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ABSTRACT Radar-based human motion and activity recognition is currently a topic of great research
interest, as the aging population increases and older individuals prefer an independent lifestyle. This tech-
nology has a wide range of applications, such as fall detection in assisted living, gesture recognition for
human-machine interfaces, and many more. Numerous studies exist on various approaches for radar-based
activity capture and classification. However, most of these employ rather artificial data, often obtained in
laboratory environments, and typically collected under particular conditions. Specifically, most research so
far has aimed at distinguishing a predefined set of single activities with a defined start, stop and duration. This
paper aims at drawing the attention to a so far less researched issue, one that will be of vital importance for
future real-world application of radar-based human activity recognition: continuous activity recognition, i.e.
recognizing specific activities in a stream of several sequential activities with unknown duration and arbitrary
transitions between different classes of activities. A review on the current state of the art in this relatively
new topic is given, followed by a discussion on future research directions.

INDEX TERMS Radar applications, radar signal processing, continuous human activity recognition, activi-
ties of daily living.

I. INTRODUCTION
With an aging population, offering ambient assisted living
capabilities has become a key societal challenge. Giving older
or more vulnerable people the opportunity to live in their own
homes for as long as possible and at the same time providing
safety in self-determined living is highly desirable. One major
risk in such context is falling and related consequences [1].
To detect falls quickly, without the need for another person
to be around, appropriate remote sensor systems are required.
Such systems must be able to detect falls, but also distinguish
them from other human movements related to uncritical daily
activities, as well as monitor the general activity pattern of
individuals.

There are various sensors capable of capturing human mo-
tion [2], [3], [4], wearable sensors among them. However,

such sensors might cause discomfort for a person. Further-
more, it must be ensured that they are worn permanently,
which could be difficult during daily activities such as bathing
or during sleep. Their correct usage and maintenance might
also be a problem for cognitively impaired people.

Therefore, contactless sensing is highly desirable. Optical
systems such as cameras and lidar enable remote, contactless
sensing. However, any optical system requires an unob-
structed line of sight to the subject and performance often
depends on environmental light conditions. Furthermore, us-
ing cameras for surveillance will undoubtedly raise concerns
about privacy.

Radar on the other hand does not have the above-named
restrictions and has therefore become an interesting alterna-
tive for this purpose. As a sensor, radar works in a contactless
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fashion but is not restricted to unobstructed line-of-sights,
which is why so-called through-wall-radars have been used
in search-and-rescue operations and non-line of sight propa-
gation approaches have been demonstrated, for example for
detecting around the corner [5], [6], [7]. Another essential
advantage of radar is that it is, by nature, capable of measuring
motion directly by exploiting the Doppler effect.

Therefore, radar as a sensor for human health monitoring
has seen growing interest in recent years [8], [9]. Along with
activity recognition and fall detection, typical applications
include the monitoring of vital signs such as heartbeat and
respiration amongst others [8], [10] or gait analysis [11],
[12], [13].

Numerous research works have previously been conducted
in the field of radar-based human activity recognition and
fall detection [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28]. However, there are still
open challenges in this area. Most research so far has aimed
at distinguishing a set of single activities under pre-defined
conditions. In particular, this often includes classifying the
individual activities separately, with data sets collected in a
way that each recording or sample contains one activity with
predefined duration and clear transitions between different
activities. This of course is a valuable point to start from,
but it is not yet very realistic. In real-world scenarios, human
activities take place in a continuous stream, with one motion
succeeding another, with variable duration of the single ac-
tivities. Furthermore, diverse activities in terms of the extent
of the body movement are mixed with periods of relatively
static postures where only small body movements are present.
Therefore, improving our capabilities for continuous human
activity recognition will be of vital importance in order to
make radar a real candidate for the task of human monitoring
in home healthcare.

Furthermore, dealing with continuous data streams is
equally relevant for other domains of human monitoring by
means of radar. For example, it has been investigated in
the context of continuous vital sign monitoring [29], [30],
[31], gait dynamics analysis [32], [33], continuous tracking
and identification of multiple people [34], and dynamic hand
gesture recognition in the context of interaction with smart
devices and/or interpretation of sign language [35].

The aim of this review paper is to draw attention to the
relatively new research area of continuous human activity
recognition, by summarizing the main approaches in the lit-
erature. Section II provides a survey of the most relevant
techniques and literature in this area. Section III outlines
some interesting future research directions to address open
challenges, with final conclusions drawn in Section IV.

II. THE HISTORY OF CONTINUOUS HUMAN
ACTIVITY RECOGNITION
In this section, a literature review on radar-based human
activity recognition is provided. We describe the experimen-
tal setups, the radar signal processing strategies, and the
classification algorithms or neural networks employed for the

FIGURE 1. Measurement setup at Glasgow University where continuous
sequences of activities were recorded with a C-band radar (from [41]).

classification tasks, taking into account the continuity of the
signals. A summary of the main information in each reviewed
study is provided in Table 1. It is assumed that the reader is
familiar with the fundamentals of radar and machine learning,
for which a good overview is provided for example in [36],
[37], [38].

