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Abstract—Efficient neural coding is a theoretical
model in sensory neuroscience, positing that biological
systems maximize information transfer to the brain while
minimizing neural resources. While this concept has
been extensively studied in the context of human speech
perception and the human brain, its applicability to
non-human vocalizations remains relatively unexplored.
This study applies sparse coding to bat echolocation
calls and demonstrates that the resulting kernel rep-
resentations exhibit properties consistent with efficient
coding principles, namely high compactness, sparsity,
and functional specialization. Distinct kernel activation
profiles were found to encode different echolocation call
shapes and identify anomalous, irregular calls, indicating
that the model captures biologically relevant features
and exhibits sensitivity to deviations from stereotyped
call structure.

These findings underscore the advantages of sparse
coding over traditional signal representations for mod-
eling bat vocalizations and align with evidence that
efficient coding strategies are shared across mammals,
tuned to species-specific vocal patterns and conspecific
vocalizations. This work improves the interpretability
of animal auditory processing and provides a compu-
tational basis for modeling mammalian vocalizations,
thereby supporting further research in decoding animal
signals and interspecies communication.

I. INTRODUCTION

Human auditory perception excels at extracting mean-
ingful information from speech, despite variability in vocal
tract anatomy, prosody!, speaking rate, dialects, and en-
vironmental noise in the raw acoustic signal across speak-
ers and listening conditions [1-4]. Traditional linguistic
theory posits that discrete units, such as phonemes? and
morphemes®, construct meaning; yet these units do not
correspond to separable regions of the continuous acoustic
waveform [5-7] [8]. A single phoneme may span multiple
time frames, while a single frame may contain acoustic cues
from multiple overlapping phonemes due to coarticulation®
[8, 9]. This many-to-many mapping between acoustic fea-
tures and linguistic units suggests that the auditory system
employs an alternative, more efficient strategy to encode
language structure rather than relying solely on discrete
symbolic segmentation at the perceptual level [8-10].

Thus, it has been hypothesized that biological systems
have evolved a highly efficient representation of sensory
input to maximize the information conveyed to the brain
and minimize the metabolic resources necessary for pro-
cessing it [11]. In this view, called the efficient coding
hypothesis, all perceptual content, including natural sounds,
is expressed as sequences of neural spikes, where the number
of spikes is kept as small as possible to reduce neural
activation costs [11]. In the auditory system, this implies
that early structures such as the cochlea and auditory nerve

Lprosody refers to the rhythm, stress, and intonation patterns of
speech.

2phonemes are the smallest sound unit in a language that can
distinguish meaning, such as /p/ vs. /b/ in “pat” and “bat”.

3morphemes are the smallest grammatical unit in a language that
carry meaning, such as the root fly or the suffix -ing.

4 coarticulation is the phenomenon where phonemes overlap in time,
causing the articulation of one phoneme to be influenced by surround-
ing phonemes. For example, in the words “tea” and “too,” the /t/ sound
is produced differently: in “tea” the tongue is closer to the front of the
mouth because of the front vowel /i/, while in “too” it is articulated
further back due to the rounded back vowel /u/.

N 85 T T T T T T

I

<

> 80 1
c

g ’ T ox

275+ -
[

i

o] 70 [ 7
9

E 65 1 1 1 1 1 1

8 0.00 0.01 0.02 0.03 0.04 0.05 0.06

(a) Input '

(b) Reconstruction

(c) Residual Energy (dB): 20:logio(|Residuall)

Mean Residual Energy: -34.80 dB

Time (s)

Fig. 1: Sparse coding decomposition of a bat echolo-
cation call. Reconstruction used 200 spikes from 13 distinct
kernels out of a 32-kernel dictionary. The top panel shows
kernel activations as spikes (circles) over time and centroid
frequency; point size reflects amplitude, and color denotes
each of the 13 unique kernels. The original waveform (a)
in gray, its sparse reconstruction (b) in green, and the
residual (c) in red demonstrate how a small, specialized set
of kernels efficiently captures complex acoustic structure,
with mean squared error 1.918 x 10~* and signal-to-noise
ratio 20.62 dB.

are specifically optimized to produce sparse, information-
rich representations of sound, filtering and compressing the
acoustic signal before it reaches higher processing stages
[12].

One computational approach aligned with this principle
is sparse coding, where a signal is represented as a linear
combination of only a few active elements chosen from a
larger pool of possible components (Fig. 1). These elements,
often called kernels or basis functions, are learned from data
and tend to capture recurring patterns within it, allowing
the input signal to be broken down into a small set of
non-zero kernel activations [13]. Smith and Lewicki (2006)
used sparse coding to test the efficient coding hypothesis in
human speech perception [14].

This study extends Smith and Lewicki’s approach for
human speech to non-human vocalizations by focusing on
the bat species Rhinolophus affinis. Bats provide a com-
pelling test case for the efficient coding hypothesis due
to their highly specialized audio-vocal systems [15, 16].
Most species, namely laryngeal echolocators, have evolved
the ability to emit ultrasonic vocalizations, often exceeding
100 kHz, and analyze the returning echoes of their voice for
spatial navigation and hunting prey — an adaptation called
echolocation [15]. In addition to echolocation calls, bats are
gregarious animals, living in complex social colonies, and as
such produce various social calls to communicate distress,
agony, isolation, territorial and foraging behaviors, etc [15].

