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Preface

“Machine Learning Driven PV-Climate Classification” is my MSc thesis as a student of Sustainable
Energy Technology (SET). The project was carried out within the Photovoltaic Materials and De-
vices group (PVMD) at the Delft University of Technology. This report presents the motivation,
background, methodology, reasoning, and conclusions of the research.

In short, a worldwide climate classification to guide Photovoltaic (PV) studies has been devel-
oped. For this purpose, Machine Learning techniques have been implemented. Even though being
familiar with PV is advisable, this work does not deal with the complex theoretical aspects, and
a general understanding and common sense are enough to understand the analysis. In contrast, a
basic knowledge of Machine Learning seems essential to me. Readers uncomfortable with this point
are referred to sections 1.4 and 2.2.

This topic appeared to me unexpectedly in a busy week where I had to change my thesis project in
a few hours. In turn, the project has been an unexpectedly rewarding experience. I conclude the
project very pleased, after having expanded my knowledge and enjoyed a great working atmosphere.
I thank my supervisor Dr. M.R. Vogt for the opportunity, as well as his advice, dedication, and
professionalism. I am also very thankful to A. Alcañiz Moya, whose recommendations facilitated
my work and helped me achieve a more satisfactory result. Lastly, special greetings and thanks to
the committee members, Dr. R.A.C.M.M. van Swaaij and Dr. P.P. Vergara Barrios, for their time
and effort.

Delft, 25 June 2023
Francisco Javier Triana de las Heras
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Abstract

Technological advances, cost reduction, depletion of fossil fuels, environmental concerns, and grow-
ing energy demand are expanding photovoltaic solar energy (PV) in more latitudes and locations.
A simple and effective procedure to assess the PV potential of a particular region is to analyse its
climatic conditions. In general, climatic studies use the Köppen-Geiger (KG) climate classification
as a reference. However, KG is solely based on temperature and precipitation, resulting in an unsat-
isfactory scheme for analyses in the PV field, since the most important variable, solar irradiation,
is not considered. Thus, in 2019 Ascencio-Vásquez et al. developed a new worldwide classifica-
tion based on temperature, precipitation, and solar irradiation: the Köppen-Geiger-Photovoltaic
(KGPV) climate classification. Even though KGPV is a good improvement, it just consists of a
simplified version of the KG groups subdivided into four levels of irradiation: low, medium, high,
and very high. Hence, the climate parameters are not considered in a combined manner in the
sorting process.

In this project, a new worldwide climate classification directly applicable to PV has been devel-
oped. Machine Learning proved to be a convenient tool to achieve this objective. First, supervised
learning served to identify and assess the climate variables more correlated to the specific energy
yield. More specifically, a Linear Regression model was implemented. Subsequently, these variables
were used to create the classification by applying k-means, a clustering algorithm. The classifica-
tion was optimised following a comprehensive qualitative analysis, resulting in a scheme based on
seven climate variables and 20 clusters. By contrast, KGPV considers five variables. Even though
it contemplates 24 groups at first, half of them are neglected based on a land-surface ratio and
population density criterion, resulting in a classification based on 12 clusters. Hence, the method-
ology proposed in this work enables identifying new relevant regions. Moreover, “Machine Learning
driven PV-climate classification” presents a satisfactory correlation with the specific energy yield,
except for very low values, where the correlation is minor.

Lastly, the relationship between climate and degradation rate was explored. The complexity and
non-linear behaviour of degradation demand an alternative approach. Random Forests was pro-
posed, but it showed poor performance. It is necessary to be able to predict non-linearities and,
at the same time, keep a logical mathematical relation between the supervised and clustering al-
gorithms. In this regard, Multivariate Adaptive Regression Spline (MARS) might be a promising
option.
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Introduction

Photovoltaic solar energy (PV) is strongly affected by climatic conditions. This fundamental rela-
tionship between climate and PV performance can be used to make accurate predictions on energy
yield, reliability, or service lifetime to facilitate financial analysis and decision-making processes. For
climate studies, the Köppen-Geiger (KG) climate classification has been widely used [30]. However,
KG is solely based on temperature and precipitation, so its applicability to the PV field is lim-
ited. For this reason, in 2019, Ascencio-Vásquez et al. developed the Köppen-Geiger-Photovoltaic
(KGPV) climate classification, based on temperature, precipitation, and solar irradiation [6]. Even
though this was a significant enhancement, KGPV has plenty of room for improvement.

The objective of this report is to develop a new PV-climate classification. The focus will be on
finding a relationship between climate and the specific energy yield. This task entails two questions.
First, which climate variables must the classification consider? And secondly, how to classify them?
To address these challenges, a method based on Machine Learning is proposed. More specifically,
Linear Regression (supervised learning) is used to select the climate variables, while k-means (un-
supervised learning) is applied to create the classification. Furthermore, the report includes an
exploratory analysis of the method’s suitability for studying degradation, which provides further
insights.

The report is structured as follows. Chapter 1 provides background on the motivation, KG and
KGPV climate classifications, and Machine Learning. It concludes with a detailed description of
the methodology. The data collection and algorithms used in the project are explained in Chap-
ter 2. Chapter 3 is devoted to selecting the climate variables. Then, the classification is created
and evaluated in Chapter 4. The analysis of the degradation is illustrated in Chapter 5. Finally,
Chapter 6 lays out the key takeaways and conclusions.
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Chapter 1

Foundations

This first chapter covers the vision and motivation of the project, as well as the tools and method-
ology implemented. It comprises five sections. First, in “PV and climate”, the motivation, and
background of the project are presented. The relationship between climate and PV performance,
and the necessity of a climate classification are introduced. Furthermore, previous works are re-
viewed. In particular, two schemes stand out: the KG and KGPV climate classifications. These
are explained in detail in sections two and three, respectively. KG, based only on temperature and
precipitation variables, is unsuitable for PV studies. KGPV includes the global horizontal irradia-
tion to achieve a significant improvement. However, it might oversimplify the classification.

Section four, “Machine Learning”, presents the tools used in this work to develop a new classi-
fication, and provides the background required to understand the methodology. Supervised and
unsupervised learning are explained. Finally, the remainder of the chapter is devoted to presenting
this methodology and introducing the rest of the chapters.
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CHAPTER 1. FOUNDATIONS

1.1 PV and climate

Global solar photovoltaic (PV) energy capacity surpassed the magic number of 1 TW in 2022 [2].
PV growth during the last decade has been impressive, being the current capacity more than 21
times greater than in 2010. This has been accompanied by an 88 percent reduction in the global
weighted average Levelized Cost of Energy (LCOE) of utility-scale photovoltaics [3]. Solar PV has
shown the highest learning rates of all renewable energy technologies, becoming the lowest-cost
option for new electricity generation in most of the world. Even though it already contributes to
more than 3.6 percent of global electricity generation [22], worldwide deployment of PV seems to
have just begun. Technological advances, cost reduction, depletion of fossil fuels, environmental
concerns, and growing energy demand are expanding PV in more latitudes and locations. Certainly,
PV is becoming a worldwide energy source.

With this global trend, several questions arise. How does solar PV perform in different loca-
tions? What issues should be expected? Which are the most suitable technologies? The accurate
prediction and evaluation of energy yield, reliability, or service lifetime are essential for any finan-
cial analysis and decision-making process. Furthermore, it can help to identify specific engineering
improvement points and fields of research, optimising PV applications and boosting its implemen-
tation [33].

PV performance depends on numerous variables. As Ascencio-Vásquez et al. [6] indicate, it is pos-
sible to divide them into solar irradiation, weather (temperature, wind, humidity), local conditions
(shading, albedo), and technical specifications of the technology and PV module itself (efficiency,
temperature coefficient). Clearly, climate plays a fundamental role in PV performance. Therefore,
a simple and effective procedure for assessing PV potential for a particular location is to analyse its
climatic conditions. Broad research has been made in this direction. Dash et al. [13] divided India
into 6 climatic zones and studied their most efficient PV technologies. Skandalos et al. [42] analysed
the effect of local climatic conditions on photovoltaic building integration for some global locations,
concluding that the optimised design depends on the climate zone. Karin et al. [26] developed a
climate classification to identify which types of degradation may be expected in different geographic
areas in the USA. Micheli et al. [35] studied the impact of performance losses due to soiling. The
International Energy Agency (IEA) [1] presented guidance for customized O&M service in seven
different climate zones.

In general, climatic studies, including those for PV applications, have been based on the Köppen-
Geiger (KG) climate classification ([23], [35], [41]). However, as many of these works pointed out
([23], [26], [42]) the KG classification is solely based on temperature and precipitation, resulting in
an unsatisfactory scheme for conducting a comprehensive analysis of PV performance. Therefore,
several authors aimed to supplement KG including other relevant parameters. For instance, Skan-
dalos et al. [42] extended it for some particular locations by including the annual global horizontal
irradiation, while Karin et al. [26] focused on PV module degradation stressors. Consequently, the
original KG classification has been modified differently by several authors, resulting in a variety of
classifications without any standardisation or global acceptance, possessing confusion and difficul-
ties to compare results [6].

In 2019, motivated by these challenges, Ascencio-Vásquez et al. [6] went a step further, devel-
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oping a new worldwide classification based on temperature, precipitation, and solar irradiation. It
is called the Köppen-Geiger-Photovoltaic (KGPV) climate classification, and the present project is
inspired by and based on it. Consequently, a further discussion of the KGPV climate classification
is pertinent. However, before entering into this extension of KG, it seems appropriate to examine
first the KG climate classification itself.

Francisco Javier Triana de las Heras 9



CHAPTER 1. FOUNDATIONS

1.2 KG climate classification

The Köppen Geiger (KG) climate classification was first formulated by Wladimir Köppen in 1900.
It was updated and presented as the last version by Rudolf Geiger in 1961 [30]. Since then, it
has been the most widely used reference for research in a wide variety of topics related to climate,
hydrology, geography, and agriculture, and it has been commonly taught in schools and other ed-
ucational institutions. Despite its longevity, the classification has not been changed significantly.
Several authors have proposed new classifications, but these have not received enough acceptance
to replace KG [38]. This is justified partially by its simplicity and ability to reproduce successfully
the present and near-future climate, and partially by its popularity. However, different positions
are found in the literature, and some authors argue that the current use of KG is mainly founded
on historical inertia [38].

Köppen based his classification on his knowledge of plant sciences. The type of vegetation found in
an environment is directly related to its climate. Therefore, Köppen developed a climate classifica-
tion based on five vegetation groups determined previously by the botanist Alphonse De Candolle
from the climate zones of the ancient Greeks [38]. These five vegetation groups consisted of plants
from the equatorial zone (A), the arid zone (B), the warm temperate zone (C), the snow zone (D),
and the polar zone (E). Two more letters were added to complete the classification: a second one
for considering precipitation, and a third for air temperature [30]. Thus, a climate zone such as Afa
means equatorial zone (A), fully humid (f), with hot summers (a).

Recently, numerous KG climate classification world maps have been redrawn from modern gridded
data [38]. The most comprehensive is the one by Kottek et. al [30]. Based on temperature data
provided by the Climate Research Unit (CRU) of the University of East Anglia [18] and precipita-
tion data provided by the Global Precipitation Climatology Centre (GPCC) [40], Kottek developed
a digital map with 31 climate types at a resolution of 0.5◦ latitude by 0.5◦ longitude for the period
1951-2000. While the exact criteria followed by the classification can be found in the original pa-
per, it is convenient to summarise in Table 1.1 the parameters considered. For the sake of clarity,
temperatures are measured in ◦C, and precipitations in mm/month except for Pann and P th which
are in mm/year and mm, respectively. The resulting Köppen-Geiger climate classification map is
depicted in Figure 1.1.
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Table 1.1: Variables considered by the Köppen-Geiger climate classification.

Feature Description

T ann Annual mean near-surface (2 m) temperature

Tmax Monthly mean temperature of the warmest month

Tmin Monthly mean temperature of the coldest month

Tmon Monthly mean temperature

Pann Accumulated annual precipitation

Pmin Precipitation of the driest month

P th Dryness threshold

P smin/P smax Lowest/Highest monthly precipitation value for the summer half-year

Pwmin/Pwmax Lowest/Highest monthly precipitation value for the winter half-year

Figure 1.1: Köppen-Geiger climate classification [30].

Francisco Javier Triana de las Heras 11



CHAPTER 1. FOUNDATIONS

1.3 KGPV climate classification

The Köppen-Geiger-Photovoltaic (KGPV) climate classification was proposed by Ascencio-Vásquez
et al. [5] in 2018 to tackle the deficiencies that KG implies for photovoltaic studies. It was upgraded
in a subsequent paper in 2019 [6]. This new classification complements KG by considering solar
irradiation. It follows two criteria. First, based on the KG scheme, zones are classified in terms of
temperature and precipitation, differentiating among Tropical (A), Desert (B), Steppe (C), Tem-
perate (D), Cold (E), and Polar (F). Secondly, solar irradiation is considered to distinguish among
Very High irradiation zones (K), High irradiation zones (H), Medium irradiation zones (M), and
Low irradiation zones (L). Altogether, a zone could be, for instance, BK, indicating a desert climate
with very high irradiation. Following this approach, it is possible to define 24 climate groups. How-
ever, half of them were neglected based on a land-surface ratio and population density criterion,
resulting in a classification that divides the world into 12 zones.

Similar to Kottek, Ascencio-Vásquez et al. used the gridded data set (0.5◦ x 0.5◦) provided by the
University of East Anglia [18] and the GPCC [40]. More specifically, temperature data was taken
from the dataset CRU TS4.01, whereas precipitation values were extracted from the GPCCv2018
dataset. On the other hand, the global horizontal irradiation (GHI ) was taken from the reanalysis-
based dataset ERA-Interim provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF) [14]. Justifying that temperature evolution has presented a different behaviour after
1990, the data used for developing the classification corresponds to the period 1990 - 2016. The
variables considered by the KGPV climate classification are summarised in the following table.

Table 1.2: Variables considered by the KGPV classification.

Feature Description

Tmax Monthly mean temperature of the warmest month

Tmin Monthly mean temperature of the coldest month

Pann Accumulated annual precipitation

P th Dryness threshold

GHI ann Accumulated annual Global Horizontal Irradiation

Temperatures are recorded in ◦C, Pann in mm/year, P th in mm, and GHI ann in kWh/m2/year.
Even though T ann is not considered as a primary parameter, it is implicitly included in the deter-
mination of P th. The Köppen-Geiger-Photovoltaic climate classification is illustrated in Figure 1.2.

To assess the classification, Ascencio-Vásquez et al. determined several PV performance indica-
tors. Then, locations belonging to different PV-climate groups could be compared, pointing their
differences out and gaining new insights. In the first paper [5], a correlation between the KGPV
zones and the average expected annual specific energy yield (kWh/kWp) in USA and Chile was
analysed. Further, various PV technologies (mono c-Si, multi c-Si, CIGS, CdTe, and a-Si) were
compared. It was concluded that a-Si at deserts with high irradiation (BH) results in the highest
annual specific energy yield, whereas the lowest production takes place in temperate climates with
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Figure 1.2: Köppen-Geiger-Photovoltaic climate classification [6].

medium irradiation (DM) using multi c-Si modules.

In the second work [6], besides the annual specific energy yield, other indicators such as the per-
formance ratio (PR), the unit capacity factor (UCF ), and the module operating temperature, were
considered to assess the KGPV scheme worldwide. One location per KGPV zone was selected
to analyse and compare the PV performance of a typical c-Si PV system. The most remarkable
conclusions include that the best location for PV is the Atacama Desert in Chile, due to its high
irradiation (high energy yield) and UCF, whereas PR is highest at Moscow, a cold climate with
low irradiation. Furthermore, the evolution of PV performance over time and the impact of climate
change were evaluated.

