
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

A Co-processor for a Secure Implantable Medical
Device

Siskos Dimitrios

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-03

This work describes an energy efficient solution for secure commu-
nication between an Implantable Medical Device (IMD) and a user.
For the security part a communication protocol has been selected
which supports entity-authentication, message-authentication and
confidentiality. For achieving low power and energy consumption
the following setup has been chosen. The IMD processor has been
partitioned into two modules. The first module supports the main
implant function, while the second module is responsible for secure
communication with the outside world. In this work we have imple-
mented the latter module: we have designed a 5-stage-pipeline RISC,
application specific processor along with its compiler and optimized
them to efficiently support the IMD security workload. The proces-
sor has been synthesized for a 90nm CMOS ASIC technology. The
comparison between the base-line processor and its optimized version
resulted in the following improvements: 41.4% decrease in execution
time, 11.8% increase in the executed instructions per cycle (IPC) and
37% decrease in energy consumption. These improvements came at
the slight cost of 8% increase in power and 7% increase in area.

A Co-processor for a Secure Implantable Medical
Device

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Siskos Dimitrios
born in Athens, Greece

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

A Co-processor for a Secure Implantable Medical
Device

by Siskos Dimitrios

Abstract

T
his work describes an energy efficient solution for secure communication between an Im-
plantable Medical Device (IMD) and a user. For the security part a communication pro-
tocol has been selected which supports entity-authentication, message-authentication and

confidentiality. For achieving low power and energy consumption the following setup has been
chosen. The IMD processor has been partitioned into two modules. The first module supports
the main implant function, while the second module is responsible for secure communication
with the outside world. In this work we have implemented the latter module: we have designed a
5-stage-pipeline RISC, application specific processor along with its compiler and optimized them
to efficiently support the IMD security workload. The processor has been synthesized for a 90nm
CMOS ASIC technology. The comparison between the base-line processor and its optimized ver-
sion resulted in the following improvements: 41.4% decrease in execution time, 11.8% increase
in the executed instructions per cycle (IPC) and 37% decrease in energy consumption. These
improvements came at the slight cost of 8% increase in power and 7% increase in area.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-03

Committee Members :

Advisor: Ioannis Sourdis

Advisor: Christos Strydis

Advisor: Georgi Nedeltchev Gaydadjiev

Chairperson: Koen Bertels, CE, TU Delft

Member: Jan van der Lubbe

i

ii

iii

iv

Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Thesis Objectives . 3
1.3 Thesis Overview . 4

2 Background and Related Work 5
2.1 Basic Methods for Security . 5

2.1.1 Confidentiality . 6
2.1.2 Authentication and Integrity . 8
2.1.3 Key Management . 11

2.2 The SiMS Project . 12
2.3 Prior Work on Secure Implants . 16

2.3.1 Proximity-based Access Control for Implantable Medical Devices . 16
2.3.2 Switching IMD Modes using Cloakers 18
2.3.3 Practical Techniques for limiting disclosure of RF-equipped medi-

cal devices . 18
2.3.4 Zero-Power Defenses for an IMD 19
2.3.5 Comparison of mode-switching methods 20

2.4 Symmetrical Cryptographic Algorithm selection 22
2.4.1 Profiling of Symmetric-Encryption Algorithms 22
2.4.2 Description of MISTY1 . 23

2.5 Conclusions . 24

3 Proposed Secure Implantable System 27
3.1 System Architecture . 28
3.2 Security Approach . 33

3.2.1 Symmetrical-System alternative designs 33
3.2.2 Communication Protocol . 35
3.2.3 Message and command formats . 35
3.2.4 Software Implementation . 36

3.3 Attack and Normal Scenarios . 42
3.4 Security Coprocessor . 43

v

3.5 Compiler Design . 57
3.6 Conclusions . 72

4 Co-processor Evaluation 73
4.1 Profiling of the Normal and Attack Scenarios 73
4.2 Instruction Mix and Execution Cycles . 78
4.3 Synthesis Results . 85
4.4 Conclusions . 90

5 Conclusions 91
5.1 Summary . 91
5.2 Thesis Contributions . 92
5.3 Future Work . 93

A Appendix 95

Bibliography 110

vi

List of Figures

2.1 Mutual-entity authentication protocol for a symmetrical system. 9

2.2 Asymmetrical systems protocols . 10

2.3 Involved risk factors with (A) and without (B) a design platform. (The
thickness of the arrows is proportional to the risk weight). 15

2.4 Abstract view of the SiMS concept. 16

2.5 MISTY1 flow-chart. 24

3.1 IMD energy efficient system architecture. 29

3.2 Cloaker approach . 31

3.3 Magnetic-switch approach . 32

3.4 Communication Protocols. 36

3.5 Flow Chart of the protocol shown in figure 3.4(b). 38

3.6 Datapath’s abstract view. 45

3.7 Instruction Fetch stage. 49

3.8 Decode stage. 50

3.9 Execution stage. 51

3.10 Memory stage. 52

3.11 Write-Back stage. 52

3.12 Covert Constant to unsigned immediate with 8-bit width. 59

3.13 Covert Constant to register. 59

3.14 Store singed or unsigned byte. 60

3.15 Load singed byte. 61

3.16 Conversion from a signed char/short/int to an unsigned char type. 62

3.17 Save a register in the stack. 63

3.18 Equal or grater-than comparison between unsigned operands. 65

3.19 If-else control flow statement. 65

3.20 Division Implementation. 68

3.21 Modulo implementation of the Baseline design. 69

3.22 Modulo implementation of Optimization1 and Optimization1+2 designs. . 69

3.23 Multiplication implementation of Baseline and Optimization1 designs. . . 70

3.24 Multiplication implementation of Optimization1+2 design. 71

4.1 Single-instruction mix plot for the Unsuccessful scenarios. 77

4.2 Single-instruction Mix plot for the 1KB Successful scenarios. 77

4.3 Single-instruction mix plot for the 10KB Successful scenarios. 78

4.4 Cycle count, instructions count, stall count and performance of each design. 83

4.5 Power, energy and area plot. 89

A.1 Target Settings. 99

A.2 Advanced HDL Generation Settings. 100

A.3 Script Generation, ”RTL Simulation” tab. 101

A.4 Script Generation, ”Design Compiler Synthesis” tab. 102

vii

A.5 Memory settings. 103
A.6 Allocatable Registers. 104
A.7 Argument and callee-changed/caller-changed registers. 105
A.8 CCMIR Tree(source from C Compiler Designer Guide). 105
A.9 Scheduling tab. 106

viii

List of Tables

2.1 Typical components of a security system. 5
2.2 Advantages and Disadvantages of switching-mode methods encountered

in the literature. 21
2.3 Five best-performing encryption algorithms (in descending order of per-

formance). Source from [28]. 22

3.1 Security System. 34
3.2 Functionality of the protocol shown in figure 3.4(a) 37
3.3 Functionality of the protocol shown in figure 3.4(b) 39
3.4 Advantages and Disadvantages of the Communication Protocols. 40
3.5 Message format. 40
3.6 Explanation of the command format in table 3.5 41
3.7 Baseline co-processor Instruction Formats 46
3.8 Baseline processor ISA . 47
3.9 Optimization 1 co-processor Instruction Formats 53
3.10 Optimization 1 co-processor ISA . 54
3.11 Optimization1+2 co-processor Instruction Formats 55
3.12 Optimization1+2 co-processor ISA . 56
3.13 Conversions from a size (horizontal) into another size(vertical). 62

4.1 XTREM profiling. 74
4.2 Single-Instruction Mix. 76
4.3 Pair-Instruction Mix. 76
4.4 Base line Instruction Mix. 81
4.5 Optimization1 Instruction Mix. 82
4.6 Processor-Design comparison. 83
4.7 Comparison of the Optimization1 and Optimization1+2 designs, with the

base line processor(%) . 83
4.8 Optimization1+2 Instruction Mix. 84
4.9 Area results and critical-path of the three processor designs. 86
4.10 Functions for simulation. 87
4.11 Power, energy and execution-timing results for the Base-line design at

20MHz. 88
4.12 Power, energy and execution-timing results for the Optimization1 design

at 20MHz. 88
4.13 Power, energy and execution-timing results for the Optimization1+2 de-

sign at 20MHz. 89
4.14 Comparison of the Optimization1 and Optimization1+2 designs, with the

base line processor, in terms of area, power, energy and execution time. . 90

ix

x

Acknowledgements

First, I would like to thank my advisors I. Sourdis, C. Strydis and G.N Gaydadjiev for
their guidance and patience.

I would also like to thank Hans van Someren, P. Peris Lopez and especially Danny P.
Riemens for spending their valuable time and helping me with their experience. This
work would not be completed without Danny’s help.

Finally, I would like to acknowledge my family and friends for their support and
especially: my brother, Dimitris, Giorgos, Antonis, Peggy, Petros, Nikiforos and
Stefanos.

Siskos Dimitrios
Delft, The Netherlands
March 26, 2011

xi

xii

Introduction 1
The main functionality of an Implantable Medical Device (IMD) is to treat and measure
physiological conditions within the body. IMDs are implanted 2-3 cm under the skin.
Millions of people are carrying IMDs on their bodies. Examples of such devices are listed
below:

• Pacemakers: Causes the heart to beat when the heart rate slows down.

• Implantable Cardiac Defibrillators: Managing cardiac arrhythmia.

• Neurostimulators: Managing Parkinson disease.

• Implantable Drug Pumps: Treating diabetes.

Most of the Implantable Medical Devices (IMDs) use a battery as their energy source.
This leads us to understand that the device needs to be ultra-low-power in order to
increase the battery’s life. Most of the times the battery’s discharge leads to a surgery.
In early days an implant’s low-power design was translated into a device including only
the main functionality and was implemented hardwired. Over the last decades the fast
development in batteries, shrinking of transistors and low-power designs enabled the
usage of microcontrollers or even processors while increasing the battery’s life. Nowadays,
IMDs have the potential to monitor, store data and treat physiological conditions within
the body. Now the physician has the opportunity to read the medical history of his
patient, to update the software, or to turn off the device by wireless communication.

As every electronic device, implants are vulnerable to attacks, especially when they
are communicating with the outer world remotely. Furthermore, this gives the motivation
for our work which is explained below in detail. It is easy to understand that IMDs need
a level of security against adversaries and this is the goal of our thesis. The difficulty
in achieving that goal is that there are more than a couple of parameters that must be
taken into account. First, an IMD because of its nature should be small-size, low-power
and must not limit at all the remaining functionalities. So, a formula should be found
that provides security on IMDs while maintaining the above -IMD- characteristics.

Summarizing, this introduction explains why processors are used on IMDs, presents
some examples of them, and motivates the need of security in IMD communication,
which is the main problem addressed in this thesis. In the remainder of this chapter
follows: the problem statement in section 1.1, the thesis objectives in section 1.2 and
finally the thesis overview in section 1.3.

1

2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement

In this section, we present the problems addressed while securing an IMD. The main
problem is the power and energy consumption of the IMD. The IMD must be ultra-
low power and energy in order for its battery to last longer. By adding hardware and
software security the power and energy problems become even bigger. Hence, a scheme
must be found that will be low energy and power consuming. In addition to the main
problem, there are problems which are caused by possible attacks. These attacks are
shown bellow:

• Impersonation of the implant or of a reader in order to prevent treatment.

• Altering the messages during communication.

• Stealing and reading the messages which comprise personal data.

• Jam Denial-of-Service (DoS) attack. Jam DoS attack occurs when an intruder
blocks the communication channel of an implant by sending repeatedly messages.

• Battery DoS attack. Battery DoS attack occurs when the attacker discharges the
battery. For instance this can be done, if the attacker asks repeatedly a specific
operation from the implant. In such situation the IMD will run repeatedly some
software for analyzing the received request. Thus the implant will run out of
battery.

• The Doctor alters the saved data in the implant when he makes a mistake to cover
himself.

• The doctor denies that he did a specific action to the implant which finally leaded
to unpleasant results. For example, if the doctor has provided a wrong medicine
to his patient, probably it could be shown in the implant’s log files. Thus, if the
doctor has the authority to reset some information from the IMD’s memory, then
he has the chance to hide evidence of wrong treatment.

Some of the above attacks may cause battery’s discharge, treatment prevention, human
segregation (for instance, if an employer can identify that someone carries an IMD, maybe
he will not hire him). It is obvious that most of the above attacks can cause severe
harm or even death. Furthermore, the above attacks could also be used for blackmailing
someone who carries an implant. Consequently, the problem is how to secure the implant
against these attacks. Probably, because of power limitation, it is not possible to deal
with all of them, thus the most severe ones should be selected for defending against.
While working on defending these attacks, a balance must always be kept between safety
and utility with security and privacy criteria, as it is mentioned in [12]. These criteria
have many attributes that are opposite to each other, which makes the problem more
difficult to solve. Both criteria and attributes are explained in detail below:

Safety and Utility: Safety for an IMD means that the IMD should not cause harm
and utility means that the device must be useful for both patients and clinicians.

1.2. THESIS OBJECTIVES 3

To achieve this we need the following: data availability to appropriate entries,
data accuracy, device identification -maybe an IMD need to be deactivated before
a surgery-, device configurability -authorized entities change settings-, updatable
software, auditable and resource efficiency.

Security and Privacy: In order to achieve security, we need authorization. This means
that specific groups of people can perform specific tasks. Here, we have to keep
in mind that in emergency situations the authorization policies should change
(eg. Criticality-aware access-control model [17]), in order to allow treatment by a
physician who, in normal conditions, does not have access. We also need careful
availability of the device so an adversary won’t be able to perform DoS. In terms of
privacy, the device should not reveal its existence to unauthorized parties, neither
its type, its id, or the personal data of the patient.

As we can easily understand by reading the above analysis there are many attributes
which are trade-offs. The dilemmas are the following: security versus accessibility, secu-
rity versus device resources and security versus usability, as they are identified in [12].

In the current section we stated the problems for designing a secure IMD. Summariz-
ing, the main problem of this thesis is to keep the IMD low-power while securing it. The
remaining problems are related to defending possible attacks, without compromising the
utility and the safety of the IMD.

1.2 Thesis Objectives

The main objective of the thesis is to design a low-power architecture for the communi-
cation part of a secure Implantable Medical System. The communication is considered
to be wireless and is taking place, between the implant and the outside world (reader).
This work is part of the SiMS (Smart Implantable Medical Systems) project, which is
described in detail in [3]. The main goal of the SiMS project is to provide the IMD
designers with reliable, stable and small-sized implantable components in order to build
novel IMDs. The importance of this is that the designers will not have to build the
implants from scratch anymore which is time-consuming and risky.

For achieving the main object of the thesis, this work has been partitioned in the
following tasks:

• Define the possible attacks against the IMD.

• Describe the security-system architecture and the security protocol, used for pro-
tecting the IMD against the defined attacks. The system architecture defines the
IMD modules.

• Design an Application-Specific-Instruction-Set Processor (ASIP) and its compiler,
to support secure communication suited for IMDs.

• Apply optimizations to the proposed processor and compiler, so as to improve
power efficiency and performance.

4 CHAPTER 1. INTRODUCTION

• Evaluate the proposed solutions in terms of security, area-cost, power efficiency
and performance.

1.3 Thesis Overview

In this chapter, we presented the reason for using processors into IMDs, the thesis
motivation, the thesis problems and the thesis objectives.

Chapter 2 presents the background and the related work of this thesis. There we
show some well known cryptographic techniques, the prior work on implant security and
a brief description on the SiMS project.

Chapter 3 describes the design and the implementation of the proposed system. We
present the attack scenarios, the communication protocol, the system architecture and
the security co-processor and compiler which we have built. That chapter combines
knowledge of the previous chapters and proposes solutions.

In chapter 4, we present and explain the thesis results. Furthermore, we show and
explain some decisions taken in chapter 3 about the processor and compiler design.

Chapter 5 contains the thesis conclusions. It includes a brief summary of this thesis,
the thesis contributions in IMDs and in the SiMS project and the future work.

Background and Related Work 2
This chapter contains background information on secure implantable systems that the
reader should be familiar with in order to better understand this text. We present some
essential aspects for security, which are the base of our security-protocol proposal, further
explained in chapter 3. We also describe the SiMS project, which includes this thesis
work. Finally, prior work on IMD security is presented in order to gain insight on access
control and security methods, and to identify open issues where we could contribute.

This chapter is organized in the following four sections: Section 2.1 gives an overview
of the basic methods of cryptography. Section 2.2 describes the overall SiMS project,
which includes our work. In section 2.3, we describe prior work on secure implants.
Finally, in section 2.4, we explain the selection of the MISTY1 cryptographic algorithm
and then we describe this algorithm.

2.1 Basic Methods for Security

As can be seen in book [29], a security system can be divided in the components shown in
table 2.1. These are Key Management, Entity Authentication, Data Integrity, Message
Authentication and Confidentiality, which are explained in the upcoming subsections.
The above mechanisms can be implemented in different ways. For instance, there is
no standard secure-communication protocol, which can be efficient for every system.
For each system the protocol should be selected, regarding its available resources and
constraints, in addition with the attacking-types on which the system is vulnerable.

Key Management

Entity Authentication Message
Data Integrity Authentication

Confidentiality

Table 2.1: Typical components of a security system.

In the following subsections we explain what is the purpose of each mechanism and
how it can be implemented. Particularly, in subsection 2.1.1, we present Confidential-
ity. In subsection 2.1.2, we describe Entity Authentication, Data Integrity and Message
Authentication. Finally, in subsection 2.1.3, we give an overview on Key Management.
The current section is written according to the book [29].

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 Confidentiality

Confidentiality is defined as the prevention of specific information from being accessed
by unauthorized entities [18]. In cryptography this is achieved by encrypting this infor-
mation with a secret-key.
The cryptographic algorithm of a secured-cipher (cryptographic) system should try to
minimize the following:

• The probability with respect to finding the key, given the ciphertext.

• The probability with respect to retrieving the plaintext, given the ciphertext.

• The probability with respect to finding the key, given both the ciphertext and the
plaintext.

There are two main categories of systems in cryptography, namely the public-key (or
asymmetrical cipher) and the private-key (or symmetrical cipher) systems. A system is
named after the cryptographic algorithm it uses. If the algorithm is symmetrical, then
the system is called symmetrical otherwise, if the algorithm is asymmetrical, the system
is asymmetrical as well. Symmetrical is a system where all parties use the same key for
encryption and decryption, while asymmetrical is a system where each party acquires
different keys for encryption and decryption.

Private Key System: A private system -also known as symmetrical-cipher system-
needs the same key for encrypting and decrypting a message. This kind of ciphers
are distinguished into block and stream ciphers. A block cipher divides the text
into a fixed group of bits (blocks) and operates with each block (The block cipher
can encrypt the blocks separately or not and that depends to its mode of operation).
A stream cipher partitions the text into bits and plaintext bits are encrypted one
at a time -however, the key-stream should be at least the same length with the
plaintext-. An important issue in a symmetrical system, is how to ensure that
the same secret-key is available to both the transmitter and the receiver. One
solution is to transfer the secret-key physically. Another solution is to transmit
the key by another transmission line than the one used for the ciphertext. However,
most of the times the one entity generates the secret key, signs it, encrypts it by
using an asymmetrical algorithm and then sends it to the other entity. A main
advantage of a private system against a public one is that the private is nearly
always much less computationally intensive and this makes it desirable for usage in
low-power systems. However, the Elliptic-Curve public cryptographic algorithm is
not so computationally intensive and for that reason is already used in low-power
devices. A disadvantage of the private system is that each entity-pair needs a
unique key for maintaining communication confidentiality. Consequently, as the
number of the communicating entities increase, the same is true for the storage
requirements.

In order to minimize the probabilities mentioned in the beginning of this section,
the private cipher algorithms uses techniques such as:

2.1. BASIC METHODS FOR SECURITY 7

• Permutation: Altering the bit-positions of a bit-sequence. The bit-sequence
can be a n-bit block which is going to be enciphered.

• Expansion: Increasing the bit-number of a group of bits by repeating some
bits.

• Using substitution boxes: These boxes are tables with publicly known con-
tents. These tables get as input a location (a column and a row) and return
the contents of it.

• Iteration: Specific functions of the algorithm should be repeated and for
each repetition different subkeys could be calculated.

Examples of private ciphers are the Data Encryption Standard (DES), Advanced
Encryption Standard (AES), Blowfish, MISTY1 and RC5. Cipher selection is very
important because each cipher has different characteristics. For instance, ciphers
can be distinguished according to security, power, energy and computational com-
plexity.

Public-Key System: A public system -also known as asymmetrical-cipher system-
uses a key for encrypting and a different one for decrypting a message. An advan-
tage of this system over the private-key system is that, there is no need anymore
for a secret key-exchange or for storing the keys of all the communicating parties.
A single key-pair is sufficient. The explanation for this key-convenience is the fol-
lowing.
Every entity has its own private and public keys. The private key is not known
to anyone else but the entity itself. On the other hand, the public key is given to
anyone who wants to communicate with the specific entity (the public key is not
assumed to be secret). Assuming that A and B want to communicate with each
other:

1. A should know the public key of B -Ub- and B should know the public of A
-Ua-. Also A and B have their own private keys Pa and Pb respectively.

2. A sends a message to B encrypted by Ub. Now the only one who can decrypt
the specific message is the one who owns Pb. The only one who has that key
is B, because it is B’s own private key and B has not given it to anybody.
Hence, confidentiality is guaranteed.

It is also important to mention that asymmetrical-cipher systems depend on one-
way and ”trapdoor” functions. These functions are easy to calculate themselves,
but their inverse function is very difficult to be computed. Such a function is the
power function (f(x) = xa). It is easy to compute the product of it, but it is
relatively more difficult to find the root of a number.

Examples of public ciphers are: RSA, Elliptic-Curve, El Gamal and Cramer-Shoup.
The public-cipher selection is as important as the private-cipher selection.

In the current subsection we have defined confidentiality and the ways it can be
achieved. The next issue we must solve is the authentication of the person who has sent
the message.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.2 Authentication and Integrity

The identification of the communicating parties and the integrity of a message are of
great importance in a confidential communication. Without identification many serious
problems can occur. For instance, in a pacemaker situation, nobody else except the
doctor should be able to send a shut-down command. This can only be prevented
by using an authentication protocol. These issues are described in detail in the current
subsection. Firstly, the following terms should be defined: entity authentication, message
integrity and message authentication.

