages, disadvantages, capabilities and limitations of different
material models and find answers to the following questions:

• To what extent is it possible to reproduce the stress-strain relationship obtained in the laboratory tests
with the usage of the aforementioned constitutive soil models;

• Which of the material models’ configurations of different plastic yield functions and capabilities to
model the undrained behavior and stress dependency of stiffness gives the results closest to the reality.

• What is the best constitutive model to represent the soil behaviour for the local soils in this specific,
deep excavation application.

1.2.3. Reliability updating of consecutive construction phases
The main question raised is how an available field monitoring data from the site can help to predict soil
parameters better and to optimise a construction design by increase certainty in optimise a construction
design related to the further construction phases by increasing confidence in switching between different
scenarios of consecutive construction phases in the Observational Method. The usage of reliability updating
and data assimilation is based on studies of different inverse analysis approaches and finding addressing the
following side-questions related to the chosen optimisation method:

• How the algorithm seeks for the solution and how to judge if the final estimate is a desired one?

• How to create a random parameters space and what limitations should be considered?

• How the formulation of the chosen material model influences the efficiency of the algorithm?

• What is the time-expensiveness of the inverse analysis process?

• How reliable are the results obtained via the inverse analysis?

1.3. Methodology and the thesis layout
This report endeavours to give an answer on how to reduce the uncertainty in the deep excavation design
by the means of an inverse analysis. It shows the steps performed in creating a tool for the optimization of
the deep excavation design using the Ensemble Kalman Filter optimisation algorithm including the activities
required beforehand, i.e. analysis of a site investigation data, setting the finite-element model and calibration
of parameters of the chosen material model.

The simplified workflow of the thesis is shown in Figure 1.1.
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Figure 1.1: Workflow of the problem modelling.

Specifically, the present thesis consists of seven chapters organized as follows:

1. The Introduction, provides general background information of the project, highlights the key objective
of this report and shows how these are addressed in the latter sections.

2. The Problem statement and the literature review, provides a current state-of-the-art review on deep ex-
cavation design. The focus of this chapter is to summarize the actual knowledge on the reasons for the
ground heave including the nature of expansive soils, the constitutive models commonly used in this
kind of constructions and available methods of inverse analysis regarding geotechnical applications.

3. The Investigation of material models and calibration of soil parameters delivers the point-estimation for
each significant soil quantity based on the existing soil investigation data. Then, using the Plaxis Soil-
Test facility it describes the responses of different material models, investigates capabilities and limita-
tions which together with a sensitivity analysis of a customizable parameters give insight on which one
is most suitable for the analyzed soil domain. Furthermore, it provides the initial parameters distribu-
tion for the inverse analysis.

4. The Target measurements in the 2D finite-element model, this chapter utilizes the knowledge gained in
the previous chapter, i.e. the chosen material models are being used in the full two-dimensional (2D)
finite-element model of the deep excavation. Additional assessment on the performance of different
material models and different drainage settings is given and assumptions on the material model to be
used in the inverse analysis part are made.

5. The Set-up of the inverse analysis method, compares and explains the extensions of the chosen inverse
analysis method. The developed EnKF script is tested on a simple, stiffness-related application to draw
conclusions and show the performance of this optimisation algorithm.

6. The Application of the inverse analysis in the FEM, incorporates the Plaxis 2D remote scripting tool to
connect the FE sofware with the optimization to run an iterative optimisation process. The results of
the 2D FEM computations of the given parameters distribution are compared with the site measure-
ment results and are used in the machine learning iterative algorithm to back-figure the soil parameters
distribution with a experimentally proven certainty. The conclusions based on the loop of calibration
of the model according to synthetic monitoring measurements are drawn.

7. The Conclusions and recommendations, summarizes the research undertaken through this report high-
lighting the most important results and conclusions. Moreover, some suggestions considering for fu-
ture studies of this thesis’ topic are provided.
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Problem definition and the literature

review

In this project, the initially applied approach depended on the prediction of effective stress state after the crit-
ical excavation depth was reached. From thereon, an undrained behaviour was simulated using the Harden-
ing Soil Small-strain (HSS) model with quantities obtained from the advanced laboratory, i.e. effective stress
path tests. To better understand the realistic effective stress state, it was decided to investigate the charac-
teristic of different material models and find out their capabilities and limitations. Also, possible causes for
the heave phenomenon are investigated, and analysis on how the numerical computations do treat swelling
of cohesive layers is performed. Last, but not least, having the measurement system installed as apart of
OM, the inverse analysis procedure can be incorporated in this project as a tool to increase the certainty in
the decision-making process. Literature concerning the inverse analysis methods and their applications in
geotechnical-related problems is studied, and the choice of the approach is made.

2.1. Physical phenomenon of heave
The ground heave phenomenon can be caused by several reasons. The swelling processes were sub-divided
into (i) mechanical and (ii) physicochemical [9]. The mechanical swelling takes place in response to elastic
and time-dependent stress unloading, i.e. overburden recovery, for example, erosion, tectonic uplift or exca-
vation procedure. Whereas, the physicochemical swelling can be divided into crystalline swelling driven by
the hydration energy, and osmotic swelling connected with the electrical double layer effects [42]. It can also
be divided into short- and long-term swelling of the sub-soils (especially crucial for a highly expansive soil),
changes in the water table level and freezing of the soil. In this case, for physical modelling of the ground
heave, two main heave reasons should be thoroughly analyzed, i.e. due to the swelling potential, and the
reduction of the pre-overburden pressure.

There are several factors that influence the swelling potential, such as:

• climate - the depth and degree of desiccation affects the amount of swell;

• soil profile - the thickness affects the magnitude of total heave;

• groundwater - even an expansive soil may never swell if its moisture content stays constant at all times
[90];

• drainage - drainage around the structure reduces the swelling problem [19].

Tel Aviv is located in semi-arid/Mediterranean climate zone [46], where potentially expansive soils are widely
spotted due to evapotranspiration rate exceeding the precipitation. Formation of montmorillonite, which in
Israel’s clay soil areas is present in quantities ranging from 40 to 80 per cent, is aided by an alkaline environ-
ment, presence of magnesium ions and lack of leaching, i.e. conditions favourable in semi-arid regions [19].
The clay layer is considerably thick and ranges from 15 to 20 meters; the whole layer is around 10 meters
below the groundwater level, so many moisture content changes are unlikely to happen. Even though the
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dewatering is planned, the clay domain will remain fully saturated. Hence the heave origin is related only to
the overburden recovery.

The depth below the ground surface of the bottom of the excavation in this project is 30.0 meters. As the
excavation proceeds, the sub-soil is subjected to unloading, and thus reduction of total stress. Initially, it
causes a decrease of the pore water pressure and evolution of the negative excess pore pressure, however, later
it causes a regular intake of water till pore pressure reaches the equilibrium (static pressure) during which,
heave will steadily develop. To estimate the magnitude of the potential heave associated with changes in ef-
fective stress, the reversed oedometer test-based methods can be used [42]. Most of the oedometer test-based
methods point swelling pressure as initial and overburden pressure as final stress condition. In contrast to
these methods, the suction-based methods can be used to predict the ground heave of expansive unsaturated
soils during the wetting process, where the final condition can be quantified by the suction value correspond-
ing to specific void ratio [42].

For this case, where soil remains fully saturated during the whole excavation process, the potential heave
of expansive soil can be described by several methods. The most popular ones, which follow the oedometer
test-based heave prediction methods are:

• Fredlund (1983) method,
in which the heave of the soil layer ∆H is given by:

∆H =Cs
H

1+e0
log

(
P f

P ′
s

)
(2.1)

where: H is the thickness of soil layer, Cs is the swelling index, e0 is the initial void ratio, P ′
s is the

corrected swelling pressure, P f is the final stress state and is equal to P f =σy +∆σy −uw f .

• Hamber Nelson (1984) method,
in which the heave of the soil layer ∆H is given by:

∆H =Cs
Hi

1+e0
log

K P f

10
(

Cw
Cs
∆w

) (2.2)

where: Hi is the thickness of the i th layer, i is the number of the soil layers, Cs is the swelling index, Cw

is the suction modulus ratio, K is the correction parameter, ∆w is the water content change and P f is
the final stress state.

For the Fredlund method, the elastic modulus needs to be evaluated, where instead of in situ suction, the
matric suction equivalent is used. Hence, instead of the swelling index with respect to matric suction, Cms ,
the measured swelling index on the net normal plane Ct s is calculated [21]. In this method, the maximum
potential heave is calculated by dividing the soil domain into many sub-layers, after that the maximum heave
for each layer ∆Hi is calculated by multiplying the vertical strain of a soil layer y by the layer thickness hi .
The heave of each sub-layer is them summed. The calculation of the total heave using the Nelson method is
analogous, however it uses the Cw and Cs parameters to calculate the heave of each layer.

The governing equations of both methods can be solved using the FE analysis [1, 64]. The biggest disad-
vantage of the Fredlund (1983) method is that it is time-consuming. In contrast, the biggest pitfall of the
Hamber Nelson (1984) method is that it does not take into account the effect of overburden pressure and
hence may overestimate the heave. However, it is relatively faster. No information about the usage of any of
both method in numerical modelling is available in the existing literature.

2.2. Numerical modelling of a deep excavation case
2.2.1. Assumptions of plain-strain models
Excavations are generally analysed as plain-strain problems, because usually, a soil responds more closely to
the plane strain conditions than the triaxial conditions in such cases [66]. The assumptions of plain-strain
models are:
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• The calculated are the major and minor in-plane principal stresses (σ1 and σ3) and the out-of-plane
principal stress (σz ). Also, in-plane displacements and strains are calculated.

• The out-of-plane strain is zero by definition (εz = 0) and the length of the excavation (along the out-
of-plane longitudinal axis) needs to be much larger (infinity length) than the width of the excavation
[39].

However, the out-of-plane dimensions of deep excavations rarely happen to be many times larger than the
cross-sectional dimensions. Therefore, neglecting the stress flow around the corners of the building pit leads
to incorrect calculation (overestimation) of the stress changes for plain-strain conditions. The stress changes
are greater for the case where the out-of-plane dimension approaches the in-plane dimensions. Therefore,
the usage plain-strain models for deep excavations is not always the most accurate way of modelling such
problems and creating a 3D finite-element models may help to avoid the over-conservative design.

2.2.2. Three-dimensional factor
Since the construction considered is not two-dimensional, the question is whether the result from the 2D FE
analysis is the same as from the 3D one. The critical question is if the factor, which incorporates the 3D effects
by adjusting the 2D results, so they fit the 3D results, is needed in that kind of analysis or not.

One of the most prevalent factors for describing the phenomenon of the 3D effects is Plane Strain Ratio (PSR)
introduced by Ou et al. [17] and is calculated as in Formula 2.3 below.

PSR = δhm,d

δhm,ps
(2.3)

where δhm,d is the maximum wall deflection at a specific section along the wall, and δhm,ps is the maximum
wall deflection of the section under plane strain conditions.

Another way, which can be used to assess how to factor in for the three-dimensional effects, would be to
compare the maximum settlements in the specific points under the building in 3D and 2D model in the 3D
model to these settlements calculated under plane strain condition.

To answer the question of how the 2D and 3D results are bounded with each other, several finite element
analyses are available in the literature [16, 17, 20, 31, 57]. From these studies, the following conclusions have
been drawn [29]:

• Smaller movements develop at the corners of the excavation box. Moreover, the centre of the excavation
wall deflections tends to differ between 2D and 3D approaches.

• 2D calculations of movements near the centre of the excavation wall generally over-predict the mea-
sured displacements.

• For smaller ratios of the length of the wall to the height of excavation (L/He , the 2D analysis overesti-
mated the amount of movement which would occur near the centre of the excavation wall, while the
results of the 3D analysis better agreed with the measured movements.

• For rigid walls and lower factors of safety against basal heave and L/He larger than 6, plane strain and
3D analyses are characterized by same maximum movements in the centre of the excavation.

• Also, smaller values of L/B yield lower values of PSR than higher ones.

• Stiff wall systems produce lower PSR than flexible wall systems.

• Excavations with lower FoS against basal heave produce lower PSR.

The PSR factor shows different results for different depths. It tends to increases with a distance from the
corner of the excavation and then reaches a constant number at large values of that distance. The influence
of the distance from the corner dcor ner to the analyzed profile disappears for values of 30 meters and more
from the corner. When this phenomenon, so-called the corner effect, does not apply, the maximum wall
displacement at a certain dcor ner is not significantly smaller than the maximum displacement under plane
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strain conditions, what suggests the decreasing influence of the 3D effect on the wall displacement [45].

In Figure 2.1, one can see an alternative to transferring wall displacements accounting for 3D effects of exca-
vation on wall deformation in terms of width-to-length (B/L) ratio of the excavation box. The chart compares
the PSR values between two studies: in the sand by Hsiung et al. (2016) [45] and in clay by Ou et al. [17].

Figure 2.1: PSR chart - comparison of PSR values in clay and in sand according to Hsiung et al. (2016) [45] (denoted as This study) and
Ou et al. [17] (denoted as Ou [2]).

According to Figure 2.1, for B/L = 27.48/96.73 = 0.284 and d of around 37.0m, RPS value is between 0.90 and
1.0. The value can be taken as more conservative, i.e. 1.0, which would mean that the real displacements are
equal to the ones obtained in the two-dimensional analysis.

Since the measurements used in the inverse analysis shown in this report are synthetic, the derivation of
genuine 3D factor is not of utmost importance. Nevertheless, when the real displacements taken from the
site measurement system are used, the 3D factor needs to be empirically derived. This should be done by
performing several simulations, in which the criterion for the comparison would be the settlements of the
building settlements and the d-wall deflections. Also, more than one construction phase should be consid-
ered. The proposed phases would be 12, 14 and 15 since these are the faces with the lowest factor of safety.

2.3. Constitutive models in the deep excavation applications
The usual procedure in geotechnical design (forward-design approach) is to draw a geological works plan,
where the number and type of soundings and tests are driven by a will to minimize the geotechnical-related
risks, then collect the data and use it in finite-element modelling with an appropriate safety margin.

Geotechnical investigation program of good quality is essential to the successful accomplishment in every
construction project. It is of utmost importance in constructions of deep building pits due to the high costs
of construction, and big soil masses involved resulting in a high horizontal and vertical variability of strength
parameters and costly consequences of unforeseen geotechnical risks or over-conservative design parame-
ters adopted. A properly planned and performed site investigation program can successfully narrow down
the estimated soil parameters distributions, hence increase the certainty in predicting the wall deformations
and surface settlement.

The derived soil parameters are used in numerical modelling by means of material models. The simplest
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material model that is being used in engineering practice is the Mohr-Coulomb (MC) model. The MC model
depicts soil behaviour as two bi-linear lines, one showing elastic response and the second showing perfectly
plastic response. Since the soil does not behave linearly in reality, and soil stiffness is stress-dependent, using
the MC model can over-predict the soil displacement at the low-stress levels, and under-predict at the high-
stress levels. It is especially important, since, in deep excavations, the soil behaviour is usually within a rela-
tively small deformation region [86], so the pre-failure performance is more important than failure conditions
[23]. Another reason for using other, hyperbolic models, is because of more accurate unloading-reloading soil
response representation.

2.3.1. Hardening Soil Small-strain
The HSS model is often used in deep excavation practice and is referred to as the best standard model in
the Plaxis software for this application [12]. The main advantages of the HSS model are that it is suitable for
the analysis of both static and dynamic tasks, and is more suitable for deep excavation applications when
compared to the HS model. It also allows making more accurate computations because of adding the strain
dependency to the stress-strain relation for stress paths penetrating the elastic domain [12].

Based on the deep excavation of the metro station Case A in Kaohsiung city, Taiwan, it is reported that the
HSS model gave results more accurately than the HS model, which was more accurate than the MC model
[44]. Two cases, Rochor Complex Project in Singapore and Formosa Project in Taipei, have also proven that
the HSS model predicts the settlement surface better than the MC model while keeping wall deflection pre-
diction at the same level of accuracy [95].

However, it has also been reported, that the usage of the HSS model in the design of A19 metro station in
Warsaw, Poland, has underestimated the bottom’s uplift by 51% and the wall displacement by 26% in the
final excavation stage [62]. The other models used in the FE simulations of this deep excavation, i.e. Mohr-
Coulomb, Hardening Soil and Hypoplastic Clay, have resulted in values differing up to 19−25% from the ob-
served displacements. Also, the analysis of a deep excavation in soft clay constructed as a part of Västlänken
tunnel project in Gothenburg, Sweden, has shown that for the undrained analysis the HS model gave more
accurate settlements prediction than the HSS model [21].

Summing up, the HSS model has reportedly being used in the deep excavation applications. Although mod-
elling of the undrained conditions requires considerable caution, it is one of the most widely used models
with good results in the displacement predictions. It is relatively simple to be calibrated with the most-
important parameters being derived by means of triaxial tests.

2.3.2. NGI-ADP
NGI-ADP is elastoplastic constitutive soil model, which is based on the undrained shear strength approach
and total stress analysis. The (undrained) shear strength parameters are directly inputted for three different
stress paths/states: active (A), direct simple shear (D) and passive (P). The NGI-ADP model is formulated for
a general stress state, matching both undrained failure shear strengths and strains to that of selected design
proles. Besides, the model provides output on two state variables: plastic shear strain γp and the hardening
function rκ. The insight into the soil behaviour given by those parameters helps to understand the reasons
for diaphragm wall displacements, which helps in a proper configuration of inverse analysis.

Many geotechnical problems concern undrained behaviour of clay and the capacity in undrained loading,
and the NGI-ADP model with its clear input parameters has a significant advantage for design analysis of
undrained problems. The undrained shear strength is directly determined and does not require information
on parameters such as over-consolidation ratio or earth pressure coefficient at rest. It is reasonably easier
to calibrate it to the design profile of undrained shear strength when compared to the other methods that
often require trial-and-error testing to match the prediction of the anisotropic shear strength to the profile
obtained in laboratory tests [40].

The usage of NGI-ADP model was suggested in the stability verification against the basal heave failure mech-
anism at excavations in soft soils by [67] as a tool to analyze drained and undrained soil behaviour. The
parameter optimization for the model of two laboratory soil data of Bangkok clay, AIT and Chula sites, has
proven that a proper set of material model parameters allows reproducing the laboratory tests soil behaviour
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with very high accuracy [92].

2.3.3. SHANSEP MC
The SHANSEP MC model (Stress History and Normalized Soil Engineering Properties) is a total stress model,
which combines the Mohr-Coulomb model with the SHANSEP concept, and is intended for undrained soil
loading conditions [72]. The additional extension allows simulating potential changes of the undrained shear
strength depending on the effective stress state of the soil. It consists of two sets of parameters: one set of MC
parameters and one set of SHANSEP parameters. Initially, the model behaves as the MC model until it is
(manually) switched to the SHANSEP concept [72]. Then, the model works practically as a Tresca model,
where the undrained shear strength, defined by the SHANSEP formula [13].

In this model, Over-Consolidation Ratio (OCR) and the undrained shear strength are computed based on
the effective major principal stress σ′

1. Soil stiffness is associated with the undrained shear strength Su , by
the introduced constant ratio of the shear modulus G0 over Su , which can allow modelling the increase of
stiffness with depth [72]. One of the SHANSEP model’s advantages is that it gives a more realistic, empirical
way of modelling of the undrained shear strength. The model also provides output on two state variables:
σ′

1,max and Su , what helps to understand the evolution of the shear strength as a function of depth (effective
stress).

The SHANSEP concept has also been applied to a different material model, namely SHANSEP NGI-ADP. When
applied to the NGI-ADP model, the model uses the undrained shear strength, defined by the SHANSEP for-
mula, as the input for the undrained shear strength in triaxial compression. This constitutive soil model has
been widely applied to dykes problems. So far, the SHANSEP formula has not been applied to other con-
stitutive models. There are limitations for (hardening) models based on the effective stress principle, since
SHANSEP is based on undrained shear strength. The usage of SHANSEP procedure was suggested by Ladd
(1974) [53], however there are no reports on usage of the SHANSEP MC model in the deep excavation appli-
cation available in the literature.

2.3.4. Generalized Hardening Soil
The Generalized Hardening Soil model is a more modular, user-defined soil model based on the original
Hardening Soil model with small-strain stiffness. It possesses almost the same parameters as the HSS model.
The significant advantage of this model is that it allows to use different configurations for the stress and strain
dependency and to choose the appropriate yielding functions.

The workflow of the GHS model is summed up in Figure 2.2 below:

Figure 2.2: The workflow of the GHS model.

The stress-dependency of stiffness and stress-dependency formulas are as given in Table 2.1 below:
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S-D is a shortcut for Stress-Dependency

Table 2.1: Switches of the GHS material model with respect to the stress-dependency of stiffness and the stress-dependency
formulas

Regarding the plasticity model settings, the following options for the switch can be applied:

1. Mohr-Coulomb failure criterion;

2. Mohr-Coulomb failure criterion + shear hardening;

3. Mohr-Coulomb failure criterion + cap hardening;

4. Mohr-Coulomb failure criterion + cap hardening + shear hardening.

The GHS configurations names are created concerning these switches, for example, GHS2130 is where the
stress-dependency of stiffness is set as 2, the plasticity model is set as 3, the strain-dependency of stiffness set
as 1 and the stress-dependency formula are set as 0.

The GHS model has been used in the study of seismic response of a masonry structure to induced seismicity
in Groningen, the Netherlands [68].

2.4. Inverse finite-element modelling
The numerical simulations, which are used in the deep excavation applications, can be combined with the
measurement data, which might be a valuable source for the calibration and verification of the numerical
analysis. This creates a link between the numerical analysis and the OM, where experience gained during
calibration exercises, i.e. comparing results of the computational analysis and field measurements, can be
used to suggest appropriate numerical procedures to adopt [24]. The estimation of the model parameters
based on field measurements is often referred to as inverse problem or back-analysis [2].

2.4.1. Observational Method
To fill the gap between the predicted and the real observed behaviour, Terzaghi and Peck (1948) [89] proposed
an observational procedure, which is an integrated design construction method for the earth structures [2].
The proposed method is focused on monitoring of the performance of the structures, with particular atten-
tion given to displacement measured during the construction process. Thanks to this procedure, the original
design can be verified, and if necessary, modified towards the more certain parameters. Formally, the Obser-
vational Method has been introduced by Peck (1969 [69]. The usage of OM has already been reported in many
geotechnical projects all around the world [2, 18, 30, 33, 36, 70, 77–79, 85, 97, 98]. The example of a calibration
loop, which is the essence of a feedback loop-oriented design, is shown below:

• Selection of field observations;

• Comparison of model data with the monitoring data;

• Updating the design prediction by iteratively changing model input values until they match the ob-
served values.

The optimized input parameters can be used in further design of the succeeding construction phases.
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2.4.2. Inverse analysis procedure
In the design of the deep excavation, evaluating geomechanical parameters is of greatest importance due
to the strong influence of these parameters on the design and applied construction methods. Usually, the
parameters are evaluated using field and laboratory tests, and then, used in the conventional forward ap-
proach as an input in the numerical models to anticipate stress-strain behaviour of the soil domain. To tackle
uncertainties related to the complexity and variability of geological conditions, the procedure of using the
field monitoring to obtain input material parameters, called inverse analysis (back analysis) approach, can
be used. [63].

In the inverse analysis, field measurements are used together with appropriate material models to calibrate
the input parameters. Since the existing commercial modelling software is not suited (yet) for computing ge-
omechanical parameters back from measurements data, an iterative procedure has to be adopted to obtain
acceptable coincidence between measurements and computed output [63]. Basing on the field measure-
ments data of how the diaphragm walls behaved during the sequential excavation, the model can be cali-
brated.

Primarily, the mathematical procedure of optimization consists of two parts: an objective function, con-
sisting of a numerical model and an error function, formulated to measure the difference between computed
values and experimental results and the optimization strategy that is used to search for the minimum of this
objective function. The difference between the computed result and the observed value is measured by an
objective function (error function), and an optimization algorithm is used to reduce that difference [59]. Min-
imization of the objective function is obtained by the optimization of the input parameters of the numerical
model, and the procedure is repeated until the model is optimized [14].

2.4.3. Inverse analysis optimization algorithms
In general, two types of optimization methods could be distinguished: deterministic and probabilistic one
[61]. To the deterministic approaches, we can include gradient-based algorithms and the Nelder-Mead sim-
plex algorithm. Whereas, the probabilistic method are, for example, Genetic Algorithms (GA), particle swarm
optimization, simulated annealing, differential evolution algorithm and others [99]. The primary point of
attention here is given to what the end product is. The first group of the algorithms may be faster, but end
up on single value, whereas the second group results are provided as a distribution of the variable, what is
more esteemed. The other division of mainly used optimization algorithms would be: classical optimization
theory iterative algorithms and optimization methods from the evolutionary computation field [63].

The main differences between the classical optimization methods are related with the use or not of the first,
g (x), and second, H(x), derivatives of the objective function, f (x). Therefore, these methods can be divided
into three main groups [96], [59]:

• Zero-order methods (direct methods): require the evaluation of f (x) only. These are, for example, the
Gauss, the Simplex method and the Rosenbrock algorithm.

