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SUMMARY

The moving parts in a mechanical device often rely on rolling or sliding contacts such
as in ball bearings to gain motion. These suffice in many applications, but the friction
inherent to their working principle limits their motion repeatability and thereby their
precision. Flexure mechanisms are a popular alternative in the field of precision en-
gineering because they gain motion by elastic deformation of slender segments such as
thin spring steel plates, resulting in a highly repeatable motion due to the absence of fric-
tion and play. Furthermore, they are lubricant-free and do not generate particles, which
makes them suitable for applications in space, astronomy, the semiconductor industry,
and healthcare.

A drawback of flexure mechanisms is their limited range of motion compared to their
build volume, which results in voluminous designs and which limits their application
field. Their range is limited by material stress but also because at large displacements
the stiffness in their support directions decreases significantly, and their actuation effort
increases at large deflections, resulting in high energy consumption and heat generation.
Increasing the motion range would highly benefit the field of precision engineering and
could also lead to innovations in healthcare or space.

The motivation for this thesis is the observation that the vast majority of flexure
mechanisms consist of initially straight and stress-free flexures. Recent developments
in fabrication methods such as the additive manufacturing of steel are providing the
possibility to create more complex shapes, which could improve the range of motion
of flexure mechanisms.

The objective of this thesis is to provide design strategies to increase the motion
range of flexure mechanisms. The thesis consists of two parts, of which the first (chap-
ters 2-4) focuses on a new method to design stressed and curved flexures. The second
part (chapters 5 and 6) further develops a recent strategy to increase the range of motion
using torsion reinforcement structures.

In the first part of this thesis the stress and geometry (STAGE) method is proposed,
which can be used to design the stress and geometry of flexure mechanisms simultane-
ously for a specified state. This allows designers to control at which point in the displace-
ment range the flexures are curved and stressed, which in turn enables the design of ini-
tially curved and stressed flexures. The main contribution of the method is that it explic-
itly distinguishes between the functional geometry and the fabrication geometry, which
are commonly regarded as equal. The method is valid for large displacements with-
out simplifying the mechanics, by using the relatively unknown inverse finite-element
method. The STAGE method gives insight in the achievable stress fields by providing a
graphical approach. It shows that the stress field of a flexure mechanism can be designed
independently from its geometry and vice versa if it is statically determinate, if bending
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stresses dominate, and if it consists of slender flexures with constant cross sections. If
this is not the case, a parameter sweep can be used as demonstrated in chapter 3.

The potential of the STAGE method is demonstrated by creating initial stress fields
in commonly used flexure mechanisms with the goal of reducing peak stress or actua-
tion force at large displacements. In the well-known crossed-flexure pivot design, a peak
stress reduction of 23% is achieved. The actuation force of a folded leaf spring linear
guide mechanism is decreased by 96%, at the cost of an increase of 45% in peak stress.
A different initial stress field in the latter mechanism results in a simultaneous reduc-
tion of actuation force (35%) and peak stress (28%), which is a surprising result because
commonly a trade-off has to be made between these two properties. After assembly, the
redesigns attain the functional geometry, which was originally intended by the designer.
This means that existing flexure mechanisms could be replaced by their redesigned ver-
sions without changes in their geometry and without changing their attachment points
in the machine.

Experiments validate the theoretically predicted peak stress and actuation force re-
duction. Additional experiments showed that the functional geometry is well attained
after assembly, with geometric deviations in the order of half the thickness of the flex-
ures. The flexures were fabricated using wire-electrical discharge machining, which is a
proven fabrication method in industry.

Chapter 4 shows that curved flexures can be used to create a folded leaf spring with
a high support stiffness at large displacements, and that, theoretically, a combination of
different elements can be used to create a high support stiffness in the whole motion
range. It is likely that the same approach will benefit other flexure designs.

In the second part of this thesis, the recent ‘torsion reinforcement’ strategy is further
developed and generalized. In chapter 5, torsion reinforcement structures are added to
a folded leaf spring, which increases its constraints from one to three. This enables the
design of a linear guide with only two flexure elements instead of the five (or six) folded
leaf springs as in pre-existing designs. Both the pre-existing and the new design are opti-
mized on support stiffness and then compared. The support stiffness of the new design
is twice as high as the pre-existing design, while occupying a 33% smaller and -perhaps
more importantly- a less obstructive build volume. The models used to assess the sup-
port stiffness were validated by experiments.

In chapter 6, a generalization of the blade flexure with a single torsion reinforcement
structure is presented in the form of a tetrahedron-shaped element. Using this element,
two new spherical joint designs are conceived. These joints allow a large motion range
without intermediate bodies, which is new with respect to the state of the art. Analytic
equations are presented for the support stiffness of the element in its undeflected state,
and compared to finite-element simulations.



SAMENVATTING

De bewegende onderdelen in een mechanisch apparaat werken meestal op basis van rol-
lende of glijdende contacten, zoals in kogellagers. Deze voldoen in veel gevallen maar de
herhalingsnauwkeurigheid (precisie) die ermee behaald kan worden is beperkt door de
wrijving die onvermijdelijk ontstaat tussen de contactvlakken. Als alternatief worden in
de precisietechniek elastische mechanismen gebruikt. Deze werken op basis van elasti-
sche vervorming, bijvoorbeeld door dunne platen van verenstaal (bladveren) die buigen
om zo een beweging toe te laten. Door de afwezigheid van contactvlakken is er geen
wrijving of speling, wat resulteert in een zeer hoge herhalingsnauwkeurigheid. Boven-
dien zijn er geen smeermiddelen nodig en worden er geen deeltjes gegenereerd, hetgeen
ze erg geschikt maakt voor toepassingen in de ruimte, astronomie, de halfgeleiderindu-
strie en de gezondheidszorg.

Een nadeel van elastische mechanismen is hun beperkte bewegingsbereik. Dit resul-
teert in grote benodigde bouwvolumes, wat het toepassingsgebied beperkt. Het bereik
wordt beperkt door materiaalspanningen, maar ook omdat bij grote verplaatsingen de
stijfheid in de ondersteunende richtingen aanzienlijk afneemt, en omdat de benodigde
actuatiekracht toeneemt, wat resulteert in een hoog energieverbruik en warmteontwik-
keling. Het vergroten van het bewegingsbereik zou de precisietechniek ten goede komen
en zou ook kunnen leiden tot innovaties in de zorg of de ruimtevaart.

De motivatie voor dit proefschrift is de observatie dat de overgrote meerderheid van
elastische mechanismen uit dezelfde, aanvankelijk rechte en spanningsvrije bladveren
bestaat. Recente ontwikkelingen in fabricagemethoden, zoals de additieve fabricage van
staal, bieden de mogelijkheid om complexere vormen te creëren, wat het bewegingsbe-
reik van elastische mechanismen zou kunnen verbeteren.

Het doel van dit proefschrift is om ontwerpstrategieën te presenteren waarmee het
bewegingsbereik van elastische mechanismen vergroot kan worden. Het proefschrift be-
staat uit twee delen, waarvan het eerste (hoofdstukken 2-4) zich richt op een nieuwe
methode om initieel gespannen en gebogen bladveren te ontwerpen. In het tweede deel
(hoofdstukken 5 en 6) wordt een recente strategie verder ontwikkeld die gebaseerd is op
het verstijven van de torsierichting van bladveren, waardoor het bewegingsbereik ook
vergroot kan worden.

In het eerste deel van dit proefschrift wordt de ’Stress and Geometry’ (STAGE) me-
thode gepresenteerd die bedoeld is om de spanning en geometrie van elastische me-
chanismen gelijktijdig te ontwerpen, in een bepaalde stand van het mechanisme. Hier-
door kunnen ontwerpers bepalen in welke stand van het mechanisme de bladveren ge-
bogen en gespannen zijn, wat het op zijn beurt mogelijk maakt om aanvankelijk gebo-
gen en gespannen bladveren te ontwerpen. De belangrijkste bijdrage van de methode is
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dat deze expliciet onderscheid maakt tussen de functionele geometrie en de fabricage-
geometrie, die over het algemeen als gelijk worden aangenomen. De methode is bruik-
baar voor grote verplaatsingen zonder de mechanica te vereenvoudigen, doordat ge-
bruik gemaakt wordt van de relatief onbekende inverse eindige-elementenmethode. De
STAGE-methode geeft inzicht in welke spanningsvelden haalbaar zijn, door middel van
een grafische benadering. De methode laat zien dat het spanningsveld van een elastisch
mechanisme onafhankelijk van zijn functionele geometrie kan worden ontworpen en
vice versa onder de voorwaarden dat het mechanisme statisch bepaald is, buigspannin-
gen domineren en het bestaat uit slanke elementen met constante doorsneden. Als dit
niet het geval is, kan een parameter sweep worden gebruikt zoals aangetoond in hoofd-
stuk 3.

Het potentieel van de STAGE-methode wordt aangetoond door initiële spanningsvel-
den te creëren in bekende elastische mechanismen met als doel de piekspanning of ac-
tuatiekracht bij grote verplaatsingen te verminderen. In het bekende kruisveerscharnier
wordt een piekspanningsreductie van 23% bereikt. De actuatiekracht van een rechtgelei-
dingsmechanisme met gevouwen bladveren wordt verminderd met 96%, ten koste van
een toename van 45% in piekspanning. Een ander initieel spanningsveld in hetzelfde
mechanisme resulteert in een gelijktijdige vermindering van de actuatiekracht (35%) en
piekspanning (28%), wat een verrassend resultaat is omdat er gewoonlijk een afweging
moet worden gemaakt tussen deze twee eigenschappen. Na montage van de heront-
worpen mechanismen nemen zij de functionele geometrie aan die oorspronkelijk was
ontworpen. Dit betekent dat bestaande elastische mechanismen kunnen worden ver-
vangen door hun herontworpen versies zonder veranderingen in hun geometrie en zon-
der hun bevestigingspunten in de machine te veranderen.

De theoretisch voorspelde piekspanning en reductie van de actuatiekracht zijn beide
gevalideerd met experimenten. Aanvullende experimenten toonden aan dat de functi-
onele geometrie goed wordt bereikt na montage: de geometrische afwijkingen zijn in
de orde van de helft van de dikte van de bladveren. De bladveren zijn vervaardigd door
middel van draadvonken, wat een beproefde fabricagemethode is in de industrie.

Hoofdstuk 4 laat zien dat initiële krommingen kunnen worden gebruikt om een ge-
vouwen bladveer te creëren met een hoge ondersteuningsstijfheid bij grote verplaatsin-
gen, en dat theoretisch een combinatie van verschillende elementen kan worden ge-
bruikt om een hoge ondersteuningsstijfheid in het gehele bewegingsbereik te creëren.
Het is waarschijnlijk dat dezelfde aanpak andere ontwerpen van elastische elementen
ten goede zal komen.

In het tweede deel van dit proefschrift wordt de recente strategie die gebruik maakt
van torsieverstijvingen verder ontwikkeld en veralgemeniseerd. In hoofdstuk 5 worden
torsieverstijvingsstructuren toegevoegd aan een gevouwen bladveer, waardoor deze niet
één maar drie vrijheidsgraden onderdrukt. Dit maakt het mogelijk om een rechtgelei-
ding te ontwerpen met slechts twee elementen in plaats van de vijf (of zes) gevouwen
bladveren zoals in reeds bestaande ontwerpen. Zowel het reeds bestaande als het nieuwe
ontwerp worden in het hoofdstuk geoptimaliseerd op ondersteuningsstijfheid en ver-
volgens vergeleken. De ondersteuningsstijfheid van het nieuwe ontwerp is twee keer zo
hoog als het reeds bestaande ontwerp, terwijl het 33% kleiner en - misschien nog belang-
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rijker - een minder hinderlijk bouwvolume inneemt. De modellen die zijn gebruikt om
de ondersteuningsstijfheid te beoordelen, worden door experimenten gevalideerd.

In hoofdstuk 6 wordt een veralgemenisering van de bladveer met een enkele tor-
sieverstijvingsstructuur gepresenteerd in de vorm van een tetraëdervormig element. Er
worden twee elastische sferische gewrichten (vergelijkbaar met kogelgewrichten) gepre-
senteerd die opgebouwd zijn uit dit element. Deze gewrichten hebben een groot bewe-
gingsbereik zonder gebruik te maken van grote tussenlichamen, wat nieuw is ten op-
zichte van de huidige literatuur. In het hoofdstuk worden analytische vergelijkingen ge-
presenteerd die de ondersteuningsstijfheid van het element in zijn ongebogen stand uit-
drukken. De vergelijkingen zijn gevalideerd met behulp van eindige-elementensimulaties.





PREFACE

This thesis is about a fascinating type of structures which seem to have a will of their own.
Unlike regular structures, they allow some very specific motions and stubbornly resist
anything else. They become even more magical when the displacements they allow are
large, and this is exactly what this thesis is about.

Although my main motivation for this work was fascination, another important mo-
tivation was that these magical structures are actually called flexure mechanisms and are
used in all kind of applications, as described in the Introduction. It was not difficult to
keep these applications in mind and still do quite fundamental research, by focusing on
linear and rotary motions and keeping material stresses within the limits of currently
available materials. After all, many machines and devices require linear guides and ro-
tation hinges.

The thesis is structured in the form of peer-reviewed articles, instead of a mono-
graph. Each article contains its own specific Introduction, Discussion and Conclusion,
and additionally, shorter and more general versions of these sections are provided to put
the complete work into perspective.

Jelle Rommers
The Hague, May 2022
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1
INTRODUCTION

This chapter introduces the objective and motivation for this thesis from the perspective
of precision engineering. Flexure mechanisms are popular elements in the precision in-
dustry because they do not suffer from friction or play, but are limited to small range of
motion applications. This thesis aims to provide design strategies to increase this range
and consists of two parts. The first part focuses on a design method which helps to design
initially curved and stressed flexures which help to decrease peak stresses, decrease actu-
ation force, and increases support stiffness, all at large displacements. The second part
further develops and generalizes a recent strategy to increase the range of motion using
torsion reinforcement structures.

1
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2 1. INTRODUCTION

1.1. FLEXURE MECHANISMS
Whether the goal is to transform energy, force or motion [1, 2], mechanical devices need
moving parts to do their work. These parts commonly rely on rolling or sliding contacts
such as ball bearings to gain motion. If high precision is required, these do not suffice:
even a perfect cylinder on a perfectly flat surface will experience micro-slip because it
is compressed when loaded [3], resulting in poor motion repeatability. Active bearing
principles such as magnetic levitation provide high precision by avoiding contact, but
cannot be used in many applications due to their energy consumption and heat build-
up.

A unique solution is provided by flexure mechanisms, which combine a passive na-
ture and high precision by using elastic deformation to gain motion. Figure 1.1a shows
a flexure mechanism consisting of steel bodies connected by thin strips known as blade
flexures or leaf springs, which bend to allow motion of the end effector in the x- and
y directions. Movements in the other, undesired directions have a stiffness which is or-
ders of magnitude higher. Elastic deformation is highly repeatable because it is free from
friction and play. Also, lubricants are not needed and no particles are generated, which
makes flexure mechanisms highly suitable for vacuum environments and medical ap-
plications.

A drawback of flexure mechanisms is their limited range of motion, which is typ-
ically in the order of magnitude of the thickness of their flexures. In current designs
there is a trade-off between motion range and other desired properties such as small
build volume, low peak stresses, low stiffness in the motion direction, high stiffness in
the supporting directions and high load bearing capacity. Improving the motion range
of flexure mechanisms would highly benefit the precision industry (think of lithography
systems) by increasing their application area, and perhaps even replacing active systems.
It could also lead to innovations in healthcare, for example in bending-based orthoses
which could be worn underneath clothing [4], contamination-free surgical tools [5], or
additively manufactured tools for minimally-invasive surgery [6].

After a long period of research on flexure mechanisms with articles dating back ninety
years [7], only recently a significant improvement has been made on the range of motion
problem. The new flexure hinge designs from [8] and [9] have a total range of 40◦ and
80◦, respectively, without the common dramatic decrease in support stiffness. This is a
major improvement compared to state-of-the-art designs which rarely reach 10◦ [8, 10].
The strategy in the new designs is to increase the support stiffness of a blade flexure at
large deflections by adding triangular ‘torsion reinforcement structures’ which will be
explained in chapter 5.

1.2. POTENTIAL FOR IMPROVEMENT
In addition to the torsion reinforcement strategy, two other potential ways to improve
the range of motion of flexure mechanisms are identified, forming the basis for this the-
sis.

Firstly, it is observed that the vast majority of flexure mechanisms consists of flat
blade flexures (leaf springs) or straight slender rods known as wire flexures. This holds
for planar mechanisms such as the example in Fig. 1.1a, but also for spatial mechanisms:
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Figure 1.1: (a) Flexure-based xy-stage fabricated by conventional wire-electrical discharge machining [11, 12];
(b) Flexure-based tip-tilt mechanism fabricated by additive manufacturing [13], showing the same blade flex-
ure designs despite the improved design freedom.

Figure 1.1b shows a tip-tilt flexure mechanism design, fabricated by additive manufac-
turing of a titanium alloy. Although it is a complex spatial design, its flat blade flexures
do not differ from the blade flexures in the more conventional planar design in Fig. 1.1a,
fabricated by conventional wire electrical discharge machining. Flat blade flexures be-
come curved during motion of the mechanism, which dramatically reduces their sup-
port stiffness and thereby limits their motion range [8]. The recent developments in ad-
ditive manufacturing of steel make it possible to create more complex geometries, but
this design freedom is not used to its full potential.

A second observation is that flexures are generally designed as stress-free in the initial
position of the mechanism. Current design methods for flexure mechanisms consider
stress as a secondary, limiting factor. This is remarkable because stresses are known
as a useful design parameter in other areas of engineering, for example to reduce the
stresses in concrete by using preloaded rods or to reduce the load cycle amplitude of
stresses by preloading bolts such as in combustion engine heads. Stress is one of the
major factors limiting the range of motion of flexure mechanisms, causing fatigue failure
and increased actuation effort.

1.3. OBJECTIVE
The objective of this thesis is to provide design strategies to increase the motion range of
flexure mechanisms. This objective is subdivided into two subgoals.

The first subgoal is to develop a design method which helps to exploit the potential
of initially stressed and curved flexures. The method should enable designers to use
curvature and stress as design variables, instead of side-effects that only occur once the
mechanism is moving. Pre-stress in other areas of engineering is mainly used in the axial
direction of rods and bolts, and usually for small displacements where geometry changes
can be neglected. In this thesis this will be generalized to include bending stresses and
large displacements.

The second subgoal is to generalize the recent ‘torsion reinforcement’ strategy. The
torsion reinforcement structures have until now only been applied to single, flat blade
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flexures. This thesis will exploit applications to spatial flexures with large range of mo-
tion.

1.4. OUTLINE
The thesis consists of two parts, of which the first (chapters 2-4) focuses on a new design
method which helps to exploit the potential of stressed and curved flexures. The second
part (chapters 5 and 6) builds on the recently developed torsion reinforcement strategy
from [8] and [9].

The first part starts with chapter 2 in which the design method is introduced, called
the stress and geometry (STAGE) method. As a first application, it is used to reduce peak
stresses at large displacements. In chapter 3, the STAGE method is used to reduce the
actuation force of a linear guide flexure mechanism for large displacements. Chapter 4
shows how initially curved flexures can be used to create a high support stiffness at large
displacements.

The second part of this thesis starts with chapter 5 in which the pre-existing torsion
reinforcement strategy is used to create a linear guide with a large range of motion and
high support stiffness. In chapter 6, a generalized version of the torsion reinforcement
structures is presented and used to create two new spherical flexure joint designs with a
large range of motion.

Chapter 7 provides a discussion on the results of this thesis and chapter 8 summa-
rizes its contributions.
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2
THE STAGE METHOD FOR

SIMULTANEOUS DESIGN OF THE

STRESS AND GEOMETRY OF

FLEXURE MECHANISMS

Current design methods for flexure (or compliant) mechanisms regard stress as a secondary,
limiting factor. This is remarkable because stress is also known as a useful design parame-
ter. In this paper we propose the Stress And Geometry (STAGE) method, to design the geom-
etry of a flexure mechanism together with a desired stress field. From this design, the stress-
free to-be-fabricated geometry is computed using the inverse finite-element method. To
demonstrate the potential of the method, the geometry of the well-known crossed-flexure
pivot is taken as example. We first show how this mechanism can be redesigned for the
same functional geometry with various internal stresses. This results for a specific choice
of stress field in a design of a crossed-flexure pivot with 23% lower peak stresses during
motion as compared to the known designs, for a ±45 degrees rotation. We then present a
second example, of a Folded Leaf Spring (FLS). With a parameter sweep the optimal stress
field is calculated, showing a peak stress reduction of 28% during motion. This result was
validated with an experiment, showing a normalized mean absolute error of 5.5% between
experiment and theory. With a second experiment it was verified that the functional ge-
ometry of the FLS with internal stresses was equal to the one without internal stresses, with
geometric deviations smaller than half the thickness of the flexures.