• Entity authentication: This means identification of a person, or of a system. In
cryptography when A sends B a message, it is important for B to be sure that A
had sent the message. Also it is important for A to be sure that B received the
message.

• Message integrity: Message integrity is achieved when the message is not altered
through its way to the receiver and is not replayed by an intruder.

• Message authentication: Message authentication is the combination of data in-
tegrity and entity authentication. This means that both entities that communicate
are sure about the identity of the other party and the integrity of the message itself.

In the remainder of this subsection we describe the techniques and the protocols for
achieving entity authentication, message integrity and message authentication. First, we
describe two authentication protocols, one for a symmetrical and one for an asymmetrical
system, because they are distinctly different.

Entity Authentication protocols:

Private-Key System: Here we describe an entity-authentication protocol for a private
system. As we have mentioned, this is not the only safe protocol, because security
requirements change according to the system for which security is implemented.
For example, the protocol below achieves mutual authentication, while for another
system a one-entity authentication would be enough. Consider the protocol shown
in figure 2.1, which is also described below in steps:

1. A sends a random number RA to B. Now A expects from B to encrypt RA

with key, K, and send it back. The only ones that could encrypt a message
with the key K are A and B. Hence, a successful comparison between the
sent and received random numbers, can ensure A that A is talking with B.

2. B responds with RB//eK(B//RA). eK is the encryption function which
encrypts, the parenthesis-enclosed data with key K. B sends RB to A for
the same reason that A had sent RA. B does not encrypt only RA, but
also its address. B does that against reflection attacks. A reflection attack
exists when an intruder C establishes two parallel sessions with A and B, and
misleads them into believing that they talk to each other, when they actually
talk to C. For instance assume that A tries to send RA to B while an intruder
C captures it. C then immediately sends RA to A. A then, responses ek(RA)

2.1. BASIC METHODS FOR SECURITY 9

Figure 2.1: Mutual-entity authentication protocol for a symmetrical system. (Where:
RI : Random number, which is generated and sent by the party I.
I: It is an identification (the address), of the party I.
eK(X): Describes the encrypting result of message X, with the symmetrical key, K.
eUI(X): Describes the encrypting result of message X, with the public key of the party
I.
dPI(X): Describes the signing result of message X, with the private key of the party I.
”//”: concatenation.)

to C, which is also the response that A expected from B. Then C sends back
to A, ek(RA). In the meanwhile C does similar things to mislead B.

3. A responds with eK(A//RB) to B in order for B to make sure that A received
the message.

That is how the symmetrical mutual entity-authentication is achieved.

Public-Key System: Now we are going to describe an entity authentication protocol
for an asymmetrical system. Consider the protocol shown in figure 2.2(a).

1. A sends C1 to B, which is data encrypted by the public key of B, UB. This
data includes a message M and the address of A. The only one who can
decrypt C1 is the one who owns PB. PB is the private key of B, hence only
B can decrypt it.

2. Entity B receives the message and decrypts it. Then for authenticating itself
to A, B encrypts the message M and its address B with the public key of A
, UA. The only one who can decrypt that message is A, with A’s private key
PA. Then, B sends C2 to A.

In the protocol we have just described only B has been authenticated, so it is a one-
way entity authentication. The reason is very simple. Everybody has the public
key, UB, of B, hence, anyone can create C2. For mutual authentication, B should
include in C2 another message M2 and then A should send back M2//A encrypted
by UB. In that case, the protocol would become a three-way protocol. A two-way
protocol to achieve mutual authentication is given in the message authentication
description.

Message Integrity:
Next, we continue by explaining how message integrity can be achieved. Using a hash

function is the most easy way to do it, as is explained later in detail. An original hash

10 CHAPTER 2. BACKGROUND AND RELATED WORK

(a) One-way entity-authentication protocol

(b) Message & mutual-entity authentication protocol

Figure 2.2: Asymmetrical systems protocols

function is a publicly known algorithm, which gets as input a variable-length sequence
of values and produces a constant-length sequence, which is completely different from
the input. Some examples of such hash functions are CRCs and checksums.
Let’s assume that A wants to send a message to B. A first sends the message to B and
then, via another channel A sends to B the hashed message. Then B calculates the
hash of the message and compares the result with the hashed message that A sent. If
they are equal, message integrity has been achieved. We have mentioned that A sends
to B, the hashed message through a different channel than the original message. A does
that because the hash function is publicly known and subsequently, if someone captures
the message, he could easily calculate its hashing result.

Message Authentication:
Message authentication is a combination of entity authentication and message integrity.
This can be achieved with the Message Authentication Code (MAC) or with digital
signatures. The former is used when the two parties that communicate trust each other
and the latter when they do not.

MAC: In this case we use a symmetrical encryption algorithm as a hash function.
A difference between this and an original hash function is that the symmetrical
algorithm is secret because a secret key is needed as input. Hence, it is possible
to send together -and not through a different channel- the message and its hash
result (MAC). Examples of symmetric algorithms used for that purpose are DES
Hash and MD5.

Let’s assume that A sends a message M , and its MAC, mgK(M), to B. B then
computes the MAC of message M ′ that he receives. If the computed MAC and
the MAC he had received are equal then the message is authenticated. There are
two reasons that this works. First, nobody without possessing the secret key, can

2.1. BASIC METHODS FOR SECURITY 11

create the same MAC from the same message, so A is authenticated to B. Second
if the message or the MAC are changed on their way to B, then the two MACs
are not going to be equal. Thus, message integrity is maintained. But as we said
before, the use of MAC requires that the two entities should trust each other. If
this is not the case, then entity B -after receiving a message M- could declare that
it received a message M ′, which has generated itself. So, it is obvious that there is
no security between the communicating entities.

Digital Signature: A digital signature consists of a group of bits and its purpose is to
prove the authenticity and integrity of specific data. Digital signatures are used
when the communicating parties do not trust each other. The characteristic that
makes them necessary in such situations is that they can easily be verified by
anybody, but they can only be generated by one specific entity. For the signing
procedure a public cryptographic algorithm like RSA or a dedicated algorithm
like DSS can be used. In the case of the public cryptographic algorithm, a hash
function is recommended to be used before signing in order to decrease the bit-
width; otherwise, the signing computation and the transmission are going to be
very slow. To achieve digital signing, signing and verifying algorithms along with
two keys (a public and a private key) are needed. Let’s assume that A sends a
digital signature of a message M to B. In contrast to encryption, where A would
encrypt the message M with the public key of B, UB, now A is signing with its
own private key, PA, which means that only A can produce the signature and
everybody possessing A’s public key, UA, can verify it. Hence, B and also a third
person can easily justify if the message that B has received was truly from A. So
message authentication has again been achieved. Examples of situations where
digital signatures are used are software authentication and digital bank checks.

Now, let’s return to the public entity authentication protocol in figure 2.2(a).
There, we had a protocol which was not mutual, because only B, was authen-
ticated by A. Let’s see now the protocol in figure 2.2(b). We can observe the
difference between the two figures: in figure 2.2(b) the encrypted messages include
also digital signatures. Which means that only the receiver, who owns the private
key, can decrypt the message and then can verify the signature with the public key
of the sender. So we achieve message authentication and confidentiality.

2.1.3 Key Management

So far now we have discussed cryptographic methods to achieve confidentiality, authen-
tication and integrity. Another important aspect in cryptography is key management.
Key management consists of the following features:

• generation,

• distribution,

• storage,

• replacement,

12 CHAPTER 2. BACKGROUND AND RELATED WORK

• usage,

• and destruction,

of the keys. Key generation can be achieved by using a pseudorandom generator, such
as the DES. Some people select to generate a key pattern on their own by, for instance,
tossing a coin. For achieving security in session-key storage, a storage-key is needed.
The storage key is used for enciphering the session key. Another important issue in key
management is the frequency with which the key is replaced. This frequency depends on
the importance of the enciphered data, the period of validity of the protected data -there
are cases where data must be kept secret for just a small period- and the strength of the
cryptographic algorithm. For key destruction a simple deletion from memory is suffi-
cient. The only part remaining to complete the key-management brief description is key
distribution. Key distribution differs between symmetrical and asymmetrical systems:

Private-Key System: Initially, a physical distribution of the keys is needed. Then
comes the session-keys distribution by the distribution center, which can be done
on-line or off-line. For the off-line case, the distribution center first determines
which parties should communicate with each other and supplies the corresponding
session-keys. In an on-line distribution each entity has its own and unique key
for communication with the distribution center. When, for instance, A wants to
communicate with B, A first authenticates itself to the center and the center returns
a session key for A and B. The on-line in comparison with the off-line technique
needs less stored-keys because there is no need for saving the session keys.

Public-Key System: Consider two parties -asymmetrical systems- A and B, who want
to exchange a session key, K. Hence, A sends to B the message eUB(ePA(K)).
The only one who can decrypt it and get the key is B. The only problem here is
the authentication of B’s public key, UB, which can be solved by using a trusted
authority i.e. someone who issues authentic keys UA and UB. A problem to this
solution is the large number of stored keys, which adds also complexity in managing
them. The number of keys is n∗ (n−1), because each party has n−1 session keys,
one for each communicating party. For that reason, the Diffie-Hellmann protocol
is used, which reduces the total number of keys to n, one key for each user. In this
case, the session key is always calculated when it is needed, hence there is no need
for storing it. For more information about the Diffie-Hellmann protocol see [29].

In the current section the terms confidentiality, entity authentication, message authen-
tication and key management were defined. Subsequently, methods for achieving them
were explained in detail. After reading this section the reader should have acquired suf-
ficient cryptographic background to understand this work. For further information on
cryptography see [29].

2.2 The SiMS Project

This work is part of the Smart Implantable Medical Systems (SiMS) project which takes
place in the Technical University of Delft. More precisely our work is part of the SiMS

2.2. THE SIMS PROJECT 13

digital architecture and the compiler tools, which are described below.
The main goal of the SiMS project is to construct a framework that provides medical
researchers with the modules that are required to build variable implantable medical
devices. The framework must be designed according to the following requirements:

• high dependability

• reliability and safety

• small size

• ultra-low power consumption

Nowadays, a typical IMD consists of a central unit -microcontroller, microprocessor-,
sensors, actuators, a wireless transceiver and a power source. The majority of IMDs
today are used to measure, process and regulate a single parameter of the body. A prob-
lem with today’s implants is the procedure which is followed for building them. Usually
such systems are made by researchers with electrical or mechanical engineering back-
ground who collaborate with medical researchers. That happens because it is not always
feasible for researchers from all different fields, involved in building the device, to meet
and work together. That approach probably lacks the selection of the best techniques
from the different fields. That problem as well as that implantable devices are built from
scratch -which results to a large number of tests- explain the large delay and risk which
is involved, until the product is ready for use.
On the other hand, the existence of a platform can decrease the risk and the design time
of medical implantable devices, because the platform provides the designer with already
tested and used modules which have been improved by a lot of people. In figure 2.3
the platform concept is graphically shown. Also, it can easily be realized that if the
design time is small then the device itself should be cheaper; consequently, it would be
affordable for more people.
IMDs, because of their direct relation with human life, are characterized by high de-
pendability, autonomy and self-awareness. Contrary to the majority of current IMDs,
a major goal of SiMS is to monitor and regulate more than one biomedical parameter.
The described system is shown in figure 2.4.
The various SiMS building blocks are as follows:

• Digital architecture: The digital architecture forms the main processing and
control unit of the implant. It is also interacting with the radio transmitter. The
requirements of this unit are, to be low-power, small-sized, and reliable. For achiev-
ing reliability fault-tolerant schemes are needed.

• Compiler and design tools: A compiler will be built for generating machine
code for the specific Instruction Set Architecture (ISA) of the designed processor.
As in every compiler code optimizations will be needed, which in this case are
very important. Good code optimizations lead to less instructions, thus smaller
execution time, thus less power consumption. Dependability is also treated in
the compiler level and is responsible for finding out whether specific requirements

14 CHAPTER 2. BACKGROUND AND RELATED WORK

in area, timing and power could be met by the design. This is done by feeding
the compiler an application-specific constraint file together with the application
bitstream. This file contains the area, timing and power constraints. Then, the
compiler determines whether a realistic solution exists in the SiMS platform -under
these constraints-.

• Sensors and actuators: The idea about sensors and actuators, is to either de-
velop new ones or to improve existeing ones. The goal is to boost their sensitivity
and performance and to make them modular for serving diverse implant applica-
tions.

• Wireless transceiver: A wireless transceiver will be needed, which will receive
and transmit various types of information with Quality of Service (QoS). The chal-
lenges here are again: small-size, reliable, low-power and ultra wide-band trans-
mission.

• Chip interfaces: Standard interfaces for the system will be needed, in order to
achieve the desired modularity, interoperability and re-usability. All sub-blocks of
the SiMS framework should adhere to the same interfaces.

Existing work on the SiMS project includes:

• ”Implantable microelectronic devices” [24]: This work performs a broad sur-
vey of existing IMDs -over a period of 20 years- and then classifies them according
to the findings of that survey (see also [9])

• ”A generic digital architecture and compiler for implantable de-
vices” [26]: This work describes the idea of SiMS and its general frame.

• ”A New Digital Architecture For Reliable, Ultra-Low-Power Sys-
tems” [8]: This work is an extension of work [26]. Namely it presents specifically
what must be done on the SiMS project.

• ”Suitable cache organizations for a novel biomedical implant proces-
sor” [6]: This work evaluates different instruction- and data-cache organizations
in terms of perormance, power, energy and area.

• ”Profiling of Lossless-Compression Algorithms for a Novel Biomedical-
Implant Architecture” [25]: This work profiles a large set of compression algo-
rithms and evaluates them regarding power, energy, compression rate and program-
size.

• ”Profiling of Symmetric-Encryption Algorithms for a Novel Biomedical-
Implant Architecture” [28]: This work profiles a large set of symmetrical en-
cryption algorithms and finally indicates the best algorithm in terms of area, power,
energy, program-code size, encryption rate and safety. In section 2.4.1 this profiling
is described in detail.

2.2. THE SIMS PROJECT 15

Figure 2.3: Involved risk factors with (A) and without (B) a design platform. (The
thickness of the arrows is proportional to the risk weight).

• ”ImpBench: A novel benchmark suite for biomedical, microelectronic
implants” [27]: This work presents ImpBench, a novel benchmark suite chosen
for designing and evaluating new digital processors for microelectronic implants.

• ”The Case for a Generic Implant Processor” [7]: In this work a biomedical-
application scenario is presented , which is executed on a processor simulator. The
findings of that simulation are presented and analyzed.

• ”Exploring suitable adder designs for biomedical implants” [23]: This
work explores suitable adder designs for biomedical implants along with fault tol-
erant schemes.

• ”Automated Implant-Processor Design” [10]: This work implements and
describes ImpEDE, a framework that optimizes processor parameters. The opti-
mization procedure is based on a genetic algorithm.

In this section we presented the goals, the contribution, the design details and all the
works on the SiMS project. We can see that besides work 2.4.1 which selects an efficient
symmetrical algorithm, there is no other work done on securing the IMD during com-
munication with an external device. So, in this thesis we try to secure the IMD while at
the same time to maintain the implant small-size, low-power, low-energy. Furthermore,
the security should not prevent treatment and should not disrupt the IMD’s main func-
tionality. For these reasons we decided to design a secure communication co-processor
in order to fulfill the requirements which we have just stated. More detail on the system
architecture, the processor design and how they fulfill the above requirements is given
in chapter 3.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: Abstract view of the SiMS concept.

2.3 Prior Work on Secure Implants

In this section, we describe access-control, switching-mode and security methods upon
implantable medical devices. Access-control is responsible for enabling access to au-
thorized parties and to block unauthorized ones. In other words, access-control is the
authentication protocol and it can be implemented by a typical cryptographic scheme,
or by an alternative scheme such as the one described in subsection 2.3.1. The switching-
mode method is responsible for switching between the emergency and normal mode. The
emergency mode is activated when the patient is in an emergency situation, such as is a
heart attack or falling unconscious. In such situations, security must not be the reason
for preventing treatment. Hence, it is obvious that the access-control is different between
the two modes. Switching modes can be achieved by using a typical magnetic-switch
or by using another method such as the one described in subsection 2.3.2 which uses a
Cloaker. The following works, have inspired us for selecting an access-control method,
a switching-mode method and a suitable system setup. An open issue in these works, is
that none of them propose a new processor architecture for the main implant or for the
implant’s communication part. In our work we have implemented an ASI co-processor
for securing communication. A custom processor architecture is important, because it
can save great amount of power and energy.

2.3.1 Proximity-based Access Control for Implantable Medical Devices

In [16], a method for securing an IMD in a normal and in an emergency mode is de-
scribed. The security -as it is explained in detail below- is based upon cryptographic
techniques and the proximity between the IMD and the user. The attack scenarios that
are mentioned in [16], are the following:

2.3. PRIOR WORK ON SECURE IMPLANTS 17

1. The attacker wants to get access to medical data stored in the IMD or change
device settings. This could be done for blackmailing and it can be achieved by
replay attacks.

2. The attacker impersonates an IMD and makes the reader talk to him, instead of
the real IMD. A motivation could be to prevent treatment.

Before continuing with the description of the normal and emergency modes, we will
explain the proposed access-control proximity-based protocol, which is used in both
modes. This protocol enables communication between entities, which are located inside
a predefined range. Thus, both the IMD and the reader can be sure that the other side
is in a specific range, which protects them against a large number of attackers. Now
follows the description of the normal and the emergency modes:

• Normal mode: The security in this mode is achieved by using a credential (held
by the reader) which shares a secret-key with the IMD and by the proximity based-
protocol. The secret-key is used for cryptographic reasons. The proximity based
protocol ensures that both sides are located in a specific range to each other.

• Emergency mode: In this mode only the proximity-based protocol is used. So
whoever is in the range of the implant (< 10cm) can have access to it. The
difference in comparison with the normal mode, is that in emergency mode the
valid range is much smaller. The range is small, so that the risk involved for
attacking the implant is significantly reduced.

However, by reading [16] is not clear how the switching-mode is done. Even so, we
believe that using a magnetic-switch (the mode is changed if a magnet is passed over
the IMD,) for that purpose is enough. Both modes are relying on the precise distance
between the IMD and the reader. Here we explain the concept of the distance accurate
measurement. The prover (reader) sends a hello message to the verifier (IMD) to start
the communication. Then, the verifier sends back a single bit by the radio channel and
records the start time t1. The prover receives it at time t1′ and sends back a bit at time
t1′′ via the sound channel which is much slower than the radio. Finally, the verifier re-
ceives the bit at time t2 and calculates the bit-travel time from the prover to the reader.
We assume that t1 = t1′ = t1′′, because the bit-transmission through the radio channel
and the computations in the prover’s side, are negligible in comparison with transmission
through the sound channel. Hence, the distance is calculated by the well known formula
d = vs(t2− t1). Where d, is the distance between the communicating entities, vs is the
speed of sound, (t2− t1) is the travel time form the prover to the verifier.
To test the concept the researchers have built proof-of-concept prototypes of both the
prover and verifier. The prototypes are respectively a prover and a verifier with analog
circuity for the RF and sonic communication and ATMega644p microcontrollers running
at 20MHz for computation and control. The power consumption measurements of the
microcontrollers during peak computations were, 0.15W at 5V DC for the receiver and
0.17W at 5V DC for the transmitter. The analog portion of the receiver consumed 0.13W
at 10V DC.
In this thesis we have decided not to use this access-control method. A great advantage

18 CHAPTER 2. BACKGROUND AND RELATED WORK

of this approach is that provides security in the emergency mode without causing safety
problems. The only problem is that it would probably need more complex computation
than a typical access-control method. Consequently, we should reconsidered this con-
cept for a future work, if the typical access-control-implementation energy consumption
measures allow more computation, .

2.3.2 Switching IMD Modes using Cloakers

In [19], a security method is described which is based on Cloakers. Cloakers are externally
worn devices, the functionality of which is described later in detail. The authors of [19]
aim at achieving the following goals:

1. Provide safety and open access in emergencies: IMDs in an emergency situation
should allow caregivers to have complete access over them.

2. Prove security and privacy under adversarial conditions.

3. Increase the battery’s life: The IMD should be power efficient.

4. Limit the response time: The IMD’s functionality should not be blocked or delayed
by the security functionality because such a delay could be life critical.

So, the solution needs to balance the first two goals, above, while simultaneously pro-
tecting the battery life and response time of an IMD under both normal and adversarial
conditions. The solution that is given in [19], is to use communication Cloakers. The
setup requires an IMD, a Cloaker and one or more reading devices (malicious or not).
The idea is that the Cloakers prevent connection with the IMD when they are present
and allow connection when they are not present. The Cloaker can work as a proxy or as
a system, that just establishes the communication between a reader and the IMD.
In that work no hardware detail is given. It is only mentioned that the system has
been written in Java in order to maximize the portability of the code base onto different
hardware implementations.
The Cloaker approach is very attractive for its switching-mode way and that is why
we were thinking of including the Cloaker into our implementation. However, as it is
explained in more detail in section 3.1, we have decided not to use one in our work.
Even so, Cloaker usage should be reconsidered in a future work. In subsection 2.3.5, we
proceed with a comparison between the switching-mode method by using a Cloaker and
the typical one by using a magnetic-switch. For reasons explained in subsection 2.3.5 we
have selected the magnetic-switch method.

2.3.3 Practical Techniques for limiting disclosure of RF-equipped med-
ical devices

Radio links among IMDs are becoming very important in health care because they
provide convenient power transmission. However, devices that respond to unauthorized
queries may disclose their presence. So, the goal of [13] is to combine both facts and
create an efficient protocol in terms of power and security. Before continuing to the

2.3. PRIOR WORK ON SECURE IMPLANTS 19

protocol properties, we should explain what the Certificate authorities (CA), Access-
control lists (ACLs) and revocation lists (RL) are, because the protocol is based on
them. The CA is an organization that it is trusted by an IMD device and permitted to
distribute authorization certificates to readers. A certificate shows if its holder has full
or a set of permissions to a device. Certificates are used in public key systems. An ACL
is a list of the authorized readers to access the IMD. An RL is a list of readers that used
to have access permissions to an IMD but not any more. These readers, most of the
times, have been stolen or lost, which means that there is a probability that a malicious
person posseses them. The protocol properties are:

• Undetectable: By unauthorized persons. The devices should only respond to au-
thorized readers. This is achieved by the RL and ACL.

• Replay resistant: By using a timestamp the devices resist in previous valid authen-
tications.