After the analysis, Ascencio-Vásquez et al. concluded that the results agree with expectations
and that the KGPV climate classification is a convenient scheme to relate climate zones with PV
performance. However, points of improvement were indicated too. The implementation of more
climate variables such as wind speed, relative humidity, or ultra-violet irradiation was proposed.
Lastly, it was noted that the quality of the model largely depends on the accuracy of the input data.
In particular, irradiation data commonly poses a high uncertainty. To evaluate this critical point,
Ascencio-Vásquez et al. compared the synthetic data calculated from ERA-Interim with ground
measurements of 22 stations from the Baseline Surface Radiation Network (BSRN), obtaining a
satisfying similarity.

Francisco Javier Triana de las Heras 13
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1.4 Machine Learning

As seen above, the historically used KG climate classification turns out to be inconvenient for PV
studies, since the relation between the climate variables considered and PV performance is limited.
KGPV, by including the GHI, certainly made a significant improvement. However, this essential
parameter was employed to distinguish, merely, among four basic levels of irradiation (low, medium,
high, and very high). Moreover, the criteria based on temperature and precipitation are virtually
equivalent to KG. Indeed, as Ascencio-Vásquez et al. concluded, additional parameters should be
considered [6]. Therefore, even though KGPV stands out for its simplicity, the established relation
between climate and PV performance might be suboptimal.

This work aims to develop a new PV-climate classification. However, in contrast to KG and KGPV,
the objective is to derive this classification based on advanced statistical analysis techniques and
state-of-the-art programming algorithms. In this way, an objective, precise, and comprehensive
classification might be obtained, gaining new insights and enabling an assessment of KGPV.

In particular, to achieve these objectives, Machine Learning (ML) constitutes a fantastic tool.
The term “Machine Learning” was introduced by the computer scientist Arthur Samuel, a pro-
fessor at Stanford University and researcher in Bell Laboratories and IBM, among other positions
[47]. IBM defines Machine Learning as “a branch of artificial intelligence (AI) and computer science
which focuses on the use of data and algorithms to imitate the way that humans learn, gradually
improving its accuracy” [21]. An alternative short description would be that ML gives computers
the ability to learn without explicitly being programmed [9].

ML plays a key role in the increasingly important field of data science [21]. Sophisticated al-
gorithms based on statistical methods are trained to make classifications or predictions, uncovering
relevant information and extracting knowledge from the data. For this reason, ML is also known
as predictive analytics or statistical learning [36]. These insights are commonly used to facilitate
and support decision-making processes in business and engineering. With the continuous growth
of big data, ML is expected to become more and more important in the next decades to identify
the most relevant questions and the data to answer them [21].

ML finds applications in numerous fields: online advertising, face recognition, autopilot, space
research, discovery of new particles, or medicine [36]. Likewise, it has been recently implemented
in PV studies. A comprehensive review of the most recent and promising applications of ML in
the field of PV systems was published by Tina et al. [44]. A trending application is Photovoltaic
Power Forecast (PVPF) based on weather parameters. In this field, Essam et al. [16] conducted
a thorough analysis of the most commonly used ML algorithms. They concluded that Artificial
Neural Network (ANN) is the most suitable one. Khandakar et al. [28] applied ANN and several
multiple regression models to study the impact on PVPF of relevant environmental variables in
Qatar such as irradiance, relative humidity, ambient temperature, and wind speed. Furthermore,
they used feature selection techniques to identify the most contributory variables. Alternatively,
Ahmed et al. [4] proposed an ensemble-based Long Short-Term Memory (LSTM) algorithm reliant
on adaptive weighting and data segmentation techniques for PVPF. In this case, global horizontal
irradiation and weather temperature were selected as input features. Another widely studied ap-
plication of ML is PV degradation analysis and prediction. For instance, Li et al. [31] performed
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clustering based on environmental factors influencing field reliability to classify China into groups
with similar degradation rates. Chantana et al. [10] conducted multiple regression analysis to
determine a quantitative relation between environmental factors and the PV performance ratio for
Si-based technologies. Liu et al. [32], after performing a regional clustering of mainland China
based on relevant environmental factors for power generation, determined the optimum tilt angle
under different cleaning cycles.

Broadly, Machine Learning models can be divided into three primary categories: supervised ML,
unsupervised ML, and reinforcement ML [9]. Some authors might include a fourth category consist-
ing of semi-supervised learning algorithms [21]. In this work, supervised and unsupervised learning
algorithms are both implemented. More specifically, supervised learning is used for selecting the
climate variables and calculating their weights, whereas unsupervised learning is conducted for de-
veloping the classification.

Supervised ML is, at the present time, the most successful kind of ML algorithm [9]. Its power
resides in its ability to automate decision-making processes by generalizing from known examples
[36]. Based on these known examples, called the labeled dataset, an algorithm is trained to classify
data or predict outcomes accurately [21]. In particular, the algorithm is able to create an output for
an input it has never seen before without any help from a human [36]. Popular supervised learning
algorithms include nearest neighbors (KNN), linear regression, neural networks, ensemble methods,
random forest, and support vector machine (SVM) ([21], [37]).

By contrast, in unsupervised ML an algorithm looks for patterns in unlabeled data [9]. Here,
only the input data is known, and no known output data is given to the algorithm [36]. The objec-
tive is to extract knowledge from the data, discovering hidden patterns or data grouping without
the need for human intervention. Unsupervised learning is commonly used for exploratory data
analysis [21]. A popular unsupervised learning technique, and the one used in this work, is clus-
tering. Clustering consists in partitioning data into distinct groups of similar items [36]. Examples
of clustering algorithms are k-means, hierarchical clustering, and DBSCAN [37]. While there are
many successful applications of these methods, they are usually harder to understand and evaluate
[36], as it will be shown in Chapter 4.

There are numerous programming languages and computing platforms that enable performing data
analysis and ML studies with relative ease. The most popular ones are Matlab, Python, and R. In
this project, Python 3.10 was used. Even though making a comprehensive review and comparison
between these platforms is out of the scope of this thesis, there are some points worth mentioning
that justify this choice. From its creation in 1991 by Guido van Rossum, Python has emerged
over the last couple of decades as a first-class tool for scientific computing tasks [45]. At present,
Python is one of the most widely used languages for data analysis, and, especially, for modern Ma-
chine Learning, in industry and academia ([36], [43]). Python, in contrast with Matlab or R, is a
general-purpose programming language. Therefore, an extensive collection of libraries is available,
which provide tools to do a great variety of tasks, from data science to web development. This
might constitute the main advantage of Python ([34], [45]). Moreover, in spite of this generality,
it maintains a user-friendly language [36]. Another strong point in favour of Python is its large
community [43]. Having said that, Matlab and R are great computing platforms too, and these
outperform Python in some applications such as signal processing and causal inference research,
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respectively [43]. In this regard, usually, the best option would be to use these platforms together
[34]. Lastly, an special interest and motivation of the author to learn Python cannot be hidden.

As mentioned above, one of the strengths of Python is its third-party packages. Among the numer-
ous packages used in this work, scikit-learn deserves to be highlighted [37]. Scikit-learn is the most
prominent Python library for ML, containing numerous state-of-the-art ML algorithms, as well as
a fantastic documentation. It is an open-source project, which has been widely used in industry
and academia [36]. Other relevant libraries are Pandas, for data manipulation, NumPY, for arrays
manipulation and calculations, and Matplotlib, for visualizations. To complete, the book “Intro-
duction to Machine Learning with Python: A Guide for Data Scientists” by Andreas C. Müller and
Sarah Guido [36] was used as the primary reference during the project.
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1.5 Methodology

So far, it has been talked about finding a relationship between climate and PV performance. It
is time to refine this a bit more. PV performance comprises several factors. In particular, the
International Electrotechnical Commission (IEC) 61724 standard defines the following principal
PV system performance indices: energy generated by PV systems (E ac), reference yield (Yr), final
yield (Yf ), performance ratio (PR), capacity utilization factor (CUF ), and PV system efficiency
(ηsys) [8]. Among these parameters, Yf is selected as the basis for the classification due to its
relevance and comprehensibility. Furthermore, it enables easy comparison between systems with
different capacities, as opposed to the E ac. The final yield, or specific energy yield, is defined as the
net daily, monthly, or annual electrical energy output of the PV plant divided by its rated power.
It is given by the following expression [8]:

Yf =
Energy generated (Eac)

Rated power of PV plant (PSTC)
(1.1)

It is measured in hours or, equivalently, kWh/kW. In this work, Yf always refers to an annual basis.

On the other hand, in order to include an indicator of reliability and long-term performance, the
degradation rate (k) might be utilised. The degradation rate is a measure of the power decline over
time and is commonly expressed in relative percentage per year (percent/year) [24]. PV degradation
is a complex topic. Indeed, climate-induced degradation is frequently poorly estimated, resulting
in around eight percent inaccuracy in the levelized cost of electricity (LCOE) [26]. One of the main
difficulties is that not only does degradation depend on several climate variables, but also on the
particular interactions between them [31]. Some remarkable studies on degradation and climate are
those conducted by Ascencio-Vásquez et al. [7], Jordan et al. [25], and Bansal et al. [8].

Since these are different PV performance indicators, two separate classifications might be distin-
guished: one for the specific energy yield, and one for the degradation rate. This work focuses on
the former. A classification based on the specific energy yield is thoroughly developed and explained
in the report, while degradation is simply explored in Chapter 5. Nevertheless, though short, the
study of degradation yields relevant findings and should not be underestimated.

Thus, the main classification derived in this work is based on climate variables particularly rel-
evant to the specific energy yield. Hence, the first question that must be answered is: Which are
these climate variables? Moreover, to generate an objective classification via ML, not only is it
essential to identify the climate variables, but also their levels of importance, or mathematically
speaking, their weights. These two issues are solved with the help of supervised learning. A linear
regression model is built to predict worldwide specific energy yields from the knowledge of several
climate parameters. The predicted values can be compared with known data to obtain a measure of
the error of the model. This provides a method to analyse the relevance of the climate variables on
PV performance: the more relevant a parameter is, the lower the error of the prediction. Hence, the
model can be optimised by selecting the most significant variables. Further, the algorithm provides
the optimum weights. This is the subject of Chapter 3.
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Once these key questions are successfully solved, the classification can be developed. Unsuper-
vised learning, and more specifically, k-means, is implemented to find patterns and create clusters
from the selected climate variables. A careful qualitative analysis is required to understand the
results and present a final classification. This constitutes the most challenging task of the project.
The clusters’ centres and sizes, and several figures facilitate the exploration. Finally, a comparison
with KGPV is made and conclusions are drawn. All this is treated in Chapter 4.

In principle, a similar method could be applied to degradation. However, in this case, assum-
ing a linear dependence proves to be inappropriate. Therefore, an alternative approach is required.
The use of random forests, a powerful supervised learning algorithm, to determine the most impor-
tant variables for degradation and their weights is analysed. The results are presented in Chapter 5.

However, first of all, data must be collected. Without a comprehensive dataset, ML is useless.
The success of the model and the validity of the results depend directly on the data used. For
developing the classifications, data on three aspects is required: climate, specific energy yield, and
degradation rates. This is the key to relating climate, on the one hand, to PV performance, on
the other. Since the objective is to develop a worldwide classification, an extensive and accurate
dataset is essential. In this project, a worldwide grid with resolution 0.5◦ latitude by 0.5◦ longitude
is utilised1. The climate data is extracted from renowned climate research centres and institutions
for the period 1991 to 2021. Specific energy yield and degradation rate values are provided by
Ascencio-Vásquez et al. in [6] and [7], respectively. Chapter 2 is dedicated to describing and ex-
plaining the dataset and its construction in more detail. Furthermore, it includes an explanation
of the two main algorithms implemented in this work: linear regression and k-means.

1Antarctica and most of Greenland are excluded.
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1.6 Chapter summary

Chapter 1 covered the motivation for the project, previous works, tools, and methodology.

• A simple and effective procedure for assessing PV potential for a particular location is to
analyse its climatic conditions.

• In general, climatic studies have been based on the Köppen-Geiger (KG) climate classification.
However, this classification is solely based on temperature and precipitation, resulting in an
unsatisfactory scheme for the PV field.

• In 2019, Ascencio-Vásquez et al. developed a new worldwide classification based on temper-
ature, precipitation, and solar irradiation: the Köppen-Geiger-Photovoltaic (KGPV) climate
classification. It follows two criteria. First, based on the KG scheme, zones are classified in
terms of temperature and precipitation as Tropical, Desert, Steppe, Temperate, Cold, and Po-
lar. Secondly, solar irradiation is considered to distinguish between Very High, High, Medium,
and Low irradiation zones. From the 24 possible combinations, KGPV selected 12 to create
the final classification, based on a land-surface ratio and population density criterion.

• An objective, precise, and comprehensive classification might be obtained using Machine
Learning. In this work, supervised and unsupervised learning algorithms will be both imple-
mented. Python 3.10 is the computing platform selected, being scikit-learn one of its most
remarkable libraries for Machine Learning.

• The specific energy yield is selected as the basis for developing the classification. Therefore,
the first step is to identify which climate variables are more relevant to the specific energy
yield. A linear regression model is built to predict worldwide specific energy yields from the
knowledge of several climate parameters. The predicted values can be compared with known
data to obtain a measure of the error of the model. This provides a method to analyse the
relevance of the climate variables on PV performance. This is the subject of Chapter 3.

• The classification is created in Chapter 4 using k-means. A qualitative analysis will be required
to understand the results and present a final classification.

• The applicability of the methodology to degradation and an alternative approach is explored
in Chapter 5.

• For developing the classifications, data on three aspects is required: climate, specific energy
yield, and degradation rates. Chapter 2 is dedicated to describing and explaining the dataset
and its construction. Furthermore, it includes an explanation of linear regression and k-means.

Francisco Javier Triana de las Heras 19



Chapter 2

Prelude

The first step in a Machine Learning problem-solving strategy consists in collecting data. To create
the worldwide PV-climate classifications, a comprehensive dataset conformed by climate variables,
specific energy yields, and degradation rates for the whole planet must be built. The first section
of this chapter deals with this essential and challenging task. The result is a worldwide grid with a
resolution of 0.5◦ latitude by 0.5◦ longitude which includes 12 climate variables, the specific energy
yield, and the degradation rate for every point.

The chapter concludes with a second section where the algorithms used in Chapter 3 (linear regres-
sion) and Chapter 4 (k-means) are explained in detail. Furthermore, the strengths and weaknesses
of these algorithms are analysed, and other alternatives are discussed. Linear regression stands out
for its simplicity and ability to give a measure of the climate variables’ importance. The main ad-
vantages of k-means are its low computational times and memory requirements, and that it always
reaches a solution.
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2.1 Data collection

This section describes the data collection process. It is divided into two subsections. First, the
climate data is discussed. Then, in the second subsection, the data for the specific energy yield and
degradation rates are presented.

2.1.1 Climate data

In principle, only climate parameters relevant to the specific energy yield and degradation rate are of
interest. However, these climate parameters are not known a priori. Indeed, that is the question to
answer in Chapter 3. Therefore, the climate dataset built here comprises all climate variables that
might be relevant. This dataset serves as the baseline for the subsequent feature selection procedure.