This chapter is to be submitted to Precision Engineering
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FLEXURE MECHANISMS

2.1. INTRODUCTION

Flexure mechanisms use elastic deformation of slender segments to achieve motion,
which results in a highly repeatable behavior due to the absence of friction and back-
lash. The design of these mechanisms is not trivial and multiple design methods exist,
either based on degrees-of-freedom and constraints [1–3], rigid-body representations
[4], the combination of simple building blocks to form more complex mechanisms [5–7]
or structural optimization techniques [8].

The mentioned design methods focus mainly on the geometry of the mechanism and
regard stress as a resulting, limiting factor. This is remarkable since stress is also known
as a useful design parameter. Examples in engineering are the reduction of tensile forces
in concrete by preloaded rods, avoidance of buckling by preloading bicycle spokes [9],
and the preloading of bolts to mitigate their load cycle amplitude. Specific examples in
the flexure mechanisms field are the introduction of clamping forces and elimination
of backlash by a preloaded member [10], the introduction of multi-stable states using
snap-through elements [11, 12], and the reduction of stiffness using preloaded elements
with negative stiffness [13, 14].

A general method to design stresses in flexure mechanisms is not available, but vari-
ous strategies to manipulate stresses for a specific geometric design are known. These
strategies mainly aim to avoid stress concentrations. A first strategy is to opt for dis-
tributed instead of lumped compliance by using blade or wire flexures instead of notch
hinges [8]. The stresses can be further smoothened by gradually increasing the thickness
of the flexures at regions with stress concentrations [15, 16], although this generally re-
sults in higher stresses in other regions due to the increased stiffness. Another strategy is
to connect multiple flexures in series to reduce the required stroke of each element [17].
Although these strategies are effective, a major disadvantage they have is that the func-
tional geometry originally intended by the designer is changed, leading to significantly
sub-optimal designs.

In this paper we propose the Stress And Geometry (STAGE) method, to design the stresses
and geometry of flexure mechanisms simultaneously. The functional geometry of the
mechanism is designed together with a desired stress field, from which the stress-free,
to-be-fabricated geometry is computed using the inverse finite-element method.

In section 2.2, the STAGE method is presented and explained in detail, by applying it to
the well-known crossed-flexure pivot (CFP) as an example. In section 2.3 we demon-
strate the potential of the method for designing a CFP with reduced peak stresses for
large rotations, resulting in a new stress-free fabrication geometry. In section 2.4, we
present a second application example to reduce peak stresses, this time using a parame-
ter sweep to find the most optimal stress field for a folded leaf spring. Two experimental
tests have been conducted to validate the outcomes. In section 2.5 we reflect on the re-
sults of the paper and in section 2.6 we summarize the contributions of this work.



2.2. THE STAGE METHOD

2

9

2.2. THE STAGE METHOD
The goal of the STAGE method is to simultaneously design the stresses and the func-
tional geometry of a flexure mechanism. Figure 2.1 shows an overview of the method
with four steps. First the functional geometry is designed. The focus in this step is on
the kinematics of the mechanism, for which currently available design methods can be
used. At step two the stresses in the mechanism are designed by determining the possi-
ble stress fields and selecting one. At the third step, the inverse finite-element method
is used to compute the stress-free fabrication geometry, required for production. At step
four, the fabricated shape is assembled, after which it attains the functional geometry
while exhibiting the desired stresses. In between steps 1 and 2 there can be iterations
in order to obtain the optimal functional geometry and internal stresses. The four steps
will now be explained in detail.

(     ) 

Design the 
functional 
geometry

Step 1

Design the 
internal 
stresses

Step 2

Calculate the 
stress-free 
fabrication 
geometry

Step 3

Assemble 
the fabricated 
part

Step 4

Figure 2.1: Steps of the STAGE method to design the stresses and the functional geometry of a flexure mecha-
nism simultaneously.

2.2.1. STEP 1: DESIGN THE FUNCTIONAL GEOMETRY
The STAGE method starts with designing the functional geometry of the flexure mecha-
nism. The focus in this step is on the kinematics of the mechanism, for which the cur-
rently available design methods [1–8] can be used, for example to obtain a linear guide
or rotational hinge with different functional geometries. Instead of designing some-
thing new in this paper, for explanation of the method we have chosen the well-known
crossed-flexure pivot (CFP) in Fig. 2.2 as an example of a desired functional geometry.
The CFP design dates back to at least 1948 and initially served to replace knife-edge
bearings [15, 18–20]. It consists of two thick plates connected by diagonal flexures. By
bending of the flexures, the plates rotate with respect to each other. Table 2.1 shows the
chosen properties of the CFP for this example. The lower plate is considered as the base.

Figure 2.3 illustrates the four steps of the STAGE method, with the CFP design as the re-
sulting functional geometry in step 1, modeled using a two-dimensional representation.

2.2.2. STEP 2: DESIGN THE INTERNAL STRESSES
In step two of the STAGE method, the internal stresses of the flexure mechanism are de-
signed. For this a ‘release point’ is defined, where the mechanism is virtually cut open
and where a force and moment are modeled, as shown in Fig. 2.3b. The force and mo-
ment define the stresses in the mechanism and will also be the input for step 3 in which
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Figure 2.2: The well-known crossed-flexure pivot (CFP) [15, 18–20], which is chosen as example for explanation
of the STAGE method.

Table 2.1: Properties of the CFP in Fig. 2.2.

Lx 100 [mm]
Ly 100 [mm]
w 30 [mm]
t f 0.5 [mm]
tr 10 [mm]

Young’s modulus 114 [GPa]
Poisson’s ratio 0.33 [−]

the fabrication geometry is calculated. In this section we present a graphical approach
which helps to relate the stress fields and the modeled force and moment. We start with
a single blade flexure, then generalize the theory to a more complex flexure system and
finally apply the theory to the CFP.

In a two-dimensional representation, a blade flexure is essentially a slender beam in
which stresses are induced by moments and transverse and axial forces. In general, the
stresses in such a slender beam are dominated by its internal moments [21], and can be
computed as [21]:

σ= Mi
t f

2I
, (2.1)

whereσ is the maximum stress in the cross section, Mi is the internal moment in point i
of the beam, t f is the thickness of the beam, and I is the area moment of inertia belong-
ing to the bending direction. Equation 2.1 shows that the stress and internal moment
have a proportional relation which is solely dependent on the cross section of the beam.
This means that we can use internal moments to visualize the stresses in flexure mecha-
nisms if these are composed of slender flexures.
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obtain the functional geometry with the desired
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Figure 2.3: The four steps of the STAGE method, explained with the crossed-flexure pivot. The geometry in the
last step is the same as in the first step and exhibits the desired stresses.

In Fig. 2.4, a slender cantilever is illustrated, representing a blade flexure subjected to a
force and moment. The graph shows its internal moment, derived using static equilib-
rium as [21]:

Mi (s) = cos(α)F (L− s)−M , (2.2)

where s is the coordinate along the length axis, L is the length of the beam and α is the
angle of the force, as indicated in Fig. 2.4. The moment graph is a linear function. Also, it
is independent of the cross section and stiffness of the beam because the system is stat-
ically determinate: the internal moments can be derived using solely static equilibrium
equations.

Figure 2.5 shows how this theory applies for a slender beam with arbitrary curvature.
The beam is considered fixed in the bottom left corner with a force F and a moment M
acting in the right extremity of the beam. Here the internal moments are represented by
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Figure 2.4: The internal moment distribution (bottom) in the cantilever beam (top) can be modified by the
applied force and moment. For slender beams, this distribution is proportional to the stress field.

a linear field, with colors depicting the values. For a point i in the beam (and also in any
point within the rest of the field) the internal moment can be calculated as:

Mi (r ) = F r −M , (2.3)

where r is the moment arm between the point i and the line of action of the modeled
force F . The line of points where Mi (r ) is zero is named the ‘zero-moment line’ as illus-
trated in Fig. 2.5. This is a unique feature in the visualization of the moment field.

Three design rules can be defined, relating the moment field to the modeled force and
moment:

Rule 1 The zero-moment line is always parallel to the direction of the modeled force.

Two points in the field will experience the same internal moment if they have the same
moment arm r with respect to the direction of the modeled force, as can be derived from
equation 2.3. This also relates the points with zero moment.

Rule 2 The distance between the zero-moment line and the line of action of the modeled
force is rzm = M/F .

For points with moment arm r = rzm in equation 2.3, the moment applied at the end
of the beam is in equilibrium with the moment due to the force at the end of the beam.
Therefore the internal moment (and the bending stress) is zero at these points.

Rule 3 The gradient of the moment field in the direction perpendicular to the zero-moment
line is equal to the magnitude of the modeled force.
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Figure 2.5: The internal moment field in an arbitrarily curved beam can be modified by means of a force F and
a moment M in a point of the beam. The moment field is linear and can be visualized using the zero-moment
line.

Equation 2.3 shows that the moment field is linear with a gradient of ∂Mi /∂r = F .

We will now demonstrate the theory by designing the stresses in the CFP. First, a desired
stress field is converted to a moment field, which is then used to calculate the required
force and moment in a chosen release point. Suppose that we want the CFP to exhibit
the stress field shown in Fig. 2.6a (in section 2.3 we will show that this particular stress
field results in decreased peak stress during motion, compared to the traditional CFP de-
sign). A stress of ±57 MPa is defined in the four extremities of the flexures and between
these points the field is assumed to be linear. The plus and minus signs indicate ten-
sile and compressive stresses at the sides of the flexures, respectively. We convert these
desired stresses into internal moments using equation 2.1 and the parameter values in
table 2.1, which yields the moment field shown in Fig. 2.6b. A release point is chosen at
the bottom right corner since this is a practical place to intersect the mechanism and as-
semble it after production of the fabrication geometry. Theoretically, however, any point
in the mechanism could be chosen as a release point. The zero-moment line shows to
be horizontal, laying in the middle of the four extremities as indicated. The distance
between the zero-moment line and the release point therefore is rzm = Ly /2 = 50mm.
Then, following design rule 1, the modeled force in the release point should be paral-
lel to the zero-moment line, which means that it should be horizontal in this case. The
magnitude of the modeled force is equal to the gradient of the moment field according
to rule 3, which yields F = 71 Nmm/50 mm = 1.42 N . The modeled moment is calcu-
lated using the relation rzm = M/F from design rule 2, resulting in M =−71Nmm, which
is correct because it is the opposite of the internal moment in that point.
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Figure 2.6: (a) The desired stress field defined at four points, where the plus and minus signs indicate tensile
and compressive stresses at each side of the flexures; (b) Internal moments calculated from the stress field,
with corresponding zero-moment line from which the modeled force and moment are derived.

2.2.3. STEP 3: CALCULATE THE STRESS-FREE FABRICATION GEOMETRY
In step three of the STAGE method, the stress-free fabrication geometry is computed.
This is an inverse problem since from the stressed functional geometry with the mod-
eled forces and moments acting on it, the stress-free geometry has to be obtained. If the
deflections are sufficiently small, the stress-free geometry can be calculated using linear
beam theory. However, if the deflections are large and no analytical solution is available,
nonlinear inverse FEM can be used. Originally proposed in [22], inverse FEM was in-
troduced to the flexure mechanisms community by [23]. The authors use finite beam
elements, which are specifically suited for flexure mechanisms. In this section we start
by explaining regular nonlinear FEM, and then show the difference with inverse FEM.
Because the solution method is somewhat counter-intuitive, an illustrative example for
a rigid-body mechanism is provided in appendix A.

In FEM, the investigated geometry is first discretized and represented with (beam) finite
elements connected by nodes. The internal forces due to deformation are computed as
(using a co-rotational formulation as described in [24]):

Fi nt =
N∑

n=1
Tᵀ

n kn un , (2.4)

where Fi nt is a vector containing the forces on each node, kn is the element stiffness
matrix, un is the displacement vector in local coordinates for the nth element, Tn is the
coordinate transformation matrix for the nth element, and N is the total number of ele-
ments. The goal of the FEM analysis is to solve a residual equation containing the force
imbalance, which is described as

R(U) = Fi nt (U)−Fext = 0, (2.5)

where U is the displacement vector containing nodal translations and rotations in global
coordinates. For large deflections, Fi nt (U), and therefore R(U), is in general nonlinear.
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The solution to the residual equation can be found iteratively using Newton-Raphson
with the gradient

K = ∂R(U)

∂U
. (2.6)

The residual equation in equation 2.5 is written in terms of the displacement vector U .
To explain the difference between forward and inverse FEM, it is useful to write the resid-
ual equation in terms of the unstressed and stressed geometries instead. This can be
done using the fact that the displacements are the difference between the stressed and
the unstressed geometries. This means that:

U = Xs −X0, (2.7)

where X0 and Xs are vectors containing the nodal coordinates and rotations of the stress-
free and stressed geometry, respectively. We can now rewrite the residual equation as:

R(X0,Xs ) = Fi nt (X0,Xs )−Fext = 0. (2.8)

For regular, forward FEM, X0 is known and Xs can be found using the gradient of the
residual equation

K f wd = ∂R(X0,Xs )

∂Xs
. (2.9)

For inverse FEM, on the contrary, Xs is known and X0 has to be found. We again use the
gradient of the residual with respect to its unknowns, which is in this case

Ki nv = ∂R(X0,Xs )

∂X0
. (2.10)

The residual equations of the forward and inverse analysis are the same, but different
variables in the equation are unknown. Because of this, a different gradient needs to
be computed to find the solution, while the rest of the calculations are similar for both
analyses.

Instead of inverse FEM analysis, also regular nonlinear optimization methods for
compliant mechanisms could be used to compute the stress-free geometry. However,
in comparison the inverse FEM has a significantly lower computational cost since the
nonlinear residual equations have to be solved only once [23].

MATLAB MODEL

Using the method described in section 2.2.3, a FEM code was written in Matlab for the
computations in this article. We will refer to this as the ‘Matlab model’. The computa-
tions are checked using the commercially available software package Ansys and by ex-
periments, in sections 2.3 and 2.4.

2.2.4. STEP 4: ASSEMBLE THE FABRICATED PART
In step four of the STAGE method the stress-free fabricated mechanism is assembled. As
shown in Fig. 2.3d, it attains the functional geometry of step 1, and exhibits the desired
stresses of step 2. The reactions on the lower right attachment point are equal to the force
and moment modeled in the release point in step 2. We have now obtained a flexure
mechanism with both a designed geometry and designed internal stresses.
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2.2.5. DISCUSSION ON THE STAGE METHOD
Instead of using the STAGE method, direct prestress could be used to introduce stresses
in a flexure mechanism. However, this will change its designed, functional geometry.
For example, a flexure which is designed and fabricated as a straight member will be-
come curved after pre-stress, which severely decreases its off-axis stiffness (stiffness in
the supporting directions). Using the STAGE method, the functional geometry is un-
changed after assembly.

The moment field in step two is independent of the functional geometry if the mech-
anism is statically determinate, because in that case the moments are fully determined
by static equilibrium equations. For example, the stiff bar in the CFP does not change the
moment field. The same holds if its flexures would have different cross sections. Note
however that in that case, a different proportionality between stress and moments has to
be taken into account, according to equation 2.1: thicker flexures subjected to the same
moment will experience a lower stress. The independency of the moment field also al-
lows to reconsider the functional geometry in step two. If a flexure is drawn in a certain
moment field, it will attain the moment values of that field. This way, regions which are
sensitive to fatigue failure could be designed such that they are close to the zero-moment
line, and therefore experience lower bending moments.

The method to design the stresses in step two can be used directly if the mecha-
nism is statically determinate, such as for the CFP. For statically indeterminate mech-
anisms, an approach can be to isolate a part of the mechanism such that a statically
determined sub-mechanism is obtained. Alternatively, theory on statically indetermi-
nate beam structures could provide a solution [21]. These approaches rely on stiffness
and compatibility equations. If these approaches also do not suffice, a parameter sweep
could be used. We will demonstrate this in section 2.4.

2.3. APPLICATION EXAMPLE: CFP WITH REDUCED PEAK STRESS
In this section we use the STAGE method to decrease peak stresses in the traditional CFP
design during motion. The goal is to demonstrate one of the possible applications of
the method. We first analyze the peak stresses of the traditional CFP at large rotations.
From this, we determine a desired stress field which the CFP should exhibit in its central
position. This stress field is introduced using the STAGE method. We then compare the
stress peaks during motion of the traditional and the redesigned CFP. The outcomes are
validated using the commercially available FEM software Ansys.

For large rotations, the flexures of the traditional CFP experience stress peaks close to
their extremities, as shown in the FEM simulations in Fig. 2.7. The plus and minus signs
indicate the tensile and compressive stresses at the sides of the flexures, respectively.
The stress in point A ranges from -209.7 MPa to +96.05 MPa throughout the rotation. The
peak stress can be reduced by introducing half of the difference, +56.83 MPa, at point A
when the CFP is in its central position. This desired stress is shown in Fig. 2.6a. The
desired stresses in points B, C and D have been determined using the same reasoning.
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Figure 2.7: FEM simulations show the peak stresses of 210 MPa in the traditional CFP for large rotations.

Table 2.2: Check of the peak stresses with the Ansys model.

Rotation angle
[deg]

Peak stress
Matlab [MPa]

Peak stress
Ansys [MPa]

Error
[%]

Traditional
CFP

+45 209.742 209.517 0.107
-45 209.742 209.517 0.107

Redesigned
CFP

+45 161.295 161.123 0.107
-45 161.296 161.308 0.007

Following sections 2.2.2, 2.2.3 and Fig. 2.3, the required stress-free fabrication geometry
is obtained. After assembly, the redesigned CFP exhibits the stresses shown in Fig. 2.3d
in its central position. At ±45 degrees rotation, it exhibits the stresses shown in Fig. 2.8.
As compared to the traditional CFP, the stress field is significantly smoother and the peak
stresses are 161 MPa, which is a reduction of 23%.
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Figure 2.8: FEM simulations of the redesigned CFP showing peak stresses of 161 MPa, which is a reduction of
23 % compared to the traditional design. The fabrication geometry is shown in Fig. 2.3c.

The FEM results in this section are obtained using the FEM code written in Matlab
in order to do the inverse computations, as described in section 2.2.3. The results were
verified using Ansys as follows. First the fabrication geometry (shown in Fig. 2.3c) was
imported in Ansys, virtually assembled and rotated 45 degrees back and forth. The peak
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stresses, occurring anywhere in the mechanism and anywhere in the motion range, were
recorded. Beam 188 elements have been used, and the nonlinear analysis option was
enabled. The stresses of the traditional CFP were also simulated in Ansys. In both simu-
lations, 100 beam elements per flexure were used. Such a large number is not necessary
for accuracy but allows to discretize the curved fabrication geometry of the redesigned
CFP. The results are shown in table 2.2. The maximum error is 0.107 %, which can be
considered small compared to the stress reduction. The Ansys APDL script containing
the two full simulations is made available online.

As a second test, we simulated in Ansys how well the redesigned CFP attains the func-
tional geometry after assembly. After assembly, the flexures should be straight, because
the functional geometry has straight flexures. The maximum error in x and y direction
of all nodal positions (101 per flexure) is 7.577e−4 mm, which can be considered signifi-
cantly small as compared to the size of the total mechanism.

2.4. APPLICATION EXAMPLE: FOLDED LEAF SPRING WITH RE-
DUCED PEAK STRESS

In this section we demonstrate the application of the STAGE method for reducing peak
stresses in a folded leaf spring (FLS), by using a parameter sweep instead of the graphical
approach in step 2 in order to find the optimal force and moment in the release point.
This alternative approach can be useful if a desired stress field cannot be determined, or
if the mechanism is too complex to use the graphical approach. The outcomes will be
validated by two experimental tests and by Ansys simulations.

2.4.1. THE FOLDED LEAF SPRING
Figure 2.9 shows the folded leaf spring (FLS), which is well-known in industry but signif-
icantly less present in literature [25–27]. The FLS can be used to replace a wire flexure
[25] and five or six FLS-elements can form a linear guide [25, 26]. In such a linear guide,
a single FLS performs the up- and down motions shown in Fig. 2.10. The FEM simula-
tions, based on the properties shown in table 2.3, show significant peak stresses in the
flexure. The highest peak stress in the motion range of ±30 mm of the traditional FLS is
482.6 MPa.

Table 2.3: Properties of the folded leaf spring in Fig.2.9, used for analysis.

Lx 100 [mm]
Ly 50 [mm]
w 20 [mm]
t f 0.5 [mm]

Young’s modulus 114 [GPa]
Poisson’s ratio 0.33 [−]
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Figure 2.9: A folded leaf spring (FLS) with a fixed base.
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Figure 2.10: FEM simulations showing high peak stresses (482.6 MPa) in the traditional FLS at large displace-
ments.