• First-order methods (gradient methods): require the evaluation of f (x) and g (x), for example, the con-
jugate gradient method and the steepest descent. If g (x) can not be obtained explicitly (in case of
using numerical models), its computation is a complex problem but can be approximated by finite-
differences or using method such as direct differentiation or the adjoint state method.

• Second-order methods: use information about g (x) and H(x) in the optimization process. If both can
be evaluated directly, Newton’s method is usually applied (due to its efficiency). If not, quasi-Newton
methodologies can be used to apply indirect approximations to g (x) and H(x).

The evolutionary computation algorithms belong to stochastic search techniques and are characterized by
searching for the solution in the entire parameter space [63]. There are several evolutionary algorithms, such
as [22]:

• Genetic Algorithms: computational models are working on a population of potential solutions, or in-
dividuals, where individuals compete with each other for survival. When evaluated, best individuals
have a higher probability of being selected as parents and create new individuals of offspring, which
inherit some of the parents’ characteristics. The generated offspring compete with themselves or with
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themselves and parents (depending on the variation of the algorithm). Also, the mutation is applied so
that the innovative features could appear. The genetic search process leads a better fit of the evolved
population [63].

• Evolution Strategies: search procedures that are also based on natural evolution mechanisms, and are
similar to GA. For instance, they only require data based on the objective function and constraints, and
not derivatives or other auxiliary knowledge [60].

• Evolutionary Programming - independent paradigm created by Lawrence Fogel in 1960, which has be-
come very similar to the ES and nowadays they are difcult to distinguish [63].

The optimization methods, which are frequently used in geotechnical engineering are [55], [87]:

• Maximum likelihood estimation - a probabilistic formulation that can be applied when the probability
density function of the measurements error is known. The basis of this method is maximizing the
likelihood of the measurements appearing.

• Bayesian approach - The parameters, p, are considered random variables and the estimation is per-
formed by maximizing the probability density function of p given a set of measured values x. This is
also called the maximum a posteriori approach because it estimates the parameters that are the most
probable from the existing data.

• Kalman Filter (KF) approach - Filters are data processing schemes that separate desired signals from
unwanted noise [28]. A general state equation relating measurements, parameters and noise (char-
acterized in statistical terms) is adopted and optimal estimation of the parameters is proposed in a
recursive form.

• Particle Filter (PF) method - Particle filters work with any arbitrary, non-analytic probability distribu-
tion. PF consist of a set of generic type Monte Carlo sampling algorithms to solve the state filtering
problem [6, 37].

• The Markov Chain Monte Carlo method (MCMC) - a stochastic analysis method that aims to optimize
a function by relying on a random sampling of input parameters. The MCMC utilizes a huge number of
realizations that generate draws of parameter values out of a prior probability distribution, producing
different input combinations [34].

2.4.4. Chosen optimisation method
The analyzed problem can be described as non-linear with the distribution of the parameters assumed to be
Gaussian. The observations from the field are usually given for each construction phase and are given with
an added sensor error, depending on the applied measuring method.

The sought solution, in the best scenario, would be a distribution of the soil parameters instead of a sin-
gle, deterministic value. The method, which provides a distribution as a solution is the PF method, which
might also be used in method merging [58]. However, despite PF being parallelizable, it still requires many
particles, hence is computationally expensive. In PF, as the algorithm runs, any particle that does not match
the measurements will acquire a deficient weight. This can lead to creating a lot of particles, where only a
few contribute meaningfully to the state estimate. It is so-called the filter degeneration. The solution to this
problem is particle resampling. However, due to the complexity of the numerical model being used in the
algorithm, this could lead to many problems, especially related to the soil parameters correlations.

For unimodal distributions using KF is an option, which works faster and is possibly viable to be applied
[7]. The Kalman Filter (KF) itself is most widely used in GPS tracking and general positioning of the moving
objects. In a non-linear geotechnical model, a more appropriate are other extensions, which allow mod-
elling a complex soil behaviour more accurately. The Kalman filter requires the user to know the state model.
Otherwise, the performance will be poor. Also, if the problem is multimodal, then the Kalman filter cannot
represent it.

The versions of KF are as follows: Extended Kalman Filter (EKF), Iterated Extended Kalman Filter (IEKF),
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Ensemble Kalman Filter (EnKF) and the recently developed Unscented Kalman Filter (UKF) The pattern for
choosing an appropriate sub-method can be described as in Figure 2.3 below:

Figure 2.3: The extensions of the Kalman Filter optimization algorithm.

The EKF was used by [65] for identification of the system actual state (of soil parameters during tunnel ex-
cavation) using a number of synthetic settlements at observation positions. However, it was reported by the
author that the linearization of the system is prone to inaccuracy, especially for highly nonlinear systems.
Hence, UKF and EnKF were reported as ones which obviate the need for linearisation by directly applying
nonlinear transformations of an ensemble of individual representatives of the state means and covariances
[65].

The version, which will be eventually used to model the analyzed problem is the Ensemble Kalman Filter.
The EnKF was introduced in 1994 [27] and uses the markovian structure of the state space to estimate se-
quentially the filtering distribution p(xt |y1:t ) particle-based methods so that it can be described as a particle
system with mean-field interaction. Comparing the EnKF to the KF, on the downside the fact that the EnKF
is a suboptimal filter, so it will not produce the optimal solution that the KF produces can be mentioned.
However, for a large number of sigma points, this problem tends to disappear.



3
Investigation of material models and

calibration of soil parameters

The first section presents the workflow of this chapter, highlights the soil data used in this project and intro-
duces the methodology used in the calibration of the material model parameters. The second section is fo-
cused on showing the results of the laboratory testing program in statistical terms. The next section presents
the studies on the initial sets of the parameters based on the point estimations of the soil characteristics.
Then, the calibration of the material model parameters based on the advanced laboratory testing program is
performed.

The modelling is based on the site investigation data from Tel Aviv, Isreal, and consists of 35 soundings and the
laboratory testing program (see Figure 3.1). The field tests consisted of twenty-four rotatory auger drillings
with double and triple-core barrel drilling used for sampling, six Dynamic Probing Super Heavy (DPSH) tests,
four cross-hole tests and one single cone penetration test (CPT) test. Besides, the monitoring system con-
sisting of extensometers, inclinometers, tilt-meters, prisms and levelling balls was installed at the site. The
measurement data comprising of the measured diaphragm walls deflections, adjacent buildings settlements,
tilt, and strains were integrated with the construction works design.

Figure 3.1: Top view of the project location with marked boreholes locations (marked as blue and red circles).

Also, in the boreholes, the following tests have been conducted: 656 Standard Penetration Tests (SPT), 255
Pressuremeter Tests (PMT) and the dissipation tests. The laboratory testing program consisted of: 389 single
sieve analyses, 142 Atterberg limits tests, 178 Water Content (WC) tests, 199 Carbonate Content tests, 52 Free
Swell tests, 48 organic matter analyses, 5 Unconfined Compressive Strength (UCS) tests performed on undis-
turbed clay samples, 84 Direct Shear Tests (DS) performed on compacted granular samples, 30 sets of Triaxial
Consolidated Undrained (CU), 9 sets of Triaxial Unconsolidated Undrained (UU) tests done on undisturbed
clay samples and 30 one-dimensional consolidation (1D) tests performed on undisturbed clay samples.

15
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Based on the information gathered from the aforementioned tests, the local stratigraphy was defined as the
following:

• Fill (thickness of around 1.0 m) – composed mostly of asphalt, dark brown silty to clayey sand with
crushed limestone and Kurkar gravels.

• SC-CL (thickness of around 2.0 – 7.0 m) – composed of a poorly grade clayey sand to low plasticity clay.
In the southern part, the layer contains more sand particles and is characterized by lower to even no
plasticity.

• Kurkar (thickness of around 20.0 m) – the upper Kurkar layer is characterized medium to high strength
and high gravel and carbonate content. In between the clay layer, another Kurkar layer is found, some-
times even two such layers appear (mostly in the southern part of the station, where the intermediate
Kurkar layer is the thickest). Towards the northern part of the station, the intermediate Kurkar layers
constrict.

• Clay (thickness of about 15.0 to over 20.0 m) – high plasticity, dark brown to blackish, soft, moderately
organic clay layer, characterized by low SPT values, high fines, and water content. In the southern part
of the station, the layer is divided into two (or even three) sub-layers.

Figure 3.2: Longitudinal cross-section of tbuilding pit.

3.1. Introduction
Calibration of the material models was done by simulating the pressuremeter tests, the one-dimensional con-
solidation tests and the triaxial tests in the Plaxis SoilTest facility. The parameter assessment was based on
point estimation of the parameters derived from the laboratory tests. The representative advanced laboratory
tests were chosen and used to calibrate the parameters of the constitutive models, i.e. making the computed
stress path fit the stress path obtained in the real laboratory tests. The modelling of the stress path is made
until failure or a sample, or the strain of around 16% if no failure is reached. This procedure should allow
making a comparison of the undrained behaviour, stress dependency of stiffness (through compression and
extension tests), and different plastic yield functions between those models. Furthermore, the customizable
switches of the GHS model were investigated to check if they can help to increase the accuracy of reproducing
the stress paths obtained in the laboratory tests.

Following aspects for each test have been analyzed:

• changes in principal stress difference and the volumetric changes (or pore pressures) with axial strain
for the drained (undrained) tests;

• weighting of the observations using coefficients of variation,

• visual examination of the stress-strain plots;

• the model fit statistics.
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As a part of calibration, the stress paths obtained in triaxial CU and UU tests were compared with the com-
puted stress paths in SoilTest for the set of parameters obtained in the real laboratory tests. Then, the parame-
ters of the material models were adjusted, so to obtain a good fit between the real and computed stress paths.
The difference, between the real and the computed stress paths, was calculated by means of Root Square
Mean Error (RMSE), which measures the difference between the real and computed stress at one hundred,
dispersed levels of strain symmetrically. The RMSE is calculated for each of the three cell pressures applied,
and the comparison is made between the whole sets of tests (all three cell pressures applied treated as one
test), with the values averaged for the whole tests. Another comparison is made for the averaged values of
RMSE for the lowest, middle and the highest cell pressures. These averages are made for all two (or three)
analyzed tests. The exemplary figure, which is used for the comparison of the results, is shown in Figure 3.3
below:

Figure 3.3: The method of calibration of soil parameters (in here, the su in the NGI-ADP model based on triaxial UU1 test).

For finding the calibrated material model parameters, two approaches have been adopted, which are shown
in Figure 3.4 and explained further.

Figure 3.4: Workflow of calibration of the HSS model input parameters.

The first is that for each stress path, the ratio between the best-fit and the initial curves obtained in the lab-
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oratory test is calculated. This ratio is then averaged for the whole space of the representative tests. Then,
the mean is multiplied by this calculated ratio in order to obtain the initial input values. This method was
adopted in the calibration of the HSS model. The workflow is shown in Figure 3.4 below. Since a dispersion
between the mean values and the values obtained in each representative test is significant, the graphs show
only the intermediate calibration plot, i.e. parameters derived in each test multiplied by the calibration ratio
compared to the stress path in this laboratory test.

The second method tries to find one specific value, which fits all of the representative tests best. This method
was applied in the calibration of the NGI-ADP (except for the su parameter), and SHANSEP MC models since
most of the initial parameters are based on the assumptions.

3.2. Sub-soil parameters assessment
In this part, the material models’ parameters will be set with respect to the sub-soil parameters obtained in
the laboratory and field testing programs. Of the utmost interest are the low- and high- plasticity clay pa-
rameters. The parameters, which are given in the further section are based on the accomplished geological
works, which have included 24 geological samplings of depth ranging from 24.45 to 70.1 meters, with an av-
erage value of 56.7 meters.

As a part of these soundings, 103 SPT tests and 86 pressuremeter tests were performed. Additionally, the
laboratory testing program was introduced and it comprised of 107 sieve analyses, 127 Atterberg limits tests,
137 WC tests, 48 FS tests, 73 Dry Unit Weight tests, 4 UCS tests, 3 DS tests, 27 CU tests, 11 UU tests, 4 UC and
30 one-dimensional consolidation tests [50].

3.2.1. Triaxial tests
In total, 27 CU tests, 11 UU and 4 UC tests were performed. In order to find the best-fit test, several parameters
shown below were taken into account:

• The reference secant stiffness E r e f
50 for both CU and UU tests;

• The undrained shear strength su for UU tests;

• The (effective) internal friction angle φ′ and the (effective) cohesion c ′ for CU tests.

Furthermore, the overburden pressure is an essential factor. In the triaxial tests, cell pressure in CU represents
the effective overburden pressure multiplied by a lateral earth pressure coefficient at rest, and in UU tests, the
horizontal water pressure value is added. For a better understanding of a cell pressure evolution with depth,
the effective and total in-situ lateral confining pressure is shown in Figure 3.5. The wished-in place situation
would be to choose tests with the cell pressure lying inside of the bounds.
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Figure 3.5: The confining pressure as a function of depth for the considered cross-section (K0 = 0.645).
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Figure 3.6: In-depth distribution of the undrained shear strength
obtained from the UU and UC triaxial tests.

The distributions of parameters obtained in the
performed CU and UU tests are assessed, as
shown in Figure 3.6 on the left. The extreme read-
ings (black dots) are omitted, and the rest of the
readings (yellow dots) are used to calculate the
mean, the median and standard deviation and to
draw a corresponding trend-line. The procedure
is presented in Figure 3.6 on an exemplary pa-
rameter, i.e. the undrained shear strength derived
from UU and UC triaxial tests.

The assessment of the E r e f
50 parameter started from describing the distribution of E50,undr ai ned obtained in

the CU tests as shown in Figure 3.7 below.
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Figure 3.7: Distribution of the secant undrained stiffness obtained in the triaxial CU tests as a function of test confining pressure.

The SoilTest facility was used to investigate the E r e f
50 input parameter value corresponding to the stress level

applied in each test, and the average estimate is equal to 1.95 MPa. The strength parameters were as estab-
lished in Table 3.7, vertical pre-consolidation pressure equal to 180 kPa (POP corresponding to the applied
cell pressure and average OCR as in Table 3.7).

In the same manner, the results from the triaxial UU tests were assessed. The distribution of E50,undr ai ned

obtained in triaxial UU tests is shown in Figure 3.8 below.
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Figure 3.8: Distribution of the secant undrained stiffness obtained in the triaxial UU tests as a function of test confining pressure.

The corresponding input value was investigated using Undrained B drainage settings. Hence no stress-
dependency is applied. The input E50 for E50,undr ai ned of 12.5 MPa was calculated using Formula 3.1 at a
confining pressure of 600 kPa. The estimated value is 9.3 MPa.

E50 = E r e f
50

(
c · cosϕ−σ′

3si nϕ

c · cosϕ+pr e f si nϕ

)m

(3.1)

Repeating the derivation of E r e f
50 value for each performed test (at each cell pressure) leads to the distribution

of this parameter in-depth as shown in Figures A.3 and A.4 in Appendix A. In these figures, the depth was
back-calculated from the applied cell pressure.

The point estimation for all the mentioned parameters is shown in Table 3.1 below.

Test Parameter Unit Mean Median SD Choice

CU φ′ [◦] 18.0 18.0 3.31 18.0
CU c ′ [kPa] 27.2 29.0 7.84 28.0

UU & UC su [kPa] 91.3 81.3 34.8 85.0

UU E r e f
50 [MPa] 1.53 1.32 0.61 1.50

UU E r e f
50 [MPa] 9.3 - - 9.3

CU E r e f
50 [MPa] 2.26 1.80 1.19 2.25

The reference pressure is 100 kPa, except for the stress-level in triaxial UU secant stiffness input in the
5th row, which is 600 kPa.

Table 3.1: Parameters obtained in the triaxial tests.

The best fit triaxial test should provide parameters as described in Table 3.1. The mean value of the undrained
shear strength su refers to a depth of around 40.0 - 45.0 meters, i.e. where mean and linear regression lines
cross. Also, in the same manner as for the consolidation test, it should have similar plasticity characteristics,
a void ratio and a dry unit weight as given in Tables 3.5 and 3.6.
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3.2.2. Pressuremeter tests

The first two parameters can be used to obtain secant shear and un-loading/reloading stiffness moduli through
Formula 3.2 [41]. However, the obtained values for a reference stress level of pr e f = 100 kPa were unreason-

ably high (E r e f
50P MT

≈ 20.3 MPa, and E r e f
urP MT

≈ 40.6 MPa) and will not be used later.

The last parameter, pL , can be used to estimate the undrained shear strength su using Formula 3.3 [41]. The
obtained su distribution is shown in Figure A.6 in Appendix A. As seen in the plot, the original distribution
of the soil parameter is shown. Latter, the deviating extreme values (black dots on the plots) are omitted in
order to receive a higher target score, and the new distribution (only the yellow dots on the plots) is used to
give the point estimate. On the plots, the blue line is the mean value, and the green line indicates the median
and the orange line shows the depth-trend.

E50 ⇐⇒ E = 1.5÷2.0
EM

α
[MPa] (3.2)

where: EM is pressuremeter stiffness modulus expressed in MPa, and α is between 0.22 and 1.0.

su = 85kPa + pL

35
[kPa] (3.3)

where: pL is in kPa.

The limit pressure test is of limited reliability because many tests have not reached the limit pressure, what
may cause the undrained shear strength values to be underestimated. The summary of the averaged param-
eter values obtained for the low- and high- plasticity clay is shown in Table 3.2. The values in the table are for
all clay types classified as C L, C H , C L−C H , C H −C L and C H −SP .

Parameter Unit
Whole layer Depth to 49.5 m Depth from 49.5 m

Mean SD Mean SD Mean SD

Ep [MPa]
157 223 86.9 82.9 280.5 322.8

Mean: 87.5 Median: 70.1 SD: 68.7

Er [MPa]
651 1481 392 1271 1169 1776

Mean: 229 Median: 178 SD: 162

pL [MPa]
2.35 1.00 2.70 1.09 1.79 0.54

Mean: 2.11 Median: 2.04 SD: 0.54

su [kPa] Mean: 139 Median: 142 SD: 13.8

Table 3.2: Clay parameters obtained in Pressuremeter tests.

The derivation of the parameters shown above is based on the field testing consisting of 86 Pressuremeter
tests. The distribution of the Pressuremeter parameters, i.e. stiffness modulus Ep , rebound modulus Er , limit
pressure pL obtained in these test is shown in Figures A.7, A.8 and A.5 in Appendix A.

3.2.3. One-dimensional consolidation tests

In total, 30 one-dimensional consolidation tests have been performed. For the analysis of the pre-consolidation
ratio, the vertical effective and total stresses as a function of depth are shown in Figure 3.9 below.
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Figure 3.9: The vertical effective and total stresses as a function of depth for the considered cross-section (OC R = 1.0).

The statistics for the for low- and high- plasticity clay specimen parameters obtained in one-dimensional
consolidation tests are shown in Table 3.3 below.

Layer Parameter
Whole layer Depth to 49.50 m Depth from 49.51 m

Mean SD Mean SD Mean SD

Ce [−]
0.0843 0.0494 0.0726 0.0535 0.115 0.0479

Mean: 0.069, Median: 0.080, SD: 0.018

Cc [−]
0.213 0.135 0.285 0.150 0.146 0.086

Mean: 0.207, Median: 0.175, SD: 0.119

σ′
p [kPa]

904 301 858 308 946 310

Mean: 825, Median: 800, SD: 133

Table 3.3: Clay parameters obtained from one-dimensional consolidation tests.

The mean value of the pre-consolidation pressure σ′
p obtained in the one-dimensional consolidation test is

equal to 825 kPa, the median equal to 800 kPa and the standard deviation is 133 kPa.
Two formulae were considered to calculate the Over-Consolidation Ratio (OCR):

Formula 3.4 based on the pre-consolidation pressure derived in the oedometer tests:

OC R =
σ′

p

σ′
v0

(3.4)

Formula 3.5 by Ladd [54] based on the undrained shear strength:

OC R =
(

su

0.22σ′
v

) 5
4

(3.5)

where: su is taken from Formula 3.8.

The Ladd [54] formula significantly underestimates the OCR level. The OCR value will be based on the pre-
consolidation pressure from the oedometer tests and is estimated to be 1.40 for a depth of 30.0 meters and
1.20 for a depth of 60.0 meters and in between the mathematical interpolation method applies.
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Based on all of the one-dimensional consolidation tests, the tangent oedometer stiffness Eoed and un/re-
loading stiffness Eur were derived according to the formulae 3.6 and 3.7 from [12] shown below:

Eoed = E r e f
oed

 c · cosϕ− σ′
3

K nc
0

si nϕ

c · cosϕ+pr e f si nϕ


m

(3.6)

Eur = E r e f
ur

(
c · cosϕ−σ′

3si nϕ

c · cosϕ+pr e f si nϕ

)m

(3.7)

where: σ′
1 =

σ′
3

K nc
0

.

The distributions of these parameters are shown in Figures 3.10 and 3.11 below:
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Figure 3.10: Reference tangent oedometer stiffness E
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of depth.

The point estimation for the parameters obtained in one-dimensional consolidation tests is given in Table
3.4 below.

Parameter Symbol Unit Range Mean Median SD Choice

Secant oedometer stiffness Eoed [MPa] - 2.28 1.67 1.13 2.00
Un/re-loading oed. stiffness Eur [MPa] - 4.95 4.67 0.78 4.95

Table 3.4: The stiffness parameters obtained from one-dimensional consolidation tests.

The best-fit clay specimen for the consolidation test should have the swelling index of around 0.08, the com-
pression index of around 0.20 and the initial void ratio around 0.95. The dry unit weight of an average
soil specimen is approximated as 14.0 kN /m3 and saturated unit weight as 19.0 kN /m3. The average pre-
consolidation pressure is around 820 kPa, but the range is between 700 kPa and 850 kPa.

3.2.4. Atterberg limits and index tests
In total, 127 Atterberg limits tests were performed, and the data on the plasticity characteristics obtained in
these tests was used for a further assessment of the representative one-dimensional consolidation and triax-
ial tests and in the derivation of specific material model parameters.

In addition to the parameters mentioned above, four other parameters were derived in index tests performed
as a part of the consolidation and triaxial tests. These parameters can be used, together with Atterberg lim-
its to point out the most representative tests concerning the sample characteristics. Their distributions are
shown in Figure A.13, A.17, A.18 and A.19 in Appendix A. The distributions and tables are shown as before.
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The summary of the test results for the whole clay domain (of low- and high- plasticity) is shown in Table
3.5 below.

Parameter Unit
Whole layer Depth to 49.50 m Depth from 49.51 m
Mean SD Mean SD Mean SD

L.L. [%]
64.0 17.9 58.2 20.3 74.2 17.5

Mean: 64.1 Median: 66.0 SD: 12.9

P.L. [%]
26.2 10.4 24.7 11.4 28.8 10.6

Mean: 25.2 Median: 23.0 SD: 8.61

P.I . [%]
37.8 14.4 33.5 14.6 45.2 14.8

Mean: 38.2 Median: 36.0 SD: 12.9

w [%]
30.5 9.1 29.2 9.83 33.2 14.0

Mean: 30.4 Median: 30.3 SD: 8.19

Table 3.5: Prameters obtained from Atterberg Limits tests.

The best fit clay specimen should have following plasticity characteristics: Liquid Limit around 65%, Plastic
Limit around 24%, Plasticity Index around 37% and natural water content around 30%.

The statistics of the four state parameters is shown in Table 3.6 below.

Layer Parameter
Whole layer Depth to 49.50 m Depth from 49.51 m

Mean SD Mean SD Mean SD

e0 [−]
0.913 0.190 0.884 0.216 0.940 0.173

Mean: 0.947, Median: 0.940, SD: 0.133

γd [kN /m3]
14.7 1.70 14.8 1.76 14.5 1.67

Mean: 14.2, Median: 14.0, SD: 1.21

wtest [%]
31.8 7.29 31.1 8.42 32.7 6.07

Mean: 33.3, Median: 33.1, SD: 5.86

γsat [kN /m3]
19.2 1.44 19.1 1.08 19.2 1.78

Mean: 19.0, Median: 18.7, SD: 0.97

Table 3.6: State parameters obtained from the index tests.

Based on all of the oedometer tests, the derived stiffness parameters are shown in Figures A.10 and A.11, the
pre-consolidation pressure in Figure A.9, and the other parameters in Figures A.12, A.14, A.15 and A.16 in
Appendix A.

3.2.5. Summary of the parameters assessment
To summarize the performed field and laboratory tests, this part refers to Geotechnical Interpretative Report
[51] prepared for this project, where other tests such as SPT, correlations and assumptions, and knowledge of
local experts is used to assess the final parameters. These parameters are: coefficient of lateral earth pressure
K nc

0 , the Poisson’s ratio ν, the characteristic values of effective friction angle ϕ′ and the effective cohesion c ′,
which were characteristic values calculated with a confidence level of 95%, the stiffness moduli E r e f

50 , E r e f
oed

and E r e f
ur .