In 2018, Erol et al. [39] investigated fall detection within
a sequence. The power burst curve (i.e., the summation of
signal power in a given frequency band) of spectrograms is
employed. If this indicator drops below a given threshold, fol-
lowed by a silence period of five seconds, the algorithm crops
the spectrogram segment of 1.5 seconds before the incident.
This segment is fed to a pre-trained k-nearest-neighbor (kNN)
classifier, in order to discriminate between fall and non-fall.
However, no further activity classification was performed in
this work yet.

First research efforts on continuous human activity recog-
nition were reported in 2019 by Li et al. [40] at the University
of Glasgow. The authors employed a frequency-modulated
continuous-wave (FMCW) radar (Ancortek 580-B), operating
at 5.8 GHz, with a bandwidth of 400 MHz. The radar was
placed 1 m above the ground, facing the experimental scene,
which contained typical room furniture. The setup is shown
in Fig. 1. 16 participants performed 6 daily living activities.
These are: walking, sitting on a chair, standing up from that
chair, picking up a pen, drinking water from a glass, and
falling. The participants performed the six activities in three
predefined sequences. The radar data of these sequences were
collected in two fashions, namely in snapshot mode (i.e., iso-
lated recording of each activity) and in continuous mode. In
continuous mode, each stream lasted 35 seconds, but the du-
ration of the single activities was unconstrained. Radar signal
processing consisted of first applying a notch filter to remove
static clutter. Subsequently, a short-time Fourier transform
(STFT) with a window size of 0.3 seconds and 95% overlap
was performed to obtain the micro-Doppler signatures. For
the classification task, 20 features were extracted from the
spectrograms and its singular value decomposition (SVD).
These included the Doppler centroid and bandwidth, mean
and standard deviation and the left and right singular vectors
of the singular value decomposition. To tackle the issue of
continuity in the data stream, the data were partitioned into
windows. Sliding windows with various sizes (3-4-5 s) and
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TABLE 1. Summary Table With the Main Information of the Literature Reviewed in This Paper. Type Refers to the Classification Approach and Is Discussed
at the End of Section II. RT-Range Time, RA-Range Angle, RD-Range Doppler, DT-Spectrogram(Doppler Time), PC-Point Cloud. *5 Activities With 8
Transitions. **6 Activities and 4 ASL Signs. ***3 Activities and 15 ASL Signs. †(bi)GRU,(bi)LSTM. ††(bi)LSTM,(bi)GRU

overlaps (30-50-70%) were investigated. For classification, a
quadratic kernel support vector machine was used. To emulate
realistic testing conditions, the authors followed a “leave-one-
person-out” strategy. This means that the data generated by
a single participant used for testing was not included in its
respective training data. Results gave a maximum accuracy of
84.7% for the 4 s window and 70% window overlap. Remark-
ably, the overall classification accuracy for this configuration
was higher than for the single-snapshot data (80.56%). To
improve the classification accuracy further, sequential forward
selection (SFS) was investigated for the previous optimal
configuration (4 s window and 70% overlap). With this
technique, a more compact feature set was obtained, yielding
a 2.6% improvement in classification accuracy.

A different approach to the problem was presented by Ding
et al. from Nanjing University in 2019 [42]. In this study,
an FMCW radar operating at 5.8 GHz with 320 MHz band-
width was used, which had been designed at the authors’
institute. The radar was placed at 1 metre height, in front
of the subject, at various distances from 2 to 4 meters. 8
volunteers performed 6 activities. The focus again was on fall
detection, and falling as well as 5 similar activities (stepping,
jumping, squatting, walking and jogging) were investigated.
Sequences of 2 activities were performed one after the other.
The data processing in this work was based on range-Doppler
maps, thereby using a sliding time window of 0.2 s, to obtain
so-called range-Doppler frames. The key idea of the work
was then to group a number of consecutive range-Doppler
frames into a so-called ’dynamic range-Doppler trajectory’.
This trajectory describes the pattern of a specific motion in
range, Doppler and radar cross section (RCS) over time. The
authors report an optimum number of 6 frames to form an in-
dividual trajectory. To obtain the trajectory, a number of points

FIGURE 2. Illustration of (a) conventional range-Doppler frame
trajectories to process continuous sequences of activities with (b) shown
the DRDT of falling and stepping proposed in [42].

containing most of the image energy (i.e., intensity/RCS) are
selected as “points of interest”. The weighted average of these
points is computed to form the dynamic range-Doppler tra-
jectory map. Each of the investigated activities has its own
range-Doppler trajectory map. The process is illustrated in
Fig. 2. The concept for recognizing single activities in time
is based on the fact that all the activities in the study have a
high Doppler component. Therefore, in a continuous stream,
peaks along the Doppler dimension are searched for, as they
are likely to correspond to some activity. Since the individual
motions correspond to six frames in this study, six-point win-
dows are selected around those peaks. These serve as input
to the following feature extraction and classification stage. 28
features of 4 comprehensive types were extracted based on the
dynamic range-Doppler trajectory maps. The 4 types were dy-
namic Doppler frequency (Doppler over time), dynamic range
change (range over time), dynamic energy change (intensity
over time), and dynamic dispersion of range and Doppler
(standard deviations). A subspace kNN classifier was used,
with one third of the data for training. An average accuracy
of 91.9% was obtained. Finally, a close-to-realistic scenario
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was investigated with one subject: the volunteer performed a
series of all 6 motions at random distances and view angles. It
was demonstrated that all activities were classified correctly,
albeit this was a relatively simple case.