Thus, to evaluate if sparse coding models trained on
bat calls adhere to the principles of the efficient coding
hypothesis, we pose the following questions:

RQ 1. What spectral characteristics define the structure
of the kernels learned through the sparse coding of bat



vocalizations?

RQ 2. To what extent do sparse representations achieve
greater coding efficiency compared to traditional signal repre-
sentation methods, such as Fourier and wavelet transforms?

RQ 3. To what degree do the learned kernels show functional
specialization, with clusters of similar activation profiles
encoding specific variations in bat calls?

RQ 4. To what extent do the learned representations ex-
hibit sparsity, with a high prevalence of inactive (near-zero)
coefficients across the kernel dictionary?

To test whether efficient auditory coding applies to R.
affinis, we followed Smith and Lewicki’s methodology, us-
ing matching pursuit and gradient ascent to learn kernel
dictionaries. Unlike Smith and Lewicki, however, we lacked
access to species-specific biologically informed filters such as
gammatone filters [17] or reverse correlation filters of real
auditory responses, as such resources are unavailable for
bats. Therefore, we tested the efficient coding hypothesis
from a computational standpoint, analyzing the resulting
kernels for reconstruction sparsity and kernel specialization
by using unsupervised learning clustering techniques.

Our findings suggest that the learned kernel dictionaries
do exhibit specialization, with some kernels consistently re-
constructing certain call features, while others correspond-
ing to background noise. Moreover, clustering analyses re-
veal distinct subtypes of echolocation calls and irregular
echolocation structures that may correspond to behavioral
or recording anomalies. These results support the notion
that sparse, efficient representations can emerge from non-
human vocalizations and support the idea that auditory
coding strategies are shared across mammalian species [18—
21]. The long-term implications include improved explain-
ability in computational models of animal vocalizations and
a potential foundation for interspecies communication.

II. RELATED WORK

The human auditory system processes incoming sound by
splitting it into its constituent frequencies using a small
spiral-shaped organ in the inner ear, called the cochlea
[22]. The cochlea is covered by a sensitive membrane with
many hair cells vibrating at location-specific frequencies,
effectively encoding sound on a continuous logarithmic scale
[22, 23]. Johannesma (1972) modeled this process using cat
revcor functions® to derive a mathematical approximation
of cochlear frequency decomposition, called the gammatone
filters [17].

Sparse Coding in Auditory Processing. Later, Lewicki
(2002) demonstrated that sparse coding kernels learned on
natural sounds (animal vocalizations and non-biological en-
vironmental noise) show a striking similarity to the gamma-
tone filters, and thus to the auditory nerve fibers [12]. Smith
and Lewicki (2006) expanded this into a mathematical
model of human auditory processing by optimizing a set of
kernels on a large corpus of human speech recordings. This
involved gradient ascent to refine kernel parameters, and
matching pursuit, a greedy algorithm that iteratively selects

Sreverse correlation (revcor) functions are mathematical represen-

tations of how a neuron transforms a stimulus (input sound, such as
white noise) into its output; corresponds to the auditory nerve fiber
responses.

the kernel that reduces the residual energy the most. The re-
sulting kernels (short waveform fragments) again resembled
cochlear filters, alongside auditory nerve fiber frequency
bandwidths of cat revcor filters and yielded greater coding
efficiency than conventional signal representations [14].

Collectively, these findings suggest that early auditory
coding adheres to information-theoretic principles, ap-
proaching a mathematical optimum, and as such can be ap-
proximated computationally. Moreover, they further imply
that the peripheral auditory system and speech production
properties of spoken language have co-evolved to maintain
efficient processing. Put simply, humans speak the language
they can hear, and hear the language they can produce.
Auditory Selectivity in Echolocation Bats. However,
this principle of auditory tuning to one’s own vocaliza-
tions is not unique to humans. Echolocating bats, which
rely heavily on precise auditory processing for perception
and survival, exhibit striking neural specialization for con-
specific® vocalizations [15]. Wohlgemuth and Moss (2016)
showed that midbrain neurons of the bat Eptesicus fuscus
respond selectively to natural echolocation calls but show
weak or nomnspecific responses to synthetic sounds with
matching acoustic characteristics [24]. Similarly, Park et
al. (2021) managed to produce receptive fields (STRFs)
similar to those of real bat neurons using an artificial neural
network trained on bat social calls, further supporting that
bat auditory processing is highly optimized for conspecific
vocalizations [25].

Together, these studies reveal a consistent pattern: mam-
malian auditory systems prioritize efficient coding of same-
species vocalizations, where both humans [4] and bats ex-
hibit neural tuning to the natural statistics of their own calls
and can discriminate real vocalizations from pseudonatural
sounds. The present study extends prior work by focusing on
how such selectivity emerges in the early auditory structures
(the cochlea and auditory nerve), independent of higher-
level neural processing. It examines what patterns in the call
structure alone may account for this selectivity. In contrast
to previous bat studies relying on black-box models, we
apply sparse coding to test whether bat vocalizations are
intrinsically optimized for sparse representation, as shown
for human speech. This approach provides greater inter-
pretability and a computational basis for animal auditory
processing.

III. METHODOLOGY

The following section details the method used to address
the sparse coding of bat vocalizations, first by introducing
the dataset and the preprocessing steps, then delving into
the theory behind the sparse representation model and the
metrics used to evaluate the structural properties (RQ 1),
compression efficiency (RQ 2), functional specialization
(RQ 3), and activation sparsity (RQ 4) of the learned
kernels.