2.4.2. REDESIGN WITH THE STAGE METHOD AND A PARAMETER SWEEP

The goal here is to reduce peak stresses in the FLS while keeping its functional geometry
unchanged. Therefore, we define the FLS design in Fig. 2.9 as the functional geometry
in step 1 of the STAGE method. Step 2 is the design of a stress field and modeling of this
field by a force and moment in a release point. We choose point C in Fig. 2.10 as a release
point. We could have chosen any point in the flexure, but point C is a practical choice for
assembling the produced geometry. We will use a parameter sweep to find the optimal
force and moment in the release point. The parameter sweep encompasses steps 2, 3
and 4 of the STAGE method by varying the modeled force, its angle and the modeled
moment, then calculating the respective fabrication geometry and analyzing the peak
stresses of the assembled mechanism by moving it up and down ± 30 mm, as shown in
Fig. 2.10. The design with the lowest peak stress is selected as a final result.

2.4.3. OPTIMAL REDESIGNED FLS
Figure 2.11 shows the optimal FLS design resulting from the parameter sweep with a
peak stress of 347.1 MPa during motion, which is a reduction of 28% as compared to the
traditional FLS in Fig. 2.10. Figure 2.11a shows its stress-free fabrication geometry and
Fig. 2.11b shows the FLS after assembly. The peak stress of 347.1 MPa is reached in the
extreme positions of ± 30 mm shown in Figs. 2.11c and 2.11d. The modeled force, force
angle and moment in the release point corresponding to this design are resp. 6.76 N,
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90.5 deg (approximately horizontal as shown in Fig. 2.11a), and 97.72 Nmm.
It is noted that a similar stress reduction cannot be achieved by simply shifting the

motion range of the traditional FLS. The traditional FLS experiences the same peak stress
in both the up- and down positions due to its symmetry along the vertical axis. Shifting
the motion range will result in a lower peak stress in one direction, but in a higher peak
stress in the other direction.
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(a) Stress-free fabrication geometry.
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Figure 2.11: The redesigned folded leaf spring, showing a reduced peak stress of 28% as compared to the tradi-
tional FLS. This peak stress reduction cannot be achieved by shifting the motion range.

2.4.4. EXPERIMENTAL VALIDATION OF THE PEAK STRESS REDUCTION
The peak stress reduction in the FLS was validated by measuring the reaction forces and
reaction moment in the attachment point A in Fig. 2.12 during motion, and comparing
these to the FEM simulation data. This indirect approach is possible since the stresses
throughout the entire FLS are determined by the reaction forces and reaction moment
because the FLS is a statically determinate structure, as was explained in section 2.2.2.

Both the traditional and redesigned FLS were fabricated from Titanium grade 5 using
Wire Electrical Discharge Machining (WEDM). The properties of the traditional FLS are
shown in table 2.3. The redesigned FLS has the same width w and thickness t f , but
has a curved fabrication geometry shown in Fig. 2.11a, of which the data of the detailed
shape is made available online. Figure 2.12 shows the setup used to measure the reaction
forces and reaction moments of the FLS during motion. Point A of the FLS is attached
to the base via a six degrees-of-freedom force and moment sensor (ATI MINI40-SI-40-2).
Point B of the FLS is attached to a slider. The slider allows a rotation along its motion
axis, which is needed to avoid forces due to misalignments. The displacement of the
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Figure 2.12: Experimental setup used to validate the stress reduction by measuring the reaction forces and the
reaction moment of the traditional and the redesigned FLS.

slider in the y-direction is measured by an optical triangulation sensor (optoNCDT 1420).
Both sensors are connected to a data acquisition unit (NI USB-6008) and a laptop for
recording. In the experiments the slider was moved up and down four times slowly, to
eliminate the influence of dynamic effects.

The mean of the measured reactions is taken as outcome. A Normalized Mean Ab-
solute Error (NMAE) between model and experiment was computed, which is a regular
MAE normalized by the maximum force:

NMAE =
1
N

∑N
n=1

∣∣ζ̂n −ζn
∣∣

max |ζ| , (2.11)

in which N is the number of measured data points (at least 1500 in all measurements), ζ̂n

the measured force and moment value and ζn is the value predicted by the FEM model
written in Matlab. Figure 2.13 shows the experimental results of the traditional FLS de-
sign. The moment is divided by a characteristic length of 100 mm (the dimension of the
FLS in x-direction) to make it compatible with the reaction forces. The NMAE between
the FEM model in Matlab and the measurements of Fx, Fy, and M/100mm are 4.4%, 6.0%
and 4.4%, respectively. Figure 2.14 shows the results of the redesigned FLS, together with
the FEM data. The NMAE between the FEM model in Matlab and the measurements of
Fx, Fy and M/100mm are 4.0%, 3.7% and 5.5%, respectively. The deviations between
the experiments and the FEM models could be due to fabrication errors: a thickness
variation in the flexures of 16 microns on the nominal thickness of 0.5 mm results in an
error in the reaction force or reaction moment of 10%, due to the cubic relation between
bending stiffness and flexure thickness. The stresses in the FLS scale proportionally to
the reaction forces and reaction moments because bending stresses dominate and these
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Figure 2.13: Experimental results of the traditional FLS compared to the two FEM models, showing a maximum
NMAE of 6.0%.

scale proportional to force and moment. We conclude that the experiments validate the
FEM models and thereby validate the peak stress reduction.

The errors between the Ansys model and the Matlab model are in the same order of
magnitude of the round-off error (1e-3 mm) occurring when exporting the data.

2.4.5. EXPERIMENTAL VALIDATION OF THE FUNCTIONAL GEOMETRY

The goal of the second experiment is to measure how well the redesigned FLS obtains
its functional geometry after assembly. Figure 2.15a shows the fabricated geometry of
the redesigned FLS, while Fig. 2.15b shows the geometry after assembly, where it has
obtained its functional geometry. In this evaluation, we will measure the waviness of the
flexures from the images for both the redesigned and the traditional FLS as a reference
case. The images are processed as follows.

First, two straight, connected line segments are drawn through the points A, B and C
in Fig. 2.15b. The line segments are fitted such that a minimum waviness results.

Then, the deviations of the flexure edges with respect to these lines are plotted. The
high-resolution pictures will be published online. Figure 2.16 shows the results for both
the traditional and the redesigned FLS. Both plots show that the waviness is less than
half the thickness of the flexure. This can be considered significantly small as compared
to the deflections of the flexures during motion.

Additionally, the functional geometry is checked using Ansys. The fabrication ge-
ometry of the redesigned FLS is imported and virtually assembled. Using Beam 188 el-
ements and the nonlinear analysis option enabled, the resulting maximum geometric
error is 1e-3 mm, which is the same order of magnitude of the round-off error occurring
when exporting the data.



2.5. DISCUSSION

2

23

-30 -20 -10 0 10 20 30
-6

-4

-2

0

2

4

6

8

Measurements
Matlab model
Ansys model

Fx

R
ea

ct
io

n
s 

in
 p

oi
n
t 

A
 [
N

]
Fy

Moment/100 mm

Y displacement of point C [mm]

Figure 2.14: Experimental results of the redesigned FLS, compared to the two FEM models, showing a maxi-
mum NMAE of 5.5%.

2.5. DISCUSSION
The main idea behind the STAGE method is to consider the functional geometry and the
fabrication geometry of a flexure mechanism as separate things. In current literature,
the ‘design of a flexure mechanism’ refers to the functional geometry and also serves
directly as the drawing for fabrication. This leads to the implicit assumption that the
flexure mechanism on the drawing board is always stress-free, which is unnecessary and
limits the solution space, as shown in this article by the redesigns of the CFP and the FLS.

Current CFP and FLS elements in machines could be directly replaced by the redesigned
versions in this article because their attachment points remain unchanged. In fact, the
replacement will not be visible to the naked eye because the only difference is that stresses
are introduced. The WEDM fabrication technique used in this paper is commonly used
for the production of flexure mechanisms in industry. This means that the curved ge-
ometries can also be produced using current production techniques.

This article showed the application of the STAGE method for peak stress reduction,
but it could be used for other purposes. For example, actuation forces or eigenfrequen-
cies could be reduced by designing the optimal stress fields, or deformations due to grav-
ity could be mitigated. Furthermore, the functional geometry of the flexure does not
necessarily have to be designed in its central position. For example, the functional ge-
ometry of the CFP could be designed at a 45 degrees rotation. If the flexures are designed
as straight members in this configuration, the flexure will have a high support stiffness
at this 45 degrees rotation. The STAGE method can be used to design the geometry of a
flexure mechanism anywhere in its motion range.
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(a) (b)

Figure 2.15: The redesigned FLS in stress-free (as-fabricated) state (a) and after assembly in its central position
(b).

(a) Traditional FLS (b) Redesigned FLS after assembly

Figure 2.16: Waviness of the traditional (a) and redesigned (b) FLS after assembly, showing that the redesigned
FLS attains the functional geometry well after assembly, with a waviness smaller than half the thickness of the
flexures.

The amount of the peak stress reduction which can be achieved using the STAGE
method is generally larger when the displacements of the flexures are large. For small
displacements, the stress in each point is approximately equal in magnitude in both mo-
tion directions, meaning that the STAGE method will be less effective.

The flexures redesigned using the STAGE method are permanently stressed. There-
fore a suitable material has to be selected for the mechanism to limit stress relaxation,
similar to the design of springs used for permanent pre-stress.

2.6. CONCLUSIONS
In this work we proposed the Stress And Geometry (STAGE) method, to design the ge-
ometry and stress of flexure mechanisms simultaneously.

We have demonstrated the method by redesigning the stresses in the well-known
crossed-flexure pivot, without changing its functional geometry, which resulted in a peak
stress reduction of 23% for ± 45 degrees rotation.

Additionally, we showed how peak stresses in a folded leaf spring (FLS) can be re-
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duced by 28%, using a parameter sweep to find the most optimal stress field. This alter-
native approach can be applied when it is not clear which stress field is most optimal, or
if the mechanism is too complex.

The peak stress reduction in the FLS was validated by measuring its reaction forces
during motion, showing a maximum normalized mean absolute error between model
and experiment of 5.5%.

A second experiment showed that the functional geometry of the FLS is well attained
after assembly, with a maximum waviness of half the flexure thickness.
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3
REDUCING ACTUATION FORCE AND

PEAK STRESS OF A FLEXURE-BASED

LINEAR GUIDE USING THE STAGE
METHOD

Chapter 2 introduced the STAGE method, and showed its potential for peak stress reduc-
tion in two flexure mechanisms at large displacements. In this chapter we show how the
method can be used to decrease actuation force in the linear guide from chapter 2. The
STAGE method allows to reduce actuation force without changing its functional geometry
and without adding elements, which is new with respect to literature. It also allows to si-
multaneously decrease peak stresses and actuation force in the linear guide and to make
a trade-off between these two properties. In this chapter this is done using a parameter
sweep, resulting in a design chart from which three redesigns are selected. The first has a
reduction of actuation force of 96% at the cost of an increase in peak stress of 45% with
respect to the traditional design. The second redesign has a similar peak stress as the tra-
ditional design, but a reduction in actuation force of 56%. The third redesign has both a
reduction in actuation force (35%) and a reduction in peak stresses (28%). The actuation
force of the traditional design and redesign 1 are tested experimentally, showing a reduc-
tion of 90% in peak actuation force. A second experiment shows that the redesign attains
the functional geometry well after assembly, with geometric deviations of around half the
thickness of the flexure.

This chapter is to be submitted to Mechanism and Machine Theory.
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3. REDUCING ACTUATION FORCE AND PEAK STRESS OF A FLEXURE-BASED LINEAR GUIDE

USING THE STAGE METHOD

3.1. INTRODUCTION
In contrast to rigid-body mechanisms, flexure (or compliant) mechanisms use elastic
deformation to gain mobility [1]. The principle of elastic deformation offers advantages
such as the absence of friction and play, but also results in a stiffness in the motion di-
rection which is often undesired because additional actuation force is required. This ac-
tuation force can be eliminated to a large extent by adding pre-stressed spring elements
with a negative stiffness, an approach known as static balancing [2, 3]. Two strategies
to design such elements can be distinguished. The first is a building-block approach,
where the force-deflection characteristic of the element is designed such that it cancels
out the actuation forces of the mechanism [4–7]. A second strategy is to simplify both
the element and the flexure mechanism to a rigid-body mechanism with torsion springs
[1]. This makes it possible to derive energy, force or stiffness equations which are then
used to find the design parameters for which the mechanism is balanced [8–12]. In addi-
tion to the design strategies, numerical optimization can be used to obtain static balance
[13, 14].

In this article, we will reduce the actuation force of a pre-existing linear guide flexure
mechanism using the stress and geometry (STAGE) method from earlier work [15]. With
the STAGE method, the geometry and stress of a flexure mechanism can be designed
simultaneously. In this work we show that this allows to reduce the actuation forces
of the linear guide by solely redesigning its stresses, without changing its geometry or
adding elements such as in current literature. Furthermore, it allows to make a trade-off
between actuation force and peak stresses, and to some extent reduce them simultane-
ously.

In section 3.2 we explain the pre-existing linear guide design and show how the STAGE
method is used to reduce actuation forces and peak stresses. Three redesigns are se-
lected from a design chart, of which one is tested experimentally in section 3.3. In sec-
tion 3.4 we discuss the generality and implications of the work and in 3.5 we summarize
the contributions to literature.

3.2. STATIC BALANCING OF THE LINEAR GUIDE DESIGN USING

THE STAGE METHOD
In this section we first explain the design of the pre-existing linear guide flexure mech-
anism, which is based on six folded leaf springs (FLS). We then isolate one of the FLS
elements, and explain the procedure used for static balancing using the STAGE method.
This results in a design chart from which three designs are selected, all with a different
actuation force and peak stress.

3.2.1. THE FOLDED LEAF SPRING LINEAR GUIDE DESIGN
Figure 3.1 shows the pre-existing linear guide consisting of six folded leaf springs [16–18].
This design is common in industry but has not been described extensively in literature.
The folded leaf springs allow the linear motion of the middle body by in-plane bending,
which is associated with a low stiffness. Motions in the other, undesired directions are
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constrained with a high stiffness because the leaf springs are loaded in their lateral di-
rections in that case. Each folded leaf spring suppresses one degree of freedom of the
middle body. This can be visualized by replacing each folded leaf spring by a thin rod
(a wire flexure) through its fold line [16]. A more detailed explanation of the reasoning
behind this is provided in [19, 20]. Five folded leaf springs suffice to create a linear guide
and the sixth one is usually added to increase the stiffness in the supporting directions.
Although the stiffness in the motion direction of the guide is generally orders of magni-
tude lower than the stiffness in supporting directions, it is still considerable and limits
performance. Decreasing the motion stiffness significantly decreases the required actu-
ator size and energy consumption.

y

Figure 3.1: Pre-existing linear guide design [16–18] consisting of six folded leaf springs guiding a central body.

Figure 3.2 shows a single folded leaf spring, isolated from the linear guide design, and
table 3.1 shows its properties. Figure 3.2b shows its deformations during motion in 2D,
where the effect of the other five folded leaf springs is simulated by a slider. During the
+-30 mm displacements, the peak stress is 483 MPa and the peak actuation force is 6.91
N.

Table 3.1: Properties of the FLS in Fig. 3.2.

Dimension FLS
Lx 100 [mm]
Ly 50 [mm]
w 20 [mm]
t f 0.5 [mm]

Young’s modulus 114 [GPa]
Poisson’s ratio 0.33 [-]
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Figure 3.2: (a) The traditional folded leaf spring, shown isolated from the linear guide; (b) Deformations and
stresses at the extreme displacements of +- 30 mm.

3.2.2. REDESIGNING PROCEDURE

In this section we explain how to use the STAGE method to decrease the actuation force
and peak stresses of the FLS during motion. Figure 3.3 shows an overview of the pro-
cedure in five steps. The first four steps serve to introduce stress in the FLS without
changing its functional geometry, and in the fifth step the performance is recorded. First,
the functional geometry is defined, which is simply the FLS design from Fig. 3.2a. In
step two, the mechanism is virtually cut and two forces and a moment are defined in
that point. These determine the stresses in the flexure and are used as an input for step
three, in which the stress-free fabrication geometry is calculated using an inverse finite-
element model. The fabrication geometry is such, that after assembly shown in step four,
it will attain the functional geometry while exhibiting the stresses introduced in step two.
In step five, the performance is determined by evaluating the peak actuation force and
the peak stresses in the flexure during motion. This performance is recorded for differ-
ent stress fields. Technically this means that a parameter sweep is conducted where Fx ,
Fy and M form the input, and the peak actuation force and peak stress during motion
form the output. In the following, the steps will be explained in more detail.

STEP ONE: DEFINE THE FUNCTIONAL GEOMETRY

In the first step, the functional geometry of the FLS is defined as shown in Fig. 3.3a. This
is the geometry which is intended by the designer of the linear guide mechanism, pro-
viding the right kinematics for the design to work. This is commonly regarded as ’the
design’ of the folded leaf spring. All properties are defined except for the stresses.

STEP TWO: CHOOSE FORCES AND A MOMENT IN A RELEASE POINT

The second step of the STAGE method is to design stresses by virtually cutting the flex-
ure and applying forces and a moment in this point, as shown in Fig. 3.3b. We call this
particular point a release point, because it is ‘released’ when computing the fabrication
geometry in step three. A different choice of forces and moment will result in different
stresses.
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Figure 3.3: Procedure for redesigning the stresses in the FLS. A sweep across the parameters Fx and Fy and M
produces the design chart of Fig. 3.4.

STEP THREE: COMPUTE THE FABRICATION GEOMETRY USING INVERSE FEM
In step three, the stress-free fabrication geometry is computed. This is an inverse prob-
lem because the stressed functional geometry and the forces and moment defined in
step two serve as an input, and the stress-free fabrication geometry is to be computed.
Because of the nonlinearities arising in the large displacements, we use a non-linear in-
verse finite-element model to solve the problem. The inverse finite-element method
was originally proposed in [21] and has been introduced to the compliant mechanisms
community by [22]. It allows to find the stress-free geometry efficiently by solving the
equilibrium equations just once, as opposed to the common shape optimization tech-
niques often used for flexure mechanisms [22]. In this article, we use the Matlab code
from [15], which will be validated using the commercial finite-elements package Ansys
and experimental tests in section 3.3.

STEP FOUR: ASSEMBLE

In step four, the stress-free fabrication geometry is assembled as shown in Fig. 3.3d,
where it attains the functional geometry defined in step one, while exhibiting the stresses
introduced in step two. During assembly, the end point of the flexure is translated and
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rotated back to its original position and orientation.
Note that a different choice for the forces and moment in step two results in a dif-

ferent fabrication geometry and in different stresses after assembly, but does not change
the geometry after assembly. This way, effectively only the stresses of the FLS are changed.

STEP FIVE: EVALUATE PERFORMANCE

For each different set of Fx , Fy and M chosen in step two, the peak actuation force and
peak stress is recorded during a 30 mm up and down motion as shown in Figs. 3.3e and
3.3f. The peak stress is the maximum absolute stress anywhere in the flexure, anywhere
in its displacement range.

3.2.3. RESULTING REDESIGNS
Figure 3.4 shows the results of the parameter sweep in the form of a design chart. Each
dot represents a FLS with a different choice for Fx , Fy and M . The different parameters
result in a different stress field after assembly but all redesigns have the same geometry
after assembly, as explained in section 3.2.2. The performance of the traditional FLS
design (for which Fx = Fy = M = 0) is also indicated. Three redesigns are selected and
their performance relative to the traditional FLS is listed in table 3.2. The corresponding
values Fx , Fy and M are listed in table 3.3. Figure 3.5 shows the fabrication geometries
of the traditional FLS and the three redesigns.
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Figure 3.4: Design chart, resulting from the parameter sweep. Each dot represents a redesign with the same
functional geometry but a different stress field, determined by Fx , Fy and M . The peak stress and actuation
force during motion are recorded for each redesign and determine the position of the dot.
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Table 3.2: Performance of the three selected redesigns from Fig. 3.4, relative to the traditional FLS.

Design Peak act. force [N] Peak stress [MPa]
Traditional 6.91 (100%) 483 (100%)
Redesign 1 -0.308 (-96%) 702 (+45%)
Redesign 2 3.01 (-56%) 469 (-2.9%)
Redesign 3 4.51 (-35%) 347 (-28%)

Table 3.3: Forces and moment belonging to the three selected redesigns selected from Fig. 3.4.

Design Fx [N] Fy [N] M [Nmm]
Traditional 0 0 0
Redesign 1 -18.3 0.0720 441
Redesign 2 -11.0 0.146 219
Redesign 3 -6.73 0.0575 97.6

3.3. EXPERIMENTAL VALIDATION
In this section, we first validate the actuation force reduction of redesign 1 experimen-
tally and numerically. A second experiment shows how well it attains its functional ge-
ometry after assembly in practice. The stress reduction of redesign 3 has been validated
experimentally in [15].