The dataset consists of a matrix whereby each row corresponds to a particular location (sam-
ple), and each column contains the value of a climate variable (feature) for that location, except for
the first two columns, which contain the latitude and longitude, respectively. The climate features
are selected based on technical expertise. Moreover, KG and KGPV classifications are used as ref-
erences. Ultimately, it is not desirable to deviate too much from these classifications if a comparison
is aimed to be established later. As indicated by Ascencio-Vásquez et al. in KGPV, the evolution
of temperature has been remarkably different since 1990 [6]. Therefore, for every climate feature,
monthly average data is extracted from 1991 to 20211 and averaged, in turn, to obtain an average
year.

Table 2.1 summarises the 12 final features included in the dataset. The following types of cli-
mate features might be distinguished: temperature, precipitation, humidity, irradiation, and wind.

Undoubtedly, temperature is a fundamental parameter for both climate and PV studies ([10], [28],
[32]). As was seen in Chapter 1, it plays a principal role in KG and KGPV classifications. The
decrease in performance with temperature is a well-known and thoroughly analysed fact [27]. Fur-
thermore, temperature is known to trigger several degradation mechanisms ([7], [8]). Worldwide2

temperature data, with a resolution of 0.5◦ x 0.5◦, is provided by the Climate Research Unit (CRU)
of the University of East Anglia. More specifically, the CRU TS V.4.06 climate dataset was used
[18]. It is derived by the interpolation of monthly climate anomalies from extensive networks of
weather station observations, and it is the same temperature dataset used in KG and KGPV. From
this dataset, the variable “Mean 2 m temperature”, TMP, is extracted. Once the average year is
calculated, three climate features are added to the dataset: the annual mean temperature, T ann,
the monthly mean temperature of the warmest month, Tmax, and the monthly mean temperature
of the coldest month, Tmin.

Another relevant temperature-related feature, especially for degradation, is the daily tempera-
ture difference or thermal cycling ([7], [26]). Similarly, this feature is extracted from the CRU TS
dataset. The variable is present with the name “Diurnal 2 m temperature range” (DTR). In this
case, only the annual mean value is considered (DTRann).

1The period used for precipitation was from 1991 to 2020, since the year 2021 was not yet available.
2Antarctica is not included.
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Table 2.1: Climate features included in the dataset.

Feature Description

T ann Annual mean near-surface (2 m) temperature

Tmax Monthly mean temperature of the warmest month

Tmin Monthly mean temperature of the coldest month

DTRann Annual mean daily temperature difference

Pann Accumulated annual precipitation

Pmin Accumulated precipitation of the driest month

RH ann Annual mean relative humidity

GHI ann Accumulated annual Global Horizontal Irradiation

GHImax Maximum accumulated monthly Global Horizontal Irradiation

GHImin Minimum accumulated monthly Global Horizontal Irradiation

UV ann Accumulated annual UV irradiation

WS ann Annual mean near-surface (2 m) wind speed

Regarding precipitation, two features are considered: the accumulated annual precipitation, Pann,
and the precipitation of the driest month, Pmin. Precipitation data is provided by the Global
Precipitation Climatology Centre (GPCC), an organisation operated by the German Weather Ser-
vice (DWD) [40]. In particular, the dataset used in this work is the GPCC Full Data Reanalysis
Version 5, which provides high-quality gridded (0.5◦ x 0.5◦ resolution) monthly precipitation data.
Although less frequently, accumulated daily precipitation has been used in PV forecasting studies
[16]. Precipitation by itself might not be a variable directly related to PV performance, but it in-
directly affects other factors. For instance, strong rainfall helps remove dust deposition [32]. Other
important features affected by precipitation include temperature, humidity, and solar irradiation
[33]. Furthermore, precipitation is essential in climate studies such as the KG climate classification.

However, precipitation does not properly reflect the distribution in humidity, which is a more
relevant PV stressor [26]. Certainly, humidity is recognised as one of the main causes of degrada-
tion ([7], [8], [29]). Among the several existing ways of expressing humidity, relative humidity (RH )
is frequently used in PV degradation studies ([7], [29], [31]). This variable is provided by the Coper-
nicus Climate Change Service Data Store (CDS), a service implemented by the European Centre
for Medium-Range Weather Forecasts (ECMWF), in the dataset “Essential climate variables for
assessment of climate variability from 1979 to present” ([12], [20]). In particular, the variable is
called “Surface air relative humidity” and the resolution is 0.25◦ x 0.25◦. Hence, the data must
be further processed before adding it to the dataset as the annual mean relative humidity RH ann

with resolution 0.5◦ x 0.5◦. Alternatively, relative humidity can be calculated from the dew point
temperature and ambient temperature, as illustrated in [7].

It is evident that solar irradiation is the most relevant feature for PV performance studies. How-
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ever, there exist numerous measures and varieties of solar irradiation. In this work, the Global
Horizontal Irradiation (GHI ) and the Ultra-Violet Irradiation (UV ) are considered. GHI data is
also taken from the CDS, although this time from the dataset “ERA5 monthly averaged data on
single levels from 1940 to present” ([11], [19]). The variable is called “Surface solar radiation down-
wards”, and it was downloaded as a monthly averaged reanalysis form. This parameter is defined
as the “amount of solar radiation that reaches a horizontal plane at the surface of the Earth” and
it compromises both direct and diffuse solar radiation [11]. A validation of this variable can be
found in [7]. Similar to RH, the initial resolution is 0.25◦ x 0.25◦ and extra processing is required.
Eventually, three features are added to the dataset: the accumulated annual Global Horizontal
Irradiation, GHI ann, the maximum accumulated monthly Global Horizontal Irradiation, GHImax,
and the minimum accumulated monthly Global Horizontal Irradiation, GHImin.

UV exposure is directly related to several degradation processes [17]. Furthermore, it is an indicator
of the solar spectrum. Therefore, the accumulated annual Ultra-Violet irradiation is considered,
UV ann. The ERA5 dataset contains a variable called “Downward UV radiation at the surface”
which might be used to calculate UV ann. However, as discussed in [7], UV is typically referred
to for wavelengths below 400 nm, while the variable given in ERA5 covers the range from 200 to
440 nm. As a consequence, the latter significantly overestimates the UV irradiation. Following the
alternative proposed in the same paper, UV is calculated using the approach given in [46]:

UVA = (7.210− 2.365 · k∗t ) · 10−2 ·GHI (2.1)

UVB = (1.897− 0.860 · k∗t ) · 10−3 ·GHI (2.2)

UV = UVA + UVB (2.3)

where

k∗t = max(0.1,min(0.7, kt)) (2.4)

and kt is the clearness index, i.e., the GHI divided by the solar radiation at the top of the atmo-
sphere, both variables available in the ERA5 dataset.

The last feature considered is the wind speed (WS ). Wind affects the temperature of the solar
module and consequently has an impact on the specific energy yield [7]. Wind also has an impact
on the degradation rate, causing mechanical load or big pressures, and is directly related to soiling
effects ([8], [29]). It has been widely considered in previous classification studies ([26], [32]). Wind
speed data is taken from the ERA5 dataset. It is available as the horizontal speed of the wind at
a height of ten meters above the surface of the Earth (10 m wind speed). However, temperature
data is known at a height of two meters, so the following correction is applied to obtain the wind
speed at the same height [7]:

WS2m =

(
2

10

)0.2

·WS10m (2.5)
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Hence, the final feature added to the dataset corresponds to the annual mean wind speed at a two
meters height (WS ann).

2.1.2 Specific energy yield and degradation data

Theoretical worldwide specific energy yield values for crystalline silicon (c-Si) modules were calcu-
lated by Ascencio-Vásquez et al. to assess the KGPV climate classification [6]. They simulated
a typical day for each month, multiplied by the number of days in each month, and summed up
to the annual value. The impact of temperature, balance-of-system efficiency, and spectral and
angular-reflection losses were considered. On the other hand, shading, soiling, and snow losses were
neglected. This data is available with a 0.5◦ x 0.5◦ resolution. Latitude values range from -55◦ to
70◦, so Antarctica and most of Greenland are excluded. Figure 2.1 illustrates the data.

Figure 2.1: Specific energy yield (kWh/kW) calculated by Ascencio-Vásquez et al. [6].

The specific energy yield (Yf ) is added as another column to the climate dataset. Therefore, for
every location (rows), the dataset contains its climate features and specific energy yield. This en-
ables finding a relation between climate and Yf .

As a final remark, it is worth mentioning that, even though both the climate and specific en-
ergy yield data have a resolution of 0.5◦ x 0.5◦, the actual range of values is different. For instance,
latitude in the climate dataset starts counting at -55.25◦, while in the Yf , it starts at -55

◦. There-
fore, it is necessary to interpolate to have both datasets referred to exactly the same locations. The
same issue is found regarding longitude.

Similarly, theoretical degradation rates were calculated by Ascencio-Vásquez et al. for monocrys-
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talline silicon PV modules installed in an open-rack mounting configuration [7]. Three degradation
mechanisms were modelled: hydrolysis-degradation, related to the effect of temperature and hu-
midity, thermo-mechanical-degradation, related to high temperature and temperature differences,
and photo-degradation, due to temperature, humidity, and UV irradiation. The effects of these
degradation mechanisms were added to obtain a total degradation rate. The data is available with
a resolution of 0.25◦ x 0.25◦. Worldwide degradation rates are shown in Figure 2.2.

Figure 2.2: Degradation rates (percent/year) calculated by Ascencio-Vásquez et al. [7].

The degradation rate is added as a new column to the climate dataset, but in a second copy, so the
specific energy yield values are not in the same dataset as degradation. The main reason is that
the latitude range is different, ending in 54.5◦ in this case. Furthermore, the specific energy yield
and degradation rate are studied separately in this project, so this is also more convenient. Lastly,
the resolution must be adjusted to 0.5◦ x 0.5◦.
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2.2 Two algorithms

The created dataset is used in Chapter 3 to develop a Linear Regression model and select the most
relevant climate variables. Then, in Chapter 4, k-means is implemented to create a new PV-climate
classification based on those climate variables. This section introduces these two algorithms.3

Linear Regression

One of the most successful and widely used types of supervised learning algorithms is linear models
[36]. Several authors have implemented linear models in PV studies in the past [44]. In short,
linear models make a prediction using a linear function of the input features [36]. In mathematical
notation:

yp = w0 · x0 + w1 · x1 + ...+ wn · xn + b (2.6)

where yp denotes the prediction, and xi denotes the feature i. The parameters learnt by the model
are the weights associated with each feature, wi, and the interception, b.

The basic routine followed when implementing the model, and supervised learning algorithms
in general, consists of the following steps. First, data is collected so that points in the form
(x0, x1, ..., xn, y) are established. Secondly, the data is partitioned into two groups, called the train-
ing data and the test data. The training data is fed into the model, and the parameters are adjusted
so that the error between the predictions, yp, and the known values, y, is minimised. Finally, once
the model has been created, it is evaluated using the test data, which enables knowing how accurate
the Machine Learning model is for data it has not seen before [9].

There exists numerous linear models for regression. In this work, Linear Regression will be im-
plemented. Linear Regression, or ordinary least squares (OLS), is the simplest and most classic
linear method for regression [36]. Linear Regression fits the parameters, wi and b, so that the mean
squared error (MSE) is minimised. The mean squared error is the sum of the squared differences
between the predictions and the true values [4]:

MSE =
1

N
·

N∑
j=1

(yp,j − yj)
2 (2.7)

where N is the total number of points.

Furthermore, in order to evaluate the quality of the predictions and establish comparisons between
different models, several error measures might be used. A comprehensive summary of commonly
used evaluation indexes is given in [4]. The most sensible metric might be the regression score
function, R2. This is a measure of the ability of a model to predict or explain an outcome based
on linear regression. The best possible score is 1.0, while a constant model that always predicts the
average y disregarding the input features would get an R2 of 0.0 [37]. It is the default score function

3This is the scheme and algorithms implemented for studying the specific energy yield. Degradation is treated
separately in Chapter 5.
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used in scikit-learn and the first metric to consider. Other indexes used in this work are the root
mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage
error (MAPE).

Linear Regression presents several advantages. Its simplicity implies low computational times and
memory requirements, both for training and predicting. Moreover, Linear Regression makes it
relatively easy to understand how a prediction is made [36]. A mathematical model is built that
assigns to every feature a weight, which is an indicator of its influence on the output. This point
is essential for the objectives of this work. Lastly, Linear Regression enables making predictions
for new data not necessarily in the same range as the training dataset. In other words, it enables
extrapolation. This might be relevant when the data collected is not uniform, and it is a drawback,
besides the level of complexity, of other sophisticated algorithms such as Random Forests.

On the other hand, Linear Regression has some limitations. A linear dependence between the
target and the features is assumed, which might not always be realistic. Nevertheless, it is impor-
tant to note that usually several features are used, resulting in a multi-dimensional model. Hence,
linear models can be very powerful. In this sense, simply imagining a straight line when talking
about a linear dependence might be misleading [36]. Of course, in some applications, the model
might still be inappropriate. A solution would consist in applying a non-linear transformation to
the features. For instance, a logarithmic or an exponential function might be applied [36]. In this
case, the model can be written in the following form:

yp = w0 · f0(x0) + w1 · f1(x1) + ...+ wn · fn(xn) + b (2.8)

where fi denotes the function applied to the feature xi.

Further limitations of Linear Regression in this project are discussed in the last section of Chapter
3.

K-means

K-means might be the simplest and most commonly used clustering algorithm [36]. The objective
of k-means is to group data points with certain similarities to discover underlying patterns. Each
of these groups is called a cluster and is described by the mean, µ, of the samples constituting it.
The mean of a cluster is also known as its centroid or cluster center [37].

The algorithm requires the number of clusters, k, to be specified by the user. Then, the clus-
ters are formed aiming to minimise the within-cluster sum-of-squares criterion, also known as the
inertia. Inertia can be recognized as a measure of how internally coherent clusters are [37]. This is
achieved following the next steps [36]:

1. Initially, the centroids are randomly generated.
2. Each data point is assigned to the closest cluster center.
3. Centroids are recalculated using the data points assigned to them in step 2.
4. Steps 2 and 3 are repeated until the change is less than a threshold.
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Figure 2.3 illustrates the procedure for two clusters.

Figure 2.3: Illustration of k-means clustering algorithm. [15]

Given enough time, k-means will always converge. However, due to the randomness of step 1,
running the algorithm again might result in different clusters [36]. In other words, different lo-
cal minimums might be achieved. For that reason, the procedure is repeated several times and
the algorithm selects the solution with the lowest inertia. To reach an optimum solution with an
acceptable number of attempts, usually, the k-means++ initialization scheme is implemented. In
this case, the initial random centroids are generated distant from each other, so the probability of
obtaining a local minimum is reduced [37].

K-means scales well to large datasets and has been successfully used in many fields. A charac-
teristic of k-means is that the desired number of clusters must be specified as an input parameter.
In general, this is inconvenient, since in many applications the optimum number of clusters is un-
known. Therefore, a tedious optimisation procedure might be required. On the other hand, the
possibility of fixing the number of clusters is an advantage in some applications since the algorithm
is forced to give a solution. Other clustering algorithms, such as DBSCAN, calculate the number
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of clusters, but some points can be classified as “noise”. In this project, this is not a valid result.
Furthermore, DBSCAN requires two input parameters, whose optimisation can be even more chal-
lenging.