A. The ChiroVox Dataset

To derive the auditory kernels of bat vocalizations, we uti-
lized the ChiroVox database, the largest open-access bat call
library to date, including 5793 recordings from 255 species
[26]. Among these, R. affinis was selected for this study for

6other member of the same species
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Fig. 2: Echolocation call spectrograms of two Rhi-
nolophidae species. Both species display characteristic
call structures with constant-frequency (CF) components
surrounded by brief frequency-modulated (FM) sweeps in
the onset and offset, typical of rhinolophid echolocation.
(a) Two CF-FM R. affinis echolocation calls with dominant
harmonic estimated at 72.9 kHz, with visible secondary
harmonics appearing as faint horizontal lines. (b) Two CF-
FM R. pearsonii echolocation calls with estimated dominant
harmonic at 53.2 kHz.

having the highest number of publicly available recordings
(262). This species belongs to the group of CF-FM bats,
known for producing long-duration echolocation calls with
a broadband.” frequency-modulated (FM) onset and offset
surrounding a long narrowband® constant-frequency (CF)
middle segment (see Fig. 2). These vocalizations are highly
stereotyped across individuals, which reduces intra-species
acoustic variability. This consistency was particularly ad-
vantageous due to the limited available training data, as it
allowed the training algorithm to converge more rapidly and
similarly across runs, thereby supporting reproducibility
despite the constrained data conditions.

To better contextualize the efficiency and sparsity of
the learned representations, we included a closely related
species, Rhinolophus pearsonii, from the same family. R.
pearsonii often coexists with R. affinis in overlapping habi-
tats, including shared cave systems [27]. Its echolocation
calls exhibit a similar CF-FM structure but differ in domi-
nant frequency content: most of the call energy in R. pear-
sonii is concentrated between 57.6-70.0 kHz, compared to
70.0-88.5 kHz in R. affinis [28]. This acoustic resemblance
(Fig. 2), combined with their ecological proximity, makes
R. pearsonii a suitable comparative case for assessing the
generalizability of the R. affinis-trained model to sister-
species vocal patterns.

B. Bat Call Analysis

To derive a shared dictionary from R. affinis call record-
ings, all signals must be standardized to a common sample
rate. However, selecting this rate involves a trade-off: higher
sample rates preserve high-frequency detail, including bio-
logically relevant features, while lower sample rates reduce
computational cost and accelerate training.

One such biologically important feature is the harmonic
structure of CF-FM vocalizations. Harmonics are frequency

"broadband refers to a wide range of frequencies present simultane-
ously in a sound, resulting in a complex, spectrally rich signal.

8narrowband refers to a sound with energy concentrated in a rela-
tively small frequency range, typically producing a tonal, pure-tone-like
signal.

components at integer multiples of a fundamental fre-
quency. In such calls, the dominant (most energetic) har-
monic corresponds to the CF component, which falls within
a narrow, species-specific range and plays a central role in
echolocation and prey detection. Higher-order, fainter har-
monics, as shown in Fig. 2 (a), improve spectral resolution,
helping bats distinguish their target in cluttered environ-
ments [29]. Consequently, preserving these harmonics in the
training data is essential for accurately modeling auditory
processing.

Thus, spectral content was analyzed to identify the high-
est frequency of interest with the following metrics:

1) Peak Frequency fpeak

The frequency with the highest spectral energy across the
signal duration, identifying the dominant harmonic:

fpeak = arg ]Icnax (Z Sez(f, t))

where S, (f,t) is the signal power spectrogram.

2) Mazimum Frequency Above Noise Floor fa.

The highest frequency at which the maximum dB-scaled
power across time exceeds a noise threshold 7, correspond-
ing to secondary call harmonics:

P(f,t) > n}

fmax = max {f ‘ max S

where:
o SIB(f 1) = 10logo(Sez(f,t) + €) is the dB-scaled
spectrogram,
o ¢ = 107!2 is a small constant to avoid logarithm of
zZero,

e 7 = —30dB is the noise floor threshold.

Recordings were downsampled following the Nyquist cri-
terion, ensuring the sampling rate was at least twice the
first overtone of the dominant harmonic. Lastly, bat call
segments were categorized into two groups based on their
peak frequency (fpeak): social calls with fpeax < 25 kHz and
echolocation calls with fpeal > 25 kHz.

C. Denoising with Butterworth Filters

Environmental and anthropogenic noise were present
in some recordings. To ensure that the resulting kernels
captured only the structure of bat calls, recordings were
denoised using a 5th-order Butterworth bandpass filter with
a high-pass cutoff frequency at 0.7 X fcak to isolate the CF-
FM call from low-frequency noise.

This approach was well suited for R. affinis echolocation
calls, as noise interference is minimal in the ultrasonic
range, with scarce natural sources emitting at such high fre-
quencies. Alternatives such as standard denoising libraries
were considered but found to degrade recording quality by
attenuating calls, due to a lack of domain-specific tuning,
as shown in Fig. 3.

D. Bat Call Detection

Bat calls were detected using an energy-based method
adapted from [30], as illustrated in Fig. 4. Recordings were
first segmented into 50 ms chunks and high-pass filtered with
a cutoff frequency of 0.7 X fpeax to suppress low-frequency
noise. Within each segment, short-term energy was com-
puted over 6.25 ms windows (1250 samples at 200 kHz), with
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Fig. 3: Denoising performance on R. affinis echolo-
cation call. Spectrograms showing (a) the original audio
recording, (b) Butterworth highpass-filtered version, 5th
order, cutoff at 70% of the dominant harmonic frequency,
and (c) Python-denoised version using the noisereduce
library. The clear separation between environmental noise
(<50 kHz) and the bat’s call (>50 kHz) makes the Butter-
worth filter particularly effective for denoising. Conversely,
the Python denoising library lacks biological context about
relevant call features, preserving low-frequency noise while
attenuating bat call components.