3.3.1. TEST OF THE ACTUATION FORCE REDUCTION

Figure 3.6 shows redesign 1 as-fabricated (top) and after assembly (bottom). It is fab-
ricated using wire-electrical discharge machining (WEDM) from titanium grade 5. The
traditional FLS from Fig. 3.5a is also fabricated, using the same process, material and
manufacturer.

Figure 3.7 shows the setup used to measure the actuation forces of the FLS designs
during motion. The left side of the FLS is attached to the base via a force sensor (ATI
MINI40-SI-40-2). The right side of the FLS is attached to a slider. The slider allows a ro-
tation along its motion axis to avoid forces due to misalignments. The displacement in
the y-direction is measured by an optical triangulation sensor (optoNCDT 1420). Both
sensors are read out using a data acquisition unit (NI USB-6008) and a laptop. The slider
is moved up and down four times and the averages of the measured values are computed
and plotted in Fig. 3.8. The peak actuation force is 0.608 N for the redesign and 6.158 N
for the traditional design, resulting in a 90% reduction observed in the experiment.

The FEM data in this section was generated using the FEM model written in Matlab
from [15] and will be checked using the commercially available FEM software package
Ansys. Beam 188 elements are used and the nonlinear analysis option is enabled. The
difference between the actuation force predicted by the code written in Matlab and the
Ansys simulations showed to be negligible compared to the achieved actuation force
reduction, with an error smaller than 1-e3 N.
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Figure 3.5: Fabrication geometries of the traditional FLS and the three selected redesigns from Fig. 3.4. After
assembly, they all attain the same functional geometry, but with different stresses.

3.3.2. TEST OF THE GEOMETRY AFTER ASSEMBLY

A second experiment is carried out to test how well redesign 1 attains the functional ge-
ometry after assembly. Figure 3.6 shows redesign 1 as-fabricated (left) and after assembly
(right), where it has obtained the functional geometry. The desired functional geometry
consists of two connected straight lines AB and BC. The picture shown in Fig. 3.6b is pro-
cessed with an automated script to show the waviness of both flexure segments AB and
BC, and shown in Fig. 3.9. Here, the thin edge of the FLS is plotted on a horizontal line
and highly stretched in the vertical direction.

Figure 3.9 shows that the waviness of the assembled redesign 1 is around half the
thickness of the flexure. In [15] we have carried out a similar test for redesign 3 with a
comparable result.

3.4. DISCUSSION
A first advantage of using the STAGE method to statically balance the linear guide is that
its functional geometry is unchanged. A folded leaf spring linear guide in a machine
could be replaced by one of the presented redesigns without a visible change: after as-
sembly in the machine the sole difference is that the stresses in the mechanism have
changed. The attachment points in the machine can be left unchanged. If the tra-
ditional linear guide would be balanced by simply adding pre-stress instead of using
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Figure 3.6: Redesign 1 of the FLS in unstressed (as-fabricated) state (a) and after assembly (b).
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Figure 3.7: Setup used to validate the actuation force reduction of redesign 1.

the STAGE method, its geometry would change. The folded leaf springs would become
curved, which significantly reduces their support stiffness [23, 24].

A second advantage is that no additional elements are needed such as in most cur-
rent statically balanced designs. Often, these elements consist of a buckled blade flexure
[4–7]. These increase build volume and could result in unwanted, low-frequency vibra-
tions. An exception is the work of [9, 25], where a flexure-based transmission mechanism
is balanced without additional elements, by pre-stressing. The support stiffness of this
mechanism could be improved using the STAGE method by explicitly designing the flex-
ures in their stressed states such that they are straight in certain desired positions.

A third advantage of the STAGE method is that the stresses are designed explicitly,
which enables to simultaneously decrease the actuation force and peak stress in the lin-
ear guide. In current balancing methods, stresses are designed indirectly by regarding
the force-deflection behavior or the total energy.
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Figure 3.8: Actuation force of the traditional design and redesign 1 during motion. The measurement data
shows a 90% reduction in actuation force.

The STAGE method can be used for static balancing, but is not a general balancing
method. In the case of the linear guide, it was clear on forehand that this design had the
potential of static balance. This is because a FLS element can be regarded as a spring
placed perpendicular on a linear guide. Such a configuration is known to have a nega-
tive stiffness. Pseudo-rigid body models could be used to assess if a mechanism can be
balanced without additional elements, before using the STAGE method.

In this article, we have regarded actuation force as an undesired property. It can
however also be beneficial, for example to provide a clamping force or to balance gravity
forces. The methods in this article could also be used to design a desired actuation force,
by changing the scoring metrics on the two axes in the design chart in Fig. 3.4.

3.5. CONCLUSION
In this article we showed that the stress and geometry (STAGE) method from earlier
work can be used to statically balance a pre-existing flexure-based linear guide. The
method allows to statically balance the mechanism without changing its functional ge-
ometry and without adding elements, which is new with respect to current literature.
The method results in a different fabrication geometry, which attains the functional (de-
signed) geometry after assembly.

Because the stresses are designed directly using the STAGE method, it is possible to
make a trade-off between peak stresses and peak actuation force. This was done using
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Figure 3.9: Waviness of redesign 1 after assembly.

a design chart, from which three redesigns were selected. The first has a reduction of
actuation force of 96% at the cost of an increase in peak stress of 45% with respect to the
traditional design. The second redesign has a similar peak stress as the traditional de-
sign, but a reduction in actuation force of 56%. The third redesign has both a reduction
in actuation force (35%) and a reduction in peak stresses (28%).

The actuation force of the traditional design and redesign 1 were tested experimen-
tally, showing a reduction of 90% in peak actuation force. A second experiment shows
that the redesign attains the functional geometry well after assembly, with geometric
deviations of around half the thickness of the flexure.
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4
DESIGN OF A FOLDED LEAF SPRING

WITH HIGH SUPPORT STIFFNESS AT

LARGE DISPLACEMENTS USING THE

INVERSE FINITE ELEMENT

METHOD

In chapters 2 and 3 the functional geometry of the flexure mechanisms have been designed
in the middle of the displacement range. In this chapter a folded leaf spring is designed in
its actuated (displaced) state, which results in a high support stiffness in that position. The
inverse finite-element method is used to enable this design step. A combination element
is presented consisting of two folded leaf springs, which provide support stiffness at differ-
ent regions in the displacement range. The results are validated using the commercially
available FEM package Ansys.

This chapter has been published in the IFToMM World Congress on Mechanism and Machine Science [1].
Minor style and word changes have been made and section 4.2.1 has been added.
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DISPLACEMENTS USING THE INVERSE FINITE ELEMENT METHOD

4.1. INTRODUCTION
Conventional mechanisms based on sliding or rolling contacts (for example ball bear-
ings) typically have limited precision due to the inherent friction and play. Compliant
mechanisms provide motion differently, by deflection of slender segments called flex-
ures [2, 3]. In essence, these mechanisms can be regarded as highly deformable struc-
tures and therefore do not suffer from friction or play. This results in a highly repeatable
behavior which is essential in high precision applications. However, the support stiffness
of a flexure element tends to drop dramatically when the mechanism has undergone a
displacement in the actuated direction [4–7]. This limits the useful range of motion and
results in bulky designs.

Efforts to increase support stiffness in the actuated state include the addition of tor-
sion reinforcement structures [7, 8], using pre-curved flexures [7, 9, 10], addition of el-
ements in parallel [11, 12] and thickening the middle part of a flexure [3, 13, 14]. These
methods all aim at designing the flexure mechanism in its relaxed state, in which it will
be fabricated. However, the loss of support stiffness occurs in the actuated (loaded) state,
on which the methods do not have direct control.

In this paper, we show that a flexure element can be designed in its actuated state,
such that it will provide a high support stiffness in that position. To enable this, we will
use the Inverse Finite Element (IFE) Method, originally proposed by Givindjee and Mi-
halic [15] and recently introduced to the compliant mechanisms community by Albanesi
et al. [16]. Albanesi et al. have used the IFE method before to design compliant mech-
anisms. However, the authors use the method to control contact forces (for example in
a compliant gripper). Instead, we use the IFE method to alter the support stiffness of
the compliant mechanism itself. In other previous work [7, 9, 10], flexures have been
pre-curved in order to obtain a high support stiffness in the actuated state. However,
the authors use an optimization method, whereas we will use the IFE method which is
computationally more efficient. Furthermore, this paper focuses on a different flexure
element which avoids the high actuation forces mentioned in [9, 10].

First, the essence of the IFE method will be outlined. Second, the method used to
increase support stiffness will be demonstrated by redesigning an existing flexure ele-
ment. We will reflect on the work in the Results and Discussion section and the main
constributions to literature will be summarized in the Conclusions section.

4.2. METHOD
In this section, first the reason for the support stiffness reduction of a blade flexure in its
actuated position is investigated. Then, the essence of the IFE method from [15, 16] will
be outlined. Subsequently, the folded leaf spring will be introduced. Using the proposed
method, this element will be redesigned in order to obtain a high support stiffness in its
actuated state. Lastly, an application example will be given.

4.2.1. SUPPORT STIFFNESS REDUCTION OF A BLADE FLEXURE IN THE ACTU-
ATED STATE

Figure 4.1a shows a typical blade flexure in its actuated state. The left block is attached
to the fixed world and the right block is the end effector which is actuated. Originally
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Figure 4.1: Explanation of the support stiffness loss of a blade flexure in its actuated state due to curvature.

straight, the blade flexure has become curved after actuation, which results in a loss of
support stiffness. Figure 4.1b shows a simplification of the blade flexure, where the cur-
vature is discretized into two sharp folds, such that essentially three blade flexures in
series result. Figure 4.1c shows a rigid-body model which is equivalent to the discretized
version. Here, the deformation modes of the blade flexures with a low stiffness are rep-
resented by rigid bars connected by revolute joints, as in [11]. A blade flexure has a low
stiffness in bending as well as torsion along its length axis, as indicated in the figure. The
end effector is free in all six degrees of freedom, which can be proven as follows. A force
in any direction on the end effector will have a moment arm around at least one of the
revolute joints. The same holds for any moment. Because the revolute joints represent
low-stiffness deformation modes, this means that the discretized flexure in Fig. 4.1b has
a low support stiffness. The real curved flexure in Fig. 4.1a can be regarded as a large
number of small blade flexures in series, which explains why it has a low support stiff-
ness.

A folded leaf spring has a single sharp fold, which results in a single stiff translation
at the place and in the direction of the fold line. A folded leaf spring therefore constrains
one degree of freedom of its end effector, if it consists of two non-collinear straight blade
flexures in series. A more detailed explanation can be found in [17].

4.2.2. THE INVERSE FINITE ELEMENT METHOD
The Inverse Finite Element (IFE) Method can be used to retrieve the relaxed (stress-free)
shape of a structure when its loaded (stressed) shape and its external forces are specified
[15, 16]. This includes analyses with large nonlinear deflections. Note that a compliant
mechanism can be regarded as a structure undergoing large deflections.

First consider a regular (that is, forward) nonlinear Finite Element analysis in which
the shape of a structure in its relaxed state is specified. The goal is to compute the un-
known loaded shape as a result of specified external forces. Consider these forces to be
independent of the shape (no follower-forces). The goal then is to solve

~R(~U ) =~0, (4.1)

which is the residual vector containing the imbalance of internal and external forces
and moments in the loaded state. ~U is a vector containing the nodal displacements and
rotations which need to be found. Note that for large deflections, ~R can have a nonlinear
dependence on ~U . We could also write

~U = ~X − ~X0, (4.2)
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where ~X0 and ~X are the nodal coordinates in the relaxed and loaded states, respectively.
Now we can write

~R(~X0,~X ). (4.3)

In the forward FE method, ~X0 is specified and remains unchanged in the analysis. After
applying boundary conditions, the residual equation is generally solved using some iter-
ative method (for instance Newton-Rhapson) often relying on the gradient with respect
to the unknowns ~X :

~K f wd = ∂~R(~X0,~X )

∂~X
(4.4)

which is the stiffness matrix of the structure.
In the IFE method, the loaded shape ~X is specified as an input in ~R(X0,~X ) which is

then solved for the unknown relaxed shape ~X0 using the gradient with respect to these
unknowns:

~Ki nv = ∂~R(~X0,~X )

∂~X0
(4.5)

Note that mathematically, the IFE method is very similar to the regular forward FE
method. Because of this similarity, their computational cost is also similar. Furthermore,
note that the internal forces of the body are not needed as an input in the IFE method,
since these are already determined once the loaded and unloaded shapes are known.
Only the loaded shape, boundary conditions and external forces have to be known. The
IFE routine can be modified such that instead of an external force, a displacement can
be imposed. This modification is the same as in the case of the forward FE method (see
for example [18]).

We have written an IFE code in Matlab using the 2D Euler-Bernoulli beam formula-
tion. Large, nonlinear deflections are included using a co-rotational formulation as in
[19]. The material is assumed to behave linearly elastic.

4.2.3. THE FOLDED LEAF SPRING
Figure 4.2 shows a linear guide commonly used in industry but less prevalent in literature
[3, 20, 21]. Its central body is assumed rigid and is guided along the indicated Y direction
by the six Folded Leaf Springs (FLS), which allow this motion by bending deformations.
The blocks at the extremities of the leaf springs are attached to the fixed world. The
design challenge typically is to provide a low stiffness along the actuated direction (Y in
this case), while maintaining a high support stiffness in all other five spatial degrees of
freedom of the central body.

Figure 4.3a shows one FLS element isolated from the mechanism. In its initial, re-
laxed state, the element provides a high support stiffness to the middle body in the indi-
cated Z direction because it consists of two straight parts, as explained in section 4.2.1.
Figure 4.3b shows a 2D representation of the same FLS in the XY-plane. The left side is at-
tached to the fixed world. The right side is constrained in rotation and in the X-direction
to simulate the connection to the central rigid body. The dashed line represents the re-
laxed state of the FLS, while the colored solid line shows the FLS in actuated (loaded)
state. The colors indicate the stresses. In this loaded state the FLS inevitably becomes
curved and thereby loses a significant part of its support stiffness in Z direction [4–7].
This issue will be addressed in the next section.
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Figure 4.2: A compliant linear guide commonly used in industry, existing of six Folded Leaf Springs (FLS) [3,
20, 21]. These slender elements allow for movement in the Y direction by elastic bending deformations.
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Figure 4.3: Figure a) shows a single FLS isolated from the linear guide from Fig. 4.2. Figure b) shows the
curvature occurring in its loaded state, causing the dramatic decrease in support stiffness in Z direction.
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Figure 4.4: This FLS is initially curved such that it will attain a straight shape after actuation in Y direction,
providing a high support stiffness in this position. The pre-curved relaxed shape can be computed efficiently
using the IFE method.

4.2.4. REDESIGN OF THE FOLDED LEAF SPRING USING THE IFE METHOD

In this section, we will redesign the FLS element such that it provides a high support stiff-
ness in its actuated (loaded) state, instead of in its relaxed home position. The main idea
is to design the FLS such that it has an initial curvature in its relaxed state. This curvature
should be such that the FLS becomes straight in its loaded state, thereby increasing its
support stiffness. Figure 4.4 shows this FLS element. Using the IFE method, the FLS can
be designed in its actuated state at some specified displacement. The IFE method will
output the relaxed, pre-curved shape of the FLS. Note that only the loaded shape and
displacement have to be specified to fully determine the relaxed shape shown in Fig. 4.4.
The displacement is chosen as 21.4 mm. The straight beams both have a length of 111.8
mm. The choice of these numbers will be explained in the next section.

4.2.5. DESIGN AND VALIDATION OF THE COMBINATION ELEMENT

The pre-curved FLS designed in the previous section will provide a high support stiff-
ness around its actuated position, but a low support stiffness around its home position.
To realize a high support stiffness around both positions, we can add a pre-curved FLS
to a regular FLS to form a combination element as in Fig. 4.5. Figure 4.5a shows this
combination element in the relaxed state, where the mechanism is in its relaxed home
position. Here, the regular, straight flexure provides support stiffness in the Z direction.
In the actuated state shown in Fig. 4.5b, the pre-curved FLS has become straight and
now provides support stiffness in its turn.

The combination element is designed as follows. First some properties and dimen-
sions of the regular FLS are chosen as summarized in Table 4.1. Using the commercially
available FE package Ansys™, the support stiffness of this FLS is computed while it is
actuated along its motion range Y as in Fig. 4.3b. Beam188 elements are used, with the
option for nonlinear geometry activated. Note that this data cannot be computed us-
ing the code written in Matlab, because that code only considers beams in 2D. Using
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Figure 4.5: Combination element in which a pre-curved FLS is combined with a regular FLS. In a), both flexures
are relaxed and the straight flexure provides support stiffness in the Z direction. In its actuated state shown in
b), the pre-curved flexure has become straight and provides support stiffness in its turn.

Table 4.1: Properties of the folded leaf spring as shown in Fig. 4.3.

Variable Value

Size X direction 100 mm
Size Y direction 50 mm
Size Z direction 10 mm

Flexure thickness 1 mm
E-modulus (Polyactic Acid, PLA) 4 GPa

the obtained support stiffness data, we can now decide at which point in the displace-
ment range the pre-curved FLS should become straight in order to compensate for the
stiffness loss of the initially straight FLS. The shape of the relaxed pre-curved FLS will
be computed using the IFE code written in Matlab. Finally we will validate the support
stiffness of the combination element over its full range using Ansys. For a fair compari-
son with the state-of-the-art, the combination element will be compared to an element
consisting of two regular, initially straight FLS elements.

4.3. RESULTS AND DISCUSSION

Figure 4.6 shows the support stiffness of the combination element shown in Fig. 4.5
along its displacement range (red solid line). This stiffness is compared to that of an el-
ement with two regular, initially straight FLS elements shown by the black solid line. As
anticipated, the combination element shows a lower support stiffness for small displace-
ments because only one of the FLS elements provides support stiffness at this point.
However, at larger displacements, the combination element outperforms the double reg-
ular FLS design because the pre-curved flexure has become straight. Furthermore, the
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Figure 4.6: Support stiffness of the combination element shown in Fig. 4.5 (red), compared to the case with
two regular, straight flexures (black), showing an extension of the range with high support stiffness. The dashed
lines in green and blue show the contributions of the two flexures forming the combination element.

support stiffness of the combination element is more constant along the displacement
range. This results in a more straight trajectory of the mechanism under influence of
gravity forces.

More pre-curved FLS elements could be added to cover a larger region of high sup-
port stiffness. These can be designed such that they cover the region in the negative Y
direction, using the same proposed method. Adding more elements will increase the
stiffness in the actuation direction y, which is generally not desired. However, this could
be dealt with by static balancing techniques [22].

The green dashed line in Fig. 4.6 shows the support stiffness of the pre-curved re-
designed FLS. The stiffness peak is shifted to the actuated state, but its shape is similar
to the stiffness peak of the regular FLS shown in dashed blue. This result validates the
use of the IFE code in Matlab to shift support stiffness from the home position to the ac-
tuated state. The shifting distance is specified as 21.4 mm, in order to provide an optimal
stiffness overlap resulting in a constant support stiffness of the combination element.

Computing the shape of the pre-curved FLS shown in Fig. 4.4 was done efficiently
using the IFE code written in Matlab. Such a computation takes around half a second
using the code on a regular laptop. Using IFE routines to shift support stiffness will be
more advantageous when considering flexure mechanisms exhibiting complex spatial
behavior. When shell elements need to be used instead of beam elements, the analysis
can become computationally too expensive for the use of optimization methods. The
IFE method could be used in these cases to provide a solution.

The validation of the combination element was done only theoretically. Flexures are
often fabricated out of high-strength steels using Wire-Electrical Discharge Machining.
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This technique readily allows for fabrication of initially curved flexures. However, it is
anticipated that considerable attention should be paid to tolerances in thickness of the
flexures, since the bending stiffness has a cubic relation to this property. Furthermore,
the combination element in Fig. 4.5 is partly overconstrained (see [3] for a detailed ex-
planation). Overconstraints could result in unpredictable behavior under the influence
of temperature changes or manufacturing errors. However, this overconstraint is only
present in the region of the displacement range where the two FLS elements provide
comparable support stiffness. In the other configurations, only one of the FLS elements
effectively provides support stiffness and so the system can be considered to not be over-
constrained.

4.4. CONCLUSION
In this paper, we showed that the Inverse Finite Element (IFE) Method can be used to
efficiently design flexure elements such that they have a high support stiffness in their
actuated state. This is beneficial because most existing flexure elements only provide
support stiffness at their relaxed home position. The method is efficient because it does
not need design iterations, as is the case in optimization methods.