The main limitation of k-means is that it can only capture relatively simple shapes [36]. Iner-
tia assumes that clusters are convex and isotropic, which is not always the case. It responds poorly
to elongated clusters, or manifolds with irregular shapes [37]. Also, k-means tries to form clusters
of relatively similar size. Again, the influence of these disadvantages must be assessed according
to the particular application. The data used in this work is quite homogeneous, so the first point
is not a serious issue. On the other hand, very small or unique clusters are not interesting for
developing a worldwide classification. Instead, the aim is to obtain a pragmatic classification, able
to recognise the most relevant features. For this purpose, the preciseness of k-means might be
considered sufficient.

To conclude, the virtue of k-means lies in its simplicity. It demands low computational times
and memory requirements, which allows the development of several classifications. This contrasts
with other popular clustering algorithms such as hierarchical clustering, whose limitations in terms
of speed and memory make its implementation into this project impossible.
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2.3 Chapter summary

In this chapter, a dataset containing the climate variables, specific energy yield values, and degrada-
tion rates has been built. Furthermore, the main algorithms used in this work have been explained.

• A worldwide grid with a resolution of 0.5◦ latitude by 0.5◦ longitude which includes 12 climate
variables has been created. More specifically, the climate variables included in the dataset
are: T ann, Tmax, Tmin, DTRann, Pann, Pmin, RH ann, GHI ann, GHImax, GHImin, UV ann,
and WS ann.

• Theoretical worldwide specific energy yield values for crystalline silicon (c-Si) modules are
provided by Ascencio-Vásquez et al. [6]. Similarly, theoretical degradation rates were cal-
culated by Ascencio-Vásquez et al. for monocrystalline silicon PV modules [7]. The specific
energy yield and the degradation rate are added as another column to the climate dataset.

• Linear Regression will be implemented in Chapter 3 to select the most relevant climate vari-
ables. It is a simple model with low computational times and memory requirements. Further-
more, it assigns a logical weight to every feature. As the main limitation, assuming a linear
dependence might be inappropriate in some applications.

• K-means groups data points with certain similarities to discover underlying patterns and will
be used in Chapter 4 to create the classification. A characteristic of k-means is that the desired
number of clusters must be specified as an input parameter. Thus, the algorithm is forced to
give a solution. The main limitation of k-means is that it can only capture relatively simple
shapes. On the other hand, it demands low computational times and memory requirements.
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Selection and Weighing

At this point, a worldwide dataset composed of several climate features and the specific energy yield
has been obtained. Now, the dependency between climate and PV performance can be studied.
In this chapter, the most relevant climate features are selected and weighted for developing the
classification in Chapter 4.

As previously discussed, the approach consists in implementing Linear Regression to analyse the
suitability of each feature for predicting accurately the specific energy yield. The first section,
“Calculations”, explains how the model is built and the operations performed. Feature selection
proves to be a challenging issue. Pearson coefficients, automated feature selection, and technical
expertise are combined to choose 79 possible sets of features. Then, these are evaluated using Linear
Regression. In the second section, the results are carefully analysed and a decision regarding the
features to use in Chapter 4 is made. Four combinations, each with a different number of features,
are proposed. The MAPEs of these models are around six percent. Finally, the limitations of this
approach are discussed in the last section. In particular, non-linear relationships are explored and
optimisation algorithms are recommended.
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3.1 Calculations

First of all, following the typical routine in supervised learning, the dataset is partitioned into two
subsets: the training data and the test data. Here, the training data corresponds to 75 percent of
the original dataset, while the test data consists of the remaining 25 percent. This is just a general
good rule of thumb, and similar partitions are also applicable [36]. Secondly, it is necessary to
rescale the data. Data scaling is a common preprocessing method applied before implementing the
actual ML algorithm [36]. Data scaling consists in reconstructing the dataset to reduce the impact
of different orders of magnitude [4]. This is typically caused by the different units employed among
the features. For instance, irradiation has an order of magnitude of 108, clearly much higher than
other variables like humidity or temperature. These discrepancies in scale and range affect directly
the weights’ calculation. Therefore, in order to obtain more reliable and comprehensive results, all
data points must be transformed to the same scale [4].

There are numerous transformations available for data scaling in scikit-learn. StandardScaler,
RobustScaler, MinMaxScaler, and Normalizer might be the most useful ones [37]. In this work,
StandardScaler is applied. It transforms the data so that every feature has a mean equal to 0 and
a variance of 1 [36]. Besides being easy to understand, this technique has proved successful in the
optimisation of Machine Learning algorithms [4]. Thus, StandardScaler is used to scale the data.
It should be stressed that it is very important to apply exactly the same transformation to the
training data and the test data [36].

Finally, the Linear Regression model is built using the training data. Following the nomencla-
ture introduced in Chapter 2, here the features, xi, are the climate variables, while the target, y,
is the specific energy yield. After fitting the weights, the model can be evaluated using the test
data. In other words, the specific energy yield for each sample of the test data is predicted using
the corresponding climate features, and the prediction is compared to the known value. Thus, the
performance of the model can be measured. The lower the error, the higher the correlation between
the climate features and the specific energy yield. Figure 3.1 summarises the procedure.

In principle, all features could be fed into the model and the algorithm would calculate their opti-
mum weights. Then, these weights could be used for developing the classification. However, this
would result in a complex classification, difficult to analyse and understand. Moreover, many cli-
mate variables are related to each other or have minor importance, so these can be discarded for
the classification criteria. On the other hand, an insufficient number of features would result in
poor accuracy. Therefore, it is essential to make a wise selection.

Knowing the number and which features should be selected is not a trivial issue. The climate
features are not independent of each other, and there exist particular combinations which remark-
ably improve the performance of the model. For that reason, the importance of an individual feature
depends on the other features with which it is combined. Consequently, the optimum combination
can vary significantly when changing the number of features selected.

Certain statistical parameters and tools can facilitate the analysis. A first insight into the rele-
vance of a feature is provided by the Pearson correlation coefficient or Pearson’s r. It evaluates the
linear correlation between the feature and the target [37]. More specifically, it is defined as the ratio
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between the covariance and the product of the standard deviations, and its value ranges between
-1 and 1. A Pearson’s r equal to 1 or -1 means a perfect linear correlation, the sign just indicating
the direction. In contrast, a coefficient of 0 is an indicator of no linear dependency [49].

It is important to note that Pearson’s r measures the dependence of the individual variable, so
no information is gained regarding the interactions between the climate features. Consequently,
feature selection cannot be based solely on these numbers. Nevertheless, it provides a sense of the
importance of each feature and can be utilised to make some decisions. For instance, Ahmed et al.
[4] considered significant only those variables with a Pearson coefficient higher than 0.4. Table 3.1
illustrates the calculated Pearson coefficients.

Table 3.1: Pearson correlation coefficient for every climate feature. Values close to +1 or -1 indicate
a high linear dependence between the feature and the specific energy yield.

Feature Pearson correlation coefficient

T ann + 0.66

Tmax + 0.63

Tmin + 0.60

DTRann + 0.76

Pann - 0.13

Pmin - 0.27

RH ann - 0.72

GHI ann + 0.92

GHImax + 0.78

GHImin + 0.77

UV ann + 0.91

WS ann + 0.01

It is clear from Table 3.1 that GHI ann and UV ann have a strong linear correlation with the specific
energy yield. Therefore, these variables are expected to play a fundamental role in the classification.
On the other hand, the low Pearson coefficients for precipitation and wind speed suggest that these
variables will not be so relevant. In particular, WS ann has a coefficient of almost zero, so it will be
disregarded for the rest of the analysis. It is important to clarify this conclusion. This does not
mean that wind speed does not have an impact on the specific energy yield. It simply indicates
that, globally, there is no correlation between the WS ann and the Yf . In the last section of this
chapter, it is shown that this conclusion applies even considering nonlinear dependencies.

Another tool that might be helpful to guide decision-making is automatic feature selection [28].
Among the several methods available for automatic feature selection in scikit-learn [37], recursive
feature selection (RFE) is one of the most powerful options. RFE builds a series of models varying
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the number of features. As a result, based on the weights calculated, it enumerates the features
based on their importance to the algorithm [36]. RFE was implemented using two different algo-
rithms: Linear Regression and Random Forests. The choice of Linear Regression is evident: it is
the algorithm used in this work. The motivation for including Random Forests is that this is a very
powerful algorithm whose results might be interesting. Table 3.2 illustrates the positions assigned
to each variable.

Table 3.2: RFE ranks the features in order of importance, from most (1) to least (11).

Feature Linear Regression Random Forests

T ann 3 9

Tmax 4 5

Tmin 2 6

DTRann 9 7

Pann 10 8

Pmin 8 11

RH ann 11 4

GHI ann 6 1

GHImax 7 2

GHImin 5 3

UV ann 1 10

The result is completely different for Linear Regression and Random Forests. Considering that
these are different algorithms, this is not necessarily a surprise. It might then be concluded that
the results for Linear Regression are more significant, since this is the algorithm used in this work.
However, when making the actual calculations, it is shown that the results given by RFE are not
accurate1. Moreover, the order of importance determined by Random Forests is closer to the op-
timum. Thus, RFE is not performing satisfactorily and the given order of importance should not
be simply accepted. Nevertheless, it can be used as a starting point for searching for the optimum
combination of features.

Overall, there is no straightforward way of selecting the features. It is necessary to try several
combinations to find the optimum set. Therefore, the following methodology has been finally ap-
plied. For every possible number of features (ranging from 1 to 11), the model has been evaluated
using different combinations. The possible combinations have been chosen based on the Pearson
coefficients, RFE results, and technical expertise2. In total, 79 options have been evaluated. Table
3.3 summarises the optimum combination found for each number of features, with their associated
errors. Error measures include the R2, RMSE, MAE, and MAPE. Furthermore, a case consisting
of a random variable is included to show the validity of the model and establish a reference. The

1This can be seen in Appendix I.
2Frequently, expert knowledge greatly simplifies feature selection procedures [36].
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rest of the calculations can be found in Appendix I.

It is worth mentioning that the errors shown here are calculated using the test data. There is
also an error associated with the training data, which can provide further insights. In this work,
since theoretical values are being used, the data is very homogeneous and both errors are identical.
Furthermore, since the data is randomly divided into training and test data, running the algorithm
again results in slightly different values. To reduce this effect, the algorithm was executed three
times, and the error and weights were averaged.
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Figure 3.1: Flowchart of the feature selection procedure. First, the dataset is partitioned into
the training data and the test data. Secondly, the data is standardised. The test data must be
standardised based on the training data. Then, the Linear Regression model is built using the
training data. Finally, after fitting the weights, the model is evaluated using the test data.
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Table 3.3: Optimum combination for each possible number of features. The weights given to the climate variables and the error
of the model are shown.

Features Tann Tmax Tmin DTRann Pann Pmin RH ann GHI ann GHImax GHImin UV ann Random R2 RMSE MAE MAPE (%)

0 1.61 0 360.4 301.28 28.3

1 332.3 0.852 139.61 109.14 9.9

2 533.28 -216.81 0.904 112.37 84.05 7.9

3 894.04 -165.25 -471.95 0.923 99.71 77.88 6.8

4 -65.77 964.93 -200.28 -463.66 0.931 95.27 73.84 6.7

5 -104.31 169.91 -133 -435.09 748.66 0.937 90.77 70.31 6.5

6 -98.57 -18.39 266.6 -169.9 -497.71 732.93 0.938 89.45 68.86 6.3

7 500.46 -183.59 -423.15 269.94 -121.51 -426.79 610.23 0.941 87.31 67.64 6.2

8 501.44 -191.16 -409.65 -17.56 252.12 -134.75 -452.43 652.1 0.943 86.03 66.77 6.1

9 495.06 -190.9 -404.93 -17.2 -4.19 210.69 -132.36 -450.36 688.52 0.943 86.06 66.86 6.1

10 500.14 -192.01 -408.37 -1.4 -16.28 -4.01 209.25 -132.57 -450.56 690.07 0.943 85.7 66.49 6.0

11 491.87 -189.94 -397.83 7.48 -2.3 -16.24 -1.13 217.01 -132.73 -447.14 671.82 0.944 85.33 66.75 6.1
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3.2 Analysis of the results

Table 3.3 provides, for a fixed number of features, the optimum set, the weights, and the error
associated with that Linear Regression model. Based on these results, the criteria for developing
the classification in the next chapter can be defined.

The first remark is the importance of the irradiation features. Indeed, when fixing the number
of features to three, the optimum combination consists of the three measures of GHI. Only using
these variables, an R2 of 0.923 and a MAPE of 6.8 percent are achieved. From this point, the
temperature starts to play a fundamental role too, appearing T ann when adding the fourth fea-
ture. It is interesting to note that T ann and Tmin seem to provide more information than Tmax or
DTRann. From the five features, UV ann becomes the variable with the highest weight, a sign of its
importance to the model. The next variable to appear is Pmin, which after showing for the first
time with six features and being disregarded with seven, it is always selected. Finally, with very
low weights, RH ann, Pann, and DTRann are added, in that order.

Besides the features, the errors must be carefully analysed. In particular, the regression score
function, R2. The first thing to notice is that, from eight features, the R2 takes a virtually constant
value of 0.943. This suggests that selecting more than eight features is inconvenient, since the
model’s complexity would increase without tangible improvement. Following the same reasoning,
it might be concluded that seven features are preferable to eight, or that five is better than six,
due to the small difference in the error measures. However, in principle, it is not clear the impact
of these differences on the classification. Therefore, some caution is required. On the other hand,
making the classification with a number of features less than three can be discarded. Besides the
suboptimal error, using only irradiation variables for developing the classification might not be too
insightful.

Overall, at this point, it is possible to discard some options, but making here a final decision
about the optimum number of features would not be very convincing. Certainly, the most promis-
ing combinations seem to be those for four, five, seven, and eight features. However, how different
would the classification be using seven features instead of four? This question cannot be answered
at the moment. Consequently, it has been decided to proceed with these four possible candidates.
Their effect in the final classification is analysed and compared in the next chapter, and only then,
is a final decision made.

To conclude this section, it is worth analysing the quality of the predictions in more detail. From
Table 3.3, it is known that MAE values are around 70 while MAPEs are a bit higher than 6 percent.
Alternatively, a visual assessment of the predictions might be made based on Figure 3.2. In this
figure, the specific energy yield predictions (y-axis) are directly compared to the known values or
targets (x-axis). Ideally, a straight line (red line in the figure) should be obtained. In particular,
these results correspond to the model built using seven features.

In general, the predictions follow a similar behaviour to the actual values, except for regions charac-
terised by a very low specific energy yield, where the discrepancy is significantly higher. Therefore,
for these regions, the classification might be less accurate. On the other hand, it is typically as-
sumed that any algorithm which can predict the output with at least 80 percent of the error lying

38 Delft University of Technology



ML driven PV-climate classification

Figure 3.2: Comparison between the targets and the predictions made by the Linear Regresssion
model using seven features.
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Figure 3.3: Predictions classified into groups according to their relative error. The 85 percent have
an error lower than 10 percent.

within 10 percent of the target is a good predictive model [28]. The MAPE already suggests this is
the case, but even a clearer view might be provided by Figure 3.3. Here, the points are classified
according to their relative error. Again, these results are obtained using seven features.

To be more specific, it is determined that around 85 percent of the points have an error lower than
10 percent. In this figure, it also stands out that a significant number of points have an error higher
than 15 percent. These, presumably, correspond to the region of very low specific energy yields.
Although not shown here to avoid repetition, these conclusions are equally drawn for the cases of
four, five, and eight features.