50% overlap, yielding 15 energy values per segment. These
values were normalized such that the median energy within
each segment was set to 0dB. A call was detected if the
maximum energy within the segment exceeded a threshold
of 3dB.

Since the original method was designed for FM calls, an
adjustment was made to accommodate the CF-FM struc-
ture of R. affinis calls, where most energy is concentrated
in the central CF component. To capture the less energetic
preceding and trailing FM sweeps, a 5 ms buffer was added
before and after each detected call. Overlapping detections
were merged into a single segment.

These segmented calls served as the input for the sparse
coding analysis described next.

E. The Sparse Coding Problem

Sparse coding seeks to represent a time-domain signal
z(t) € RT as a linear combination of a small number
of atoms selected from an overcomplete dictionary D =

{&5(t)}yer:
K
x(t) =~ Zak ¢, (1), with K < [T,
k=1

where:
e aj € R are scalar activation coefficients (or amplitude
magnitudes),
o ¢, (t) is the k-th selected atom (kernel) from the
dictionary D = {¢~(t)}yer,
e vk = (Tk,wk,sk) € T' is a parameter tuple specifying
the time shift 75, center frequency wyg, and scale sy,
e I is the index set defining all possible combinations of
parameters for atoms in the dictionary,
e K is the number of active atoms used in the sparse
approximation, typically much smaller than |T'|.
The sparse coding objective is to find the best set of
K atoms and coefficients that minimize the reconstruction

€rror:
2

min
{akv'Yk}kK:1

st. K < [T

K
o(t) = ) ar ¢y (1)
k=1

2

Here, |- |2 denotes the standard Euclidean (L2) norm. Since
the problem is combinatorial and NP-hard, approximate
methods are used to find sparse solutions.

F. Matching Pursuit

One such solution is Matching Pursuit, a greedy algo-
rithm for approximating a signal by iteratively selecting
dictionary atoms that best match the current residual [31].
Despite the sparse approximation alternatives [32], Match-
ing Pursuit was chosen to maintain consistency with Smith
and Lewicki’s methodology.

Let the initial residual be R()(t) = x(t). At iteration k,
the algorithm proceeds as follows:

1) Atom selection

_ (k—1)
P = arg max ’<R , )

)

where (-,-) denotes the inner product on R7.
2) Coefficient computation

ax = (R*~Y, ¢).
3) Residual update

R® () = RE=D () — ay, ¢ (t).

The process is repeated until either a fixed number of
atoms K has been selected or the residual energy ||[R™*)||2
falls below a specified threshold.

G. Compression Efficiency

Compression efficiency was evaluated by measuring re-
construction fidelity using signal-to-noise ratio (SNR) and
bitrate, assuming 64-bit coefficients without time quan-
tization (frame-level precision). This analysis compared
matching pursuit reconstructions with standard signal rep-
resentation methods, such as Fourier and Daubechies DB4
wavelet transforms, across both R. affinis and R. pearsonii
recordings.

H. Kernel Analysis Metrics

To analyze the spectral properties of the learned kernels
for RQ 1, three metrics were employed:

1) Bandwidth

Defined as the frequency range containing 90% of a
kernel’s spectral energy, this metric was used to assess
kernel specialization (RQ 3) in encoding narrowband CF
components or broadband FM sweeps, in line with the CF-
FM structure of R. affinis calls.

2) Centroid Frequency

Calculated as the weighted mean frequency of a ker-
nel’s power spectrum, this metric indicated if kernels were
concentrated in the ultrasonic range characteristic of Rhi-
nolophidae echolocation.

3) Spectral Skewness

Lewicki’s findings suggest that dictionaries trained on
both natural noise and vocalizations tend to produce asym-
metric sinusoidal shapes with rapid onsets and slow decays,
whereas training on vocalizations alone yields more symmet-
ric shapes. Skewness was used to quantify whether kernels
optimized on bat vocalizations exhibited similar symmetry
patterns.
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Fig. 4: Energy-based call detection for R. affinis. Audio recording is divided into segments based on its duration.
Energy is calculated over 50% overlapping windows within each segment and normalized by subtracting the global median
energy across all segments. Calls are identified where energy exceeds a 3 dB threshold and padded with 5 ms to make
sure to capture FM sweeps. Panels display (a) the raw waveform with detected calls highlighted in red, (b) full recording
spectrogram with detected calls, and (c¢) spectrogram of an isolated call after preprocessing.

1. Bat Call Variation Clustering

To assess kernel specialization (RQ 3), K-means cluster-
ing was applied to bat call kernel activation profiles. Each
bat call segment i was represented as a vector x; € R32,
where x;[k] denotes the Lj-normalized count of kernel k
activations during reconstruction.

For the scope of the present analysis, clusters were as-
sumed to be convex. To mitigate issues related to distance
concentration [33], only kernel activation counts were used,
excluding amplitude and temporal shift dimensions, to keep
the feature space dimension minimal. To visually inspect the
presence of meaningful low-dimensional structure, Uniform
Manifold Approximation and Projection (UMAP) was ap-
plied to assess whether the data formed distinct clusters
or appeared uniformly distributed, which would suggest
a lack of inherent cluster structure. However, due to its
known limitations [34], UMAP results were used solely as a
qualitative aid and not as a basis for clustering decisions.

