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Abstract
Background: Rapid computational and technological developments made large amounts of omics data available in
different biological levels. It is becoming clear that simultaneous data analysis methods are needed for better
interpretation and understanding of the underlying systems biology. Different methods have been proposed for this
task, among them Partial Least Squares (PLS) related methods. To also deal with orthogonal variation, systematic
variation in the data unrelated to one another, we consider the Two-way Orthogonal PLS (O2PLS): an integrative data
analysis method which is capable of modeling systematic variation, while providing more parsimonious models
aiding interpretation.

Results: A simulation study to assess the performance of O2PLS showed positive results in both low and higher
dimensions. More noise (50 % of the data) only affected the systematic part estimates. A data analysis was conducted
using data on metabolomics and transcriptomics from a large Finnish cohort (DILGOM). A previous sequential study,
using the same data, showed significant correlations between the Lipo-Leukocyte (LL) module and lipoprotein
metabolites. The O2PLS results were in agreement with these findings, identifying almost the same set of co-varying
variables. Moreover, our integrative approach identified other associative genes and metabolites, while taking into
account systematic variation in the data. Including orthogonal components enhanced overall fit, but the orthogonal
variation was difficult to interpret.

Conclusions: Simulations showed that the O2PLS estimates were close to the true parameters in both low and
higher dimensions. In the presence of more noise (50 %), the orthogonal part estimates could not distinguish well
between joint and unique variation. The joint estimates were not systematically affected. Simultaneous analysis with
O2PLS on metabolome and transcriptome data showed that the LL module, together with VLDL and HDL
metabolites, were important for the metabolomic and transcriptomic relation. This is in agreement with an earlier
study. In addition more gene expression and metabolites are identified being important for the joint covariation.

Keywords: Integration of Omics data, Dimension reduction, Latent variable regression, O2PLS

Background
With rapid and continuous technological improvements
large amounts of omics data from different levels
(genome, transcriptome, proteome and metabolome) are
now available. In an integrative systems biology approach,
it is becoming increasingly clear that the integration of
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omics data will provide a better understanding of biolog-
ical systems. Towards this end, the simultaneous analysis
of two data sets is an important task to better understand
the relationships between different biological functional
levels.
Statistically, integrative approaches face theoretical and

computational issues: the typical “large p, small n” prob-
lem as in high dimensional data. Some statistical methods
require the inverse of matrices; often they are singular, this
can be dealt with by penalization or dimension reduction.
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Interpretation of the results of the analysis is yet another
major challenge. In terms of integrating two data sets the
following questions need to be answered: (i) which vari-
ables in one data set are related to those in another data
set, (ii) which variables are not related, but still impor-
tant, in each of the data sets, and (iii) which variables
are relevant, i.e. provide more insight into the biological
systems?
A statistical solution is to perform variable selection

while combining the two types of variables in the modeled
integration process: for example, a regularized version of
canonical correlation analysis (CCA) [1], and a variant of
partial least squares (PLS) regression [2] called sparse PLS
[3] to simultaneously integrate and select variables using
lasso penalization [4].
The integration and the variable selection of two dif-

ferent types of omics data sets is nowadays an active
research subject. For example, Inouye et al. [5] assessed
metabonomic, transcriptomic, and genomic variation for
a large population-based cohort from the capital region
of Finland. For an overview of the data integration and
the different analyses in the study we refer to Figure 1 of
their paper [5]. In this work we focus on the first part
of data integration of the paper: ‘metabolite associations
of gene modules’. First they identified the sets of highly
correlated genes, such as the lipid-leukocyte (LL) mod-
ule, using network analysis of the transcriptomic data.
Next a Spearman’s rank correlation was used to identify
fine-scale detail of potentially causative/reactive effects
between the LL module expression profile (defined by its
first principal component) and the individual metabolites.
The motivation of the present paper lies in this sequential
analysis procedure. In other areas of biostatistics, simul-
taneous joint modeling of the variables is known to be
more efficient than analyzing data sequentially: network
construction, identifying the latent variable or module,
and correlating this identified module with the individual
metabolites.
Model estimates for integrative parts in the data are

often not representing the true underlying biological rela-
tion when systematic variation unrelated to the outcome
is present, the estimates are biased due to this variation.
It has been demonstrated that PLS suffers from this [6].
To deal with this, extensions of PLS have been devel-
oped. The asymmetric Orthogonal PLS (OPLS) [7], tries
to correct for systematic variation in the design matrix
before presenting the data to PLS. The main advantage
is an easier interpretation of the model: the model esti-
mates focus more on the predictive variation in the design
matrix. In order to integrate two data sets, we need a
symmetric approach of OPLS. The Two-way Orthogonal
PLS (O2PLS) model [6] is a symmetric method, model-
ing both predictive and systematic variation. The model
decomposes the variation present in two data matrices,

for example two omics data matrices X and Y, into three
parts. In the first joint part, underlying latent variables in
both data matrices are assumed to induce the relation-
ship between X and Y. This joint part can be seen as
a representation of the integration of the two data sets.
The second part is called the orthogonal part. Underlying
latent variables, independent from those in the joint part,
are assumed to be responsible for the unique systematic
variation in X (Y ), which does not contribute to the pre-
diction of Y (X). The third part indicates the noise part,
and captures the unsystematic variation in the data.
The aim of this paper is twofold. Our first aim is to