There is no point in further examining the quality of the predictions. It should be stressed that
the objective of this chapter is to identify the most relevant features and associate a logical weight
to them so that a rational classification can be developed. Linear Regression allows for conducting
this process with ease and provides acceptable predictions. Therefore, Linear Regression has proved
successful. In contrast, a simple algorithm such as KNN would make almost perfect predictions for
this particular dataset, but it would hardly provide insights into the importance of the features and
their weights.
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3.3 Limitations

Linear Regression has shown many strengths, but there is a weakness that cannot be ignored: it only
considers linear dependencies. Even though the use of many features results in a multi-dimensional
model which might overcome this deficiency, linear models might miss important information. For
instance, wind speed and precipitation show a low linear correlation with the specific energy yield,
but, could they have a strong non-linear dependency that the model fails to identify? This is a fair
question that should be tackled.

Previously, Pearson’s r coefficients were calculated to illustrate the linear dependency between
an individual feature and the specific energy yield. There exists a statistical parameter that can be
used to measure any kind of correlation. This is the Mutual Information (MI) coefficient [37]. It is
equal to zero if and only if two random variables are independent, and higher values mean higher
dependency [37]. Hence, the MI for every feature was calculated. Table 3.4 presents the results.

Table 3.4: Mutual Information coefficients.

Feature Mutual Information coefficient

T ann 0.67

Tmax 0.68

Tmin 0.66

DTRann 0.60

Pann 0.60

Pmin 0.56

RH ann 0.80

GHI ann 1.35

GHImax 0.81

GHImin 1.08

UV ann 1.28

WS ann 0.28

Logically, the variables with a high Pearson coefficient, like GHI ann and UV ann, have a high MI
too. Similarly, it is seen that WS ann, which had a Pearson’s r of almost zero, has a very low MI as
well. Perhaps more interesting is the case of precipitation. Precipitation features, both Pann and
Pmin, show significant MI values, while the Pearson coefficients were low. This suggests that their
importance in the model could become higher by applying an appropriate transformation3. This,
in turn, could result in better predictions and a different feature selection.

To illustrate this idea, the logarithmic and square root functions were applied to Pann, Pmin,

3This method was explained in the second section of Chapter 2

Francisco Javier Triana de las Heras 41



CHAPTER 3. SELECTION AND WEIGHING

and, to provide another example, GHImin. Then, the Pearson coefficients for these new variables
were calculated. Results are shown in the following table. The original variables are also included
to facilitate the comparison (Linear).

Table 3.5: Pearson coefficients for different transformations.

Feature
Function

Linear Logarithm Square Root

Pann -0.13 -0.3 -0.2
Pmin -0.27 -0.54 -0.45

GHImin 0.77 0.75 0.84

It is clear that these transformations, especially the logarithm, improve the linear dependency of
precipitation. Taking the square root of GHImin improves its correlation too. In this way, precip-
itation could play a more relevant role in the model and the classification. However, besides still
presenting a relatively low dependency, it should be considered that the significance and conve-
nience of a classification based on these new variables would be less clear. Therefore, it has been
decided to continue working only with the linear dependencies. Nevertheless, the implementation
of non-linear dependencies, either by this method or just by changing the algorithm, might be a
future point of improvement. The application of other algorithms is explored in Chapter 5 for
degradation, a strong non-linear phenomenon.

Lastly, the procedure described poses another difficulty. Independently of the algorithm, it is
necessary to study each possible combination of climate features separately. Unfortunately, the
total number of possible combinations is too high. For that reason, it was decided to try 79 cases,
selected based on the Pearson coefficients, RFE results, and technical expertise. Thus, although
unlikely, some interesting combinations might have been missed. In this regard, an automated
optimisation model such as Particle Swarm Optimization (PSO), or Genetic Algorithm (GA) might
be explored.
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3.4 Chapter summary

Chapter 3 covered the feature selection procedure required to identify the most relevant climate
variables for creating the classification in the following chapter.

• Linear Regression was implemented to analyse the suitability of the climate variables for
predicting accurately the specific energy yield.

• The importance of an individual climate parameter depends on the other features with which
it is combined. Consequently, the optimum combination can vary significantly when changing
the number of features selected.

• There is no straightforward way of selecting the climate variables. It is necessary to try several
combinations to find the optimum set. Based on the Pearson coefficients, RFE, and technical
expertise, 79 options have been evaluated.

• Irradiation (GHI ann, GHImax, GHImin, UV ann) and temperature (T ann, Tmin) are the most
relevant climate variables.

• From eight features, the R2 takes a virtually constant value of 0.943. Making the classification
with a number of features less than three is discarded due to poor performance. The most
promising combinations are those for four, five, seven, and eight features. MAPEs are a bit
higher than 6 percent, and the predictions follow a similar behaviour to the known values
except for regions characterised by very low specific energy yields, where the discrepancy is
higher.

• Applying a nonlinear transformation to some climate variables, like Pmin, might improve the
model’s accuracy. However, the complexity of the model would increase significantly.

• An automated optimisation model, such as Particle Swarm Optimisation (PSO) or Genetic
Algorithm (GA), might be implemented to consider more possible combinations of climate
features.
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Chapter 4

Clustering

In Chapter 2, a comprehensive dataset was built. Then, in Chapter 3, the most relevant features
were identified and, more specifically, four promising combinations, each for a different number
of features (four, five, seven, and eight), were proposed. All is ready for developing the Machine
Learning driven PV-climate classification.

This chapter consists of three sections. In the first section, “Exploration”, a method to select
and optimise the final classification is illustrated. It consists in creating several classifications using
k-means, followed by a careful qualitative analysis based on various parameters and tools. In this
way, the optimum number of features and clusters is fixed as seven and 20, respectively. Further-
more, this exploration procedure paves the way to understanding the properties of the clusters.

In the second section, “ML driven PV-climate classification”, the final classification is presented
and described in detail. First, clusters are divided into six possible climate types: Tropical (Tro),
Desert (Des), Mountainous (Mon), Temperate (Tem), Cold (Col), and Polar (Pol). Secondly, clus-
ters inside the same climate type are ordered based on the level of irradiation. Several figures are
included to illustrate the reasoning.

Finally, the chapter concludes with an assessment of the classification. The clusters are anal-
ysed from the specific energy yield standpoint, and the proposed classification is compared with
KGPV.
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4.1 Exploration

As previously discussed, k-means is implemented in this project to develop the classification. The
procedure consists of the following steps. First, the features selected in Chapter 3 are standard-
ised (using StandardScaler), and multiplied by their corresponding weights. Then, as discussed in
Chapter 2, k-means is applied to create the clusters from these features. The desired number of
clusters is fixed beforehand. In this way, a classification can be obtained. Figure 4.1 illustrates the
procedure.

Figure 4.1: Flowchart of the clustering procedure. The weights were calculated in Chapter 3 and
the number of clusters is fixed by the user.

However, would this be a proper classification? Moreover, which combination of the four proposed
in the previous chapter should be finally utilised? And, how many clusters should be formed? If the
result is to be meaningful, one must be able to answer these questions effectively. In this section, the
last two issues are addressed, while the final assessment of the classification is left to a subsequent
stage (section 4.3).

The approach consists in fixing first an optimum number of clusters for each possible combina-
tion of features. Thus, four classifications are obtained, one for each combination. Then, these
classifications are compared and a final decision is made. Nevertheless, selecting an appropriate
number of clusters is not a trivial issue. Indeed, the first step to building an optimum classification
is to define an evaluation method. This essential requirement is usually the most challenging part
of clustering studies [36]. In unsupervised learning, in contrast to supervised, there are no known
values to compare and assess the results of the algorithm. Consequently, it might be difficult to
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evaluate a particular classification as good or bad.

To guide this decision, several mathematical strategies have been proposed. The Elbow method
and the Silhouette coefficient stand out due to their simplicity and previous success. However,
unfortunately, these pure quantitative analyses rarely work for the datasets found in practice [36].
Indeed, these methods were applied in this work with poor performance. The results can be found
in Appendix II.

The reality is that there is not a clear and unique solution to this challenge. Instead, a careful
and tedious qualitative exploration procedure is required. This is a common approach in clustering
algorithms [36]. Fortunately, numerous tools can facilitate the study and help to make objective
decisions. Data visualization is especially relevant for this project. This includes several types of
plots, which will be explained as they appear. Other insightful parameters are the clusters’ centers
and sizes.

The exploration method is best explained using an example. The combination corresponding to four
features is utilized hereunder. This is the simplest case and will facilitate the exposition. Having
fixed the number of features, the question to answer now is how many clusters must be selected
to obtain the optimum classification. Perhaps, a good starting point would be creating the same
number of zones as KGPV, that is, 12. Figure 4.2 illustrates the classification obtained in this case.

Figure 4.2: Classification created using four features and specifying 12 clusters.

Independently of how well the classification might look, this is not a convincing way of fixing the
number of clusters. The methodology applied in this project is completely different from KGPV.
Consequently, the optimum number of groups may not be the same. The first idea that comes to
mind might be increasing the number of clusters and observing the changes in the classification.
Thus, Figure 4.3 presents the classifications associated with 12, 13, 14, and 15 clusters.
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A visual comparison of these maps enables a rough analysis of the impact of increasing the number
of clusters. As shown in Figure 4.3, when proceeding from 12 to 13, some regions in China, Japan,
and South Korea are distinguished as a new cluster (dark red in the figure). When adding the 14th

cluster, a new group appears mainly in central Africa and northern Australia (white). Lastly, if
15 clusters are considered, Greenland is classified separately (purple). Certainly, all these changes
seem to be improving the classification. However, are they truly significant? Why are these new
clusters formed? What characterizes them? These fundamental questions are essential for making
an objective decision. However, it is not possible to answer them just by observing the classifications.
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Figure 4.3: Classifications obtained using four features and specifying the number of clusters to 12, 13, 14, and 15. When
proceeding from 12 to 13, some regions in China, Japan, and South Korea are distinguished as a new cluster (dark red). When
adding the 14th cluster, a new group appears mainly in central Africa and northern Australia (white). Lastly, if 15 clusters are
considered, Greenland is classified separately (purple).
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Fortunately, there exists a tool that proves very insightful: the pair plot. A pair plot consists of a
matrix of scatter plots, each representing the points for every possible pair of features. The diagonal
of this matrix is filled with a histogram of each feature [36]. The data points are colored according
to the clusters they belong to. This figure enables an understanding of how the clusters are formed,
and their main properties. Furthermore, it can be used to predict the formation of new groups.
The pair plot associated with four features and 12 clusters is illustrated in Figure 4.4.

Figure 4.4: Pair plot associated with the classification based on four features and 12 clusters. The
units of T ann and GHI, not shown in the figure for the sake of clarity, are ◦C and J/m2, respectively.

Even though Figure 4.4 contains a lot of interesting information, it is difficult to analyse, especially
when a higher number of features is considered. Therefore, it is usually more convenient to use the
pair plot only to identify the most enlightening pair of features. Then, this particular pair can be
illustrated separately in more detail to conduct the analysis. For instance, the pair GHI ann - T ann

is very informative. Figure 4.5 illustrates it.

From this figure, the following remarks can be made. First, the high weight given to the GHI ann
is here evident. The clusters are mainly formed based on this criterion, as the vertical divisions
indicate. However, there is a point at which temperature starts playing a role too, and, as a conse-
quence, the reddish clusters are formed. These are characterized by a high T ann. More specifically,
their cluster centers indicate an average T ann of 24 ◦C. Overall, it is seen that these reddish clusters
have a similar level of irradiation to the greenish ones but a higher temperature.
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Figure 4.5: Scatter plot for the pair GHI ann - T ann. Result obtained using four features and 12
clusters.

Following the previous reasoning, it could be expected that clusters covering a wide range of tem-
peratures, such as the bluish ones, will be partitioned if a higher number of clusters is fixed. This
could result in a better classification. To corroborate this hypothesis, Figure 4.6 shows the pair
GHI ann - T ann for 12, 13, 14, and 15 clusters.

Indeed, as Figure 4.6 shows, when increasing the number of clusters to 13, the effect of temperature
partitions the dark green cloud. A new dark red group is formed, with the same level of irradiation
but a higher T ann. The 14th cluster is the high-temperature version of the golden group. However,
this time is created from the light salmon cluster, which is divided into two groups with the same
T ann but different GHI ann. Finally, when going from 14 to 15 clusters, a purple group stems from
the light blue one. Again, temperature is the reason.

Based on the previous paragraph, 15 clusters seem a better choice than 12. The new clusters
identify relevant climate regions, significantly improving the classification’s accuracy. They con-
stitute independent clouds of points and have clearly defined properties. Even the white cluster,
although it might look small and irrelevant, has a size of 3038 points1. This is comparable to other
big groups like the dark green, whose size is 3742 points. In this regard, the size of a cluster cannot
be estimated based on these plots. Furthermore, the white region might be seen as a necessary step
to achieve the purple climate region.

1It is reminded that here a point is a space of the grid with resolution 0.5◦ latitude by 0.5◦ longitude. The surface
(km2) of this square depends on the location of the planet, being higher at the equator and lower at the poles.
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Figure 4.6: Scatter plot GHI ann - T ann for 12, 13, 14, and 15 clusters. When increasing the number of clusters to 13, the effect
of temperature partitions the dark green cloud. A new dark red group is formed, with the same level of irradiation but a higher
T ann. The 14th cluster is the high-temperature version of the golden group. However, this time is created from the light salmon
cluster, which is divided into two groups with the same T ann but different GHI ann. Finally, when going from 14 to 15 clusters,
a purple group stems from the light blue one. Again, temperature is the reason. Result obtained using four features.
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To conclude this qualitative analysis demonstration, Figure 4.7 shows the world classifications and
scatter plots for 16 and 17 clusters. With 16 clusters, another yellow group appears. It could
provide a higher level of detail and might be interesting. However, when increasing to 17 clusters,
a grey cluster is formed whose significance is very unclear. It overlaps other clusters and does not
show clearly defined properties. This suggests that forming 17 clusters or more is not appropriate
and that 16 clusters is the ceiling for four features.2

The qualitative analysis has been illustrated for four features. A similar procedure can be ap-
plied to five, seven, and eight. For instance, Figure 4.8 illustrates similar scatter plots for seven
features. Thus, an adequate number of clusters for each combination is found. The classifications
proposed are presented in Figure 4.9. For four features, it was decided to select 15 clusters. When
using five features, the grey cluster mentioned above is delayed until the 18th cluster, so 17 clearly
defined climate regions can be identified. Lastly, 20 groups are formed when using either seven or
eight features.

In principle, the higher the number of features, the higher the classification’s accuracy. This was
already suggested in Table 3.3. More significant clusters can be found when using more variables.
On the other hand, using more features makes the qualitative analysis much more challenging.
Therefore, there exists a trade-off between accuracy and complexity. Figure 4.9 shows that the
classifications based on seven and eight features are almost identical. Thus, seven climate variables
are preferable. Conversely, the way the clusters are created using four or five features is remarkably
different than for seven. This is very clear for the northern hemisphere. When using four or five
features, the clusters are very dependent on the latitude, resulting in an oversimplification for some
parts of the planet. In this regard, seven features improve the classification’s accuracy substantially
in comparison to four or five. Overall, the classification corresponding to seven features and 20
clusters is selected as the final classification. The following section is devoted to analysing the
clusters and their properties in depth.

2The formation of this grey cluster is explained by the other two features: GHImax, and GHImin. The usefulness
of these two features will be shown later.
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Figure 4.7: World classifications and scatter plots (GHI ann - T ann) for 16 and 17 clusters. With 16 clusters, another yellow
group appears. It could provide a higher level of detail and might be interesting. However, when increasing to 17 clusters, a
grey cluster is formed whose significance is very unclear. It overlaps other clusters and does not show clearly defined properties.
Results obtained using four features.