Since no ground truth labels were available, clustering
quality was instead evaluated across different reconstruction
depths and values of K with the Elbow Method, Silhouette
Score, Davies-Bouldin Index (DBI), and Calinski-Harabasz
Index (CHI).

J. Sparsity Metrics

To evaluate sparsity, call segments were represented by
their activation count vectors (see Sec. H). Sparsity was
assessed using three measures: the Gini index, the Hoyer
index, and the (p,q)-norm with p = 0.5, = 2, following
the recommendations from Hurley and Rickard [35].

Let x € R™ denote the non-negative, Ll-normalized
activation vector for a segment.

1) Gini Index

1

n —

G(x) =

: <n_|_1_2.Z?ﬂ(n*‘l—i)'QL'(i))7

D1 T

where x(;) are the entries of x sorted in ascending order.
Higher values indicate greater sparsity.

2) Hoyer Index
Vi
vn—1"

which ranges from 0 (dense) to 1 (maximally sparse).
3) (p,q)-Norm Ratio (withp =0.5,q=2)

H(x) =

[1%lo.5
%Il

5(0.5,2)(X) =

where |x[|, = (3, |mi|p)1/p. This ratio favors sparsity with
near-zero values when few large coefficients dominate.

Sparsity metrics were computed per segment and sum-
marized across the dataset to assess overall sparsity. In
addition, the raw distributions were visualized as qualitative
confirmation.

IV. EXPERIMENTAL SETUP

Sparse Dictionary Learning. Segmented bat call record-
ings, resampled to 200 kHz were used for six separate
trainings to derive sparse dictionaries of 32 auditory kernels
each, varying in kernel initialization size (400 samples and
100 samples) and training subset (all calls, echolocation-
only, or social-only). The 100-sample initialization follows
Smith and Lewicki’s approach, while the 400-sample size
accounts for differences in sample rate and call duration
between human speech syllables [36] and bat vocalizations
[37]. Kernel number was chosen for consistency with Smith
and Lewicki’s original work [14], since dictionary cardinality
alone is not a reliable measure of diversity [38]. Instead,
applying the kernels convolutionally already guarantees
that the effective dictionary becomes highly overcomplete
[39], known to produce more efficient representations with
higher sparsity and lower reconstruction error [40, 41].

Matching Pursuit Reconstruction. The echolocation
training set was encoded using Matching Pursuit and the
echolocation-trained dictionary (400 samples) with a rate of
18,000 kernels per second for high reconstruction precision.
The reconstruction leveraged code developed by Dimme



de Groot (supervisor), which was used both for dictionary
learning and signal reconstruction [42].

Data Preprocessing Pipeline and Analysis. Data pre-
processing and result analysis were performed using the
following open-source libraries, with the full Python script
available on the 4TU repository [43]:

o Librosa [44, 45] and Soundfile were used for audio file
handling and signal processing.

e NumPy [46], SciPy [47, 48], scikit-learn [49, 50], and
Pandas [51, 52] supported statistical analysis and data
manipulation.

o Matplotlib [53, 54] was used for visualizing experimen-
tal results.

V. RESULTS

Below, we present the key findings from the analysis of
the learned sparse representations.

A. Spectral Characteristics of the Learned Kernels

Addressing RQ 1, the spectral properties of the learned
kernels were analyzed in terms of their spectral centroid and
bandwidth, as summarized in Table I. The spectral skewness
across all kernels exhibited a mean of —0.0020 with a low
standard deviation of 0.0472, indicating highly symmetric
spectral shapes.

The spectral centroids of the kernels spanned a broad
frequency range, from as low as approximately 10 kHz to
above 85 kHz. Bandwidths also varied widely, reflecting
differences in spectral selectivity among kernels.

Notably, two distinct spectral groups emerged:

1) Narrowband high-frequency kernels with cen-
troids above 70 kHz and very narrow bandwidths,
often below 1 kHz (e.g., kernels 1, 6, 8, 9, 15, 17).

2) Broadband low-frequency kernels with relatively
low centroids and very broad bandwidths, some ex-
ceeding 30 kHz (e.g., kernels 28, 29, 30, 32)

Other kernels displayed intermediate bandwidths and
centroids across the mid-frequency range.

Figure 5 shows the kernel activation counts for the first
70 most energetic spikes in the matching pursuit reconstruc-
tion, illustrating the relative usage of individual kernels. It is
important to note that increase in representation precision
shifts the preference from narrowband to broadband kernels,
as shown by the activation counts for the full 18,000 ker-
nels/s reconstruction, provided in Appendix B.

B. Reconstruction Fidelity and Compression

Figure 6 presents fidelity-rate curves comparing Match-
ing Pursuit (MP) spike coding using R. affinis-trained
kernels, Fourier transforms, and Daubechies wavelets for
echolocation calls of R. affinis and R. pearsonii. The testing
dataset comprised 1000 calls per species.

As shown in the figure, MP coding for R. affinis achieves
significantly higher reconstruction fidelity than both Fourier
and wavelet methods, reaching an SNR of 31 dB at higher
bitrates. For R. pearsonii, Fourier outperforms MP with the
R. affinis-trained dictionary. The narrow 95% confidence
intervals (under 1 dB) confirm the reconstruction fidelity
results for RQ 2 are consistent.