In 2020, the University of Glasgow team presented more
advanced classification techniques [43] and the investigation
of a multimodal measurement setup [41]. Shrestha et al. [43]
used the data set as in [40], but employed a Long-Short-
Term-Memory (LSTM) network as a classifier. LSTM is a
type of recurrent neural network (RNN) that interprets the
radar data as a temporal sequence. Specifically, it can learn
time-dependencies between separated time steps in a stream,
which is why the technique is widely used in speech signal
processing. Various types of LSTM architectures were inves-
tigated:

1) LSTM on spectrograms
2) Bidirectional-LSTM on spectrograms
3) Bidirectional-LSTM on range vs time plots, hence with-

out explicit calculation of (micro-)Doppler signatures
Whereas option 1) only takes into account time dependen-

cies between the current time step and previous ones, the
bi-directional LSTM is capable of relating one time-step with
previous and future time-steps. It was found that option 2)
performed best (mean accuracy of 91% vs 78% for LSTM and
76% for range-bi-LSTM). The performance was also com-
pared to that of a classical support vector machine (SVM). For
the SVM, features were extracted from centroid, bandwidth
and singular value decomposition of the spectrogram. How-
ever, its mean accuracy (66%) was found to be significantly
lower than that of the LSTM. Further, it was investigated
if prior knowledge about the subject improves performance,
but it was found not to. Another finding regarding this setup
was that aspect angles up to 30 degrees with respect to the
radar line of sight provided acceptable performance results,
but the trajectories of the motion remained rather simplistic
and limited to a constrained straight line.

In [41], the combination of radar and an inertial mea-
surement unit (IMU) worn on the participant’s wrist was
investigated. Again, the research was based on the radar and
signal processing of [40]. Feature extraction was based on
the spectrogram and its SVD, with feature selection per-
formed via sequential backward selection in conjunction with
an SVM classifier tailored to the multimodal setup. Various
possibilities for the classification of continuous activities were
investigated:

1) A sliding window approach with various window sizes
and overlapping factors. Here, radar-only reached a
maximum of 83.82% accuracy for 4 s window and
90% overlap. Combining radar and IMU yielded an im-
provement of +6% for the same radar signal processing
choices.

2) A bi-directional LSTM, which was found to perform
better than the sliding window approach. Again, the
“leave-one-person-out” approach was chosen. An accu-
racy of 88.9% was obtained for radar-only data with this
network.

FIGURE 3. A human Ethogram for two-way continuous sequence
recognition shows the order in which activities can occur and how they
lead to the states of Standing, Walking, Sitting, or Laying. Other pathways
are mutually exclusive, i.e, a Laying state cannot lead into a fall action, or
a person cannot sit down twice consequently to reach Sitting state, but it
can bend and ends in the Standing state every time [44].

The paper also investigated various fusion methods for
radar and IMU data, which further improved performances but
are outside the scope of this review.

Another approach for the problem of continuous activ-
ity recognition was introduced by Amin et al. at Villanova
University in 2020 [44], [45]. In this work, human activ-
ities are regarded as states connected by other activities.
States are for instance walking, standing, sitting and lying. A
change in state is performed through an activity, e.g., bend-
ing, falling, standing up. The idea is based on a so-called
’ethogram’, which is a catalogue of possible human motion
sequences (see Fig. 3). The ethogram is the basis for the
classification since it limits the number of activities which
can happen after a certain activity, e.g. “walking cannot be
preceded by falling but can be followed by it” [44]. For this
reason, the authors also distinguish between forward-time
motion sequences and reverse-time motion sequences. The
employed radar was the Ancortek SDRKIT 2500B, which
is an FMCW radar operating at 25 GHz with a bandwidth
of 2 GHz. From the captured data, the range map (range vs
time) was computed, as well as the micro-Doppler signa-
ture in spectrograms. Separating activities in the continuous
stream was performed by employing the Radon transform
on the range map for discriminating in-place motions and
translation motions. For in-place motions, the power burst
curve technique was applied to the micro-Doppler signature,
to determine whether there is one or a sequence of in-place
motions. A two-dimensional principal component analysis
(PCA) was used for feature extraction from the range map
and micro-Doppler signature, respectively. The d = 14 largest
eigenvalues and corresponding eigenvectors were selected
from the micro-Doppler signatures, and d = 4 largest eigen-
values and corresponding eigenvectors from the range maps.
The images were projected onto the d-dimensional subspace
to compute the respective principal component matrix. A
kNN classifier was used, operating on the fused vectorized
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and concatenated micro-Doppler and range-map features. Us-
ing the ethogram, the number of possible activities to be
classified varied with time, since each state has possible
prior and posterior activities. It was shown that this approach
yielded a better classification performance than considering
all states at all times, including those that are not possible from
the ethogram.