jointly model metabolomics and transcriptomics data, in
the light of previous study by Inouye et al. [5], to gain a
better insight in the interplay between the two omics by
decomposing the data in three parts. We extract latent
variables for the joint and orthogonal part, and summarize
relevant information by looking at the amount of varia-
tion captured by these latent variables. Our second aim
is to investigate the performance of the O2PLS estimates,
in terms of accuracy, with a simulation study under dif-
ferent conditions. We will look at the accuracy in terms
of bias, using settings similar to those present in real
metabolomics and transcriptomics data.
Integrating metabolomics and transcriptomics using

O2PLS is not new. A small scale integration, on 12 aspen
grown in a controlled environment, of 453 metabolomic
variables and 27,648 transcriptomic data has been per-
formed in [8]. Our analysis is in a larger scale, namely
human epidemiological study, consisting of 466 partic-
ipants. In the metabolomics data set (containing 137
metabolites) we have a classical situation of more partic-
ipants than variables; the transcriptomics data contains
more variables (35419) than participants.
This paper is organized as follows: the “Methods”

Section discusses the symmetric integration method
O2PLS. A simulation study is set up to assess its per-
formance. In the “Results” Section the simulation results
are discussed, furthermore metabolomics and transcrip-
tomics data are analyzed with O2PLS. The “Discussion”
Section gives an interpretation of the results from the sim-
ulations and data analysis, as well as commenting on the
O2PLS model and arguing for a probabilistic approach.

Methods
Previous methods
The Partial Least Squares (PLS) method was introduced
by Wold [2] to project a centered design matrix X to a
lower dimensional latent variable space:

X = TPT + E. (1)

Here T contains the lower dimensional data. Thematrix
P contains the directions in the X space which optimizes
the covariance TTY (where Y has zero mean). The matrix
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TPT is to be seen as a ‘best’ approximation of X based on
the covariance with Y. The proof for this is deferred to a
separate paragraph later on in this section. The matrix E
contains the residuals.
The PLS method is a popular method in chemometrics,

and from this area an extension was proposed to deal with
orthogonal variation: variation important for X but unre-
lated to X. This method was named Orthogonal PLS [7]:

X = T̃P̃T + T⊥PT⊥ + Ẽ. (2)

Again T̃P̃T represents a best approximation based on
the covariance with Y, but the direction vectors in P̃ are
corrected for (i.e. do not contain directions of) orthogonal
variation. The orthogonal variation in X is approximated
with T⊥PT⊥.
Both PLS and OPLS deal with outcome vectors. While

generalizations can be made to make them suitable for
an outcome matrix, they focus on regressing Y on X, but
not simultaneously the other way around. This symmet-
ric approach is appropriate for integrating multiple omics
data, while also prediction in both ways can be done.

The O2PLS model
The Two-way Orthogonal PLS (O2PLS) model [6] is a
symmetric method capable of dealing with systematic
variation. It is a generalization of PLS, correcting for
orthogonal variation in both data matrices X and Y. The
model decomposes the variation in the two data matri-
ces into a joint, orthogonal and noise part. The model
assumes that some underlying unobservable latent vari-
ables are responsible for the variation in the joint and
orthogonal part. Define the number of joint latent vari-
ables as a. The number of X-components that are orthog-
onal to Y is denoted by nx. The number of Y -components
that are orthogonal to X is denoted by ny. Let X be N × p
and Y be N × q. The O2PLS model can be seen as a factor
analysis model:

X = TWT + TY⊥PTY⊥ + E

Y = UCT + UX⊥PTX⊥ + F
(3)

The inner relations for approximating Y with X and vice
versa are

U = TBT + H
T = UBU + H̃

(4)

In this model the scores are

T(N × a),TY⊥(N × nx),U(N × a),UX⊥(N × ny). (5)

They represent a projection of the observed data X and
Y to a lower dimensional ‘optimal’ subspace. The loadings
are

W (p × a),C(p × a),PY⊥(p × nx),PX⊥(p × ny), (6)

and they assign ‘importance’ to each X and Y variable to
the corresponding subspace. The noise matrices are

E(N × p), F(N × q),H(N × a),H ′(N × a). (7)

They capture all ‘left over’ variation not captured by the
scores.
To approximate Y with X (or X with Y ), we need the

corresponding inner relation defined via BT (or BU ) in (4).
A description of the O2PLS algorithm can be found in
Trygg’s paper [6]. The inner relation can be recognized as
being an ordinary linear model.
The optimal number of latent variables (a, nX , nY ) are

in the ideal situation known a priori. In practice this is
rare, and a cross-validation (CV) procedure is often used.
However, given the large number of variables in the tran-
scriptome and the three dimensional space in which opti-
mization takes place, the CV procedure quickly becomes
cumbersome. Hence an alternative method is proposed:
we base our cross validation criterion partially on the
mean squared error prediction, andmoreover on the coef-
ficients of determination (R2) of the inner relation fit (4),
since correcting for orthogonal variation usually improves
the fit of the inner relation regression (4) up to a certain
number of orthogonal components. The procedure can be
summarized as follows:

1. We choose a vector of values for the number of joint
components a.

2. For fixed a we choose the number of orthogonal
components nX and nY that maximize the sum of the
two coefficients of determination (R2) of the inner
relation regression (4). Mathematically: we search in
a two dimensional grid the integers nX and nY that
maximize

(nX , nY ) �→ 1−
∑

(HUT )2i,j∑
U2
i,j

+1−
∑

(HTU)2i,j∑
T2
i,j

. (8)

We also consider the value zero for the number of
orthogonal parts.