Besides, the undrained shear strength was derived in three different tests. In order to increase confidence
in assessing its average value, point estimation will be based on both PMT, UC and UU tests. The combined
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distribution is shown in Figure A.20 in Appendix A.

The trend-line describing the undrained shear strength is as in Formula 3.8 below. The mean value was esti-
mated as 128 kPa (median 139 kPa) with a standard deviation of 40.0 kPa.

su = 0.1183σ′
v +54.89yr e f [kPa] (3.8)

where: yr e f is the reference depth.

Since there is a big spread between direct values from the UU and UC tests and the correlated values from
PMT, it was agreed that su should be in a range between 90.0 kPa for a depth of 30.0 m and 150 kPa for a depth
of 60.0 m.

The same applies to the secant triaxial and tangent oedometric stiffness. Since there is a big spread between

CU (E r e f
50 ≈ 5.90 MPa), UU (E r e f

50 ≈ 1.80 MPa) and one-dimensional consolidation (E r e f
oed ≈ 2.25 MPa) tests, it

was agreed to use one value of 2.50 MPa. Also, the un/re-loading, which was estimated to be 4.95 MPa, is too
low when compared to the tangent stiffness from primary oedometer loading. That is why the value 7.50 MPa

is set as the initial value. The variance for both E r e f
50 and E r e f

oed parameters is taken as a standard deviation for
all of the results of the UU and 1D consolidation tests.

In the linear-elastic, perfectly-plastic analysis, the Poisson’s ratio for clays can be taken as 0.30− 0.40 [10]
with an average value of 0.35 taken as the best-estimated value. In the undrained calculations, a value of
0.495 should be adopted for the νu parameter, because the value of 0.50 might cause computation errors in
finite-element analysis software.

The final list of all relevant soil parameters derived in the site investigation program is shown in Table 3.7
below.

Parameter Symbol Range Estimate SD Unit

Reference stiffness modulus E r e f
50 - 2.50 1.10 [MPa]

Reference oedometer modulus E r e f
oed - 2.50 1.10 [MPa]

Reference un/re-loading modulus E r e f
ur - 7.5 - [MPa]

Initial void ratio e0 - 0.945 0.13 [-]
Plasticity index PI - 37.0 13.0 [%]

Effective friction angle ϕ′ - 22.0 3.3 [◦]
Effective cohesion c ′ - 1.0 7.80 [kPa]

Undrained shear strength su 90 - 150 120 40 [kPa]
Coefficient of lat. earth pressure at rest K0 = K nc

0 0.62−0.73 0.65 0.25 [-]
Effective Poisson’s ratio ν′ - 0.35 - [-]

Over-consolidation ratio OC R 1.0 - 1.5 1.2 - 1.4 - [-]

The reference stress level pr e f is equal to 100 kPa.
The average su value is given for depth of 45.0 m.

Table 3.7: Summary of the input parameters.
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3.3. Studies on the material model parameters
3.3.1. Initial values of the material model parameters
In this section, parameters of the analyzed material models are described, the estimate and justification for
each parameter’s value will be given. Most of the parameters are taken as they are in Table 3.7 and the missing
material model parameters are explained below.

HSS model
The default value of the threshold shear strain at Gs = 0.722G0, i.e. the γ0.7 parameter, is taken as equal to the
default value 0.0001. This value has also been proven to have a good fit with the real laboratory tests results.
The reference shear stiffness at small strains can be approximated with Formula 3.9 [3]:

G0 = E0
1

2(1+ν)
[MPa] (3.9)

The ratio of E0
E50

can exceed 10 for very soft clays [3], but often a value of 3.0 [93] is assumed. For the clay

domain in this project, the good fit was received for Gr e f
0 estimated as 40.0 MPa.

The HSS model parameters, which are the established averages for the whole clay domain, are listed in Table
3.11.

NGI-ADP model
The ratio un/reloading shear modulus over (plane strain) active shear strength Gur /s A

u is not defined in the
laboratory tests, and its value can only be correlated from the un/reloading stiffness modulus using Formula
3.10.

Gur

s A
u

=
Eur

2(1+νur )

s A
u

(3.10)

Using this formula for an average value of E r e f
ur and sr e f

u we obtain a value around 22.0. This value is consid-
ered too low to be applied, hence the ratio of 30.0 is taken.

The shear strain at failure in triaxial compression γC
f from the CU tests is equal to 7.2%, and γE

f as an av-

erage from the two available triaxial extension tests is equal to 2.1%. There is no direct simple shear test
data available. In the literature [12] one can find a following approximations for the shear strain parameters:
γC

f = 0.5−4.0%, γE
f = 3.0−8.0% and γDSS

f = 2.0−8.0%. Also, a following relation can be found: γC
f < γDSS

f < γE
f .

Since there is no fully reliable data (very high standard deviation of the available results and too high results),
initially, the parameters were taken as the upper range according to the literature, i.e. γC

f = 4.0%, γE
f = 6.0%

and γDSS
f = 8.0%.

The ratio of triaxial compressive strength over active shear strength sC ,T X
u /s A

u is set to a default value. The
ratio of passive shear strength over active shear strength sP

u /s A
u is estimated as 2.68 in the laboratory tests,

which is a very high number. From the literature, values in the range of 0.2÷0.5 can be found [12], hence the
value of 0.35 was adopted. For the ratio of direct simple shear strength over active shear strength sDSS

u /s A
u ,

there is no available data to be used, hence the Formula 3.11 [12] was used, and the value of 0.68 was found
as the best estimation.

sDSS
u /s A

u = 1+ sP
u /s A

u

2
(3.11)

The reference depth yr e f is set as −35.0 m with sr e f
u taken as 100 kPa and s A

u,i nc equal to 2.0 kN/m2/m, so
the undrained shear strength was equal to the established mean (120 kPa) at the depth of 45.0m, i.e. depth
were the trend-line and mean-line usually cross for most of the parameters. The initial mobilization τ0/s A

u
was taken as a default value.

The NGI-ADP model parameters, which are the established averages for the whole clay domain, are listed
in Table 3.12.
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SHANSEP MC model
Two formulae can be used to approximate the shear modulus over the undrained shear strength ratio G/Su .
The first one is described in Formulae 3.12 and 3.13 related to the undrained rigidity index IR .

G ∼=G50 = IR su (3.12)

where su is the undrained shear strength, and IR is calculated using Formula 3.13:

IR = e(137−PI )/23

[1+ l n(1+ (OC R −1)/26)3.2]0.8 (3.13)

The other is as shown in Formula 3.14 [72].

G

Su
= 5000

Ip [%]
= 5000

37
≈ 135 (3.14)

where: Ip is a plasticity index.

Eventually, the second formula is used in this study, and the ratio is kept constant for each of the analyzed
tests to avoid additional discrepancies between the parameters sets. The SHANSEP MC model parameters,
which are the established averages for the whole clay domain, are listed in Table 3.13 below.

GHS model
All of the GHS model parameters are consistent with the parameters of the HSS model, and have been derived
exactly in the same way as in HSS model.

3.3.2. Chosen representative tests
The point estimation of each soil parameter was used to choose the representative tests, which define clay
behaviour as accurately as possible. In total, seven tests have been chosen to be used in the calibration:
two triaxial CU tests summarised in Table 3.8, two triaxial UU tests summarised in Table 3.9 and three one-
dimensional consolidation tests summed up in Table 3.10.

Sample description Test parameters

Test code
Depth

Sample
σ1 σ3 σ1 −σ3 ε f ε50 E r e f

50 φ′ c ′
[m] [kPa] [kPa] [kPa] [%] [%] [MPa] [◦] [kPa]

CU1 46.15 CH
536 250 286 15.8 1.12 1.75

24.0 10.0797 375 424 15.8 1.50 1.33
1056 500 556 14.5 0.91 2.30

CU2 52.15 CH
577 300 277 6.57 0.42 4.05

17.0 20.0838 450 388 5.26 0.46 3.62
1106 600 506 5.30 0.48 3.48

Table 3.8: Parameters obtained in the representative triaxial CU tests.

Sample description Test parameters

Borehole
Depth

Sample
σ1 σ3 σ1 −σ3 ε f ε50 E r e f

50 su

[m] [kPa] [kPa] [kPa] [%] [%] [MPa] [kPa]

UU1 60.60 CH
510 350 160 14.3 0.62 10.0 80.0
827 550 277 9.2 0.87 12.1 139

1078 750 338 10.3 1.29 9.2 164

UU2 67.35 CH
510 400 110 15.8 0.52 7.47 55.0
787 600 187 15.8 0.84 8.03 93.5

1131 850 281 15.8 1.10 9.43 141

E
r e f
50 input value for a given confining (cell) pressure.

Table 3.9: Parameters obtained in the representative triaxial UU tests.
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Sample data Parameters obtained in 1D the consolidation tests

Test code
Depth

Layer
Ce Cc σp e0 L.L. P.I . γd E r e f

oed E r e f
ur

[m] [-] [-] [kPa] [-] [%] [%] [kN/m^3] [MPa] [MPa]

1D-1 37.90 CH 0.077 0.37 700 0.98 49 29 13.63 1.23 8.25
1D-2 54.10 CH 0.081 0.27 1600 0.88 77 50 14.32 1.60 7.46
1D-3 55.45 CH 0.095 0.30 700 0.88 73 50 14.32 1.44 6.35

Table 3.10: Parameters obtained in the representative one-dimensional consolidation tests.

The tables above are based on the tests shown in Figures A.27 and A.28 in Appendix A for the triaxial CU tests,
Figures A.24 and A.25 in Appendix A for the triaxial UU tests and in Figures A.21, A.22 and A.23 in Appendix A
for the one-dimensional consolidation tests.

3.3.3. Calibration of the parameters of the HSS model

There are three drainage types in the HSS constitutive soil model: Drained, Undrained A and Undrained B,
whereas in the SoilTest simulations, there is no difference in the computed stresses between the Drained and
Undrained A settings. The calibration of the material model parameters is possible only in the applicable
stress range, so the oedometer tests simulations can only be simulated appropriately using the Drained set-
tings. This is because in Undrained B settings after the vertical effective pressure reaches a double value of
the undrained shear strength, the stress-strain curve follows the constant degree till the maximum vertical
effective pressure is reached.

In total, the results of four triaxial tests (using three cell pressures in each test) and three oedometer tests were
reproduced in the SoilTest facility in order to calibrate the material parameters. The triaxial CU tests were
simulated using Drained approach and the triaxial UU tests were simulated using the Undrained B drainage
type. For the Drained settings, Figures 3.12, 3.13 and 3.16 show stress paths for the calibrated material model
parameters sets for triaxial CU1 and CU2 and one-dimensional consolidation tests. For the Undrained B set-
tings, Figures 3.14 and 3.15 show the calibrated stress path for triaxial UU1, UU2 and extension UU tests,
respectively.

The initial values obtained in the laboratory tests were taken as in Table A.1 in Appendix A. The calibrated
stress paths are given for the initial values, whereas the stiffness parameters were multiplied by the ratio of
1.6 for the triaxial CU and oedometer tests and the ratio of 0.85 for the triaxial UU tests, the internal friction
angle was increased by 3.0◦.
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Figure 3.12: Stress paths computed for the calibrated HSS model parameters compared to the paths from the laboratory tests - triaxial
CU1 test.
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Figure 3.13: Stress paths computed for the calibrated HSS model parameters compared to the paths from the laboratory tests - triaxial
CU2 test.
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Figure 3.14: Stress paths computed for the calibrated HSS model parameters compared to the paths from the laboratory tests - triaxial
UU1 test.
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Figure 3.15: Stress paths computed for the calibrated HSS model parameters compared to the paths from the laboratory tests - triaxial
UU2 test.
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Figure 3.16: Stress paths computed for the calibrated HSS model parameters compared to the paths from the laboratory tests -
oedometer tests.

The calibrated input parameters for the HSS model are shown in Table 3.11 below.

Parameter type Symbol
Initial Esimate Optimised Estimate

Unit
Drained Undrained B Drained Undrained B

Failure
parameters as

in MC

ϕ 22.0 0.0 22.0 0.0 [◦]
c 1.0 120 10.0 120 [kPa]
ψ 0 0 0 0 [◦]
σt 0 0 0 0 [kPa]

Basic
parameters for

soil stiffness

E r e f
50 2.50 10.1 4.0 8.6 [MPa]

E r e f
oed 2.50 10.1 5.0 10.7 [MPa]

E r e f
ur 7.5 30.3 15.0 32.2 [MPa]
m 1.0 1.0 1.0 1.0 [-]

Small-strain
stiffness

γ0.7 0.0001 0.0001 0.0001 0.0001 [-]

Gr e f
0 40.0 75.0 35.0 70.0 [MPa]

Advanced
parameters

νur 0.20 0.20 0.20 0.20 [-]
pr e f 100 600 100 600 [kPa]
K nc

0 0.65 0.65 0.65 0.65 [-]
R f 0.90 0.90 0.90 0.90 [-]

Parameters in Undrained B column are given for the confining pressure of 600 kPa.

Table 3.11: The initial and the calibrated parameters of the HSS model.

The stiffness in extension has not been calibrated since the only proper test shows the E50 parameter equal
to 22.5 MPa at the stress level of 500 kPa, which is around two times higher than the stiffness in compres-
sion. Hence, the stiffness value for the clay at extension will be taken as one-third of the compression values
adjusted to the stress level of 400 kPa.

3.3.4. Calibration of the parameters of the NGI-ADP model
There are three drainage types in the NGI-ADP model: Drained, Undrained B and Undrained C. The com-
puted stress paths for the Drained and Undrained B models are identical, and the results using the Undrained
C settings are slightly different (almost negligible). Since the only strength parameter is the undrained shear
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strength su , which is pre-defined and is not influenced by the stressσ′
y y , the simulations of the one-dimensional

consolidation tests were not be performed.

In total, the results of two triaxial UU tests, using three cell pressures in each test, were reproduced in SoilTest.
Both tests have been simulated using the Undrained C settings. The results of the calibration for the triaxial
tests UU1 and UU2 is shown in Figures 3.17 and 3.18 below.

The initial values were derived from the laboratory tests taken as in Table A.2 in Appendix A. In each tri-
axial test, the computed s A

u,r e f value was different and equal to the one directly derived from the test. The

other values, by a trial-and-error method, were calibrated to a one, constant value.

0.160.140.120.100.080.060.040.020.00
Axial strain 1 [-]

0

50

100

150

200

250

300

De
vi

at
or

 st
re

ss
 

-
 [k

Pa
]

Laboratory test stress path for 3 = 350kPa
Laboratory test stress path for 3 = 550kPa
Laboratory test stress path for 3 = 750kPa

Computations for the NGI model 3 = 350kPa
Computations for the NGI model 3 = 550kPa
Computations for the NGI model 3 = 750kPa

Figure 3.17: Stress paths computed for the calibrated NGI-ADP model parameters compared to the paths from the laboratory tests -
triaxial UU1 test.
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Figure 3.18: Stress paths computed for the calibrated NGI-ADP model parameters compared to the paths from the laboratory tests -
triaxial UU2 test.

The calibrated input parameters for NGI-ADP model are showed in Table 3.12 below.

Parameter type Symbol Initial Esimate Optimised Estimate Unit

Stiffness parameters

Gur /s A
u 30.0 35.0 [-]

γC
f 4.0 4.0 [-]

γE
f 8.0 8.0 [-]

γDSS
f 6.0 6.0 [-]

Strength parameters

s A
u,r e f 100 85 [kPa]

sC ,T X
u /s A

u 0.99 0.99 [-]
yr e f -35.0 -35.0 [m]

s A
u,i nc 2.0 2.0 [kPa/m]

sP
u /s A

u 0.35 0.35 [-]
τ0/s A

u 0.70 0.70 [-]
sDSS

u /s A
u 0.68 0.68 [-]

Advanced parameter ν′ 0.35 0.35 [-]

The input parameters are given for the Drained settings, while the values for the Undrained C settings are exactly same apart from
Poisson’s ratio, which is equal to = 0.495 then.

Table 3.12: The initial and the calibrated parameters of the NGI-ADP model.

3.3.5. Calibration of the parameters of the Shansep MC model
The SHANSEP MC model can be set with two drainage types: Drained and Undrained A. The computed stress
paths for the Drained and Undrained A models are identical. The SHANSEP MC model, which is a total stress
analysis model, is not appropriate for simulating a one-dimensional consolidation tests.

In total, the results of two triaxial UU tests, using three cell pressures in each test, were reproduced in SoilTest,
both with the Undrained A drainage settings. The results of the calibration for the triaxial tests UU1 and UU2
is shown in Figures 3.19 and 3.20.
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The initial values are derived from the laboratory tests were taken as in Table A.3 in A. In each triaxial test,
the computed G/Su value was different and equal to the one directly derived from the test, while α and m
parameters were calibrated to a one, constant value. Eventually, all these parameters were calibrated to one
value, which gave the best fit for all the stress paths.
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Figure 3.19: Stress paths computed for the calibrated SHANSEP MC model parameters compared to the paths from the laboratory tests
- triaxial UU1 test.
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Figure 3.20: Stress paths computed for the calibrated SHANSEP MC model parameters compared to the paths from the laboratory tests
- triaxial UU2 test.

The material model parameters calibrated for those two triaxial tests do differ from each other significantly.
The final calibrated input parameters for SHANSEP MC model are the average values from those two triaxial
tests and are shown in Table 3.13 below.

Parameter type Symbol Initial Estimate Optimised Estimate Unit

Mohr-Coulomb model parameters

G 4.89 4.89 [MPa]
ν′ 0.35 0.35 [-]
ϕ 22.0 22.0 [◦]
c 1.0 1.0 [kPa]
ψ 0 0 [◦]
σt 0 0 [kPa]

SHANSEP parameters

α 0.22 0.16 [-]
m 0.80 0.79 [-]

G/Su 135 50.0 [-]
Sumi n 5.0 5.0 [kPa]

OC Rmi n 1.0 1.0 [-]

G/Su parameter was changed from the calibrated value of 45 to the value of 50, because the lower value was causing a calculation errors.

Table 3.13: The initial and the calibrated parameters of the SHANSEP MC model.

3.3.6. Calibration of the parameters of the GHS model
The GHS constitutive soil model consists of the same set of input parameters as the HSS model. The triaxial
CU tests were simulated with the parameters as in the HSS model. The triaxial UU tests were simulated with
the internal friction angle set to 0◦ and the cohesion set to the effective cohesion, i.e. the su parameter as in
HSS Undrained B model. The GHS model has two drainage settings types: Drained and Undrained A, whereas
the computed stress paths are identical for both settings. Also, the GHS model has several other functionali-
ties, which were studied further in this section.
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To investigate how the GHS models’ switches influence the stress/strain output generated in SoilTest facil-
ity, all of the possible variations have been considered. The plasticity model setting 1 has been omitted since
it is the Mohr-Coulomb failure criterion with no hyperbolic stress-strain relation. In total, 28 sub-variations
for each strain-dependency of stiffness setting could be distinguished, so in total 56 sub-variations.

The comparison between stress paths obtained with the selected GHS variations, the HSS material model
and the ones obtained in laboratory tests are shown in Figures 3.21 and 3.22.

Figure 3.21: Stress paths for the calibrated parameters of the HSS model and the selected GHS model variations - triaxial CU2 test at
σ3 = 450 kPa.
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Figure 3.22: Stress paths computed for the calibrated parameters of the HSS model and the selected GHS model variations - triaxial
UU1 at σ3 = 550 kPa.

The plasticity models with no shear hardening (Formulae 1 and 3) do not have hyperbolic behaviour. For-
mula 4, which incorporates both shear and cap hardening, produces higher deviator stress than Formula
2. The original (HS) stress-dependency formula results in the smallest deviator stress, while adding pre-
consolidation stress makes it higher, and changing the lower principal stress with the mean effective stress
also increases the deviator stress slightly. The difference in the triaxial UU tests was much bigger than in the
triaxial CU tests. Furthermore, the deviator stress was higher when it was updated in each calculation phase
than when it is updated in each step. Deactivation of small-strain stiffness makes the deviator stress lower
than in the real tests, for both triaxial tests types.
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The GHS model variation, which had the best fit with stress paths obtained in the laboratory tests, is the
GHS1120 model. The performance of this material model is shown in Figures 3.23, 3.24, 3.25 and 3.26. The
parameters of all of the representative tests, which were used for the calibration are as in the HSS model. The
calibration method is also the same as for the HSS model.

Figure 3.23: Stress paths computed for the calibrated GHS1120 model parameters compared to the paths from the laboratory tests -
triaxial CU1 test.

Figure 3.24: Stress paths computed for the calibrated GHS1120 model parameters compared to the paths from the laboratory tests -
triaxial CU2 test.
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Figure 3.25: Stress paths computed for the calibrated GHS1120 model parameters compared to the paths from the laboratory tests -
triaxial UU1 test.

Figure 3.26: Stress paths computed for the calibrated GHS1120 model parameters compared to the paths from the laboratory tests -
triaxial UU2 test.

The calibrated input parameters for the GHS model are same as for the HSS model presented in Table 3.11.
The drainage settings used for the GHS model is the Undrained A type.

In addition to the calibration presented above, a comparison of models with and without activated small-
strain stiffness is given. The comparison between GHS2021 and GHS2121 models is shown on triaxial CU2
test in Figure 3.27 and the comparison between GHS1020 and GHS1120 models are shown on the triaxial UU1
test in Figure 3.28.
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Figure 3.27: Stress paths for the small strain range for the calibrated GHS2021 and GHS2121 models’ parameters compared to the stress
path from the laboratory test - triaxial CU2 test.

Figure 3.28: Stress paths for the small strain range for the calibrated GHS1120 and GHS1121 models’ parameters compared to the stress
path from the laboratory test - triaxial UU1 test.

Based on the comparison of the computed and real stress paths, it cannot be stated if the small-strain stiffness
should or should not be activated. Nevertheless, according to Yo-Ming Hsieh et al. (2017) [43], ignoring small-
strain stiffness can overestimate deformations by as much as 80%, leading to conservative and costly design
(the case of deep excavation in silty clay). The influence of the activation of the small-strain stiffness was
further investigated in the full 2D Plaxis analyses.
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3.3.7. Comparison of the models performance
Both the HSS and the GHS1120 models were capable of reproducing the triaxial tests’ results in terms of the
effective stress, and the computed stress paths imitate the laboratory test curves very accurately compared to
the other models.

The comparison between performance of the HSS and GHS models is shown on the triaxial CU2 test at the
cell pressure σ3 = 550 kPa in Figure 3.29.

Figure 3.29: Comparison of the performance of the calibrated HSS and GHS models parameters - triaxial CU2 test at σ3 = 450 kPa.

The NGI-ADP model is suited to the calculations in terms of the undrained analysis only. The values of the
stiffness parameters (apart from the Gur /s A

u parameter) derived from the laboratory tests were higher than a
reasonable range of these parameters, what is caused by a limited laboratory tests data.

The SHANSEP MC model lacks the hyperbolic behaviour for all the parameter combinations. Therefore, for
most levels of strain, the computed deviator stress was relatively far away from the real one. However, the
deviator stress for the small-strain range in the triaxial tests was reproduced accurately, so the SHANSEP MC
model is a better choice than the NGI-ADP model.
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The performance of all four material models considered is presented on the triaxial UU1 test at the cell
pressure σ3 = 450 kPa in Figure 3.30.

Figure 3.30: Comparison of the performance of the calibrated HSS, NGI-ADP, Shansep MC and GHS1120 models’ parameters - the
triaxial UU1 test at σ3 = 550 kPa.

The HSS model, compared to the HS model, incorporates the small-strain stiffness and is the best standard
material model for deep excavation applications (loading/unloading problems) [73]. Also, it is possible to
fully calibrate its parameters using the triaxial test only. However, applying it in undrained calculations using
Undrained B brings difficulties in the calibration of undrained parameters, especially in problems associated
with an extension. Another disadvantage is that the stiffness based on σ′

3 only is often underestimated in
unloading problems.

The advantage of the NGI-ADP model is a direct input of the undrained shear strength, which can be depth-
dependent. In addition, the initially mobilised shear strength τA

0 /s A
u can be changed, which has a major

impact on initial stiffness . The model can also be merged with the SHANSEP concept what has been widely
used in the dikes design. A disadvantage of this model is the complexity of its calibration due to the many
types of tests needed. Also, for not horizontal (inclined) soil layers, usage of the depth-dependency of the
undrained shear strength leads to a non-realistic distribution of the undrained shear strength.

The SHANSEP MC model, contrary to the MC model, gives a realistic way of modelling the undrained shear
strength according to the major principal stress σ′

1 and stress-dependent stiffness based on the Su parame-
ter. However, the SHANSEP MC failure criterion is limited to the Mohr-Coulomb criterion. Also, the SHANSEP
concept is unsuitable for modelling behaviour of a highly sensitive clays and cemented clays in which defor-
mation modifies their structure[81].

