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In this research a machine learning model for predicting the rotating bending fatigue strength and the
high-throughput design of fatigue resistant steels is proposed. In this transfer prediction framework, ma-
chine learning models are first trained to estimate tensile properties (yield strength, tensile strength and
elongation) on the basis of composition and critical process conditions. Then, based on the predicted ten-
sile properties, transfer models are trained to estimate fatigue strength. The results are compared with
those of a similar model not having such a transfer layer. The transfer prediction framework shows high
accuracy for fatigue strength prediction with a remarkably high tolerance to limitations in the amount of
calibration data available for training. By combining the transfer prediction framework with evolutionary
algorithms, a robust high-throughput alloy design model is achieved requiring only tens of fatigue data
points to get a decent reliability. The newly designed steel showed the predicted high fatigue strength.
The method as presented here might also be applicable to other alloy design challenges in which only a
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limited database for the property to be optimized is available.

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue strength, which is usually defined as the maximum
stress amplitude without failure for a given high number of stress
cycles (usually 107~10°) under set loading conditions, is commonly
used to represent the endurance limit of steels [1-4]. While the
actual fatigue strength in use depends on the loading conditions
(R-value, frequency, stress states, loading pattern, etc.) the rotat-
ing bending stress is a good test to estimate the relative fatigue
performance of different engineering steels. While the test is at-
tractive because it requires only small samples, relatively cheap
testing machines and can test at high frequencies, measuring the
fatigue strength by experimental testing remains a time consum-
ing and hence costly operation even when optimal sample loading
strategies to minimize the number of samples to be tested such as
the staircase method [5] are used. Due to this high cost the num-
ber of fully worked cases in which fatigue strength is coupled to
steel composition and heat treatment conditions is relatively small
and this greatly complicates the design of new fatigue resistant
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engineering steels. Recently, with the establishment and develop-
ment of the Material Genome Initiative (MGI), various studies have
tried to greatly reduce the time and monetary cost necessary for
alloy design by replacing experimental trial-and-error approaches
with advanced computational and statistical methods, e.g., high-
throughput computing. Although high-throughput computing has
brought about great progress in the efficiency of designing new
copper alloys with a high ultimate tensile strength and a low elec-
trical conductivity [6], for titanium alloys with high strength and
ductility [7], ultrahigh-strength stainless steels with high hardness
[8], and RAFM steels with high yield strength and impact tough-
ness [9], few high-throughput alloy design studies have focused on
fatigue strength optimization primarily because of limitation in the
number of composition-fatigue strength data available.

To design new steels with a high fatigue strength via high-
throughput computing, a proper model that can accurately repre-
sent the complex and non-linear relationships between composi-
tion and processing conditions on the one hand and the fatigue
strength on the other hand should first be established. Most tradi-
tional empirical models in the field relate fatigue strength to quasi-
static mechanical properties, such as hardness [10], tensile proper-
ties [10,11] or impact toughness [12]. The use of these quasi-static
properties, which are easier to obtain and hence carry a lower
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cost penalty, to predict fatigue properties can be a cost-effective
strategy. In early research [2], a linear relationship between fatigue
strength and hardness or tensile strength has been proposed and
imposed, and this definition has been widely applied to various al-
loy systems, such as steels, copper and aluminum alloys. However,
in later studies, this linear relationship was found to be too simple
and not to apply to engineering steel grades in which the hard-
ness or tensile strength exceeded a critical value [13]. For exam-
ple, when the tensile strength exceeded the value of approximately
1800 MPa, the fatigue strength of SAE 4340-like steel even de-
creased with increasing tensile strength value [14]. To describe this
nonlinear relationship in the high tensile-strength area, a modified
model based on hardness data was built by Yukitaka and Masahiro
[15-17]. A more versatile formula that relates fatigue strength to
tensile strength in the form of a quadratic expression was pro-
posed by Pang et al. [12,14] and performed well for several materi-
als, such as alloyed steels and copper alloys. However, the model is
strictly phenomenological, and only links fatigue strength to tensile
strength, and offered no explanation for the non-linearity. Wang
proposed that yield strength is also related to fatigue strength as
yielding is involved in fatigue crack initiation [11]. It has also been
argued that total elongation at break is also relevant for fatigue
strength optimization as a high ductility can promote fatigue dam-
age resistance [11,18], and also the work-hardening ability relates
to the fatigue strength to some extent [19]. However, no empirical
formula has been proposed which quantifies the effect of failure
strain and work-hardening on fatigue strength.

However, irrespective of the empirical relationship between the
conventional mechanical properties and the fatigue strength se-
lected, such relationships do not directly link the fatigue strength
to the chemical composition of the steel and the processing condi-
tions (together defining the microstructure).

Artificial intelligence (Al) strategies may provide a new way
to directly define the relationships between the combination of
chemical composition and heat treatment conditions and the fa-
tigue properties without considering mechanical relationships or
mechanisms. From traditional machine learning (ML) methods, e.g.,
neural networks (NNs) and support vector regression (SVR), to
more recent methods, e.g., extreme gradient boosting (XGB) and
convolutional neural networks (CNNs), these approaches exhibit
good predictive ability for various material properties [8,20-25].
Al strategies were also used for various fatigue property predic-
tions in previous studies, such as the prediction of fatigue live
[26,27], fatigue crack-driving forces [28], fatigue strengths [29-37],
etc. However, with limited time and funding for fatigue testing,
most previous studies mentioned above were based on small sam-
ple databases with only hundreds of samples and hence the pre-
dictions lacked reliability and accuracy. To overcome the problem
of limited accuracy due to the calibration database being too small
(i.e., less than 100 cases), models suitable for sparse data have
been used, e.g., the adaptive neuro-fuzzy inference system, which
was used to predict the high cycle fatigue life of laser powder
bed fusion stainless steel 316 L based on a dataset consisting of
139 experimental fatigue data points [26]. In addition, data pre-
processing methods such as feature engineering were considered
in Agrawal's work [36]. Although the number of samples nearly
reached the minimum amount of data required for traditional ML
methods, nevertheless hundreds of samples were required, mean-
ing that the data accumulation still took decades, which is an un-
acceptable long-term cycle for alloy design. Usually, for most rel-
atively new alloy systems, only tens of existing data points might
be available, an amount that is far from sufficient for training a
stable or reliable ML model. Therefore, although the traditional Al
strategy provides promising prospects for fatigue strength-oriented
alloy design by directly building the relationship between com-
position/processing and fatigue strength, the lack of a sufficient
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amount of complete datasets and the high cost for additional data
accumulation significantly inhibited its further application in effi-
cient and reliable alloy design.