• Global, group and individual authentication: A CA should authorize one or a group
of readers to access one or a set of IMDs. This is useful for normal and emergency
situations.

• One-time or sustained authentication: A reader can be authorized for a limited or
an unlimited period of time.

• Audit trail: The device should keep a record of privileged readers.

• Revocation: Each IMD should keep a revocation list.

This is only a theoretical work, so no implementation or simulation exists. For further
information see [13]. In our work we do not use a CA scheme because we have decided not
to use an asymmetrical-cryptographic system for the reasons explained in subsection 2.3.2
and in sections 3.1 and 3.2. The main reason is that an asymmetrical-cryptographic
algorithm is more computational intensive than a symmetrical one. However, the Elliptic-
Curve asymmetrical algorithm could be used but this is left for a future work on this
project.

2.3.4 Zero-Power Defenses for an IMD

In [11], three zero power defenses against radio based attacks are presented. The defenses
are based on RF-power harvesting. The three goals of the authors of [11] are:

1. To detect and prevent attackers using commercial or custom equipment.

2. Not drawing energy from the primary battery for security purposes.

3. Security sensitive events should be effortlessly detectable by the patient.

The three defenses based on RF-power harvesting (RFID is added to the IMD) are:

20 CHAPTER 2. BACKGROUND AND RELATED WORK

• Zero-powered notification for patients: When potentially malicious activities
are taking place the patient is alerted. A prototype was built by using the WISP
[15] with an attached piezo-element. A WISP is a small embedded system which
contains an RFID circuitry, hence it harvests energy from an RFID reader. As-
suming that the WISP with the attached piezo-element is connected with an IMD;
if someone tries to communicate with the IMD, the WISP will alert the patient
without draining the prime battery.

• Zero-power authentication: Verifying that the reader is authorized to gain
access. The device implements a simple challenge-response protocol based on RC5-
32/12/16. In this model the IMD has a key K and an identity I. All the commercial
programmers (readers) have a master key KM . There exists a relation between the
two keys, K = f(KM , I), where f is a strong cryptographically pseudorandom
algorithm. So, the protocol starts by a challenge sent by the programmer. The
IMD-using the WISP- responds with its identity I and a random value. The
programmer computes K and sends back R = RC5(K,N). Then, the WISP
computes R by itself and compares it with the received R. If they are equal the
programmer is authenticated.

• Zero-power sensible-key exchange: This technique combines both previous
techniques. The goal is to distribute a symmetric-cryptographic key over a human-
perceptible sensory channel, by the above described method. When the key is
distributed the patient is alarmed using the first method. The key is distributed
through sound waves which are received by locating a microphone on the skin,
because the waves are very weak (hence secured). The key’s computation and the
authentication is achieved by the zero-power authentication method.

The only thing that is missing in [11] is key management. However, the idea of gaining
power from the reader to power-up and work the IMD is very interesting. This idea is
used in our system too, as it is going to be described in section 3.1.

2.3.5 Comparison of mode-switching methods

Switching-mode schemes are responsible for switching between the normal and the emer-
gency modes. Usually in normal mode the security is on, while in the emergency mode
the security is deactivated. The first comparing method is by using Cloakers which has
been described in subsection 2.3.2 and the second one is by simply using a magnetic-
switch. The advantages and disadvantages of both methods are shown in table 2.2. This
comparison is important because our work’s switching-mode method has been selected
according to it. We have selected the method which uses the magnetic-switch for the
following reasons. The system consists of a single device which makes it handy and limits
the possible problems. It also balances the security and safety tensions, because in the
normal mode the security is activated while in the emergency mode we can deactivate it
easily by passing a magnet over it. On the other hand, maybe the magnetic switch is too
sensitive to magnetic fields which causes mode switch. A big advantage of the Cloaker
is that along with its switching-mode use, it can act as an additional processing unit.

2.3. PRIOR WORK ON SECURE IMPLANTS 21

Thus, the Cloaker enables the use of asymmetrical cryptography while in the magnetic-
switch case, the power limitation allows only symmetrical cryptography. For instance,
the Cloaker can communicate with the reader side with an asymmetrical protocol and
with the IMD side with a symmetrical protocol. Additionally, the Cloaker can act as
a proxy for monitoring the transferring data. On the other hand the Cloaker approach
has disadvantages as well. The system is not handy anymore because it consists of two
modules; the implant and the Cloaker. This introduces two practical problems: first,
the patient must be aware of the Cloaker’s battery and second, because it is an external
wearing devices, it reminds to the patient his/her condition. Additionally, the Cloaker
adds new possible attacks, such as covering the presence of the Cloaker to the implant
(by a Jam DoS) which leads into switching to emergency mode. In section 3.1 the rea-
sons for selecting the magnetic-switch access-control method for our implementation are
analyzed further.

Cloaker Magnetic Switch

advantages

• Only the Cloaker knows the secret key of
the IMD which means higher security.

• In normal mode the IMD talks only to the
Cloaker which enables the usage of sym-
metric cryptography

• The Cloaker can use asymmetrical cryptog-
raphy for communication with the Readers.

• The Cloaker provides us with modularity
because we can update the security soft-
ware and keys easier without changing the
IMD settings, but only the Cloaker’s.

• The Cloaker could be used as a proxy for
analyzing the data coming from outside

• The system contains only 1
device. Which means that
the IMD is more handy and
there are less problems that
could occur.

• Balances security-safety.

dis-
advantages • The system contains 2 devices. It is not

handy and we have to care about 2 things.

• The patient has to be aware also about the
Cloaker’s battery.

• Jam DoS, for covering the presence of the
Cloaker.

• The patient will be reminded about his
condition.

• Maybe the magnetic switch
is too sensitive.

• Because a symmetric en-
cryption algorithm is used,
the doctor must store all the
keys of his patients who use
these implants. This would
not happen in an asymmet-
rical system where the doc-
tor would only need his own
pair of keys.

Table 2.2: Advantages and Disadvantages of switching-mode methods encountered in
the literature.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Symmetrical Cryptographic Algorithm selection

In this section the selection of the MISTY1 cryptographic algorithm is presented. First,
we describe a profiling study on symmetrical encryption algorithms which concludes that
the MISTY1 algorithm is the most efficient of the evaluated ones. Then, we describe the
MISTY1 algorithm.

2.4.1 Profiling of Symmetric-Encryption Algorithms

In [28], a profiling study has been done on symmetric-encryption algorithms. The de-
cision, of making the profiling on symmetric algorithms and not on asymmetric, was
taken based on the fact that the symmetric algorithms are less power-, energy- and area-
demanding than asymmetric ones. Such parameters are very important because this
profiling has been done in the context of implantable medical devices. The authors of
[28] aimed at achieving the following goals:

• To identify symmetric-encryption algorithms which consume the lowest average
power.

• To identify symmetric-encryption algorithms which need the lowest energy to en-
crypt variable text sizes.

• To identify symmetric-encryption algorithms which can encrypt at the highest rate
or -at least- to satisfy the sampling rate of the biological-plaintext data.

• To find the instruction mixes and frequencies of the most efficient algorithms in
order to have a first idea of how to design a processor architecture for implant
security.

• To identify the safest algorithms by using the well known security margin metric.

• To identify the less demanding algorithms in terms of binary-code size.

The compared symmetric ciphers were the folowing: 3WAY, BLOWFISH, DES,
GOST, IDEA, LOKI91, RC5, SKIPJACK, XXTEA, MISTY1, RC6, TWOFISH, RI-
JNDAEL. The final results are shown in table 2.3.

av. power peak power total energy encryption encryption program- security
consumption consumption cost efficiency rate code size margin

IDEA IDEA RC6 RC6 RC6 XXTEA GOST
LOKI91 MISTY1 RC5 IDEA RC5 3WAY MISTY1

SKIPJACK LOKI91 IDEA RC5 MISTY1 LOKI91 BLOWFISH
MISTY1 TWOFISH MISTY1 MISTY1 RIJNDAEL RC6 IDEA

RIJNDAEL RIJNDAEL BLOWFISH RIJNDAEL BLOWFISH RC5 RC5

Table 2.3: Five best-performing encryption algorithms (in descending order of perfor-
mance). Source from [28].

By interpreting the results in table 2.3 the writers of [28] concluded that the best
algorithm for an IMD is MISTY1, because is the only one that appears in 6 out of 7
metrics and it captures good positions.

2.4. SYMMETRICAL CRYPTOGRAPHIC ALGORITHM SELECTION 23

2.4.2 Description of MISTY1

In our work we rely on the profiling method presented in [28] and use MISTY1 as
our symmetrical encryption algorithm. MISTY1 has been designed in 1995 by Mitsuru
Matsui and others for Mitsubishi Electric. The main characteristics of MISTY1 are the
following:

• Type: symmetric, block cipher.

• key size: 128 bits.

• Block size: 64 bits.

• Rounds: There is a variable number of rounds used for the MISTY1 algorithm.
However 8-rounds is recommended and used in most cases. That’s why we also use
8-rounds.

MISTY1 can be divided in two parts. The first part is the ”key scheduling part”,
where the algorithm gets as input the 128-bit key and expands it into 256-bit key. The
second part is the ”data randomizing part”, where the algorithm gets 64-bit of data and
encrypts them. In figure 2.5, the flowchart of encrypting a single block with MISTY1 is
shown. It receives as input a 64-bit block and divides it into two 32-bit blocks d0 and
d1. The encryption result is written into d0 and d1. In the flowchart in figure 2.5 we
see the fo() and fl() functions which encrypt and randomize a data block.
For more informations see [1].

24 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.5: MISTY1 flow-chart.

2.5 Conclusions

In this chapter, the background and related work of the thesis, were presented. First,
some essentials on security theory, were described. Then we continued by presenting the

2.5. CONCLUSIONS 25

SiMS project, which includes the current work. Then we showed some interesting works
on secure IMDs and a comparison of two switching-mode methods. We decided to select
the magnetic-switching switching-mode approach. None of these works have proposed a
new processor architecture for securing an IMD. A new secure processor architecture is
this work’s challenge. A custom processor can lead in power, energy and area decrease.
In the next step we presented a profiling study on symmetric-cryptographic algorithms.
Symmetric algorithms instead of asymmetric were chosen, because they are usually less
computationally complex and consequently less power consuming. This profiling indi-
cated that the MISTY1 algorithm is the most efficient one, thus we selected it to be
our work’s cryptographic algorithm. MISTY1 was also described in this chapter. As we
have mentioned the Elliptic-Curve asymmetrical algorithm which is not computationally
intensive could be reconsidered in a future work of this project.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

Proposed Secure Implantable
System 3
Achieving security for an implant can be divided in two parts. The first part, as in every
secure system, is to make the system tolerant to attacks. The second part, which is not so
frequent in other secure systems, is that the implant must be power and energy efficient.
High power and energy consumption and a miscalculation in the security protocol could
lead to a patient’s death. Thus, we can understand how important the system and the
communication-protocol selection is, which is the purpose of this chapter. Specifically,
the chapter’s purpose is the suitable selection of the system architecture, the communica-
tion protocol, the cryptographic algorithm and the ISA of the implemented co-processor,
in order to result in a secure and power-efficient system. In order to select or build a
secure system we should start by listing the possible attacks that such a system could
face. For our implantable system these attacks are shown below. The attacks that we
deal with are shown in boldface text:

• Impersonation of the implant or of a reader in order to prevent treat-
ment.

• Altering the messages during communication.

• Stealing and reading the messages (personal data).

• Battery DoS attack.

• Jam DoS attack.

• The doctor alters the saved data in the implant when he/she makes a mistake, to
avoid responsibility.

• The doctor denies that he/she did a specific action to the implant which finally
leaded to unpleasant results.

The above selection does not mean that the rest of the attacks are not important, but
according to restrictions in power and area (because of the implant’s requirements), we
must choose only some of them. Hence, taking into consideration the tight limitations
on power and area and a looser limitation on performance, we conclude that we need to
cover the essential attacks which are the ones that have to do with power and energy
consumption. After getting power, area and timing results of a basic design which covers
the above attacks, it is going to be evaluated whether it is possible to implement more
defenses. For now, we assume that the doctor is always a trusted person and a Jam DoS

27

28 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

attack shall not occur. The majority of this work is taking place in the presentation
layer of the OSI model, where encryption and decryption algorithms are used.

The remainder of this chapter is organized as follows: Section 3.1 describes the system
architecture which is selected based on the knowledge acquired in chapter 2. Section 3.2
presents the communication protocol using again the knowledge of chapter 2. Section 3.3
presents the communication scenarios between the implant and a malicious or not reader.
This analysis gives strong hints towards implementing implant security for a co-processor
system as will be explained later on. In section 3.4 a co-processor baseline design and
its optimized implementations are described. Finally, in section 3.4 the coprocessor’s
compiler implementation is presented.

3.1 System Architecture

The system architecture and the communication protocol are strongly related to each
other. A decision taken in the system architecture can make the implementation of the
protocol more difficult or easier and the other way around. This means that the system
architecture and the protocol are worked on concurrently. However, in order for the thesis
to be readable we have tried to separate them in two different parts. In this section we
describe our decisions upon the system architecture. With respect to the communication
protocol we make the important decision to use a symmetrical algorithm. The reason is
that a symmetrical cipher algorithm is significantly less computationally intensive, as we
have mentioned in section 2.1.1, thus less power consuming. Consequently, this enables
importing the whole security protocol in the IMD, without the help of a Cloaker. In the
asymmetrical case, the Cloaker could lighten the security-workload of the implant.

Energy efficiency: A main issue when one builds security for an implant is the energy
consumption of the security part. It is not acceptable for the implant to run out of battery
because of the security-protocol’s execution. A battery-DoS attack on the implant can
drain its battery. For instance, when someone tries to connect to the implant, the implant
runs the authentication protocol, thus consumes energy. If that is repeated for a long
time by a malicious or not reader the battery will end. The first part of the solution to
that problem is to use the idea from work [11], where the IMD has an RFID attached
to it and receives the RF energy of the reader in order to communicate. The second
part of the solution is to partition the implantable system in two modules. The first
module is the main processor of the implant, which is responsible for the implant’s main
functionality and operates with battery energy. The second module is a co-processor,
which is responsible for the communication between the implant and the outside world
and operates with the induced RF energy. In order for that idea to work, a co-processor
implementation is needed which operates in the power limits that the RF provides.
The reasons for this implant separation are two. First, the security-part should not
use the same resources as the main-functionality of the implant. That is, because it
is not acceptable that the main functionality program (it is life-critical) stalls for the
sake of the security program. Second, we do not want the security part to drain the
main-implant battery. Running out of battery energy would lead to potentially life-

3.1. SYSTEM ARCHITECTURE 29

Figure 3.1: IMD energy efficient system architecture.

threatening situations. In the above we described an energy efficient IMD architecture
which is shown in figure 3.1.

Mode-switching methods: After solving the energy issue, we move to the next im-
portant issue which is the mode-switching procedure. An implantable medical device
should have at least two operation modes. The first mode is the normal mode where
the security protocols are activated. The second mode is the emergency mode where
the security protocols are deactivated for safety reasons. For instance, if a patient who
carries an IMD passes-out, a doctor -even if he does not have or obtain the cryptographic-
key- should be able to switch the device off. In the literature -as we have mentioned
in section 2.3- we found two approaches for switching modes. The first one is by using
a Cloaker as is suggested in [19] (see figure 3.2). The second one is by simply using a
magnetic switch (see figure 3.3). In the Cloaker approach, the IMD works in the normal
mode when the Cloaker is present, which means that it blocks any direct connection at-
tempt from a reader to the IMD. Switching to the emergency mode is done by removing
the Cloaker. In table 2.2 were shown the advantages and disadvantages of both designs.
The purpose of figures 3.2 and 3.3 is to show the different setups and not the detailed
protocols. The protocol of the selected scheme is shown and described in detail in sec-
tion 3.2. Taking into account the advantages and disadvantages of the two schemes, we
select the magnetic-switch approach because it is simpler to design and more secure in
the normal mode (because it consists of only one device). For instance, an important is-
sue in the Cloaker approach is how to make the implant aware of the Cloaker’s presence.
Additionally, if someone jams the communication channel between the implant and the
Cloaker, then their connection will be lost. This will result in switching to the emergency
mode since the implant will not be aware of the Cloaker presence. These problems do
not appear when a single device is used. Also by implementing the magnetic-switch
approach, it is relatively easy to jump to the Cloaker one, because the communication
protocol between the IMD and the Cloaker in some parts could be the same with the
direct IMD-reader protocol. The following hold for the variables shown in the figure 3.2:

30 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

• SKr : private-key of the reader.

• PKr : public-key of the reader.

• SKc: private-key of the Cloaker.

• PKc: public-key of the Cloaker.

• Kc-r : session-key between the Cloaker and the reader (if it is needed)

• Ki-c: symmetrical-key for the IMD-Cloaker communication

Additionally the following holds for the variable shown in figure 3.3:

• Ki-r : symmetrical-key for the IMD-Reader communication

Summarizing, the selected system architecture is presented in figure 3.1. It is shown
that the IMD is partitioned in: the main-function processor and the communication
co-processor. The energy source for the former is the battery and for the latter is the
induced RF-energy of the reader. The contribution of that scheme is that the security
and communication part of the implant is not draining the prime battery, hence there is
no fear of unexpected battery’s drop.

3.1. SYSTEM ARCHITECTURE 31

Figure 3.2: Cloaker approach

32 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Figure 3.3: Magnetic-switch approach

3.2. SECURITY APPROACH 33

3.2 Security Approach

In this section, we analyze the communication protocol based on the selected scheme
(magnetic switch, figure 3.3) in section 3.1. That scheme solves the energy DoS-attack
problem, thus the protocol must take care of the remaining attacks which have been
stated in the beginning of the chapter. As we have already said in section 3.1, we
choose for a symmetrical system, which means that we use a symmetrical algorithm
for encryption (one shared secret key). The realistic assumption of having only a small
number of valid readers (maybe 3: doctor, patient, relative of the patient), along with the
low processing requirements of such systems indicate the use of a symmetrical algorithm.
In the following subsection we present the alternative designs for each goal shown in
table 2.1 along with our design choices. The alternative designs shown in table 2.1 are
for a symmetrical-security.

3.2.1 Symmetrical-System alternative designs

In table 3.1, we present the possible choices for every layer of a security system. The final
decisions for our system appear in boldface text. A brief explanation of our decisions
is given next. First, in a symmetrical system the key distribution can be done by a
distribution center. For our system it is obligatory to use an off-line distribution system,
because the on-line requires communication with the distribution center. Moreover, in
our case there are only three readers which all have the same privileges and use the same
key. So, there is no reason for a more complicated key-distribution scheme. Finally,
replacement of the key is not needed unless a reader is compromised.

The next step is the selection of the entity-authentication and message-integrity
methods. We have decided to cover both by selecting a message-authentication protocol.
We describe how data integrity and entity authentication can be achieved by using the
proposed scheme. The following hold for the proposed message authentication scheme
and the protocols described in figure 3.4:

• A and B : Are the entities.

• Msg : Is the transmitted message.

• MsgR: Is the message which has been sent by the reader.

• MsgIM : Is the message which has been sent by the IMD.

• CRC(X): Is the CRC result of data X.

• eK(X): Is the encrypted result of data X.

• len(X): Is the length in bytes of data X.

• RN : Is a random number.

• count : Is the result of a counter. The encrypted count can hold for random
number.

34 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Key Manage-
ment • We always need an initial key distribution.

• Off-line distribution system/ on-line distribution system (dis-
tribution of session key). (This actually describes who can com-
municate with whom)

• Replacement/No replacement

Entity Authenti-
cation • One side authentication (2-way challenge response protocol).

• Mutual authentication (3-way challenge response protocol).

• Trusted Party.

Data Integrity

• A sends to B a message M, and then B sends it back for verification.

• Hash function.

Message au-
thentication
(combination of
entity authenti-
cation and data
integrity)

• MAC (Message authentication Code if the two sides trust each
other).

• Digital signature (if the two sides doesn’t trust each other).

• Application of a hashing algorithm (eg. CRC), RN gen-
eration, followed by encryption with the message.

Confidentiality

• Encryption.

Table 3.1: Security System.

Assume that A sends eK(Msg//RN//CRC(Msg//RN)) to B. Then B:

• can authenticate A because: The only one who could encrypt the data
with that specific key is A. Also the CRC(Msg//RN) part ensures
us that the decrypted data are not garbage. B is going to decrypt
the ek((Msg//RN)′//CRC(Msg//RN)) and then he is going to calculate
CRC((Msg//RN)′), on his own. If CRC((Msg//RN)′) = CRC(Msg//RN),
then the data are valid.

• can be sure of data integrity: As we said previously, B is going to calculate if

3.2. SECURITY APPROACH 35

CRC((Msg//RN)′) = CRC(Msg//RN). If this holds then B is sure that the
message has not been altered.

The above scheme description without the RN (random number) would be vulnerable
to replay-attacks. A replay-attack is a network attack in which a valid data transmission
is maliciously or fraudulently repeated or delayed. A replay-attack could lead the implant
to reply and send information to a non-valid person. The RN is a number which is
different in every message for ensuring no repetition of a message.

Finally, as it is shown in table 3.1, confidentiality is achieved by using a symmetrical
cryptographic algorithm.

3.2.2 Communication Protocol

In this subsection, we present in detail our communication protocol according to the
design choices made in subsection 3.2.1. We discuss two protocols which are presented
in figure 3.4. Their difference is that in the protocol shown in figure 3.4(b) a modification
related with the RN generation has been made which did it more efficient in terms of
memory and energy. Their comparison is shown in table 3.4. That table lists the
advantages and disadvantages of the protocols presented in figure 3.4. According to that
table we choose to implement the protocol depicted in figure 3.4(b) , because the memory
requirements -in the protocol shown in figure 3.4(a) - for keeping log of RNs would be
very large for our IMD system. Clearly, this comes with the RN computation overhead
and the possibility of a Jam-DoS attack by repeated connection efforts. Jam-DoS attacks
should be studied further in a future work of this project.

In table 3.2, we present the functionalities of the IMD and the reader sides of the
protocol shown in figure 3.4(a). Respectively, in table 3.3, we present the functionalities
of the IMD and the reader sides of the protocol shown in figure 3.4(b).