3. Two Mean Squared Errors (MSE) of Prediction
-concerning

∑
(Ŷ − Y )2 and

∑
(X̂ − X)2 - are

calculated with 10-fold cross-validation to determine
a with the previously obtained nX and nY fixed.

4. We go back to step 2 using for a the next element in
the vector of values as chosen in step 1.

The quality of the O2PLS estimates depends on the
accuracy of the estimated covariance matrix S = XTY .
Suppose X = E and Y = F , so X and Y are only noise.
The covariance matrix S can be decomposed with SVD:
S = WDCT, where W and C are unit norm. It may be
that we will observe a ‘large’ positive loading value, since
the norm of the loading vectors are forced to be one, and
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may mistakenly conclude that X and Y are related. How-
ever since X and Y are independent the projected data T
and U are little correlated (due to noisy variation), thus
the inner relation parameters BT and BU will have a small
magnitude.
Orthogonal correction captures variation unrelated to

the joint part. The residual data is hoped to correlate
stronger, thus providing a better inner relation fit. Espe-
cially with a high number of variables, this may improve
the fit (and thus interpretability of the obtained load-
ings) substantially. Estimation accuracy will not likely be
improved by correcting for orthogonal variation, since we
do not add information concerning the relation between
X and Y. However the exact statistical implications of
orthogonality correction on the joint part estimators is
still an unclear matter.

Proof of optimality
To make clear why the singular value decomposition
is important for O2PLS, some optimality properties are
proven.
The joint part maximizes the covariance between the

joint scores u = Yc and t = Xw:

uTt = cTYTXw. (9)

The maximization is over the set {w ∈ R
p, c ∈ R

q :
wTw = cTc = 1}. Suppose CYDWT

X is a singular value
decomposition of YTX, where CY is q × q, D is q × p and
WX is p × p. Then the objective function becomes

(c,w) �→ cTCYDWT
X w. (10)

Since CY has orthonormal columns, it is a basis for Rq.
This implies that c is a linear combination of the columns
of CY . We can thus write for α = (α1, . . . ,αq)T

c = CYα, αTα = 1, (11)

where the latter identity holds since we require cTc = 1.
The same holds for w = WXβ , with β = (β1, . . . ,βp) and
βTβ = 1. Now, using the orthogonality of CY andWX , we
can see that

cTCYDWT
X w = αTDβ =

p∑
j=1

αjβjdj,j, (12)

since di,j = 0 for all i �= j, where i = 1, . . . , q and j =
1, . . . , p. Suppose without loss of generality that p ≤ q. We
can increase the dimensionality of β from p to q, by adding
q − p zeros without changing the unit norm property:

β̃ =
[
βT, 0, . . . , 0

]T
. (13)

Note that if q were to be smaller than p then we can use
the same argument for α. Cauchy-Schwartz tells us that

p∑
j=1

αjβj =
q∑

i=1
αiβ̃i

= αTβ̃

≤ ||α|| ||β̃||
= 1

(14)

The maximum of the covariance (9) is attained only if
α1 = β1 = ±1. In that case all summands in (12) are
zero except when i = 1, yielding the maximum to be the
first (and largest) singular value. The first singular vec-
tors c = CY ;1 and w = WX;1 are the maximizers. Note
that c = −CY ;1 and w = −WX;1 would also yield equiva-
lently themaximum, this is a minor identifiability problem
which does not alter the O2PLS model fit. To get the sec-
ond direction vectors, we optimize the objective function
(9) over the unit norm vectors c andw; we require also that
cTCY ;1 = wTWX;1 = 0. This last restriction, the orthog-
onality constraint, on c and w imply that α1 = β1 = 0
in (12). The maximal covariance is then attained only if
|α2| = |β2| = 1, yielding c and w to be the second singu-
lar vectors CY ;2 and WX;2. Continuing this argument we
find the singular vectors in CY and WX to be the maxi-
mizers of (9) satisfying the unit norm and orthogonality
constraint. If we have a set of indices I for which di,i = dj,j
for all i, j ∈ I, we choose c = CY ;min(I) and w = WX;min(I)
as maximizer. If we have more of those sets, we choose the
maximizer in each set in the same fashion.
The orthogonal components are obtained by finding

maximal ‘overlap’ between the uncorrected scores T and
the residuals E = X−TWT. An orthogonal score vector is
defined as tY⊥ := EwY⊥ where wT

Y⊥wY⊥ = 1. We want to
maximize the norm of the covariance between T and tY⊥:

max
tY⊥

||TTtY⊥||2. (15)