In the present work, a fatigue strength prediction and high-
throughput alloy design framework based on the transfer learn-
ing (TR) concept [38-45] is proposed. The first layer of the trans-
fer model predicts the quasi-static mechanical properties (yield
strength, tensile strength and elongation) using either a convo-
lutional neural network (CNN) framework based on deep learn-
ing concepts or a simplified machine learning (SML) framework
based on traditional machine learning algorithms. The inputs for
both models are the steel composition and the processing param-
eters (in particular critical heat treatment parameters) for which
a large database is available. The second layer links the predicted
quasi-static properties to the high cycle fatigue strength for which
only a small validation set is available. The predictive power of the
transfer model is compared to that of models in which chemical
composition and heat treatment parameters are directly linked to
the fatigue strength, i.e., a non-transfer model. For the subsequent
high-throughput alloy design, a genetic algorithm (GA), which used
the transfer prediction model as the objective function, was ap-
plied to search for the new composition and processing solutions
leading to high fatigue strength values while taking into account as
many as twenty dimensional features. This TR framework enabled
high-efficiency alloy designs exploring an extremely large range of
potential combinations but does rely on only a small dataset of fa-
tigue strength values for training.

2. Methods
2.1. Dataset and data preprocessing

In the present study the publicly available Matnavi fatigue
dataset published by the National Institute of Material Science
(NIMS) of Japan was used [46]. In this database actual steel com-
positions, heat treatment conditions and final quasi-static and dy-
namic mechanical properties are recorded. The complete database
consists of datasets for carbon steels (113), low-alloy steels (258),
spring steels (18) and stainless steels (22). Fatigue data for carbur-
ized steels were not used in the present study since their process-
ing involves additional processing parameters and leads to inten-
tional compositional gradients not to be encountered in the other
steel grades. In the end a dataset containing 411 samples was com-
piled where each datapoint has twenty features (composition and
processing details), three tensile properties (yield strength, tensile
strength and elongation), hardness, Charpy impact toughness and
the target property (rotating bending fatigue strength at 107 cy-
cles). The Matnavi dataset as published by NIMS is a high-quality
dataset with the advantage of small scattering within the data be-
cause all fatigue tests were performed at a single institution known
for its accuracy [47]. The global overview of the dataset ranges is
reported in Table 1, and histograms of the composition ranges and
mechanical properties are shown in Fig. S1 and Fig. S2, respec-
tively.

For the tensile properties, 83, 262 and 66 samples were se-
lected randomly as the validation set, training set and testing set,
respectively. To avoid the ‘lucky split’ problems caused by random
partitions, the data partitioning procedure using this fixed splitting
ratio was carried out 100 times to obtain an insight into the un-
certainty of the model. For the fatigue strength, from the initial
dataset with 411 samples, 83 samples were selected randomly as
the validation set, and the remaining 328 samples were used for
model training and testing. From the remaining 328 samples, vari-
ous subsets containing ranging from 32 to 328 samples were ran-
domly selected for fatigue strength prediction. In all cases, a ratio
of 4:1 was used to create training and testing sets. Two types of
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Table 1
Input and output ranges of the various parameters in the total database.
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Inputs and outputs Minimum  Maximum  Mean Standard deviation
Inputs Carbon (wt.%) 0.09 0.63 0.396 0.098
Silicon (wt.%) 0.16 2.05 0.306 0.254
Manganese (wt.%) 0.32 1.6 0.825 0.289
Phosphorus (wt.%) 0.004 0.031 0.017 0.005
Sulfur (wt.%) 0.002 0.03 0.014 0.006
Nickel (wt.%) 0.01 2.78 0.493 0.853
Chromium (wt.%) 0.01 12.7 1.154 2.61
Copper (wt.%) 0 0.26 0.061 0.049
Molybdenum (wt.%) 0 0.24 0.061 0.085
Normalizing Temperature (°C) 30 900 820.47 188.76
Through Hardening Temperature (°C) 30 975 833 136.5
Through Hardening Time (min) 0 30 29.2 4.84
Cooling Rate for Through Hardening (°C/s) 0 24 11.76 7.15
Tempering Temperature (°C) 30 750 589.76  109.29
Tempering Time (min) 0 60 58.39 9.68
Cooling Rate for Tempering (°C/s) 0 24 23.36 3.87
Reduction Ratio (Ingot to Bar) 289 5530 964.1 576.77
Area Proportion of the Inclusions Deformed by Plastic Work (dA) 0 0.13 0.047 0.032
Area Proportion of the Inclusions Occurring in Discontinuous Array (dB) 0 0.05 0.004 0.009
Area Proportion of the Isolated Inclusions (dC) 0 0.06 0.009 0.012
Outputs Yield Strength (MPa) 290 1636 789.41 219.81
Tensile Strength (MPa) 455 1756 911.14 198.65
Elongation (%) 9 40 21.31 4,75
Fatigue Strength (MPa) 225 906 49242  98.71

models were created: (i) a TR (Transfer) model in which the rel-
evant dataset of composition and processing parameters was used
to predict the quasi-static mechanical parameters and then a sec-
ond model to predict the fatigue strength on the basis of the pre-
dicted (quasi-static) mechanical properties and (ii) a NonTR (non-
Transfer) model in which the composition and processing parame-
ters were directly coupled to the fatigue strength data during train-
ing. As for the predictions of the tensile properties, the above fa-
tigue data partitioning procedure was carried out 100 times.