Before continuing we should define which hashing and symmetrical encryption algo-
rithms we use. The symmetrical algorithm is the block cipher MISTY1 for the reasons
explained in 2.4.1. The hashing algorithm we want to use is a CRC-variant, which is
not computationally intensive. Now remains to specify which CRC we use. The CRC
selection depends on the size of the data we want to transfer. The relationship is the
following: If r is the degree of the CRC polynomial then the maximal total blocklength
is equal to 2r − 1. For example, if we want to transmit a message of length 1KB=8192
bits then we need a polynomial with: 2r − 1 ≥ 8192⇒ r ≥ 14.
Hence, in that case the CRC-16 (17 bits) or the CRC-32 (33 bits) would be accepted
CRC algorithms. We have selected to use the CRC-32 hash function because for our
application a 10KB transmission is also possible.

3.2.3 Message and command formats

In this subsection we define the formats of the exchange messages. Table 3.5 shows these
formats. As wee can see, the message consists of the length of the data followed by a
RN, followed by the data followed by the CRC of the sent message. When the message
is sent from the IMD side the data (3rd field of the message format in table 3.5) is the
medical history of the patient (information). When the message is sent from a reader to

36 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

(a) Protocol where the RN is generated by the reader

(b) Protocol where the RN is generated by the IMD

Figure 3.4: Communication Protocols.

the IMD the data is a command and the command format is shown in table 3.5 as well.
Each field of the command format is described in table 3.6

3.2.4 Software Implementation

After determining the protocol, we proceeded with its implementation. The implemen-
tation is done by using the C programming language and is executed on the XTREM-
simulator platform. XTREM is a performance and power simulator for the Intel XScale
microarchitecture (see [14]). We selected the XTREM simulator because it was available,
suitable, accurate and was used by previous work on the SiMS project. Additionally, it
is easy of use.

In figure 3.5 we present the flow-chart of our implementation. In this flow-chart is
shown that the program starts and ends with the construction and destruction of the
keys. Probably, in the real system the key-construction and destruction-functions should
run only once because the software of the protocol should not end after accomplishing

3.2. SECURITY APPROACH 37

IMD SIDE READER SIDE

• Receives a message and authenticates
it by the following:

• Decrypts the command.

• Checks if the RN has already been used.

• Checks the CRC (message authentica-
tion completed).

• The implant executes the command
which can be either sending informa-
tion to the reader or execute an action
(switch off, switch on, reset...).

• If the implant is asked to send back in-
formation, which is the most usual, it
does the following:

• Create a message with a command, its
length and the RN.

• Calculates the CRC of that message.

• Encrypts all the data.

• Sends them to the reader. The informa-
tion can be of the size of 1KB or 10KB.
We can understand that this is the most
processing and time consuming part.

• Generates a RN.

• Create a message with a command, its
length and the RN.

• Calculates the CRC of that message.

• Encrypts all this data with a symmet-
rical encryption algorithm.

• Sends the data to the implant.

• If the reader asked for information he
receives them.

• Decrypts the data using MISTY1 (this
is the most time and processing con-
suming part because there are a lot of
data).

Table 3.2: Functionality of the protocol shown in figure 3.4(a)

a single communication. It should only get in sleep mode, until it is awakened by an
RF signal from a reader. However, for our profiling purposes we wrote a software which
at some point ends by necessity. On the one hand, we would get more accurate results
if we had removed the key construction and destruction functions. On the other hand
their execution does not affect much the selection of a representative scenario since the
same execution, time and energy overhead is present in all scenarios. As we will see in
section 3.3 we have defined 20 communicating scenarios on which we did a profile study
in order to select the most representative one in terms of power and energy to be our
main benchmark for our designing processor.

38 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Figure 3.5: Flow Chart of the protocol shown in figure 3.4(b).

3.2. SECURITY APPROACH 39

IMD SIDE READER SIDE

• Receives challenge.

• Check if the challenge was correct.

• Generate a random number with a
block cipher.

• Send the respond containing the RN.

• Receive the encrypted command from
the reader.

• Decrypts the command.

• Check the RN.

• Check the CRC (after this the message
authentication has been achieved).

• The implant executes the command
which can be either sending informa-
tion to the reader or execute an action
(switch off, switch on, reset...).

• If the implant is asked to send back in-
formation which is the most usual, it
does the following:

• Calculates the CRC of that message.

• Encrypts all the data.

• Sends them to the reader. The informa-
tion can be of the size of 1KB or 10KB.
We can understand that this is the most
processing and time consuming part.

• Sends challenge.

• Receives respond (RN).

• Decrypts the respond.

• Creates a message with a command, its
length and the RN.

• Calculates the CRC using CRC32 of
that message.

• Encrypts the whole message using a
symmetrical algorithm.

• Sends the message to the implant.

• If the reader asked for information he
receives them.

• Decrypts the data using MISTY1 (this
is the most time and processing con-
suming part because there are a lot of
data).

Table 3.3: Functionality of the protocol shown in figure 3.4(b)

40 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

advantages disadvantages

Protocol
depicted
in fig-
ure 3.4(a)

The RN is generated by the reader which
means less processing requirements for the
implant.

All the RNs should be stored in the
memory of the implant for compar-
ing them with the new ones. This
requires too much execution time for
comparisons and additional memory
for storing the RNs (area increase).

Protocol
depicted
in fig-
ure 3.4(b)

The implant does not have to keep track
of the RNs since they are generated by it,
so there is no memory overhead for stor-
ing the RNs. Furthermore, as RN genera-
tor we use the encryption algorithm of the
cryptographic system. Thus, we do not
need additional software -or hardware- for
RN generator.

• The Implant has a slight time-
execution overhead to calcu-
late the RN.

• The implant can become a vic-
tim of a Jam-DoS attack by
someone who sends challenges
continuously (Becoming ideal
for a while after some fault
challenges could be a solu-
tion).

Table 3.4: Advantages and Disadvantages of the Communication Protocols.

message format

length of
data(4B)

RN(4B) data(command or infor-
mation from the im-
plant)

CRC(4B)

command format

Data
mode
(1b)

source sensor (4b) length of data
asked (3b)

State
mode
(1b)

state (4b)

Table 3.5: Message format.

3.2. SECURITY APPROACH 41

Data-request cmd: 0
State-change cmd: 1
If Data-request mode is selected:
Source Sensor:
1xxx: asking data from all the sensors
0000: BP
0001: AEP
0010: ECGI
0011: EEGI
0100: EMGII
0101: PFI
0110: RCI

Size of data:
000: 1 KB
001: 10 KB
100: ALL

If the change-state mode is selected
command:
0000: power down
0001: power up
0010: rst
0011: sleep
0100: system check
0101: sensor calibration

Table 3.6: Explanation of the command format in table 3.5

42 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

3.3 Attack and Normal Scenarios

In this section, the attack and normal scenarios are defined and have been implemented
in C. Scenarios are the use-cases which the described communication-protocol shown in
figure 3.4(b) can face. The communication protocol has been implemented at it is shown
in subsection 3.2.4. By using the scenarios as inputs to the implemented protocol, we
have created a number of benchmarks. These benchmarks were executed on the XTREM
simulator which provided us with important profiling (energy, power and performance)
measures. These measures led us to select the most representative benchmark (scenario)
in terms of power and energy, which is used as the main benchmark for our designing
processor presented in section 3.4. The measures and the scenario-selection procedure
are shown in section 4.1.

We have tried our scenarios to cover as many cases as possible, and furthermore not
to overlap with each other in order to keep their number limited. The idea was to divide
the scenarios in the following way:

• unsuccessful scenarios

• successful scenarios where the IMD transmits 1KB of data

• successful scenarios where the IMD transmits 10KB of data

First, for defining the unsuccessful scenarios we should be aware of the problems that
could corrupt the normal flow of the protocol. These problems are stated below.
Wrong challenge:

• wrong challenge size

• unexpected challenge data

Wrong command :

• wrong command size

• wrong Random Number

• wrong CRC

These possible problems are checked in the above order. The scenarios are the following:

Scenarios which lead to unsuccessful transactions: The reader asks for 1 or 10
KB (the size does not matter in the unsuccessful scenarios)

• scenario1: challenge(x) → invalid data eg. reader4

• scenario2: challenge(x)→ challenge with smaller size eg. rea1

• scenario3: challenge(x) 6 times→ timeout eg. reader1 ∗ 6

• scenario4: challenge(v) command(x)→ smaller command (like scenario2)

• scenario5: challenge(v) command(x)→ unexpected RN

3.4. SECURITY COPROCESSOR 43

• scenario6: challenge(v) command(x)→wrong CRC

Scenarios which lead to successful transactions: The reader asks for 1KB

• scenario7: challenge(v) command(v) → normal eg. reader1
RN//1//00000000//CRC

• scenario8: challenge(v) challenge*4(x) command(v) → DoS attack or many
readers try to connect reader1 ∗ 5 RN//1//00000000//CRC

• scenario9: command(x) challenge(v) command(v) → kkkk reader1
RN//1//00000000//CRC

• scenario10: challenge(x) challenge(v) command(v)→ non existing challenge
eg.reader4 reader1 RN//1//00000000//CRC

• scenario11: challenge(x) challenge(v) command(v)→ smaller challenge size
eg. read1 reader1 RN//1//00000000//CRC

• scenario12: challenge(v) command(x) command(v) →wrong RN eg.
reader1 RN − 1//1//00000000//CRC RN//1//00000000//CRC

• scenario13: challenge(v) command(x) command(v) →wrong CRC eg.
reader1 RN − 1//1//00000000//wrongCRC RN//1//00000000//CRC

The reader asks for 10KB
In that case the scenarios are the same as above but instead of the command
being 00000000 it is 00000001. These scenarios are the following: scenario14,
scenario15, scenario16, scenario17, scenario18, scenario19, scenario20.

The simulation of the receiving and sending procedure in the above scenarios has
been done by using files. The receiving procedure was simulated by reading a text file.
Respectively, the sending procedure was simulated by writing into a file. The profiling
results are shown and analyzed in chapter 4. According to these results we have selected
the worst behaving scenarios in terms of power and energy. We have used this scenario
to drive to a co-processor design. Regarding a profiling study of this scenario on the
baseline co-processor (which we designed), we proceeded to optimizations of the baseline
processor. The baseline design and its optimizations are shown in section 3.4.

3.4 Security Coprocessor

In this section, we describe our baseline processor design and its two optimizations.
The optimizations are done for achieving faster execution of our benchmark (less exe-
cution cycles), which subsequently decreases the total energy. As will be shown later,
this comes at the cost of a small increase in power and area. First, we present the
baseline-architecture characteristics, its Instruction Set Architecture (ISA) and its dat-
apath. Then, the ISAs of the optimized designs follow. We have implemented our
processor by using the Processor-Designer tool of CoWare, which is described further in
the Appendix. The Processor Designer combines C and a tool-native language in order
to describe the hardware. After compiling, the tool generates synthesizable VHDL. The

44 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

main convenience that the Processor Designer provides is the fast and simple hardware
description. Additionally, it is very easy to add or remove instructions, without the need
to change the whole datapath, as it would happen in the case of VHDL. However, this
convenience comes at the cost of not having a detailed hardware description. So, it is
obvious that this tool is good for determining an ISA for a processor and to have a first
estimate of power, energy, area, and delay metrics. After concluding on an ISA, if the
system has tight power/energy/timing requirements, probably it would be a good idea
to rewrite the processor in VHDL. Furthermore, the Processor-Designer tool provides us
with the means for an easy assembler and disassembler implementation.

Processor Specifications: Now, let’s continue on to the architecture characteristics
of our processor. Since we wanted our design to be low-power, we have chosen to im-
plement a Reduced Instruction Set Computing (RISC) architecture. Furthermore, we
have selected to design a 5 pipeline-stages processor which consists of the Instruction
Fetch stage (FE), the Decode stage (DEC), the Execution stage (EX), the Memory stage
(MEM) and the Write-Back stage (WB). This co-processor pipeline design is shown in
figure 3.6. It consists of a 16-bit instruction set along with 16 registers of 32-bits each.
These specifications are used very often in embedded processors, as it is shown in the
AppendixJ of [20]. In our case, the use of 32-bits registers is important because the
encryption and decryption algorithms of our benchmark are operating on 32-bits quanti-
ties. Finally, the data-memory size is 16KB and consists of 4K address space, while the
program-memory is also 16KB and consists of 8K address space. For keeping the proces-
sor low-power, we have not included floating-point units and forwarding. Additionally,
the selected branch-prediction scheme is the very simple ”always not taken” one.

The baseline instruction formats are shown in table 3.7 and the baseline ISA in
table 3.8. From the ISA, can be easily observed that it is a very simple RISC processor,
without multiplication, division or modulo units, which would result in large area amount
and would consume a lot of power. If the benchmark needs to do such an expensive
operation, the compiler will take care of it, as we will see in section 3.5.

Processor ISA: In the instruction set we can see the following logical operations:
and, or, not, xor, sftl, sftr and sftru. A xor unit is not an essential logic unit for
a simple GPP, but our benchmark uses it a lot as it will be seen in chapter 4. The
shifting operations are very important, because they are used a lot by the compiler for
type casting and for other procedures as is presented in section 3.5. However, we see
that there is no shifting-instruction by a register amount (no rr-type), but only by a
fixed immediate. This would be a problem if in our benchmark appeared a case like
a = b << c, but it does not. We also have the essential arithmetic operations: add,
sub, addi and subi. We could do without addi and subi instructions but there are a lot
of cases where addi and subi appear, with most frequent the stack and frame pointers
movement. Thus, if we did not have them we should use two instructions instead of one,
every time (eg. addi → li, add). Then we have the very useful comparison operations
se, sgt, sgtu and beqz (beqz is also a branch instruction). These instructions are used
for implementing the if-else statements as we will see in section 3.5. Afterwards, we see
the load and store instructions lw, sw and lb. We see that the sb instruction is missing

3.4. SECURITY COPROCESSOR 45

Figure 3.6: Datapath’s abstract view.

since it cannot be implemented because we can only read and write a whole word (32-
bits) to the data memory. For assisting the compiler in storing a single byte we have
implemented the cb instruction. This instruction gets the rd register and changes its
rs2th byte (the 2 LSb of rs2 indicates the byte that will be changed) by the LSB of
rs1. The next very important instruction is li, which stores an 8-bit immediate to a
register. We can realize the drawback of loading only 8-bits every time, because a 32-bit
quantity will need calling 1 li, 3 addi (is used for loading the remaining 3 bytes), plus the
corresponding left shifting. Finally, we have the jump instructions j, jal and jr. The j
instruction should be used when we want to jump to an address which can be illustrated
by 12-bit (4K address space), but when the address is larger than 4K then the jr should
be used that can potentially branch to the address 4G-1. Additionally, jr is important
for returning from a function. The return address is stored in register 15 (r15). Jal is
responsible for jumping to a function and storing its address to register 15. We would
also need a jalr if we wanted to have the capability to branch to a function, which is
located into an address larger than 4K. However, by running our benchmark, we have
realized that all the functions were located into the 4K address space despite the fact
that our benchmark used more addresses. This happened because in C all the functions
are defined above the main function. Thus the jalr instruction is not needed for this
design and this benchmark, but for a future design where the program size is larger it
should be included into the ISA.

By studying table 3.7 with the instruction formats we can see that there is the po-
tential for adding more instructions. This can be done by using the remaining unused
opcodes for single instructions or even for new instruction formats. These free opcodes
are recommended when designing a processor, because many times some extra instruc-
tions, either for optimizations or for forgotten instructions are needed.

In figure 3.6, an abstract view of our 5-stage processor is shown. This consists of
the following stages: Instruction-Fetch (IF), Decode (DEC), Execution (EX), Memory
(MEM) and Write-Back (WB). In figures 3.7, 3.8, 3.9, 3.10, 3.11 the design of each
stage is presented respectively. The datapath is very abstract, because the hardware
has been described with the Processor-Designer tool, which uses the abstract hardware-
description language LISA. A brief explanation of every stage in the pipeline follows.

Instruction Fetch Stage: In this stage the instructions are fetched. The program
memory consists of 16KB and it has a 4K address space (12 bits). In front of the
memory’s address input, a multiplexer is located, which selects between the program

46 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Baseline Formats

Formats:

rrr type opcode rd rs1 rs2

rr type opcode rd rs1 funct

ri type opcode rd imm

jump type opcode imm

nop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rr type:

beqz 0 0 0 1 rd rs 0 0 1 1

sgtu 0 0 0 1 rd rs 1 1 1 1

sgt 0 0 0 1 rd rs 1 1 1 0

se 0 0 0 1 rd rs 1 1 0 1

lb 0 0 0 1 rd rs 1 0 1 1

jr 0 0 0 1 rd rs 1 0 1 0

and 0 0 0 1 rd rs 0 0 1 0

lw 0 0 0 1 rd rs 1 0 0 0

mov 0 0 0 1 rd rs 0 1 1 1

not 0 0 0 1 rd rs 0 1 0 0

or 0 0 0 1 rd rs 0 1 0 1

sw 0 0 0 1 rd rs 1 0 0 1

xor 0 0 0 1 rd rs 0 1 1 0

sub 0 0 0 1 rd rs 0 0 0 1

add 0 0 0 1 rd rs 0 0 0 0

ri type:

subi 0 1 1 1 rd imm

addi 0 1 1 0 rd imm

li 0 1 0 0 rd imm

sftru 0 1 0 1 rd imm

sftl 0 0 1 1 rd imm

sftr 0 0 1 0 rd imm

rrr type:

cb 1 1 0 1 rd rs1 rs2

jump type:

jal 1 0 0 1 imm

j 1 0 0 0 imm

Table 3.7: Baseline co-processor Instruction Formats

counter (PC), the branch address or the previous address. The multiplexer selects: the
PC when the execution is normal, the branch address when a branch is taken and the
previous address when a data dependency is detected by the processor. The multiplexer’s
selection is a relation of the signals branch taken and stall en. Stall en becomes 1 when
a data dependency has been realized which is checked in the control unit of the decode

3.4. SECURITY COPROCESSOR 47

name format assembly action

jr rr jr rd branch to addr in rd

and rr and rd,rs rd ← rd and rs

lw rr lw rd,rs rd ← mem[rs]

sw rr sw rd,rs mem[rs] ← rd

mov rr mov rd,rs rd ← rs

not rr not rd,rs rd ← not rs

or rr or rd,rs rd ← rd or rs

xor rr xor rd,rs rd ← rd xor rs

sub rr sub rd,rs rd ← rd-rs

add rr add rd,rs rd ← rd+rs

lb rr lb rd,rs rd ← mem[rs] (byte)

se rr se rd,rs if(rd==rs) then rd←1
else rd←0

sgt rr sgt rd,rs if(rd>rs) then rd←1
else rd←0(sgn)

sgtu rr sgtu rd,rs if(rd>rs) then rd←1
else rd←0(uns)

beqz rr beqz rd,rs if(rd==0) then branch
to Imem[rs2]

subi ri subi rd,imm rd←rd-imm

addi ri addi rd,imm rd←rd+imm

li ri li rd,rs rd←imm

sftl ri sftl rd,rs rd←rd<<imm

sftr ri sftr rd,rs rd←rd>>imm(sign ex-
tension)

sftru ri sftru rd,rs rd←rd>>imm(zero ex-
tension)

cb rrr cb rd,rs1,rs2 exchanges the rs2th-
byte of rd by the LSB
of rs1

j jump j imm branch to Imem[imm]

jal jump jal imm branch to Imem[imm]
and r15←PC+1

Table 3.8: Baseline processor ISA

stage.

Decode Stage: In this stage the instruction which has been fetched in the previous
stage is decoded. For the decoding procedure the information in table 3.7 is used. The
register file (RF) can read 3 registers concurrently and write to 1. The addresses of
operand1, operand2 and operand3, are located in IR(11 downto 8), IR(7 downto 4)
and IR(3 downto 0) respectively. The destination address is the same with operand1.

48 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

The writing-data and address-signals are coming from the WB stage. After the RF are
located two multiplexers. The top one chooses which data is going to be opr1. The
selection is done between the data in register rd addr1 (rrr-type, rr-type, ri-type) and
the branch address (jump-type). The bottom one produces opr2 and chooses between
the data in register rd addr2 (rrr-type, rr-type) and an 8-bit immediate value (ri-type).
Then, we have the very important control unit which produces signals informing:

• if there is a branch pending or taken (br pending, branch taken),

• if this instruction is going to write or read from the memory in memory stage
(wr mem en, rd mem en) -and if it is going to read a word or a byte (byte mem en)-
,

• if there was any data dependency (stall en), what kind of operations will be exe-
cuted in the execution stage (alumode) and finally,

• if this instruction is going to write in the RF in WB stage (wr en).

The EX alumode signal (coming from the execution stage), informs us if a beqz instruc-
tion is executing, while the equality z (also from the execution stage) signal informs us
if the comparison in beqz is true. If it is true then the branch taken signal is asserted.

Execution Stage: In this stage we see 2 main components: the ALU component
and CB component. The ALU component gets as inputs the operands opr1, opr2 and
the alumode from the decode stage and returns a result. The ALU component consists
of the following units: an adder, two subtracters, a NOT, a XOR, an AND, an OR,
comparators, a left shifter, a right-signed shifter and a right-unsigned shifter. In a VHDL
implementation we would make one component for subtraction and addition but that is
not possible with the Processor-Design tool. The second subtracter is for subtracting
0x2000 from the data address. This is because the linker understands the program and
data memory as one memory, with the data memory located above the program memory.
On the other hand, in our processor design the two memories are separated. The CB
(unit for the cb instruction) component gets as inputs all the operands opr1, opr2, op3
and uses them to produce the result as is explained in table 3.8 at the cb instruction.

Memory Stage: The memory stage handles the cases of the instructions lw, lb and
sw. The lw and lb read 32-bit data from a specific address of data memory. On the other
hand, the sw writes data to that location. The address is provided by EX opr2 and the
data by Ex opr1. If there is a lb, then the whole word is read from memory and then the
desired byte of this word is kept. This is done in the component after the data-memory.

Write-Back Stage: In the write-back stage the processor computes the signal to
feed the RF. The top multiplexer selects the data field if the current instruction is a load
or otherwise the MEM res. The bottom multiplexer selects number 15 if the current
instruction was a jal, which needs to write the PC into register 15, otherwise chooses the
MEM opr des.

3.4. SECURITY COPROCESSOR 49

Figure 3.7: Instruction Fetch stage.