Similar to this approach, Guendel et al. from TU Delft
proposed in 2020 another technique to separate a stream
of activities [46], including the discrimination of transla-
tion movement and in-place movement. Different to [44],
the discrimination was performed by means of the so-called
‘derivative target line’ instead of the Radon transform. The
derivative target line is the time derivative of the noise-
removed range-over-time profile, which corresponds to the
target’s velocity. By applying a threshold to the deriva-
tive target line, the authors distinguish between toward-radar
movement, away-from-radar movement, and in-place activ-
ity (no movement in range). A change in these movements
indicates a change between in-place and translational ac-
tivities. As in [44], in-place activities are further separated
by means of the power-burst-curve applied on the micro-
Doppler signature. This information allows for cropping both
range map and micro-Doppler into the separated activities.
For the experimental verification, a radar of type P410 Hu-
manics was used, which is a pulsed radar with a center
frequency of 4.3 GHz, a bandwidth of 2.2 GHz, and a pulse
repetition interval of 8.2 ms. Six of these radars, aligned
linearly and operated simultaneously, were used to collect
data. 20 activity classes were investigated in total, in a multi-
activity sequence including a fall. Similar to [44], again, a
flow-graph of possible consecutive activities is introduced.
This limits the output classes for the classifier in the sense
that after one activity is classified, there is only a limited
set of possible (i.e., physically sensible) follow-up activity
classes. Feature extraction and classification were performed
by 2D PCA followed by a decision tree classifier. Classifi-
cation based on range maps and micro-Doppler individually
as well as fusion by concatenating was investigated. It was
found that fusion performed slightly better than the individual
evaluations.

A combined localization and activity classification tech-
nique based on Kalman filtering was introduced by Vaishnav
et al. from Infineon Technologies in 2020 [47]. With this,
not only position and velocity of a target were incorporated
into the state vector of the Kalman filter processing, but also
the probabilities of the investigated activity classes. The state
transition function between the activity classes was modeled
by means of transition weights, making the process non-linear.
An unscented Kalman filter (UKF) was therefore used. For
the UKF state prediction transform, which was approximated
by an unscented transform with sigma points, the aforemen-
tioned transition weights were learned by an LSTM. The
input to the LSTM were therefore sequences of transitions
between different activities in spectrograms. The output of the
Kalman filter was not only the target’s location, but also its

FIGURE 4. Illustration of the combined localization and classification
approach proposed in [47].

current activity. In the implementation, the tracker was up-
dated every 16 frames, based on state transition probabilities
and current LSTM classification probabilities with adaptive
Kalman gain. The process is illustrated in Fig. 4. Infineon’s
BGT60TR13 C radar chipset was used, which is an FMCW
radar at 60 GHz center frequency, with 1 GHz bandwidth. 4
activities (walking, standing, sitting, waving) were classified,
obtained from 5 participants with 800 Doppler spectrograms
overall. 95.5% classification accuracy were obtained with the
proposed approach, which was shown to be higher than using
only an LSTM (87.24% accuracy). Furthermore, it was stated
that since Kalman filtering also provides uncertainties, this
information can be used for reducing false-alarm rates.

In 2021 Kang et al. [48] proposed a two-step procedure
for classifying sequences of activities. In the first step, the
stream was segmented into single actions, and these were
classified in the second step. For the segmentation, the vari-
ance of the spectrogram was evaluated. For the subsequent
classification, a convolutional neural network (CNN) was
used with spectrogram data as input. Two types of outputs
were evaluated for the classification of sequential activities:
the first simply discriminated between single motion and
motion change, whereas the second also classified the type
of change (e.g., standing-to-walking). The radar employed
in the experimental setup was a 60 GHz millimeter-wave
FMCW radar with a bandwidth of 6 GHz, mounted 60 cm
above the floor. Experimental results revealed an accuracy of
> 97% for the segmentation between activities, and >95%
on average for the classification of activities and activity
transitions.

An approach to classify continuous activities mixed with
signs from the American Sign Language (ASL) was presented
by Kurtoglu et al. from the University of Alabama Tuscaloosa
in 2021 [49]. The TI AWR1642BOOST radar was used, which
is an FMCW radar at 77 GHz with 4 GHz of bandwidth.
Subject were located at 1.5 m directly in front of radar for
performing the ASL signs; daily activities were recorded at
varying distances within 4 m radius. A total of four subjects
took part in the study, performing six different daily activities
(no movement, walking, sitting, standing up, folding laundry,
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ironing) and 4 ASL signs (you, hello, car, push). Three se-
quences were recorded continuously, yielding 196 samples
in total. 80% of the data were used for training, the remain-
ing 20% for testing. The classification was based on three
input representations, namely range-Doppler maps, micro-
Doppler (µD) spectrograms and spectrogram envelopes, all
divided into 0.2 s windows. A two-stage processing strategy
was proposed, consisting of motion detection/segmentation
plus segment recognition, so that classification was only per-
formed when some motion was detected. Motion detection
was performed using range-weighted energy plots with two
detection methods: cell-averaging constant-false-alarm-rate
(CA-CFAR) and short-term-average-over-long-term-average
(STA/LTA). A 3D CNN followed by a Bi-LSTM layer and
a time-distributed softmax was then applied to the range-
Doppler maps, whereas the spectrograms and envelopes were
processed by a 2D and 1D CNN, respectively, followed by
a Bi-LSTM layer and softmax as well. While all three data
representations were employed for classification individually,
fusion was also investigated, namely decision level fusion and
feature level fusion. Both achieved > 90% accuracy, with
CFAR and STA/LTA. The best performance was achieved
using feature fusion and STA/LTA (93.3% accuracy), but the
other techniques performed in the same range. Remarkably,
the performance of range-Doppler and spectrogram alone
yielded a performance similar to the fused data (around 91%).
Using the envelopes-alone classification had a slightly lower
accuracy (<90%).