In the both routes some data cleaning was imposed to han-
dle non-reported values for process parameters. Following a pub-
lished protocol for dealing with non-reported input process param-
eters [34] the values for austenitization and tempering tempera-
tures were set to room temperature unless properly documented,
and related also-not-reported features, such as holding time and
cooling rate, were set to zero. For data normalization, the inputs
and outputs were normalized with z-score, a standard method for
eliminating dimensional differences between feature ranges [48].
The normalization expression is given by Eq. (1):

X—u
7="= M
where z denotes the normalized value, x is the original value from
the dataset, and p and o represent the mean and standard devi-
ation of the original values for a certain dimensional feature, re-
spectively.

Feature relevance for the parameters in the dataset was evalu-
ated to better understand the influence of the compositions and
process parameters on the fatigue strength. This evaluation was
carried out using the mean decrease accuracy (MDA) values for a
random forest (RF) model with 1000 random partitions. The results
prove conclusively that all features have positive, though not equal,
contributions to the fatigue strength as shown in Fig. S3. Therefore,
further feature selection was considered not to be required.

2.2. Construction of TR framework

In the transfer model approach, which treats the tensile prop-
erties as intermediate steps towards obtaining an estimate of the
fatigue strength, we constructed two transfer frameworks named
the CNN TR model and SML TR model. Their implementation pro-
cess is shown schematically in Fig. 1(a). At first, the source mod-

els for tensile properties prediction were constructed via the CNN
and SML methods using a relatively big dataset. Then, based on the
high correlation between tensile properties and fatigue strength,
the TR models for fatigue strength prediction were constructed
based on smaller datasets containing the fatigue data, again using
the CNN and SML methods.

The arguments for the construction of the unconventional CNN
(rather than NN) TR framework are as follows. CNN methods can
be applied to the prediction of steel properties because of the
strong correlation between physical metallurgical features, which
can be regarded as spatial information. The applicability of CNN
has been demonstrated in other works, such as the martensite
start temperature prediction by numerical input features [49],
wherein CNN shows better performance than traditional NN. We
also compared the performance of CNN and common neural net-
work (NN) for the fatigue strength prediction, confirming the ef-
fectiveness of CNN, and the results are shown in Fig. S5. For the
construction of the CNN TR, we followed the transfer learning ap-
proach mentioned by Yosinski et al. [50]. First, a source CNN ten-
sile property model was trained, as shown in Fig. 1(b). For this
model, 20 dimensional features reshaped into a matrix of size 5
were used as inputs (the 20 dimensional input values are filled
into a 5 x 5 matrix in turn, and the value of the last 5 elements
in the matrix is set to zero), and the properties of yield strength
(YS), ultimate tensile strength (UTS), and elongation (EL) formed
the 3-dimensional output. For the reshape method for inputs, dif-
ferent input matrix shapes were compared and the model with in-
put of 5 x 5 performed best compared to models with input ma-
trix shapes of 5 x 4 and 4 x 5. Meanwhile, a square input of
5 x 5 leads to more convenient data processing in the present
work. To adapt to the characteristics of the small data (sub-)set
of fatigue strength valued used in this research, the complexity of
the CNN model was reduced by removing the pool layer and sim-
plifying the architecture. The CNN parameter settings were as fol-
lows: convolutional layer 1 was 5 x 5 x 8, convolutional layer 2
was 5 x 5 x 16, the fully connected layer was 1 x 1 x 128, and
the filter size was 2 x 2. Then, the related target CNN TR model
for fatigue strength was trained as follows: (1) Convolutional layers
and fully connected layers of the source CNN model were copied
to the corresponding layers of the target CNN TR model, and were
called transferred feature layers. Once created the transferred fea-
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Fig. 1. Schematic diagram of (a) the transfer prediction framework for fatigue strength utilizing tensile properties and (b) the architectures of CNN and SML frameworks.

ture layers remained frozen and did not participate in further
training. (2) The remaining layer of the target CNN TR model was
then randomly initialized and trained for fatigue strength predic-
tion. For the above CNN training, the model was obtained after
1500 iterations, during which the loss function of mean square er-
ror (MSE), a learning rate of 0.005, and the Adam optimizer were
adopted.

For the creation of the SML transfer framework, five traditional
algorithms were employed to model the tensile properties, includ-
ing gradient boosting regression (GBR), extreme gradient boost-
ing (XGB), random forest (RF), multilayer perceptron (MLP) and
support vector regression with a radial basis function kernel (rbf-
SVR). To model the fatigue properties, two algorithms namely rbf-
SVR and support vector regression with a linear kernel (linear-SVR)
were employed. Three source SML models for YS, UTS and EL, re-
spectively were trained first. The outputs of the three models were
used as the three-dimensional input for the SML TR model, which
has the fatigue strength as its final output. An internal evaluation
of the above models showed that the GBR and linear-SVR were the
optimal algorithms for tensile properties and fatigue strength pre-
diction, respectively. The results are shown in Fig. 6. Model param-
eters for all algorithms in the SML framework were optimized by
grid search.

For comparison, corresponding NonTR models were trained
as reference models in a similar manner, also taking the 20-
dimensional features as inputs and fatigue strength as the (only)
output. For both NonTR and TR, the fatigue strength error was
used as the loss to train the models. Besides, different loss func-
tions were used for the NonTR models, and results are shown in
Section 4.3.