TABLE I: Spectral centroid and bandwidth (BW) of
the learned kernels. Kernels show diverse frequency se-
lectivity, ranging from narrowband high-frequency to broad-
band low-frequency responses.

Kernel Centroid BW Centroid BW
(ID) (kHz) (kHz) (kHz) (kHz)
1/2 72.14 0.78 72.76 14.06
3/4 73.77 12.50 69.96 14.06
5/6 73.11 13.28 73.58 1.56
7/8 77.18 11.72 72.92 1.56
9/ 10 73.11 0.78 85.57 7.81
11 /12 76.08 11.72 73.92 14.06
13 /14 79.59 3.13 77.45 4.69
15 / 16 67.83 0.81 64.73 2.79
17 /18 80.72 0.78 76.05 25.78
19 / 20 84.38 7.81 75.17 17.19
21 /22 61.07 8.89 87.36 10.16
23 /24 9.97 3.13 89.21 17.97
25 / 26 65.56 21.09 85.45 14.06
27 / 28 85.58 17.97 13.26 43.75
29 / 30 60.41 40.63 74.99 30.47
31 /32 83.79 29.69 16.88 35.16
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Fig. 5: Kernel activation across R. affinis echolo-

cation calls. Activation counts for a dictionary of 32
kernels (top), initialized at 400 samples each, trained on
6026 recordings using matching pursuit with 10,000 gra-
dient ascent iterations and expansion/trimming every 50
iterations. The histogram shows total kernel activations
across reconstructions of 70 spikes. The most frequently
used kernel is a tonal, narrowband high-frequency kernel,
likely corresponding to the CF component of the call, which
dominates energy and is captured early in matching pursuit
iterations. This suggests kernel functional specialization and
high information content, as the CF component plays a
central role in echolocation navigation.

C. Variations in Bat Call Structure and Kernel Specializa-

tion

To address RQ 3, clustering was performed on ker-
nel activations extracted from bat call recordings. Clus-
tering quality was evaluated across varying reconstruc-
tion depths (top n spikes per recording, with n €
{100, 150, 200, 300, 400, 500, 1000}) and numbers of clusters
k € [2,40], using the Silhouette score, Davies—Bouldin
Index, and Calinski-Harabasz Index. The optimal clustering
parameters were selected as n = 200 spikes and k& =
clusters (see Fig. 7).

Two alternative clustering strategies were considered:

1) Encoding rate-based encoding: Clustering using

variable spike counts defined by a target encoding
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Fig. 6: Fidelity—rate curves for spike, Fourier, and
wavelet coding of R. affinis and R. pearsonii calls.
Trade-offs between coding cost and signal fidelity are shown
for 1000 test echolocation calls per species, comparing
Matching Pursuit (MP) spike coding with R. affinis-trained
kernels (blue), Fourier transforms (orange), and Daubechies
wavelets (green). Solid lines indicate R. affinis; dashed lines,
R. pearsonii. Shaded regions denote tight (<1 dB) 95%
confidence intervals (CI), with mean CI widths histogram
in the bottom right. MP coding consistently outperforms
Fourier and wavelet, achieving up to 31 dB SNR for R.
affinis at high bitrates. Lower SNR for R. pearsonii with
the same kernels reveals that species-specific acoustic dif-
ferences hinder cross-species reconstruction. This demon-
strates the advantage of species-tailored spike coding in
representing bat calls.

rate, preserving longer call sequences (1-2 sec) better
and capturing trends such as gradual decreases in call
frequency and variations in call repetition rates, such
as shorter inter-call intervals.

2) Amplitude-weighted aggregation: Clustering
based on kernel activations weighted by their
amplitudes.

Among these, the fixed spike count approach was pre-
ferred, as visualization of individual calls was more inter-
pretable for analysis purposes, despite encoding rate-based
clusterings showing comparable performance on quantita-
tive metrics. The amplitude-weighted aggregation method
yielded significantly poorer cluster quality.

Figure 8 illustrates the clustering results from the fixed
spike count method, with grouped calls exhibiting similar
dominant harmonics and spectral shapes. Some clusters
mainly contain sequences of calls, but most group individual
echolocation calls. Notable cluster features include calls with
prominent secondary harmonics, calls with smeared pat-
terns and vertical line artifacts, likely of acoustic origin, and
calls characterized by very narrow constant-frequency (CF)
components. Lastly, clusters comprising empty recordings
and anomalous, irregularly shaped calls were also identified
and are shown alongside all 27 clusters in Appendix C.
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Fig. 7: Clustering metrics and UMAP projection
of kernel activations. Clustering was performed on
the top n kernel activations per recording, with n €
{100, 150, 200, 300, 400, 500, 1000}. The selected reconstruc-
tion depth n and number of clusters k were chosen based
on the values where the Silhouette score (Sil.), Calinski-
Harabasz Index (CHI), and Davies-Bouldin Index (DBI)
agreed and indicated strongest cluster quality (metrics
shown on the right).The UMAP embedding on the left
offers a qualitative visualization of cluster assignments. The
silhouette coefficient plot at the bottom right provides more
detailed information on cluster cohesion for the chosen
clustering.
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Fig. 8: Auditory kernel-based clustering captures call
diversity. Five clusters (Cl to C5) are shown, each row
displaying the six most central calls with scaled durations.
Clustered calls exhibit similar dominant harmonics and
shapes. C2 groups call sequences, while others group in-
dividual calls. C1 has prominent secondary harmonics, C4
shows smeared calls with vertical line patterns (likely acous-
tic artifacts), and C5 contains very narrow CF components.
These patterns suggest auditory kernel coactivation profiles
may encode call structure variations, potentially conveying
information about the calls’ broader behavioral context.