As an example, a Folded Leaf Spring (FLS) element with a high support stiffness in
its actuated state was designed using an IFE code written in Matlab. The resulting pre-
curved design was analyzed using the commercial Finite Element software package An-
sys™. The results show that the element indeed has a large support stiffness in its actu-
ated state instead of in its home position.

We showed an example implementation of this pre-curved FLS, in which it is com-
bined with a regular FLS element such that it will provide a high support stiffness in both
its home position and its actuated state. Using Ansys, this combination element was
compared to a benchmark design consisting of two regular FLS elements. As expected,
the benchmark design has a higher support stiffness at the home position, but the com-
bination element outperforms it at the actuated positions and shows a more constant
support stiffness along its range of motion.

The proposed method could aid in improving support stiffness of flexure mecha-
nisms in their actuated state, resulting in more compact designs with larger range of
motion.
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5
A FLEXURE-BASED LINEAR GUIDE

WITH TORSION REINFORCEMENT

STRUCTURES

In this chapter, a flexure-based linear guide with a motion range comparable to its foot-
print is presented. The design consists of two folded leaf springs on which torsion rein-
forcement structures are added. Due to these structures, only two folded leaf springs are
needed instead of a minimum of five as in pre-existing designs. The new design is com-
pared to such a pre-existing design, after optimizing both on a support stiffness metric.
The new design scores over twice as high on the support stiffness metric, while occupying
a smaller (-33%) and a less obstructive build volume. Stress, build volume and manu-
facturing limitations are taken into account. Additionally, a variation on the new design
using three torsion reinforced folded leaf springs is presented and optimized. This design
occupies a build volume similar to the pre-existing design, but scores four times higher on
the support stiffness metric. A prototype of the new design is built and its parasitic eigen-
frequencies are measured, validating the theoretical models (Normalized Mean Absolute
Error of 4.3%).

This chapter has been published in the Journal of Mechanisms and Robotics [1]. An earlier version has been
published in the proceedings of the ASME IDETC conference in 2018 [2].
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5.1. INTRODUCTION
Unlike rigid-body mechanisms which gain their mobility through rolling or sliding con-
tacts, flexure (or compliant) mechanisms use the elastic deformation of slender seg-
ments to enable motion. The inherent absence of friction and play makes these mech-
anisms particularly suitable for precision positioning applications due to their excellent
repeatability [3–9]. This work focuses on flexure based linear guides, which allow a single
translational motion of the end effector along a straight line.

The majority of the linear guide designs in literature are planar, meaning that they
are fabricated monolithically from a single plate. The simplest design is composed of
two leaf springs and a rigid body in a parallelogram configuration [10]. This design suf-
fers from parasitic motions, which can be mitigated by nesting two parallelograms [11].
However, this results in an unconstrained intermediate body which decreases both the
static and dynamic performance [4, 12, 13]. Efforts to solve this problem include a design
in which the intermediate body is coupled to the main stage by means of a lever system
[10, 14], one where the intermediate bodies of two double parallelogram building blocks
are connected [15], and a constraining mechanism cleverly nested inside the parallelo-
gram [12]. Not all designs in literature are based on the parallelogram. Examples are a
design based on the Robert’s mechanism [16] and on the Watt’s mechanism [14, 17].

Figure 5.1: The pre-existing 6 Folded Leaf Spring (6FLS) linear guide which needs at least five FLS elements to
constrain the five motions, leading to a large and obstructive build volume.

Some spatial linear guides are described in literature. These designs generally have larger
motion ranges compared to the planar designs because self-collisions can be avoided.
The two main designs are based on diaphragm flexures [18–20] and on folded leaf springs
[10, 20–23]. The diaphragm design has a low-cost potential but suffers from a trade-off
between parasitic rotation and range of motion [19]. The linear guide consisting of six
folded leaf springs (6FLS) is shown in Fig. 5.1. The 6FLS design is highly suitable for large
ranges, but its protruding elements result in an obstructive build volume. This is because
at least five folded leaf springs are necessary to constrain five degrees of freedom of its
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end effector, as will be explained in more detail in section 5.2.1. The design is mostly
known in industry, and has not been described extensively in literature [10, 20–23].

In this work, we present a new linear guide with a motion range comparable to its foot-
print. The design consists of two folded leaf springs on which torsion reinforcement
structures are added: Torsion Reinforced Folded Leaf Springs (TR-FLS). Due to the re-
inforcements, only two elements are needed rather than five or six as in pre-existing
designs. This results in a smaller and less obstructive build volume than the pre-existing
6FLS design shown in Fig. 5.1. We call the new design the 2-TR-FLS. We will optimize
and compare the 2-TR-FLS and the 6FLS design, focusing on support stiffness and build
volume. Limits on stress and manufacturing techniques are taken into account. Addi-
tionally, we present a variation on the new design called the 3-TR-FLS, which has a build
volume comparable to the 6FLS design. This design will be optimized and compared in
the same manner.

In section two, the three linear guides are presented. Section three explains the opti-
mization and comparison procedure. Section four contains an experimental validation
of the theoretical models, using a prototype based on the optimized 2-TR-FLS design.
We reflect on the results in the Discussion section and summarize the contributions to
literature in the Conclusions section.

5.2. LINEAR GUIDE DESIGNS
In this section, first the working principle of the pre-existing 6FLS design will be de-
scribed. Then, the Torsion Reinforced Folded Leaf Spring (TR-FLS) will be explained.
Subsequently, the two new linear guides composed of this element are presented.

5.2.1. THE 6 FOLDED LEAF SPRING (6FLS) LINEAR GUIDE

Figure 5.2 shows one of the Folded Leaf Springs (FLS) of the 6FLS guide illustrated in
Fig. 5.1. The FLS is fixed at the left side and the block at the right side represents its
end effector e. The lower part of Fig. 5.2 shows a rigid-body model, in which the de-
formation modes with low stiffness are visualized using revolute joints [11]. Bending of
the leaf springs is represented by the vertical revolute joints, and torsional deformation
is represented by a revolute joint coincident with the length axis of the flexures. The
end effector e is extended in order to reach the point underneath the fold line, at which
the arrow engages. At this point, motion in z-direction is not possible in the kinematic
model, meaning that it is constrained in the real FLS. This is only true for a point on
the indicated dashed line running through the fold line [10, 24]. Rotations of the end
effector are free because the revolute joints span the full space. This means that the FLS
only constrains one translation. A FLS could be replaced by a wire flexure (essentially a
slender rod) placed at the fold line without changing the kinematics of the mechanism
[10, 24, 25]. The advantage of a FLS over a wire flexure is that it does not suffer from a
shortening effect, which makes it specifically suitable for large ranges of motion.

Because a single FLS constrains only one degree-of-freedom of its end effector, at
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Figure 5.2: The Folded Leaf Spring (FLS) and its rigid-body model. The arrow shows its single translational
constraint.

least five FLS elements are needed to create a linear guide. A sixth FLS is usually added
to improve symmetry.

In pseudo-rigid body models [3] a blade flexure is often represented without the rev-
olute joint which represents torsion. This representation is valid for planar mechanisms
with planar loads, but if spatial loads are present the torsional compliance needs to be
taken into account [25, 26]. To illustrate this, consider a typical blade flexure with length
L = 100 mm, height (in x-direction in Fig. 5.2) h = 20 mm, thickness t = 0.2 mm, E = 210
GPa and G = 80 GPa. The torsional stiffness is [27]:

KT = G J

L
, (5.1)

where J = 1
3 ht 3 for wide cross sections [27]. The bending stiffness (rotation around the

x-direction in Fig. 5.2) is [28]:

Kr x = E Ir x

L
(5.2)

where the area moment of inertia around the x-axis is Ir x = 1
12 ht 3. The in-plane bending

stiffness of the blade flexure is:

Ki pb = E Ii pb

L
(5.3)

where Ii pb = 1
12 th3. For the chosen dimensions this results the stiffness values KT =

4.3e−2 Nm/rad, Kr x = 2.8e−2 Nm/rad, and Ki pb = 2.8e2 Nm/rad. The torsion stiffness
KT has the same order of magnitude as stiffness Kr x , which are both indeed considered
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as free in the kinematic model. The in-plane bending stiffness Ki pb is four orders of
magnitude higher and is considered as constrained in the kinematic model. The low tor-
sional stiffness of the blade flexures is the reason that the FLS only provides a translation
stiffness at point c in the X-direction. For example, the stiffness in x-direction at the end
effector e due to the torsional stiffness of the left blade flexure is (assuming for simplicity
that the two blades are at an angle of 90 degrees):

Kxe,T = KT

l 2 . (5.4)

Note that the total stiffness at point e is actually lower because not all deformations are
taken into account. The stiffness at c in the x-direction is not dependent on the torsional
stiffness, but on the lateral stiffness of the two blade flexures, as [10]:

Kxc =
[

2L3

3E Ii pb
+ 12L

5Gth

]−1

(5.5)

For the chosen blade flexure dimensions, stiffness Kxc = 4.1e4 N/m and Kxe,T = 4.3 N/m.
The stiffness at point c is at least four orders of magnitude higher than the stiffness at
point e, which validates that the FLS provides a constraint at c and not at e. For blade
flexures with a smaller length to height ratio, additional stiffness due to constrained
warping has to be taken into account when computing the torsion stiffness in equation
5.1 [29]. However, this effect is small compared to the difference in free and constrained
stiffness terms [29].

X

Rz

Ry

Constrained 

directions

Figure 5.3: The TR-FLS element and its rigid-body model, showing the three constrained directions.

5.2.2. THE TORSION REINFORCED FOLDED LEAF SPRING ( TR-FLS)
Figure 5.3 shows the TR-FLS element, consisting of a folded leaf spring with torsion re-
inforcement structures. These structures are proposed in earlier work [29, 30], in which
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they are used to create a flexure joint with high stiffness in its supporting directions, at
large rotations. Instead, we will use the torsion reinforcement structures to add two ro-
tational constraints to the FLS. The lower part of Fig. 5.3 shows this, using a rigid-body
model of the TR-FLS. The two revolute joints representing torsion in Fig. 5.2 are now re-
moved, resulting in a planar linkage. The TR-FLS only allows movements in the xy-plane
because translation in Z and rotation around X and Y are constrained. Furthermore, the
TR-FLS constrains motion in z-direction at any place, contrarily to the FLS in which the
motion is only constrained for points on the line running through the fold line.

Figure 5.4: Visualization of the deformations in the TR-FLS (scale 1:1). Note that the triangular shapes consist
of blade flexures, resulting in distributed strains. The flexure thickness in the figure is equal for all parts.

It is important to note that the torsion reinforcement structures in the TR-FLS are not
rigid, but behave as leaf springs. This results in a smooth strain distribution, as visual-
ized in Fig. 5.4. If the torsion reinforcement structures would be rigid, all strains would
be localized between the triangular shapes, which would lead to high peaks in the distri-
bution.

5.2.3. THE 2-TR-FLS LINEAR GUIDE

Figure 5.5 shows the 2-TR-FLS linear guide. As shown in Fig. 5.3, a single TR-FLS only
allows in-plane motions. The intersection of the motion planes of the two TR-FLS ele-
ments forms a line, over which the end effector of the linear guide moves. This is sim-
ilar to the well-known rigid link Sarrus mechanism. The 2-TR-FLS has a less obstruc-
tive build volume than the 6FLS guide shown in Fig. 5.1. The end effector is accessible
through a 270 degrees angle. Note that the two TR-FLS elements do not necessarily have
to be at a 90 degrees angle, as long as the two motion planes are not parallel. Similar to
the Sarrus (and the 6FLS) mechanism, the rotation around the Z axis of the 2-TR-FLS is
overconstrained. This will be discussed in section 5.5.

5.2.4. 3-TR-FLS LINEAR GUIDE

Figure 5.6 shows the 3-TR-FLS linear guide, constructed by adding a third TR-FLS ele-
ment to the 2-TR-FLS design. The motion plane of this third TR-FLS element again in-
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Figure 5.5: 2-TR-FLS linear guide, showing a smaller and less obstructive build volume than the 6FLS design.
The end effector can be reached through a 270 degrees angle.

tersects at the motion axis. This design is mainly considered for comparative purposes,
because the 6FLS can be constructed such that it has the same build volume as the 3-
TR-FLS design. This will be explained in the next section.

5.3. OPTIMIZATION AND COMPARISON
The 2-TR-FLS, 3-TR-FLS and 6FLS design will be optimized and compared on a sup-
port stiffness performance metric, while subjected to the same optimization constraints
such as build volume and maximum stress. First, this performance metric will be de-
fined more precisely. Then, the optimization variables, constraints and algorithm are
described. Finally, the results are presented.

5.3.1. PERFORMANCE METRIC

All three linear guides are optimized on support stiffness, which is defined as the low-
est translational stiffness in the XY-plane in Fig. 5.5. The lowest support stiffness value
throughout the full range of motion is chosen as the performance metric. A higher value
is considered better. This performance metric is chosen because the lowest parasitic
eigenfrequency of the linear guide is anticipated to correspond to a translational mode
shape, thus determining the dynamic behavior of the mechanism. A translational mode
shape is expected because the end effector is small compared to the flexures, and there-
fore has a relatively low rotational inertia compared to its mass.

5.3.2. OPTIMIZATION VARIABLES AND CONSTRAINTS

Figure 5.7 shows the design variables which are varied in the optimization routine. P de-
picts the point in which the support stiffness is determined and at which the mechanism
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Figure 5.6: 3-TR-FLS linear guide for comparison purposes.

is actuated. The y-coordinate of this point has the fixed value Wend and the variable Lend

is the distance between this point and the attachment of the flexure. The variable θ is in-
troduced to allow the design to rotate with respect to its motion path. Variables tt and
t f f depict the thickness of the flexures of the torsion reinforcement and the folded leaf
spring itself, respectively. The height of the flexures in the third dimension is not drawn
and is named H . L f f , W f f and Wt are the distance between the two attachment points
of the flexure, the width of the main flexure and the width of the torsion reinforcement
structures, respectively. Note that the 6FLS design only contains part of the variables
depicted in Fig. 5.7. A spacing of 75 mm between the leaf springs of the 6FLS design is
chosen. This way, the footprint measure as depicted in Fig. 5.8 will approximate those
of the other mechanisms, allowing for a fair comparison. Tables 5.1 and 5.2 show the
constraints and the fixed values used in the optimizations, respectively. A maximum of
50 mm for the height H of the flexures is chosen, because the cross-section of the end
effector measures 50 by 50 mm.

Constraint Value

Maximum stress [M pa] 600

Minimum flexure thickness t f f and ttr [mm] 0.2

Maximum flexure height H [mm] 50

Maximum Y dimension LY [mm] 150

Maximum driving force [N ] 10

No collisions -

Table 5.1: Optimization constraints, depicted in Fig. 5.7.
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Figure 5.7: Design variables of the TR-FLS. P depicts the point in which the stiffnesses are determined. The
height of the flexures in the third dimension is not drawn and is named H . Variables tt and t f f depict the
thickness of the torsion reinforcement structure and the folded leaf spring itself, respectively.
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Figure 5.8: Footprint measures for (a) the 6FLS design and (b) the 2-TR-FLS and 3-TR-FLS linear guides. The
2-TR-FLS design uses only two of these blocks, whereas the other two designs need three blocks.

5.3.3. OPTIMIZATION ALGORITHM

A derivative-free function comparison search method based on the Nelder-Mead opti-
mization algorithm [31] is used to find the set of design variables for each of the three
linear guide designs which scores highest on the performance metric defined in sec-
tion 5.3.1. To include all constraints from Table 5.1, the algorithm is adapted in order to
ensure feasible solutions within the solution space as in earlier work of two of the au-
thors [30]. The performance metric is computed using the flexible multibody software
SPACAR [32]. SPACAR uses nonlinear 3D finite beam elements which include geomet-
ric non-linearities. Due to the specific choice of discrete deformation modes, only a
limited number of elements is required to produce both fast and accurate results. Com-
putational cost is further reduced by taking into account symmetry conditions of the full
mechanisms.
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Fixed parameter Value

Motion range in z-direction [mm] -50 to +50

End effector Wend [mm] 25

E modulus [GPa] 210

Poisson ratio [−] 0.3125

Table 5.2: Fixed parameters in the optimizations, depicted in Fig. 5.7.

5.3.4. OPTIMIZATION RESULTS

Figure 5.9 shows the support stiffness of the three optimized linear guides along their
motion range. Support stiffness was defined as the lowest translational stiffness in the
XY plane. The minimum support stiffness in the motion range is shown in Table 5.3.
Note that this was the performance metric in the optimization.
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Figure 5.9: Support stiffness versus displacement of the three optimized designs, defined as the lowest trans-
lational stiffness in the XY-plane.

Figures 5.10 and 5.11 show the stiffness of the optimized linear guides in other directions.
Note that the designs are not optimized on these measures. Figure 5.10 shows the rota-
tional support stiffness, defined as the lowest rotational stiffness in the XY-plane. Figure
5.11 shows the torsional stiffness around the motion axis Z.

Table 5.4 shows the design variables resulting from the optimizations. In all optimiza-
tions, the thickness of the flexure elements results in the lower bound of 0.2 mm. Fur-
thermore, all designs result in the maximum driving force of 10 N and all reach the max-
imum stress of 600 MPa. The height H of the flexures (approximately) reached the upper
bounds of 50 mm for the 2-TR-FLS and 3-TR-FLS designs, whereas the 6FLS design has
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Design Minimum support stiffness
6FLS (pre-existing) 2840 [N /m]

2-TR-FLS 5811 [N /m]
3-TR-FLS 11620 [N /m]

Table 5.3: Minimum support stiffness throughout the range of motion (100 mm) for each optimized design.
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Figure 5.10: Rotational support stiffness versus displacement of the three optimized designs, defined as the
lowest rotational stiffness vector in the XY-plane.

a H value of 22 mm. Dimensions LZ and LY are measures for the footprint of the mech-
anisms, as depicted in Fig. 5.8.

5.4. EXPERIMENTAL VALIDATION
In order to validate the theoretical model, a prototype based on the optimized 2-TR-FLS
design is tested experimentally. In this section we describe the design of the prototype
and the measurement setup, and present the results.

5.4.1. PROTOTYPE

The prototype is built from Polyamide 12 (Nylon) using a Selective Laser Sintering (SLS)
process. Using Nylon instead of steel (as in the optimizations) has the advantage that
the stiffness of the steel support frame can be neglected and therefore does not need
to be modeled. Material properties of printed Nylon using the SLS process are experi-
mentally tested by [33]. Taking the printing direction into account, the authors report a
Young’s modulus of 1.62 GPa and a Poisson ratio of 0.387. Figure 5.12 shows the design of
the prototype. The two TR-FLS elements forming the 2-TR-FLS linear guide are printed
separately and then joined using four bolts. The printing direction for each TR-FLS is
in the direction perpendicular to the drawing plane of Fig. 5.7. Both TR-FLS elements
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Figure 5.11: Torsional stiffness around the motion axis versus displacement, of the three optimized designs.

of the prototype in Fig. 5.12 have staircase-shaped end effectors which fit on to each
other. Some dimensions of the optimized design are changed in the prototype. Figure
5.12 shows that the end effector of the horizontal TR-FLS is elongated by 12.5 mm. This
is to avoid collisions of the triangular segments with the other TR-FLS element. This has
as result that Wend of the top TR-FLS is changed from 25 mm to 37.5 mm, and that the
center of mass of the end effector is shifted. The new center of mass is located 6.25 mm
in negative x-direction from point q, as indicated in Fig. 5.12. Furthermore, the triangu-
lar segments closest to the attachment points of the TR-FLS elements in Fig. 5.12 are at
the left side of the main leaf spring, whereas these were positioned at the right side in the
optimization result. Lastly, the thickness of the flexures tt and t f f (see Fig. 5.7) is set to 1
mm because of the changed material properties and limitations of the SLS manufactur-
ing process. The thickness of the leaf springs and torsion reinforcements are measured
at 14 positions using a micrometer with a force restrictor. The average value is used in
the SPACAR model. The dimensions L f f (see Fig. 5.7) and height H of the additively
manufactured prototype is checked using a caliper. Sharp corners are rounded off with
1 mm radius fillets to avoid stress concentrations.

5.4.2. MEASUREMENT SETUP

The support stiffness of the linear guide is validated indirectly by measuring the eigen-
frequencies of the prototype. This way, inaccuracies due to stress relaxation are miti-
gated. The lowest eigenfrequency of the unactuated stage should have a mode shape in
which the end effector moves in its intended motion direction. This frequency is ide-
ally low, indicating a low motion stiffness. The mode shapes in the undesired directions
are considered parasitic and ideally occur at high frequencies, indicating a high support
stiffness.