For all the above modeling of CNN and SML, data pre-
processing and model training were implemented using Tensorflow
and Scikit-learn in Python. The metrics used to evaluate the pre-
dictive performance of TR and NonTR models in the present work
include the squared correlation coefficient (R?) and mean absolute
error (MAE). The formulas for these metrics are as follows:

(MY F&yi— X0 F) Y0 v1)

R = 2 2
(” Y f(Xi)2 - (Z?:l f(xi)) ) - (” Y J’,Z - (Z?:l }’i) >
(2)
MAE = 137150 il 3)
i=1

2.3. High-throughput optimization algorithm for alloy design

With the TR and NonTR models for fatigue strength established,
an elitist reservation genetic algorithm (GA) was used to redesign
steels in order to obtain a high fatigue strength. Considering the
large differences in compositions and heat treatment processes be-
tween different steel grades in the Matnavi dataset, the search
space was limited to low-carbon steel and low-alloy steel systems.
For the GA, there are multiple settings to be considered. Reason-
able GA parameters need to be set to ensure that it can converge
and obtain the optimal design solution. For example, the determi-
nation of mutation rate requires careful handling as an excessive
value may lead to problems for GA to find a good solution, while
a small value may cause GA to easily get stuck in a local optimal
solution. Therefore, the value is usually set between 0.001 and 0.1.
In addition, the selection of operators such as mutation operator
is also critical. In the present work, various GA parameters were
compared and a suitable set of GA parameters was applied to alloy
design for all models. The design results demonstrated the reliabil-
ity of GA under this set of parameters, as shown in Supplementary
5. The more details of GA parameters used are shown in Table S4.
The GA was run ten times to ensure that for the parameters used
local optima were not dictating the final outcome.

To ensure the reliability and effectiveness of the design pro-
duced by the TR an NonTR framework, the models with MAE
<20 MPa for both the training and testing sets were used as the
objective functions of GA.

Finally, the combination of the GA model and the TR model
with MAE <10 MPa and R2>90% for both training and testing sets
was used to design a new steel with a fatigue strength >643 MPa
and this steel was fabricated and properly processed samples were
rotating-bending fatigue tested.

It should be mentioned that the influence of factors related to
inclusions needs to be considered during the continued design pro-
cess, and it is well known that inclusions have a significant impact
on fatigue performance. The importance of inclusions for fatigue
strength prediction was evaluated via RF, and the results show
their negligible impact due to low content (S, P) and proportion
(dA, dB, dC) levels, as shown in Fig. S4. Hence, solutions leading
to steels with a higher amount of inclusions were removed during
design processes.

2.4. Validation methods

The ultimately designed alloy was produced as a 50 kg ingot
using smelting in and casting from a vacuum induction furnace.
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Fig. 2. Experimental values vs. values predicted by the CNN tensile model of (a) YS, (b) UTS and (c) EL (including the mean results for 100 different partitions of training,

testing and validation sets).

Table 2
Mean results of the CNN and SML tensile models from 100 partitions of training, testing and validation sets.
Yield Strength Ultimate tensile strength Elongation
Algorithm
R?[% MAE/MPa R%[% MAE/MPa R%[% MAE/MPa
CNN Training 99.5 + 0.1 131 +£16 995 +0.1 107 £12 987 +02 043 +0.04
Testing 972+ 13 273+36 975+13 225+33 940+19 0.89 + 0.09
Validation 973+ 1.0 27.1+38 976=+1.0 224 +34 941+18 0.88 £0.09
SML Training 998 £ 01 68+23 99.8 £0.11 62+19 988 £ 04 0.39 +0.08
Testing 96.8 £2.0 263+49 975+15 217 +40 943 +19 0.88 £ 0.09
Validation 969 +£ 1.7 26 + 46 975+ 13 216 +£3.7 943 +18 0.87 £ 0.08

The ingot was forged at 1100 °C into a billet with cross-sectional
dimensions of 200 x 135 mm?. Then, the billet was reheated to
1200 °C for 3 h and hot rolled to a thickness of 20 mm, with
subsequent laminar cooling. Subsequent heat treatments, including
normalization, hardening and tempering, were conducted at the
temperatures and times suggested by the designed solution. Rotat-
ing bending fatigue tests were carried out using the same sample
dimensions and test conditions as reported for Matnavi dataset.

3. Results
3.1. Prediction of tensile properties

As mentioned in Section 2.2, firstly 100 CNN models to predict
the quasi-static tensile properties based on the chemical composi-
tion and the processing conditions were built. Fig. 2 presents scat-
ter plots of the mean predictive values for YS, UTS and EL, includ-
ing error bars. The prediction results in training set for YS, UTS and
EL are highly consistent with the experimental values both having
small error bars, indicating the excellent performance of all 100
CNN tensile models yielding high R? values with extremely low
error bars, 99.5% (£0.1%), 99.5% (+0.1%) and 98.7% (+0.2%) for YS,
UTS and EL, respectively. For the validation sets the R? values are
97.3% (£1%), 97.6% (£1%) and 94.1% (£1.8%) for YS, UTS and EL,
respectively. Therefore, because all the R? values are higher than
90% with error bars <2%, the CNN models trained in this research
were proven to be suitable and stable for tensile property predic-
tion within the composition range of the original database. The er-
ror analysis further indicated the model might be slightly overfit-
ted if an unjustified partitioning of training and testing sets was
coincidentally made in the random splitting, Therefore, to avoid
the overfitting caused by unjustified partitioning, the most accu-
rate CNN model from the 100 models trained has been selected
and was used for building the CNN TR model.

In addition to CNN models, also an SML framework for tensile
property prediction was built, as mentioned in Section 2.2. For this
SML framework, three predictive models for YS, UTS and EL, re-
spectively were built using the GBR algorithm. Table 2 includes the

mean R?Z and MAE results, including error bars, for YS, UTS and
EL generated from 100 partitions of training, testing and validation
sets. The mean results of the CNN model are also listed for com-
parison. Similar to the CNN model, all SML tensile models exhibit
excellent performance but show minor differences : (i) compared
with CNN models, SML models show relatively low MAE values for
validation sets, indicating that SML models probably have stronger
predictive abilities within the composition ranges of small sample
databases; (ii) compared with SML models, CNN models show rel-
atively small R? error bars for validation sets, indicating that the
CNN models used in this research are more tolerant to unjustified
partitioning and are therefore less inclined to result in overfitting.