Figure 4.8: Decision procedure for seven features based on the scatter plot GHI ann - T ann for 18, 19, 20, and 21 clusters. When
going from 18 to 19, two new clusters appear (reddish and yellowish) while one disappears (bluish). Then this cluster appears
again with 20 clusters. The 21st group (grey) overlaps with other clusters and has an unclear significance.



Figure 4.9: Classification proposed for each possible combination of features. The classifications based on seven and eight
features are almost identical. Thus, seven climate variables are preferable. Conversely, the way the clusters are created using
four or five features is remarkably different than for seven. This is very clear for the northern hemisphere. When using four or
five features, the clusters are very dependent on the latitude, resulting in an oversimplification for some parts of the planet. In
this regard, seven features improve the classification’s accuracy substantially in comparison to four or five.
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4.2 ML driven PV-climate classification

The final classification is illustrated in Figure 4.10. As indicated above, it comprises 20 climate
regions based on seven features: T ann, Tmax, Tmin, GHI ann, GHImax, GHImin, and UV ann.

The names and colors associated with the clusters are indicated by the bar at the right of the
figure. They are inspired by the approach followed in KGPV. First, clusters are divided into six
climate types: Tropical (Tro), Desert (Des), Mountainous (Mou), Temperate (Tem), Cold (Col),
and Polar (Pol). Then, the clusters inside each of these climate types are ordered from minor to
greater irradiation. Therefore, both Tro1 and Tro4 are tropical climates, but Tro4 has a higher
level of irradiation than Tro1. It is important to note that these numbers only apply inside the
same climate type. Hence, even though Pol1 and Tro1 have the same number, they do not have
the same level of irradiation. Table 4.1 summarises the cluster’s names, centers, and sizes.

Table 4.1: Cluster’s names, centers, and sizes. Temperatures are given in ◦C and irradiations in
J/m2. The size is the number of points constituting the cluster.

Name Tann Tmax Tmin GHI ann (·108) GHImax (·107) GHImin (·107) UV ann (·106) Size

Tro4 24.52 27.08 21.58 2.49 2.43 1.75 14.83 4069

Tro3 25.64 28.1 22.85 2.23 2.23 1.51 13.59 4782

Tro2 25.03 26.68 22.8 2 2 1.33 12.5 3658

Tro1 17.57 26.34 7.5 1.63 1.85 0.88 10.33 1009

Des3 27.87 33.81 20.19 2.81 2.73 1.85 16.09 3341

Des2 23.34 31.41 13.84 2.66 2.84 1.44 15.24 3714

Des1 18.53 27.48 9.16 2.46 2.83 1.15 14.22 2913

Mou3 9.43 12.14 5.84 2.86 2.98 1.76 16.4 383

Mou2 -1.38 9.74 -13.55 2.48 2.81 1.28 14.25 1126

Mou1 8.47 21.77 -5.77 2.17 2.67 0.85 12.68 2220

Tem4 17.2 25.72 8.38 2.09 2.57 0.87 12.52 3029

Tem3 10.53 22.71 -2.11 1.81 2.39 0.59 10.95 3274

Tem2 8.27 19.16 -2.54 1.38 2.07 0.25 8.57 2433

Tem1 1.83 15.5 -11.13 1.06 1.91 0.05 6.67 2893

Col4 2.8 19.47 -16.08 1.74 2.31 0.50 10.45 2840

Col3 0.24 16.98 -18.22 1.42 2.13 0.25 8.7 3691

Col2 -5.68 14.45 -28.86 1.28 2.11 0.13 7.85 3201

Col1 -5.81 13.35 -23.43 1.05 1.98 0.02 6.54 2811

Pol2 -16.14 -3.74 -26.17 1.47 3 0.01 8.4 451

Pol1 -12.1 -11.7 -34.83 1.09 2.08 0.01 6.72 3580
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Figure 4.10: ML driven PV-climate classification. First index: Tro-Tropical, Des-Desert, Mou-Mountainous, Tem-Temperate,
Col-Cold, Pol-Polar. The second index orders from minor to greater irradiation the clusters inside a particular climate type.



CHAPTER 4. CLUSTERING

Even though the names are inspired by the KGPV scheme, they are ultimately justified by the
properties of the clusters. These are understood with the help of the cluster’s centers and pair
plots. First, Table 4.2 summarises the most relevant points of each climate type, similar to those
considered in KGPV.

Table 4.2: The climate types considered by the classification with their key points.

Climate type Description

Tropical High Tmin. Low seasonal dependence.

Desert High Tmax. High GHI ann and UV ann.

Mountainous Moderate temperatures. High GHI ann and UV ann.

Temperate Moderate temperatures. High seasonal dependence.

Cold Low Tmin. High seasonal dependence.

Polar Low T ann. Extreme seasonal dependence.

These properties are readily apparent by observing the following scatter plots. Figure 4.11 illus-
trates the pairs GHI ann - T ann and GHI ann - Tmin. From the first pair, it is concluded that Polar
climates are characterized by a low T ann or that Mountainous regions present a high GHI ann but
moderate T ann. On the other hand, the bottom plot shows the low Tmin of the Cold climates,
comparable to that of the Polar regions. Furthermore, the high Tmin of the Tropical climates can
be observed.

To illustrate the seasonal dependence, Figure 4.12 plots GHI ann against GHImax and GHImin.
Tropical regions have a high GHImin in comparison to other climates such as Temperate. However,
regarding GHImax, the scenario is reversed. This shows the high and low seasonal dependence
of the Temperate and Tropical regions, respectively. Similar conclusions apply to Cold and Polar
climates. In particular, it is remarkable the extreme seasonal dependence of Pol2.

Lastly, some specific clusters might demand further discussion. These are Tro1, Des3, and Tem1.
The first one corresponds to the Tropical climate with the lowest irradiation. However, its T ann

and Tmin are remarkably different than for the other tropical clusters. In this regard, it could seem
appropriate to consider it as a Temperate cluster. Indeed, looking at the map, KGPV classifies
these regions as Temperate. However, the scatter plots suggest that Tropical is a more logical
decision. In this sense, this cluster might be considered a transition from Temperate to Tropical.
A similar case occurs with Tem1, which might be understood as a transition from Cold to Temper-
ate. The dark red and greenish-blue colours assigned to these clusters make these ideas more visual.

On the other hand, Des3 is classified as a Desert climate, but its temperature and seasonal de-
pendence are not that different from Tropical. To clarify the classification of this cluster as Desert,
precipitation might be considered. Figure 4.12 shows the scatter plot for the pair GHI - Pann.
Since Pann is not a feature directly considered by the clustering algorithm, the clusters are less
clearly defined in this figure. However, it can be seen that Tropical regions certainly have a level
of precipitation higher than Des3. This completely justifies the desert climate type. It is worth
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Figure 4.11: Scatter plots for the pairs GHI ann - T ann (above) and GHI ann - Tmin (below). Polar
climates are characterized by a low T ann while Mountainous regions present a high GHI ann but
moderate T ann. The bottom plot shows the low Tmin of the Cold climates, comparable to that of
the Polar regions. The high Tmin of the Tropical climates can be observed.
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Figure 4.12: Scatter plots for the pairs GHI ann - GHImax (above) and GHI ann - GHImin (below).
Tropical regions have a high GHImin in comparison to other climates such as Temperate. However,
regarding GHImax, the scenario is reversed. This shows the high and low seasonal dependence
of the Temperate and Tropical regions, respectively. Similar conclusions apply to Cold and Polar
climates.
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Figure 4.13: Scatter plot for the pair GHI ann - Pann. Tropical regions certainly have a level of
precipitation higher than Des3.

pointing out that the algorithm does not need precipitation for making this distinction.
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4.3 Assessment

This chapter concludes with a reflection on the validity of the model and a comparison with KGPV.

The objective was to create a classification based on the most relevant climate variables to the
specific energy yield. Has this objective been achieved? In principle, the feature selection proce-
dure developed in Chapter 3 assures it. Nevertheless, a final check never hurts. For this purpose,
Figure 4.14 illustrates the scatter plot for the pair GHI ann - Yf . If the climate variables were effec-
tively related to the specific energy yield, the clusters would be expected to show this relationship
too. Certainly, this seems to be true. Clusters Mou2 and Mou3 have the highest specific energy
yield, followed by Mou1 and the Desert regions. It is interesting to note that even though the
Desert clusters have a higher GHI ann than Mou1, they have a similar specific energy yield. The
impact of temperature is here evident.

Figure 4.14: Scatter plot for the pair GHI ann - Yf .

Following the previous reasoning, the impact of temperature on Tropical climates is very severe.
For instance, Tro4 has a similar level of irradiation to Des1 and Mou2, but a remarkably lower Yf .
Of course, considering regions with an equivalent range of temperatures, the higher the irradiation,
the higher the specific energy yield. This is clearly illustrated by comparing Tro3 and Tro4. Lastly,
the relationship between the clusters and the specific energy yield seems less clear for regions with
low values. This is in accordance with the conclusions drawn in Chapter 3, where it was seen that
the predictions for these regions are less accurate.

A glance at KGPV (Figure 1.2) and ML driven PV-climate classification (Figure 4.10) makes
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it evident that both classifications present several similarities and differences. To compare both
schemes, besides observing directly the world classifications, it is insightful to analyse their scatter
plots for the pair GHI ann - T ann. These are illustrated in Figure 4.15.

Broadly, the same types of climates are distinguished: Tropical, Desert, Temperate, Cold, and
Polar. However, the third climate is different. KGPV defines a group called Steppe (C), which is
not clearly identified in this work. By contrast, a Montaunious climate type has been proposed
instead. KGPV classifies these regions as Polar, because of the low temperatures. However, their
high irradiation strongly suggest considering an independent group. These Mountainous regions
are characterised by a high GHI ann and low temperatures, which make them the regions with the
highest PV performance and should not be mixed with the Polar regions of the northern hemisphere.

It is important to note that three Mountainous regions have been proposed: Mou1, Mou2, and
Mou3. Mou2 is what KGPV considers as Polar with low irradiation (FL). However, it has been
shown that the GHI ann for this region is relatively high. Mou3 regions are classified in KGPV either
as FL or BK (desert and very high irradiation). Since precipitation is not a criterion for developing
the classification in the present work, this distinction is not made. Mou1 is a bit trickier. The
cluster’s centers and plots suggest that this cluster is not a pure Mountainous region. In particular,
the high Tmax stands out. Indeed, this group can be understood as an intermediate step between
Desert and Mountainous. In fact, in KG these regions are classified as cold arid. In KGPV, this
group is not clearly identified.

On the other hand, KGPV proposes a total of 12 groups3, while in this work 20 clusters have
been identified. Consequently, more subdivisions are considered inside each climate type and a
higher level of detail is achieved. For instance, KGPV distinguishes solely between two Tropical
climates (AH and AK), in contrast to the four regions found here. Furthermore, since the method-
ologies are totally different, even equivalent clusters present disparate shapes. Hence, even though
both classifications distinguish similar Temperate clusters, they are drawn very differently.

Finally, there is a fundamental difference between KGPV and ML driven PV-climate classifica-
tion. It is seen that the latter presents homogeneous and even clusters, with their borders clearly
defined. By contrast, in KGPV, particular and small regions might be classified separately inside
a big cluster, resulting in more complex borders. This can be observed both in the scatter plots
and the world classifications. In this regard, the west coast of North America constitutes a great
example. It is important to remember here that KGPV applies to every point a criteria defined
beforehand while in this work the classification is created using a clustering algorithm (k-means).
It might be thought that k-means fails to identify fine details. However, this is not necessarily the
case, as shown in Chapter 5, being the nature of the climate variables used the principal factor.
Ultimately, even clusters in the scatter plot do not necessarily result in homogeneous climate zones
in the world classification. In any case, this difference might be seen as a benefit or a drawback.
On the one hand, clean divisions are easier to understand and apply in practice. On the other, this
way of creating the clusters might overlook relevant details. This point might require further study
and other clustering algorithms may be investigated.

3To be fair, it considers 24 groups, but 12 of them are neglected based on a land-surface ratio and population
density criterion. Nevertheless, this does not affect the point of the paragraph.
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Figure 4.15: Scatter plots for the pair GHI ann - T ann for ML driven PV climate classification
(above) and KGPV (below).
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4.4 Chapter summary

This chapter explained the clustering method and the final classification proposed in this work to
relate climate and specific energy yield.

• K-means is implemented to create the classification.

• The number of clusters and features is optimised following a qualitative analysis. The pair
plot proves to be a very insightful tool.

• First, an optimum number of clusters is fixed for each number of features: 15 clusters for four
features, 17 clusters for five, and 20 clusters for either seven or eight features.

• Secondly, a trade-off between accuracy and complexity is required to select the final number
of features. Seven features offer a remarkable improvement in comparison to four or five
features, while the difference with eight features is negligible. Therefore, the classification
corresponding to seven features and 20 clusters is selected.

• The clusters are divided into six climate types: Tropical (Tro), Desert (Des), Mountainous
(Mon), Temperate (Tem), Cold (Col), and Polar (Pol). Then, the clusters inside each of these
climate types are ordered from minor to greater irradiation.

• The classification shows a satisfactory correlation with the specific energy yield. Mou2 and
Mou3 have the highest values. The impact of temperature on Tropical climates is very severe.
The relationship between the clusters and the specific energy yield seems less clear for regions
with low values.

• The introduction of the Mountainous region is the main difference to the KGPV scheme.
Moreover, 20 groups are identified, in contrast to the 12 final zones proposed by KGPV.
Lastly, since the methodologies are totally different, even equivalent clusters present disparate
shapes. The level of detail of the classification might require further study.
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Chapter 5

Reflections on degradation

A new PV-climate classification has been proposed based on the relationship between climate and
specific energy yield. Nevertheless, other criteria might be applied. In this chapter, the relationship
between climate and degradation is explored. For this purpose, the dataset developed in Chapter
2 with the degradation rates is utilised.

The procedure conducted in Chapters 3 and 4 for the specific energy yield is repeated for degrada-
tion. However, this chapter does not aim to propose a final classification as was done in Chapter
4. Instead, the objective is to illustrate some tentative results. These pose interesting questions
and challenges which must be considered when dealing with degradation. Furthermore, it provides
further insights into the methodology applied in this project.

The chapter is divided into two sections. The first section deals with the feature selection step,
similar to Chapter 3. It is shown that Linear Regression is not applicable to studying degrada-
tion. The search for an alternative demands a further understanding of the methodology. Random
Forests, an algorithm able to predict nonlinear behaviours, is analysed. In the second section, an
exploratory classification for degradation is shown. The ability of k-means to identify fine details
is discussed. Finally, the inadequacy of using Random Forests for weighting the features and the
complexity of degradation are exposed.
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5.1 Feature selection

In principle, the same method implemented for the specific energy yield could be applied to selecting
the most relevant climate features for degradation. Hence, the idea is to propose a set of possible
combinations and evaluate them using a Linear Regression model. The dataset with the climate
variables (features) and the known degradation rate values (targets) was created in Chapter 2.
Again, the combinations are based on the Pearson coefficients, RFE results, and technical expertise.
Table 5.1 shows the Pearson coefficient and RFE index for each feature.

Table 5.1: Pearson coefficients and RFE indexes for the degradation rate. Random Forest was used
for the RFE procedure.