Optimizations Now, we move to the optimization phase. We have implemented two
optimizations. For the first one we have inserted a very simple modulo unit in our
processor. The reason for selecting that optimization was the large number of mod-
ulo operations present in the benchmark as shown in chapter 4. Subsequently we have
observed that all the modulo operations are a power of 2, hence the implementation be-
comes very easy as is shown next. Additionally, this optimization decreases considerably
the number of execution cycles at the cost of a slight increase in area. We are taking
advantage of the rule which says that if we want to calculate a mod = a%2k, then our
result is the k LSb of a. The implementation is done in the following way. Assuming the
instruction, mod = opr1%opr2 then:

• tmp = opr2 − 1. With that operation we create a quantity with 1s in the k LSb.
k = log(opr2).

• mod = opr1&tmp. With this operation we keep the k LSb of a, which is actually
our result.

For implementing the mod (modulo) instruction, we have selected to add new dedicated
hardware instead of using the existed subtracter and AND units. We did that because
we did not want to make our stage slower by adding multiplexers before the AND unit,
in which we should feed the result of the subtraction. Table 3.9 shows the instruction
formats of optimization1 design and table 3.10 presents the optimization1 ISA.

The second optimization has been done by using the collapsing technique. This
means to implement a group of operations into a single operation. This procedure
consists of finding the single-instruction mix (instructions frequency) along with the pair-
instruction mix of the processor. By pairs we mean sequential instructions that have data
dependencies between them. As shown in section 4.2, the mov-and-beqz group is the most

50 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Figure 3.8: Decode stage.

frequent one. The reason for such a high frequency is the big amount of multiplications,
where this sequence appears. The implementation in hardware has been done again by
adding dedicated hardware, which means one more AND unit and one more comparator
are needed. Table 3.11 shows the instruction formats of optimization1+2 design and the
table 3.12 presents the optimization1+2 ISA. This section has described our processor-
design procedure. The compiler-design of the current processor ISAs follows.

3.4. SECURITY COPROCESSOR 51

Figure 3.9: Execution stage.

52 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Figure 3.10: Memory stage.

Figure 3.11: Write-Back stage.

3.4. SECURITY COPROCESSOR 53

Optimization 1 Formats

Formats:

rrr type opcode rd rs1 rs2

rr type opcode rd rs1 funct

ri type opcode rd imm

jump type opcode imm

nop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rr type:

beqz 0 0 0 1 rd rs 0 0 1 1

sgtu 0 0 0 1 rd rs 1 1 1 1

sgt 0 0 0 1 rd rs 1 1 1 0

se 0 0 0 1 rd rs 1 1 0 1

lb 0 0 0 1 rd rs 1 0 1 1

jr 0 0 0 1 rd rs 1 0 1 0

and 0 0 0 1 rd rs 0 0 1 0

lw 0 0 0 1 rd rs 1 0 0 0

mov 0 0 0 1 rd rs 0 1 1 1

not 0 0 0 1 rd rs 0 1 0 0

or 0 0 0 1 rd rs 0 1 0 1

sw 0 0 0 1 rd rs 1 0 0 1

xor 0 0 0 1 rd rs 0 1 1 0

sub 0 0 0 1 rd rs 0 0 0 1

add 0 0 0 1 rd rs 0 0 0 0

mod 0 0 0 1 rd rs 1 1 0 0

ri type:

subi 0 1 1 1 rd imm

addi 0 1 1 0 rd imm

li 0 1 0 0 rd imm

sftru 0 1 0 1 rd imm

sftl 0 0 1 1 rd imm

sftr 0 0 1 0 rd imm

rrr type:

cb 1 1 0 1 rd rs1 rs2

jump type:

jal 1 0 0 1 imm

j 1 0 0 0 imm

Table 3.9: Optimization 1 co-processor Instruction Formats

54 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

name format assembly action

jr rr jr rd branch to addr in rd

and rr and rd,rs rd ← rd and rs

lw rr lw rd,rs rd ← mem[rs]

sw rr sw rd,rs mem[rs] ← rd

mov rr mov rd,rs rd ← rs

not rr not rd,rs rd ← not rs

or rr or rd,rs rd ← rd or rs

xor rr xor rd,rs rd ← rd xor rs

sub rr sub rd,rs rd ← rd-rs

add rr add rd,rs rd ← rd+rs

lb rr lb rd,rs rd ← mem[rs] (byte)

se rr se rd,rs if(rd==rs) then rd←1
else rd←0

sgt rr sgt rd,rs if(rd>rs) then rd←1
else rd←0(sgn)

sgtu rr sgtu rd,rs if(rd>rs) then rd←1
else rd←0(uns)

beqz rr beqz rd,rs if(rd==0) then branch
to Imem[rs2]

mod rr mod rd,rs rd←rd%rs (rs must be a
power of 2)

subi ri subi rd,imm rd←rd-imm

addi ri addi rd,imm rd←rd+imm

li ri li rd,rs rd←imm

sftl ri sftl rd,rs rd←rd<<imm

sftr ri sftr rd,rs rd←rd>>imm(sign ex-
tension)

sftru ri sftru rd,rs rd←rd>>imm(zero ex-
tension)

cb rrr cb rd,rs1,rs2 exchanges the rs2th-
byte of rd by the LSB
of rs1

j jump j imm branch to Imem[imm]

jal jump jal imm branch to Imem[imm]
and r15←PC+1

Table 3.10: Optimization 1 co-processor ISA

3.4. SECURITY COPROCESSOR 55

Optimization 2 Formats

Formats:

rrr type opcode rd rs1 rs2

rr type opcode rd rs1 funct

ri type opcode rd imm

jump type opcode imm

nop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rr type:

beqz 0 0 0 1 rd rs 0 0 1 1

sgtu 0 0 0 1 rd rs 1 1 1 1

sgt 0 0 0 1 rd rs 1 1 1 0

se 0 0 0 1 rd rs 1 1 0 1

lb 0 0 0 1 rd rs 1 0 1 1

jr 0 0 0 1 rd rs 1 0 1 0

and 0 0 0 1 rd rs 0 0 1 0

lw 0 0 0 1 rd rs 1 0 0 0

mov 0 0 0 1 rd rs 0 1 1 1

not 0 0 0 1 rd rs 0 1 0 0

or 0 0 0 1 rd rs 0 1 0 1

sw 0 0 0 1 rd rs 1 0 0 1

xor 0 0 0 1 rd rs 0 1 1 0

sub 0 0 0 1 rd rs 0 0 0 1

add 0 0 0 1 rd rs 0 0 0 0

mod 0 0 0 1 rd rs 1 1 0 0

ri type:

subi 0 1 1 1 rd imm

addi 0 1 1 0 rd imm

li 0 1 0 0 rd imm

sftru 0 1 0 1 rd imm

sftl 0 0 1 1 rd imm

sftr 0 0 1 0 rd imm

rrr type:

cb 1 1 0 1 rd rs1 rs2

mandb 1 1 0 0 rd rs1 rs2

jump type:

jal 1 0 0 1 imm

j 1 0 0 0 imm

Table 3.11: Optimization1+2 co-processor Instruction Formats

56 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

name format assembly action

jr rr jr rd branch to addr in rd

and rr and rd,rs rd ← rd and rs

lw rr lw rd,rs rd ← mem[rs]

sw rr sw rd,rs mem[rs] ← rd

mov rr mov rd,rs rd ← rs

not rr not rd,rs rd ← not rs

or rr or rd,rs rd ← rd or rs

xor rr xor rd,rs rd ← rd xor rs

sub rr sub rd,rs rd ← rd-rs

add rr add rd,rs rd ← rd+rs

lb rr lb rd,rs rd ← mem[rs] (byte)

se rr se rd,rs if(rd==rs) then rd←1
else rd←0

sgt rr sgt rd,rs if(rd>rs) then rd←1
else rd←0(sgn)

sgtu rr sgtu rd,rs if(rd>rs) then rd←1
else rd←0(uns)

beqz rr beqz rd,rs if(rd==0) then branch
to Imem[rs2]

mod rr mod rd,rs rd←rd%rs (rs must be a
power of 2)

subi ri subi rd,imm rd←rd-imm

addi ri addi rd,imm rd←rd+imm

li ri li rd,rs rd←imm

sftl ri sftl rd,rs rd←rd<<imm

sftr ri sftr rd,rs rd←rd>>imm(sign ex-
tension)

sftru ri sftru rd,rs rd←rd>>imm(zero ex-
tension)

cb rrr cb rd,rs1,rs2 exchanges the rs2th-
byte of rd by the LSB
of rs1

mandb rrr mandb rd,rs1,rs2 tmp←(rd and rs), if
(tmp==0) then branch
to Imem[rs2]

j jump j imm branch to Imem[imm]

jal jump jal imm branch to Imem[imm]
and r15←PC+1

Table 3.12: Optimization1+2 co-processor ISA

3.5. COMPILER DESIGN 57

3.5 Compiler Design

A compiler is a program that accepts as input a program text in a specific language and
translates it into another program text. The input language is called source language
and the output is called target language (see book [2]). In the current work, we need a
compiler to translate our benchmark -which is written in C- to the machine code of our
co-processors. Thus, we need a C-compiler to translate the benchmark into the ISA of
each of the 3 co-processor. In this section, the compiler implementation of each processor
instance is presented. The differences between the compilers are minor, because the ISAs
of the processor versions are similar.

The tool we have used for the implementation is the C Compiler Designer. C Compiler
Designer is actually a very simplified version of the Cosy compiler designing tool, which
is compatible with the Processor Designer tool. The advantage of using this tool is that
the designer has to deal only with the back-end part of the compiler. The front-end
part is processor independent- so it is created automatically by the Compiler Designer
tool- and provides to the back-end an internal representation (IR). Then the back-end
uses the IR to generate the processor’s assembly. The different phases of the back-end
implementation follow:

• Matching: Mapping assembly instructions to given C code. This is the most
demanding and difficult part of our design and we will explain it in detail later.
The matching procedure is the following: The matcher receives an internal rep-
resentation (IR), in the form of a tree (CCMIR tree). The CCMIR tree consists
of the mir (Medium-level Internal Representation) nodes, which can represent an
operation (eg. mirPlus, mirDiff) or an object (eg. mirIntConst, mirObjectAddr).
The matcher’s job is to detect patterns of mir nodes and to map them to assembly.
The patterns are detected according to rules, which are specified by the designer.

• Register Allocation: Assigning registers to variables and temporary values. In
this part we state to the compiler which registers should be allocated and for what
purpose. We define that register 14 is the stack pointer (sp), register 13 the frame
pointer (fp) and register PC of our processor design is the program counter.

• Scheduling: Scheduling the code by changing the instruction order and inserting
the corresponding latencies. All the instructions are scheduled in order, without
any delay slot. Our processor is responsible for checking the data dependencies
and stalling the execution if a dependency appears.

• Emit: Writing the code to an assembly file.

From the above, it can be concluded that the compiler back-end consists of the
register allocator, the matcher and the scheduler. The matcher and the register allocator
are the basic blocks of the back-end, so, we mostly worked on them. We elaborate on
the matcher later in this chapter. In the current work we did not use any ready library
of C and also we did not use double types (64-bits), which would require two registers
to save one value. We did not use doubles because the benchmark did not include such
type. Additionally, as we have already mentioned, we did not work on the scheduler and

58 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

the compiler optimizations, which would lighten significantly the processor’s workload.
The scheduler and the compiler optimizations could be part of future work on this
project. Compiler optimizations are a basic part of the SiMS project because they are
transferring work outside the implant, which results into saving power and area. Finally,
with good scheduling implementation we can decrease the processor’s area by checking
the dependencies at the compiler level and not at the hardware. This would remove a
lot of multiplexers.

The matcher presentation follows which is the largest part of the compiler work.
We begin with the baseline-processor’s matcher. The matchers, of optimization1 and
optimization1+2 processors designs, only require small modifications which are shown
later. First, our matching rules are divided into groups as shown below:

• Object Conversions

• Load and Store→Basic Load/Store, Address Load/Store

• Casts

• Stack Management

• Comparisons

• Control Flow→Function Call Support, Conditional Jumps

• Arithmetic→Common Arithmetic, Address Arithmetic

• Moves

Now follows the explanation of these groups of rules. We do not show and explain every
rule, but only some main ones, which are enough for understanding the procedure:

Object Conversions: This group of rules is responsible for transforming some objects
into a form, which is useful for the available assembly instructions. Without these
transformations many of the instructions could not be used and the compiler would
return errors for not achieving to map part of the C code to assembly. The objects
can be addresses, constants and non-terminals. Here are presented some rules:

• Constant to a non-terminal: These rules are used when a constant has
specific characteristics, which are defined in a non-terminal. For instance non-
terminals can be an uimmd8 (8-bit unsigned immediate), an uimmd12 (12-bit
unsigned immediate), a zero and many others. Hence, when an immediate
with the above characteristics is observed, then it is transformed into the rel-
ative non-terminal. Figure 3.12 illustrates the conversion rule of a constant
-which is 8-bit unsigned- to the uimmd8 non-terminal. This conversion is
important to us because we need this non-terminal for addi and subi instruc-
tions. Without this non-terminal in combination with that rule, we could not
use the addi and subi instructions. In the case where no such terminal exists,
we should load every constant into a register which means more instructions.

3.5. COMPILER DESIGN 59

Figure 3.12: Covert Constant to unsigned immediate with 8-bit width.

Figure 3.13: Covert Constant to register.

• Constant -or non-terminal- to register: These rules load a constant -or
a non-terminal, as the ones mentioned above- into a register. These rules are
used, when a command, as a = 5, is detected in the C code. The mir node of
such command is the mirIntConst (eg. 5), which is linked with the destination
register. In figure 3.13 the mapping assembly and the pattern described above
are shown . Lets explain a bit the mapping assembly: first a li instruction is
called, for loading the MSB of the constant into the destination register. Then,
follows one byte left shift. Then an other load of the 2nd MSB is done by
using an addi. The same procedure continues until the whole 32-bit constant
is loaded. The reason for converting a non-terminal -for instance uimmd8-
into register, is that no instruction can match to a specific mir pattern. For
instance, if a xor is appeared in C and one of the two operands is uimmd8, we
will need to make a non-terminal to register conversion, because a xori does
not exist in our ISA.

• Global Address object into register: In these rules, we follow the same
procedure as at the constant-to-register rule. There are different rules for
the same thing because the mir-tree creates different nodes for address and
constant objects.

Load/Store: This group is responsible for loading -and storing- values from -to- mem-
ory. This group is divided into two sub-groups. The one sub-group is for loading

60 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Figure 3.14: Store singed or unsigned byte.

-or storing- by using an address-non-terminal (an address non-terminal consists of
a register and an offset), while the other sub-group is responsible for loading and
storing by using an implicit address (the whole address is located into a register).
The first sub-group is more complicated and for that reason we describe it. It
consists of the following rules:

• Store signed/unsigned word: In that case the whole register is stored
in memory. In storage the values are not divided into signed and unsigned
because we transfer the value of a register to an equal or smaller space which
means that there is no need for sign or zero extensions. Thus, it does not
matter if the value is signed or unsigned.

• Store signed/unsigned byte: Here one byte is stored in memory. It is in-
teresting at that point to explain the mapped assembly shown in figure 3.14.
When a storage into memory appears at C level, then the mirAssign node
appears in the mir-Tree. This node must be connected with an address (des-
tination) and a register (source). The mapping procedure is more tricky be-
cause a sb instruction does not exist, so we have to achieve that functionality
by using other instructions. Hence, we use the cb instruction which has been
explained in section 3.4. Briefly, this instruction inserts a specific byte into
a specific byte location of a register. Hence, the procedure is the following.
First, a li is needed for loading the address-offset into a scratch register (a
scratch register is a temporary register, of which the compiler must be aware
in order to allocate it). Then, an add instruction is used for adding the scratch
register (offset) and the address register. Then, we proceed by loading the
whole address, that we want to store the byte, into another scratch register by
calling lw. Then, the cb instruction follows, for inserting the desired byte into
the desired byte-location of the previously loaded register (it is loaded again
into the 2nd scratch register). Finally, we store the second scratch register
into the location specified by the first scratch register.

• Store signed/unsigned half-word: Here a half-word is stored in data-
memory. In that case we use twice the store signed/unsigned-byte procedure.

3.5. COMPILER DESIGN 61

Figure 3.15: Load singed byte.

• Load signed/unsigned word: This rule loads a whole word from the mem-
ory into a register.

• Load signed byte: In the loading procedure, a sign and unsigned discrim-
ination is needed because a quantity in memory might be smaller than the
register size (than a word). Hence, a zero extension or a sign extension is
needed. In figure 3.15 is shown the sign-byte loading procedure. First, we
load the byte which is located in the address non-terminal. Then, we shift
left 3 bytes and finally we sign-shift 3 bytes to the right, to complete the sign
extension.

• Load unsigned byte: The same as above but without the shifts because we
only need zero extension.

• Load signed half-word: Here, we repeat the same technique as in Load
signed-byte.

• Load unsigned half-word: Here, we repeat the same technique as in Load
unsigned-byte.

Casts: This group is very important because it does all the type conversions. Our
compiler supports char (1 byte), short (2 bytes), int (4 bytes) and long (4
bytes) types (signed and unsigned). For instance, the compiler performs a type
conversion when the following cases appear:

unsigned int a = 0;
int b = 1;
a = b

or

unsigned int a = 0
a = 10 (constants are usually seen as signed integers)

Obviously, there are many other cases where type conversions are preformed.
The conversions are done according to table 3.13 where:

62 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Figure 3.16: Conversion from a signed char/short/int to an unsigned char type.

• SEx: sign extension from bit x to 31.

• ZEx: zero extension from bit x to 31.

• -: identical types do not need conversion.

• DT: Direct translation of value which means no modification of value.

When the compiler detects a type conversion, it adds to the mir-tree the mirConvert
node. In figure 3.16, the conversion from a signed char/short/int to unsigned char
is presented. The procedure is very simple. In the s register exists the value which
we want to convert into another type and d register is the destination register.
First, we load 1s into the 8 LSb of d. Then, we AND d with s. Thus, we have the
LSB of s in the LSB position in d and the rest of the bytes of d are zero.

SINT8 UINT8 SINT16 UINT16 SINT32 UINT32
SINT8 - SE8 SE8 SE8 SE8 SE8
UINT8 ZE8 - ZE8 ZE8 ZE8 ZE8
SINT16 DT DT - SE16 SE16 SE16
UINT16 ZE16 DT ZE16 - ZE16 ZE16
UINT16 DT DT DT DT - DT
UINT32 DT DT DT DT DT -

Table 3.13: Conversions from a size (horizontal) into another size(vertical).

Stack Management: Our stack has as start address the end of the addressable memory
space, and it grows downwards (The static data memory starts at the beginning
of the memory address space). The stack is responsible for saving the context of
each function. For instance, when inside a function is called another function, then
some registers (callee changed registers) must be stored in the stack by the caller,
in order not to lose any information. Stack management needs a stack-pointer. The
use of the frame-pointer is not obligatory but it makes the compiler implementation
easier and safer. For that reason we decided to include the frame-pointer into our
compiler design. This group consists of the following rules:

• Save register using the frame pointer: Let’s assume that a function calls
(caller) another function (callee). The callee must save all the caller-changed

3.5. COMPILER DESIGN 63

Figure 3.17: Save a register in the stack.

registers, which are going to be used, for not losing them. The same must be
done by the caller for the callee-changed registers. In such a case, the current
rule is used. This rule is presented in figure 3.17 to help the reader understand
this group of rules. The Spill non-terminal which is shown at the left of the
figure provides us with the offset that must be added to the fp in order to find
the storing address in the stack-frame.

• Reload register using the frame pointer: Above, we have mentioned that
the the callee function must save the caller-changed registers at its beginning
(prologue). When the callee function reaches its end (epilogue), must reload
the caller-changed registers with their previous values. That is achieved by
the current rule.

• Decrement the stack pointer: The compiler in every callee function cal-
culates the frame size (the stack size needed for the current function) that the
function is going to use. Then, the sp is decreased by the frame-size value.
So the sp indicates to the end of the stack-frame space (Hence, the fp points
at the start and the sp at the end of the stack-frame space). This decrement
is done by the current rule.

• Save the frame pointer: At the beginning of the callee function the fp
must be saved to the address that the sp currently points, because the fp is
going to be moved where the sp is. This movement must be done in order for
the fp to indicate at the beginning of the new function (callee). If the old-fp
address is not saved, it won’t be possible to restore it easily. Storing the fp is
done by this rule.

• Restore the frame pointer: This rule restores the old fp by loading the
value of the address, which the fp points at. This is done in order to return
to the previous (caller) function (at the end of the callee function).

• Moving the stack to the frame pointer: This rule is also used at the
end of the callee function (obviously before restoring the old fp), in order to
point at the end of the caller function. This is done by moving the sp to point
where the fp indicates.

• Moving the frame to the stack pointer: This is done after the old fp has
been stored to the stack and before the sp has been decreased.

64 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Comparisons: This group of rules is responsible for the comparisons in a program.
Comparison results are also used in control-flow statements like if-else. The imple-
mented comparisons between two variables are the following:

• Equal.

• Not equal.

• Less-than.

• Equal or less-than.

• Greater than.

• Equal or greater-than.

• Less-than (between unsigned quantities).

• Equal or less-than (between unsigned quantities).

• Greater-than (between unsigned quantities).

• Equal or greater-than (between unsigned quantities).

When a comparison is detected, the compiler adds a mirCompare node into the mir-
tree. The different kinds of comparisons which are listed above are distinguished
by the condition rule-clause. In figure 3.18, is shown the equal or greater-than com-
parison for unsigned operands. In that rule we have also specified a condition for
selecting it. That condition says, that this comparison is ”IS GREATER EQUAL”
and that also the operands are unsigned -IS UINT-. Let’s explain the comparison in
figure 3.18. The mir-node as we have already mentioned is the mirCompare, which
receives as inputs two registers s1 and s2 and produces a register d as an output.
Our ISA does not support instructions such as equal or greater-than(seqgtu). Thus,
we do that work by using the sgtu instruction and the procedure is the following:
seqgtu s1, s2→
!(sgtu s2, s1)→
sgtu s2, s1
li d, 1
sub d, s2
So, the last two instructions are reversing the result for us. First, we load a 1 in
the result register, and then we subtract from it, the result of the sgtu comparison.
It is now obvious, that if the sgtu comparison is 0, then the final result will be 1;
otherwise it will be 0.