3.2. Prediction of fatigue strength

The CNN and SML TR models were further trained to predict
the fatigue strength initially utilizing an extremely small dataset
(32 datapoints), as mentioned in Section 2.2. In addition, NonTR
models were trained similarly to show how TR models advance the
prediction of fatigue strength. Fig. 3 presents the comparison be-
tween the mean predictive values of the validation sets from 100
TR and NonTR models, including error bars. The mean R? and MAE
are also given in this figure. The figure shows clearly that the TR
model yields far more accurate predictions than the NonTR model,
in particular in the low and the high fatigue strength domain. For
the TR models there is not much difference in accuracy between
the CNN and the SML models. The limited accuracy for the NonTR
model in the low and high strength region is obviously due to the
small dataset used for training. The use of the TR model greatly ex-
tends the range in which accurate predictions can be made on the
basis of the same small database. The influence of the number of
samples in the fatigue database on the accuracy will be analyzed
in more detail in the Discussion.

3.3. High-throughput alloy design and experimental validation

With the help of GA, three alloys likely to have the desired high
fatigue strength were selected from solutions evaluated by the TR
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Table 3

Composition and processing parameters of three potential new alloys designed by TR models and existing alloys.
Alloy R is the new steel produced on the basis of the specifications for target steel D1. Elemental compositions are
given in weight percentages. Temperatures are in Celsius. Predicted (Actual) fatigue strength is in MPa.

C Si Mn Ni Cr Cu Mo NT THT TT Predicted (Actual)
Fatigue Strength
Alloy D1 0.48 0.30 0.75 2.76 1.08 0.19 0.18 876 852 556 692
Alloy D2 0.49 0.25 0.80 1.79 1.07 0.12 0.23 891 850 554 715
Alloy D3 0.49 0.26 0.76 0.05 1.07 0.14 0.24 888 852 560 682
Alloy E1 0.37 0.29 0.76 1.88 0.90 0.03 0.24 870 845 580 (643)
Alloy E2 0.39 0.28 0.77 0.09 1.08 0.15 0.19 870 855 550 (638)
Alloy E3 0.41 0.24 0.8 0.03 1.02 0.1 0.18 870 855 550 (635)
Alloy E4 0.42 0.28 0.75 0.07 1.04 0.12 0.17 870 855 550 (634)
Alloy E5 0.4 0.25 0.74 0.24 0.96 0.1 0.18 870 855 550 (631)
Alloy E6 0.43 0.26 0.74 0.02 1.07 0.02 0.22 870 855 550 625)
Alloy R 0.47 0.32 0.74 2.80 1.06 0.20 0.19 875 850 555 -
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Fig. 4. Compositional comparison results between the designed alloys and original alloys in the dataset. (a) Spearman correlation coefficient. (b) Elemental content changes

in Alloy D1 compared to the optimal alloy in the original dataset.

model, predicted upon only 1000 iteration cycles, a process which
is considered efficient and high-throughput. Table 3 shows the de-
signed composition and treatment parameters, named Alloy D1, D2
and D3, where the prefix D stands for Designed. The uniqueness
of the compositions of the three newly designed alloys with re-
spect to those of six existing steels with a comparably high fatigue
strength (Alloys E1-E6, wherein Alloy E1 exhibits the highest fa-
tigue strength and the prefix E stands for Existing) was assessed
by calculating the Spearman correlation coefficient, and the results
are shown in Fig. 4(a). Alloy D3 was found to have a composition
(and processing route) comparable to an existing steel, but alloys
D1 and D2 showed a relatively low correlation with existing steels,
indicating the novelty of the design results. Alloy D1 presents the
widest difference from closest existing steel grade (alloy E1) with

real changes in the C, Ni and Mo contents, as shown in Fig. 4(b).
In addition, it is interesting to note that more Cu was introduced
in Alloy D1 compared to the nearest existing steel grade Alloy E1.
Hence, Alloy D1 was chosen for experimental validation. The re-
sulting experimental steel grade is called Alloy R, where the prefix
R refers to Realization.

Fig. 5 shows the S-N curves for Alloy R as well as the reported
data for the closest reference steel Alloy E1. It can be clearly ob-
served that most S-N points for Alloy 1 are located above those of
the original optimal alloy, indicating the excellent fatigue perfor-
mance of the newly designed alloy. The fatigue property is highly
sensitive to the sample and testing conditions. Therefore, the fa-
tigue strength of Alloy R is 645~690 MPa according to the results
of five run-out specimens. The upper limit of the experimental
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results (690 MPa) is consistent with the predicted results, which
proves the high accuracy of the model. The lower limit of the ex-
perimental results (645 MPa) is still slightly higher than the best
performance of the alloys from the original dataset (643 MPa for
Alloy E1). This validation result robustly indicates that the SML
TR&GA model has the ability to efficiently and accurately design
new steel compositions and treatment conditions leading to high
rotating bending fatigue strength values.

4. Discussion
4.1. Different prediction models for the SML framework

Selecting the optimal algorithm that adapts to the characteris-
tics of the database used in this research is an important aspect
of building high-performance Al models. Before GBR was used for
tensile property prediction, several algorithms were tested, includ-
ing GBR, rbf-SVR, XGB, RF and MLP. Most of these models per-
form very well for tensile property prediction and can be further
used to build TR models. The mean results from 100 partitions in
these five models are shown in Table S3. Given three-dimensional
small data, two algorithms were employed for building TR models,
including rbf-SVR and linear-SVR. The rbf-SVR shows a relatively
low R? (86.5% (+11.3%)) for the validation set, which probably rep-
resents model overfitting to some extent. Although the relation-
ship between fatigue strength and the combination of three ten-
sile properties is difficult to quantify with a general equation, it
is probably not as complicated as quantifying its internal mecha-
nism, so a complex algorithm may not be an appropriate choice.
The linear-SVR shows a high R? (92.9% (+1.6%)) for the validation
set. Therefore, it was used to map the relationship between tensile
properties and fatigue strength for small datasets. It is evident that
linear-SVR is an optimal algorithm that presents little tendency of
overfitting.