The mass and inertia of the end effector are calculated using the CAD software Solid-
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Dimension 6FLS 2-TR-FLS 3-TR-FLS

L f f [mm] 150 149 150

W f f [mm] 36 46 75

t f f [mm] 0.2 0.2 0.2

Wt [mm] - 41 28

tt [mm] - 0.2 0.2

H [mm] 22 50 49

α [rad] 0 0 0

Lend [mm] 37.5 39.4 63

LZ [mm] 111 104 97

LY [mm] 150 150 150

Table 5.4: Optimized design variables with corresponding footprints (depicted in Figs. 5.7 and 5.8) for the three
designs in Figs. 5.1, 5.5 and 5.6. All designs use the maximum driving force of 10 N and maximum stress of 600
MPa.
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149 100
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Figure 5.12: Prototype of the 2-TR-FLS, dimensions in mm. Point p and q correspond to Fig. 5.7.

works. These values are used in the SPACAR model to perform the dynamic analysis. To
check the CAD software and the manufacturing process, two tests are carried out. Firstly,
the density value used in the CAD software is checked. The mass of a single TR-FLS arm
is calculated using the CAD software. The printed TR-FLS arm will then be weighed and
compared. As a second test, the three rotational moments of inertia (MOI) Ixx , Iy and
Iz are checked analytically. For this, we assume that the end effector forms a rectangu-
lar block of homogeneous density with the outer dimensions depicted in Fig. 5.12. The
inertia can then be calculated, for example around the X axis, as:

Ix = m(a2 +b2)

12
+mc2 (5.6)

from [28], where a and b are the dimensions of the end effector in the directions Y and
Z, and c is the distance from the center of mass to the point where the inertia is to be
calculated, perpendicular to the chosen axis. Likewise, inertias Iy and Iz can be calcu-
lated. To estimate the mass in equation 5.6, the volume of a solid block with the outer
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dimensions of the end effector in Fig. 5.12 is calculated and the mass is calculated using
the previously validated value for the density. The nuts and bolts are weighed and added
to this mass. The inertia is calculated around point P in Fig. 5.12, which is also the point
of actuation.

Figure 5.13: Experimental setup for measuring the eigenfrequencies of the 2-TR-FLS design along its range of
motion.

Figure 5.13 shows the measurement setup, built on a vibration isolation table. The pro-
totype is driven (actuated) by a thin wire, which is pulled in the Z-direction using the
depicted adjustable stage. The z-position is measured using a triangulation laser sensor
(optoNCDT 1420). At 11 different z-positions (between every 10 mm of the displacement
range), an impulse is applied at different places on the prototype using an impact ham-
mer. The parasitic eigenfrequencies are measured using a laser doppler sensor (Polytec
OFV505) aimed perpendicular to the Z-direction. The velocity-time signal is read out by
its controller unit (OFV2200), without using the filtering options. This analog signal is
converted to digital using a NI USB-6008 DAQ device. The same device is used to read-
out the triangulation sensor, ensuring that both data sets have the same time stamp,
independently from the processing speed of the laptop which is used to read out this
digital signal. The velocity-time signal is analyzed in the frequency domain using the
Fast-Fourier Transform (FFT) function in the software package Matlab. From the result-
ing graphs, the eigenfrequencies on the z-positions can be read out by examining their
peaks. The eigenfrequency in the motion direction is measured by removing the wire
and using the laser sensor in Z-direction. Because the frequencies are low in this direc-
tion, the sample frequency of the triangulation laser suffices. To avoid that modes are
not measured, the impulses using the impact hammer are applied at different positions
on the end effector and on the rest of the setup. For the same reason, the laser measuring
the vibrations are pointed at different positions and angles on the end effector.
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5.4.3. EXPERIMENTAL RESULTS
Figure 5.14 shows the experimentally measured parasitic eigenfrequencies of the Ny-
lon prototype when the end effector is positioned at z = +50 mm. Note that higher
frequencies are not measured, probably due to the damping of the Nylon. At all 11 z-
positions, such a frequency spectrum is plotted and the three lowest frequencies are read
out. These are compared to the theoretical data, shown in Fig. 5.15. Each line represents
the frequency of a different mode shape, computed with the SPACAR model. The line
with lowest values is called the first parasitic mode shape. The black dots represent the
experimental data. The eigenfrequency in motion direction at z = 0 is 2.1 Hz, as mea-
sured with the triangulation sensor. The raw data for all frequency plots, the postpro-
cessing script and the SPACAR model will be published on the Journal of Mechanisms
and Robotics website.

To quantify how well the measurements correspond to the SPACAR model, a Normal-
ized Mean Absolute Error (NMAE) is computed for each of the three measured mode
shapes. The NMAE is a regular MAE normalized by the maximum value in the displace-
ment range as:

NMAE =
1
N

∑N
n=1

∣∣ŷn − yn
∣∣

max
∣∣y

∣∣ , (5.7)

in which N is the amount of measured data points (11 per mode shape), ŷ is the mea-
sured data, and y is the SPACAR model data. For the first, second and third parasitic
mode shape, the NMAE is 1.3 %, 2.0 % and 4.3 %, respectively. Note the outlier in the
third mode shape at z=20 mm, shown in Fig. 5.15. This outlier is included in the NMAE
of the third mode shape and causes the higher resulting value.
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Figure 5.14: Parasitic eigenfrequencies when the end effector is at +50 mm displacement in the z-direction.

The eigenfrequencies in Fig. 5.15 are calculated using the SPACAR software, which in
turn uses mass and inertia values at point P of the end effector, calculated by the CAD
software Solidworks. The density value used in the CAD software is checked by weigh-
ing a single TR-FLS arm. This results in a value of 0.280 kg, whereas the CAD software
predicts 0.282 kg. This is an error of 0.71%. The inertia values calculated with the CAD
model for Ix , Iy and Iz are 8.56e-4 kg m2, 9.01e-4 kg m2 and 1.83e-4 kg m2, respectively.
To check these values first the nuts, bolts and washers connecting the end effector are
weighed, resulting in a value of 20.2e-3 kg . The hand calculation of the Nylon part of the
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Figure 5.15: Measured and modelled parasitic eigenfrequencies of the Nylon prototype of the 2-TR-FLS design.
The eigenfrequency in motion direction (not displayed) is 2.1 Hz.

end effector results in 0.297 kg. The total of these masses is 0.317 kg, which is used to ap-
proximately calculate the inertia values, using equation 5.6. This results a Ix , Iy and Iz of
8.22e-4 kg m2, 8.72e-4 kg m2 and 1.82e-4 kg m2, respectively. These values correspond
within 5% to the values calculated by the CAD software.

The thickness tt and t f f measured with a micrometer at 14 positions are 0.99 mm on
average, with a maximum deviation of 9 micrometer. The dimensions L f f and H are
checked using a caliper, resulting in the expected values of 149 and 40 mm, respectively.

5.5. DISCUSSION
The 2-TR-FLS design has a smaller and less obstructive build volume than the 6FLS, yet
it outperforms the 6FLS on the support stiffness metric in table 5.3. The 3-TR-FLS design
occupies a build volume similar to that of the 6FLS, but scores four times higher on the
support stiffness metric.

The experimental test of the Nylon prototype shown in Fig. 5.15 validates the SPACAR
model. There is one outlier in the graph. This measured value could correspond to one
of the higher mode shapes. The rest of the data shows good correspondence, as shown
in Fig. 5.15. The printing process showed to be very precise, according to the measure-
ments on density and flexure thickness in the Results section. This could explain the
good correspondence between experiment and model.

Figures 5.9 and 5.10 show that the support stiffness of the 6FLS design increases at large
displacements, which is unexpected. The simulations show that at the point of the sup-
port stiffness increase, the material coordinate at the fold line starts moving in the di-
rection opposite to the motion direction (the FLS appears to be ’stretched’). This might
explain the support stiffness increase, either because of the decrease in curvature in the
leaf springs or because the increase in motion stiffness, which also has a component in
the constraining directions.
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All designs in this paper have a range comparable to their footprint. This is large com-
pared to existing literature, in which a fraction of the footprint is common. All other
properties of the mechanism, such as maximum stress and flexure thickness, are kept
in a practically feasible range considering Wire Electrical Discharge Machining of steel,
albeit at the upper limit of what is currently possible. Often in industry, shot peening is
used to increase the fatigue life of flexures. This postprocessing technique can not di-
rectly be applied when torsion reinforcement structures are present.

The optimized 6FLS design has a flexure height H of 22 mm, whereas the other two de-
signs approximate the upper bound of 50 mm in the optimization. This lower value is
detrimental to the support stiffness of the 6FLS. The reason that the 6FLS has a lower
H value is that the stiffness in the motion direction should be low enough to satisfy the
other optimization constraints. Namely, the actuation force should not exceed the 10
Newton limit, while the end effector should reach the intended range of motion. In the-
ory, the thickness t f f could be made very small, solving this problem. However, due to
manufacturing limitations this is not a practically feasible solution, and therefore a lower
limit of 0.2 mm was imposed on this variable. If there would be no limit on the actuation
force, infinitely many flexure elements could be used, increasing the support stiffness
indefinitely.

An additional advantage of both the new designs and the 6FLS design is that inaccura-
cies in the thickness of the flexures have less impact on the motion path, compared to a
planar parallelogram design. The TR-FLS element in Fig. 5.3 will constrain the indicated
directions, regardless of the motion path of the flexures in the xy plane. This is differ-
ent from the parallelogram design, in which the in-plane axial constraints of the flexures
are necessary to provide linear motion. An inaccuracy in the flexure thickness will affect
their motion path, directly affecting the motion of the end effector.

Similar to most planar linear guides, the three spatial linear guides analyzed in this paper
are ’overconstrained’ [25]. This could be a disadvantage, for example when temperature
gradients are present. The 6FLS design has one overconstraint in rotation around the
Z axis. This could, for example, be dealt with by adding a notch flexure to one of the
flexure elements, or by creating a torsionally compliant end effector [10]. The 2-TR-FLS
linear guide has the same overconstraint which could be removed in the same manner.
Removing overconstraints in the 3-TR-FLS does not seem practical because of the large
number of overconstraints.

Note that a single TR-FLS arm is not overconstrained. To understand this, observe a sin-
gle triangle in the TR-FLS arm in Fig. 5.3. This triangle consists of a main leaf spring
and a torsion reinforcement structure, which in itself is a small folded leaf spring. As
explained in Fig. 5.2 and [10], a folded leaf spring adds one constraint to a system. This
single constraint is used to suppress the torsional degree-of-freedom of the main flexure.
Because the different triangles in the TR-FLS arm are placed in series, no overconstraints
are present in a single TR-FLS element.
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The 2-TR-FLS design could be further improved. For example, more triangular elements
might increase support stiffness. However, in practice the fillets required at the attach-
ment points of these elements will result in a large accumulations of material, increasing
the stiffness in the motion direction. This will in turn increase stresses in the mechanism.
A more feasible improvement would be to make the flexures tapered in the X and Y di-
rection. The flexures would then fill up the open space in the left figure in Fig. 5.12.

5.6. CONCLUSION
In this work, a new flexure element called the TR-FLS is presented. This element is cre-
ated by adding torsion reinforcement structures to a folded leaf spring, which increases
its constraining directions from one to three. An advantage of this is that only two in-
stead of five or six folded leaf springs are needed to create a linear guide.

A new linear guide consisting of two TR-FLS elements is presented, called the 2-TR-FLS.
The design is compared to a pre-existing linear guide consisting of six regular folded leaf
springs (6FLS), after optimizing both designs on a support stiffness metric. Compared to
the 6FLS design, the 2-TR-FLS design scores over twice as high on the support stiffness
metric, while occupying a smaller (-33%) and less obstructive build volume.

A variation on the new linear guide is presented, called the 3-TR-FLS. This linear guide
is designed such that it occupies a build volume similar to that of the 6FLS design. After
optimizing this design, it scores four times higher on the support stiffness metric com-
pared to the 6FLS design.

A prototype of the 2-TR-FLS design is built and the parasitic eigenfrequencies along its
range of motion are measured, validating the SPACAR software used for modelling (Nor-
malized Mean Absolute Error of 4.3%).
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6
A NEW TYPE OF SPHERICAL

FLEXURE JOINT BASED ON

TETRAHEDRON ELEMENTS

In this chapter, a new tetrahedron element is presented, which is a generalized version of
the blade flexure with torsion reinforcement (here referred to as a triangular prism ele-
ment). The tetrahedron element is used to create two new spherical flexure joint designs,
which are the compliant equivalent of a ball-and-socket joint. The tetrahedron elements
are connected in series without intermediate bodies, which is new with respect to the de-
signs currently found in literature and which helps to increase the range of motion. For de-
tailed investigation, equivalent representations of the tetrahedron and prism elements are
presented which are used to prove that three of the four constraint stiffness terms depend
solely on the properties of the main blade flexure. Furthermore, equations for these stiff-
ness terms are derived which are compared to finite-element simulations, showing a good
correspondence for the prism element with a Normalized Mean Absolute Error (NMAE) of
1.9%. For the tetrahedron element, the equations showed to only capture the qualitative
behaviour with a NMAE of 34.9%. Also, an equation for the optimal width of the prism
element regarding rotational stiffness is derived.

This chapter has been published in the journal of Precision Engineering [1]. A video can be found here.
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6.1. INTRODUCTION
Spherical flexure joints can provide a high-precision alternative for traditional ball-and-
socket joints. This is because they gain their motion due to the deflection of slender
segments such as thin spring steel plates, which eliminates friction and backlash in the
rolling and sliding surfaces in these traditional joints. Four types of spherical flexure joint
designs can currently be distinguished in literature [2], all allowing solely three rotations
in a single point.

P

e

(a)

P
e

(b)

P

e

(c)

P

e

e e

(d)

Figure 6.1: Overview of the current state-of-the-art spherical flexure joints from [2], where P denotes the center
of rotation and e the end effector: (a) a spherical notch joint or short wire flexure [3]; (b) three wire flexures
with intersecting axes [4, 5]; (c) three revolute flexure joints in series with intersecting motion axes [6, 7]; (d)
three folded leaf springs with intersecting fold lines [2, 4, 8].

The first type consists of a rod with a thinner part or short wire as illustrated in
Fig. 6.1a [3], which allows solely three rotations because all strains are concentrated in
the thinner part. The second type consists of three wire flexures or slender rods which in-
tersect in a common point as shown in Fig. 6.1b [4, 5], where each wire flexure constrains
one translational motion. The third design type is based on the traditional (rigid-body)
spherical linkage in which the axes of three revolute joints intersect in a single point.
The revolute joints have been replaced by a flexure-based counterpart for which there
are various possibilities, for example as illustrated in Fig. 6.1c [6, 7]. The fourth type
shown in Fig. 6.1d can be regarded as the design of Fig.1b with the wire flexures replaced
with ‘folded leaf springs’ [2, 4, 8], which each also constrains one translational motion
[4].

The second, third and fourth design types have special configurations where they
degenerate to planar joints which allow two in-plane translations and one rotation. For
example in design type two in Fig. 6.1b, where the length axes of the wire flexures in-
tersect in the rotation point P . If point P is shifted to infinity in the vertical direction,
the wire flexures become parallel and a planar joint results. In a similar way, design type
four shown in Fig. 6.1d degenerates into a planar joint when the fold lines of the folded
leaf springs become parallel. The third design type shown in Fig.6.1c also has a planar
version which consists of two links and three revolute flexure joints with parallel rotation
axes.

In this paper, we present a new type of spherical flexure joint which is formed by
a serial connection of tetrahedron-shaped elements. We present two design variations
named the Tetra I and Tetra II, and also present their planar derivatives in which the
tetrahedron elements degenerate into triangular prisms. We have published one of these
planar versions in earlier work [9] where the triangular prism was inspired by the ‘infinity
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hinge’ from [10, 11]. In this paper we show that the tetrahedron element is a generalized
version of the triangular prism.

In section 6.2 we present the joint designs and explain how they function. The tetra-
hedron element is studied in detail in section 6.3 by means of an equivalent represen-
tation. Equations for the stiffness terms are derived and compared to finite-element
simulations. In section 6.4 we discuss the results and in section 6.5 we summarize the
contributions of this work.

Throughout the article, we refer to motions of a body as being free when a signifi-
cantly low stiffness is being experienced in that direction, and as constrained in the case
of a significantly high stiffness. A flexure typically adds constraints to a body, meaning
that it stiffens certain motion directions of the body [12].

6.2. DESIGNS OF THE TWO NEW SPHERICAL FLEXURE JOINTS

AND THEIR PLANAR DERIVATIVES
In this section we first present the designs of two new spherical flexure joints and subse-
quently we present their planar derivatives. The designs consist of tetrahedron elements
connected in series. In the first design, the elements are connected along two arms as
illustrated in Fig. 6.2, while in the second design the elements form a nested configura-
tion as illustrated in Fig. 6.5.

Tetrahedron 

element Arm 2

e

P

Arm 1

(a)

e

Floating

Rod indicating 
the center of 
rotation

P

(b)

Figure 6.2: The Tetra I spherical flexure joint design, shown from two sides, based on two arms under an angle
consisting each of four tetrahedron elements. Point P is the remote center of rotation, indicated by the rod eP .

The first design, named Tetra I, is shown in Fig. 6.2a. It can be considered as con-
sisting of two arms, each built up from four tetrahedron elements and with e as the end-
effector. For illustration, in e a rod is placed which ends in point P , the remote center of
rotation of the flexure joint which floats in space. The flexures constrain the end effector
e such that solely the three rotations about point P are free. If, for example, a horizontal
force is applied at the top of the joint in e, the joint rotates about point P as shown in the
two deformed states (scaled 1:1) in Fig. 6.3.
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Figure 6.3: The Tetra I design subjected to a horizontal load at e, showing that it rotates about point P (scaled
1:1).
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Figure 6.4: (a) Tetrahedron element formed by three blade flexures, with its parameters; (b) Specific degener-
ated case when P lies at infinity, for which the form reduces to a triangular prism.

The working principle of the Tetra I design is as follows. The two arms each consist
of four tetrahedron elements. A single tetrahedron element, shown isolated in Fig. 6.4,
consists of three blade flexures ac, ab and bc. Edges a1a3 and c1c3 are the interfaces
at which other tetrahedron elements can be connected and therefore blade flexure ac
is considered as the main (connecting) blade flexure. In the isolated view, we consider
edge a1a3 as fixed and the rigid bar through edge c1c3 as the end effector. The three blade
flexures have a trapezoidal shape and the lines through their edges form a tetrahedron
shape, as illustrated in Fig. 6.4. Coordinate system x y z is placed with its origin at point
a1. Axis x is aligned with line a1c1 and axis y is in the plane formed by points a1b1c1.
Coordinate system uv w has the same orientation as system x y z, except that it is rotated
around the x-axis such that v is perpendicular to the plane of blade flexure ac. The rigid
bar is free to rotate around the axes u and w , which lie in the plane of blade flexure ac.
This is because the planes formed by the three blade flexures intersect in point P , as will
be explained in more detail in section 6.3.2. In order to achieve spherical motion, rota-
tion around the third axis v perpendicular to the plane of blade flexure ac should also
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be free. This is accomplished by connecting a second tetrahedron under an angle with
respect to the first tetrahedron, such that the main blade flexures of the two tetrahedron
elements are not coincident. For example, the fourth and fifth tetrahedron of the Tetra
I design shown in Fig. 6.2a are connected under an angle with respect to each other in
order to free the rotation around the third axis. The tetrahedron elements should be
connected such that their rotation points coincide, which means that the planes of all
blade flexures in the spherical joints intersect point P . In principle, the spherical flexure
joint design needs solely two tetrahedrons under an angle to function properly. How-
ever, each of the tetrahedrons can also be replaced by a set of tetrahedrons in series in
order to increase the range of motion and to avoid collisions, such as in the Tetra I design
in Fig. 6.2a which consists of four tetrahedrons in each arm, paired two by two on each
side.

The second new design of a spherical flexure joint named Tetra II is shown in Fig. 6.5a.
This design also consists of tetrahedron elements, however assembled in a nested con-
figuration. The tetrahedron elements are constructed in series, similar as in the Tetra I
design in which the two arms are formed by a serial connection of tetrahedron elements.
Also in the Tetra II design, point P is the remote center of rotation. If, for example, a hori-
zontal force is applied at point e, the joint rotates about P as shown in the deformed state
(scaled 1:1) in Fig. 6.5b. A movie of this design can be found online using the DOI of this
article, in which the motions of an additively manufactured titanium version are demon-
strated. Two tetrahedron elements connected under an angle are sufficient for spherical
motion, while the third element was added to improve the range of motion. Note that
the three tetrahedron elements not only differ in size, but also in shape. This is different
from the Tetra I design, where all tetrahedron elements have the same shape and size.
Changing the shape of the tetrahedron elements does not change the kinematics of the
spherical joint, as long as the planes of all three blade flexures forming the tetrahedron
elements coincide in point P . This will be explained in more detail in section 6.3.2.

P 

e

(a)

e

P

(b)

Figure 6.5: (a) The Tetra II spherical flexure joint design based on nested tetrahedron elements; (b) Deflected
pose due to a load showing the rotational motion about P .