This can be rewritten as

max
wY⊥

wT
Y⊥ETTTTEwY⊥. (16)

To incorporate the constraints wT
Y⊥wY⊥ = 1, we intro-

duce a Lagrange multiplier λ we and take the derivative
with respect to wY⊥. We get

ETTTTEwY⊥ = λwY⊥. (17)

The maximum is obtained if wY⊥ is the eigenvector of
ETTTTE corresponding to the largest eigenvalue. This is
the first left-singular vector of ETT . Together with the
constraint that WY⊥ should have orthonormal columns,
we find WY⊥ to be the matrix with left-singular vectors
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of ETT . The orthogonal scores can be constructed via
TY⊥ = EWY⊥. The same derivation can be used to find
that the maximal covariance between UX⊥ := FPX⊥ and
U, where F = Y−UCT, is obtained ifCX⊥ is the collection
of left-singular vectors of FTU .

Simulation study
A simulation study was performed to investigate the per-
formance of the O2PLS loading estimates,W, C, PY⊥ and
PX⊥. Although Trygg et al. included a simulation study in
their paper [6], the exact simulation study design was not
clearly presented. Therefore we could not reproduce their
simulation results, and the parameters for our simulation
study were arbitrarily chosen.
The loading values were chosen from a normal proba-

bility density function, this reflected the desired property
that some variables are important and some not. We
designed two dimensionality conditions for the data: the
“low” dimensional design stands for p = 100 variables in
X and q = 50 variables in Y. In the “high” dimensional set-
ting X contains p = 500 variables and Y contains q = 250
variables. The scores and noise components were ran-
domly drawn from a normal distribution with zero mean.
The variances of the scores and noise were chosen so that
they would satisfy a noise level condition: the noise level
α, the relative amount of noisy variation in the data, could
take two values; the value α = 0.05 corresponds to “little”
noise setting, noisy variation accounted for 5 % of the total
variation. The value α = 0.5 mimics “much” noise setting,
in this case noise accounted for 50 % of the total variation.
More precise, the variances σ 2

E , σ
2
F and σ 2

H are defined as
follows:

σ 2
E = α

1 − α

aσ 2
T + nXσ 2

TY⊥
p

, (18)

σ 2
H = α

1 − α
B2
Tσ 2

T , (19)

σ 2
F = α

1 − α

a
(
B2
Tσ 2

T + σ 2
H

) + nYσ 2
UX⊥

q
. (20)

The number of samples were N = 500. As a large num-
ber of components is not often seen in practice, we chose
the number of joint components to be a = 1. The same
holds for the number of orthogonal components: nX = 1,
nY = 1. Table 1 shows the chosen parameter values in
each case. The number of simulation replicates was 1000.
We corrected the ‘sign’ of all estimated loading vectors by
multiplying the estimated loading vectors with the sign of
the crossproduct with the corresponding true loading vec-
tors, for example:Wsimul·,j = sign

(
WT·,jŴ·,j

)
Ŵ·,j for all joint

components j = 1, . . . , a.
Implementation of the O2PLS algorithm, calculations

and analyses were conducted in R [9].

Table 1 Simulation parameter choices. The loading value for
variable i is the density value of a normal distribution with mean
μ and standard deviation σ , denoted as N(i;μ, σ). The noise
terms were drawn from a normal distribution with zero mean.
The scores were drawn from a standard normal distribution. The
variances of the noise terms are such that the expected sum of
squares of the noise account for 100α % (equal to 5 or 50 %) of
the total sum of squares

Parameter ‘Low’-dimensional case ‘higher’-dimensional case

N 500 500

p, q [ 100, 50] [ 500, 250]

W [N(i; 60, 10)]i=1,...,100 [N(i; 300, 50)]i=1,...,500

C [N(i; 70, 5)]i=1,...,50 [N(i; 175, 25)]i=1,...,250

PY⊥ [N(i; 20, 20)]i=1,...,100 [N(i; 100, 100)]i=1,...,500

PX⊥ [N(i; 15, 10)]i=1,...,50 [N(i; 75, 50)]i=1,...,250

BT 2 2

σ 2
T , σ

2
TY⊥ , σ

2
UX⊥ [ 1, 1, 1] [ 1, 1, 1]

σ 2
E , σ

2
F , σ

2
H

α
(1−α)

[ 0.02, 0.104, 4] α
(1−α)

[ 0.004, 0.021, 4]

Availability of supporting data
The metabonomic measures are available as Supple-
mentary Table 4 in [5]. The raw and normalized gene
expression intensities have been deposited in Array-
Express which can be found at: http://www.ebi.ac.uk/
arrayexpress/ under the accession number E-TABM-1036.
ArrayExpress is hosted by the European Bioinformatics
Institute.