The GHS model allows the user to keep a chosen stress-/strain-dependency of stiffness setting, stress-dependency
formulae and plasticity models depending on the considered case making it more problem-specific. An-
other advantage is that the stress-dependency formula can incorporate the mean effective stress or pre-
consolidation stress, which can help to solve the problem of stiffness reduction due to low minor princi-
pal stress σ3. A disadvantage of the GHS model is that it is less robust than the HSS model, i.e. it requires
more understanding, knowledge and user experience than the HSS model. Also, it is not possible to perform
undrained calculations based on the undrained shear strength.
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3.4. Conclusions
The main differences regarding the excavation problems between the four material models, which were in-
vestigated in this section, are summed up in Table 3.14 below.

Aspect HSS GHS NGI-ADP SHANSEP MC

Analysis type Effective stress analysis Total stress analysis

Stress-dependency
of stiffness

σ3
σ3 or σ3 and p ′

or σ3 and pc
Gur /s A

u

G/Su where Su is
updated based on

σ′
1

Stiffness in
undrained

calculations

Constant
(Undrained B)

Stress-dependent
Depth-dependent

(via su)
Stress-dependent

(via s A
u )

Calculations of the
undrained shear

strength

Depth-dependent
(Undrained B)

- Depth-dependent Stress-dependent

Plasticity model
MC + cap +
hardening

MC +/ cap +/
hardening

Tresca + hardening MC

Laboratory tests
required

Triaxial test or
Oedometer test

Triaxial test, DSS or
Cyclic triaxial test
and extension test

Undrained DSS or
Cyclic triaxial test

and undrained
compression test

Triaxial undrained
test or Oedometer

test

Table 3.14: Differences between the material models.

The conclusions formulated specifically for the considered triaxial tests, including the limitations of using
only primary loading kind of tests, are:

• The GHS1120 model captured the stiffness in the small-strain range (ε1 up to 0.5%) best from all of the
models. The HSS model also gave a very good estimation of stiffness in that range, whereas the best
estimation for the total stress analysis was received for the SHANSEP MC model.

• Regarding the stress-dependency formulae tested on the available triaxial tests, the most accurate es-
timation of deviator stress at strain between 0.0% and 0.5% was received for stiffness calculated based
on the lower principal stress and the pre-consolidation stress.

• Plasticity models 1 and 3 do not include shear hardening, hence do not capture a hyperbolic behaviour
of soil. For the triaxial tests’ considered, Formula 2 (without cap hardening) more accurately simulated
the stiffness in the small-strain range and was more conservative.

The conclusions formulated concerning the specific, deep excavations application considered are:

• The difference between updating the stiffness in each calculation step and each calculation phase is
almost negligible and is slightly less conservative in the second case. In unloading problems, this dif-
ference is a result of omitting computations of relaxation of the soil domain caused by reducing the
vertical effective stress in each step. Considering the small difference in computed stress, the usage
of stress-dependency formula updating stiffness in each phase can increase computation’s robustness.
The influence of this setting should be studied for each problem individually.

• For the undrained analysis, both the stiffness and the undrained shear strength is depth-dependent in
the NGI-ADP model and stress-dependent in the SHANSEP MC model. In the Undrained B settings of
the HSS model, the undrained shear strength is depth-dependent (what is quite often ignored by the
users), but the stiffness is constant according to the input.



4
Target measurements in the 2D

finite-element model

4.1. Introduction

4.1.1. Finite-element model and construction phases

The two-dimensional finite-element model, which is used in the further calculations, is as shown in Figure
4.1 below. Two loads are considered in the model, namely: a building load of 400kN /m2 and a surface load
of 20kN /m2.

Figure 4.1: The effective stress distribution in the two-dimensional Plaxis model.

In Table 4.1 all of the construction phases used in the computations are shown. Phases from 0 to 15 were
modelled and compared with the measurements from the site, and were used in the inverse analysis. Phases
from 16 to 25 are scheduled to happen latter and were not a part of the inverse analysis.

43
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Phase Description

0 Initial Phase
1 Building Load
2 Surface Load
3 D-wall installation
4 Excavation to +20.45 m
5 Strut N1 installation at +22.75 m
6 Excavation to +14.55 m
7 Strut N2 installation at +15.55 m
8 Excavation to +8.40 m
9 Strut N3 installation at +9.40 m

10 Excavation to +2.00 m
11 Dewatering to −14.50 m
12 Excavation to +0.30 m
13 Strut N4 installation at +1.30 m
14 Excavation to −3.00 m
15 Excavation to −5.75 m

Table 4.1: Construction phases as in the Plaxis 2D
model.

In addition, ten construction phases were distinguished, which modelled casting the base slab, the walls
and roof inside the pit, dismantling the struts, stoping the dewatering process and back-filling to the ground
level. However, these phases are irrelevant in the inverse analysis procedure and are omitted. The phase 15
is characterised by the lowest factor of safety, because the excavation level reached is the deepest from all
phases considered. The evolution of the building displacements throughout the excavation steps is shown in
Figure 4.2 below.
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Figure 4.2: The evolution of the building displacements
throughout the excavation steps for the SHANSEP MC

Undrained A model.

There were two drainage settings distinguished:
up to 12th phase the behaviour is modelled as
drained since the excavation has not reached the
cohesive layer and no significant deformations
happened yet, and up to phase 12, and from phase
13 onward, the excavation inside of the pit starts
to proceed in the clay layer, hence the behaviour
is modelled as undrained from this point onward.
The type of drainage has a significant impact on
the material models, which can be modelled in a
twofold manner (as drained and undrained), such
as the HSS model.

Furthermore, a dominant behaviour inside and outside of the d-box is different. Due to swelling of the clay
layer and the resulting movement of the diaphragm walls, the clay layer behaviour inside and outside of the
d-box is different, namely extension in the inside and compression outside of the d-box.
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When a chosen model’s drainage type is drained, stiffness properties are automatically configured according
to confining pressure. However, for the HSS model’s Undrained B configuration, the stiffness needs to be
input manually. Therefore, depending on the model, different drainage configurations and different material
model properties are applied in specific phases. This is summed up in Table 4.2 below.

Material model
Material model’s settings

Phases 0 - 12 Phases 13 - 15
Inside the d-box Outside of the d-box Inside the d-box Outside of the d-box

HSS Drained Undrained B*** Undrained B**
NGI-ADP Drained Undrained C

SHANSEP MC Mohr-Coulomb Shansep MC - Undrained A
GHS Undrained A* Undrained A

"*" denotes that the undrained behaviour is ignored.
"**" denotes that the values are taken for compression as shown in Table 3.11.
"***" denotes that the values are taken for extension, i.e. as one-third of the compression values adjusted to the stress level of 400 kPa.

Table 4.2: Configurations of material model parameters and drainage approach depending on construction phases.

For a comparison between different material models’ performance, displacements for two phases are consid-
ered. The first is phase 12, which is the last phase characterised by drained behaviour, and the other is phase
15, which is the last in general and is modelled as undrained.

4.2. Material models’ performance comparison

4.2.1. Simulations with different material models

The material models’ parameters used in the following computations were as in Tables 3.11 - 3.13. In order to
compare the performance of different material models used, the displacements were checked for construc-
tion phases 12 and 15 (see Table 4.1).

The comparison between the performance of the four material models was made in a twofold manner: con-
cerning settlements of the building adjacent to the excavation (Figures 4.3 and 4.4) and the diaphragm wall
deflections (Figures 4.5 and 4.6). In addition, the evolution of the building displacements throughout the
excavation steps is shown in Figure 4.7.

20 15 10 5 0 5 10 15 20
X-coordinates of the building [m]

15

10

5

0

5

10

15

Se
ttl

em
en

t [
m

m
]

HSS NGI-ADP SHANSEP MC GHS1120

Figure 4.3: Comparison of the computed settlements of the
building for different material models - phase 12.
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Figure 4.4: Comparison of the computed settlements of the
building for different material models - phase 15.
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Figure 4.5: Comparison of the computed d-wall deflections for
different material models - phase 12.
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Figure 4.6: Comparison of the computed d-wall deflections for
different material models - phase 15.

For this specific case, the total stress methods, i.e. the NGI-ADP and SHANSEP MC models, gave much larger
diaphragm wall’s deflections than the models based on the effective stress analysis, i.e. the HSS and GHS
models. The building settlements size is also larger for the NGI-ADP and SHANSEP MC models, but also the
shape of the deflections curve is different. The total stress analysis models have foreseen heave of the front
part of the building, whereas the other models computed almost uniform settlements.

Another point is that both Phase 12 and Phase 15, the results for the HSS and GHS models are very simi-
lar, even though in phase 15, the GHS1120 model is set with the Undrained A drainage type, whereas the
drainage behaviour of the HSS model was set to Undrained B. This means that for the given parameters’ set,
there is no big difference between the drained and the undrained computations for the given parameters sets.
Using the drained model may help to make the inverse analysis process more manageable by reducing the
number of parameters used, hence reducing the number of unknowns.
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Figure 4.7: The evolution of the displacements of the building
(middle node) throughout the excavation steps for different

material models.

As seen in Figure 4.7 on the left, there is a strong
coherence of computed displacements between
the HSS and GHS material models (the effective
stress analysis models) and between the NGI-ADP
and SHANSEP MC models (the total stress anal-
ysis models). In the first three unloading phases
(phases 0 to 8), the cap surface was reached in
much more spots in the total stress methods than
for the effective stress analysis. In the later four
unloading phases (phases 10 to 15), the failure was
observed in relatively more places in the soil do-
main for the total stress methods.

The resulted displacements are caused by a difference in computed stiffness and mobilised shear strength.
In all of the unloading phases, the computed stiffness was higher in all the distinguished soil layers for the
total stress methods, while the mobilised shear strength was similar for both methods in all layers, but the
clay layer in which the effective stress methods shown higher values.

Two reasons for such a high difference can be considered. Firstly, the way how the stiffness is computed
in those two methods, i.e. governed by σ′

3 in effective stress methods, σ′
1 in the SHANSEP MC and both prin-

cipal stresses in the NGI-ADP model. Also, for the total stress methods, the ratio of σ′
1 to σ′

3 computed in
the FE model was lower than for the effective stress methods and the computed principal effective stresses
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were higher for the total stress methods. Secondly, the NGI-ADP and SHANSEP MC material models were
calibrated based on limited soil data. Hence, the calibrated parameters, especially related to the shear strain,
might be inaccurately assessed.

4.2.2. Simulations with different GHS model settings

In addition to the comparison between different GHS model settings was based on the SoilTest facility only,
another comparison between a different GHS model settings performance was made by checking the build-
ing settlements (Figures 4.8 and 4.9) and the diaphragm wall deflections (Figures 4.10 and 4.11).
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Figure 4.8: Comparison of the computed settlements of the
building for different settings of the GHS model - phase 12.
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Figure 4.9: Comparison of the computed settlements of the
building for different settings of the GHS model - phase 15.
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Figure 4.10: Comparison of the computed d-wall deflections for
different settings of the GHS model - phase 12.
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Figure 4.11: Comparison of the computed d-wall deflections for
different settings of the GHS model - phase 15.

An additional comparison between the models HSS, GHS2140, GHS2141, GHS2142 and GHS2040 was made.
Analogically to the previous computations, also in here four plots (Figures 4.12, 4.13, 4.14 and 4.15) are used
to compare the model behaviour.
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Figure 4.12: Comparison of the computed settlements of the
building for different settings of the GHS model - phase 12.

20 15 10 5 0 5 10 15 20
X-coordinates of the building [m]

35

30

25

20

15

10

Se
ttl

em
en

t [
m

m
]

HSS GHS2140 GHS2141 GHS2142 GHS2040

Figure 4.13: Comparison of the computed settlements of the
building for different settings of the GHS model - phase 15.
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Figure 4.14: Comparison of the computed d-wall deflections for
different settings of the GHS model - phase 12.
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Figure 4.15: Comparison of the computed d-wall deflections for
different settings of the GHS model - phase 15.

Regarding the simulations with the GHS model, following observations have been drawn:

• Due to a higher deviator stress computed, the usage of the stiffness formula incorporating the mean
stress p ′ and the pre-consolidation stress pc generates smaller displacements than the formula in-
corporating lower principal stress σ3 only (as in the HS model) and the formula incorporating lower
principal stress σ3 and the pre-consolidation stress pc .

• The usage of the model with no small-strain stiffness (GHS2040) resulted in very similar d-wall dis-
placements as the one with small-strain stiffness activated (GHS2140) for phase 12. However, the com-
puted building displacements were much higher for the GHS2140 model for phase 15.

• When stiffness is updated in each phase instead of each step, the diaphragm wall deflections computa-
tions are more conservative, and the computations are faster.

4.3. Sensitivity analysis of the input parameters
To verify, which material model parameters has the highest influence on the diaphragm wall displacements,
simplified sensitivity studies were performed. The procedure was to decrease and increase all of the consid-
ered material models’ parameters values by 25%. Then, the average difference of the output is translated into
the factor of how each parameter influences the displacements. Sensitivity studies are divided into two parts:
sensitivity of the parameters in the drained calculations, i.e. phases from 0 (the initial one) to the phase 12
(excavation to +0.30 m), and sensitivity of the parameters in the undrained calculations, i.e. phases from 13
(Strut N4 installation at +1.30 m) onward.
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The output of each parameters’ variation is judged by the error between the computed results and the es-
tablished, constant synthetic observations. For the building settlements, there are three values, which are
being compared, namely: the settlements of the front, the middle and the rear part of the building. For the d-
wall deflections, there are five different similarity measures [47] and one additional value, which is a weighted
average of those five measures.

The errors are measured in the same way for both phases (12 and 15), i.e. they are compared to the observa-
tions made at the end of phase 12. Although comparing different phases does not provide any information on
the accuracy of the results, it provides certain values for different parameters sensitivity, what is the ultimate
goal of this section.

The next step is to relate the difference in the computed errors between the initial and a new value expressed
in percentages to the relative change the parameter value. Afterwards, having these ratios for each consid-
ered material models’ parameters, the numerical proportion between these ratios is derived, which is the
final sensitivity of each parameter.

In addition, the sensitivity of different model parameters can also be investigated via the built-in Plaxis fea-
ture called Sensitivity and parameter variation. This feature allows to investigate sensitivity based on horizon-
tal, vertical and total displacements, stress-strain relations or reached force/moment values in an arbitrarily
chosen nodes. Also, construction phase can be chosen, which one should be the criterion for the analysis.

In order to calculate a sensitivity values, a program runs a significant number of simulations with different
values of a chosen parameters. The higher number of chosen parameters, the higher number of variations to
be studied; hence, a time needed for computation can reach days or even weeks. However, the accuracy of
this method is undoubtedly higher than the one demonstrated in the latter part of this paragraph.

4.3.1. Error measurement method
In order to assess how the observed and computed results are close to each other, the measurements and
computations of the settlements in the three parts of the building and the deflections of the diaphragm wall
adjacent to this building were used.

Measuring how close are the computed building’s settlements to the synthetic measurements is done by
subtracting the computed settlements from the established measurements. The resulting negative values
mean that the computed settlements are bigger. However, to compare the exemplary and the computed d-
wall deflection, one needs to take into account all of the characteristics of the curves, i.e. shape, arc-lengths
and distances between curves at different depths. Some of the complexities that may lead to the need for
incorporating more sophisticated similarity measures are:

• The measurements from the site may not cover the same section of the d-wall as the one which is
computed in Plaxis;

• Curves can have multiple deflection points, and these can be localised at different depths;

• Not only the maximum/minimum deflection is important, but also the general shape of the deflection
curve, which has a significant meaning for the adjacent buildings settlements.

The d-wall deflections comparison first starts from interpolating through the measurements from the site and
the FE software. Both are described as a set of points containing depth and corresponding deflection. In order
to derive a smooth curve showing the deflections in-depth, coefficients of a eleventh-degree polynomial are
fitted to this data, and corresponding deflections readings are matched to these coefficients. Afterwards, in
order to measure an error between each of the derived curves, several methods for measuring the error have
been considered including but not limited to [47]:

• The Hausdorff distance (DH) method: Measures the longest distance one can be forced to travel by an
adversary who chooses a point in one of the two sets;

• Partial Curve Mapping (PCM) method: Matches the area of a subset between the two curves [94];
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• Area method: An algorithm for calculating the area between two curves in 2D space [47];

• Discrete Fréchet distance (DF): The shortest distance in-between two curves, where one is allowed to
vary the speed at which one travel along each curve independently (walking dog problem) [4, 11, 25,
26, 32, 83];

• Curve Length method: Assumes that the only true independent variable of the curves is the arc-length
distance along the curve from the origin [5, 15];

• Dynamic Time Warping (DTW): A non-metric distance between two time-series curves that have been
proven useful for a variety of applications [8, 35, 71, 80, 82, 91].

In order to be as precise as possible, all five methods were used. The final equation for measuring error is as
below:

Der r or = PC M + Ar ea + D H 2

3
+5DF + (

DT W

100
)

3
2 (4.1)

4.3.2. Sensitivity of the HSS model parameters
Since there are two drainage types in the model (Drained and Undrained B), and the dominant behaviour in
between the diaphragm walls is an extension, while outside of the d-box the dominant behaviour is compres-
sion, sensitivity analysis of eleven input parameters was performed.

Parameter
Sensitivity [%]

Phase 12 Phase 15
D-wall Building AVG D-wall Building AVG

DCE

E r e f
50 28.9 5.7 17.3 6.9 4.8 5.8

E r e f
oed 4.8 3.6 4.2 3.8 2.8 3.3

E r e f
ur 11.1 10.1 10.6 6.4 5.6 6.0
γ0.7 13.3 17.9 15.6 5.2 4.6 4.9

Gr e f
0 19.1 24.1 21.6 19.3 15.3 17.3
φ 18.0 34.8 26.4 23.7 25.0 24.3
c 4.8 3.8 4.3 3.6 2.1 2.9

UDC

E r e f
50 - - - 6.5 9.7 8.1

E r e f
oed - - - 0.9 0.2 0.6

Eur - - - 5.0 6.6 5.8
γ0.7 - - - 0.9 1.2 1.1
G0 - - - 1.5 2.1 1.8
su - - - 2.9 5.3 4.1

UDE

E r e f
50 - - - 3.0 4.2 3.6

E r e f
oed - - - 0.1 0.1 0.1

Eur - - - 7.9 7.7 7.8
γ0.7 - - - 0.4 0.4 0.4
G0 - - - 0.4 0.4 0.4
su - - - 1.5 1.9 1.7

The sensitivity criterion D-wall stands for the d-wall displacements, Building stands for the building
settlements, and AVG is their average.
DCE is the drained behaviour of clay under both compression and extension. UDC and UDE is

the undrained behaviour of clay under compression and extension, respectively. In both cases, the
Undrained B drainage types were used.
The internal friction angle has been being changed while keeping K nc

0 at a constant level of 0.645.

Table 4.3: Sensitivity of the HSS model parameters for construction phases 12 and 15.

For the Drained phases
(0-11), sensitivity of five
input parameters has been
analysed: the reference

un/reloading stiffness E r e f
ur ,

the reference shear stiff-
ness at very small strains

Gr e f
0 , the internal fric-

tion angle φ (with the
K nc

0 value kept constant)
and the cohesion c. For
the Undrained B phases
(12-15), the sensitivity of
three input parameters has
been analysed: the refer-
ence un/reloading stiffness

E r e f
ur , the shear stiffness

at very small strains G0

and the undrained shear
strength su . This part was
repeated independently
for the compression- and
extension- dominated soil
sections.

The computed displacements and errors for the sensitivity analysis used to calculate the sensitivity are sepa-
rated in two sections. The results for the phase 12 , i.e. the last phase modelled as drained in Tables B.1 and
B.2, and for the last excavation phase modelled as undrained (phase 15) in Tables B.3 and B.4 in Appendix B.
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After performing the procedure explained in the introduction of this section, the independent sensitivity of
each input parameter is found. This is shown in Table 4.3, and has been done by varying only one parameter’s
value, what is a significant simplification of the sensitivity studies.
Apart from the limitations of this method stated above, another limitation is that there are several parameters,
which were not included in the analysis, namely: K nc

0 , R f , OC R, m and ci nc .

4.3.3. Sensitivity of the NGI-ADP model parameters
In the NGI-ADP model, phases from 0 to 12 are modelled as Drained type, whereas phases from 13 to 15 are
modelled as Undrained C type. Therefore, the sensitivity of two sets of parameters was analysed: the param-
eter Gur /su and the undrained shear strength su for both cases, so four different parameters in total.

The computed displacements and errors for the sensitivity analysis, for the phase 12 are summed up in Table
B.5 and for phase 15 in Table B.6 in Appendix B. The independent sensitivity of each input parameter is shown
in Table 4.4. As previously, this has been done by varying only one parameter’s value.

Parameter
Sensitivity [%]

Phase 12 Phase 15
D-wall Building AVG D-wall Building AVG

Drained
Gur /s A

u 56.6 84.6 70.6 23.7 16.4 20.1
s A

u,r e f 43.4 15.4 29.4 7.1 17.3 13.5

Undrained
Gur /s A

u - - - 11.0 16.1 13.5
s A

u,r e f - - - 58.2 50.1 54.2

Table 4.4: Sensitivity of the NGI-ADP model parameters for construction phases 12 and 15.

Sensitivity of parameters γC
f , γE

f , γDSS
f , sC ,T X

u /s A
u , sP

u /s A
u , τ0/s A

u , sDSS
u /s A

u and ν′ was not included in the studies.

4.3.4. Sensitivity of the SHANSEP MC model parameters
In the SHANSEP MC, there are two drainage settings possible: Drained and Undrained A. All of the phases are
modelled as Undrained A. However, phases from 0 to 12 ignore undrained behaviour. Therefore, the sensitiv-
ity of the two parameters was analysed: the parameter α and the parameter G/Su .

The computed displacements and errors for the sensitivity analysis, for the phase 12 are summed up in Table
B.7 and for phase 15 in Table B.8 in Appendix B. The independent sensitivity of each input parameter is shown
in Table 4.5 below.

Parameter
Sensitivity [%]

Phase 12 Phase 15
D-wall Building AVG D-wall Building AVG

Undrained
α 51.6 63.3 57.4 64.6 78.3 71.5

G/su 48.4 36.7 42.6 35.4 21.7 28.5

Table 4.5: Sensitivity of the SHANSEP MC model parameters for construction phases 12 and 15.

The parameters, which sensitivity has been not investigated are: m, Sumi n and OC Rmi n .

4.3.5. Sensitivity of the GHS2142 model parameters
In the GHS model, there are two drainage settings possible: Drained and Undrained A. All of the phases are
modelled as Undrained A. Phases from 0 to 12 are modelled to ignore undrained behaviour. The sensitivity of

five parameters were analysed: the un/reloading stiffness at a reference pressure E r e f
ur , the secant stiffness at a

reference pressure (while keeping the initial ratio between E r e f
50 , E r e f

oed andE r e f
ur ), the undrained shear strength

su , the internal friction angle φ and the cohesion c.
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The computed displacements and errors for the sensitivity analysis, for the phase 12 are summed up in Ta-
ble B.9 and for phase 15 in Table B.10 in Appendix B. The independent sensitivity of each input parameter is
shown in Table 4.6 below.

Parameter
Sensitivity [%]

Phase 12 Phase 15
D-wall Building AVG D-wall Building AVG

Drained

E r e f
50 2.6 3.5 3.0 1.8 3.2 2.5

E r e f
oed 22.8 24.1 23.5 28.6 25.2 26.9

E r e f
ur 19.2 23.1 21.1 22.4 25.2 23.8
γ0.7 14.3 13.7 14.0 14.5 15.6 15.0

Gr e f
0 19.6 12.7 16.2 5.1 6.6 5.9
φ 19.7 20.7 20.2 22.8 22.1 21.9
c 1.8 2.3 2.0 4.8 3.2 4.0

Table 4.6: Sensitivity of the GHS2142 model parameters for construction phases 12 and 15.

The parameters which were not taken into account are: K nc
0 , R f , OC R, POP , m, νur and ci nc .

4.4. Summary and the model selection
4.4.1. Conclusions regarding the material models’ performance
Based on the computed displacements, it was observed that the soil response in the total stress methods was
stiffer than in the effective stress methods causing a higher heave in the beginning and higher settlements in
the latter parts. The discrepancies between the results can be caused by the fact that the stiffness is updated
based on a different principle stresses, i.e. either σ′

1 or both σ′
1 and σ′

3 in the total stress analysis compared
to σ′

3 only in the HSS model and because of calibration of the NGI-ADP and the SHANSEP MC models based
on limited soil data (especially, concerning the shear parameters).

The computation time needed for the FE model run is of utmost importance in the inverse analysis and
this time depends not only on the model but also on the given parameters set. For the GHS model, the
computation time differs also between its stress and strain dependency and plasticity configurations model
configurations. The averaged time needed for one model run are summarised in Table 4.7 below.

Material model HSS SHANSEP MC NGI-ADP GHS

Time-expensiveness 100% 200% 140% 190%

The time needed for one full 2D model run with the HSS material model used for the clay layer is around 10 minutes.

Table 4.7: Comparison of the time-expensiveness of calculation with different material models.