In the aforementioned studies, research on continuous ac-
tivity recognition was restricted to using a single radar.
In 2021, Guendel et al. at TU Delft introduced a two-
dimensionally distributed radar network for capturing contin-
uous activities [50]. This on the one hand brings a number
of benefits, in particular multiple perspectives to view the
moving subjects, but at the same time introduces the addi-
tional challenge of fusing the network’s data in an appropriate
fashion. In this case, the radar network consisted of five syn-
chronous, monostatic radars. The Humanics (PulsON) P410
UWB pulsed radars were employed, with a pulse repetition
frequency of 122 Hz, aligned in a semicircular baseline, with
45◦ separation, 1 m above the ground. The experiments were
performed in a circular space of 4.38 m diameter, as shown in
Fig. 5.

5 subjects performed 7 training data sequences and one
test data sequence with activities performed in different or-
der compared to the training set. The signal processing
involved first clutter cancellation by subtracting the mean
range-Doppler matrix of the training data set from the data.
Seven features were then extracted from the range-Doppler
map and concatenated into a feature vector for each radar
at each sample. For classification a softmax classifier was
used. Regarding the fusion of the radar network’s data, three
approaches were investigated:

1) Early fusion: Feature samples from all radars were
concatenated into one longer feature vector and classifi-
cation was performed on that.

FIGURE 5. View of the TU Delft laboratory of the Microwave Sensing,
Signals & Systems Group (MS3) with a radar network setup consisting of
five nodes marked by the red circles (figure modified from [51]).

2) Late fusion by mean: Classification was performed for
all 5 radars separately; afterwards the mean of all prob-
abilities was computed.

3) Late fusion by median: Classification was performed
for all 5 radars separately; afterwards the median of all
probabilities was computed.

Time filtering was used to augment robustness of the clas-
sification, mitigating fluctuations over time. As in other work,
the “leave-one-person-out” strategy was applied to test the
proposed approach. Classification results indicated that all
three fusion methods’ accuracy values were in same range
(about 50%), but feature fusion performed best. It was also
demonstrated that the network performed better than any of
the five radars alone (< 50% accuracy). In all cases, including
the test person in the training set yielded slightly better results
than “leave-one-person-out”, as expected.

In 2022, Guendel et al. expanded and made their data set
publicly available, as well as investigated additional fusion
processing for the distributed radar network [52], [53]. The
methods proposed in the paper are:

1) Signal level fusion, i.e., the simple summation of the
range maps of all radar nodes. A spectrogram is then
computed from the summation range map and used for
classification.

2) Feature level fusion, i.e., computing µD spectrograms
individually for all nodes and concatenating the data.

3) Weighted radar selection over time: In this approach,
only one radar node’s data is used as input for the clas-
sification. For each time step, one radar node out of the
five is selected based on the most suitable aspect angle
and received power. In order to determine which node is
the most suitable, multilateration followed by a tracking
filter is implemented to determine position, velocity and
acceleration of the target.

4) Orthogonal radar fusion: Theoretically, an arbitrary
movement in space can be fully captured by two radars
with orthogonal line of sight. Two different setups were
investigated. The first one was combining two orthog-
onal radars by means of feature fusion (i.e. processing
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each one individually and concatenating the two spec-
trograms). The second one firstly combined the radar
nodes 1 and 5 (which face each other as depicted in
Fig. 5) by signal level fusion (i.e. summation), and then
fused the result with the orthogonal node 3 (see Fig. 5).
Again, fusing the orthogonal nodes was done by fea-
ture fusion. Both approaches yield a two-dimensional
spectrogram, displaying the x and y components of the
two-dimensional velocity vector in space.

The fusion approaches’ classification performances were
evaluated using a Bi-LSTM. Best results were achieved with
the simple signal fusion approach. Orthogonal radar fusion
using radars 1, 3 and 5 yielded similar results. All fusion
approaches outperformed the use of just one single, fixed
radar. As signal level fusion performed best with the Bi-LSTM
classifier, this fusion method was further employed to evaluate
other types of classification networks. Gated recurrent units
(GRU) were tested both in mono- and bi-directional fashion
as well as mono- and bi-directional LSTM. All classifiers
performed well with an accuracy >90%. However, the authors
also investigated other evaluation metrics such as intersection
over union and Jaccard index. These might be more suited
than accuracy to assess performances for continuous activities
with imbalances in the classes, such as much more walking
than instances of in-place activities or falls.

Since radar data are typically complex-valued, Yang
et al. [54] investigated the use of complex-valued neural net-
works for classification of the TU Delft data set. Various
network architectures were implemented, namely:

1) Multichannel networks operating on magnitude and
phase;

2) Multichannel networks operating on real and imaginary
part;

3) A deep network with complex-valued layers.
These three types of networks were applied to range-time

maps, range-Doppler maps and spectrograms. The use of
complex-valued data instead of real data yielded improvement
only for some particular cases (e.g., the range-Doppler maps).
In the overall performance, no significant improvement could
be consistently observed.