D. Representation Sparsity

For RQ 4, kernel activations per cluster were visualized
in Fig. 9, where large white regions indicate near-zero kernel
activations. On average, clusters exhibited a Gini coeffi-



1 W<c5%
=" [ 80%
(]
[
. W< 42% 70%
€
< 43% °
r’\‘ W< 46% | | W< 6%
-« o,
o~ W<88% 60%
o| HM<58% l
8 < 60% 50%
— = 63%
~— [ | - l<— 50%
0,
o m— ™ 40%
- < 53%
3 m m 30%
8 W< 64% - o
W< 47% J. .ol 20%
- [ | H<43%
W< 62% ] . 10%
27 || | - 0%
1 Kernel (1 to 32) 32

Fig. 9: Cluster sparsity. Qualitative visualization of kernel
activation distribution for 20 dB (SNR) reconstructions
across clusters, with annotated contributions above 40%.
Clusters exhibit a mean Gini coeff. of 0.8745, indicating that
few kernels dominate within the same cluster, implying that
many calls share similar underlying acoustic structures. This
supports the idea that bat vocalizations are naturally struc-
tured for compact representations, following the biological
principle of efficient sensory coding. The observed sparsity,
therefore, provides evidence for the biological relevance of
the representation method.

cient of 0.8745, suggesting that a small subset of kernels
dominates the activation pattern within each cluster. This
implies that many calls share similar underlying acoustic
structures.

This qualitative observation was supported by the quan-
titative sparsity metrics, Gini, Hoyer, and PQ, computed
per recording. Aggregated results for reconstructions with
200 and 2400 spikes are presented in Table II. All met-
rics confirm high sparsity levels across both species, with
consistently higher sparsity observed for R. pearsonii. It is
worth noting, however, that for high-bitrate reconstructions
at 18,000 kernels/s, R. pearsonii activation profiles show
only two consistently active kernels. The rest remained
rarely used, which explains the higher sparsity scores for
R. pearsonii, despite lower reconstruction fidelity.

TABLE II: Sparsity metrics at varied reconstruction
depths. The table shows mean + standard deviation of
Gini, Hoyer, and PQ metrics calculated on 1000 record-
ings per R. affinis and R. pearsonii, indicating very high
reconstruction sparsity, with R. pearsonii being consistently
sparser.

Metric 200 kernels 2400 kernels
Gini (aff.) 0.985 + 0.008 0.997 + 0.001
Gini (pea.) 0.994 + 0.004 0.998 + 0.001
Hoyer (aff.) 0.960 + 0.028 0.981 +0.011
Hoyer (pea.) 0.996 + 0.013 0.993 + 0.006

PQ (aff., p=0.5,¢=2)
PQ (pea., p=0.5,9=2)

(3.50 £0.31) x 1073
(6.941.5) x 1074

(2.3+£0.1) x 1074
(1.0£0.1) x 1074

VI. RESPONSIBLE RESEARCH

This section highlights the core principles of responsible
research that have guided this study, focusing on repro-
ducibility, replicability, ethical conduct, and transparent
acknowledgment of limitations throughout the research pro-
cess.

A. Reproducibility and Open Science

This study adheres to the FAIR (Findable, Accessible,
Interoperable, and Reusable) principles [55] to ensure re-
producibility and transparency. In line with these principles,
all project code and data have been made publicly available
under an open-source license: the code developed by the
author is hosted on the 4TU repository [43], while the
supervisor’s code by Dimme de Groot is openly accessible
on GitHub [42]. The dataset used, ChiroVox, is also open-
source and fully documented, with all recordings unique
identifiers included in the code to facilitate reproducibility
[43].

This work employs widely-used open-source libraries,
including librosa, pandas, numpy, soundfile, scipy, scikit-
learn, matplotlib, and others, all of which are freely available
and clearly cited to encourage reuse. Additionally, to ensure
consistent results across runs, all randomization processes
within the code are seeded with the fixed values 42 and 84.

B. Replicability

In this study, we selected a bat species characterized by
highly stereotyped vocalizations to enhance the reliability
and consistency of training convergence across multiple
runs. This choice was deliberate given the limitations in
the available training data, as stereotyped calls reduce
variability and facilitate more stable model training despite
the relatively small dataset, thereby supporting future re-
producibility and replicability.

However, the dataset has inherent limitations. Most
recordings in the ChiroVox library, nearly 75%, were col-
lected in controlled environments such as closed spaces or
from hand-held bats [26], where specimens were often han-
dled for species identification. As a result, these recordings
may not fully reflect typical bat behavior in the wild. In
particular, some calls may represent agonistic or distress
vocalizations rather than natural communication, poten-
tially biasing the data. Because recordings often involve
direct interaction with the bats or their habitat, ethical
considerations naturally arise. Given that these recordings
were conducted by researchers within the scientific commu-
nity, we place trust in the established ethical standards and
practices upheld by those responsible for the data.

Lastly, the replicability of this research for R. affinis
is challenging due to the scarcity of comprehensive bat
vocalization datasets. Nonetheless, the analytical pipeline
developed here is generalizable and can be applied to closely
related sister species to assess whether similar patterns and
results hold, offering a way to validate and extend our
findings beyond the current dataset.