Both of the spherical joint designs Tetra I and II in Figs. 6.2 and 6.5 have a specific
case for which they become planar joints, shown in Figs. 6.6a and 6.6b, respectively. Here
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the tetrahedron elements have become triangular prism elements as shown in Fig. 6.4b.
The mobility of the end effector e is no longer spherical. In both designs the end effec-
tors have 3-DoF planar motion capability, with an x- and y-translation and an in-plane
rotation θz . The transformation from spherical to planar mobility can be understood as
follows. The end effector e of a spherical joint moves over the surface of a sphere. If the
radius of this sphere is infinitely large, the spherical surface degenerates to a plane. This
means that the motions of the joint also become planar. A requirement for the planar
joints is that the planes of all blade flexures should be parallel to a single axis, as will be
explained in more detail in section 6.3.2. In [9] we have already shown how planar joint
1 can be applied for the design of a linear guide.
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Figure 6.6: (a) 3-DoF planar joint 1, derived as special case from the Tetra I design in Fig. 6.2a; (b) 3-DoF planar
joint 2, derived as special case from the Tetra II design in Fig. 6.5a.

The four joint designs presented in this section are based on distributed compliance,
which enables a significant range of motion. Figure 6.7 shows a finite-element simu-
lation of planar joint 1, forced in a straight-line motion. The flexures show a gradual
curvature, which means that the strains are well distributed over the whole joint. If the
prism elements would be solid, high peak stresses would occur in the connection points
which would significantly limit the range of motion.

Figure 6.7: Illustration of the distributed compliance by a finite-element simulation of planar joint 1 forced in
a straight-line motion [9]. The distributed strains enable a large range of motion.
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6.3. THE TETRAHEDRON AND PRISM ELEMENTS IN DETAIL
At the core of the four presented joints lie the tetrahedron and prism elements, of which
we explain the functioning in detail in this section. Using equivalent representations
we analyze their degrees of freedom and derive stiffness equations for their constrain-
ing directions, which we compare to finite-element simulations. We assume that blade
flexures ab and bc have equal lengths, and that for the tetrahedron element Px = La1c1 /2
and Py = 0, with Px and Py the x- and y-coordinates of the remote center of rotation as
illustrated in Fig. 6.4a.

6.3.1. EQUIVALENT REPRESENTATIONS OF THE TETRAHEDRON AND PRISM

ELEMENTS
Analysis of the tetrahedron and prism elements is not evident because the three blade
flexures form a hybrid serial and parallel configuration: blade flexures ab and bc form
a serial path from ground to the end effector (edge c1c3), and blade flexure ac forms a
second, parallel path. It is not directly clear which stiffness blade flexure bc applies to
the end effector because it is connected to the fixed world via blade flexure ac. The goal
of the equivalent representation is to simplify the tetrahedron and prism element such
that they consist of two parallel flexure elements. This is done by replacing blade flexures
ab and bc with a single wire flexure and extending the end effector using a rigid bar, as
illustrated in Fig. 6.8. Points a2, b2 and c2 are in the middle of the edges. Edge c1c3 in the
equivalent mechanism is still the end effector, which is extended such that it forms the
rigid part. Two parallel paths are present: the wire flexure and blade flexure ab. In the
following, we explain why these equivalent representations are valid.
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Figure 6.8: (a) Equivalent representation of the tetrahedron element where blade flexures ab and bc are re-
placed with a rigid part and a wire flexure; (b) Similar equivalent representation of the prism element.

We start with the equivalent representation of the special prism element. Blade flex-
ures ab and bc in the original prism element form a folded leaf spring (or double blade
flexure), as illustrated in Fig. 6.9a. An equivalent rigid-body model of this folded leaf
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Figure 6.9: Blade flexures ab and bc of the prism element form a folded leaf spring as illustrated in a), which
solely counteracts forces collinear with edge b1b3 as shown in the equivalent rigid-body model in b). There-
fore, they can be modeled with a wire flexure and rigid bar illustrated in c).

spring is illustrated in Fig. 6.9b, in which the deformation modes with low stiffness are
represented by revolute joints connected by rigid bars, as in [6]. The end effector is
extended with a rigid bar which runs to underneath point b2. The force Fbp is con-
strained because it either intersects or is parallel to each of the rotation vectors of the
revolute joints [13], such that it does not result in a moment around any of the revolute
joints. This is solely the case for forces collinear with the rotation axis of the revolute
joint at b2. Moments are not counteracted by the folded leaf spring because the rota-
tion vectors of the revolute joints span the full space. A wire flexure coincident with edge
b1b3 constrains the same motions and is therefore kinematically equivalent to the folded
leaf spring. Therefore, the rigid bar and wire flexure illustrated in Fig. 6.9c can be used
to replace blade flexures ab and bc. The same reasoning can be used to explain why
the equivalent representation of the tetrahedron is valid. Also in this case, the folded
leaf spring formed by blade flexures ab and bc of the tetrahedron element solely resists
forces collinear with edge b1b3. A wire flexure placed at this edge can replace blade flex-
ures ab and bc, as illustrated in Fig. 6.8a. In earlier work [9], we presented an explanation
largely similar to the one in this paragraph. A different explanation can be found in [14]
where instead of adding the free directions of the two blade flexures ab and bc, the au-
thor analyzes the overlap of their constraints using an ‘intermediate constraint space’.

The equivalent representations in Fig. 6.8 are only valid for small deflections from
the initial shape since the wire flexure suffers from a shortening effect at larger displace-
ments. This shortening does not occur in a folded leaf spring.

6.3.2. DEGREES OF FREEDOM OF THE TETRAHEDRON AND PRISM ELEMENTS

Using the equivalent representations and constraint-based design (CBD) methods [12,
13, 15], the degrees of freedom of the tetrahedron and prism elements can be under-
stood. We start with the tetrahedron element. Using CBD, the blade flexure ac is repre-
sented by three ‘constraint lines’ running through points a1c1, a3c3 and a1c3 in Fig. 6.8a.
A fourth constraint line at the place of the wire flexure represents this element. The CBD
methods state that the end effector is solely free to rotate around axes which intersect all
constraint lines. This means that the tetrahedron element is solely free to rotate around
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the axes which lie in the plane of blade flexure ac and intersect point P . This results in
the two independent rotations around axes u and w illustrated in Fig. 6.4a.

The same method can be applied to the prism element, which is created by shift-
ing the rotation point P of the tetrahedron element at infinity in the z-direction. Assume
that the first of the two independent rotation axes of the tetrahedron element is collinear
with edge c1c3, and the second one is perpendicular to this edge (but in the plane of
blade flexure ac). In the prism element, the first axis still intersects all constraint lines
because the constraint line representing the wire flexure is intersected at infinity. This
means that the prism is free to rotate around the y-axis in Fig. 6.8b. The second rota-
tion axis perpendicular to edge c1c3 and in the plane of blade flexure ac lies at infinity
because point P lies at infinity in the z-direction. This rotation at infinity results in the
translational degree of freedom of the prism element in the direction perpendicular to
blade flexure ac. In CBD, this freedom line is represented by a ‘hoop’ in the plane of
blade flexure ac.

6.3.3. EQUIVALENT STIFFNESS OF THE WIRE FLEXURE

In order to calculate the stiffness terms of the tetrahedron and prism elements in the
next sections, we need to know the longitudinal stiffness of the wire flexure such that
it represents the stiffness due to blade flexures ab and bc. In the prism element, blade
flexures ab and bc form a folded leaf spring with parallel edges, of which this stiffness
Kbp is given by [4] using linear beam theory, as:

Kbp =
[

L3
a2b2

+L3
b2c2

3E Ip
+ 6(La2b2 +Lb2c2 )

5Gth

]−1

, (6.1)

where La2b2 =
√

L2
a2c2

/4+S2
y is the distance between point a2 and b2, or the length of

blade flexure ab. Sy is the width of the total element, which is the dimension in the y-
direction in Fig. 6.4b. E and G are the Young’s modulus and shear modulus, respectively.
The area moment of inertia is Ip = tS3

z /12, where t and Sz are the thickness and height
of the blade flexures as indicated in Fig. 6.4b. The first and second term in brackets in
equation 6.1 describe the displacement due to bending and shear, respectively. Because
we assume that the lengths of the blade flexures ab and bc are equal, La2b2 = Lb2c2 and
equation 6.1 can be simplified to:

Kbp =
[

2L3
a2b2

3E Ip
+ 12La2b2

5Gth

]−1

. (6.2)

The equivalent stiffness of the wire flexure for the tetrahedron element is more complex
to calculate, because the blade flexures have a trapezoidal outline and therefore linear
beam theory is not directly applicable. To approximate the lateral stiffness of blade flex-
ure ab, we take the average stiffness of two beams, one with length La1b1 and one with
La3b3 , as indicated in Fig. 6.4. In this way, the equivalent stiffness for the wire flexure Kb

is approximated as:
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Kb =
[

4

3E I /L3
a1b1

+3E I /L3
a3b3

+ 24

5G A/La1b1 +5G A/La3b3

]−1

, (6.3)

where

La1b1 =
√

L2
a1c1

/4+S2
y (6.4)

and

La3b3 =
Pz −Sz

Pz
La1b1 . (6.5)

The thickness in the blade flexures of the tetrahedron varies linearly in the z-direction,
indicated by tmax and tmi n in Fig. 6.4a. The thickness changes proportionally with the
length of the line segments of the top triangle a1b1c1 and the bottom triangle a3b3c3.
This is to make sure that the bending stresses due to displacement in the motion direc-
tion have an even distribution in the z-direction of the element. This means that:

tmax = Pz

Pz −Sz
tmi n . (6.6)

We approximate the height of the blade flexures by Sz , which is the height of the total
tetrahedron excluding the rigid bar in Fig. 6.4a. The cross-sectional area in equation 6.3
is then:

A = (tmi n + tmax )Sz /2. (6.7)

Note that we approximate the shear deformation in equation 6.3 by using the shear con-
stant for a rectangular cross section. The moment of inertia I for the trapezoidal cross-
section is given by [16] as:

I = S3
z

(
tmin

2 +4 tmin tmax + tmax
2
)

36(tmi n + tmax )
, (6.8)

where we also approximate the height of the blade flexures by Sz .

6.3.4. CONSTRAINT STIFFNESS TERMS OF THE PRISM ELEMENT
In this section we derive analytic expressions for the stiffness of the end effector (edge
c1c3) in the four constraining directions of the prism element illustrated in Fig. 6.4b, us-
ing its equivalent representation. Throughout the following sections we use linear beam
equations to calculate the stiffness of the blade flexures, which can be found in for ex-
ample [16, 17]. We neglect the stiffness in the free (low-stiffness) directions of the blade
and wire flexures.

We start with Kθx , which is the rotational stiffness of edge c1c3 around the x-axis as
illustrated in Fig. 6.8b. For this we apply a moment Mext around the x-axis, determine
the reactions on the blade and wire flexure, compute their corresponding displacements
and from this determine the rotation around the x-axis. Figure 6.10a shows the rigid part
of the equivalent representation, in the yz-plane. The external moment Mext is applied
at edge c1c3 and results in forces Fcp from the blade flexure, and Fbp from the wire flex-
ure. Note that both the blade and the wire flexure are free to rotate around the x-axis and
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Figure 6.10: Model for determining the rotational stiffness Kθx around the x-axis of the prism of Fig. 6.4b by
considering a moment Mext at c2 on the rigid part of the equivalent representation, shown in the yz-plane (a)
and xz-plane (b).

therefore cannot exert a moment in the yz-plane. The displacements δbp and δcp fully
determine the rotation around the x-axis, which means that the rotational stiffness can
be written as:

Kθx =
Mext

δbp Sy +δcp Sy
. (6.9)

What is left is to determine δbp and δcp as a result of Mext . We start with δbp . Static
equilibrium in the yz-plane gives:

δbp = Fbp

Kbp
= Mext /Sy

Kbp
, (6.10)

where Kbp is the equivalent stiffness of the wire flexure from equation 6.1. Displacement
δcp is more complex to calculate since Mext not only results in a force Fcp on the blade
flexure but also introduces a moment Mcp , as illustrated in 6.10b where the rigid part is
showed in the xz-plane. This moment counteracts the displacement caused by the force
Fcp . The total displacement can be calculated as:

δcp = Fcp

[
L3

a2c2

3E Ip
+ 6La2c2

5Gth

]
−Mcp

L2
a2c2

2E Ip
, (6.11)

where the first term is the displacement due to the force and the last term is the displace-
ment due to the moment. Using the free-body diagrams in Fig. 6.10 it can be shown that
Mcp = Fcp La2c2 /2 and Fcp = Mext /Sy , which gives:

δcp = Mext

Sy

[
L3

a2c2

12E Ip
+ 6La2c2

5Gth

]
. (6.12)

Substituting equations 6.12, 6.10, and 6.1 in 6.9 and rearranging gives the stiffness around
the x-axis as:
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Kθx = S2
y

 L3
a2c2
4 +L3

a2b2
+L3

b2c2

3E Ip
+ 6(La2c2 +La2b2 +Lb2c2 )

5Gth


−1

, (6.13)

where La2b2 = Lb2c2 =
√

L2
a2c2

/4+S2
y .

The stiffness terms in the other constraining directions of the prism element solely
depend on blade flexure ac. This can be proven as follows, using the equivalent repre-
sentation in Fig. 6.8b. If the wire flexure contributes to the stiffness, it causes a reaction
force in the z-direction on the rigid part in point b. Moment equilibrium in the yz-plane
can then not be satisfied, because the blade and wire flexure are free to rotate in this
plane. Solely the stiffness Kθx is dependent on the wire flexure, because in that case the
external moment Mext in Fig. 6.10a makes moment equilibrium possible. The transla-
tional stiffness in z-direction of edge c1c3 is therefore simply equal to the lateral stiffness
of blade flexure ac as:

Kz =
[

L3
a2c2

3E Ip
+ 6La2c2

5Gth

]−1

. (6.14)

Using the same reasoning, a moment around the y-axis is solely counteracted by flexure
ac and therefore the rotational stiffness around the y-axis is:

Kθy =
E Ip

La2c2

, (6.15)

and finally the translational stiffness in x-direction is:

Kx = EtSz

La2c2

. (6.16)

6.3.5. CONSTRAINT STIFFNESS TERMS OF THE TETRAHEDRON ELEMENT
In this section, we derive equations for the stiffness in the four constraining directions
of the tetrahedron element, as illustrated in Fig. 6.4a. The procedure is similar to that
of the prism, except that we approximate the stiffness of the flexures because of their
trapezoidal shape. For simplicity, we assume that Py = 0 in Fig. 6.4a, such that blade
flexure ac is vertical and coordinate system uv w aligns with system x y z.

We start with the translational stiffness at point P in v-direction Kv , as illustrated
in Fig. 6.4a. Consider the equivalent representation shown in Fig. 6.8a. The free-body
diagram of the rigid part after application of a force Fext at point P in the v-direction
is shown in Fig. 6.11. The displacement of P δP in the v-direction is fully defined by
the displacements δb and δc . Because the deformations are small, we can calculate the
contributions of the two displacements δb and δc to the displacement of P separately
and then add them [17]. We start with the contribution of δb . Static equilibrium gives:

Fext

Fb
= Sy√

S2
y +P 2

z

. (6.17)
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Figure 6.11: Model for determining the translation stiffness Kv in point P of the tetrahedron element in
Fig. 6.4a by considering a force Fext on the rigid part of the equivalent representation, shown in the v w-plane
(a) and uw-plane (b).

The displacements are related by the reciprocal of this transmission ratio [4] as:

δP,b

δb
=

√
S2

y +P 2
z

Sy
, (6.18)

where δP,b is the displacement of P in v-direction due to the displacement δb . The dis-
placement of P in the v-direction as a result of displacement δc can be derived in the
same way as:

δP,c

δc
= Pz

Sy
. (6.19)

The stiffness Kv is the external force divided by the total displacement in v-direction of
point P :

Kv = Fext

δP,c +δP,b
= Fext

Pz
Sy
δc +

√
S2

y+P 2
z

Sy
δb

. (6.20)

What remains is to find the displacements δb and δc due to force Fext . The displacement
δb is simply the force Fb divided by the stiffness of the wire flexure:

δb = Fb

Kb
=

√
S2

y+P 2
z

Sy
Fext

Kb
, (6.21)

where Kb is the equivalent stiffness of the wire flexure from equation 6.3. The displace-
ment δc is computed in a similar way as for the prism element. The free-body diagram
in Fig. 6.11b shows that, similar to the computation for the prism, a moment counteracts
the displacement due to the force Fc . Note that Fb,z , the component of Fb in z-direction,



6

86 6. A NEW TYPE OF SPHERICAL FLEXURE JOINT BASED ON TETRAHEDRON ELEMENTS

is equal to Fc . This force acts on an arm which is half the length of blade flexure ac, and
therefore the term between the brackets in equation 6.12 for the prism element can be
used to compute the displacement δc . However, because the blade flexures have a trape-
zoidal shape, we compute their average stiffness using the two lengths La1c1 and La3c3 ,
similar to the procedure for the equivalent wire flexure for the tetrahedron element in
section 6.3.3. Noting that Fc = Fext Pz /Sy , the displacement δc is approximated as:

δc = Fext
Pz

Sy

[
2

12E I /L3
a1c1

+12E I /L3
a3c3

+ 12

5G A/La1c1 +5G A/La3c3

]
, (6.22)

where

La3c3 =
Pz −Sz

Pz
La1c1 . (6.23)

Substituting equations 6.22, 6.21 and 6.3 in 6.20 yields the stiffness Kv in v-direction at
point P :

Kv = S2
y

[
2P 2

z

12E I /L3
a1c1

+12E I /L3
a3c3

+ 12P 2
z

5G A/La1c1 +5G A/La3c3

+
4(S2

y +P 2
z )

3E I /L3
a1b1

+3E I /L3
a3b3

+
24(S2

y +P 2
z )

5G A/La1b1 +5G A/La3b3

]−1 (6.24)

The stiffness in the other three constraining directions of the tetrahedron element
solely depend on blade flexure ac. This is because a reaction force in the wire flexure has
a component in the v-direction, which is not counteracted by the blade flexure because
it is free in that direction. Therefore, the wire flexure is only active in the case of a force
at P with a component in the v-direction, which means that solely constraint stiffness
Kv depends on the wire flexure.

To compute the translation stiffness in the w-direction Kw , consider a force at P in
the w-direction on the equivalent representation in Fig. 6.11b. This force will induce a
force and a moment at edge c1c3 on blade flexure ac, which counteracts its displacement
in the same way as when computing equation 6.22. Because again the moment arm of
the force is half of the length of blade flexure ac, we can simply use the terms in brackets
in equation 6.22:

Kw =
[

2

12E I /L3
a1c1

+12E I /L3
a3c3

+ 12

5G A/La1c1 +5G A/La3c3

]−1

. (6.25)

To compute the stiffness in the u-direction Ku , consider the uw-view of the equivalent
representation in Fig. 6.11b. The stiffness Ku is dependent on the axial deformation of
blade flexure ac and the torsional stiffness around its v-axis with moment arm Pz −Sz /2
as:

Ku =
[

La2c2

E A
+ (Pz −Sz /2)2La2c2

E I

]−1

, (6.26)
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where we approximate the length of blade flexure ab using La2c2 = (La1c1 +La3c3 )/2. Sim-
ilarly, the rotational stiffness Kθv is:

Kθv = E I /La2c2 (6.27)

6.3.6. COMPARISON OF THE EQUATIONS TO FINITE-ELEMENT SIMULATIONS
In this section we compare the stiffness equations to simulations with the finite-element
modeling (FEM) software package Comsol. For this we define a ‘standard design’ for both
the tetrahedron and prism element. As a second test, we vary the design parameters one-
by-one from this standard design and compare the effect on the stiffness change using
graphs and an error metric.

Variable Tetrahedron Prism
La1c1 50 [mm] 50 [mm]
Sy 50 [mm] 50 [mm]
Sz 25 [mm] 25 [mm]
tmi n 0.5 [mm] -
t - 0.5 [mm]
Px 25 [mm] 25 [mm]
Py 0 [mm] 0 [mm]
Pz 50 [mm] infinite
E 210 [GPa] 210 [GPa]
G 80 [GPa] 80 [GPa]

Table 6.1: Parameters of the chosen standard designs of the tetrahedron and prism element.

Stiffness term FEM Equations Error
Kx [N/m] 5.32e7 5.25e7 1.36%
Ky [N/m] 3.14e3 free -
Kz [N/m] 2.78e6 2.74e6 1.36%
Kθx [Nm/rad] 2.27e3 2.23e3 1.75%
Kθy [Nm/rad] 2.81e3 2.73e3 2.52%
Kθz [Nm/rad] 3.19e0 free -

Table 6.2: Outcomes of the comparison for the prism, showing a small error between the equations and the
finite-element model, for the standard design defined in table 6.1.