Svenningsson et al. [55] proposed another processing ap-
proach for the TU Delft data set in 2022. In this paper, a
Bayesian network is proposed, where in a recursive filter-
ing algorithm the target’s state (position, velocity, heading
and turn rate) and motion class were jointly estimated. The
state estimation served as a mapping of the points in the
range-Doppler map to an estimate of the aspect angle for all
sensor nodes. Including the so-found observation conditions
was shown to augment classification accuracy. This is because
the radars are capable of measuring only the radial velocity
component and therefore the data depend highly on the aspect
angle. A minimal resource management problem was solved
which comprises a selection of sensor nodes to observe future
micro-motions. Furthermore, probability calibration methods
were introduced. 64.9% classification accuracy was obtained
with the proposed classifier.

Another approach for classification of the TU Delft data set
was published by Zhu et al. [51] in 2022, with five main steps:

1) Spectrogram computation
2) Spatial feature extraction by a CNN
3) Data fusion from the five radars into one feature map
4) Temporal feature extraction with a RNN
5) Final prediction by a fully-connected neural network
Regarding data fusion, in the paper, a halfway-fusion ap-

proach was proposed. It concatenates the feature maps from
the CNN into a data cube, then uses a channel-wise maximum
pooling to select the most representative features, and finally
compresses these to a new feature map. It was demonstrated
that compared to early and late fusion, halfway fusion per-
formed best (ca. 87% accuracy, with early fusion having 85%,
and late fusion ca. 84%, respectively). Furthermore, compared
to single radars, fusion showed better performance. Single
radars were only able to achieve ca. 70% accuracy. Regarding
the recurrent neural networks, three different types were in-
vestigated. These were a simple RNN, an LSTM, and a GRU,
each implemented in a mono- and bi-directional fashion. The
bi-directional networks performed better in all cases. From
the three types of networks, GRU performed best in the study
(87.1%). As in other studies, the “leave-one-person-out” strat-
egy was also employed here. Overall, the proposed network
was able to achieve 90.7% test accuracy.

Further activities at the University of Alabama were re-
ported by Kurtoglu et al. in 2022 [56]. While the main focus
of this work lies on recognition of signs from the American
Sign Language and corresponding trigger recognition, activ-
ity recognition is also part of the work. As in [49], the TI
AWR1642BOOST radar was used. 19 participants performed
5 different sequences, consisting of 15 ASL signs and 3 activ-
ities (walking, sitting, standing up). Three representations of
the radar data were used: range-Doppler map, µD spectrogram
and range-angle map. The latter was achieved via beamform-
ing. This was possible since the employed radar is MIMO
(two transmitters and four receivers). In the range-angle maps,
the visibility was enhanced using so-called optical flow (i.e.,
the spatial change in location of pixels from one frame to
another). For segmentation of single activities, a variable-
window STA/LTA was proposed, which is shown in Fig. 6.
The variable length accounts for the variable duration of the
single activities. This approach was shown to outperform
STA/LTA with fixed-length windows and the so-called dy-
namic boundary detection technique. For classification, the
authors used a joint domain multi-input-multitask learning
including all three above named radar data representations.
An accuracy of 92% was achieved with that method. It was
compared to a CNN followed by Bi-LSTM, operating on
the three data representations alone and on feature-level fu-
sion. However, none of these classifiers exceeded 90%, which
proved that the joint domain multi-input-multitask learning
was more suitable.

For segmentation of single activities in sequences, Kruse
et al. [57] proposed to use the Renyi entropy. The segmenta-
tion is performed by detecting rapid changes in the entropy of
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FIGURE 6. Illustration of stream segmentation using STA/LTA with variable window lengths [56].

spectrograms. A different threshold over a fixed time interval
is introduced as a discriminator: whenever this threshold is
exceeded, a transition between two activities is declared. The
proposed method was applied to three different data sets. It
was shown that the entropy-based segmentation can outper-
form the STA/LTA method as described in [49], [56].

To tackle the issue of real-time fall-alerts in hospital envi-
ronments, Werthen-Brabants et al. [58], [59] proposed the use
of a split Bi-RNN. A two-stage classifier was implemented:
first, a forward RNN which is computed on an edge device
gives an immediate prediction for every time step. Subse-
quently, a backward RNN is employed, computed on a larger
processor (cloud or data center) to improve the prediction
of the first step. Micro-Doppler signatures were used as the
basis for classification. To reduce the amount of data and
thus the computation time, 1D convolutional feature extrac-
tion was first applied to the micro-Doppler signatures. 16
features were extracted by a CNN and then used as inputs
to the classifiers. Instead of using sliding windows, every
single frame was evaluated and classified. Experiments were
performed in two hospital-resembling facilities with two radar
sensors placed in different locations: the TI xWR14xx radar,
an FMCW radar operating at 77 GHz, and the TI xWR68xx
radar at 60 GHz. An accuracy of 91% was achieved. Execution
times of 1.664 ms for the forward branch and 36.645 ms for
the backward branch were reported, which was faster than a
standard bi-directional model (81.463 ms) implemented for
comparison. A point cloud-based processing and classifica-
tion methodology is proposed in 2022 by Yu et al. [27]. A
point cloud representation of human motion is captured in 12
0.1 s long frames using a TI IWR6843ISK-ODS mmWave
system at 62 GHz. The first processing step is to denoise
the point clouds by means of the DBSCAN algorithm, which
effectively labels points in low density regions as outliers and
removes them from the sample. To facilitate the learning task,
the dimensions of every classifier sample should be equal,
which for mmWave point cloud representations is generally
not the case. To circumvent this, the measurement area is
divided in 50 × 50 × 30 voxels (length × width × height)