Results
Results of simulation study
For each loading parameter we obtained 1000 estimates.
Boxplots for the joint (left column) and orthogonal (right
column) part estimates in X (upper row) and Y (lower
row) in the “little” noise case (α = 0.05) are shown in
Figs. 1 and 2.
Firstly in both “low”(p = 100, q = 50) and “higher”(p =

500, q = 250) dimensions, the accuracy of the estimates
were very similar, as can be seen from the location and
range of the boxplots. Secondly at the variables with a
high joint loading value but low orthogonal loading value,
the orthogonal part estimates followed the true orthogo-
nal loading profiles. The joint part estimates also followed
the true joint loading profiles regardless of the value of the
orthogonal loadings at those variables. Thirdly, the differ-
ence between the estimates for the Xand Y components
was minor. There was slightly more variation present in
the X data at variables with a low loading value.
Boxplots of the 1000 simulations for the “much” noise

case (α = 0.5) are shown in Figs. 3 and 4. In both
“low”(p = 100, q = 50) and “higher”(p = 500, q =
250) dimensions the estimates performed similar. The

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
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Fig. 1 Simulation: low dimensions little noise. Boxplots of 1000 simulations in which X (upper row) contains 500 samples and 100 variables, Y (lower
row) contains 500 samples and 50 variables. Noise contributed for 5 % of the total variation. The first column corresponds to the joint part, the
second column depicts the orthogonal part. The red line denotes the true loading profile

joint part estimates still followed the true loading pro-
file, although the boxplots showed more variation across
the 1000 estimates. The orthogonal part estimates were
less accurate than the orthogonal part estimates in the
“low” noise case. Especially at the variables with a high
joint loading value, the orthogonal part estimates showed
a high variation. The orthogonal part estimates in Y were
visibly higher in at least 75 % of the simulation replicates.
When simulating similar sizes as in our data example (we
took p = 6000 and q = 140 and considered α = 0.5), the
O2PLS method showed the same behavior (not shown).

Application to DILGOM data
Samples on metabolome (137 variables) and transcrip-
tome (35,419 variables) were collected as part of the
‘Dietary, Lifestyle, and Genetic determinants of Obesity
andMetabolic syndrome’ (DILGOM) study [5]. Study par-
ticipants were aged 25–74 years, median age was 53, and
were sampled from the region of Helsinki, Finland. A
total of 506 participants were present in both studies,
of which 232 male and 274 female. In this analysis, we
excluded participants whenever they had a missing value
for one ormoremeasurements in either themetabolomics

or transcriptomics data. This resulted in 40 omitted
participants, the used data thus finally consisted of
N = 466 participants.
Themetabolomics data were derived from nuclear mag-

netic resonance (1H NMR), providing absolute quan-
titative measurements on the serum metabolome. The
transcriptomics data were derived from averaged gene
expression counts on technical replicates. The raw counts
were quantile normalized at strip level. For more detailed
info, see [5, 10]. In transcriptomics filters are proposed
to reduce the amount of uninformative (low variance and
expression level) variables, which are often interpreted
as containing noise. The original study [5] used a filter
retaining only the 10 % highest expression levels, and
considered 3520 gene expression variables for analysis.
To model the orthogonal noise components we were less
stringent and extracted the top 25 % of the absolute val-
ues of the gene expressions, and we intersected this set of
expressions with the set containing the 25 % expressions
with the largest inter-quantile range conform [11]. The
reduced transcriptomics data contained 6272 variables.
Results of the analysis with all 35,419 variables were very
similar (not shown).
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Fig. 2 Simulation: high dimensions little noise. Boxplots of 1000 simulations in which X (upper row) contains 500 samples and 500 variables, Y (lower
row) contains 500 samples and 250 variables. Noise contributed for 5 % of the total variation. The first column corresponds to the joint part, the
second column depicts the orthogonal part. The red line denotes the true loading profile

A Box-Cox transformation [12] with parameter 1
4 was

performed for themetabolomics data, to reduce skewness.
The ‘best’ choice for the Box-Cox parameter has been
investigated by many, we observed from the first four cen-
tral moments that 1

4 was sufficient to continue the data
analysis. Inouye et al. [5] also applied a Box-Cox transfor-
mation per variable, but the powers of the transformations
were not stated. A scaling here would amplify the effect
of noise on the estimates, so the data were only mean
centered.
To give an overall impression, the pairwise Pearson cor-

relation coefficients between the metabolite variables are
depicted in a heatmap in Fig. 5. There was a cluster
of positively correlated variables present within the var-
ious lipoproteins (VLDL, LDL, IDL, HDL) subgroups.
The VLDL subgroup and the HDL subgroup had nega-
tive correlation. Due to the large number of variables in
the transcriptome data, a heatmap of the correlations the
variables is omitted.
We continued our data analysis with the integra-

tion of metabolomics (X) and transcriptomics (Y ), using
O2PLS. To determine the optimal number of components,
we utilized the proposed alternative cross-validation

procedure as discussed in Section “Methods”, initializing
with a = 1, 2, . . . , 10. The optimal number of model com-
ponents were found a = 1, nX = 1, nY = 8. The
modeled variations per component is shown in Table 2.
In terms of explained variances (R2) we observed the
following:

• The variation in X and Y explained by the model was
58 and 51 % respectively. The rest of the variation
was estimated as noise.

• The joint correlated part in X explained 46 % of the
variation in X. Further 1 % of the total variation in Y
was explained by the joint correlated part in Y. This
means that 46 % of X and 1 % of Y could be
explained with one another.