In conclusion, the HSS model is chosen, because of its robustness, accurate modelling of soil behaviour in
terms of the effective stress and its wide applicability in excavation applications.



5
Set-up of the inverse analysis method

5.1. Introduction

In the numerical modelling applied in the forward design of the problem analysed in this report, the material
model parameters are the input values, and the diaphragm wall deflections are the output values. The goal
of the inverse analysis algorithm is to back-figure the corresponding soil parameters based on the provided
observations as input values.

Since developing a script for such analyses is not a trivial problem and needs certainty in parameters esti-
mation, a simple, physically similar problem was first presented. In the considered problem, both input and
output values are known, so it was possible to prove that the created algorithm certainly provides the correct
solution.

The Kalman Filter algorithm is usually used for the optimisation of the dynamics system. The algorithm
is often used for estimating the trajectory of objects navigated by the GPS, where the estimated variable is
updated according to the observations, given in each time-step. The equivalent in geotechnical engineering
would be a quasi-static system, i.e. a building process consisting of a number of construction phases. How-
ever, in this study, only one construction phase is considered (static system).

Therefore, the chosen exemplary problem for developing the algorithm is a single-degree-of-freedom mass-
spring system consisting of two springs with a block of a mass attached to each of the spring. The calculation
model in the objective function is a differential equation based on Newton’s law, but the only value which is
calculated as the last, equilibrium state displacement.

5.2. Kalman Filter

The EKF, in contrast to the KF can tackle nonlinear problems. The problem can be nonlinear in a twofold
manner. Either, the process model can be nonlinear, i.e. when the behaviour resulting is nonlinear, hence
the linear equations cannot be used, or the measurement can be nonlinear. The EnKF, same as the EKF, can
solve the nonlinear problems. The EnKF can be applied at any time measurements are acquired, but in the
considered case, only one time-step is considered, i.e. at the final equilibrium state [48].

5.2.1. Workflow of the Extended Kalman Filter

The analysis in the EKF starts by initialisation, i.e. creating a parameters space based on the initial guess
consisting of the variables means and covariance matrix.

53
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Figure 5.1: The workflow of Extended Kalman Filter algorithm.

Then, the first step of the optimisation is pro-
ceeded, i.e. the prediction step. System state
estimate with its uncertainty (error covariance)
is calculated based on the nonlinear process
function, and the process white-noise is added. In
the considered case, the function is not nonlinear,
so the estimate is the same as the initial guess is,
but with the added white-noise.

The next step of the optimisation procedure
is the assimilation step. In this step, firstly the
Jacobian matrix is calculated, which translates
the predicted variables estimates to the estimated
displacements. Then, the Kalman Gain is calcu-
lated based on the Jacobian matrix, forecasted
error covariance and the measurement noise. Af-
ter that, the error covariance is updated with the
computed Kalman Gain matrix, Jacobian matrix
and the forecasted error covariance. In the end,
the assimilated parameters state is calculated
based on the predicted variables estimate, the
Kalman Gain Matrix, the observations inputted
into the system and the estimated displacements.

The output of the assimilation step is the up-
dated variables estimate and the updated error
covariance. The displacements corresponding to
the updated values are compared to the observa-
tions. If the error computed with error function
is above the tolerance, the procedure (iteration)
is repeated until the error is acceptable, i.e. lower
than the tolerance.

5.2.2. Formulation of the Extended Kalman Filter
In formulation of the EKF, the model’s nonlinear system space is governed by Formula 5.1 describing the dif-
ference equation and Formula 5.2 describing the observations model with additive noise [88].

For the dynamic system, the k parameter describes the time-step, however, for a static scheme, k denotes
the iteration, i.e. the assimilation step currently being calculated.

xk = f (xk−1)+wk−1 (5.1)

where: xk is a state vector of dimensions n×1, f (·) is a process nonlinear vector function and wk is a process
noise vector of dimensions n ×1.

yk = h(xk )+ vk (5.2)

where yk is a measurements vector of dimensions m×1, h(·) and vk is a measurement noise vector of dimen-
sions m ×1.

The initial state x0 (the initial guess), from which the optimization starts, is a random vector with known
mean µ0 = E [x0] and covariance P0 = E [(x0 −µ0)(x0 −µ0)T ].

In the following, we assume that the random vector wk captures uncertainties in the model and vk denotes
the measurement noise. Both are uncorrelated white noise processes with a mean equal to zero and known
covariances. Also, no correlation between those values is considered at consecutive iterations (in static sys-
tems) or at different times (in dynamic or quasi-static systems) is present. Moreover, both of them are uncor-
related with the initial state x0 [88].
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E [wk ] = 0 E [wk wT
k ] =Qk E [wk xT

0 ] = 0 (5.3)

where Qk is a process noise covariance matrix of dimensions n ×n.

E [vk ] = 0 E [vk vT
k ] = Rk E [vk xT

0 ] = 0 (5.4)

where Rk is a measurement noise covariance matrix of dimensions m ×m.

The two random vectors wk and vk are uncorrelated:

E [wk vT
k ] = 0 (5.5)

Since the analyzed example is considered to be a static problem, the vectorial function f (·) is a vector equal
to 1. The observation nonlinear vector function h(·) converts the variable value into the displacement mea-
surement, which is further compared with the observations. For this purpose, the Equation 5.24 is used, so
basing on the input stiffness values, the output displacements are calculated.

The main two steps of estimating the values of the variables in the EKF algorithm are the model forecast
(prediction step) and data assimilation (correction step).

The model forecast is governed by two equations:

x f
k = f (xa

k−1) (5.6)

P f
k = J f (xa

k−1)Pk−1 J T
f (xa

k−1)+Qk−1 (5.7)

Because of a static/quasi-static system with no time-steps, hence no influence of the previous state on the
next state, the equations can be simplified to:

x f
k = xa

k−1 (5.8)

P f
k = Pk−1 +Qk−1 (5.9)

It means that for the first iteration, the predicted value x f
1 is equal to the initial state value x0 and the forecast

error covariance P f
1 is the covariance of the initial state P0 but with and added process white noise.

The data assimilation step consists of three equations:

xa
k ≈ x f

k +Kk

(
zk −h(x f

k )
)

(5.10)

Kk = P f
k J T

h (x f
k )

(
Jh(x f

k )P f
k J T

h (x f
k )+Rk

)−1
(5.11)

Pk =
(
I −Kk Jh(x f

k )
)

P f
k (5.12)

The Jacobian Jh is given by Equation 5.13:

Jh ≡


λh1
λx1

λh1
λx2

...
λh1
λxn

...
. . .

...
λhm
λx1

λhm
λx2

... λhm
λxn

 (5.13)

5.2.3. Workflow of the Ensemble Kalman Filter
The first step of the optimisation process in the EnKF, the initialisation, is exactly the same as in the EKF
algorithm. In contrast to the EKF algorithm, the next step does not use the process nonlinear vector function.
Instead, the so-called ensemble members are drawn around the mean values and covariance of the normally-
distributed variables. The state transition function is used in the prediction step.



56 5. Set-up of the inverse analysis method

Figure 5.2: The workflow of Ensemble Kalman Filter algorithm.

The prediction step passes all the en-
semble members through a supplied
state transition function and adds the
process of white noise, calculates the
mean and covariance of the so created
ensemble [52]. The predicted mean
and the sample covariance is precisely
same as the initial state for the ensemble
size N −→ ∞ and the process white-
noise σ2

pr ocess −→ 0. For the reasonable
process noise, and tens of ensemble
members, the discrepancies between
the initial state and the predicted values
for the first ensemble is almost negligible.

The next step (assimilation step) utilises
the calculation model for computing
the measurements for each variable set,
i.e. for each ensemble member. After
that, the Kalman Gain is calculated in
a formula, which multiplies the cross-
covariance for the measurements versus
the ensemble members and the inversed
covariance for every ensemble member.
Then, each ensemble member is up-
dated with the Kalman Gain matrix and
the perturbed observations. Eventually,
the filter’s mean and covariance is re-
computed [52].

In the last step, the calculation model is used to calculate the measurements based on the updated means
and the corresponding covariance, and the error function is used to calculate the corresponding error. Simi-
larly to EKF, if the computed RMSE is higher than the tolerance, the procedure is repeated.

In the dynamic or quasi-static system, the number of these procedures (iteration) is equal to the time-steps
considered. For static schemes, there are two ways to find convergence. Either to use as many iterations as it
is needed for the convergence or to use ensemble size big enough to solve the problem in one iteration.

5.2.4. Formulation of the Ensemble Kalman Filter
In the EnKF, an ensemble of n state vectors is used to simulate the initial estimation of the stiffness parame-
ters, that is, x = [x1, x2, ..., xn] [48].

In the prediction step of each iteration, the ensemble of state vectors is forecasted in the second (assimi-
lation) step by the model describing the problem, as shown in Equation 5.14.

x f
t = Mt xt−1 +wt (5.14)

where t is the time-step number in the EnKF, xt is the n-dimensional unobserved state vector of interest,
and wt is the process (innovation) error given by wt ≈ N (0,Qt ) where Qt is the process noise matrix and Mt

determines how the process evolves in time [49].

For the static system, which is considered in this report, the transition function Mt is not necessary to forecast
the variable’s value, and it can be neglected. The predicted covariance of the mean is calculated, as shown in
Equation 5.15 [52].
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P f = 1

N −1

N∑
1

[xt − x̃t ][xt − x̃t ]T (5.15)

where N is the ensemble size and x̃t is the mean of the ensemble for a given time-step (iteration).

After the forecasting step, the assimilation of the predicted values starts. The displacements yt are com-
puted for each ensemble member and the mean of these displacements zt is calculated (Equations 5.16 and
5.17, respectively).

yt = h(xt ,u) (5.16)

where h is the measurement function (calculation model), and u refers to how the measurements of the
previous time-step influence the measurements of the following step. In the static example, u can be omitted.

ỹt = 1

N

N∑
1

yt (5.17)

The Kalman Gain is calculated as in Equation 5.18 below [52].

KG = Pxz P−1
zz (5.18)

where Pxz is the cross variance for each computed measurement vs each ensemble member given by Equa-
tion 5.19 and Pzz is the covariance for every ensemble member given by Equation 5.20.

Pzz = 1

N −1

N∑
1

[yt − ỹt ][yt − ỹt ]T +R (5.19)

where R is the measurement noise matrix.

Pxz = 1

N −1

N∑
1

[xt − x̃t ][yt − ỹt ]T (5.20)

The next action in the assimilation step is to update each ensemble member with the computed Kalman Gain
matrix and the observations, as shown in Equation 5.21.

xa
t = xt +KG [z − yt + vt ] (5.21)

where z is the observation vector and vt is the perturbation added to the observations according to vt =
N (0,Rt ) where Rt is the measurement noise matrix.

Finally, the updated mean and the updated covariance of the ensemble is calculated as in Equations 5.22
and 5.23.

x̃a
t = 1

N

N∑
1

xa
t (5.22)

P a = P −KG Pzz K T
G (5.23)

At the end of the iteration process, the ensemble mean is considered to be the best estimate of the stiffness
variable and utilised to generate correlated stiffness parameters.
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5.3. Optimisation process experiment
5.3.1. Problem formulation

Figure 5.3: Scheme of coupled springs problem.

For developing a tried-and-true algorithm, a
simple problem consisting of two springs and two
blocks of mass is used. The quantities sought in
the real problem (the soil stiffness parameters)
are represented by the springs’ stiffness values,
while the diaphragm wall displacements are
represented by the displacements of the blocks.
The scheme is shown in Figure 5.3 below.

The problem shown above is governed by the
following equation:[

di sp1
di sp2

]
×

[
k+1+k2 −k2
−k2 k2

]
= [m1

m2

]× g (5.24)

The scheme was considered as a static problem,
i.e. the only displacement that is observed is
the final one, calculated using Equation 5.24. It
corresponds to using the FE computation results
from one construction phase only. Also, we
assume that the stiffness values of the springs do
not depend on their lengths.
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Figure 5.4: The probability distribution plotted for the initial
mean and covariance of the two springs stiffness values.

The convergence of the algorithm is tested on
the spring model example, where the masses
were equal to m = [5,10] and the observations
computed as z = [14.72,19.62], what was based
on the target values of the variables x = [10,20].
The initial mean and covariance were set to
µ = [x1, x2] = [17,14] and Cov(X1, X2) = [

9 0
0 16

]
,

respectively. The corresponding probability dis-
tribution of the described initial state is shown in
Figure 5.4 below.

Since the process variance represents the
measurements uncertainty the updating
function of the algorithm, the measurement
and process variance values were set to:
σ2

measur ement s = σ2
pr ocess = 0.001 of the maxi-

mum observation value.

5.3.2. Formulation of an objective function
To perform an inverse analysis, a function that estimates the error between the computed and experimen-
tal results is needed. This error is measured after each time step (iteration in the case considered) of the
optimisation procedure, by the so-called individual norm that forms an error function Er r or (x).

Er r or (x) −→ 0 (5.25)

where x is a parameter that needs to be optimized, expressed as a vector function.

The commonly used error function is the least square equation given by Equation 5.26 [63], where the pa-
rameters are computed by minimizing a function based on the squared difference between the measured
and computed values.

ε= 1

m

m∑
j=1

[
η j − f j (x̂)

η j

]2

= 1

m

m∑
j=1

[
1− f j (x̂)

η j

]2

(5.26)
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where: ε is the Mean Squared Error (MSE), x̂ is the vector of n components of the parameters to estimate, η j

is the j obtained measurement, f j is the computed value correspondent to the j measurement, and m is the
in situ measurement number.

Figure 5.5: Definition of an error function [99]

The error function used in the script is Equation 5.26 adopted for the considered problem. The function is the
same for both the spring example and the application with Plaxis FE software used as the calculation model
application and is formulated below:

RMSE = 1

n ×|zmax |

√√√√ m∑
i=1

n∑
j=1

|(yi , j − zi , j )|2 (5.27)

where: y is the measurement, z is the observation and n is the size of the observation vector.

5.3.3. Convergence of the EKF algorithm
In the analysis of the EKF convergence, the model characteristics were set as in Subsection 5.3.3. After 875
iterations, the mean and the error covariance found are x = [9.98,19.97] and cov = [

1.01E−7 −6.0E−7
−6.0E−7 7.22E−6

]
.

In Figure 5.6, the evolution of the computed displacements of the two springs in a function of the algorithm
iterations is shown. At the same time, the estimates of springs stiffness are plotted. The target displacement
and stiffness values are highlighted as solid lines.
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Figure 5.6: The optimisation of the spring problem using the EKF algorithm - the evolution of the estimated variables and
measurements throughout the iterations.

In Figure 5.7, the evolution of the RMSE error in a function of the algorithm iterations is shown with transla-
tion to the required calculation model runs in Figure 5.8. The tolerance was set to 0.001, what accounts for
the average displacement difference of 0.048 m per spring.
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Figure 5.7: The optimisation of the spring problem using the EKF
algorithm - the evolution of RMSE throughout the iterations.
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Figure 5.8: The optimisation of the spring problem using the EKF
algorithm - the evolution of RMSE throughout the calculation

model runs.
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Figure 5.9: The variables evolution throughout the iterations in
the two-spring problem optimisation using the EKF algorithm.

In Figure 5.9, the evolution of the variables esti-
mates throughout the iterations is shown, where
the initial state is circumscribed with a covariance
ellipse. The covariance ellipse is calculated using
the eigenvalues of the error covariance matrix.
The actual radii of the ellipse being

√
λ1 and

√
λ2

for two eigenvectors. In the plot, it is shown that
the algorithm is capable of finding the solution,
which is located outside of this ellipse is shown.
Also, it ignores the state spaces with very low
RMSE to go directly to the sought solution.

Eventually, as a part of Principal Component
Analysis (PCA), the evolution of the Pearson’s
product-moment correlation coefficient evolu-
tion throughout the iterations is shown in Figure
5.10 and the evolution of the variance values
from the covariance matrix taken for the updated
estimates of each iteration is shown in Figure 5.11.
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Figure 5.10: The optimisation of the spring problem using the
EKF algorithm - the Pearson’s coefficient evolution

throughout the iterations.
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Figure 5.11: The optimisation of the spring problem using the EKF
algorithm - the evolution of the variables’ variances and covariance.
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Pearson’s coefficient was plotted for the EKF algorithm for further comparison to the EnKF algorithm. How-
ever, in the EKF algorithm, the evolution of this coefficient and the variables’ variance are overlinearised,
because the covariance matrix is calculated based on a singular estimation of the variables. In the EnKF
algorithm, it is based on the number of estimation of the variables equal to the ensemble size.

5.3.4. Convergence of the EnKF algorithm

In this analysis, the model characteristics were also set as in Subsection 5.3.3 and the ensemble size was
set to N = 20. The means of the variables in the initial ensembles was x = [15.95,14.16], while after the
first iteration were equal to x = [6.65,16.22] with computed RMSE = 0.288 and corresponding displacements
y = [22.12,28.17].

The convergence of the EnKF algorithm is presented analogous to the EKF algorithm. Figure 5.12 shows the
evolution of the displacements based on the estimated mean values of the variables. Besides, the displayed
grey areas are indicating the 2σ bandwidth around the estimated means.
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Figure 5.12: The optimisation of the spring problem using the EnKF algorithm - the evolution of the estimated variables and
measurements throughout the iterations.

As in the subsection presenting the EKF algorithm convergence, the evolution of the RMSE error is shown in
two plots (Figures 5.7 and 5.14. In comparison to EKF, fewer iterations are needed. Hence the error curve is
less smooth.
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Figure 5.13: The optimisation of the spring problem using the
EnKF algorithm - the evolution of RMSE throughout the

iterations.
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Figure 5.14: The optimisation of the spring problem using the
EnKF algorithm - the evolution of RMSE throughout the

calculation model runs.

The same plot showing the evolution of the variables estimates throughout the iterations for the EnKF is
shown in Figure 5.15.
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Figure 5.15: The variables evolution throughout the iterations in the two-spring problem optimisation using the EnKF algorithm.

In Figure 5.16, the evolution of the ensemble members with the variables means throughout the iterations
is shown. Each dot (member) represents one variable estimate with solid lines being the means of these
estimates. Throughout the iterations, the sample covariance matrix is getting smaller and smaller; hence, the
ensemble’s spread is getting smaller as well.
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Figure 5.16: The optimisation of the spring problem using the EnKF algorithm - the ensemble evolution throughout the iterations.

In Figure 5.17, the ensemble is shown in the parameters space. The blue dots are the initial ensemble mem-
bers drawn around the initial point estimation. The covariance ellipses for 1σ, 2σ and 3σ stipulate the borders
of 68, 95 and ∼ 100 percents of all of the ensemble members drawn.
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Figure 5.17: The optimisation of the spring problem using the EnKF algorithm - ensemble evolution in parameters space (focus on the
initial ensemble).

As shown in Figure 5.17, for the configurations applied, the second ensemble moves beyond the 3σ covari-
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ance ellipse in searching for the solution. The estimated variables’ values are already very close to the solution
after three updated only. In the next plot, Figure 5.18, the focus is given to the ensembles of the fourth and
subsequent iterations are shown.

Figure 5.18: The optimisation of the spring problem using the EnKF algorithm - ensemble evolution in parameters space (focus on the
last ensembles).

Plots related to PCA for EnKF are shown in Figures 5.19 and 5.20.
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Figure 5.19: The optimisation of the spring problem using the
EnKF algorithm - the Pearson’s coefficient evolution

throughout the iterations.
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Figure 5.20: The optimisation of the spring problem using the EnKF
algorithm - the evolution of the variables’ variances and covariance.
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5.3.5. Method selection

In the presented example, a tolerance of 0.001 was reached by the EKF algorithm after 875 iterations and 9 for
the EnKF algorithm.

It is not possible to directly compare one run of the EKF to one run of EnKF since in the EKF the first es-
timate drawn from a normal distribution of the initial state happens to be far from the mean. In the EnKF
algorithm, the mean of the initial ensemble tends to the mean of the initial state as the ensemble size tends
to infinity. Even for a small ensemble size, such as 5, the mean of the ensemble is relatively close to the initial
state estimation. Therefore, an exemplary run of the EKF can overestimate (or underestimate) the robustness
of the algorithm. Still, the vast majority of the EnKF runs was finished incomparably faster than when using
the EKF algorithm.

Another pitfall of the EKF algorithm is that in each iteration, the state is updated based on the results of
only one run of the calculation model. Calculation of the RMSE can either be based on the estimates updated
in the previous iteration or on the newly updated estimates for which an additional calculation model run is
needed. Since the calculation model is the most time-costly part of the process, the first way is more reason-
able, but can also be considered as a limitation. In the EnKF algorithm, the calculation model can be run one
more time for the calculation of RMSE, since in each iteration at least 10-20 runs are needed regardless.

One of the main differences in the formulation of these algorithms is a need for Jacobian matrix in the Ex-
tended Kalman Filter. Two ways of inputting the Jacobian matrix were tested: using the analytical Jacobian
calculated from Equation 5.24 and using the perturbation method. The algorithm was able to back-figure
the sought solution in both cases. However, the usage of the analytical Jacobian is only possible when we
know the governing equation of the physical problem, which is often impossible. For example, the nonlin-
earity of the Plaxis FE model cannot be shown as a simple equation with a known Jacobian. The perturbation
method can be applied to more systems, but still, the necessity of using the Jacobian matrix is a substantial
limitation. Therefore, the EnKF method is considered to be much more adequate for the considered problem.

One of the limitations of the EKF algorithm is the randomness of the initial guess. In case the initial guess
of the variables is taken from the farthest parts of the initial distribution’s ties, many more iterations are
needed for the script to find the solution, as shown in Figures C.1 to C.5 in Appendix C. In that example, a
total of 105119 iterations are needed, and the final estimates and covariance are x = [9.97,20.11] and cov =[

4.14E−10 −2.63E−9
−2.63E−9 3.39E−8

]
. In that example, it can be noticed that the final covariance is smaller by three orders of

magnitude than in the example in Subsection 5.3.3. An associated phenomenon is so-called degeneration of
the error covariance, where the estimate is not close to the solution yet while the covariance matrix already
became to low to allow for big changes in the estimates.

5.4. Calibration of the method

5.4.1. Variance of the input parameters

In the real-life scenario, we obtain a point estimations of some soil parameters from the field and laboratory
testing. Direct input of the point estimation without consideration of how the variability of data influence
the convergence of the regression algorithm may lead to not reaching an optimal solution or any solution at
all. In the EnKF, each variable is described by a mean and covariance. While the established means are un-
ambiguous, the influence of the initial variance values on the algorithm convergence should be investigated
beforehand.

As shown in Figure 5.21, it is indicated that, when the initial mean is uncertain, it is better to choose a larger
standard deviation in order to get acceptable back-calculated results [48]. The reason for this is that for the
uncertain sample data, choosing a larger standard deviation for generating the initial ensemble enables the
realisation to cover a broader range of values, which, in turn, helps in searching out the correct values of the
sought variables during the data assimilation process.
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Figure 5.21: Variation of RMSE and SPREAD for cases with accurate and inaccurate initial conditions [48].

5.4.2. Negative values of the parameters

One of the problems spotted during the development of the EnKF script was an issue of the ensemble mem-
bers, which were drawn as negative values. If the members represent the variables, which cannot be smaller
than zero, for example, spring stiffness, internal friction angle of soil or Young’s modulus, applying a negative
value in the calculation model is not allowed. Since the whole ensemble is based on the (positive) mean and
non-zero covariance, there is always a chance (even for very high mean and low variance) of drawing a neg-
ative value. Since in both simple application and the FE model, the parameters are stiffness (and strength)
related, negative values must not be drawn.

In order to assure that the negative values do not appear, one can either use a lognormal transformation
of the drawn members or a truncated distribution. Since using a lognormal distribution influences not only
the performance of the algorithm but should not be used if the variable’s distribution is not normal, some-
times truncated distribution is the only viable solution. In the script, the truncated distribution is achieved
by introducing a small change to the random normal distribution function, which redraws the member each
time it lies outside of the permitted range.

5.4.3. Measurement and process noises

In the Kalman Filter algorithm, two types of noises are usually added [88]: the measurement noise and the
process noise. These are represented by the measurement noise covariance matrix R and the process noise
covariance matrix Q, respectively.

In order to better understand how the measurement and process covariance matrices influence the com-
puted error, a studies comprising of 25 configurations between the measurement and process variances with
a following values of variance have been used: 1.0%, 0.5%, 0.1%, 0.05% and 0.01% of the average observation
value. The measurement and process variances in the simulations above were expressed as percentage values
of the average observation value z̃ = 17.17.

In the studies, the model characteristics were set as following: the masses were set to m = [5,10], the ob-
servations to z = [14.72,19.62]. The initial mean and covariance were equal to µ = [17,14] and cov = [

9 0
0 16

]
,

respectively. The chosen ensemble size was equal to N = 75.

To assess how the convergence criterion, i.e. the computed error, changes throughout the iterations, 100 sim-
ulations for each model configuration were performed. Then, the error was plotted against the total number
of members needed in the calculation process, i.e. the ensemble size multiplied by the number of iterations
(Runs = N × i ).