and the value of every voxel at each frame is the amount of
point cloud points that fall within its boundaries. Finally, sam-
ple diversity is enhanced by introducing sample duplicates,
randomly rotated in the horizontal plane, to the dataset, with
the justification for this method of dataset up-sampling being
the rotational invariance of human activities in this plane. For
classification, a novel ’Dual-View Convolutional Neural Net-
work’ is employed. The network features two CNN-channels
operating in parallel on orthogonal projections of the vox-
elised input, namely the projections on the XZ and YZ planes.
In three convolutional/maxPooling blocks the dimensionality
of the two projections of each input sample are reduced to
12 × 576, representing the time and (flattened) spatial compo-
nents respectively. The outputs of the two parallel blocks are
then concatenated and, using three sequential fully connected
layers, an activity label is finally computed. For experimental
validation, four subjects are recorded individually performing
seven activities at various locations in an indoor setting, re-
sulting in a total of 1200 minutes of data before up-sampling.
A comparison with several reference classifiers reveals su-
perior accuracy of 97.61% on the recorded data set. On a
publicly available dataset [60], an accuracy improvement of
6% (97.8%) is reported.

In terms of classification strategies, two major approaches
can be identified in the works discussed in this review. The
first, denoted ‘Snapshot’ in Table 1, features a motion detec-
tion algorithm that extracts an interval of interest from the
input sequence, which can subsequently be classified as a
whole, often under the assumption that it comprises only a
single activity. The second approach entails the classification
of each time step in the input sequence, and is labelled corre-
spondingly as ‘Time Step’ in Table 1. The latter approach has
become more prevalent with the emergence of RNN architec-
tures capable of handling temporal data sequences, but has
also successfully been implemented with a sliding window-
based method [40]. Advantages of time step classification are
the higher temporal resolution, and consequently the lower
risk of not detecting an activity of short duration. Conversely,
in a snapshot-style approach there exists the possibility of
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acquiring an interval of interest that contains multiple activ-
ities, but which will be typically assigned only a single label,
leading to missed detections. In snapshot style approaches
the classifier can often idle in times of no detected activity,
leading to potentially lower computational and power require-
ments; furthermore they benefit from the well established
methods developed for single activity classification.

When examining the activity classes considered in the var-
ious studies in this review, three categories can be defined.

1) The algorithms that focus on the detection of a single
activity such as a fall [39]. These anomaly-detection
approaches can potentially aid in a variety of practical
applications and have to waste no resources on the dis-
tinction among non-anomaly behaviours.

2) Works considering a finite set of activities for the clas-
sification task. This category constitutes the majority of
research so far and assumes that most human behaviors
can be broken up in a smaller subset of activities which
can be identified by a suitable classifier. The average
number of activity classes under consideration in Ta-
ble 1 is 6.4±2.5 (not counting transitions, ASL signs,
and duplicate activities at different aspect angles.)

3) Studies focusing on a finite set of activities, but plac-
ing restrictions on the possible transitions between
them. This is accomplished e.g. by means of a human
ethogram [44], [45] or Markov chain [55] and is based
on basic assumptions about human kinematics.

Finally, a notable trend in the ensemble of works under
review here is the strong emphasis on automated feature con-
struction. With the exception of three studies [40], [42], [50],
feature extraction is based on PCA/SVD, or a deep learning
based alternative.

III. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS
As shown by the papers surveyed in the previous section, the
topic of continuous human activity recognition is relatively
new and offers several open questions yet to be addressed:
� In realistic scenarios there could be situations where

there is not only one, but two or more people inside
the field of view of the radar. Therefore, designing ro-
bust classification strategies for superimposed signals
of multiple humans is an important topic for realistic
applications. There exist a number of strategies to deal
with this issue in vital signs estimation for relatively
static subjects [10]. Incorporating and possibly adapting
such techniques to continuous full body movements is an
open question that has not yet been addressed. For ex-
ample, the merging of tracks of multiple people and the
separation of their signatures must be addressed, as well
as the temporal segmentation of their activities, which
can well be not synchronized (i.e., one person might be
performing one activity while the other just starts a new
one).
Even if one single individual is present, the question of
how to best resolve multiple activities performed at the
same time in a sequence is also important. For example,

in the case where the person is moving and also perform-
ing an activity (e.g., walking while carrying an object,
speaking over the phone, eating or drinking).