Control Flow: The control-flow group is responsible for the flowing of the program and
it is divided into 3 main categories: function call support, conditional jumping and
unconditional jumping.

• Function call support: This category of rules is responsible for functions.
Which means jumping to a specific function, passing parameters by registers-
or by memory if the registers are not enough- and returning from a function.
The registers which are used for passing parameters are 1 to 8, while the result

3.5. COMPILER DESIGN 65

Figure 3.18: Equal or grater-than comparison between unsigned operands.

Figure 3.19: If-else control flow statement.

of a non-void function is loaded into register 1 (r1). The mapping assembly-
instructions of a function call must include the jal instruction which jumps
and saves the returning address in register 15 (r15).

• Conditional jumping: This category supports the if-else statements of the
program. This category consists of one rule, which actually uses the results of
the Comparison group. In other words, first the comparison is made and its
result is loaded into a register. Afterwards, this register is taken as an input
into the conditional-jump rule. In figure 3.19 this rule is shown.

• Unconditional jumping: This category contains rules which supports un-
conditional jumps to addresses.

Arithmetic: This group is responsible for all the arithmetic operations which we list
in a while. This group is partitioned into two categories: the address and the
common arithmetic. The first category uses only addition and subtraction as -
pointer- operations. However, different rules are implemented for addition and
subtraction in the common arithmetic category. So, an obvious question is, why
do we use different rules for the same thing? The answer is that the front-end
compiler creates different objects for addresses and different for the rest values,
thus, they must be manipulated separately. The list of operations for the second

66 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

category are the following:

• Addition of two operands: We have two kind of additions. If the second
operand is an unsigned 8-bit constant, then the addi instruction is used for
mapping.

• Subtraction of two operands: Also here we have two kinds of subtractions
for the same reason as above.

• Or-ing two operands.

• And-ing two operands.

• Xor-ing two operands.

• Not-ing a operand.

• Unsigned right shifting.

• Signed right shifting.

• Left shifting.

• Negating an operand.

• Dividing two operands.

• Modulo operation.

• Multiplying two operands.

The most interesting operations from above are the division, modulo and multi-
plication. As we have mentioned in section 3.4 that the compiler takes care of the
multiplication, division and modulo operations, for saving area and power from
the processor. The implementation of these operations supports only unsigned
numbers, because we have observed that our benchmark has only unsigned mul-
tiplications, divisions and modulo. If we would like to add signed operations we
could do it in the following ways: either by changing a signed number into unsigned
before calling the operation -explicit cast in C-, or by adding some more assembly
instructions in their -multiplication, division, modulo- matching rules.
Let’s proceed to the division implementation. The division of a 2k-bit dividend
by a k-bit divisor can be calculated in k-cycles of shifting and subtracting. This
pseudocode is shown in Algorithm 1.

First, the divisor is left-shifted 16 positions. Then, for 16 loops the algorithm checks
if the remainder is equal or greater than the divisor. If so, the divisor is subtracted
from the remainder and then, 1 is added to the quotient which has already been
left-shifted once. The quotient is the result of the division. For more information
about division see in [22]. The division is the same for all three processors we
have designed. The division implementation with the Compiler-Designer tool is
presented in figure 3.20.

The modulo operation uses the same algorithm as the division. The only difference
is that the result is the remainder and not the quotient. This algorithm has been
used only in the baseline processor because in the second design -Optimization1-

3.5. COMPILER DESIGN 67

Algorithm 1 Radix-2 unsigned division algorithm

Dividend→ z
Divisor → d
Quotient→ q
Remainder → s

tempd = d << 16;
s = z;
for (i = 0; i < 16; i + +) do
q << 1;
tempd = tempd << 1;
if (tempd ≤ s) then

q = q + 1;
s = s− tempd

end if
end for

the modulo operation has been added in the ISA of the processor, as has been men-
tioned in section 3.4. In Optimization1+2 design, this optimization still remains.
In chapter 4, the advantages of doing are optimization is shown. In figure 3.21, we
show the baseline modulo, while in figure 3.22 we show the optimized version of
the remaining two designs.

The multiplication operation uses the scheme shown in figure 11.8a of the book [22].
It is a radix-2-unsigned algorithm. When we have a multiplier and a multiplicand
of n bits, the maximum product that we can get is 2n bits. Hence, in our case
the multiplicand and the multiplier are 16-bits wide and the product 32-bits. This
pseudocode is shown in Algorithm 2.

Algorithm 2 Radix-2 unsigned multiplication algorithm

Multiplicand→ a
Multiplier → x
Product→ p

for (i = 0; i < 16; i + +) do
if (xi == 1) then

p = p + a;
end if
a = a << 1;

end for

The algorithm shown needs 16 loops. In every loop the next bit of the multiplier
is checked and if it is 1 then the multiplicand is added to the current product. At
the end of every loop the multiplicand is left-shifted once.
The algorithm for all three processor designs is the same. But in the third pro-

68 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Figure 3.20: Division Implementation.

cessor design -Optimization1+2- the algorithm is implemented by using different
instructions in a specific part. In that part, three instructions -mov, and, beqz - are
collapsed together in a single instruction (mandb). We did that because -as it is
also shown in chapter 4 in detail- these three instructions appeared very frequently.
The new multiplication implementation of Optimization1+2 is shown in figure 3.24
while the baseline one is presented in figure 3.23.

Moves: This group just consists of one rule, which maps into the mov instruction.

3.5. COMPILER DESIGN 69

Figure 3.21: Modulo implementation of the Baseline design.

Figure 3.22: Modulo implementation of Optimization1 and Optimization1+2 designs.

70 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

Figure 3.23: Multiplication implementation of Baseline and Optimization1 designs.

3.5. COMPILER DESIGN 71

Figure 3.24: Multiplication implementation of Optimization1+2 design.

72 CHAPTER 3. PROPOSED SECURE IMPLANTABLE SYSTEM

3.6 Conclusions

In this chapter we have described the design and implementation of a security co-
processor for IMD’s. The work consists of:

• The system architecture. In section 3.1 we described that the system consists
of the IMD part and the reader. The IMD is distinguished into two parts, the main
processor and the communication co-processor which is attached with an RFID for
gaining RF energy. The IMDs must have a normal and an emergency mode. This
switching-mode is done by a magnetic switch located inside the implant.

• The communication protocol between the IMD and the reader and its imple-
mentation in C language. The selected protocol is shown in figure 3.4(b).

• The definition of the scenarios and the selection of a representative one (sce-
nario 10), which is shown in section 3.3.

• The baseline-security-processor design and two optimized designs, which
are described in section 3.4.

• The C compiler implementation of the above processors, which is shown in sec-
tion 3.5.

Co-processor Evaluation 4
In this chapter we present our work’s experimental results. This chapter explains some
decisions taken regarding our implementation described in chapter 3. It also presents a
comparison between the different designs and a detailed explanation of the results.

This chapter is organized as follows: Section 4.1 contains the Scenarios profiling using
the XTREM simulator [14]. These scenarios have been shown in section 3.3. Section 4.2
presents the instruction mixes and the execution-cycles number of all three designed
processors. Finally in section 4.3 are described the synthesis results of our processor.

4.1 Profiling of the Normal and Attack Scenarios

In this section we show and analyze, the profiling results of the 20 attack and normal
scenarios, described in section 3.3. The profiling has been done for two reasons. First, for
selecting the most representative scenario according to power and energy, in order to use
it as our main benchmark for our custom processor. We have selected only one scenario,
because it would take too much time to run all the benchmarks in the synthesized
processor. The second reason has been gaining useful information on designing our
processors. The profiling analysis provided us with instruction number, micro-operation
number, cycle number, performance, power and energy figures. As we have already
mentioned, the profiling has been done on the XTREM simulator (see [14]). XTREM is
a simulator for the Intel XScale core, which is compatible with the ARMv5TE instruction
set. It has an average performance error of 6.5% and an average power error of 4%.

In table 4.1 is shown the scenario profiling by using XTREM. The scenarios can
be divided into three groups: the unsuccessful ones, the 1KB-successful and the 10KB-
successful ones. The first group consists of the first 6 scenarios (1-6), the second group
consists of the next 7 scenarios (7-13) and the remaining 7 scenarios (14-20) form the
third group. We expect the first group to complete its execution faster than the second
one and the second one to be faster than the third one, because of their increasing
workload sizes used. The cycles column of table 4.1, verifies our expectations. Also,
the execution time increases according to the number of instructions -and uops- because
we always run the same program (the only thing that changes in every scenario is the
input data). The total energy consumption is increasing with respect to the execution
time, as we have expected. We can observe that the performance for the first three
scenarios is 0.07 -maximum of all three groups-, the fourth is 0.05 and the rest are 0.04.
Let’s explain this difference in performance. The first four scenarios, as we have seen
in section 3.3, stop executing before the heavy and most time-consuming functions are
executed. These are decryption and CRC calculation functions. They do not execute

73

74 CHAPTER 4. CO-PROCESSOR EVALUATION

because, in the first three scenarios, the IMD receives wrong challenges while, in the
fourth one, it receives a wrong command size, which actually means no execution of the
decryption and CRC-calculation functions. In scenario5 only the decryption algorithm
is executed once, while in scenario6 both decryption and CRC-calculation functions are
running. That is why scenarios 5 and 6 also differ from each other. Obviously, the
rest of the scenarios exhibit the same performance because the CRC-calculation and the
decryption functions are running for most of the time. For remembering the flow chart
of the program, see figure 3.5.

Scenarios #uops #instr #cycles perf(IPC) power(mW) Energy(mJ)

Scenario1 41412 32707 471512 0.07 75.1 17.71

Scenario2 41083 32471 466884 0.07 74.72 17.44

Scenario3 57287 41733 621036 0.07 84.12 26.12

Scenario4 50753 38147 567347 0.07 82.99 23.54

Scenario5 58434 42440 891589 0.05 61.53 27.43

Scenario6 67477 47510 1239684 0.04 51.94 32.19

Scenario7 999182 590085 16332237 0.04 76.22 622.42

Scenario8 1006050 594029 16384469 0.04 76.28 624.9

Scenario9 1000055 590463 14982910 0.04 83.26 623.74

Scenario10 1000351 590664 13595838 0.04 91.89 624.66

Scenario11 1000095 590501 13591824 0.04 91.89 624.48

Scenario12 1008653 595435 16672429 0.04 75.16 626.55

Scenario13 1017702 600507 15623253 0.04 80.89 631.88

Scenario14 7766854 4547818 125947516 0.04 77.86 4903.14

Scenario15 7773722 4551762 125999751 0.04 77.86 4905.17

Scenario16 7767727 4548196 114106644 0.04 86.12 4913.43

Scenario17 7767983 4548359 102652814 0.04 95.8 4917.07

Scenario18 7767727 4548196 102648804 0.04 95.8 4916.88

Scenario19 7776245 4553090 126237606 0.04 77.75 4907.49

Scenario20 7785301 4558169 114814453 0.04 85.73 4921.52

Table 4.1: XTREM profiling.

We have mentioned above that the execution cycles are increasing with respect to the
uop increase. If we look closer at table 4.1, we can see that this is not always the case.
For instance, let’s compare scenario7 and scenario9 which have 999,182 and 1,000,055
uops, respectively. The execution cycles are 16,332,237 for scenario7 and 14,982,910 for
scenario9 which is not what we would have expected. So, we have also ran the scenarios
in the XEEMU simulator (see [21]) which is more accurate and newer than XTREM,
to check if XTREM has been wrong. We did not use the XEEMU simulator from the
beginning because on the one hand the XTREM simulator has been used in previous
works of the SiMS project, thus, scripts for assisting the profiling study exist for the
XTREM. On the other hand, the XEEMU simulator has not been properly incorporated
in the SiMS toolflow, bulk experiments cannot be performed with it, yet. We have
selectively used it for a few experiments as in this case. The XEMMU results showed

4.1. PROFILING OF THE NORMAL AND ATTACK SCENARIOS 75

that the XTREM was wrong at that point. The XEEMU evaluation has shown that
the number of execution cycles increase according to the number of instructions. The
problem of the wrong calculation of the execution cycles in XTREM might have a small
effect on power and performance. That is, for a program with more instructions to
execute faster than another, it must execute more instructions per cycle. This leads to
an increase in performance and in power consumption.

Before continuing to the scenario-selection analysis, we should analyze a bit the
energy consumption of the unsuccessful group. These energy results are, actually, the
energy consumption of an IMD -using the XScale core- during possible attacks. We
observe that the energy consumption of each attack is between 17.71 and 32.19 mJ. This
is important to know, because it can show if this amount of energy is affordable for an
RFID.

Now let’s continue to the scenario-selection part. This scenario will be our benchmark
for our implemented processor. We have selected a scenario from the successful-1KB
transmission group, because a 10KB would need too much execution time to run in our
processor simulator. In addition, we have not selected a scenario from the unsuccessful
group because we have assumed that in most of the times, the communication between
the IMD and a reader is going to be successful. The scenario that we have selected has
been scenario10 (91.89 mW), because it has the highest power consumption together with
scenario11 from all the others in that group. Then, we have chosen scenario10 instead
of scenario11, because scenario10 has a higher energy consumption (than scenario11).
Hence, for these reasons we believe that scenario10 is the most representative scenario of
all. Scenario10 contains a wrong challenge, from the reader to the IMD, in the beginning
and, then, a complete successful procedure, according to protocol B in figure 3.4(b).

Another interesting issue here is the instruction-mix analysis of single instructions
or groups of them. In the XTREM evaluation when we say ’instruction’ we mean ’uop’.
The instruction-mix is defined as the % appearance of each instruction or groups of them
in a program. Again here we are going to analyze the scenarios as groups (unsuccessful,
1KB-successful, 10KB-successful). Thus, we pick one scenario from each group, which
are scenario1, scenario10 and scenario17.

In table 4.2, the results of the single-instruction mix are shown. The table is divided
in three main columns, which represent the three groups. Each column consists of three
smaller columns. The first column has the instruction names, the second column has
the appearance number of the instructions and, finally, the third column has the %
instructions appearance. In that table are included only the instructions, which the %
appearance of which exceeds 1%.

In table 4.2 and in figure 4.1 we can see that the unsuccessful scenarios have a lot of
”xor”, ”and”, comparison and jump instructions. The ”xor” and ”and” large appearance
can be explained by the fact that the key generation and the CRC generation table
functions use these instructions many times. It can also be partly explained by the
known fact that the compiler used for generating the XTREM code (ARM-GCC-2.95.3)
does favor logical operations. The comparison appearance can be explained if we consider
that in the unsuccessful scenarios are executed some comparisons and then the program
ends without running either the cryptographic algorithms or the CRC. We can also see a
lot of branches, which can be explained by the big percentage of comparisons and loops

76 CHAPTER 4. CO-PROCESSOR EVALUATION

that occur inside the program.

The next two scenarios groups can be analyzed together because, as we can see
in table 4.2 and in plots 4.2 and 4.3, their instruction appearances are similar. In
comparison with the first group we observe an increase in ”xor” and ”and” instructions.
This can be explained because the cryptographic and the crc-calculation algorithms are
using them a lot. A decision that we can make about our targeting processors, by looking
at the table 4.2, is to include the ”xor” instruction in our ISA. ”Xor” is not an essential
instruction for a processor. On the other hand the ”and” instruction is an essential
one, hence we would include it anyway. For instance, the ”xor” instruction needs ”and”
instructions for its implementation.

Unsuccessful scenarios 1KB-successful scenarios 10KB-successful scenarios

eor 9207 22.233% eor 423140 42.299% eor 3330273 42.872%
and 7506 18.125% and 247159 24.707% and 1952567 25.136%
cmp 5752 13.890% mov 183613 18.355% mov 1457577 18.764%
mov 5061 12.221% add 37099 3.709% add 281329 3.622%
b 3691 8.913% sub 27303 2.729% sub 215525 2.775%
add 2921 7.054% cmp 14811 1.481% rsb 85609 1.102%
ble 2597 6.271% b 12999 1.299% b 79594 1.025%
beq 2373 5.730% rsb 10534 1.053%
bne 579 1.398%
sub 519 1.253%

Table 4.2: Single-Instruction Mix.

In table 4.3, are shown the pair-instruction1 mix of the grouped scenarios . At this
point we can say that, if we could change the ISA of that specific processor, we should
collapse together the pairs ”and-xor” and ”xor-xor” in order to gain in performance and
probably in energy-consumption.

Unsuccessful scenarios 1KB-successful scenarios 10KB-successful scenarios

and eor 3456 8.345% and eor 144997 14.495% and eor 1152578 14.838%
eor eor 2852 6.887% eor eor 115253 11.521% eor eor 900035 11.586%
b cmp ble 2304 5.564% mov mov 56730 5.671% mov mov 462626 5.956%
ble and cmp 2048 4.945% and eor and 27130 2.712% and eor and 217429 2.799%
beq mov 1036 2.502% add mov 19162 1.916% add mov 157629 2.029%
beq mov add 1025 2.475% eor mov 15829 1.582% eor mov 128928 1.660%
b add b 1024 2.473% mov add 15633 1.563% mov add 127691 1.644%
mov mov 573 1.384% mov and 14165 1.416% mov and 113535 1.462%
and eor and 445 1.075% eor eor eor 11729 1.172% eor eor eor 92113 1.186%

eor and 10971 1.097% eor and 88152 1.135%

Table 4.3: Pair-Instruction Mix.

In this section we have shown the profiling results of the 20 normal and attack
scenarios, which are described in section 3.3. We have selected scenario10 because the

1”Instruction pairs are consecutive instructions whereby data generated by the first instruction is
consumed by the second instruction; i.e. whereby data dependencies occur” ([25])

4.1. PROFILING OF THE NORMAL AND ATTACK SCENARIOS 77

Figure 4.1: Single-instruction mix plot for the Unsuccessful scenarios.

Figure 4.2: Single-instruction Mix plot for the 1KB Successful scenarios.

78 CHAPTER 4. CO-PROCESSOR EVALUATION

Figure 4.3: Single-instruction mix plot for the 10KB Successful scenarios.

evaluation show that it is the most representative one, in terms of power and energy. The
instruction mixes of the scenarios show that we should include the ”xor” instruction in
our ISA. Finally, by observing the energy results of the unsuccessful scenarios (scenarios
where the communication has failed because of an attack), we can see that the energy
consumption is not very large. So, we can conclude that this energy can be covered by
the induced RF energy. We also believe that with a dedicated processor the energy and
power consumption will be even less.

4.2 Instruction Mix and Execution Cycles

In this section we show the instruction mixes and the execution-cycle number of our se-
lected benchmark running on Base-line, Optimization1 and Optimization1+2 processors,
which were described in section 3.4. These are the ASIPs which we have implemented
with the Processor Designer tool. The evaluation -in terms of instructions- of the Base-
line processor is important because the decisions for optimizations (Optimization1 and
Optimization1+2) are made according to it. Hence, we have generated and studied the
instruction mixes of the Base-line processor and then we have taken decisions for opti-
mizations. The instruction mixes have been generated by Python-scripts that we have
implemented for that purpose. In tables 4.4, 4.5 and 4.8, are presented the instruction
mixes of the Base-line, Optimization1 and Optimization1+2 processors. The tables have
two main columns named Single-instruction mix and Pair-instruction mix. Each column
is divided into 3 sub-columns. The first one lists the names of the instructions, the second
one their absolute-number of appearances and the third one their appearance-frequency.

4.2. INSTRUCTION MIX AND EXECUTION CYCLES 79

In the pair-mixes we only present the pairs that appear more than 1% in the instruction
mix.

Lets examine our Base-line instruction mix. In the single-instruction mix we see the
following appearances:

1. beqz: First in the list is the instruction beqz. The reason for that is that every
comparison uses this instruction for branching to its final destination. In addition,
as it has been shown in section 3.5, the multiplication, the division and the modulo
-which appearing many times- have 16 loops inside them, which are translated into
16 beqz. This is the reason why the beqz instruction has such a high frequency.

2. sftl: This instruction is very frequent because it is used in casting (for zero and
sign extension) and in loading constants and addresses. It is also used a lot into
multiplication, division and modulo.

3. li: It is used for loading constants and addresses.

4. mov: This is frequent because our ISA uses a single register as source and desti-
nation. Which means that if the compiler wants to keep a register-value and not
losing it, this value must be moved into another register.

5. subi: The relatively high subi frequency is explained by the fact that it appears
in multiplication, modulo and division. Also it is used for decrementing the stack-
pointer, to point at the end of the stack-frame.

6. jr, j: We see that jr has a high frequency, while j has 0. That happens because j
can (describe and) jump to addresses up to 4095 (12-bits). Our program exceeds
that bound that is why we use jr (32-bits). We do not use j for cases lower than
4095, because we did not find a way to inform the compiler about this discrimina-
tion.

7. add: Addition is normal to be used a lot in every program. For example, in address
calculation.

8. and, xor, or, not: The and instruction is used so frequently because it is used
in multiplication, in if-else C-statements and finally, it is also used (in addition to
xor) in encryption, decryption and CRC-calculation functions. The xor instruction
percentage we should expect to be higher according to section 4.1, but we must
remember that the CRC-generation-table function (which includes many xors)
has been removed from our benchmark and it has been replaced by the already
calculated CRC-table. This has been done for decreasing the size of the program
memory. The or instruction is mostly used for comparison in if-else C-statements.
The not instruction has not be used at all.

9. sftru, sftr: The sftru instruction is mostly used in zero-extensions. The sftr is
mostly used for sign-extension.

10. addi: That instruction mostly appears in constant-loading. The reason is shown
in figure 3.13.

80 CHAPTER 4. CO-PROCESSOR EVALUATION

11. sgt, se, sgtu: These instructions are used for comparisons, which appear especially
in if-else statements. The sgtu is been used into the modulo operation.

12. lw, sw, lb, cb: The lw and lb instructions is logically more than sw and cb (it is
part of the sb pseudo-instruction) because the writting is more frequent operation
than reading.

13. jal: The jal is used for jumping into functions.

In the pair-instruction mix in table 4.4 we see the following occurrences:

1. and beqz: This pair appears in the multiplication.

2. mov and This pair appears in the multiplication and just before the and-beqz pair.

3. li sftl: It is used when we have to load an immediate into a register, which is wider
than one byte, or we want to sign-extend a byte.

4. li add: This pair appears when we load from the stack. It is used for adding an
offset to the stack-pointer.

5. add lw: The lw instruction is the instruction just below the li-add pair.

6. li sub: This pair appears in modulo, division operations and in compare-not-equal
compiler-rule.