The dimensions and material parameters chosen for the standard design of the tetra-
hedron and prism element are listed in Table 6.1. The dimensions are chosen such that
the standard design is roughly similar to the elements used in the four joint designs in
section 6.2. The tetrahedron and prism elements as shown in Fig. 6.4 were modelled in
Comsol using shell elements. Edge a1a3 is fixed and the end effector (edge c1c3) is de-
fined as rigid using the ‘rigid connector’ option. In the tetrahedron element, this rigid
edge is extended to reach point P. The results for the prism and tetrahedron element are
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Stiffness term FEM Equations Error
Ku [N/m] 4.06e6 3.62e6 11.0%
Kv [N/m] 2.87e6 2.38e6 16.9%
Kw [N/m] 2.37e7 2.61e7 10.1%
Kθu [Nm/rad] 1.18e2 free -
Kθv [Nm/rad] 5.90e3 5.27e3 10.7%
Kθw [Nm/rad] 1.98e1 free -

Table 6.3: Outcomes of the comparison for the tetrahedron, showing a larger error between the equations and
the finite-element model, for the standard design defined in table 6.1.

listed in Tables 6.2 and 6.3 respectively, together with their relative error.
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Figure 6.12: Outcomes of the comparison of the analytic equation for stiffness Kθx with finite-element simula-
tions for the prism in Fig. 6.4b, showing a good correspondence with a NMAE of 1.9%. The design parameters
are varied one-by-one from the standard design defined in Table 6.1.

As a second test, the parameters from the standard design are varied one-by-one
and the stiffness terms Kθx (for the prism) and Kv (for the tetrahedron) are compared to
finite-element simulations. These two particular stiffness terms are chosen because they
are dependent on all three blade flexures. The results for the prism are shown in Fig. 6.12.
The design parameters range from a fifth of their standard value to five times their stan-
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Figure 6.13: Outcomes of the comparison of the analytic equation for stiffness Kv with finite-element simula-
tions for the tetrahedron in Fig. 6.4a, showing that only the qualitative behavior is captured with a NMAE of
34.9%. Graph f) shows the same data as graph e) but uses a log scale for the y-axis.

dard value. This is expected to be large enough to cover most practical uses. The results
for the tetrahedron element are listed in Fig. 6.13. The parameters are again changed
to one-fifth and five times the standard value, with two exceptions. The height Sz has a
maximum value of 40 mm, because larger values will (almost) close off the bottom of the
element. For the same reason, the minimum value of Pz is chosen as 35 mm. The plots
in Figs. 6.13e and 6.13f contain the same information but the latter has a log-scale for the
y-axis.

To quantify the errors, a normalized mean absolute error (NMAE) is computed. The
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NMAE is a regular MAE normalized by the maximum value in the displacement range
as:

NMAE =
1
N

∑N
n=1

∣∣ŷn − yn
∣∣

max
∣∣y

∣∣ , (6.28)

in which N is the amount of measured data points (10 per design parameter), ŷ is the
value from te equations and y is the data from the finite-element model.

The stiffness equations for the prism show a good correspondence with the finite-
element simulations, with a maximum NMAE of 1.9%. The equations for the tetrahedron
do capture the qualitative behavior but show significantly larger errors with a maximum
NMAE of 34.9% in the case where the width Sy is varied. This is expected to be caused
by the approximation of the trapezoidal blade flexures. Also, to compute the equivalent
stiffness of blade flexures ab and bc in equation 6.3, the lateral stiffness of the blade
flexures is used. This is correct in the case of the prism element because the force Fbp

in Fig. 6.9 is perpendicular to the two blade flexures. For the tetrahedron element this is
not the case. A continuum mechanics approach is expected to give better results in this
situation.

The stiffness in the directions denoted as ‘free’ in Tables 6.3 and 6.2 are significantly
lower than the stiffness in the other directions. This validates that these are the degrees
of freedom of the elements, as was derived in section 6.3.2.

6.4. DISCUSSION
The prism element has an optimal width Sy for which the rotational stiffness Kθx is high-
est. For the standard design this is the optimum in the graph in Fig. 6.12b. A larger width
Sy results in a larger moment arm of the equivalent wire flexure (representing blade flex-
ures ab and bc) which increases stiffness Kθx , but it also results in longer blade flexures
ab and bc which decreases stiffness Kθx . The optimal width Syopt . can be calculated by
first setting the derivative of Kθx with respect to Sy to zero as:

∂Kθx (Sy )

∂Sy
= 0. (6.29)

Solving for Sy gives the optimal width Syopt . as:

Syopt . =
1

2

√
4L4

a2c2
+ 48L2

a2c2
S2

z (ν+1)

5
+L2

a2c2
+ 12S2

z (ν+1)

5


1
2

, (6.30)

where ν is Poisson’s ratio ν = 2G/E −1. The graph in Fig. 6.12b shows that the width Sy

of 50 mm of the standard design is close to its optimal value. Table 6.2 shows that for the
standard design, stiffness terms Kθx and Kθy are of comparable magnitude.

The insights from the analysis of the isolated tetrahedron and prism elements can
be used when designing complete joints consisting of multiple elements in series. For
example, it is useful to know that the rotational stiffness terms Kθx and Kθy are of com-
parable magnitude for the standard prism design. If one of these stiffness terms would
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be much lower, the joint should be designed such that a large moment arm between the
end effector and such a low-stiffness rotation axis are avoided. Note that equations for
coupling terms are not derived, which are needed for a full analysis of the stiffness at the
end effector of a serial chain of elements. These could be derived using the procedure in
this paper, but will result in lengthy equations. In this case, a numerical optimization is
expected to be more useful.

Because of the specific shape of the tetrahedron element it can be connected in se-
ries without intermediate bodies, which is new with respect to the designs currently
found in literature. Edges a1a3 and c1c3 of the tetrahedron in Fig. 6.4a form the inter-
faces at which other elements can be connected. If two tetrahedron elements are con-
nected such that their connecting edges and corresponding vertices coincide (as in the
two presented spherical joint designs), no intermediate bodies are needed. Connect-
ing elements in series helps to increase the range of motion, because the strains due
to displacement in the motion direction of the joint are distributed over the elements
[18, 19]. The state-of-the-art designs two, three and four shown in Fig. 6.1 could also be
connected in series to increase their range of motion, if the joints are redesigned such
that their rotation points coincide. However, this results in intermediate bodies which
increase build volume, weight and material usage, and often deteriorate dynamic per-
formance due to uncontrolled vibrations [2, 14].

In [19], a distinction is made between flexure systems and flexure elements, of which
the first type possesses rigid bodies and the latter does not. In this perspective, the de-
signs presented in this paper are considered as a flexure element rather than a flexure
system.

The Tetra II design shown in Fig. 6.5 could be fabricated using Wire Electrical Dis-
charge Machining (WEDM), instead of using additive manufacturing of titanium as in
the demonstration movie that can be found online using the DOI of this article. WEDM
is a proven technique for the fabrication of flexure mechanisms and angles of 45 degrees
are feasible.

6.5. CONCLUSION
In this paper we have presented designs of two spherical flexure joints named Tetra I
and Tetra II, together with their derived planar versions. The designs are formed by
tetrahedron-shaped elements, each composed of three blade flexures with a trapezoidal
shape, that are connected in series without intermediate bodies. This is new with respect
to the designs currently found in literature and helps to increase the range of motion.
The Tetra I design consists of two arms, each built up from four tetrahedron elements
in series. The Tetra II design consists of three tetrahedron elements which are also con-
nected in series, but form a nested configuration.

We showed that the tetrahedron element is a generalized version of the triangular
prism from earlier work. The tetrahedron changes into a triangular prism in the special
case where the rotation point of the spherical joints is chosen at infinity.

We developed equivalent representations of the tetrahedron and prism elements con-
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sisting of a blade flexure and a wire flexure connected by a rigid part. Using these repre-
sentations we have proven that three of the four constraint stiffness terms solely depend
on the properties of the main blade flexure.

From the equivalent representations we derived equations for the constraint stiff-
ness terms for both the prism and the tetrahedron, resulting also in an equation for the
optimal width for which the prism has the highest rotational stiffness along the torsion
axis of the main blade flexure.

By comparing the analytic equations to finite-element simulations, a good corre-
spondence for the prism was found with a normalized mean squared error (NMAE) of
1.9%. For the tetrahedron element, the equations showed to only capture the qualitative
behaviour with a NMAE of 34.9%, which is expected to be caused by the approximation
of the trapezoidal blade flexures.
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7
DISCUSSION

This chapter contains a general discussion on the two parts of this thesis, in addition to
the specific discussions per chapter. First, it reflects on the STAGE method in the context of
current design methods, and discusses its limitations and further opportunities. Then, a
different perspective on the results from the last two chapters is presented.
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7.1. DISCUSSION ON PART 1 (CHAPTERS 2-4)

The challenge when designing flexure mechanisms with a large motion range is that they
are essentially structures subjected to large deflections, and analytic expressions for their
motion and stiffness behavior have only been derived in specific cases due to nonlinear-
ities. Current design methods deal with this by either assuming infinitesimal changes
in geometry as in constraint-based design [1–3], or by severely simplifying the flexure
mechanism to a rigid-body counterpart as in pseudo-rigid body modeling [4]. Both ap-
proaches make it difficult to generate flexure mechanisms with a large range of motion:
constraint based design assumes that the functional geometry is equal to the fabrication
geometry, and pseudo-rigid body modeling simplifies the mechanics to such an extent
that it is not possible to accurately control the geometry (and curvature) during motion.
Although the STAGE method developed in this thesis also does not provide control over
the full range of motion, it does allow to control the geometry and stresses at large dis-
placements even if the behavior is nonlinear, without simplifying the mechanics.

The examples in this thesis show that initially curved and stressed flexures can lead
to improvements regarding peak stress, actuation force and support stiffness at large dis-
placements. The examples have been limited to single degree of freedom mechanisms
with parallel flexure arrangements, but the method is not restricted to these types and
can be directly applied to other types. An exception is when a mechanism does not have
any closed chains and stresses are to be designed. For example, the stresses in a fully
serial configuration with one attachment point and a floating end effector cannot be
designed using the method, because at least two attachment points are needed to intro-
duce stresses.

This thesis has been limited to blade flexures with curvature in the plane of motion of
the mechanism. It is also possible to add other curvatures to a blade flexure, for example
by twisting it around its length axis. This would allow the design of more complex stress
distributions. Furthermore, any curved geometry could be investigated, instead of start-
ing from pre-existing flexures. The STAGE method could be also be used for more com-
plex geometries, when an inverse finite-element code based on shell or solid elements
would be used instead of 2D beam elements as in this thesis. To investigate these more
complex geometries, two questions have to be answered. The first is which curved ge-
ometries provide a distinct high and low instantaneous stiffness in different directions,
respectively, in order to function as a kinematic element in a flexure mechanism. The
second question is how these geometries can be used for large displacements. For this
second question the STAGE method could be used. The efficient computation of the
stress-free geometry will be even more advantageous when used in the more computa-
tionally expensive shell or solid models. A good starting point for the first question could
be [5], in which the instantaneous stiffness of several curved thin-walled geometries is
investigated in different directions. From this overview, the geometries with distinct high
and low instantaneous stiffness can be selected.
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7.2. DISCUSSION ON PART 2 (CHAPTERS 5 AND 6)
In the original work which introduces the torsion reinforcement strategy [6], the rein-
forcements are applied to a single straight blade flexure in order to increase its support
stiffness at large displacements. In chapter 5, torsion reinforcements are applied to a
folded leaf spring instead of a blade flexure, which results in the new planar flexure ele-
ment shown in Fig. 5.3. The key contribution here is that two of the prism elements are
connected under an angle without an intermediate body, creating a new flexure element
(instead of a flexure system, which would be the case with intermediate bodies). The
generalized tetrahedron element in chapter 6 allows a connection under a second angle,
also without an intermediate body, as shown in the spherical joint design in Fig. 6.2. In
this perspective, the contribution of chapters 5 and 6 is that they present a new spatial
flexure, consisting of tetrahedron or prism elements connected under different angles.
The rotation points of the elements do not necessarily have to be all at infinity or all in-
tersect at a single point, as in the planar and spherical joints presented in this thesis. For
example, a prism element could be connected to a tetrahedron element, resulting in dif-
ferent kinematics. Different parallel configurations of these elements might also lead to
useful new designs.
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8
CONCLUSION

This thesis has presented design strategies to increase the motion range of flexure mecha-
nisms. The first part of the thesis focused on initially curved and stressed flexures, and the
second part on expanding the recent ‘torsion reinforcement’ strategy. The original contri-
butions are summarized in this chapter.
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8.1. CONCLUSIONS OF PART 1 (CHAPTERS 2-4)
In the first part of this thesis the stress and geometry (STAGE) method was proposed,
which can be used to design the stress and geometry of flexure mechanisms simultane-
ously for a specified state. This allows designers to control at which point in the displace-
ment range the flexures are curved and stressed, which in turn enables the design of ini-
tially curved and stressed flexures. The main contribution of the method is that it explic-
itly distinguishes between the functional geometry and the fabrication geometry, which
are commonly regarded as equal. The method is valid for large displacements with-
out simplifying the mechanics, by using the relatively unknown inverse finite-element
method. The STAGE method gives insight in the achievable stress fields by providing a
graphical approach. It shows that the stress field of a flexure mechanism can be designed
independently from its geometry and vice versa if it is statically determinate, if bending
stresses dominate, and if it consists of slender flexures with constant cross sections. If
this is not the case, a parameter sweep can be used as demonstrated in chapter 3.

The potential of the method was demonstrated by creating initial stress fields in com-
monly used flexure mechanisms with the goal of reducing peak stress or actuation force
at large displacements. In the well-known crossed-flexure pivot design, a peak stress re-
duction of 23% was achieved. The actuation force of a folded leaf spring linear guide
mechanism has been decreased by 96%, at the cost of an increase of 45% in peak stress.
A different initial stress field in the latter mechanism resulted in a simultaneous reduc-
tion of actuation force (35%) and peak stress (28%), which is a surprising result because
commonly a trade-off has to be made between these two properties. After assembly, the
redesigns attain the functional geometry, which was originally intended by the designer.
This means that existing flexure mechanisms could be replaced by their redesigned ver-
sions without changes in their geometry and without changing their attachment points
in the machine.

Experiments validated the theoretically predicted peak stress and actuation force re-
duction. Additional experiments showed that the functional geometry was well attained
after assembly, with geometric deviations in the order of half the thickness of the flex-
ures. The flexures were fabricated using wire-electrical discharge machining, which is a
proven fabrication method in industry.

Chapter 4 showed that curved flexures can be used to create a folded leaf spring with
a high support stiffness at large displacements, and that, theoretically, a combination of
different elements could be used to create a high support stiffness in the whole motion
range. It is likely that the same approach will benefit other flexure designs.

8.2. CONCLUSIONS OF PART 2 (CHAPTERS 5 AND 6)
In the second part of this thesis, the recent ‘torsion reinforcement’ strategy has been fur-
ther developed and generalized. This strategy aims to increase support stiffness at large
displacements, by resisting torsional deformations in flexures which arise due to their
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curvature during motion.

In chapter 5, torsion reinforcement structures were added to a folded leaf spring,
which increases its constraints from one to three. This enables the design of a linear
guide with only two flexure elements instead of the five (or six) folded leaf springs as in
pre-existing designs. Both the pre-existing and the new design were optimized on sup-
port stiffness and then compared. The support stiffness of the new design showed to
be twice as high as the pre-existing design, while occupying a 33% smaller and less ob-
structive build volume. The models used to assess the support stiffness were validated
by experiments.

In chapter 6, a generalization of the blade flexure with a single torsion reinforcement
structure was presented in the form of a tetrahedron-shaped element. Using this ele-
ment, two new spherical joint designs were conceived. These joints allow a large motion
range without intermediate bodies, which is new with respect to the state of the art. Ana-
lytic equations were presented for the support stiffness of the element in its undeflected
state and compared to finite-element simulations.

8.3. GENERAL CONCLUSIONS
This thesis has shown that flexure mechanisms can be improved significantly, even with-
out changing their designed geometry. In designs with open chains, torsion reinforce-
ments can be applied, both in planar and spatially curved mechanisms. This results
in improved support stiffness at large motion ranges and adds additional constraints,
which means that less flexure elements are required to suppress a set of degrees-of-
freedom. In designs with closed chains, torsion reinforcements can also be applied, and
additionally, an initial stress field can be introduced. A correctly designed initial stress
field can decrease the stresses due to motion of the mechanism, for example in the com-
monly used crossed-flexure pivot design. The initial stress field is introduced without
changing the geometry of the mechanism. In this respect, all existing crossed-flexure
pivots can be improved. A second use of the initial stress field is the reduction of actua-
tion forces. In the common folded leaf spring, both the actuation force and the stresses
due to motion can be reduced simultaneously. By combining the techniques proposed
in this thesis, an initial stress field can be used to eliminate the increase of motion stiff-
ness and stress due to the torsion reinforcements.
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A
INVERSE FEM EXAMPLE

In this appendix, we provide an illustrative example to help to understand the solution
method used in the inverse FEM code used in this thesis in an intuitive way. First, the
example problem is solved analytically. We then use Newton-Raphson to find a solution,
similar to the way in which nonlinear FEM problems are often solved. We start with the
conventional (forward) case and then show the difference with the inverse case.
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Figure A.1: Example used to explain the inverse FEM solution method.

Figure A.1 shows a spring-slider mechanism. The spring with stiffness k is drawn
in its stress-free (dashed) and stressed states. We assume that the height h is fixed and
the stress-free and stressed geometries of the spring are fully described by xo and xs ,
respectively. We choose h = 50 mm, k = 2 N/mm, Fext = 15 N and xo = 25 mm. The
internal force Fi nt is the horizontal component of the spring force, which is equal to Fext

at static equilibrium. We write this equilibrium by equating the residual R (the force
imbalance) to zero:

R(xo , xs ) = Fi nt (xo , xs )−Fext = 0. (A.1)

For this example, the following equation can be derived:

R(xo , xs ) = kxs

[
1−

√
h2 +x2

o

h2 +x2
s

]
−Fext = 0. (A.2)

Note that xs = xo +u, where u is the displacement from the stress-free configuration.
Equation (A.2) is written in terms of xo and xs , while conventionally xo and u would
be used. This choice will show to be more convenient for inverse FEM. Equations (A.1)
and (A.2) already give some insight into the difference between the forward and inverse
problem. In the forward case, xo is known and xs has to be found, whereas in the inverse
case, xs is known and xo has to be found.

We now proceed to solve the example problem using the Newton-Raphson solution
method, starting with the conventional forward case. We assume that similar to a FEM
problem, the analytical equation (A.2) can not be solved explicitly but its residual can
be evaluated sequentially for a certain input xs . The nonlinear problem can be solved
using an iterative gradient-based approach, such as Newton-Raphson. The gradient of
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Figure A.2: Newton-Raphson iterations of the conventional (forward) analysis, in which xo is known and xs is
to be found. Note that in this case, equation (A.2) is a function of xs .

the residual equation is computed as:

K f wd = ∂R(xo , xs )

∂xs
= k

[
1− h2

√
h2 +xo

(h2 +x2
s )3/2

]
, (A.3)

where K f wd is the stiffness of the system. Figure A.2 shows how this gradient can be
used to iteratively find the solution. We start with the (arbitrary) initial guess of xs =
30mm. The residual is calculated and using K f wd a new guess for xs is computed. At
the intersection of the dashed line with the horizontal axis, this updated value for xs is
obtained and the residual is re-evaluated. This process is repeated until the residual is
sufficiently small to consider the problem to be solved. This results in a xs of around 44.8
mm as the solution to the problem. If we substitute xo = 25 and xs = 44.8 in equation
(A.2), this indeed results in a residual close to zero.

In the inverse problem, the stressed geometry xs is known and the stress-free geom-
etry xo has to be found. We choose xs = 44.8 mm. Using Newton-Raphson, xo should
be found to be close to 25 mm, in order to satisfy the residual equation (A.2). The resid-
ual equation is the same as in the forward case. However, the gradient used to solve the
problem is different because the residual equation is now a function of xo :

Ki nv = ∂R(xo , xs )

∂xo
= −kxs xo√

h2 +x2
s

√
h2 +xo

. (A.4)

Figure A.3 shows how this gradient can be used to iteratively arrive at the correct solution
of xo around 25 mm, starting from an arbitrary initial guess of xo = 5 mm.
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Figure A.3: Newton-Raphson iterations of the inverse analysis, in which xs is known and xo is to be found.
Note that in this case, equation (A.2) is a function of xo .

The example shows how Newton-Raphson can be used to solve both forward and
inverse nonlinear problems. Although in FEM a multitude of degrees of freedom are
present, the solution procedure is very similar to the example presented here.
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