� Separating the signature of multiple people or the con-
tributions of different body parts of a single person
can benefit from additional spatial resolution, espe-
cially in the angular domain. For this purpose, mm-wave
multiple-input-multiple-output (MIMO) radars can be
suitable, bearing in mind their expected improvement
in capabilities in coming years driven, by progress
in automotive research. Specifically, larger operational
bandwidth of several GHz will be achieved by operating
at higher segments of the frequency spectrum (hence
finer range resolution), as well as the integration of more
MIMO channels in simple radar chips or systems of
cascaded chips (hence finer angular resolution in both
azimuth and elevation). Using large MIMO radars (e.g.
four combined individual radar chips with 3Tx & 4Rx
channels each) for single activity classification was in-
vestigated in e.g. [17], [21], but not yet for continuous
streams of activities. The formulation of the most suit-
able processing pipeline for such very high resolution
data remains an open challenge.

� Even at lower operating frequencies, the question of
identifying the most suitable radar data representation
for continuous HAR remains. As a visual summary, Fig.
7(a) shows data domains extensively used throughout the
literature applied on a single-input single-output (SISO)
radar, namely: the range-time, range-Doppler, or the µD
spectrogram. Less common but potentially interesting
can be the phase information of the data, also shown in
Fig. 7(a). For example, investigations were made by us-
ing the histogram of oriented gradients (HOG) on phase
data, a method capable of extracting features from fine
lines segments or shapes in images, and then forwarded
for classification [61]. Fig. 7(b) provides an overview
of additional data domains that can be obtained using
multiple-input multiple-output (MIMO) radars, namely
the range-angle map, one of the standard domains in the
automotive radar sector, as well as an extracted point
cloud for HAR [21]. Furthermore, the novel µD spec-
trogram computed in cross-range direction, known as
µω spectrogram, introduced by Aziz et al. [62] is also
shown. Whilst Table 1 reveals that the µD spectrogram is
still the most prevalent data domain used in classification
due to its inherent connection to the subjects’ kinemat-
ics, it is possible that the introduction of sensors with
higher spatial resolution will allow for a more effective
extraction of information regarding the subjects’ posture.
This in turn may make spatial information currently not
represented in µD spectrograms more relevant, and prove
it to be advantageous in the improvement of classifier
performances.

� Once radar-based activity recognition has found its way
into real-world assisted living, interference problems
might arise when there are several radars concurrently
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FIGURE 7. (a) common HAR data domains applied on a (I) PulsON P410
SISO radar node with, (II) the range-time obtained by windowing over (IV)
the full range-time map, (III) the range-Doppler map by computing the FFT
over slow-time of (II), (V) the extracted range-phase map with a magnified
view, and (VI) the µD spectrogram obtained using the STFT.
(b) illustrates additional domains that can be obtained using (I) a MIMO
radar, such as (II) the µω spectrogram (Images from [62]), (III) the
range-angle map, and (IV) the point cloud representation.

present, e.g. in nursing homes. To overcome this issue,
robust interference mitigation strategies [63] will have
to be developed. In this context, it could be interesting
to exploit the variety of already existing HAR sensors.
For example, Yang et al. [64] developed a technology-
agnostic activity recognition system, which is able to
recognize activities using data from three different sen-
sor types: radar, WiFi, and RFID. The availability of
multiple sensing technologies for the same purpose
could help ease problems of mutual interference.

� An important issue is the availability and the compara-
bility of labelled data sets for the evaluation of different
approaches for radar-based human activity classification.
Very often in the literature, the proposed classification
approaches appear to be tailored to a particular setup and

predefined set of classes, with questionable capability
to generalize to unseen environments, individuals, and
variations in activities. Furthermore, to the best of our
knowledge, the data sets typically used in literature in
this domain are small, limiting the depth and capabilities
of deep learning methods that can be reliably trained
on such data. While such relatively small size is under-
standable given the additional complexity to collect and
label radar data with respect to for example video data,
the question on how to address this data scarcity prob-
lem remains. An opportunity for this is provided by the
recent appearance of several data sets that are publicly
shared [65], although not all of them contain sequences
of truly continuous human activities. Nevertheless, they
can promote the benchmarking of algorithms on the
same data as well as the development of methods that
can perform training and learning of algorithms across
diverse data.

IV. CONCLUSION
This paper presented an overview on the state of the art in
radar-based continuous human activity recognition. Whereas
activity recognition from snapshot-like radar data has been a
widely investigated research topic for some time, classifying
continuous streams of human activities is a relatively new
field. First investigations started no earlier than 2018. Yet,
dealing with the continuous nature of realistic data will be
essential in order to bring the technology to the market.

FMCW radars as well as pulse radars have successfully
been employed for the task. Regarding signal processing,
range maps, range-Doppler maps, range-angle maps and µD
spectrograms can be used as input for classifiers, as well as
numerical features extracted from them. It is shown in the lit-
erature that fusing these representations usually yields better
results than processing an individual one. Various strategies
for segmenting the continuous stream, as well as for feature
extraction and classification have been proposed, as could be
seen in the survey. For the classification task, it was found that
taking time-dependencies into account, e.g. by using LSTM or
GRU classifiers, improves classification accuracy. Especially
a bi-directional implementation of these networks is highly
beneficial. Using a radar network instead of just one radar can
provide additional benefit.

Future research will need to address a number of tasks
including multiple-subject classification, multi-activity clas-
sification as well as more elaborate radar setups for a higher
spatial resolution.
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