Fig. 6(a) and (b) show the mean R? and MAE of the validation
set for different TR models. Given the linear SVR for the TR model,
all five algorithms accurately predicted fatigue strength, and their
R? values exceeded 92% with low standard deviations, wherein
GBR performed best. Therefore, based on quantitative analysis, GBR
and linear SVR were selected as the optimal algorithms for the ten-
sile and TR models in the present work, respectively. Fig. 6(c) and
(d) show the results of different NonTR models accordingly. It is
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apparent that all algorithms show extremely low R? and high MAE
values for the validation set, especially MLP, which represents a se-
rious overfitting problem. XGB has a better relative performance
than the other four algorithms and was selected as the optimal al-
gorithm for the NonTR models.

4.2. Effect of the amount of fatigue training data on fatigue strength
prediction

As shown in the Results section, the predictive power of the TR
model, even when trained with only 32 fatigue data sets, is already
remarkable. To further analyze the tolerance of the model predic-
tions to the number of fatigue data available for training, this de-
pendence is examined in more detail for both the TR and NonTR
models.

Fig. 7(a) and (b) show the effects of the number of fatigue
data sets for the validation set on the mean R? and MAE of the
NonTR and TR models. For the NonTR models, the CNN and SML
model results demonstrate an evident sensitivity to the amount
of fatigue data. The mean accuracy of the NonTR models increases
rapidly with increasing the amounts of training data sets from 32
to 98 samples. As already pointed out in Section 3.2, for 32 fa-
tigue strength training data sets, the CNN and SML models have
extremely low R? and high MAE values with large standard de-
viations, especially in the CNN model, which is clearly unstable
and has a higher requirement for the amount of data. Doubling
the number of datasets for training to 66 leads to a strong in-
crease in R? of to approximately 75% and a decrease in the MAE
to approximately 30 MPa, but error bars remain large. When the
amount of fatigue data is in the range from 147~328 samples,
the SML NonTR model shows increasing advantages compared to
the CNN model, as shown in Fig. 7(a) and (b). Based on the re-
sults of Fig. 7 is can be concluded that in case of direct model-
ing of the fatigue strength from the chemical composition and key
thermal treatment conditions, i.e., the NonTR models, regardless of
whether the model is based on deep learning or machine learn-
ing, a large number of data sets (in this study > 148 datasets) is
needed. In case of high costs per dataset such a large number of
datasets may not be available. From this we may conclude that an
insufficient number of fatigue up to now formed the critical issue
for fatigue strength-oriented alloy design based on traditional Al
methods.

The situation is rather different in case of the TR models for
which, R? and MAE remain almost constant with relatively small
error bars over the entire range of 32~328 fatigue data sets. It
should be noted that there is a significant difference between the
SML and CNN TR models due to different transfer mechanisms.
First, the CNN framework has slightly lower stability in the range
of 32~66 data points. This means that although the CNN TR model
has higher tolerance for extremely small sample databases com-
pared to traditional Al models, 50 sample or less are still insuf-
ficient for training a highly stable CNN TR model built on ran-
dom partitioning of training and testing sets. Even so, the opti-
mal CNN TR model can still adapt to extremely small datasets
with 32 fatigue data points, as shown in Fig. 7(c). However, the
analysis shows that the TR network is always better than that
of the CNN NonTR model for all numbers of training sets used,
but in particular for smaller training data sets, which is consis-
tent with a previous study [51]. Clearly the presence of an in-
termediate model fed by a larger number of (cheaply to acquire)
quasi-static mechanical data (i.e., YS, UTS and EL) can make a
large and positive contribution to linking the chemical composi-
tion and processing conditions to the target rotating bending fa-
tigue strength even trained on a small number of validation data
sets.



X. Wei, S. van der Zwaag, Z. Jia et al.

TR

X

&

oz 90 -
85

GBR SVR XGB RF

0 E NonTR

=TT

SVR  XGB

GBR

Acta Materialia 235 (2022) 118103

b
%3)30 [ TR

=20l

<

210
0

Fig. 6. Mean R? and MAE results for (a, b) TR and (c, d) NonTR models using different algorithms.

196 229 262 295 328

NonTR SML
20+ — TR SML
NonTR CNN
—— TR CNN

4565 98 131 164 196 220 262 295 328
Amount of data

GBR SVR XGB R MLP
(é) 80 M NonTR
60 -
ECJ 40 -
2 20 -
0
GBR SVR XGB MLP
(b) 80 NonTR SML
70} ——TRSML
NonTR CNN
I ——TRCNN
Q‘f 60 ”
= 50} 20l S|
m 18
<40 =]
=S 14
301 /196 229 262 295 328,
20—
10t

32 65 98 131 164 196 229 262 295 328
Amount of data

30
-+ NonTR SML
-+ TR SML
++ NonTR CNN
TlgnCN—N 1 25
<
o
120 =
84
<
115 =
110

32 65 98 131 164 196 229 262 295 328

Amount of data

Fig. 7. Comparisons between the TR and NonTR models given different amounts of fatigue data. (a) Mean R?. (b) Mean MAE. (c) Optimal R? and MAE.