Feature Pearson coefficient RFE index

T ann 0.84 2

Tmax 0.62 7

Tmin 0.87 1

DTRann -0.03 10

Pann 0.56 3

Pmin 0.18 12

RH ann 0.14 4

GHI ann 0.48 11

GHImax -0.07 9

GHImin 0.73 8

UV ann 0.56 6

WS ann -0.4 5

However, when the models are evaluated, the errors in the predictions turn out to be too high for
any combination or number of features. To illustrate this, Figure 5.1 compares the predictions of
the model with the known values, or targets, when using all features (which is always the most
accurate combination). This figure strongly suggests that the model is not performing properly.
Indeed, the MAPE for this case is almost 20 percent, which might be considered unacceptable even
for this feature selection procedure. Therefore, it is concluded that implementing Linear Regression
to select the most relevant features for degradation is not an adequate approach.

This result is a consequence of the complex and nonlinear behaviour of degradation. Different
combinations of factors (PV technology, climate, system size, tilt, orientation, and outdoor expo-
sure period) trigger different degradation mechanisms that are difficult to model ([7], [8]). Indeed,
usually, the lifetime of the PV modules is shorter than expected when exposed to outdoor condi-
tions [32]. In this regard, it is important to remember that only three degradation mechanisms for
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mono-crystalline silicon are being considered in this work.

The previous setback imposes the search for an alternative approach. A supervised learning al-
gorithm able to determine the importance of the features (weights) and work with nonlinear de-
pendencies is needed. To the best knowledge of the author, Random Forests could be a promising
option. Random Forests is a powerful supervised learning algorithm that essentially consists of a
collection of decision trees [36]. It has the ability to make accurate predictions for very complex
datasets. Furthermore, it determines the importance of each variable giving them a weight. This
weight is a number between 0 and 1, where 0 means nil importance while 1 indicates a perfect
ability for making predictions. The sum of all weights, or feature importances, always equals 1 [36].

Random Forests has already been used in this work, via RFE, to guide the decision-making process
regarding the possible climate feature combinations. Nevertheless, what is being contemplated here
is that Random Forest could also be implemented to make the predictions, calculate the weights,
and, in the end, select the climate features. It would simply replace Linear Regression.

Of course, implementing Random Forests has some disadvantages. It is a much more complex
algorithm than Linear Regression, and, consequently, it has higher computational times. More-
over, there is a subtle point that requires particular attention. The weights calculated by Random
Forests are a measure of the feature importance in the sense that they rate how important are for
the decision trees. The meaning of these weights and their suitability for making the classification
using k-means is doubtful. In this regard, Linear Regression seems more appropriate since the
weights have a clear mathematical significance, the ”slope” of each feature, and their applicability
to k-means, which is based on Euclidean distances, seems more logical. This point requires further
analysis and should be carefully considered for selecting other algorithms, not only for Random
Forests.

Unfortunately, studying these questions in depth would be out of the scope of this project. Nev-
ertheless, at least, the concern for the particular case of Random Forest is explored. Thus, it is
decided to continue with Random Forests to select the most relevant climate variables for degrada-
tion. Then, a classification is created in the following section, providing further insights.

Since Random Forests requires higher computational times, the number of possible combinations
studied is reduced with respect to the specific energy yield. In this case, 39 combinations are evalu-
ated, in contrast to the 79 combinations for the latter. Table 5.2 summarises the best combination
for each number of features, together with their respective errors (R2, RMSE, MAE, and MAPE).
The rest of the combinations can be found in Appendix III.

Random Forest improves the quality of the predictions significantly. Now, using all features, the
MAPE is 4.4 percent. Moreover, considering only five features, a MAPE of 4.9 percent is achieved.
The targets and predictions for five features are illustrated in Figure 5.2. The accuracy of the model
is remarkable. In order to present a tentative classification for degradation and continue with these
reflections, the five-feature combination is selected. It offers a low MAPE and a convenient number
of features.
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Figure 5.1: Comparison between the targets and predictions of degradation rates using a Linear
Regression model based on all features.
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Figure 5.2: Comparison between the degradation rates targets and predictions made by Random
Forests using five features.
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Table 5.2: Optimum combination for each possible number of features. Results obtained using Random Forests. The weights
given to the climate variables and the error of the model are shown.

Features Tann Tmax Tmin DTRann Pann Pmin RH ann GHI ann GHImax GHImin UV ann WSann Random R2 RMSE MAE MAPE (%)

0 1.000 -0.456 0.465 0.375 88.4

1 1.000 0.818 0.163 0.116 21.5

2 0.811 0.189 0.935 0.098 0.064 10.6

3 0.790 0.094 0.116 0.969 0.068 0.043 7.2

4 0.784 0.083 0.018 0.116 0.981 0.053 0.034 5.5

5 0.848 0.038 0.046 0.014 0.054 0.983 0.050 0.031 4.9

6 0.035 0.849 0.043 0.011 0.011 0.052 0.985 0.048 0.029 4.7

7 0.134 0.696 0.100 0.026 0.006 0.010 0.027 0.986 0.045 0.028 4.7

8 0.129 0.006 0.697 0.101 0.025 0.006 0.009 0.026 0.986 0.046 0.028 4.5

9 0.129 0.006 0.699 0.096 0.025 0.004 0.006 0.007 0.028 0.986 0.045 0.027 4.5

10 0.129 0.006 0.696 0.003 0.098 0.026 0.004 0.005 0.008 0.026 0.987 0.044 0.027 4.4

11 0.130 0.006 0.698 0.003 0.096 0.025 0.003 0.003 0.005 0.005 0.025 0.987 0.044 0.027 4.4

12 0.128 0.005 0.698 0.003 0.097 0.002 0.025 0.003 0.003 0.005 0.005 0.026 0.987 0.044 0.027 4.4
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5.2 Clustering

The objective of this section is to reflect on some challenges found when dealing with degradation.
Therefore, in contrast to the specific energy yield, where an extensive qualitative analysis was per-
formed to optimise the number of clusters and features, here just one classification is presented.
This is enough to illustrate the desired ideas. Thus, Figure 5.3 shows the classification created
using five features and eight clusters. There is no specific reason to choose eight clusters. It is just
a number that meets the needs of the explanation and keeps the classification relatively simple.

Figure 5.3: Worldwide classification for degradation based on five features and eight clusters.

There is one remarkable difference between this classification and the one developed for the specific
energy yield. In Chapter 4, it was mentioned that using k-means might result in homogeneous
and even clusters. This was a difference between the classification developed and KGPV. The west
coast of North America was put as an example. Now, interestingly, this classification for degrada-
tion is identifying very small particularities, just as KGPV does. And only eight clusters have been
created! Indeed, if the number of clusters is increased, the level of detail becomes untenable. What
is happening here?

To answer this question, it is necessary to understand how the classification is being formed. Table
5.2 presents the weights associated with each of the five climate variables. Tmax has a weight much
higher than the rest. More specifically, its weight is 0.848, while the weight for the WS ann, the
second most important feature, is 0.054. This suggests that the clusters are being formed only con-
sidering Tmax. The following plot shows the scatter plot for the pair Tmax - WS ann. The vertical
lines confirm the hypothesis.
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Figure 5.4: Scatter plot for the pair Tmax - WS ann.

Using only one climate feature to create the clusters makes the classification very susceptible to
small details. Furthermore, Tmax is a variable with a significantly higher variability than the
UV ann, which was the most relevant feature for the specific energy yield. These two points explain
the observed behaviour. Moreover, it is a demonstration of the complexity of the degradation mech-
anisms and the variables involved in them. Lastly, it is concluded that k-means is able to produce
a high-detailed classification in some circumstances. The number of features, their weights, and
the nature of the climate variables might be as important for this point as the algorithm itself.
Ultimately, even clusters do not necessarily result in homogeneous climate regions in the world
classification.

Finally, the validity of this classification might be questioned. Considering such a high weight
for the Tmax seems suspicious. To assess the classification, Figure 5.5 shows the relationship be-
tween the clusters, the Tmax, and the degradation rate, k. Again, it is seen that the clusters have
been determined exclusively by the Tmax. Moreover, the relationship between the clusters and
the degradation rate is almost nil. Therefore, the classification does not seem to have achieved its
objective.

It might be thought that the problem is the number of clusters. Perhaps, increasing the number of
clusters results in a higher correlation with the degradation rate. To discard this scenario, Figure
5.6 shows the same plot but using 20 clusters. Again, the classification is not very informative.

The weight given to Tmax is simply too high. In other words, the weights calculated do not seem
appropriate for creating the classification. Therefore, the climate zones found for degradation are
not adequate. This result might confirm the concern regarding the use of Random Forests for
this purpose. It seems that the algorithm implemented in the feature selection procedure must be
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Figure 5.5: Scatter plot showing the relationship between the eight clusters, the degradation rate,
and the Tmax.

Figure 5.6: Scatter plot showing the relationship between 20 clusters, the degradation rate, and the
Tmax.
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mathematically linked to the clustering algorithm used for creating the classification. In this re-
gard, Linear Regression was a good choice for k-means. However, the non-linearity of degradation,
demands a different approach.

A promising alternative might be Multivariate Adaptive Regression Splines (MARS). This is an
extension of Linear Regression that enables modelling non-linearities [48]. The idea is that the
weight of each variable can vary depending on the region of the space. Since the meaning of the
weights is the same as in Linear Regression, this algorithm could be implemented together with
k-means.
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5.3 Chapter summary

Chapter 5 explored the relationship between climate and degradation. Moreover, the methodology
developed in Chapters 3 and 4 was tested.

• Implementing Linear Regression to select the most relevant features for degradation is not
an adequate approach since MAPEs of 20 percent are obtained. This is a consequence of the
complex and nonlinear behaviour of degradation.

• As an alternative, Random Forest was proposed. It was applied to 39 combinations of climate
features. The MAPE can be then reduced to 4.4 percent. A five-feature combination was
selected to present a tentative classification..

• K-means can produce a high-detailed classification. The number of features, their weights,
and the nature of climate variables might be as relevant to this point as the algorithm itself.

• The weights calculated by Random Forest prove to be inadequate for creating a classification
using k-means. In particular, the weight given to Tmax is too high, resulting in a poor correla-
tion between the clusters and the degradation rate. It seems that the algorithm implemented
in the feature selection procedure must be mathematically linked to the clustering algorithm
used for creating the classification.

• A promising alternative might be Multivariate Adaptive Regression Splines (MARS): an ex-
tension of Linear Regression that enables modelling non-linearities.
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Chapter 6

Conclusions

This project has proposed a new PV-climate classification, inspired by Ascencio-Vásquez et al. in
KGPV [6]. To achieve this objective, it was necessary to select the most relevant climate variables
for PV performance and to establish a classification criterion. Machine Learning was the technique
proposed to tackle these issues. In particular, supervised learning was used to identify and weigh
the climate variables more correlated to the specific energy yield, while unsupervised learning to
create the classification. Lastly, the applicability of this methodology to degradation was explored.

Data collection is the first step in any Machine Learning project. This work required data on
three aspects: climate, specific energy yield, and degradation rate. A worldwide grid with a resolu-
tion of 0.5◦ latitude by 0.5◦ longitude was created. The climate data was extracted from renowned
climate research centres and institutions for the period 1991 to 2021. More specifically, 12 climate
variables were included in the dataset: T ann, Tmax, Tmin, DTRann, Pann, Pmin, RH ann, GHI ann,
GHImax, GHImin, UV ann, and WS ann. Specific energy yield and degradation rate values, used as
targets, are provided by Ascencio-Vásquez et al. in [6] and [7], respectively.

The feature selection procedure consisted in implementing Linear Regression to predict the specific
energy yield from the knowledge of the climate variables. The combinations of climate variables
that make more accurate predictions are considered more suitable for developing the classification.
Furthermore, the weights calculated by Linear Regression provide a logical measure of the fea-
tures’ importance to the model. The high number of possible combinations forces to simplify the
procedure. Therefore, 79 possible combinations were proposed based on the Pearson coefficients,
recursive feature elimination (RFE), and technical expertise. Then, these were evaluated by com-
paring their predictions with the known specific energy yield values.

A trade-off between accuracy and simplicity is required to make a final decision. Furthermore,
the impact of the error differences on the final classification is difficult to predict. Therefore, four
potential candidates were selected. These correspond to the optimums for four, five, seven, and
eight features. With MAPEs between 6.1 and 6.7 percent, they perform proper predictions of the
specific energy yield, except for very low values, where the error might be higher.

K-means can be implemented to create a classification from the climate variables selected and
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their weights. However, an evaluation method is required to assess the results and decide the op-
timum number of features and clusters. An approach consisting of a qualitative analysis based on
several plots, the clusters’ centres, and sizes, was followed. First, an optimum number of clusters
was found for each possible combination: 15 clusters for four features, 17 clusters for five, and 20
for both seven and eight features. The objective was to obtain clearly-defined and comprehensive
groups. Then, the optimum combination can be selected. Again, there exists a trade-off between
accuracy and complexity. Since the classifications for seven and eight features are similar, the lat-
ter case was discarded. On the other hand, the improvement in accuracy between five and seven
clusters is remarkable. Overall, the final classification consists of seven features and 20 clusters.

The names of the groups follow a scheme inspired by KGPV. First, an index distinguishes among six
different climate types: Tropical (Tro), Desert (Des), Mountainous (Mou), Temperate (Tem), Cold
(Col), and Polar (Pol). Secondly, the clusters inside each of these climate types are ordered from
minor to greater irradiation. The classification presents a satisfactory correlation with the specific
energy yield. Clusters Mou2 and Mou3 have the highest values, followed by Mou1 and the Desert
regions. The impact of temperature in Tropical climates is very severe. For instance, Tro4, despite
having the same level of irradiation as Des1 and Mou2, presents a significantly lower specific energy
yield. As expected, the classification is less accurate for regions with very low values. Overall,
new insights have been found in comparison to KGPV, which only considers 12 clusters. The main
difference is the distinction of the Mountainous region, characterised by low temperatures and high
irradiation. Lastly, since the methodologies are totally different, even equivalent clusters present
disparate shapes.

The methodology implemented for the specific energy yield fails for degradation due to its complex-
ity and non-linear behaviour. In particular, MAPEs around 20 percent are obtained. Therefore,
the use of Random Forests instead of Linear Regression was analysed. For this case, the MAPEs
are reduced to values lower than 5 percent. Nevertheless, the meaning of the weights calculated by
Random Forests, and their applicability to k-means, are doubtful. In this regard, Linear Regres-
sion seems more appropriate since the weights have a clear mathematical significance, the ”slope”
of each feature, and their applicability to k-means, which is based on Euclidean distances, seems
more logical. Indeed, a classification created using the results of Random Forests proves to be
inconvenient. An inappropriate weight was given to Tmax, resulting in a classification with a low
relationship with the degradation rate.

To improve the performance of the model, this study recommends two things. The first recom-
mendation deals with the feature selection procedure. Here, the analysis was simplified by choosing
79 combinations. Even though this approach produced a satisfactory result, some relevant combi-
nations might have been missed. Thus, implementing an optimisation algorithm such as Particle
Swarm Optimization or the Genetic Algorithm is recommended to consider all possibilities. Sec-
ondly, a promising approach to integrate non-linear dependencies and, at the same time, keep the
logical weights, might be using Multivariate Adaptive Regression Spline (MARS). This is especially
recommended for degradation, although it could improve the results for the specific energy yield
too.
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Appendix

This Appendix consists of three sections. In Appendix I, the feature selection results for the
specific energy yield, discussed in Chapter 3, are shown. More specifically, the 79 combinations are
illustrated with their corresponding errors. Appendix II explains two quantitative methods studied
to optimise the classification: the elbow method and the silhouette coefficient. These approaches
are commonly used to select the appropriate number of clusters [39] and might be an alternative
to the qualitative analysis developed in Chapter 4. However, as shown, they perform poorly in this
particular dataset. Lastly, Appendix III summarises the feature selection results for degradation,
discussed in Chapter 5.
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Appendix I: Feature selection results for the specific energy
yield

Table A.1: Feature selection results for the specific energy yield. A Linear Regression model was
implemented. The weights given to the climate variables and the error of the model are shown.