• Of the 46 %, Y explained 27 % of X. This could be
seen relatively as 57 % of the joint variation in X.
Furthermore 0.8 % of Y was explained by X, which
was 58 % of the explainable variation in Y.

The sum of squares of all scores in the fitted model are
given in Table 3. The orthogonal part in Y explains about
half of the variation in Y, while half of the variation in
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Fig. 3 Simulation: low dimensions high noise. Boxplots of 1000 simulations in which X contains 500 samples and 100 variables, Y contains 500
samples and 50 variables. Noise contributed for 50 % of the total variation. The first column corresponds to the joint part, the second column
depicts the orthogonal part. The red line denotes the true loading profile

X is explained by the joint part. This is due to the larger
number of components in the orthogonal part in Y. About
50 % of the total variation is due to noise.
Next in order to evaluate the quality of predictions of Y

with X, a scatter plot of U versus T is given in Fig. 6. The
slope of the regression line equaled BT = 0.84. The R2 of
the regression of U on T was 0.47.
In the light of Inouye’s results [5], the role of the

LL module (a cluster of tightly correlated co-expressed
genes) in metabolic variation was analyzed with O2PLS.
The gene expression labels and corresponding genes are
shown in Table 4. Figure 7 shows the estimated joint load-
ing values for each metabolite (overall mean 0.0363). The
VLDL subgroup together with MOBCH2-MOBCH3 had
large estimated loadings (mean 0.116, max 0.314). The
HDL subgroup was estimated to have moderate loading
values (mean –0.0439, min –0.121), note that the loading
values were negative. This coincides with the negative cor-
relation between VLDL and HDL. The magnitude of the
loading values for the other lipoprotein subgroups were
small, and approximately proportional to their size (mean
0.0171, max 0.0763). In Fig. 8 the estimated joint load-
ings for the gene expression variables are shown (overall

mean –0.000350). There are some variables noticeable for
their estimated loading size: For the top 10 gene expres-
sions the ID label was shown next to their estimates in
black. The LL module gene expressions were labeled in
the plot using a red color. For LL module gene expressions
in the top 10, the color green was used. The labels and
corresponding genes are shown in Table 5. The two gene
expressions with the highest absolute loading values were
also in the LL module (loading values −0.180 and −0.150
respectively).
One orthogonal component was identified in the

metabolomic data. The loading vector, which is normed
to one, is shown in Fig. 9. The metabolomic orthogonal
loading values are less diverse than the joint loading
values. The HDL subgroup and amino acids got small
absolute loading values, the other metabolites had an
equal share in the orthogonal variation. There were eight
orthogonal components identified in the transcriptomics
data. For comparison purposes, the loading vectors were
orthonormalized. The eight loading vectors, together with
the variation per component, are plotted in Fig. 10. Note
that different loading values across components cannot
directly be compared, since the variations are not equal.
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Fig. 4 Simulation: high dimensions high noise. Boxplots of 1000 simulations in which X contains 500 samples and 500 variables, Y contains 500
samples and 250 variables. Noise contributed for 50 % of the total variation. The first column corresponds to the joint part, the second column
depicts the orthogonal part. The red line denotes the true loading profile

The first loading vectors show little structure. In the last
plot we can see few large peaks, indicating that only some
variables are of importance in that component. The varia-
tion in the first component is approximately eleven times
larger than the variation in the last component.

Discussion
The integrative systems biology approach is becoming
increasingly popular and integration of omics data will
provide more insight into the biological systems. The
PLS method is widely known in chemometrics and pro-
vides data integration and simultaneous modeling, but
as shown in [6] the estimates are sensitive to struc-
tural noise. While OPLS [7] provides correction for such
orthogonal variation, it is oriented towards predicting
an outcome and thus lacks symmetry. We considered
here the O2PLS method [6]; it is a symmetric data inte-
gration method, accounting for structural noise in both
matrices. We particularly aimed to integrate two omics
data sets for embedding a high dimensional data set in
terms low dimensional ‘latent’ variables. To extract rele-
vant information in the data sets, we decompose the two
data sets into three parts: joint part in which variables

in one data set are related to those in another data set;
orthogonal part in which variables are not related, but
still important, in each of the data sets; and noise. Simul-
taneously we searched for the relevant variables in each
part.
Several approaches similar to O2PLS are available. To

handle more than two data sets, a generalization of O2PLS
has been proposed in [13], called OnPLS. Methods to deal
with the general idea of decomposing data sets in a joint
and systematic part have been proposed. They differ in
methodology and estimation. For example, DISCO-SCA
[14] can handle multiple data sets and may perform better
when prior information about the configuration of the
joint and orthogonal components is available. An essen-
tial assumption in this model is that the components
scores or loadings in each data set are exactly the same.
Another method providing data decomposition in a joint
and orthogonal part is JIVE [15], which can also handle
more than two data sets. JIVE may be used if the common
source underlying all data sets are similar/homogeneous.
One should note that that JIVE restricts the joint part
to be orthogonal to the systematic parts. Though it may
be argued that the joint and systematic loadings in the
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Fig. 5 Pearson correlation heatmap of metabolites. Red indicates high positive correlation, green is little correlation and blue is high negative
correlation. The variables are in the original order. A histogram of correlations is added in the top left corner