4.3. Different loss functions for NonTR models

Changing the loss function may benefit model training and ob-
tain better predictive ability, which approach has been attempted
in several studies, such as the work about physics-informed neural
networks (PINN) by Zhang et al. [52]. In this section, the perfor-
mance of NonTR models using different loss functions in SML and
CNN framework was investigated. The max-error of 4 output val-
ues (YS, UTS, EL and Fatigue strength) was set as the loss, named
Tensile+FS. In the SML framework, the NonTR models with differ-
ent data amount were constructed using the random forest (RF) al-

gorithm. Their performance in the validation set were further com-
pared with the models only using the fatigue strength error (FS)
as the loss. Very close performance was found in two cases, as
shown in Fig. 8(a) and (b). Besides, the corresponding NonTR mod-
els were also constructed using CNN, and the results are shown
in Fig. 8(c) and (d). The model parameters and training details of
NonTR models using 4 output values error are the same with that
of using the fatigue strength error as the loss. Similar with the re-
sults of NonTR models using RF, the accuracy of both two types of
models is also basically the same when using different loss func-
tions. Meanwhile, a strong dependence of model performance on
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the amount of data is found for SML and CNN NonTR. NonTR mod-
els using modified loss functions are also greatly sensitive to the
data amount. Although changing the loss function is a promising
approach, the NonTR models performed unsatisfactory as a result
of an insufficient amount of data.

4.4. The function of TR on fatigue strength prediction

It should be noted that the architecture of the TR model plays
an important but not easily discernable role in establishing a re-
liable and robust TR model. Therefore, the performance of the TR
layer is analyzed in more detail. Fig. 9(a) shows the pair plot cor-
responding to YS, UTS, EL and fatigue strength for the dataset. For
this high quality of the input data, a strong correlation between
three quasi-static tensile properties and bending fatigue strength
exists. This correlation ultimately forms the basis for accurately
predicting the fatigue strength.

The importance of the three tensile properties was further eval-
uated in the SML TR model by an RF algorithm, and the results are
shown in Fig. 9(b). The YS property has the highest contribution
to the prediction of fatigue strength in the SML TR model. This
YS contribution exceeds 50%, followed by UTS (46.6%) and is only
marginally affected by the EL (3.1%).

In order to further clarify the advantages of TR layer, which can
consider the comprehensive relationship between tensile proper-
ties and fatigue strength, a conventional empirical equation linking
fatigue strength to UTS only was used for comparison. The tradi-
tional empirical equation used in this research was proposed by
Pang [12,14] and named PM-TR in Fig. 9(c) and is given below:

o;=(C—P.UTS)-UTS (4)

where C and P are two fitting constants, o is fatigue strength
and UTS is the ultimate tensile strength. The comparison of the

predictive power of the best fitting PM-TR model linking the fa-
tigue properties and the UTS and that of the TR model is shown in
Fig. 9(c) as a function of the number of data sets available. Clearly
the TR model taking three quasi-static properties into account per-
forms better than the PM-TR model, which considered only UTS
and had a mathematically simple expression. Also, Fig. 9(c) shows
an increasing gap for MAE and R? between the TR and PM-TR with
an increasing amount of data. It indicates the increasing advan-
tages of the TR layer in proposed framework with amount of data
increased.

In addition, it should be mentioned that the TR model differs
from the above traditional empirical equations. It is a more com-
plex translator from the composition and process parameters to
the fatigue strength. The mechanical properties (YS, UTS and EL)
are only intermediate information, which can help the models to
find the correct relationship from the composition and process to
fatigue properties with less data demand. Taken together, the func-
tionality and applicable characteristics of the TR layer are clearly
defined. The TR layer in the framework results in better flexibility
and robustness for data amount than traditional methods.

4.5. The function of TR on alloy design

The importance of input features on fatigue strength predic-
tion was further investigated by the calculation of MDA, as shown
in Fig. 10(a). The MDA results show that the composition/process
parameters have similar relevance for the tensile properties and
the fatigue strength. Tempering temperature (TT), C and Cr are the
three most important features. The importance of TT and C on ten-
sile and fatigue strength was to be expected since the tempering
temperature significantly influences both the matrix and precipi-
tates, and C is also the most important strengthening element. The
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between the TR and PM-TR models given different amounts of fatigue data.

importance of Cr may have been a little magnified in this analy-
sis because of the inclusion of high-Cr stainless steel data sets in
this dataset. The observation confirms the earlier and statistically
logical conclusion that dataset should not be used for designing
alloys that are extremely different from the composition range of
the training dataset.

To further clarify the efficiency of TR models for the alloy
design, alloy design was also conducted using NonTR models,
which were also trained based on the same small data set with
the TR models. In addition, alloys were also designed using ML
models trained with the whole original dataset. Based on the
relevance analysis results presented in Fig. 10(a), the tempering
temperature and C content for the alloys designed by both the

10

NonTR and the TR models are compared in Fig. 10(b) and 10(c),
respectively.

As shown in Fig. 10(b), the TT of alloys designed on TR mod-
els with extremely small datasets are concentrated in the range
of 550~560 MPa, which is basically consistent with the design
results of NonTR models with whole data. Additionally, similar C
content results are shown for the comparison between the alloys
designed via NonTR models with all data and TR models with ex-
tremely small datasets, as shown in Fig. 10(c). The results indi-
cate that with the help of TR layer, an effective alloy could be de-
signed based on only tens of fatigue data, and the design results
are basically equivalent to the results of traditional Al models with
hundreds of fatigue data for training. However, for NonTR models
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based on extremely small datasets, the design results show a dif-
ferent distribution of both C content and TT compared to TR mod-
els. A much wider variation in C content (0.34~0.49 wt.%) was ob-
tained in the design results from NonTR models, indicating that a
limited amount of data could significantly decrease the reliability
and efficiency of the designs generated by traditional Al models
(Fig. 10(c)). In summary, this comparison fully proved that the TR
model used in this research is a more effective method for alloy
design with much less data amount requirement than traditional
Al methods.