The sensitivity of the model with respect to the measurement and process variances is shown in a twofold
manner: by showing the average total number of members needed for reaching a tolerance of RMSE = 0.01
(Figure 5.22) and by showing the lowest RMSE error reached after updating 7500 members in a total of 100
iterations in Figure 5.23.
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Figure 5.22: Measurement and process variances sensitivity studies - total number of Runs (calculated ensemble members in all
iterations summed) needed to reach tolerance of 0.01.

Figure 5.23: Measurement and process variances sensitivity studies - the lowest RMSE reached for a total of 7500 members calculated.

The measurement and process variance studies have shown that increasing the measurement and process
variance negatively influences the robustness of the script. However, in the real applications, the measure-
ment noise is a pre-defined value specified by the accuracy of the sensors, whereas the process noise repre-
sents the measurement noise in the optimisation algorithm and is user-defined. The noises also provide an
additional spread of the computed estimates what can help to avoid collapsing of the ensemble.

5.4.4. Ensemble size studies
One of the settings that have the most significant influence on the robustness of the script is the number of
members in the ensemble. The model chosen for testing the influence of the ensemble size on the number
of iterations required for convergence is the two-springs problem.

In the model, the masses were set to m = [5,10], the observations to z = [14.72,19.62]. The initial mean
and covariance were equal to µ = [17,14] and cov = [

9 0
0 16

]
, respectively. The measurement variance was set
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to 0.5% of the maximum observed value, whereas the process variance was set to 0.05%. The robustness of
the script was tested for a following ensemble sizes: N = [10,15,20,25,40,50,75,100].

For these sensitivity studies, 25 simulations with constant model settings were run for each ensemble size
considered. Then, evolution of the error between the computed and observed displacements in a function of
performed iterations was plotted for each of the 25 simulations (Figures C.6 to C.21). Afterwards, the error was
plotted against the iterations and the resulting total number of calculation model runs needed for reaching a
particular tolerance levels. Finally, the derived average values of the computed errors with a corresponding
bandwidth (2σ) for each ensemble size are plotted in Figures C.22 to C.29. These results are summed up in
Figures 5.24 and 5.25 below.
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Figure 5.24: The total number of iterations needed to reach
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Figure 5.25: The total number of calculated ensemble members
(Runs) needed to reach particular tolerance levels.

An associated aspect is the percentage of the script runs in which the computed error managed to converge,
i.e. to fall below a specified tolerance. This was called the ’success rate’ and was studied using the aforemen-
tioned 25 simulations with a predefined tolerance RMSE = 0.01. Summary of this analysis is shown in Table
5.1 below and are based on the plots shown in Figures C.30 and C.31 in Appendix C.

Success rates for ensemble sizes N [%]

Runs
N

10 15 20 25 40 50 75 100

100 41 51 48 54 26 7 4 0
200 50 62 66 70 64 60 47 8
300 51 63 73 80 82 77 61 58
400 51 65 75 85 90 82 74 86
500 51 65 77 87 93 89 90 93

1000 51 66 80 88 94 97 98 99
2000 51 66 81 89 96 98 98 100

Table 5.1: Studies of the ’success rate’, i.e. the number of runs where error
fell below the tolerance specified as RMSE = 0.01, for ensemble sizes

N = [10,15,20,25,40,50,75,100].

Although the ’success rate’ for the ensemble sizes of 25 and 40 is higher than the one for 20 members, the
ensemble size considered as the best one to be used in the optimisation analysis together with Plaxis software,
is N = 20.
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5.5. Conclusions
In conclusion, the algorithm chosen to be used in the further inverse analysis is the Ensemble Kalman Filter
because:

• It is more robust than the Extended Kalman Filter and its efficiency and robustness is less influenced
by the starting selection created around the initial state.

• It requires less calculation model runs, which is a big advantage when dealing with time-expensive
finite-element calculations.

• For reasonably high ensemble sizes, it gives a better variance estimation, because a high N value pre-
serves the covariance from collapsing.

• The Extended Kalman Filter algorithm needs a gradient vector of multiple outputs (in here, a Jacobian
matrix), which is not necessary for the Ensemble Kalman Filter algorithm.

Nevertheless, for the given variables settings, both methods were capable of successfully solving the pre-
sented spring problem. Also, both algorithms are capable of capturing a dependency between the variables
after a few calculation model runs only. It can be seen that the algorithm finds the sought value of the first
variable (the upper spring) faster because both observations are in inverse proportion with this variable. The
second variable (the lower spring), however, influences only the second observation, while the first obser-
vation remains unaffected. Also, it was observed that the smaller the initial variance of the variables is, the
smaller is the initial covariance, and the harder it is for the algorithm to find the solution.

The ensemble size studies presented in this chapter resulted in the suggested ensemble size of 20 members.
However, the algorithm was configured for the presented spring problem, so for a problem of a lower level
of non-linearity of the response and lower number of degrees of freedom. Therefore, for using Plaxis as a
calculation model, the required ensemble size is expected to be higher.





6
Application of the inverse analysis in the

FEM

6.1. Introduction
In this chapter, the Plaxis 2D software has been used as the calculation model. In order to verify whether the
solution found by the EnKF is exactly the one that is sought, the algorithm is tested against target displace-
ments, which are known beforehand.

The material model chosen for the inverse analysis is the HSS model. The 2D FE model is simplified, so the
computation time is less. All of the construction phases are modelled using Drained drainage type of the HSS
model, what according to the results from Chapter 4, has a limited influence on the accuracy of the results. At
the same time, it helps to drastically limit the number of the input parameters involved in the optimisation
process.

The calculation model used in this study, i.e. the Plaxis software, allows the user to use the remote script-
ing interface based on the Python language to control both Input and Output program via an external Python
handler. The usage of Plaxis in the algorithm is pretty straightforward and was involved in the algorithm, as a
part of the objective function (calculation model) according to as a subroutine with the following workflow:

• Opening Plaxis 2D Input;

• Loading the drawn variables;

• Transforming the variables into the material model parameters;

• Running the 2D model with the parameters;

• Opening Plaxis 2D Output;

• Loading the computed displacements from the plate used in the diaphragm wall.

Since in real cases, the exact solution is unknown, one cannot be sure if the found estimate is the only cor-
rect solution. Considering that the usage of the optimisation algorithm for back-figuring the soil distribution
needs some confidence, the problematics of many possible solutions (same error computed) for the same
provided observations is one of the biggest challenges in the optimisation process.

The number of sub-optimal solution, which would result in the same error depends on several aspects, in-
cluding but not limited to: the ensemble size N , the size of the observation vector z, the calculation model
used, the applied error function and other factors. The certainty of usage of the algorithm in the practical
application should be preceded with the studies on how these factors influence the algorithm efficiency. The
influence of the number and spacing of the sensors was studied by performing runs using different observa-
tion vectors and different target deflection curves given.

71
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One of the main problems with showing reliable and repeatable results of this analysis is the structure of
the starting point of the optimisation process, the so-called ‘initial guess’. The first ensemble consists of N
draws taken from the normal distribution around the means and the covariance matrix; therefore, each time
the generated ensemble is slightly different for low N values.

For a sensitivity analysis performed on a simple model (the spring problem), the randomness of the initial
guess was tackled easily by running many analyses. The other way would be to set N so high that the drawn
number would create a more continuous distribution, i.e. where the mean of the first ensemble would be
same as the mean of the initial guess. However, when the Plaxis software is used as a calculation model, both
solutions are hard to be implemented because of a high calculation time needed. Nevertheless, this limita-
tion mostly touches upon the results of the first iteration, but in the next iteration, this randomness is tackled
by an accurate performance of the algorithm.

6.2. Setting up the problem
6.2.1. Setting up the FE model
The Plaxis FE model used in the inverse analysis was adopted from Chapter 4, which consisted of 7 layers,
from top to bottom: the fill, the silty clay, the first Kurkar layer, the first clay layer, the second Kurkar layer, the
second clay layer and the last, third Kurkar layer.

In the original model, all of the layers were modelled using the HSS model, but to make the optimisation
process more robust, the 2D Plaxis FE model has been slightly simplified. Instead of using a complex ma-
terial model for each distinguished soil layer, all of the layers but the clay layer were changed to the Linear
Elastic (LE) model. Moreover, the first Kurkar layer was split into seven sub-layers with stiffness values inter-
polated in a way, so the results were similar to the ones obtained when using the original model.

The FE model also consists of 15 phases, but only phase number 12 is used in the analysis. The meshing
size was equal to 0.04002 and the mesh coarseness nearby the diaphragm walls was set according to the sen-
sitivity analysis of the domain.

6.2.2. Variables selection
Since it is desired to limit down the number variables representing the sought material model parameters,
a procedure of eliminating the least-important parameters was performed. Firstly, the simplified sensitivity
analysis presented in Subsection 4.3.2 eliminated the strength parameters based on their lower influence on
the final result and a common understanding of the problem considered. Secondly, the optimisation of 5
variables would be still computationally expensive, and modelling of the relationship between these param-
eters is considerably difficult, so simplification based on grouping of the parameters has been applied.

The parameters chosen to be used as variables in the optimisation process are E r e f
50 and γ07, and are rep-

resented by variables XE and Xγ, respectively. The remaining parameters are bonded to these variables with
a chosen ratio, so eventually two systems are considered: one using only one variable XE and the system using
two variables XE and Xγ. In the one-variable system, the parameters are bound with the following relation:

XE = E r e f
50 = E r e f

oed = 1

3
E r e f

ur = 1

16
Gr e f

0 = 0.0004

γ07
(6.1)

Whereas in the two-variables system, the relation is as below:

XE = E r e f
50 = E r e f

oed = 1

3
E r e f

ur = 1

16
Gr e f

0 (6.2)

and the small strain stiffness parameter γ07 is the second, independent variable Xγ.

6.2.3. Target measurements set-up
In the optimization problem, parameters can be assessed with higher reliability if the database for the opti-
mization is diversified, i.e. contains results of many different tests [63]. Usually, the monitoring program at
the construction site provides two model components, i.e. lateral wall deflection δhm and surface settlement
δvm . Up to this, the deformation ratio R = δvm

δhm
can be calculated as an additional indicator.
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However, building settlements can be influenced by several factors, such as depth of excavation, the height
of the building, distance from pit edge to the building, considered geology and others. Therefore, wall de-
flections seem to be much more directly connected to changes in the material model used in the numerical
model than the other observation types. For the sake of this analysis, the only site measurements type that
are taken as the observations are the diaphragm wall deflections.

In the optimisation process, the required number of calculation model runs can be huge, hence very time-
expensive. Therefore, a proper choice of parameters to be optimised is important for the robustness of the
process. Since the cumulative relative sensitivity of the stiffness properties is higher than one of the strength
parameters, and the problem is more related to the serviceable limit state, the stiffness parameters have been
chosen.

Parameter
Targets for the XE variable

1.0 2.0 3.0 5.0 10.0

ϕ 22.0 22.0 22.0 22.0 22.0
c 10.0 10.0 10.0 10.0 10.0

E r e f
50 1.0 2.0 3.0 5.0 10.0

E r e f
oed 1.0 2.0 3.0 5.0 10.0

E r e f
ur 3.0 6.0 9.0 15.0 30.0

γ0.7 0.0004 0.0002 0.000133 0.00008 0.00004

Gr e f
0 16.0 32.0 48.0 80.0 160.0

The units of the parameters and the missing material model parameters values are as in Table
3.11.

Table 6.1: The sets of HSS model parameters used to compute the target
diaphragm wall displacements.

Eventually, the target deflections
are created for varying stiffness
parameters as explained in Table
6.1. The target displacements
computed for the values shown in
that table are presented in Figure
6.1 below.

The initial state in the inverse
analysis is given equal to the
calibrated parameters set shown
in Table 3.11 and is described as
XE = 4.0 MPa. The other targets
are dispersed from 1σ to 6σ from
the initial value.
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Figure 6.1: The diaphragm wall deflections computed for the established targets.
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6.2.4. Input parameters distribution

The E r e f
50 parameter initial distribution is shown in Figure 6.2 as a histogram with a corresponding PDF. The

readings are cleared after the data directly derived from the lab tests with a criterion, that only the readings

lower than 12.0 MPa are taken into account. Since the distribution of the E r e f
50 derived from CU and UU triax-

ial tests are lognormal, the distribution of XE variable is lognormal as well. In Chapter 3, the calibrated mean

of the E r e f
50 parameter was established as 4.0 MPa. The initial distribution of the variable XE was adjusted to

this mean (shown as the red line on the plot).
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Figure 6.2: Histogram and PDF of log-normally distributed E
r e f
50

parameter and the input variable based on it.

The calculated COV of the underlying nor-

mal distribution of E r e f
50 parameter was esti-

mated as 0.90, what is an acceptable value for
a lognormal distribution. However, for most
of the normally distributed soil parameters,
the COV usually does not exceed 0.25− 0.30.
Therefore, in the analysis, a comparison be-
tween different COV values, namely 0.1, 0.25,
0.5 and 0.9, was made, whereas the value of
0.25 is mostly used, so to test efficiency of the
algorithm when some values have a very low
probability density.

Figure 6.3: Workflow of the lognormal - normal - lognormal
transformation in the EnKF script.

Since the analysis error of EnKF uses a linear
analysis algorithm that is sub-optimal for all
distributions except Gaussian , the ensemble
is created using the normal distribution

around the mean equal to ln(E r e f
50 ) and COV

as explained above. The variables are drawn
from this distribution, and then the input to
Plaxis software is an exponential of the drawn
member. This assures that all operations are
performed on the normally distributed en-
semble members, what is especially relevant
for the calculation of the Kalman Gain, and its
components (covariance and cross variance).
The whole procedure is shown in Figure 6.3
below.

In the first part of the analysis, where the
one-variable system is considered, the vari-
able XE is lognormally distributed. In the
second part, where the system consists of two
variables, the XE variable is lognormally dis-
tributed, whereas the Xγ variable is normally
distributed.
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6.2.5. Synthetic measurements
Two types of target observations were considered. The first was created using the same numerical model as
in the inverse analysis procedure and explained at the end of Chapter 4. In addition, the other observations
were considered, where the displacements of 140 nodes are semi-random, i.e. are were not created using a
specific numerical model, but have a shape possible to be observed in a real scenario.

In the 2D Plaxis FE model, which is used in this analysis, the observation vector predominantly consists of
140 nodes displacements, which is a relatively high value. It was proven that as the number of measurement
points increases, the standard deviation of the calculated variables decreases and the precision of the esti-
mation increases [48]. Therefore, a high number of observations available in the output of Plaxis 2D model,
i.e. the d-wall displacements represented by tens to hundreds of nodes with computed displacements, is a
factor positively influencing the robustness of the algorithm. This aspect was also investigated by performing
a number of analyses with a full observation vector, and vectors of a limited number of nodes displacements.

Since the measurements are synthetic, and the focus of this part is on testing the robustness and capabili-
ties of the script, the measurements error is set to a considerably low value of σ2

measur ement = 0.001 of the
maximum lateral wall deflection. The process variance is also set to cause the lowest error possible, so the
process variance is set toσ2

pr ocess = 0.0001 of the maximum lateral wall deflection. The pitfall of this approach
is that the spread of the ensemble is low, and the covariance tends to collapse after a few iterations.

An important factor influencing the computational cost of the algorithm is the number of degrees of free-
dom of the system (the observed deflections curve) and with the rising number of degrees of freedom, the
robustness of the algorithm is reduced. Also, for the number of degrees of freedom n much higher than the
number of observations, computing the covariance matrix is the major part of the computational cost [74].
The investigation of the n value was made by the trial-and-errors method using polyfit function from the
Python’s library numpy. The results of this analysis are shown in Figure 6.4 below.
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Figure 6.4: Derivation of the degrees of freedom of the diaphragm wall deflections curve for the initial variable value.

Even though the target displacements may be characterised by a different n value, the relative difference
would be small, i.e. no more than a few degrees. Also, the number of degrees of freedom of the initial dis-
placements curve is either around the number of observations delivered or smaller, so the data assimilation
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process should require neither cost reduction methods nor approximations to covariance matrix calculations.

6.3. Post-processing of the algorithm performance
In order to test the performance of the developed algorithm, studies regarding the ability to find the estab-
lished solution and the robustness of the algorithm were performed with respect to:

• the influence of the ensemble size;

• the aspect of how far from the solution is the initial guess;

• the size and the number of the observation given;

• the correlation between the variables.

As explained before, for the one-variable system, the distribution shown in Figure 6.2 was used with COV of
0.25. For the two-variables system, the initial distribution of XE is the same, and the distribution of the Xγ

variable is normal around the mean of 0.0001 with a COV of 0.25.

6.3.1. Example of the algorithm performance

To present how the algorithm works, the observations were set to the target displacements for the variable XE

set to 10.0 MPa and Xγ set to 0.00004. The initial distribution is same for the whole analysis, and is as given
in Chapter 3, i.e. XE = 4.0 MPa with a COV = 0.90. Firstly, the evolution of the ensemble with the mean of the
variables throughout the iterations is shown in Figures 6.5 and 6.6.
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Figure 6.5: The ensembles created in each iteration for the run with targets set to XE = 10.0 MPa and Xγ = 0.00004.
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Figure 6.6: The members with the mean throughout the iterations for the run with targets set to XE = 10.0 MPa and Xγ = 0.00004.

The corresponding RMSE and the diaphragm wall displacements computed for the means of the ensemble
of each iteration are shown in Figures 6.7 and 6.8.
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Figure 6.7: The RMSE computed for the mean output of each
iteration for the run with targets set to XE = 10.0 MPa and

Xγ = 0.00004.
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Figure 6.8: The d-wall deflections computed for the means of the
ensemble of each iteration for the run with targets set to XE = 10.0

MPa and Xγ = 0.00004.

In addition, the d-wall deflections computed for all of the members of the first ensemble are shown in Figure
6.9 below. As seen in the plot, the displacements computed for each member differ significantly between
each other. In the next iterations, the discrepancies between the displacements computed for each member
are much smaller.
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Figure 6.9: The d-wall deflections computed for the members of the first iteration for the run with the targets set to XE = 10.0 MPa and
Xγ = 0.00004.

6.3.2. Performance depending on the ensemble size
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Figure 6.10: The comparison of the RMSE computed for the
mean output of each iteration for different ensemble sizes - case

of one variable XE .

The studies on the most efficient ensemble size
were performed in a previous chapter, with results
are summed up in Figure 5.25. The studies were
repeated here in order to compare the robustness of
the algorithm when using Plaxis 2D as a calculation
model.

The performance was tested for the one-variable
system on ensemble sizes of N = [2,3,5,10,20]. In
Figure 6.10 the evolution of RMSE in a function
if iterations is shown, whereas in Figure 6.11 the
evolution of the mean of the computed ensembles
in a function if iterations is shown.

For the one-variable system, the run with 10
ensemble members gave practically the same error
as the run with 20 ensemble members. For the
ensemble size of 2, 3 and 5 members, the covariance
collapsed quickly leading to the new ensembles
being ’stuck’ at an estimate, which was not a correct
solution.
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Figure 6.11: The comparison of the estimated mean of the ensemble of each iteration for different ensemble sizes - case of one variable
XE ).

When the computed error is considered, the run with five ensemble members was apparently less accurate
than the runs with ten and twenty members. When the absolute values are considered, the run with N = 5
gave a final estimation of XE = 2.97 MPa, that is a relative error smaller than 1%. Summing up, ten ensemble
size, which was a suitable value for the one-variable system is ten, while for the two-variables system twenty
ensemble members should be used, as concluded in Chapter 3.

6.3.3. Performance depending on the specified target
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Figure 6.12: The comparison of the RMSE computed for the
mean output of each iteration for different targets - one variable

case.

In order to test the robustness of the script and its
ability to reach a solution, which is relatively far
away from the initial value, a set of runs with the
solution set 1σ (XE = 3.0 MPa and XE = 5.0 MPa), 2σ
(XE = 2.0 MPa), 3σ (XE = 1.0 MPa) and 6σ (XE = 10.0
MPa) from the initial mean were performed. This
was done for both one-variable and two-variables
cases.

The evolution of the RMSE and the evolution of
the estimated mean of the ensemble for the one
variable system is shown in Figures 6.12 and 6.13
below.



80 6. Application of the inverse analysis in the FEM

1 2 3 4 5
Iteration #

2

4

6

8

10

Th
e 

es
tim

at
ed

 X
E v

ar
ia

bl
e 

va
lu

e 
[M

Pa
]

Mean estimate XE =  1.0 MPa
Mean estimate XE =  2.0 MPa
Mean estimate XE =  3.0 MPa
Mean estimate XE =  5.0 MPa
Mean estimate XE =  10.0 MPa
Target XE = 1.0 MPa
Target XE = 2.0 MPa
Target XE = 3.0 MPa
Target XE = 5.0 MPa
Target XE = 10.0 MPa

Figure 6.13: The evolution of the estimated mean of the ensembles throughout the iterations for a different targets - one variable case.

Three iterations of ten ensemble members each are enough to reach the established target, whereas the tar-
gets set to be 1σ from the initial mean reached in the second iteration already. From the third iteration on-
ward, the computed error was almost constant and of negligible value for all of the runs. It was proven that
the algorithm can find a solution, regardless of how far the solution is from the mean.

For the two variables system, the evolution of the RMSE in a function of iterations is shown in Figure 6.14
and the evolution of the means of the ensembles in a function of iterations is shown in Figures 6.15 and 6.16.
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Figure 6.14: The comparison of the RMSE computed for the
mean output of each iteration for different targets - two variables

case.

For the targets with the XE variable set 1σ from
the initial mean, the computed error remains al-
most constant from the second iteration onwards,
whereas for the other targets, more iterations are
needed for the convergence. Furthermore, for the
targets set 3σ and 6σ from the initial mean, even
five iterations with 20 members each is not enough
to reach acceptable RMSE.
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Figure 6.15: The evolution of the estimated mean of the ensembles (for XE variable) throughout the iterations for a different targets -
two variables case.
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Figure 6.16: The evolution of the estimated mean of the ensembles (for Xγ variable) throughout the iterations for a different targets -
two variables case.

The run with the target set 6σ from the initial mean, needs more members to be generated so that it can reach
the designated target. Nevertheless, the estimate is only around 1% from the solution in the fourth iteration
onward.

Regarding the Xγ variable, the solution was not reached for the runs with targets of 0.00004 and 0.00008.
The estimates for the other targets were correct in the third iteration onwards. The low values of the Xγ vari-
able were problematic for the algorithm, because of a narrow (COV = 0.25) log-normal distribution in which
low values have very low probability density. For higher values of the Xγ variable, the algorithm finds the
solution appropriately, because of a higher probability density of such values in the distribution even though
the solution lies 6σ away from the initial mean.
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6.3.4. Performance depending on the observation vector
To investigate how the size of the observations input influences the performance of the script, three different
types of observation vectors have been studied for the system with one variable:

1. Observation vector consisted of displacements of 140 nodes located throughout the whole diaphragm
wall.

2. Vector consisting of displacements of 45 nodes, which were located only in the clay layer.

3. Vector consisting of displacements of only 10 nodes located in the upper part of the clay layer (nodes
number 4 to 13 out of 45).
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Figure 6.17: The comparison of the RMSE computed for the
mean output of each iteration for different observation vectors -

one variable case.

The trend is that the bigger the size of the obser-
vation vector, the faster the computed RMSE is re-
duced. Also, the convergence of the algorithm for
the observation vector consisting only of the lateral
wall displacement in the clay layer is almost as ro-
bust as for the observation vector taking all of the
displacements values. Two factors are affecting the
behaviour of the algorithm: the clay layer is the most
sensitive one because this is the layer of which the
model parameters are being changed. It is also be-
cause 45 nodes displacements are already informa-
tive enough.
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Figure 6.18: The evolution of the estimated mean of the ensembles throughout the iterations for a different observation types - one
variable case.
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The evolution of the mean estimates show one additional information: the ensemble created in the second
iteration for the run with the smallest observation vector overestimated the variable value. Although in that
run the algorithm converged to the sough value, the small observation factor can lead to a substantial overes-
timation of the ensemble would collapse before convergence. Concluding, using a small observation vector
might lead over- or under-prediction, especially when the initial COV of the variables is very small.

The second part of this analysis used manually created observations, which imitate true readings from the
field, i.e. when a perfect fit between the estimate and the target variables does no exist. The displacement
curve, which was set as the target observation, together with the solutions obtained for those three observa-
tion vectors after the fifth iteration is shown in Figure 6.19 below. This analysis was done for two variables in
the system.
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Figure 6.19: The computed diaphragm wall deflection for the runs with different observation vectors and the deflections imitating a
true case.

The plots showing the corresponding evolution of the RMSE in a function of iterations is shown in Figure D.1,
and the evolution of the estimated variables in a function of iterations are shown in Figures D.2 and D.3 in
Appendix D.

The smallest RMSE was calculated for the run with the smallest observation vector and at the same time
these results are the least conservative; however, the displacements computed for the estimated variables did
not capture the second deflection of the diaphragm wall. Also, contrary to the previous analysis with only one
variable, the error computed for the smallest observation vector was the smallest from the very beginning of
the run.