7. sftru mov: It appears in modulo and division operations.

8. sub beqz: Appears in modulo operation.

9. sftl addi: Usually it appears when we have to load more than one byte into a
register. Hence, addi is mostly seen just after li-sftl pair.

10. sftr add: This pair is mostly seen when a value is stored into the stack (subtracting
an offset). It is used for addition (subtraction) after a sign-extension.

11. sftl sftr: It is used for sign extension. The sftl is seen above the sftr-add pair.

12. mov sgtu: It appears in modulo operations.

13. add sw: This pair follows the pair sftr-add which stores into the program stack.

14. sw li: When we enter into a function, many sequential stores often are made into
the stack. The last instruction of storing is sw while the first one is li. That is why
we have that amount of appearances of this pair.

15. addi sftl: This pair appear when we need to store into a register a 4-byte imme-
diate.

4.2. INSTRUCTION MIX AND EXECUTION CYCLES 81

Single-Instruction Mix Pair-Instruction Mix

beqz 950499 15.290% and beqz 296928 10.379%
sftl 942502 15.162% mov and 296928 10.379%
li 779614 12.541% li sftl 274921 9.610%
mov 533955 8.589% li add 209947 7.339%
subi 479950 7.721% add lw 206873 7.231%
jr 454274 7.308% li sub 178214 6.229%
add 444448 7.150% sftru mov 176880 6.183%
and 321246 5.168% sub beqz 176880 6.183%
lw 213280 3.431% mov sgtu 155600 5.439%
sftru 187564 3.017% sftr add 155438 5.433%
sub 184334 2.965% sftl sftr 155438 5.433%
addi 172759 2.779% sftl addi 154223 5.391%
sgtu 155600 2.503% add sw 141453 4.944%
sftr 155438 2.500% sw li 56195 1.964%
sw 152532 2.454% addi sftl 34740 1.214%
xor 29308 0.471%
sgt 22823 0.367%
lb 17059 0.274%
or 6932 0.112%
jal 6140 0.099%
cb 4804 0.077%
se 1340 0.022%
not 0 0.000%
nop 0 0.000%
j 0 0.000%

Table 4.4: Base line Instruction Mix.

In table 4.6 is given that the Base-line processor needs 18,805,011 execution cycles, from
which the 6,216,401 are executing instructions and the rest are stalls. That means that
there are 33.1% executing-instructions cycles and 66.9% stall cycles, which lead to a
0.331 IPC.

We continue on the first optimized processor, Optimization1. As we have mentioned
in section 3.5, the first optimization was to insert a modulo (mod) instruction. The
reason for doing so has been explained in detail in section 3.5. In table 4.5 is shown the
instruction mix of our benchmark running on processor Optimization1. We see that the
frequency of most instructions, has been decreased because these instructions have been
used in the modulo operation. It is also shown that the modulo operation appears 9,725
times (0.21%) in total. Lets see some interesting results of table 4.5. The beqz decreases
a lot and falls to the second most frequent position because it is called in every loop
of the modulo operation, while the sftl instruction (most frequent instruction), which
also exists in the modulo, does not appear in the loop of the modulo. The rest of the
instructions that decrease a lot because they appear into the modulo’s loop are: subi,
sub, mov, sgtu, li, jr. The sgtu instruction drops to 0%, because modulo was the only

82 CHAPTER 4. CO-PROCESSOR EVALUATION

operation where it appeared.
Now, by looking at the pairs-column in table 4.5, we can observe that the appear-

ance of the li-sub, sftru-mov and sub-beqz pairs has been decreased in comparison with
table 4.4. Actually, among the referred pairs, only the li-sub pair kept its appearance to
more than 1%.

Single-Instruction Mix Pair-Instruction Mix

sftl 897134 19.185% and beqz 296928 13.726%
beqz 639298 13.671% mov and 296928 13.726%
li 578642 12.374% li sftl 239280 11.061%
add 437984 9.366% li add 209945 9.705%
mov 363181 7.767% add lw 203642 9.414%
subi 324349 6.936% sftr add 148976 6.887%
and 321246 6.870% sftl sftr 148976 6.887%
jr 308398 6.595% add sw 138220 6.390%
lw 210048 4.492% sftl addi 125042 5.780%
sw 149298 3.193% sw li 55088 2.547%
sftr 148976 3.186% addi sftl 34738 1.606%
addi 143578 3.070% lw xor 28260 1.306%
sftru 31964 0.684% li sub 22614 1.045%
xor 29308 0.627%
sub 23944 0.512%
sgt 22823 0.488%
lb 17059 0.365%
mod 9725 0.208%
or 6932 0.148%
jal 6140 0.131%
cb 4804 0.103%
se 1339 0.029%
not 0 0.000%
sgtu 0 0.000%
nop 0 0.000%
j 0 0.000%

Table 4.5: Optimization1 Instruction Mix.

Now, we proceed to the comparison of the Base-line and Optimization1 designs. The
absolute numbers of cycles are shown in table 4.6. Their comparison is better shown
in figure 4.4 and table 4.7. Table 4.7 shows a 25.6% decrease in execution cycles and
a 24.8% decrease of the instructions number, in comparison to the baseline processor.
The many executing instructions in the modulo function along with the modulo’s high
appearance, led to that large decrease. Table 4.7 also shows a 26% decrease in stalls,
which is related to the big amount of data dependencies that appear in the Base-line’s
modulo operation. Clearly, these dependencies are causing stalls. The reduction in the
number of stalls is the reason for the 0.9% increase in performance of the Optimization1
design.

4.2. INSTRUCTION MIX AND EXECUTION CYCLES 83

#cycles #Instructions #Stalls Perf

Base-Line 18805011 6216401 12588610 0.331

Optimization1 13989619 4676170 9313449 0.334

Optimization1+2 11020338 4082314 6938024 0.370

Table 4.6: Processor-Design comparison.

#cycles #Instructions #Stalls Perf

Optimization1 -25,6% -24.8% -26% +0.9%

Optimization1+2 -41.4% -34.3% -49.9% +11.8%

Table 4.7: Comparison of the Optimization1 and Optimization1+2 designs, with the
base line processor(%)

The next optimization (the second optimization) has been based completely on the
instruction mix tables. We see that the group mov-and-beqz has the highest frequency
in both tables 4.4 and 4.5. So, this fact led us to the decision to collapse these three
instructions into one. Thus, we have included in the processor Optimization1+2, the
instruction mandb. The instruction mix results of that new ISA are shown in table 4.8.

Figure 4.4: Cycle count, instructions count, stall count and performance of each design.

84 CHAPTER 4. CO-PROCESSOR EVALUATION

There, we can see that our decision has been correct, because the mandb instruction has
a frequency of 7.274% of the total instruction mix.

Single-Instruction Mix Pair-Instruction Mix

sftl 897134 21.976% li sftl 239280 15.247%
li 578642 14.174% li add 209945 13.378%
add 437984 10.729% add lw 203642 12.976%
beqz 342370 8.387% sftr add 148976 9.493%
subi 324349 7.945% sftl sftr 148976 9.493%
jr 308398 7.554% add sw 138220 8.807%
mandb 296928 7.274% sftl addi 125042 7.968%
lw 210048 5.145% sw li 55088 3.510%
sw 149298 3.657% addi sftl 34738 2.213%
sftr 148976 3.649% lw xor 28260 1.801%
addi 143578 3.517% li sub 22614 1.441%
mov 66253 1.623% sftru mov 21280 1.356%
sftru 31964 0.783% sub beqz 21280 1.356%
xor 29308 0.718% mov sgt 21280 1.356%
and 24318 0.596% add lb 17059 1.087%
sub 23944 0.587% lw and 16842 1.073%
sgt 22823 0.559%
lb 17059 0.418%
mod 9725 0.238%
or 6932 0.170%
jal 6140 0.150%
cb 4804 0.118%
se 1339 0.033%
not 0 0.000%
sgtu 0 0.000%
nop 0 0.000%
j 0 0.000%

Table 4.8: Optimization1+2 Instruction Mix.

In table 4.6 is shown that the Optimization1+2 design needs 2,969,281 less execution
cycles than the Optimization1 design (21.2% less). We also have a 593,856 decrease in
the instruction number in comparison with Optimization1 (12.7% less). The reduction in
the execution cycles and the instruction number is explained by the 13.8% appearance of
the mov-and-beqz group. So, by collapsing that instruction group, we reduce the number
of the execution cycles and the instructions. Finally, we have a 2,375,425 less stalls in
comparison to the Optimization1 design (25.5% less). That can be explained by the fact
that, if two sequential instructions depend on each other, there occur 3 stalls (we do not
have implemented forwarding). Thus, because in our case we had 3 instructions (mov-
and-beqz) depending on each other, the stall number in the Base-line and Optimization1
processors were 6 every time. So, with the current collapsing we avoid 6 stalls every time
that group appears. The above analysis can be shown graphically in figure 4.4.

4.3. SYNTHESIS RESULTS 85

The second row of table 4.7 shows the overall improvements of the Optimization1+2
design. The Optimization1+2 design reduced: the execution cycles by 41.4%, the in-
structions number by 34.3% and the stalls by 49.9%. Finally, table 4.7 shows an 11.8%
improvement in performance.

Although the Intel XScale core’s and the current results can not be compared, we
will attempt some comments on them:

• Firstly, if we look at tables 4.6 and 4.1, we can see that all our processors have
better performance than the XScale. The reason for that is that in our processors
we do not have memory hierarchy, but we only have an instruction memory and
a data memory, thus we need 1 cycle to load and store to memory. On the other
hand the XScale needs 1 cycle for a cache-hit and 170 cycles for a cache-miss.

• Another interesting thing is that the XScale needs much fewer instructions than
our processors for the same benchmark. Remember also that the benchmark has
been simplified a lot in order to compile and execute in our processors. So, the
question is: why does the XScale need fewer instructions? The answer is that the
ISA of the XScale (ARMv5TE compatible) has 32-bit instructions and also consists
of instructions with 3 registers (2 source and 1 destination registers). This means
that the XScale processor does not need to change a source register to save its
result. On the other hand our processor, which uses the one of the two available
registers (in the instruction word) as a source-destination, needs more instructions
to store and load registers into other registers or into memory.

• We can also observe a difference of the processors in the xor appearance-number.
That could happen for two reasons. The first reason is that we do not know how the
compiler of the XScale maps the C-code into assembly. The second reason is that
we have removed the CRC-generation-table function from the second benchmark,
which used a lot of xor instructions.

Summarizing, in the current section we have succeeded in decreasing the execution
cycles to almost half of the Base-line processor and to also increase its performance. The
% comparison between Optimization1 and Optimization1+2 designs with the base line
design, is shown clearly in table 4.7. The power and energy results -after synthesizing-
are following in section 4.3.

4.3 Synthesis Results

In this section we are performing the power, energy, area and timing analysis of our
processors by running the selected benchmarks. In order to achieve that we have synthe-
sized -with Synopsys tools- our processor designs which are the Base-line, Optimization1
and Optimization1+2 processors. We have used a 90-nm CMOS technology for ASIC.
We have selected to run our processor at 20MHz, however we could run it for a lower
frequency. The problem with lower frequencies would be that the leakage power would
become a significant portion of the total power consumption. Thus, we have used 20MHz

86 CHAPTER 4. CO-PROCESSOR EVALUATION

to obtain more meaningful dynamic power result2. Finally, we have used Modelsim for
simulating our designs and executing our benchmark.

After synthesizing our designs we were able to get area and timing results which are
shown in table 4.9. There we can see that the area increases slightly as we move from the
Base-Line to the Optimization1 processor and from Optimization1 to Optimization1+2.
This is what we have expected because we have added more hardware to Optimization1
and Optimization1+2 designs, as it has been explained in section 3.4. Regarding timing,
we can see that the frequency increases slightly as we are optimizing our design.

Base-Line Optimization1 Optimization1+2

Area (Logic units) 55295 55959 59158
Critical path (ns) 11.31 11.11 10.83

Table 4.9: Area results and critical-path of the three processor designs.

Then, for getting dynamic power results, we have to run our benchmark in our
processors in order to get the switching activity. The synopsys tool must be fed with
that activity, which will produce the dynamic power. We have used Modelsim to simulate
our processors and to run our benchmark, in order to check the functionality and get the
switching activity. First, we have tried to run the whole benchmark in Modelsim, which
became practically impossible due to memory and timing limitations. In order to run
the whole benchmark and save its switching activity, we would need some hundreds of
GB of memory space, which we did not have. Thus, we have broken our benchmark into
smaller pieces. The pieces are the functions which are shown in table 4.10. In the first
column are presented the executed functions, in the second column the times that each
function is repeated in the complete benchmark and in the third, fourth and fifth column
are shown the execution cycles of the Base-line, Optimization1 and Optimization1+2
designs, respectively, for a single function execution. From table 4.10, it can be realized
that the keys, encryption and decryption functions have modulo included while the
empty main and the CRC-calculation functions do not. We can realize that because the
cycle number of them has been reduced. Also it can be observed that encryption and
decryption algorithms have a 27.2% and 27.6% decrease in execution cycles, respectively,
which is a lot. So, here it is shown that especially the encryption algorithm, which is
repeated 131 times, is responsible for the large improvement in execution cycles achieved
in Optimization1 design -in comparison with the Base-line-. Then, if we look at the third
column we can see, that the mov-and-beqz group appears in all the functions besides
the empty main. In comparison with Optimization1, the Optimization1+2 design has
reduced its execution cycles by 29.0% for the key construction and destruction, 21.1% for
the encryption, 20.9% for the decryption and 19.4% for the CRC-calculation functions.
Although we had the largest decrease in the key-construction and -destruction functions,
the improvement in execution cycles of the whole benchmark depends on the encryption
algorithm which runs 132 times.

It is true that, dividing our benchmark in parts, does not give us completely accurate
power and energy results. This is the price that we have to pay for acquiring synthesis

2Additionally, previous findings within the SiMS project indicate the 1-MHz or 10-MHz as the nominal
order of magnitude for implants

4.3. SYNTHESIS RESULTS 87

times Base-line Optimization1 Optimization1+2
repeated #cycles #cycles #cycles

empty main 1 251 251 251
keys 2 70812-251=70561 66302-251=66051 47102-251=46851
encryption 131 132984-251=132733 96871-251=96620 76391-251=76140
decryption 1 131055-251=130804 94917-251=94892 75077-251=74826
crc calculation 132 8252-251=8001 8252-251=8001 6652-251=6401

Table 4.10: Functions for simulation.

results within a reasonable time frame. The more we increase the benchmark’s execution
cycles, the better accuracy we get because in the beginning of every program a power-
peak is taking place. So, in order to eliminate that peak, the benchmark must run
relatively long, for resulting in a better average power consumption. Another idea for
getting power and energy results, would be to run the whole benchmark for 100B and to
get exact power results. The problem in such a case would be in power and especially in
energy consumption calculation. That is because the proportions inside the benchmark
would change. For instance, the encryption function in such a situation would run
much fewer times. As we know, the encryption function occupies the largest part of the
execution cycles, because it is repeated 131 times. In other words the power and energy
consumption are mostly depended on the encryption algorithm-and CRC-calculation
function-, so, reducing its repetition will lead to inaccurate results.

In tables 4.11, 4.12 and 4.13 are shown the power, energy and execution time results
of each design running at 20MHz. In the first column are shown the function names. In
the second column are shown the runtime -in ns-, if they were executed once. Hence,
we multiply 50ns (20MHz) with the number of execution-cycles of each function. The
execution cycles are given in table 4.10, where we can see that we subtract always the
execution cycles of the empty main in order to be more accurate. That is because all
other the functions are always running in main. In the third column we can see each
function’s average power -in uW-. The total runtime of each function is located in
the fourth column. The function’s total runtime is calculated by multiplying its single-
runtime (first column) by the repetition-times number. In the last row of this column,
we add all the total runtimes, to find the total execution time of the program. In the last
column the energy of each function, has been calculated by the known formula W = P ∗t.
In the last row of the column is shown the total-energy consumption of the benchmark.
Finally, in the last row of column three is given the total-average-power consumption
which is calculated by using again the formula P = W/t, where W is the total energy of
column five and t the total runtime of column four.

The comparison of the three designs can be seen clearer in figure 4.5. In that plot we
can see that the power consumption from Base-line to Optimization1 design increases
only by 2.2%. We were expecting to have an increase, because we have added more
hardware to Optimization1 design. On the other hand, we can see that the overall energy
decreases a lot, because the execution cycles have been reduced a lot. Specifically, the
energy decreases by 24% from Base-line to Optimization1 design. From Optimization1
to Optimization1+2, we again observe a slight increase in power (5.6%), because we

88 CHAPTER 4. CO-PROCESSOR EVALUATION

runtime(ns) average power(uW) total runtime(ns) energy(uJ)

empty main 12550 220.6 12550 0.003
keys 3528050 231.5 7056100 1.634
encryption 6636650 232.7 869401150 202.310
decryption 6540200 232.5 6540200 1.521
crc calculation 400050 231.3 52806600 12.214

Total 231.577(Avg) 935816600 217.682

Table 4.11: Power, energy and execution-timing results for the Base-line design at
20MHz.

runtime(ns) average power(uW) total runtime(ns) energy(uJ)

empty main 12550 225.3 12550 0.003
keys 3302550 233.5 6605100 1.542
encryption 4831000 236.8 632861000 149.862
decryption 4744600 236.8 4744600 1.124
crc calculation 400050 233.9 52806600 12.352

Total 236.561(Avg) 697029850 164.883

Table 4.12: Power, energy and execution-timing results for the Optimization1 design at
20MHz.

added again some more hardware. But we can again observe a decrease in energy by
16.4%. So, we have an overall increase in power by 8% while we have a 37% overall
decrease in energy (between Base-line and Optimization1+2).

The tables 4.11, 4.12 and 4.13 show that we have power and energy consumption of
micro (u) order of magnitude, which is extremely low. However, this is a 5-stage pipeline
processor which we expected to have a power consumption of some mW at least. We are
going to give some reasons why the results are so low:

• The most important reason is that our processor is not yet packaged, which means
that we have not considered power consumption due to input/output pins on the
processor. This procedure would increase a lot the power and energy consumption
of our processor.

• Our processor supports only essential instructions3 and features, in order to main-
tain low-power and -energy consuming. It does not support: forwarding, com-
plex branch-prediction (supports always not-taken), parallelism of functional units,
floating-point operations and dedicated hardware for multiplication and division.

• Additionally, the processor does not consist of a complex memory system, so it
does not need a memory manager which supports it, which would mean more
hardware. There are only two 16-KB memories (instruction and data memories),
where everything is stored and loaded.

• Our processor operates at the low frequency of 20MHz.

3additionally, the ISA consists of 16-bit instructions

4.3. SYNTHESIS RESULTS 89

runtime(ns) average power(uW) total runtime(ns) energy(uJ)

empty main 12550 234.6 12550 0.003
keys 2342550 248.8 4685100 1.166
encryption 3807000 250.1 498717000 124.729
decryption 3741300 249.9 3741300 0.935
crc calculation 320050 245.6 42246600 10.376

Total 249.925(Avg) 549402550 137.209

Table 4.13: Power, energy and execution-timing results for the Optimization1+2 design
at 20MHz.

Figure 4.5: Power, energy and area plot.

• In comparison with the XScale core, which is manufactured with a 180-nm tech-
nology, our processor is using a 90-nm technology. The 90-nm is much less
power/energy consuming, than the 180-nm technology.

• Finally our processor has also a lot of stalls, which means that during many cy-
cles some processor-stages are idling. That means that the performance (IPC)
is low which leads to low-power consumptions. However, this does not explain
the low-energy consumption, because the energy consumption depends a lot to
the execution time. When the execution time decreases the energy consumption

90 CHAPTER 4. CO-PROCESSOR EVALUATION

decreases.

4.4 Conclusions

In this chapter we have extensively discussed the synthesis results of this work. Firstly,
the reason has been indicated of selecting scenario10 -as the most representative scenario-
for being our benchmark. Then, has followed the evaluation of all three implemented
processors. Their comparison showed an overall decrease in execution cycles between
the base-line and the Optimization1+2 design of 41.4%, an overall decrease in executed
instructions number of 34.3%, an overall performance improvement of 11.8% and an
overall decrease in energy of 37%. All the above improvements came at the cost of
only an 8% overall increase in power and a 7% increase in area. In table 4.14, are
shown clearly the improvements of the Optimization1 and Optimization1+2, designs in
comparison with the base line design.

Area Power Energy Execution time

Optimization1 +1.2% +2.2% -24.3% -25.6%

Optimization1+2 +7% +8% -37% -41.4%

Table 4.14: Comparison of the Optimization1 and Optimization1+2 designs, with the
base line processor, in terms of area, power, energy and execution time.

Conclusions 5
In this thesis has been explained why Implantable Medical Devices (IMDs) use processors
for their functionality and why they need wireless communication with the outside world.
However, the wireless communication part adds the need for communication security-
implementation. Of course, the processor usage in addition with the communication part
increases the power and energy demands of the IMD. This work has given a solution to
these problems. A secure-system architecture coupled with a communication protocol
have been described. In this system architecture, the IMD has been divided in two
parts: the main-function processor and the secure-processor. In this work have been
implemented and described the secure-processor together with its C compiler. This
chapter summarizes the contents of this work, outlines its contributions and proposes
future research directions.

5.1 Summary

As it has been explained in chapter 1, like every electronic device, implants are vulnerable
to attacks, especially when they are communicating with the outside world remotely.
Thus our goal was to achieve sufficient implant-security with the least energy and power
requirements.

Our work is part of the Smart Implantable Medical Systems (SiMS) project which
has been described in chapter 2. The goal of this project is to provide to the medical
engineers a standard framework for building an Implantable Medical Device. In chapter 2
some essential cryptographic-theory has been presented in detail which was important
for our work. Additionally, in that chapter have been described some prior works on
building secure IMDs. There, we have found interesting ideas like using Cloakers for
changing access-modes and using an RF antenna attached to the IMD for draining energy
from the external reader. When the Cloaker is present the IMD works in normal-mode
which means that the communication-security is active, otherwise the IMD works in
emergency-mode and the security is down. Finally, in chapter 2 is described the MISTY1
cryptographic algorithm, because it has been used in our implementation.