Table 2 Absolute and relative variations in O2PLS

a R2X R2Y R2Xcorr R2Xcorr R2Xhat R2Yhat R2Xhat/R
2
Xcorr R2Yhat/R

2
Ycorr

1 57.97 50.81 46.31 1.37 26.74 0.80 57.74 58.55

2 67.94 53.40 60.80 4.24 29.52 1.45 48.55 34.25

3 74.08 54.79 68.99 7.35 26.70 2.00 38.69 27.23

4 78.06 55.62 72.94 9.63 29.23 2.40 40.07 24.87

5 80.93 56.69 76.51 11.30 29.81 3.32 38.97 29.43

1 −
∑

E2i,j∑
X2i,j

1 −
∑

F2i,j∑
Y2i,j

∑(
TWT)2

i,j∑
X2i,j

∑(
UCT

)2
i,j∑

Y2i,j

∑(
UBUWT)2

i,j∑
X2i,j

∑(
TBT CT

)2
i,j∑

Y2i,j

The amount of variation per model statistic with respect to the total amount of variation, from an O2PLS fit using Metabolomics (X) and Transcriptomics (Y). The R2 (definition
given in last row) in percentages (with respect to the total variation in X and Y respectively) for each model statistic. The numbers of orthogonal components are
nX = 1, nY = 8. The number of joint components varies from 1–5. The first rowwas found best according to the proposed alternative cross-validation (as in Section “Methods”)
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Table 3 Absolute and relative variations of the scores and noise
in O2PLS

T TY⊥ E U UX⊥ F H

Absolute 2551 642 2316 3852 138502 137837 2061

Relative 46.3 % 11.7 % 42.0 % 1.4 % 49.4 % 49.2 % 53.5 %

The sum of squares per model part in an O2PLS fit using Metabolomics (X) and
Transcriptomics (Y). Absolute quantities as well as percentages with respect to the
total variation in X (first three), Y (second three) and U (last one) are shown

population are orthogonal, when obtaining a sample from
this population the joint and systematic loadings will
typically not be orthogonal. This orthogonality of the
joint and systematic loadings is not essential in O2PLS.
More research is needed to assess the impact of these
methods.
A simulation study is conducted to assess the accu-

racy of the O2PLS estimates, see Figs. 1, 2, 3 and 4.
The estimates were accurate if “little” noise was present

(proportion of noise in the data is α = 0.05). The model
can distinguish well between joint and orthogonal varia-
tion. This is the case in both “low”(p = 100, q = 50)
and “higher”(p = 500, q = 250) dimensional simulated
data. The presence of “much” noise (α = 0.5) did not
cause a substantial decrease in accuracy of the joint part
estimates. They followed the true underlying loading pro-
file well. The orthogonal part estimates were affected by
more noise in a negative way. Especially in the “higher”
dimensional case, the orthogonal part estimates concern-
ing Y (q = 250) are biased upwards. The model cannot
distinguish well joint and orthogonal variation, it mixes up
both loading profiles. It may be argued that the estimation
method of the joint loadings is borrowing accuracy from
both two data sets, while the orthogonal loadings estima-
tion method is less precise since it uses noisy remaining
(total minus joint) variation. Similar to any method, under
noisy circumstances it will be difficult to estimate the true
orthogonal loadings. This effect was less in the orthogonal

Fig. 6 Scatterplot joint score vectors. The first joint score vectors (T, U) obtained from an O2PLS fit using Metabolomics (represented by T ) and
Transcriptomics (represented by U) are plotted against each other. The slope of the fitted line is 0.84, the intercept is zero due to the mean centering
of the data. The coefficient of determination R2 was 0.47
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Table 4 Gene composition of the LL module identified by
Inouye et al.

Gene annotation Ilumina ID

C1ORF186 ILMN_1690209
CPA3 ILMN_1766551
ENPP3 ILMN_1749131
FCER1A ILMN_1688423
GATA2 ILMN_2102670
HDC ILMN_1792323
HS.132563 ILMN_1899034
MS4A2 ILMN_1806721
SLC45A3 ILMN_1726114
SPRYD5 ILMN_1753648
CACNG6 ILMN_1779043

part in X (p = 500), which has higher dimensions. It is not
clear why the orthogonal part estimates with less param-
eters (the orthogonal part in Y ) degrade more than those
with more parameters (the orthogonal part in X) in the
presence of noise.
We integrate data on the metabolome and transcrip-

tome, extracting both the joint and the orthogonal part,
provided in the O2PLS fit, in both data sets. Finding
the optimal number of components is a computationally
expensive task. A balance between computation time