Both of the runs with 45 and 140 displacements nodes provided have overestimated the displacements. Also,
both analyses for systems with one and two variables indicated that the fewer observations are given, the
higher the variance of the estimates.
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6.3.5. Performance depending on the correlation coefficient
The covariance matrix of the initial state is as shown in Equation 6.3 below:

Pi ni t =
[

σ2
XE i ni t

Cov(XEi ni t , Xγi ni t )

Cov(XEi ni t , Xγi ni t ) σ2
Xγi ni t

]
(6.3)

where: Cov(XEi ni t , Xγi ni t ) is equal to the correlation coefficient ρXE Xγ multiplied by a standard deviation of
XEi ni t and the standard deviation of Xγi ni t .

Usually, this covariance between the variables is set as zero, because the initial estimates are given as sin-
gle (mean) values with an unknown correlation between them. However, if the correlation was estimated
beforehand, it can be used as an input.

In order to investigate how the additional input of this coefficient influences the convergence of the algo-
rithm, four runs with different correlations of ρXE Xγ = ρ = [0.0,−0.50,−0.70,−0.90] were tested. In these runs,
the target variables were set as XE = 10.0 MPa and Xγ = 0.00004.

The evolution of the computed RMSE throughout the iterations is shown in Figure 6.20. The evolution of
Pearson’s coefficient itself for all of the runs mentioned above is shown in Figure 6.21.
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Figure 6.20: The comparison of the RMSE computed for the
mean output of each iteration for different correlation

coefficients - two variables case.
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Figure 6.21: Pearson’s correlation coefficient evolution
throughout the iterations for different initial correlation values.

The correlation coefficient has a visible influence on the computed error, especially after the first iteration,
where the initial correlation coefficient has the most prominent meaning. The true correlation coefficient
was equal to ρ = −0.90, and from the first iteration till the penultimate one, the best estimate is given for
the run with the initial coefficient of ρ = −0.90. The biggest influence of this input is visible in the first two
iterations and then it gradually disappears.

As seen in Figure 6.21, after the third iteration the estimation of the correlation coefficient gets worse for
most of the runs. From an accurate estimation of around 0.95 towards the true value of 0.90, the estimation
changed to the correlation coefficient varying from ∼ 0.70 to ∼ 0.95, what was caused by collapsing of the
covariance. Even though the covariance collapsed, the best estimation was received for the correct input of
ρ = 0.90, while for the other input higher discrepancies were noticed, especially in the first two iterations.

The evolution of the sought variables XE and Xγ is shown in Figures 6.22 and 6.23.
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Figure 6.22: The evolution of the estimated mean (the XE variable) of the ensembles throughout the iterations for different correlation
coefficients - two variables case.
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Figure 6.23: The evolution of the estimated mean (the Xγ variable) of the ensembles throughout the iterations for different correlation
coefficients - two variables case.

The input of correct estimation of Pearson’s coefficient helped the algorithm to find both of the sought vari-
ables faster. Also, as seen in the second iteration, the second-best estimate was received for no initial correla-
tion coefficient given; however, in the third iteration, this run gave the least accurate estimation. The results
of the second iteration might indicate that no correlation specified can be better than the input of incorrect
correlation value.

The next phenomenon that was investigated is the variances evolution throughout the iterations, what is
shown in Figures 6.24 and 6.25 below.
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Figure 6.24: The evolution of the estimated variance of the XE
variable throughout the iterations for different initial correlation

values.
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Figure 6.25: The evolution of the estimated variance of the Xγ
variable throughout the iterations for different initial correlation

values.

As we can see, the covariance for the run with the initial value of ρ = −0.70 is the smallest for most of the
optimisation process. The variances and the covariance after the first iteration are the smallest for the ini-
tial coefficient of ρ = 0.0. Using values other than 0.0 for the correlation coefficient helped the algorithm to
converge faster; however, it also increased the risk of covariance collapsing sooner. Therefore, one needs to
be extremely careful and confident with using predefined values of the variables correlation, since for incor-
rectly specified values, the convergence might be impossible, and the final estimate might be erroneous.

Finally, the influence of the correlation coefficient on the algorithm performance is explained on the en-
sembles generated throughout the optimisation process. Starting from the general overview of the created
ensembles shown in Figures 6.26 to 6.31.
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Figure 6.26: The ensemble created in each iteration for the initial
value of ρ = 0.0.
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Figure 6.27: The ensemble created in each iteration for the initial
value of ρ =−0.50.
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Figure 6.28: The ensemble created in each iteration for the initial
value of ρ = 0.0 - focus on the last iterations.

Figure 6.29: The ensemble created in each iteration for the initial
value of ρ =−0.50 - focus on the last iterations.
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Figure 6.30: The ensemble created in each iteration for the initial
value of ρ =−0.70.
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Figure 6.31: The ensemble created in each iteration for the initial
value of ρ =−0.90.
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Figure 6.32: The ensemble created in each iteration for the initial
value of ρ =−0.70 - focus on the last iterations.

Figure 6.33: The ensemble created in each iteration for the initial
value of ρ =−0.90 - focus on the last iterations.

As shown in plots above, the shapes of the covariance ellipses created around the first ensemble for ρ =−0.50
and ρ = −0.90 are much more analogous to the shape of the ensembles created in the successive iterations.
When the consecutive iterations are zoomed, it is seen that the ensemble created in the second and third
iterations is circumscribed much closer to the solution for coefficient ρ equal to −0.70 and −0.90 than for the
other values, what is correct for the established targets with the Pearson’s coefficient equal to ρ ∼ 0.90.

As the analysis proved, the initial ensemble is circumscribed according to the input of the initial correla-
tion. It resulted in steering the optimisation in a specific space governed by the initial and true correlations.
The EnKF algorithm approximated the correlation coefficient starting from the first assimilation step and is
capable of back-figuring the correlation coefficient between the variables used for creating the target mea-
surements.

When the correlation coefficient of the initial guess is close to the one corresponding to the target parameters
set, the robustness and the efficiency of the algorithm were influenced positively. This gives an additional
tool for judging the outcome of the optimisation, and the coefficient can be used to judge a final solution or
to add specific bounds between different parameters to create a limitation not to allow the algorithm to draw
members, which lay beyond cap hardening surface, for example.

The pitfall of this is that deriving the coefficient from the laboratory tests is usually not easy, because of the
limited number of the tests performed and noisy data. Nevertheless, the optimisation process is susceptible
to changes in Pearson’s coefficient, so one needs to fully understand how the input of correlation coefficient
influences the output of the optimisation procedure.
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6.4. Conclusions
The analyses shown in this section demonstrated following capabilities of the Ensmeble Kalman Filter: The
analyses showed in this section demonstrated the following capabilities of the Ensemble Kalman Filter:

• The algorithm is capable of finding the sought variable laying from one to six standard deviations from
the initial estimate, with very high accuracy (the difference between the estimate and the solution lower
than 1 per cent) using only 10 ensemble members and a maximum of 3 iterations.

• The algorithm is capable of finding two sought variables laying from one to six standard deviations
from the initial guess with very high accuracy using only 20 ensemble members and a maximum of

3 iterations, provided that the stiffness was high enough, i.e. E r e f
50 higher or equal to 3.0 MPa. The

algorithm’s efficiency and accuracy for stiffer soil are much higher, and its low efficiency for very weak
soils rises a need for using a higher ensemble size for more than one variable.

• The algorithm is capable of finding a dependency between variables by approximating a correlation
coefficient in the covariance matrix of the sample. The correlation is being back-figured based on the
provided observations starting from the very first assimilation step. The coefficient can also be used
as an input to the initial state. For the correct coefficient provided, the robustness and accuracy of the
optimisation process are significantly increased.

Regarding the configurations of the algorithm, the following conclusions were stated:

• The efficiency of the algorithm after 20 calculation model runs was same for the observation vector
consisting of displacements of 140 nodes located throughout the whole diaphragm wall as for one con-
sisting of displacements of 40 nodes located only in the clay layer. The efficiency for the run with dis-
placements provided from only 10 nodes located in the clay layer was much less. After 40 calculation
model runs, the estimates for all of the three observation vectors balanced out.

• The ensemble size of 20 members was enough to solve most of the established targets of the presented
problem consisting of 2 variables in a maximum of 3 iterations, what accounts for around 60 calculation
model (Plaxis 2D) runs. Comparing a complexity of one- and two- variables system, the ensemble size,
which allowed the algorithm to reduce the error to below 1.0% when the target is one standard deviation
from the initial state, was equal to 5 and 20, respectively.

Last but not least, following limitations and reasons for accuracy and efficiency issues were formulated:

• Considering computations made in Plaxis 2D model for very weak soils (E r e f
50 lower than 2.0 MPa),

the level of non-linearity was too high for the algorithm using 20 ensemble members to capture the
dependency between the parameters and the computed deflections.

• How a material model reproduces a true soil behaviour is never perfect and each simplification leads to
decrease in efficiency of the algorithm, what highlights the importance of a proper choice of a material
model and its accurate calibration.

• Constitutive soil models are formulated based on numerous soil mechanics laws, so the relations be-
tween their parameters (algorithm’s variables) are characterised by specific bounds caused by, for ex-
ample, shear yield surfaces and hardening cap surfaces. In order not to allow the algorithm to draw
members, which break these bounds and cannot be an input to the FE model, one either has to re-
produce the material model’s code or use truncated distribution or log-normal distribution or both.
This implies a need for a very good understanding of what is happening in the model, which solutions
should be omitted and which are the optimal ones. The usage of truncated distribution also negatively
influences the efficiency of the algorithm.

• The calculations in the optimisation process can take even several days, but due to limitations of Plaxis
connection to Windows-proxy settings it is not possible to use Python’s library multiprocessing together
with the Plaxis software to create parallel processes, where each process would be an independent
model run.





7
Conclusions and recommendations

7.1. Conclusions
In the presented thesis, a method of reducing the uncertainty in the soil parameters distribution using the
field measurements and the Ensemble Kalman Filter algorithm is shown. The motivation was to make use of
the displacements measurements from the construction site (synthetic measurements in the presented re-
port) to directly correct the estimation of the soil parameters. The updated estimation of the soil parameters
distribution can be used to improve predicting the soil behaviour and in the reliability updating through the
construction phases by utilizing the data gathered in the less critical construction phases in the more critical
ones.

The synthetic data-set of the diaphragm wall deflections generated in the FE software Plaxis was presented,
so to prove the concept that the algorithm scripted in the Python environment successfully back-figures the
sought variables (soil stiffness parameters) based only on a set of observed displacements. It is anticipated
that this may contribute to the projects employing the Observational Method by a more confident assessment
of switching between established construction’s scenarios.

The presented algorithm was developed for a static scheme, where both observations and estimates concern
only one construction phase; however, it is also possible to use the algorithm in a quasi-dynamic scheme in
which the observations are provided from consecutive construction phases. This not only can help to better
predict the behaviour in an advancing construction but also can reduce the amount of measurement data
points required.

Specific conclusions, which were formulated based on the presented research, are divided into two groups
and presented below:

a) Conclusions regarding the usage of the material models:

• Based on the available soil data, the best estimation of soil stiffness in the most crucial for deep
excavation small-strain range was obtained for the GHS1120 model. Hence, in the considered soil
conditions is considered as the best model for deep excavation applications. A big advantage of both
the HSS and GHS models require only a triaxial compression test for a full calibration. Also, from all
four models considered, the HSS model was the most robust in 2D FE calculations.

• Considering the GHS configurations independently, from all stress-dependency formulae the best
estimate was received for stiffness calculated based on the lower principal and the pre-consolidation
stresses. Regarding the plasticity model, the most accurate estimate was received for the formula
with MC criterion with shear hardening added.

• Changing the stress-dependency of stiffness to be updated in each phase increases the robustness of
the calculations due to ignoring the calculations of the relaxation of the soil domain in each step. Al-
though the difference in the computed stiffness is negligible, this setting is slightly less conservative.

b) Regarding the inverse analysis algorithm used and optimisation of the costs of providing necessary data:
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• The Ensemble Kalman Filter was chosen as the algorithm, which robustness was better and less
influenced by the starting selection created around the initial guess than in the EKF. It required less
calculation model runs, it did doesn’t need a gradient vector (a Jacobian matrix) and was giving a
better estimation of sample variance.

• The developed algorithm successfully back-figured the sought variables’ set from one to six standard
deviations from the initial estimate with a relative error lower than 1% for one variable in only 20
calculation model (Plaxis 2D model ) runs. For two variables,same efficiency was received for targets

with stiffness of E r e f
50 = 3.0 MPa and higher requiring only 40 calculation model runs.

• The algorithm is capable of deriving the correlation between the parameters based on the updated
ensemble covariance. Furthermore, if the correlation is known beforehand, its certain input results
in a more accurately circumscribed initial ensemble, hence in better robustness and accuracy of the
algorithm.

• The robustness and accuracy of the algorithm are influenced by both the location, type and number
of the displacements provided in the observation vector, and they increase up to a certain volume of
the information provided after which additional input does not have any impact on the estimates.
Performing a sensitivity studies of the influence of the number and spacing of the readings obtained
from the FE model on the algorithm’s response can optimise the number of the sensors installed at
the site as a part of a monitoring program. The analysis has shown that focus on the layer, which
parameters are to be optimised, is a reasonable solution. However, the spacing should allow the al-
gorithm to capture all the inflexions in the diaphragm wall, which are caused by a bending moments
distribution.

7.2. Limitations of the research
The main limitations of the research and reasons for inaccuracies are as follows:

• A repetitive incoherence between the results of the triaxial CU tests and typical CU tests was spotted
in the form of almost not developed pore pressures, what could have led to an overestimation of the
deviator stress, hence inaccuracies in the SoilTest simulations of the undrained tests.

• The calibration procedure was based on primary loading triaxial tests, whereas the true nature of the
considered problem involves also unloading and reloading and these tests were not covered.

• There is a limited number of extension tests, and there are no direct, simple shear tests performed on
clay samples. Therefore, the assumptions used to evaluate the lacking parameters are characterized by
high uncertainty.

• The probability distributions of many parameters derived in the laboratory tests are characterised by a
high variance what imposed considerable difficulty in finding representative tests with the parameters
laying close to the mean.

• In order to derive the effective stiffness from the undrained tests, simulations in the SoilTest facility
were used. The values were derived by iteratively changing the values of the input parameters, to fit the
resulting stiffness. However, this method does not cover the correlation between the parameters fully,
so is characterised by some inaccuracy.

• In some of the inverse analysis runs, the covariance collapsed. The effect of it is most visible in the
last iterations, and it was visibly leading to inaccuracies in the estimation of, for example, correlation
coefficient.

The limitations mentioned above may lead to several issues in the application of the inverse analysis in a real
case. The most important risk is that the site investigation of poor quality, i.e. a one lacking some types of tests
and parameters characterised by a high variance, lead to the decrease of efficiency of the inverse analysis by
improper initial state description. In extreme cases, a high variance may rise a necessity to use, for example,
a truncated distribution reducing the efficiency of the algorithm.
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7.3. Recommendations for further studies
The fact that the estimation of parameters was improved for one layer gives an optimistic view of the further
development of the method. Nevertheless, the developed method still needs many improvements, and many
aspects have not been investigated in this thesis due to time and knowledge limitations. For future research,
a few recommendations are formulated:

• The focus of the presented inverse analysis was on reducing the uncertainty of the parameters of one
distinguished soil layer and included only two variables. Further improvement should bring more lay-
ers, which would significantly increase the number of variables in the system. This would require ex-
tensive knowledge about the correlation of the parameters and experience in Plaxis remote scripting.

• For a static and quasi-static scheme, a better solution than the Ensemble Kalman Filter would be to use
Ensemble Smoother with Multiple Data Assimilation (ES-MDA) proposed by Emerick and Reynolds in
2011. Also, in order to maintain a higher variance of a sample and to avoid collapsing of the covariance
the number of iterations should be reduced and the ensemble size increased instead. In the last itera-
tions, the ensemble is very sensitive to changes in the estimates, so degeneration of the covariance can
lead to wrong estimates of, for example, the correlation between variables.

• Accuracy and robustness of the optimisation process can be positively influenced by circumscribing
the initial state closer the sought solution and by accurate input of correlation between the sought
variables. Both can be received by a good site investigation program. Furthermore, good soil data
can be a valuable factor for a judgement of the estimated values and their reliability and increase the
certainty of the predictions.

• One of the most important factors governing the efficiency of the algorithm is the observation vector
provided. Studies defining how the number, spacing and type (displacements of nodes and deflections
of plates of particular structures) of the observations influence the efficiency would greatly increase the
knowledge regarding the certainty of the inverse analysis.

• Since the usage of truncated distribution negatively influences the efficiency of the algorithm, a thor-
ough understanding of soil mechanics law governing the chosen material model can help to script an
ensemble sampler, which would allow to efficiently use more variables (soil layers and their parame-
ters) in the optimisation process.

• A time needed for computations and complexity of the problem turned out to be less than expected,
however, if the level of complexity would be higher, the Response Surface Method can be the way of
creating measurements while keeping robustness at an acceptable level.

• Since the availability of guidebooks about the remote scripting with the Python wrapper is very lim-
ited, it is recommended to reserve a reasonable amount of time for getting familiar with the scripting
commands and creating a fully functional connection to a Plaxis model.

• Using Python’s library Multithreading to run a calculation model run in Plaxis gives a more prominent
control over the calculation process and the possibility of, for example, stopping and restarting a cal-
culation if an error or exception was raised.

• Additional studies regarding how and if to gradually reduce the process noise R throughout the iter-
ations (and time-steps in quasi-static schemes) can bring another way to increase the algorithm’s ro-
bustness.
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A
Calibration of the material models

parameters

A.1. Subsoil parameters assessment
A.1.1. Triaxial test parameters

Figure A.1: Distribution of the effective internal friction angle
obtained in the CU triaxial tests as a function of depth.

Figure A.2: Distribution of the effective cohesion value obtained
in the CU triaxial tests as a function of depth.

Figure A.3: Distribution of the secant stiffness as a function of
depth obtained in triaxial CU tests.

Figure A.4: Distribution of the secant stiffness as a function of
depth obtained in triaxial UU tests.
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A.1.2. Pressuremeter test parameters

Figure A.5: Pressuremeter limit pressure pL as a function of
depth.

Figure A.6: The undrained shear strength su obtained in the PMT
testing.

Figure A.7: Pressuremeter stiffness modulus EM as a function of
depth.

Figure A.8: Pressuremeter rebound modulus Eur as a function of
depth.

A.1.3. Consolidation test parameters

Figure A.9: The one-dimsensional consolidation test pre-consolidation pressure σ′
p as a function of depth.
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Figure A.10: The consolidation test swelling index Ce as a
function of depth.

Figure A.11: The consolidation test compression index Cc as a
function of depth.

A.1.4. Atterberg limits and index tests parameters

Figure A.12: Atterberg test Plasticity Index P.I . as a function of
depth.

Figure A.13: The consolidation test initial void ratio e0 as a
function of depth.

Figure A.14: Natural water content w as a function of depth.
Figure A.15: Atterberg test Plasticity Limit P.L. as a function of

depth.
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Figure A.16: Atterberg test Liquid Limit L.L. as a function of
depth.

Figure A.17: Dry unit weight γd as a function of depth.

Figure A.18: Test water content wtest as a function of depth. Figure A.19: Total unit weight γsat as a function of depth.

A.1.5. Summary - final parameters assessment

Figure A.20: The undrained shear strength su obtained in the PMT, UC and UU tests as a function of confining pressure (with
corresponding averaged depth).
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A.2. Studies on the material model parameters

A.2.1. Chosen representative tests

Figure A.21: Test results from the consolidation test: borehole
CR-19, depth 37.90 m, C H clay type.

Figure A.22: Test results from the consolidation test: borehole
CR-A6, depth 54.10 m, C H clay type.

Figure A.23: Test results from the consolidation test: borehole CR-A19, depth 55.45 m, C H clay type.
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Figure A.24: Test results from the triaxial UU1 test: borehole CR-A-4 and depth of around 60.60 m.

Figure A.25: Test results from the triaxial UU2 test: borehole
CR-A-1 and depth of around 67.35 m.

Figure A.26: Test results from the extension triaxial: borehole
CR-A-19-51 and depth of around 51.65 m.
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Figure A.27: Test results from the triaxial CU test: borehole
CR-A-15 and depth of around 46.15 m.

Figure A.28: Test results from the triaxial CU test: borehole
CR-A-15 and depth of around 52.15 m.
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Parameter
Test

Unit
CU1 CU2 UU1 UU2 1D-1 1D-2 1D-3

ϕ′ 24.0 17.0 0 0 22.0 22.0 22.0 [◦]
c ′ 10.0 20.0 80, 139, 164 55, 93.5, 141 1.0 1.0 1.0 [kPa]
ψ 0 0 0 0 0 0 0 [◦]
σt 0 0 0 0 0 0 0 [kPa]

E r e f
50 1.75, 1.33, 2.30 4.05, 3.62, 3.48 8.7, 10.3, 7.8 6.4, 6.8, 8.0 1.23 1.60 1.44 [MPa]

E r e f
oed 1.75, 1.33, 2.30 4.05, 3.62, 3.48 8.7, 10.3, 7.8 6.4, 6.8, 8.0 1.23 1.60 1.44 [MPa]

E r e f
ur 5.3, 4.0, 6.9 12.2, 10.9, 10.4 32.5, 38.6, 29.3 23.9, 25.5, 30.0 8.25 7.46 6.35 [MPa]
m 1.0 1.0 1.0 1.0 1.0 1.0 1.0 [-]

Cc - - - - 0.37 0.27 0.30 [-]
Cs - - - - 0.08 0.08 0.10 [-]

ei ni t 0.95 0.95 0.95 0.95 0.98 0.88 0.88 [-]

γ0.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 [-]

Gr e f
0 40.0 40.0 57.5, 71.5, 85.5 61.0, 75.0, 92.5 40.0 40.0 40.0 [MPa]

νur 0.20 0.20 0.20 0.20 0.20 0.20 [-]
pr e f 100 100 - - 100 100 100 [kPa]
K nc

0 0.65 0.65 0.65 0.65 0.65 0.65 0.65 [-]
R f 0.90 0.90 0.90 0.90 0.90 0.90 0.90 [-]
σtens 0 0 0 0 0 0 0 [kPa]
ci nc 0 0 0 0 0 0 0 [kN /m3]

For each triaxial test there are 3 values of parameters su , E
r e f
50 , E

r e f
oed

, E
r e f
ur given for the each cell pressure applied.

Stiffness moduli for triaxial UU test are shown for stress-level of 600 kPa.

Table A.1: HSS and GHS material models’ initial input parameters for the representative tests.
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Parameter
Test

Unit
UU1 UU2

Gur /s A
u 26.0 26.0 [-]

γC
f 4.0 4.0 [%]

γE
f 8.0 8.0 [%]

γDSS
f 6.0 6.0 [%]

s A
u,r e f 80, 139, 164 55, 93.5, 141 [kN /m2]

sC ,T X
u /s A

u 0.99 0.99 [-]
yr e f - - [m]

s A
u,i nc - - [kN /m2/m]

sP
u /s A

u 0.35 0.35 [-]
τ0/s A

u 0.70 0.70 [kPa]
sDSS

u /s A
u 0.68 0.68 [-]

ν′ 0.35 0.35 [-]

For the triaxial test there are 3 values of parameter s A
u,r e f given for the each cell pressure applied.

Table A.2: NGI-ADP material model initial input parameters for the representative tests.

Parameter
Test

Unit
UU1 UU2

G 3.53, 5.62, 6.38 2.56, 3.83, 5.51 [MPa]
ν′ 0.35 0.35 [-]
ϕ 0 0 [◦]
c 80, 139, 164 55, 93.5, 141 [kPa]
ψ 0 0 [◦]
σt 0 0 [kPa]

α 0.22 0.22 [-]
m 0.8 0.8 [-]

G/Su 135 135 [-]
Sumi n 50 50 [kPa]

OC Rmi n 1.0 1.0 [-]

For each triaxial test there are 3 values of parameters G and Sumi n given for the
each cell pressure applied.