In chapter 3 our system implementation has been described. The implementation has
been done in four phases. The first phase has been the system’s architecture. The system
consists of the IMD attached to an RF antenna for gaining RF power from a reader. The
IMD is partitioned into the secure-processor and main-functionality processor. Our work
has been done on the secure processor. The second phase has been the communication
protocol selection. We have chosen our protocol to have the following characteristics; to
provide confidentiality, message authentication and message integrity. We have achieved

91

92 CHAPTER 5. CONCLUSIONS

that by using a two-way communication-protocol in combination with the MISTY1 cryp-
tographic algorithm, the CRC32 hash function and a random number. The third phase
has been the secure-coprocessor design, by using the Processor-Designer tool and the
implementation of its C-compiler, by using the Compiler-Designer. The fourth and final
phase has been the optimization procedure of that Base-line coprocessor. There has
been two optimized versions: Optimization1 and Optimization1+2. In Optimization1,
the modulo instruction has been added in the ISA, while in Optimization1+2 a new
instruction has been added according the instruction-collapsing technique.

Chapter 4 contains all the results of our work. This chapter has been divided into
three sections. In the first section we have presented the profiling results of various
benchmarks in order to select the most representative one, regarding energy and power,
for using it as benchmark for our targeted coprocessor. These benchmarks were actually
the communication protocol which accepted as inputs different scenarios. In the second
section have been shown the comparison results of the coprocessor alternative designs in
terms of execution-cycles, executed-instructions number and performance. The overall
decrease in execution-cycles between the base-line and the Optimization1+2 design has
been equal to 41.4%, the overall decrease in executed-instructions number has been
equal to 34.3% and the overall performance improvement has been equal to 11.8%. In
the third and final section the synthesis results have been presented. Thus, it consists of
area, dynamic-power and total energy results. There has been slight increase in power
and area, because more hardware has been added for the optimizations. The overall
increase in power and area has been equal to 8% and 7%, respectively, and the overall
decrease in energy has been equal to 37%.

5.2 Thesis Contributions

This thesis addressed several challenging issues regarding the design of the
communication-part of Implantable Medical Devices (IMDs), aiming mainly at providing
security and keeping low the power and energy consumption. The contributions of our
work, while trying to achieve the main goal, are the following:

• First, in this work a system architecture has been defined, which aims to provide
zero battery power-consumption. The system-design procedure has been separated
in two phases. In the first phase, the communication-part and the main-implant
module have been divided. In the second phase we have proposed attaching an RF
antenna on the communication part for gaining RF-energy from the reader.

• Then, the communication protocol has been defined. The decisions about the
communication protocol have been taken according the defined system architecture,
the system’s constraints and the possible attacks which we have determined.

• The described communication protocol has been implemented in the C language.

• We have implemented a 5-stage RISC processor to be our secure-processor. For that
processor we have also implemented its C-compiler in order to run the implemented
communication-protocol. The processor and its compiler have been implemented

5.3. FUTURE WORK 93

with the Processor-Designer and the Compiler-Designer which haven’t been used
previously in the TUDelft. Afterwards we have made two optimized version of the
processor and we have synthesized our processors as well. The overall improvement
has been equal to 41.4% in execution time, 11.8% in performance, 37% in energy
while the power increased by only 8%.

• The final contribution has been that our work is going to be used in the SiMS
project.

5.3 Future Work

In this section we are giving some ideas for further investigation regarding our work.
These are ideas are as follows:

• More research should be done on the communication protocol. For instance, find
an existing protocol which is used in passports and implement it. That would not
involve less risk than designing a new one. For our protocol we could use a MAC
instead of a CRC and remove the MAC from the encrypted data. The MAC should
include the hashing of the encrypted data, which would not require any more the
decryption of the whole message in order to compute the MAC. Additionally the
Random number scheme should be reconsidered.

• In a future work of this project, should be reconsidered to use an asymmetrical
system by using the elliptic curves cryptographic algorithm. We recommend this
algorithm because it is not so computationally intensive as other asymmetrical
cryptographic algorithms.

• More research should be done regarding the system security. For instance, to
make the system secure against jam DoS attacks or against the doctor itself. Also
research could be done for finding more potential attacks.

• More investigation is required regarding the commands the IMD receives from a
valid reader. Thus, we have left some space into the command format, for adding
more possible commands.

• If the program size becomes large, a jalr (jump and link register instruction), should
be added to the processor’s ISA. That is because the program would need to jump
to an address that cannot be described by only 12-bits that jal provides.

• Another important improvement that could be done for future work is to apply
compiler optimizations. This is a very important aspect, because a large amount
of the workload can be transfered from the processor to the compiler. This is
very useful because we do not care about how large the compiler’s workload is
while we care a lot about the processor’s. More workload in the processor is
translated into more area and more power consumption. For instance, imagine
the dependencies being located in the compiler level and not into the processor.
This would automatically mean the end of stalling and the removal of stalling’s

94 CHAPTER 5. CONCLUSIONS

hardware components (lots of comparators). Consequently, that would lead in area
and power improvement.

• The processor could also be packaged in order to measure its real power and energy
consumption. If we do that we would be sure about the amount of power that the
processor will demand to receive from the reader through the RF component.

• Continuing the above idea we should make an investigation for antenna selection.
That would mean picking a specific antenna and measuring the receivied power
amount from a specific distance. Afterwards a comparison between the received
power and the processor’s power consumption should occur and discover if the
requirements are met.

• Finally, the cloaker scheme for changing from normal to emergency mode could
be tried. That would probably add some more possible attacks and remove some
others. This would probably differentiate the protocol, as well

Appendix A
This appendix is aiming to help a new user of the Processor- and Compiler-Designer tools
to start with them faster and not to spend time at some specific points where we have de-
layed. This appendix will not give designing-details, because the manuals of the tools are
well written and is strongly recommended to be read. The documentation of both tools
is located in the ce-sims server at location ”/opt/CoWare/V2009.1.1/PD/linux/doc/”.
Additionally at /opt/applics/cosy-2008/CoSy9701/doc/cover of ce-sims server is located
a documentation of the CoSy compiler designing tool. The Compiler-Designer tool is a
simplified version of the CoSy tool, thus there tool details can be found. The Processor-
and Compiler- Designer tools are the CoWare’s property. This appendix is written
according to the manuals [5] and [4] and to our observations while working with the
tools. The screen-shots are captured from the Processor- and Compiler-Designer tools

Processor Designer
Processor-Designer tool uses the ”Language for Instruction-Set Architectures” (LISA)
modeling language for describing hardware. LISA is suited to model any architecture
that is driven by an instruction set. In other words is used for designing any kind of
processors as GPs, RISC, DSPs, ASIPs, co-processors etc. Lets see how to open and
start a project using Processor-Designer:

1. Connect to ce-sims server and type to the terminal ”ldesigner” for opening the
tool.

2. ”File → New Project” for starting a new project or ”File → Open Project” for
opening an existed one.

3. If ”New Project” has been selected, there are 3 different options:

• Empty cycle accurate or empty instruction accurate model. The instruction
accurate model it is used just for simulation and for checking functionality.
On the other hand with the cycle accurate models real pipeline-processors can
be produced. We have began our implementation by an empty cycle accurate
model.

• There also exist models written by CoWare designers. For instance there are
RISC, ASIP, VLIW and DSP processors available. You can select to work
and change one of them.

95

96 APPENDIX A. APPENDIX

• Finally skeleton models are available. They are implemented to be used as
starting points in a new design. There exist all the main parts of the processor.
If these parts are filled in correctly the processor will work.

Then we are continuing to the part where a first version of the processor has been
completed and it is ready for debugging. That could be a processor that supports
fetching an instruction, decoding only one instruction (for example addition) and finally
executing that instruction. So we are at the point where the processor is ready for its
first compiling and its first vhdl(or verilog) generation. The steps are the following:

1. Press the ”Processor-generator” button (or press F10), which appears at the panel
below the ”File, Edit, etc” panel. Then the processor generator will open.

2. Press the Add button. Then select the Create configuration for generic memory
interface.

3. Put a configuration name and go to the generation properties. Then you could
choose whatever we have chosen and which are shown in figures A.1, A.2, A.3, A.4,
A.5. After finishing the configuration press OK.

4. Then select a configuration from the list in the left (probably the one that you have
just generated). If everything has been syntactically correct the vhdl processor-
implementation will be generated.

5. The way we have selected for simulating our designs has been by using modelsim.

6. For starting the execution we must fill in the program memory with instructions.
For doing that we propose to build the assembler and the linker. In such a way
you do not have to write any program in binary for testing. The procedure for
simulating with modelsim is the following:

• Configure the linker by the including the following text file(linker.cmd) in the
bin folder of your project, which is located there where the assembler(lasm)
will be appeared :

MEMORY

PROG : origin = 0x00000000, length = 0x2000
DATA : origin = 0x00002000, length = 0x4000, bytes=1

SECTIONS

.text: load = PROG

(.boot)
(.text)

97

.data: load = DATA

.rodata: load = DATA

.bss: load = DATA

(.bss)
(COMMON)

.boot: load = PROG *(.empty)

The important information that will change between different imple-
mentations are the PROG and DATA lines in MEMORY section. There
you must specify to the linker where do the program and data memory
begin and where do they end. In our case the program memory begins at
address 0x0 and ends at address 0x2000. Which means that there are 0x2000
words for the program memory. The word width in our program memory
is 16-bits(2-bytes), which results in 16KB memory. The alignment in that
situation is the same with the words, namely 2-bytes. The data memory
begins in address 0x2000 and contains 0x4000 words(1-byte) which results in
16KB memory. The above is very important for the alignment of the data
memory. If this file is not included the program will probably overwrite data
in data memory, especially if a compiler is built.

• After doing that press ”Build-Assembler+Linker” from the second panel of
the main Processor-Designer’s window. Then in bin directory of your project,
the assembler (lasm) and linker (llnk) will be generated. Then we can write
an assembly code as the following:

.text

addi r1,0xff
sftl r1,8
addi r1,0xff
sftl r1,8
addi r1,0xff
sftl r1,8
addi r1,0xff
nop
nop
nop
sw r1,r0

Be careful to leave a whitespace at the start of each line of the assem-
bly code.

• Then assemble the desired file by using:

./lasm yourFileName.s

98 APPENDIX A. APPENDIX

./llnk yourFileName.lof linker.cmd

After that a a.out executable file will be generated.

• Copy the a.out file in hdl gen folder (is located, where bin is located).

• There you should run the command: ”exe2txt -i hdl memory configuration.txt
-e a.out”. This command will produce from the executable, the program
and data memories, which are called contents prog mem.mmap and con-
tents data mem.mmap respectively.

• Then copy these two files into ”.../hdl gen/vhdl/sim modelsim” in order to
become your processor’s program and data memories. Then go into this di-
rectory.

• Then run ”./CreateMakefile” for generating the work directory. Run this
command only at the first time and when the vhdl code has been changed.

• Finally run ”make gui” for opening the modelsim simulator. There by watch-
ing into the register-file, in the data memory and the vhdl signal it is possible
to debug your processor. If there is a problem you must return back and
correct it at lisatek level and NOT in VHDL.

This is the procedure that we have followed for simulating and debugging our
processor. Ofcourse if you read more carefully the manual you could find more and
probably more efficient ways for that.

Now we are going to say a few words about designing a cycle-accurate processor with
Processor-Designer tool. The basic structure of the LISA language is derived from the
following distinction:

• The storage elements: The storage elements (also called resources in LISA) can
be, (pipelined)registers, global variables, I/O pins and memories. The resources
are global and they can be used by any operation in the program.

• The operations: They describe instructions and instruction-dependent functions
such as the fetch mechanism. Each operation can have four discrete sections:

– Declaration: in this section are declared LABELS, Instances, References,
GROUPS, etc, which are used for exchanging information between discrete
operations.

– Syntax: This section specifies the assembly syntax and connects each instruc-
tion with Operations and its binary representation.

– Coding: This section specifies the binary representation of the instruction.
The syntax and the coding sections are used by the tool for building the
assembler.

– Behavior: In the section the functionality of each operation is implemented.

Follows an operation example:
INSTRUCTIONri typeINpipe.DE

99

Figure A.1: Target Settings.

{
DECLARE
{
GROUPopcode = {sftr||sftl||sftru||li||addi||subi};
GROUPrd = {reg};
GROUPimm = {immd8};
}
CODING{opcoderdimm}
SY NTAX{opcode ””rd”, ”imm}

BEHAV IOR
{
OUT.opr1 = GPR[rd];
OUT.opr2 = imm;
OUT.opr dest = rd;

byte mem en = false; //isnotgoingtoread/writeabyte

100 APPENDIX A. APPENDIX

Figure A.2: Advanced HDL Generation Settings.

OUT.wr en = true;

if((EX.IN.wr en&&(EX.IN.opr dest == rd))||(MEM.IN.wr en&&(MEM.IN.opr dest ==
rd))||(WB.IN.wr en&&(WB.IN.opr dest == rd)))
{
stall en = true;
}
else{
stall en = false;
}

temp wren = false;
temp rd mem en = false;

101

Figure A.3: Script Generation, ”RTL Simulation” tab.

}

ACTIV ATION{opcode}

}
Explanation:
GROUP: This word is used for building an operation hierarchy. For instance in our
example we have a group called opcode which contains all the immediate format
instructions. These instructions are described further in different operations. Activation
is a keyword that is called for jumping in other operation. In our case we are jumping

102 APPENDIX A. APPENDIX

Figure A.4: Script Generation, ”Design Compiler Synthesis” tab.

in one of the opcode operations.

For the processor implementation there must always exist a fetching mechanism as
well as the main and reset operations. The fetching mechanism increases the Program
Counter and reads an instruction from the program memory.

Compiler Designer
The Compiler-Designer tool automatically builds the front-end of a C-compiler. So,
only the back-end is left to the user for implementation. The back-end consists of the
following parts:

103

Figure A.5: Memory settings.

• Matching: The compiler maps the C-code to assembly instructions. The designer
must define the rules that binds C-code to assembly.

• Register Allocation: The compiler assigns registers to variables. The designer
must specify to the tool the available registers and their purpose.

• Scheduling: The compiler puts the code in an an order regarding the architecture
latency constraints and optimizations. If the designer wants a scheduler should
specify the dependencies and their latency.

• Emit: After the compiler completes the above operations produces the assembly
file.

Register Allocation: In figure A.6, we show the allocatable registers of our design,
which the compiler is free to use for assigning variables and values. From these
registers are missing the stack-pointer (r14) the fp (r13) and r12. r12 is not allo-
catable because we have chosen to use it as a temporary register in our matching
rules. The stack- and frame-pointer are used only by the stack. Additionally in
figure A.7, are shown the callee-changed registers and the registers that can be used
as input (and output) to (from) functions. The registers that are not specified at
the callee-changed list are the caller-changed registers.

Matching: As we have already mentioned in section 3.5 the front-end creates and then,
provides to the back-end an Internal Representation (IR) of the C program in the
form of a tree. The nodes of the tree are called mir (medium-level IR). Then,
the back-end matches assembly instructions to the IR representation. The IR
representation of a simple piece of C code is shown in figure A.8.

Let’s describe a bit the figure. The mirContent node is created when a load from
memory appears in C. In our example we need to load the value of b from memory,

104 APPENDIX A. APPENDIX

Figure A.6: Allocatable Registers.

thus the mirContent appears. Clearly the mirContent needs to get as input the
memory address of b variable. That is why the mirObjAddr node exists, which
feeds the mirContent with the b address. MirIntConst node describes a constant
value, which in our example is the 1. Then, the mirPlus describes that there exists
an addition. In our case that addition is between a loaded value and a constant.
Finally, the mirAssign node describes the storing of the addition result to the (right
mirObjectAddr node) memory address of a.

The matcher’s work is to map the whole IR tree into assembly instructions. This
is done through rules, which map patterns of mir nodes to assembly instructions.
Such rules are shown also in figures in section 3.5.

Scheduling : In figure A.9 is shown the scheduler tab. We did not occupy with the
scheduling part in our work.

We continue by describing how to use the tool. As we have mentioned to the Pro-
cessor Designer part, before building the compiler, the ISA should already be imple-
mented. So, we assume that the processor and its ISA have been implemented by

105

Figure A.7: Argument and callee-changed/caller-changed registers.

Figure A.8: CCMIR Tree(source from C Compiler Designer Guide).

106 APPENDIX A. APPENDIX

Figure A.9: Scheduling tab.

the Processor Designer. From the Processor Designer main window we press the but-
ton for opening the Compiler Designer. If we try to build the compiler at that point,
the tool will return errors which informs that essential rules are missing (as the stack
management rules). Hence, our first work, after the allocating registers, is to specify
these essential rules until no error appears. When the compiler is built for the first
time the lcc driver and the lisacc compiler are created in the ”.../bin” folder of the
project. The lcc driver just calls, in the following order: the compiler (lisacc), the
assembler (lasm) and the linker (llnk). The next step after the initial compiler con-
struction is to test some C programs. At first we test programs that only consist of the
main() function. Such programs are provided together with the tool and are located in
folder ”/opt/CoWare/V2009.1.1/PD/linux/cosy/lib/compilertrainer/src” in the ce-sims
server. The designer after selecting the compiler features he wants to support, he choses
and tries to compile the related programs included in there. Usually most of the programs
in Level0 folder should be able to compile. When the compiler is not able to compile a
certain program returns which rule is missing. In that case the designer should return
to the Compiler Designer and add that rule. In the case where the program consists of

107

functions along with the main one, the designer should take care of it. For instance, we
did the following:

• We compiled the program by using the lcc -S program.c command which created
the program.s assembly file.

• Then we added in the beginning of the .text part of the assembly file (program.s)
the next assembly instructions:
li r1 , ((main >> 8)&0xff)
sftl r1 , 8
addi r1, (main&0xff)
li r14 , 0x1f
sftl r14 , 8
addi r14 , 0xfc
jr r1 , r0

The above code makes the program counter (PC) to jump to the main()
function and also initializes the stack-pointer (r14), to the last data memory
address.

• It is a good idea to remove the jr r15, which appears at the end of the assembly,
which returns the PC in the beginning of the instruction memory. If this instruc-
tions is left there the program will loop and it will be difficult to be debugged in
the Modelsim simulator.

After the a.out execution program is created, we then continue as we described in
the Program-Designer part.

Possible problems while building the compiler are following:

• Missing rules

• Mistake in the mapped assembly of a rule

• Mistake in the processor itself

108 APPENDIX A. APPENDIX

Bibliography

[1] Misty1 RFC, http://tools.ietf.org/html/rfc2994, November 2000.

[2] Modern Compiler Design, Wilet, 2000.

[3] SiMS project, http://sims.et.tudelft.nl, September 2005.

[4] CoWare, C Compiler Design Guide.

[5] CoWare, Processor Design Guide.

[6] C.Strydis, ”Suitable cache organizations for a novel biomedical implant processor”,
The 26th IEEE International Conference on Computer Design, Lake Tahoe, Cali-
fornia, USA (2008).

[7] C.Strydis and G. N. Gaydadjiev, ”The Case for a Generic Implant Processor”, 30th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC 08), pp. 3186-3191, Vancouver, Canada (2008).

[8] C.Strydis, G.N. Gaydadjiev, and S.Vassiliadis, ”A New Digital Architecture For
Reliable, Ultra-Low-Power Systems”, Proceedings ProRISC 2006, November 2006,
pp. 350–355.

[9] C.Strydis, G.N.Gaydadjiev, and S.Vassiliadis, ”An extensive survey of microelec-
tronic implants”, ACES (2006).

[10] Dhara Dave, ”Automated Implant-Processor Design”, August 2010.

[11] D. Halperin et al, ”Pacemakers and Implantable Cardiac Defibrillators: Software
Radio Attacks and Zero-Power Defenses”, IEEE Symposium on Security and Pri-
vacy (2008).

[12] D.Halperin et al, ”Security and privacy for Implantable Medical Devices”, IEEE
(2008).

[13] E. Freudenthal et al, ”Practical Techniques for limiting disclosure of RF-equipped
medical devices”, IEEE (2007).

[14] G. Contreras et al, XTREM: A Power Simulator for the Intel XScale Core,
LCTES04 (2004).

[15] H. Chae et al, ”Maximalist Cryptography and Computation on the WISP UHF RFID
Tag”.

[16] Kasper B. Rasmussen et al, ”Proximity-based Access Control for Implantable Medical
Devices ”, CCS’09 (2009).

[17] S.K.S. Gupta et al, ”Criticality Aware Access Control Model for Pervasive Applica-
tions”, IEEE (2006).

109

110 BIBLIOGRAPHY

[18] Sriram Cherukuri et al, ”BioSec: A Biometric Base Approach for Securing Commu-
nication in Wireless Networks of Biosensors Implanted in the human body”, IEEE
(2003).

[19] T. Denning et al, ”Absence makes the heart grow fonder: new directions for im-
plantable medical device security”, (2008).

[20] J. Hennessy and D. Paterson, Computer architecture book, D. Penrose, 1990.

[21] Z. Herczeg and D. Schmidt, Energy simulation of embedded XScale systems with
XEEMU, Journal of Embedded Computing - PATMOS 2007 selected papers on low
power electronics (2009).

[22] Behrooz Parhami, Computer arithmetic algorithm and hardware designs, Oxford
University Press, 2000.

[23] D. P. Riemens, C. Strydis, and G.N. Gaydadjiev, ”Exploring suitable adder designs
for biomedical implants”, November 2010.

[24] C. Strydis, Implantable microelectronic devices, pp. 171, July 2005.

[25] C. Strydis and G. N. Gaydadjiev, ”Profiling of Lossless-Compression Algorithms for
a Novel Biomedical-Implant Architecture”, The 6th IEEE/ACM/IFIP international
conference on Hardware/Software codesign and system synthesis, pp. 109-114, At-
lanta, Georgia, USA, October 2008 (2008).

[26] C. Strydis, G.N.Gaydadjiev, and S.Vassiliadis, ”A generic digital architecture and
compiler for implantable devices”, ACES (2005).

[27] C. Strydis, C. Kachris, and G. N. Gaydadjiev, ”ImpBench: A novel benchmark suite
for biomedical, microelectronic implants”, The 26th IEEE International Conference
on Computer Design, Lake Tahoe, California, USA (2008).

[28] C. Strydis, D. Zhu, and G. N. Gaydadjiev, ”Profiling of Symmetric-Encryption
Algorithms for a Novel Biomedical-Implant Architecture”, CF’08 (2008).

[29] J.C.A. van der Lubbe, ”Basic Methods of Cryptography”, VSSD, 1998.