To further analyze the mechanism of TR layer leading to more
effective design, distributions of designed alloys by TR/NonTR mod-
els are plotted in YS-UTS space in Fig. 10(d). It can be observed
that the predicted YS and UTS of alloys designed by TR models
are concentrated in the region of high levels, which are similar
with that designed by models trained using the whole dataset. Ac-
cording to the general relationship between tensile strength and
fatigue strength summarized by previous studies [12], high level of
YS and UTS could lead to high fatigue strength. However, the de-
signed results by NonTR models exhibit relatively low predicted YS
and UTS. They may not be valuable and reliable for optimal fatigue
strength. Additionally, Alloy D1, Alloy R and existing alloys (Alloys
E1 to E6) are also plotted in Fig. 10(d). Most of alloys designed
by TR models are superior to existing alloys, while the results by
NonTR models are generally inferior. Alloy D1 exhibits high predic-
tions for YS (1149 MPa) and UTS (1253 MPa), being confirmed by
the experimental validation results of Alloy R (YS: 1155 MPa; UTS:
1289 MPa).

In a word, the discussion above indicates that the TR layer do
play an important role in alloy design and lead to more effective
alloy design based on only tens of samples.

1

4.6. The portability analysis for the two transfer learning framework

In fact, lack of data is not a special example only for fatigue. It
is a generic problem for various cases, which greatly limited the
development of Al strategies in the field of materials science. Al-
though this research only focused on the fatigue strength predic-
tion and related alloy design, the TR framework proposed in this
research is expected to be used for other properties with long test-
ing time or high cost, such as creeping, hydrogen embrittlement,
etc. For fatigue, the traditional theory provided a clear guidance
that fatigue strength has strong relation with tensile properties. So,
the TR layers could be directly established between tensile prop-
erties and fatigue strength. However, when the TR framework is
transfer to other cases with unclear mechanism, it would be hard
to find the appropriate traditional properties to transfer from. E.g.,
it is difficult to decide using YS, fracture toughness or both of them
as the transfer source of hydrogen embrittlement. So, in order to
clarify the portability of the two TR framework proposed in this
research, more analysis was made in this section to evaluate the
robustness of the TR models on wrong transfer sources.

Firstly, in addition to YS, UTS and EL, two more mechanical
properties, i.e., the hardness and the impact toughness, were fur-
ther added as the optional transfer source. Compared to the basic
model with only YS, UTS and EL as transfer source, Fig. 11 shows
the R?2 and MAE changes in the validation set for the TR models
using different transfer sources.

It is generally believed that impact toughness (IT) exhibits a rel-
atively lower correlation with fatigue strength compared to other
quasi-static mechanical properties used in present work. Mean-
while, the EL contributes the least to the prediction in the basic
model. Hence, when the EL and IT were used as the intermedi-
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ate properties for the TR models, the accuracy of the TR models
markedly decreased, as shown in Fig. 11. Interestingly, there are
significant differences between the two TR frameworks. The CNN
TR model shows a lower degree of accuracy decline compared to
the SML TR, which indicates it is more robust and has a greater
relative tolerance when faced to an ambiguous mechanism such as
using less relevant intermediate properties.

Based on the basic model, when adding the hardness param-
eter (intermediate property highly related to fatigue strength) to
the transfer layer, the accuracy of two TR frameworks slightly im-
proved. And when IT was further added into the transfer layer, the
performance of CNN TR model was further improved significantly,
while the SML TR model basically maintained the same perfor-
mance level as the basic model (or the TR model adding the hard-
ness). The result further demonstrates the robustness of CNN TR.

Summarizing when transferring the TR model for other prop-
erty predictions or steel designs, the SML TR framework is ex-
pected to be more suitable for applications with a relatively clear
physical connection between the target and source properties, as it
then has a superb strong robustness for the number of datasets
available for the model training and validation. In contrast, the
CNN TR framework has a stronger tolerance for the unclear con-
nection with the source properties, but it needs relatively more
data than SML TR framework to come to accurate predictions.

Conclusion

To provide an efficient and portable method for fatigue strength
prediction and fatigue strength oriented alloy design of metal ma-
terials, in the present work, a transfer (TR) framework including
Conventional Neural Network (CNN) TRs and Simplified Machine
Learning (SML) TRs has been proposed which utilizes the correla-
tions between quasi-static tensile properties and fatigue strength.

(1) A comparative study of the TR framework and NonTR models
shows that given the high-dimensional features of the com-
positions and processing parameters of steels, transfer learn-
ing requires fewer (expensive) data points than traditional Al
strategies for training a reliable model to predicted the fa-
tigue strength, provided that a large yet cheap data base linking
the quasi-static mechanical properties to steel composition and
processing parameters is available. Guided by the strong corre-
lations between tensile properties and fatigue strength, the TR
framework accurately predicted fatigue strength upon training
with only tens of fatigue data points. Using easily and cheaply
to acquire tensile property data to greatly decrease the demand
for expensive fatigue data, the TR framework can greatly reduce
both the time and monetary costs of data accumulation that
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are required for building an accurate fatigue property predic-
tion model.

(2) Combined with the evolutionary algorithm, the SML TR frame-
work was further used for fatigue strength oriented alloy de-
sign. Experimental validation shows the high reliability of this
TR framework for alloy design, especially for the carbon content
and tempering temperature, which is proved to have strength
relation with fatigue strength. The designed alloy by TR models
was validated for improved fatigue strength.

(3) Although this research only focused on the fatigue strength pre-
diction and related alloy design, the TR framework proposed in
this research is expected to be used for other properties with
long testing time or high cost. The SML TR framework is more
suitable for the application with a relatively clear mechanism
between the target and source properties, but it has extremely
strong robustness for extremely small data amount. In contrary,
the CNN-TR framework has stronger tolerance for the unclear
mechanism or source properties, but it needs relatively more
data than the SML TR framework.
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