Features Tann Tmax Tmin DTRann Pann Pmin RH ann GHI ann GHImax GHImin UV ann Random R2 RMSE MAE MAPE (%)

1 1.61 0 360.4 301.28 28.3

1 332.3 0.852 139.61 109.14 9.9

1 328.14 0.827 150.54 116.99 10.3

2 279.12 71.77 0.868 131.07 97.66 9.2

2 781.65 -450.6 0.863 133.66 104.06 9.6

2 533.28 -216.81 0.904 112.37 84.05 7.9

2 -50.99 297.04 0.861 134.68 106.07 9.6

2 72.6 281.19 0.869 130.34 102.09 9.3

2 -96.23 410.93 0.875 127.49 97.52 9.4

2 -40.08 362.31 0.856 137.22 106.67 9.8

2 -104.8 414.62 0.885 122.34 94.17 9.0

2 -47.02 333.68 0.869 130.24 101.46 9.3

2 -25.13 327.12 0.856 137.32 107.84 9.8

2 -154.7 454.19 0.888 121 92.4 9.0

3 894.04 -165.25 -471.95 0.923 99.71 77.88 6.8

3 86.03 -228.57 442.21 0.891 119.25 92.08 8.8

3 -32.38 524.92 -180.6 0.904 112.19 83.3 8.0

3 -107.51 318.36 102.16 0.877 126.33 97.21 9.3

3 -149.32 47.16 403.18 0.888 121.15 92.72 9.0

3 30.73 588.14 -251.76 0.905 110.64 82.22 7.6

3 28.99 -321.36 603.38 0.913 106.77 81.3 7.3

3 -18.23 532.06 -199.79 0.905 111.96 83.32 7.9

3 25.26 497.38 -197.07 0.906 110.74 82.93 7.8

3 297.18 69.77 -16.63 0.869 130.94 97.59 9.2

4 24.47 930.17 -162.92 -494.98 0.925 99.05 77.71 6.8

4 658.86 -197.55 -620.13 426.7 0.896 116.56 90.32 8.5

4 -58.42 919.09 -183.74 -435.04 0.929 96.1 74.48 6.7

4 -65.77 964.93 -200.28 -463.66 0.931 95.27 73.84 6.7

4 -44.84 981.22 -199.52 -503.96 0.93 96.08 74.81 6.7

4 -114.58 -456.37 -288.22 1149.22 0.926 98.08 73.31 7.0

4 21.89 859.66 -164.83 -453.14 0.926 98.24 76.41 6.7

4 665.54 -145.59 -479.36 221.36 0.924 99.45 77.95 6.8

4 -3.59 894.5 -167.85 -470.33 0.924 99.15 77.61 6.8

4 -16.81 909.41 -179.83 -480.94 0.926 98.1 76.65 6.7

5 -42.1 9.93 993.16 -197.06 -512.2 0.93 95.44 74.52 6.6

5 -59.47 -6.26 959.63 -198.33 -459.68 0.93 95.74 74.26 6.7

5 -42.93 -21.84 984.48 -204.75 -482.86 0.93 95.1 73.74 6.6

5 -31.83 -40.07 971.94 -201.52 -468.68 0.932 94.23 72.99 6.6

5 826.82 -270.75 -641.9 -268.68 612.7 0.933 93.06 70.18 6.5

5 774.63 -235.26 -670.6 260.8 139.09 0.898 115.6 90.32 8.4

5 1041.16 -338.02 -748.96 515.21 -210.71 0.923 100.32 75.7 7.0

5 85.83 -167.82 29.11 -261.86 659.74 0.924 99.9 74.67 7.1

5 -104.31 169.91 -133 -435.09 748.66 0.937 90.77 70.31 6.5

5 -102.18 340.67 -163.17 -484.34 648.3 0.936 91.61 70.39 6.4
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Table 6.1: Table A.1: Continuation. Feature selection results for the specific energy yield. A Linear
Regression model was implemented. The weights given to the climate variables and the error of the
model are shown.

Features Tann Tmax Tmin DTRann Pann Pmin RH ann GHI ann GHImax GHImin UV ann Random R2 RMSE MAE MAPE (%)

6 -11.29 -67.31 38.37 1002.15 -190.15 -474.33 0.933 93.08 71.84 6.5

6 742.31 -243.31 -603.89 -237.39 -286.11 885.15 0.935 92.36 69.56 6.5

6 -102.98 3.83 156.67 -130.94 -430.67 752.5 0.937 91.06 70.26 6.5

6 -45.42 -64.68 207.85 -144.43 -451.6 741.05 0.937 90.8 70.03 6.5

6 -103.86 9.99 260.72 -137.24 -440.04 672.59 0.937 90.86 70.03 6.5

6 -25.08 -87.4 247.86 -149.06 -461.4 713.37 0.938 89.88 69.1 6.4

6 -102.59 -9.92 80.92 -130.6 -429.59 830.46 0.937 90.56 69.99 6.5

6 -99.12 -12.13 139.62 -138.45 -445.33 785.54 0.938 90.48 69.81 6.5

6 -98.57 -18.39 266.6 -169.9 -497.71 732.93 0.938 89.45 68.86 6.3

6 -37.09 -26.96 -13.49 990.03 -213.25 -489.23 0.932 94.25 72.88 6.6

7 -14.06 -57.27 16.18 40.11 979.81 -188.28 -469.38 0.935 92.33 71.21 6.5

7 500.46 -183.59 -423.15 269.94 -121.51 -426.79 610.23 0.941 87.31 67.64 6.2

7 -66.53 -37.28 -15.82 199.54 -157.86 -477.53 775.96 0.938 89.8 69.21 6.4

7 -32.18 -73.15 -17.9 231.76 -162.65 -487.26 753.53 0.94 88.65 68.1 6.3

7 -34.87 -83.75 -20.2 75.43 -143.88 -457.29 868.09 0.939 89.68 68.79 6.4

7 -56.78 -55.53 -6.09 162.05 -144.68 -454.2 787.7 0.938 90.07 69.39 6.4

7 750.12 -247.31 -604.55 -8.26 -268.62 -290.27 916.06 0.935 91.86 69.12 6.5

7 704.53 -243.21 -573.36 -25.99 -439.49 -289.02 1079.36 0.936 91.76 69.47 6.5

7 604.21 -202.64 -478.74 36.1 899.47 -148.26 -430.26 0.939 88.91 69.42 6.2

7 617.98 -232 -449.7 -13.64 888.21 -169.67 -444.4 0.938 89.76 70.06 6.3

8 501.44 -191.16 -409.65 -17.56 252.12 -134.75 -452.43 652.1 0.943 86.03 66.77 6.1

8 498.25 -187.28 -420 -10.35 175.13 -119.78 -427.15 698.84 0.942 87.06 67.64 6.1

8 493.39 -184.06 -412.35 7.91 263.59 -122.97 -427.15 609.38 0.942 86.75 67.45 6.1

8 494.82 -187.25 -411.4 -18.99 123.2 -123.18 -426.73 756.39 0.943 86.09 66.77 6.1

8 -13.71 -54.47 16.69 -6.93 46.08 983.18 -189.49 -469.23 0.935 91.74 70.74 6.4

9 495.06 -190.9 -404.93 -17.2 -4.19 210.69 -132.36 -450.36 688.52 0.943 86.06 66.86 6.1

9 504.13 -191.39 -411.67 -2.37 -16.52 231.74 -133.52 -450.7 669.39 0.943 86.48 67.18 6.1

9 494.99 -190.27 -399.69 7.52 -17.38 243.35 -133.53 -449.12 648.33 0.943 86.26 67.08 6.1

9 602.14 -204.77 -464.63 12.63 -9.66 43.38 884.93 -149.72 -426.57 0.94 88.49 69.34 6.2

9 495.88 -190.17 -405.77 7.57 -18.77 124.61 -123.14 -425.24 744.86 0.943 86.19 67.06 6.1

9 488.29 -186.17 -407.9 7.23 -8.41 190.97 -120.31 -425.05 675.09 0.942 87.24 67.62 6.2

9 495.29 -189.36 -411.05 -18.61 -3.11 98.51 -122.26 -427.05 780.08 0.942 86.57 67.11 6.1

10 500.14 -192.01 -408.37 -1.4 -16.28 -4.01 209.25 -132.57 -450.56 690.07 0.943 85.7 66.49 6.0

10 489.21 -189.17 -396.15 7.36 -17.23 -1.48 228.8 -133.07 -448.78 662.54 0.943 86.21 67.09 6.1

11 491.87 -189.94 -397.83 7.48 -2.3 -16.24 -1.13 217.01 -132.73 -447.14 671.82 0.944 85.33 66.75 6.0
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Appendix II: The elbow method and silhouette coefficient

In this project, a qualitative analysis was conducted to select the number of clusters for the classi-
fication. However, as mentioned in Chapter 4, there are scoring metrics for clustering which might
be used to optimise the classification on a quantitative basis. It was claimed that these methods do
not perform adequately for this application, which is a common circumstance [36]. In this section,
the results of two quantitative analyses are illustrated.

First, the elbow method is explored. To perform the elbow method, the algorithm is run sev-
eral times, increasing the number of clusters. For each case, the inertia is recorded. Then, it is
plotted as a function of the number of clusters. The inertia decreases when increasing the number of
clusters since the distance from each point to its closes cluster center decreases. However, typically,
there is a point where the slope of the curve stabilizes. This bending point, or elbow point, might
be considered the optimum number of clusters [39]. Figure A.1 illustrates the elbow curve for the
four-features case analysed in Chapter 4.

Figure A.1: The elbow method: the inertia is calculated for different number of clusters. The point
where the curve bends might be considered the optimum number. Result obtained for the specific
energy yield using four features.

In this figure, the number of clusters ranges from 2 to 20. Indeed, the higher the number, the lower
the inertia. However, the elbow point is not clearly defined. The figure might suggest that it is
around 5 clusters. The KneeLocator algorithm indicates that the actual number is 6. Therefore,

Francisco Javier Triana de las Heras 83



APPENDIX

based on the elbow method, the optimum number of clusters would be 6, in contrast to the 15
clusters selected via the qualitative analysis. Nevertheless, using 6 clusters clearly result in a poor
classification. Overall, this is a rather unconvincing method.

Another quantitative approach commonly used to evaluate the appropriate number of clusters is
the silhouette coefficient. The silhouette coefficient is a measure of cluster cohesion and separation
[39]. It quantifies how well a data point fits into its assigned cluster based on the mean intra-cluster
distance and the mean nearest-cluster distance. Its value ranges between -1 (poor clustering perfor-
mance) and 1 (excellent clustering performance). Values near 0 indicate overlapping clusters while
negative coefficients generally indicate that a sample has been assigned to the wrong cluster [37].

Again, k-means is run several times increasing the number of clusters from 2 to 20. However,
this time, the silhouette coefficients are recorded. Figure A.2 shows the result. In principle, the
number with the highest coefficient would be the optimum one. However, this corresponds to only
two clusters, which clearly shows the inadequacy of this approach for this dataset.

Figure A.2: The silhouette coefficient is plotted against the number of clusters. The higher the
coefficient, the better the clustering performance. Result obtained for the specific energy yield using
four features.

In summary, the available quantitative approaches to optimise the number of clusters, such as the
elbow method or the silhouette coefficient, present a poor performance for the dataset used in this
project. Thus, the qualitative analysis approach is justified.
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Appendix III: Feature selection results for degradation

Table A.3: Feature selection results for degradation. Random Forests was implemented. The
weights given to the climate variables and the error of the model are shown.

Features Tann Tmax Tmin DTRann Pann Pmin RH ann GHI ann GHImax GHImin UV ann WSann Random R2 RMSE MAE MAPE (%)

1 1 -0.456 0.465 0.375 88.4

1 1 0.818 0.163 0.116 21.5

1 1 0.701 0.212 0.138 21.8

1 1 -0.173 0.418 0.315 76.8

1 1 0.158 0.352 0.269 64.5

1 1 -0.106 0.403 0.319 76.2

2 0.800 0.204 0.924 0.105 0.071 12.3

2 0.811 0.189 0.935 0.098 0.064 10.6

2 0.889 0.111 0.924 0.105 0.070 12.5

2 0.870 0.130 0.816 0.163 0.102 15.2

2 0.806 0.194 0.925 0.106 0.070 12.0

2 0.191 0.809 0.900 0.121 0.078 12.6

3 0.146 0.718 0.136 0.950 0.085 0.054 8.7

3 0.799 0.172 0.029 0.958 0.079 0.049 7.8

3 0.798 0-173 0.029 0.956 0.081 0.049 7.8

3 0.790 0.094 0.116 0.969 0.068 0.043 7.2

3 0.869 0.064 0.067 0.961 0.076 0.049 8.9

3 0.777 0.174 0.049 0.958 0.079 0.050 8.4

4 0.786 0.115 0.016 0.082 0.980 0.055 0.034 5.6

4 0.136 0.754 0.050 0.060 0.977 0.058 0.036 5.8

4 0.778 0.154 0.029 0.040 0.973 0.062 0.039 6.5

4 0.138 0.707 0.112 0.042 0.966 0.071 0.043 6.8

4 0.784 0.083 0.018 0.116 0.981 0.053 0.034 5.5

5 0.132 0.702 0.107 0.030 0.030 0.979 0.056 0.034 5.4

5 0.132 0.753 0.050 0.015 0.055 0.983 0.050 0.031 5.0

5 0.774 0.148 0.025 0.016 0.037 0.983 0.050 0.032 5.2

5 0.784 0.080 0.009 0.013 0.119 0.983 0.050 0.031 5.1

5 0.848 0.038 0.046 0.014 0.054 0.983 0.050 0.031 4.9

6 0.133 0.697 0.103 0.030 0.013 0.028 0.984 0.048 0.030 4.9

6 0.038 0.800 0.092 0.028 0.012 0.030 0.985 0.047 0.029 4.7

6 0.125 0.007 0.754 0.045 0.014 0.055 0.985 0.048 0.029 4.8

6 0.035 0.849 0.043 0.011 0.011 0.052 0.985 0.048 0.029 4.7

6 0.773 0.148 0.024 0.007 0.012 0.036 0.984 0.049 0.030 5.0

7 0.131 0.007 0.700 0.095 0.027 0.012 0.028 0.984 0.048 0.029 4.7

7 0.134 0.696 0.100 0.026 0.006 0.010 0.027 0.986 0.045 0.028 4.7

8 0.129 0.006 0.697 0.101 0.025 0.006 0.009 0.026 0.986 0.046 0.028 4.5

9 0.129 0.006 0.699 0.096 0.025 0.004 0.006 0.007 0.028 0.986 0.045 0.027 4.5

10 0.129 0.006 0.696 0.003 0.098 0.026 0.004 0.005 0.008 0.026 0.987 0.044 0.027 4.4

11 0.130 0.006 0.698 0.003 0.096 0.025 0.003 0.003 0.005 0.005 0.025 0.987 0.044 0.027 4.4

12 0.128 0.005 0.698 0.003 0.097 0.002 0.025 0.003 0.003 0.005 0.005 0.026 0.987 0.044 0.027 4.4
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