Table A.3: Shansep MC material model initial input parameters for the
representative tests.
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Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Drained

E r e f
50 3.2 18.34 18.34 1649 100.8 61.36 433.0 -6.537 -5.123 -12.510 8.670

E r e f
oed 4.0 18.47 18.47 1645 99.82 62.26 434.9 -6.595 -4.985 -12.296 8.554

E r e f
ur 12.0 18.54 18.54 1702 105.8 62.24 445.6 -6.702 -5.397 -12.562 8.791
γ0.7 0.00007 18.77 18.77 1730 106.9 62.82 453.0 -6.933 -5.697 -12.360 8.818

Gr e f
0 28.0 18.69 18.69 1731 107.6 62.97 452.4 -6.971 -5.484 -11.654 8.456
φ * 18.5 18.73 18.73 1723 105.7 63.67 451.5 -6.799 -5.859 -13.035 9.137
c 0.1 18.02 18.02 1562 92.62 62.40 415.1 -6.304 -4.611 -12.617 8.567

UDC
E50 6.0 18.40 18.40 1660 102.0 62.64 437.2 -6.611 -5.117 -12.409 8.638

Eoed 7.5 18.40 18.40 1660 102.0 62.62 437.2 -6.611 -5.119 -12.411 8.640
Eur 25.8 18.40 18.40 1660 102.0 62.63 437.2 -6.611 -5.119 -12.411 8.640
γ0.7 0.00007 18.40 18.40 1660 102.0 62.63 437.2 -6.611 -5.118 -12.411 8.639
G0 56.0 18.40 18.40 1660 102.1 62.64 437.2 -6.611 -5.118 -12.410 8.639
su 96.0 18.40 18.40 1660 102.1 62.63 437.2 -6.611 -5.119 -12.411 8.640

UDE
E50 2.1 18.40 18.40 1660 102.0 62.62 437.2 -6.611 -5.117 -12.409 8.638

Eoed 2.5 18.40 18.40 1660 102.1 62.64 437.2 -6.611 -5.118 -12.410 8.639
Eur 8.6 18.40 18.40 1660 102.1 62.64 437.2 -6.612 -5.119 -12.410 8.640
γ0.7 0.00007 18.40 18.40 1660 102.0 62.63 437.2 -6.611 -5.119 -12.411 8.640
G0 23.2 18.40 18.40 1660 102.0 62.62 437.2 -6.611 -5.119 -12.411 8.640
su 96.0 18.40 18.40 1660 102.1 62.63 437.2 -6.612 -5.120 -12.412 8.641

Initial HSS Values 18.403 18.403 1659.7 102.05 62.639 437.22 -6.611 -5.118 -12.409 8.639

The units of the parameters are as in Table 3.11.
∗ means that in variation of the φ parameter, K nc

0 was kept constant
Drained stands for changing the parameter for phases 0 - 11 only, i.e. where material behaviour is set to drained.
UDC stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained and the parameter is changed only for the outside of the excavation

(compression behaviour is dominant).
UDE stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained and the parameter is changed only for the outside of the excavation

(extension behaviour is dominant).

Table B.1: The d-wall deflection errors and the building settlements differences computed for the lower-bound values of the HSS model parameters sensitivity
studies (phase 12).
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Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Initial HSS Values 18.403 18.403 1659.7 102.05 62.639 437.22 -6.611 -5.118 -12.409 8.639

Drained

E r e f
50 4.8 18.40 18.40 1628 98.47 61.92 431.0 -6.545 -4.826 -12.150 8.441

E r e f
oed 6.0 18.48 18.48 1663 101.6 62.55 438.2 -6.623 -5.169 -12.402 8.648

E r e f
ur 18.0 18.35 18.35 1616 96.85 62.59 428.5 -6.537 -4.880 -12.170 8.459
γ0.7 0.00013 18.07 18.07 1556 92.80 62.09 415.4 -6.254 -4.167 -11.793 8.074

Gr e f
0 42.0 17.98 18.69 1569 94.38 62.56 416.8 -6.237 -4.445 -12.478 8.453
φ * 25.5 17.71 17.71 1564 96.48 61.04 412.5 -6.255 -3.961 -11.108 7.707
c 20.0 18.68 18.68 1728 107.9 62.39 451.8 -6.805 -5.463 -12.119 8.622

UDC

E50 11.2 18.40 18.40 1660 102.0 62.64 437.2 -6.612 -5.118 -12.409 8.639
Eoed 13.9 18.40 18.40 1660 102.0 62.63 437.2 -6.611 -5.119 -12.411 8.640
Eur 38.6 18.40 18.40 1660 102.0 62.63 437.2 -6.611 -5.119 -12.411 8.640
γ0.7 0.00013 18.40 18.40 1660 102.0 62.64 437.2 -6.611 -5.118 -12.409 8.639
G0 84.0 18.40 18.40 1660 102.0 62.64 437.2 -6.611 -5.118 -12.410 8.639
su 144.0 18.40 18.40 1660 102.0 62.64 437.2 -6.611 -5.117 -12.409 8.638

UDE

E50 3.7 18.40 18.40 1660 102.0 62.63 437.2 -6.612 -5.119 -12.411 8.640
Eoed 4.7 18.40 18.40 1660 102.0 62.63 437.2 -6.611 -5.119 -12.411 8.640
Eur 13.0 18.40 18.40 1660 102.1 62.63 437.2 -6.612 -5.119 -12.412 8.640
γ0.7 0.00013 18.40 18.40 1660 102.0 62.63 437.2 -6.612 -5.119 -12.411 8.640
G0 34.8 18.40 18.40 1660 102.0 62.62 437.2 -6.611 -5.118 -12.410 8.640
su 144.0 18.40 18.40 1660 102.0 62.64 437.2 -6.611 -5.118 -12.409 8.639

The units of the parameters are as in Table 3.11.
∗ means that in variation of the φ parameter, K nc

0 was kept constant
Drained stands for changing the parameter for phases 0 - 11 only, i.e. where material behaviour is set to drained.
UDC stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained and the parameter is changed only for the outside of the excavation

(compression behaviour is dominant).
UDE stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained and the parameter is changed only for the outside of the excavation

(extension behaviour is dominant).

Table B.2: The d-wall deflection errors and the building settlements differences computed for the higher-bound values of the HSS model parameters sensitivity
studies (phase 12).
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Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Drained

E r e f
50 3.2 30.11 55.06 4104 274.2 336.9 1451.1 -14.859 -32.220 -36.835 29.528

E r e f
oed 4.0 30.39 54.83 4107 276.4 326.9 1448.6 -14.946 -32.187 -36.668 29.461

E r e f
ur 12.0 30.47 55.97 4189 283.5 333.2 1477.1 -15.149 -32.893 -37.197 29.972
γ0.7 0.00007 30.61 56.74 4238 284.5 339.5 1497.9 -15.354 -33.361 -36.966 30.084

Gr e f
0 28.0 30.56 57.13 4261 288.8 342.4 1506.4 -15.391 -33.452 -36.401 29.894
φ * 18.5 30.16 56.32 4179 278.5 249.4 1482.9 -15.122 -33.079 -36.995 29.953
c 0.1 29.54 53.08 3974 265.3 321.8 1393.8 -14.850 -30.936 -36.442 28.90

UDC
E50 6.0 30.50 56.32 4221 287.6 330.1 1483.7 -15.332 -33.374 -38.114 30.559

Eoed 7.5 30.34 55.30 4131 278.5 331.9 1459.2 -15.025 -32.342 -36.913 29.633
Eur 25.8 30.33 55.80 4174 284.0 329.7 1469.0 -15.212 -32.625 -37.621 30.062
γ0.7 0.00007 30.33 55.48 4139 279.0 333.9 1463.3 -15.084 -32.471 -36.795 29.641
G0 56.0 30.35 55.48 4139 279.0 334.0 1463.6 -15.067 -32.559 -36.826 29.863
su 96.0 30.40 55.68 4160 281.2 332.5 1468.4 -15.147 -32.740 -37.281 29.951

UDE
E50 2.1 30.38 54.86 4164 281.3 334.7 1471.3 -15.142 -32.742 -37.428 30.009

Eoed 2.5 30.34 55.33 4132 278.5 332.2 1459.9 -15.028 -32.362 -36.925 29.646
Eur 8.6 30.36 56.41 4196 283.6 340.7 1485.5 -15.243 -33.056 -37.448 30.152
γ0.7 0.00007 30.35 55.39 4136 278.8 332.7 1461.4 -15.043 -32.399 -36.955 29.674
G0 23.2 30.35 55.40 4136 278.9 332.7 1461.6 -15.049 -32.411 -36.954 29.679
su 96.0 30.36 55.50 4143 279.4 333.4 1464.2 -15.065 -32.484 -37.083 29.762

Initial HSS 30.344 55.338 4132.6 278.58 332.28 1460.1 -15.031 -32.367 -36.930 29.650

The units of the parameters are as in Table 3.11.
∗ means that in variation of the φ parameter, K nc

0 was kept constant
Drained stands for changing the parameter for phases 0 - 11 only, i.e. where material behaviour is set to drained.
UDC stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained and the parameter is changed only for the outside of the excavation

(compression behaviour is dominant).
UDE stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained and the parameter is changed only for the outside of the excavation

(extension behaviour is dominant).

Table B.3: The d-wall deflection errors and the building settlements differences computed for the lower-bound values of the HSS model parameters sensitivity
studies (phase 15).
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Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Initial HSS 30.344 55.338 4132.6 278.58 332.28 1460.1 -15.031 -32.367 -36.930 29.650

Drained

E r e f
50 4.8 30.34 54.38 4084 275.3 322.1 1437.3 -14.926 -31.871 -36.434 29.246

E r e f
oed 6.0 30.40 55.11 4121 277.1 330.6 1455.9 -14.994 -32.251 -36.782 29.540

E r e f
ur 18.0 30.28 54.49 4074 272.8 329.5 1440.4 -14.979 -32.072 -36.369 29.301
γ0.7 0.00013 29.84 53.53 4007 267.9 322.9 1408.8 -14.640 -31.670 -36.184 29.021

Gr e f
0 42.0 29.16 53.04 3961 263.4 325.1 1386.3 -14.528 -30.931 -36.219 28.750
φ * 25.5 28.61 51.58 3849 256.4 316.9 1342.9 -14.333 -28.505 -34.005 26.922
c 20.0 30.54 56.65 4228 286.0 339.3 1494.4 -15.173 -33.054 -36.825 29.882

UDC

E50 11.2 29.87 54.56 4061 271.2 334.7 1434.8 -14.799 -31.539 -35.871 28.870
Eoed 13.9 30.33 55.32 4145.2 277.7 338.4 1466.3 -15.027 -32.350 -36.915 29.637
Eur 38.6 30.30 54.96 4101 274.4 333.9 1451.7 -14.881 -32.183 -36.434 29.352
γ0.7 0.00013 30.37 55.18 4127 278.1 330.4 1456.8 -14.969 -32.312 -37.059 29.673
G0 84.0 30.35 55.15 4124 277.9 330.2 1455.8 -14.979 -32.193 -37.001 29.607
su 144.0 30.30 55.01 4106 276.2 331.7 1452.0 -14.923 -32.022 -36.597 29.368

UDE

E50 3.7 30.31 54.86 4102 276.0 329.5 1448.9 -14.937 -32.009 -36.493 29.323
Eoed 4.7 30.34 55.33 4132 278.5 332.2 1459.9 -15.029 -32.361 -36.926 29.646
Eur 13.0 30.33 54.63 4092 275.4 326.4 1443.6 -14.898 -31.936 -36.635 29.349
γ0.7 0.00013 30.34 55.23 4126 278.1 331.5 1457.6 -15.013 -32.295 -36.871 29.596
G0 34.8 30.35 55.31 4131 278.4 332.1 1459.6 -15.030 -32.353 -36.942 29.650
su 144.0 30.33 55.17 4122 277.8 331.1 1456.0 -14.995 -32.250 -36.781 29.539

The units of the parameters are as in Table 3.11.
∗ means that in variation of the φ parameter, K nc

0 was kept constant
Drained stands for changing the parameter for phases 0 - 11 only, i.e. where material behaviour is set to drained.
UDC stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained and the parameter is changed only for the outside of the excavation

(compression behaviour is dominant).
UDE stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained and the parameter is changed only for the outside of the excavation

(extension behaviour is dominant).

Table B.4: The d-wall deflection errors and the building settlements differences computed for the higher-bound values of the HSS model parameters sensitivity
studies (phase 15).
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Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Drained
Gur /Su 50 24.40 31.87 2755 175.5 146.6 824.6 -10.930 -12.370 -5.107 9.976

su 90 28.84 42.43 3530 237.1 178.2 1137 -11.586 -14.128 1.735 10.596

Undrained
Gur /Su 50 28.14 40.60 3403 227.6 192.5 1085.6 -11.280 -13.279 1.561 10.010

su 90 28.13 40.69 3409 228.0 190.3 1084.6 -11.294 -13.346 1.522 10.132

Initial NGI-ADP Values 28.132 40.696 3409.7 228.05 193.28 1087.7 -11.300 -13.361 1.523 10.141

Drained
Gur /Su 65 23.41 28.91 2546 159.3 127.2 742.2 -10.853 -12.602 -8.471 10.776

su 120 27.53 38.62 3260 217.3 200.9 1137 -10.972 -12.143 1.340 9.480

Undrained
Gur /Su 65 28.13 40.68 3409 228.0 193.1 1087.3 -11.294 -13.346 1.519 10.132

su 120 28.13 40.56 3400 227.4 192.3 1084.6 -11.270 -13.242 1.589 10.081

The units of the parameters are as in Table 3.12.
Drained stands for changing the parameter for phases 0 - 11 only, i.e. where material behaviour is set to drained.
Undrained stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained.

Table B.5: The d-wall deflection errors and the building settlements differences computed for the NGI-ADP model parameters sensitivity studies (phase 12).
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Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Drained
Gur /Su 50 31.00 79.95 5849 425.0 455.9 2048.3 -26.640 -53.207 -36.327 40.251

su 90 31.21 85.35 6293 460.8 469.9 2181.4 -25.735 -50.332 -23.80 35.412

Undrained
Gur /Su 50 31.37 82.51 6098 441.1 463.5 2121.4 -22.789 -47.907 -21.536 33.056

su 90 31.56 92.15 6765 501.8 500.1 2351.0 -28.221 -58.265 -29.701 41.123

Initial NGI-ADP Values 31.268 86.634 6374.3 467.7 477.44 2213.1 -26.315 -52.789 -25.878 37.178

Drained
Gur /Su 65 30.72 72.59 5327 380.8 421.9 1869.2 -25.890 -49.921 -36.565 38.730

su 120 31.25 86.72 6367 467.8 479.1 2214.0 -26.678 -53.90 -27.185 38.105

Undrained
Gur /Su 65 31.46 81.41 6031 434.3 459.4 2099.1 -21.598 -46.469 -20.426 31.849

su 120 30.97 80.86 5969 433.6 455.3 2074.0 -24.566 -46.996 -21.888 33.122

The units of the parameters are as in Table 3.12.
Drained stands for changing the parameter for phases 0 - 11 only, i.e. where material behaviour is set to drained.
Undrained stands for changing the parameter for phases 12-15 only, i.e. where material behaviour is set to undrained.

Table B.6: The d-wall deflection errors and the building settlements differences computed for the NGI-ADP model parameters sensitivity studies (phase 15).
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B.1.3. Sensitivity analysis of the SHANSEP-MC model parameters
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Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Drained
α 0.14 31.74 51.49 4281 296.0 232.7 1402.1 -8.866 -12.771 12.715 11.596

G/Su 60 29.50 39.96 3382 227.3 174.7 1088.5 -9.937 -9.228 8.323 8.995

Initial SHANSEP MC Values 30.957 44.688 3769.7 257.87 195.934 1228.15 -9.4060 -11.1652 9.3966 10.0238

Drained
α 0.18 30.98 46.26 3872 264.1 207.9 1264.2 -9.974 -12.397 9.064 10.572

G/Su 75 27.29 36.33 3102 204.4 157.7 964.8 -9.794 -9.210 4.974 8.276

The units of the parameters are as in Table 3.13.

Table B.7: The d-wall deflection errors and the building settlements differences computed for the SHANSEP MC model parameters sensitivity studies (phase 12).

Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Undrained
α 0.14 34.20 120.0 8929 694.2 568.4 3096.1 -23.278 -67.021 -26.240 43.674

G/Su 60 32.50 92.74 6877 511.8 493.0 2390.8 -19.619 -50.617 -21.363 33.682

Initial SHANSEP MC Values 32.874 106.927 7846.88 592.356 563.031 2745.357 -21.7811 -58.2587 -22.1845 38.1254

Undrained
α 0.18 32.51 94.87 7094 529.2 493.3 2446.7 -19.550 -49.761 -16.113 32.238

G/Su 75 32.15 85.97 6338 461.8 481.8 2222.5 -19.222 -48.094 -23.251 32.778

The units of the parameters are as in Table 3.13.

Table B.8: The d-wall deflection errors and the building settlements differences computed for the SHANSEP MC model parameters sensitivity studies (phase 15).
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B.1.4. Sensitivity analysis of the GHS2142 model parameters
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Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Drained

E r e f
50 3.2 17.79 17.79 1449 80.73 67.11 397.5 -6.643 -4.495 -13.271 8.953

E r e f
oed 4.0 17.87 17.87 1493 85.41 67.40 406.3 -6.740 -4.813 -13.503 9.146

E r e f
ur 12.0 17.52 17.52 1347 71.10 64.18 374.58 -6.124 -3.409 -12.624 8.337
γ0.7 0.00007 18.07 1807 1523 88.02 66.66 413.2 -6.901 -4.988 -13.680 9.303
φ 18.5 18.31 18.31 1553 90.48 67.94 422.87 -6.644 -5.040 -14.040 9.428
c 0.1 17.84 17.84 1458 81.39 66.49 398.90 -6.636 -4.535 -13.651 9.146

Gr e f
0 28.0 17.89 17.89 1509 87.69 66.05 408.48 -6.822 -4.694 -13.021 8.909

Initial GHS Values 17.895 17.895 1458.8 81.027 66.776 399.74 -6.680 -4.558 -13.487 9.079

Drained

E r e f
50 4.8 17.85 17.85 1458 81.45 66.64 399.1 -6.636 -4.515 -13.371 9.004

E r e f
oed 6.0 17.58 17.58 1374 73.76 64.78 380.4 -6.258 -3.639 -12.696 8.438

E r e f
ur 18.0 17.73 17.73 1453 81.99 66.12 396.96 -6.614 -4.542 -13.294 8.965
γ0.7 0.00013 17.62 17.62 1393 75.32 66.07 385.0 -6.392 -3.985 -13.028 8.688
φ 25.5 17.71 17.71 1421 78.12 67.94 389.63 -6.519 -3.921 -12.456 8.427
c 20.0 17.72 17.72 1424 78.50 65.24 390.78 -6.569 -4.126 -12.878 8.860

Gr e f
0 42.0 17.69 17.69 1393 74.54 66.92 386.24 -6.456 -4.154 -13.420 8.927

The units of the parameters are as in Table ??.
For variations of the φ parameter, K nc

0 was kept constant.

Table B.9: The d-wall deflection errors and the building settlements differences computed for the GHS model parameters sensitivity studies (phase 12).
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Input D-wall deflection errors [-] Building settlement differences [mm]
Parameter Value DH DF DTW PCM Area Der r or Front Middle Back RMSE

Undrained

E r e f
50 3.2 21.99 32.23 2632 151.9 190.5 799.8 -10.697 -16.608 -25.824 18.772

E r e f
oed 4.0 22.52 33.30 2714 159.2 194.6 830.8 -11.055 -17.353 -26.355 19.304

E r e f
ur 12.0 21.06 29.55 2440 137.43 174.12 727.70 -9.754 -14.391 -24.249 17.226

E r e f
50 3.2 22.60 33.86 2751 162.53 197.25 843.66 -11.351 -18.177 -26.773 19.799
γ0.7 0.00007 22.74 34.11 2769 163.8 198.7 851.2 -11.324 -18.189 -26.582 19.712

Gr e f
0 28.0 22.58 33.58 2730 161.59 195.27 837.41 -11.150 -16.976 -25.620 18.876
φ 18.5 23.15 34.72 2825 168.6 198.0 868.90 -10.872 -19.205 -27.201 20.223
c 0.1 22.09 32.23 2635 152.63 189.09 800.82 -10.772 -16.599 -26.072 18.897

Initial GHS Values 22.150 32.319 2644.77 153.092 189.317 803.56 -10.763 -16.795 -26.093 18.963

Undrained

E r e f
50 4.8 22.13 32.26 2642 153.2 188.5 802.1 -10.692 -16.646 -25.942 18.836

E r e f
oed 6.0 21.11 29.84 2461 138.6 176.7 735.1 -9.818 -14.215 -24.254 17.192

E r e f
ur 18.0 21.98 31.62 2599 150.90 183.04 785.64 -10.633 -15.935 -25.514 18.420

E r e f
50 4.8 21.84 21.84 2631 151.09 193.69 800.49 -10.740 -16.255 -25.455 18.507
γ0.7 0.00013 21.22 30.67 2507 141.8 182.4 752.7 -10.137 -14.889 -24.896 17.741

Gr e f
0 42.0 21.28 30.55 2505 140.51 184.08 753.65 -10.207 -15.251 -25.224 18.010
φ 25.5 21.73 31.53 2583 148.7 185.8 780.89 -10.475 -15.597 -24.554 17.850
c 20.0 21.92 31.82 2606 150.46 186.78 789.53 -10.589 -16.12 -25.291 18.364

The units of the parameters are as in Table ??.
For variations of the φ parameter, K nc

0 was kept constant.

Table B.10: The d-wall deflection errors and the building settlements differences computed for the GHS model parameters sensitivity studies (phase 15).
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Estimation method in the inverse analysis

C.1. Extended Kalman Filter
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Figure C.1: The optimisation of the spring problem using the EKF algorithm - the evolution of the estimated variables and
measurements throughout the iterations for tough initial conditions.
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Figure C.2: The optimisation of the spring problem using the
EKF algorithm - the evolution of RMSE throughout the iterations

for tough initial conditions.
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Figure C.3: The variables evolution throughout the iterations in
the two-spring problem optimisation using the EKF algorithm

for tough initial conditions.
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Figure C.4: The optimisation of the spring problem using the
EKF algorithm - the Pearson’s coefficient evolution

throughout the iterations for tough initial conditions.
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Figure C.5: The optimisation of the spring problem using the EKF
algorithm - the evolution of the variables’ variances for tough initial

conditions.



C.2. Configuration of the script’s functions 129

C.2. Configuration of the script’s functions

Figure C.6: The error evolution throughout the iterations for the ensemble size of N = 10.

Figure C.7: The error evolution throughout the iterations for the ensemble size of N = 10.
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Figure C.8: The error evolution throughout the iterations for the ensemble size of N = 15.

Figure C.9: The error evolution throughout the iterations for the ensemble size of N = 15.
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Figure C.10: The error evolution throughout the iterations for the ensemble size of N = 20.

Figure C.11: The error evolution throughout the iterations for the ensemble size of N = 20.



132 C. Estimation method in the inverse analysis

Figure C.12: The error evolution throughout the iterations for the ensemble size of N = 25.

Figure C.13: The error evolution throughout the iterations for the ensemble size of N = 25.
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Figure C.14: The error evolution throughout the iterations for the ensemble size of N = 40.

Figure C.15: The error evolution throughout the iterations for the ensemble size of N = 40.
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Figure C.16: The error evolution throughout the iterations for the ensemble size of N = 50.

Figure C.17: The error evolution throughout the iterations for the ensemble size of N = 50.
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Figure C.18: The error evolution throughout the iterations for the ensemble size of N = 75.

Figure C.19: The error evolution throughout the iterations for the ensemble size of N = 75.
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Figure C.20: The error evolution throughout the iterations for the ensemble size of N = 100.

Figure C.21: The error evolution throughout the iterations for the ensemble size of N = 100.
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Figure C.22: The error evolution with a corresponding bandwidth of 2σ, averaged from 25 simulations, throughout the iterations for the
ensemble size of N = 10.

Figure C.23: The error evolution with a corresponding bandwidth of 2σ, averaged from 25 simulations, throughout the iterations for the
ensemble size of N = 15.
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Figure C.24: The error evolution with a corresponding bandwidth of 2σ, averaged from 25 simulations, throughout the iterations for the
ensemble size of N = 20.

Figure C.25: The error evolution with a corresponding bandwidth of 2σ, averaged from 25 simulations, throughout the iterations for the
ensemble size of N = 25.
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Figure C.26: The error evolution with a corresponding bandwidth of 2σ, averaged from 25 simulations, throughout the iterations for the
ensemble size of N = 40.

Figure C.27: The error evolution with a corresponding bandwidth of 2σ, averaged from 25 simulations, throughout the iterations for the
ensemble size of N = 50.
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Figure C.28: The error evolution with a corresponding bandwidth of 2σ, averaged from 25 simulations, throughout the iterations for the
ensemble size of N = 75.

Figure C.29: The error evolution with a corresponding bandwidth of 2σ, averaged from 25 simulations, throughout the iterations for the
ensemble size of N = 100.
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Figure C.30: The percentage value of script runs in which the computed error is below tolerance of 0.01 in a function of iterations for 8
ensemble sizes.

Figure C.31: The percentage value of script runs in which the computed error is below tolerance of 0.01 in a function of R value for 8
ensemble sizes.
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Application of the inverse analysis in the

FEM

D.1. Performance depending on the observation vector
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Figure D.1: The computed RMSE throughout the iterations for different observation types - manually created measurements case.
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Figure D.2: The evolution of the estimated mean (the XE variable) of the ensembles throughout the iterations for a different
observation types - manually created measurements case with two variables.
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Figure D.3: The evolution of the estimated mean (the Xγ variable) of the ensembles throughout the iterations for a different observation
types - manually created measurements case with two variables.
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