and accuracy is sought by maximizing the explained
variance in the inner relation to determine the number
of orthogonal parts, and then minimizing the prediction
error for determining the number of joint parts. Investing
more time in this particular subject will aid in choos-
ing a more accurate method, without compromising
computational efficiency. We find four of the eleven LL
module gene expressions among the top ten, in terms
of importance for the joint variation (Fig. 8). Moreover,
the two gene expressions with the highest absolute
loading values are in the LL module. Furthermore in the
metabolomics data we find the VLDL subgroup together
with the HDL subgroup to be important for the joint
variation in the metabolomics data (Fig. 7). This shows
a contribution of the LL module to the joint variation,
partially induced by the VLDL and HDL subgroups.
This result can be found back in [5]. The simultaneous
data analysis approach identifies more expressed genes
important for the joint variation, the ID’s are in Table 5. All
genes except SNORD13 are involved in immune/defence
system pathways, but information for SNORD13 is at the
time of writing unavailable. Also there is large contribu-
tion from the mobile lipids MOBCH2 and MOBCH3 to
the joint metabolite variation. The orthogonal variation
in this data is difficult to interpret, no noticeable trends
or clusters were found in the loading values (Figs. 9 and
10). Including orthogonal components in the model

Fig. 7 Labeled joint metabolomic loading plot. Four groups of interest are grouped: very-low-density-lipoproteins, high-density-lipoproteins,
mobile lipids and amino acids
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Fig. 8 O2PLS transcriptomic joint loadings. Joint part O2PLS loadings per gene expression. The top ten gene expressions are in black and green. The
LL module gene expressions are in red and green. Four of the eleven gene expressions in the LL module are in the top ten, indicated in green. The
loadings for five other gene expressions in the top ten and the loadings for the LL module gene expressions have opposite sign

Table 5 LL module and top 10 gene expressions. Identified gene
expressions in the top 10 most important variables for the joint
variation in the transcriptome. The corresponding genes are
shown. Four gene expressions fall into the earlier identifies
Lipid-Leukocyte module

Gene annotation Ilumina ID Module

CPA3 ILMN_1766551 LL and top 10
FCER1A ILMN_1688423 LL and top 10
GATA2 ILMN_2102670 LL and top 10
HDC ILMN_1792323 LL and top 10

DEFA1B ILMN_1725661 top 10
DEFA1B ILMN_1679357 top 10
DEFA1B ILMN_2102721 top 10
SNORD13 ILMN_1892403 top 10
DEFA3 ILMN_2165289 top 10
IFIT1 ILMN_1707695 top 10

does improve the cross-validated prediction error (which
depends on the joint components), which makes it still
useful to include in the model. As we saw from the simula-
tion results in the “higher” noise (50 %) case (the estimated
amount of noise in the metabolomics and transcriptomics
data is also around 50 %), the joint loading estimates still
follow the profile of the true loadings. The orthogonal
loading estimates are performing worse, indicating a loss
of accuracy and thus interpretation in the orthogonal
components.
To meet the challenge of interpretation of the results

and to infer the relative importance of the variables
a structured and tractable probabilistic framework is
required. It is beyond the scope of this paper to propose
a new method; nevertheless, we argue for the neces-
sity and the feasibility of such a framework. Due to
a lack of an explicit probabilistic model in O2PLS, it
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Fig. 9 O2PLS metabolomic orthogonal loadings. Orthogonal part loadings obtained from an O2PLS fit with Metabolomics and Transcriptomics. One
orthogonal component in metabolomics was identified

is not straightforward how to perform statistical tests
on the loadings. For PLS, a bootstrap approach is pro-
posed in [16]. In the O2PLS model we must take into
account the orthogonal loadings, which are correlated
with the joint loadings due to the nature of the esti-
mation algorithm. This may invalidate the bootstrap
results. Furthermore a potential problem of multiple test-
ing may exist, which needs to be correctly addressed.
The assumptions made in the model imply that the
orthogonal scores TY⊥ and UX⊥ cannot be seen as
realisations of random variables, which is a fundamen-
tal property in statistical inference. Furthermore with-
out additional assumptions on the orthogonal part load-
ings PY⊥ and PX⊥ the model is unidentifiable. Also,
the probabilistic approach gives insight in hidden flaws
of the estimators, which are very difficult to discover
with the current O2PLS algorithm. These potential prob-
lems may invalidate statistical inference on the whole
population.

Providing a probabilistic framework to non-probabilistic
methods was done earlier. Probabilistic PCA has been
developed in [17], and for the factor analysis model there
is a well written probabilistic approach in [18]. A novel
probabilistic approach for the O2PLS method, which
puts the O2PLS method in a statistical framework, is cur-
rently being developed. The optimization criterion will
be maximum likelihood. The use of a parametric model
and a likelihood are indeed restricting the researcher, as
one needs to assume a distribution on the data. However
we expect that the probabilistic O2PLS model, just as
the ordinary linear model, will be robust against small
violations of the assumptions. The resulting likelihood
can be easily optimized, using a factorization of the prob-
ability density which allows for seperately optimizing the
likelihood.
A new derivation in multiplatform data analysis we

intend to do is the use of a likelihood information score,
which will rely on PO2PLS, indicating how much or little
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Fig. 10 O2PLS transcriptomic orthogonal loadings. Orthogonal part O2PLS loadings per gene expression. There were eight orthogonal components
identified. The ratio of the first part sum of squares and last part sum of squares is approximately eleven

two data sets are related. Combining the data integra-
tion approach with a probabilistic framework will aid
interpretability and inference in more general epidemio-
logical studies.
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