C. Limitations

An important limitation of this study is that the model
was trained and evaluated on the same dataset, with the
test data being a subset of the training data. Therefore,
assessing overfitting or generalization beyond the specific
R. affinis recordings is not possible. This design choice
was driven by practical constraints. Specifically, curating
a separate test set that matched the spectral and meta-
data distribution of the training set would have required
considerable additional time and manual effort. Moreover,
retraining the model was not feasible within the scope of



the Bachelor Research Project, as a single training cycle on
DelftBlue, including queue waiting time, typically required
approximately one week. Given these constraints, a separate
evaluation phase was considered out of scope. Consequently,
reconstruction fidelity and compression efficiency metrics
may be influenced by overfitting. Nonetheless, this setup
still provides meaningful insight into the spectral structure
and specialization of the learned kernels, which was the
primary aim of this work.

D. Use of Large Language Models

In the preparation of this manuscript, large language
models (LLMs) were employed to assist with tasks such
as drafting, grammar correction, and improving the clarity
and flow of the text. While AI tools supported the writing
process, all the conceptual content, research ideas, analysis,
and interpretations remain the original work of the author.
The use of LLMs did not influence the scientific conclusions,
and the author retains full responsibility for the accuracy
and integrity of the research presented.

VII. Di1scussION AND CONCLUSIONS

This study explored the spectral characteristics, compres-
sion efficiency, and potential biological relevance of auditory
kernels trained on R. affinis vocalizations. This section
places the present findings within a broader scientific con-
text and outlines several directions for future development.

A. Symmetry and Spectral Structure: Insights from Kernel
Shapes

The distribution of kernel shapes exhibited symmetry
consistent with Lewicki’s findings, which showed that au-
ditory kernels trained on animal vocalizations alone tend to
be symmetric. Based on this, we expect that training on a
combination of bat vocalizations and natural environmental
sounds present in bat habitats might yield representations
that closely reflect bat auditory processing. However, due
to the absence of revcor data or other biologically-informed
filters, we are currently unable to evaluate this hypothesis.

Analysis of kernel usage across matching pursuit itera-
tions revealed a pattern consistent with the energy struc-
ture of bat calls. Narrowband, high-frequency kernels were
predominantly selected in the early iterations of matching
pursuit, indicating that these kernels capture the most
energetic, constant-frequency (CF) components of the call.
In later iterations, the increased selection of kernels with
broader bandwidth suggests a shift toward reconstruct-
ing frequency-modulated (FM) sweeps. Additionally, three
kernels exhibited centroid frequencies below 20 kHz and
very broad bandwidths, likely involved in reconstructing
background noise.

B. Species-Specific Coding: Sparse, Tuned, and Non-

Generalizable
Reconstructions of R. pearsonii calls showed lower fi-
delity and higher sparsity, with only two kernels consis-
tently active across reconstructions. This indicates limited
inter-species generalization of kernels trained on R. affinis,
despite the two species’ phylogenetic and acoustic prox-
imity [27]. The finding aligns with established evidence

that bat auditory systems are finely tuned to conspecific
vocalizations, particularly the dominant harmonic of the CF
component, which is species-specific [24, 25].

C. Beyond the Signal: Capturing Call Variation and Degra-
dation

Expert evaluation is required to determine whether the
observed clusters capture biologically meaningful variation
in bat calls. However, several hypotheses can be proposed.
Clustering based on consistent encoding reconstruction rate
might be detecting Doppler shift compensation, an adap-
tation allowing some bat species to lower their call fre-
quency during flight to counteract the frequency increase
caused by their own motion, and thus help them lower
the call echo to their optimal auditory range [56]. Since
this phenomenon manifests as a downward trend in call
sequences [56] and takes place only during flight [56], au-
ditory kernel-based clustering might potentially distinguish
resting calls from in-flight vocalizations. Additionally, clus-
ters containing temporally smeared calls likely reflect echoes
or increased distance from the microphone, suggesting that
auditory kernels can capture degraded or noisy vocaliza-
tions. Given that R. affinis is widespread in Southeast Asia
and includes numerous subspecies [37], it would be valu-
able to assess whether kernel-based clustering distinguishes
among them. Unfortunately, for now, the ChiroVox dataset
lacks subspecies annotations, preventing us from comparing
clustering results against ground truth labels. Although
the biological significance of the identified call structure
variations remains inconclusive, they pose a compelling case
for further investigation by specialists.

D. Future Directions

Several additional directions remain for directly extend-
ing this work. First, the method could be applied to a
larger dataset of social calls, as currently their number was
too limited to derive meaningful results, and the focus had
to be shifted to echolocation calls alone. For future explo-
ration, applying the method to other bat families or animal
species might further confirm its broader generalizability.
Another line of development is to examine the conditional
distributions of kernel co-activations, or how the presence
of certain kernels determines the presence (or lack thereof)
of others, as this could potentially offer insights into the
information gain of certain call features. Finally, expert
evaluation and long-term integration of the present results
with biologically-informed auditory models, if such are de-
veloped, could significantly improve results interpretability
and give invaluable insight into the biological relevance of
the current model.

E. Broader Implications and Final Remarks

Despite present limitations, results are highly encourag-
ing, uncovering a fascinating and largely unexplored area
of research. Demonstrating the generalizability of audi-
tory kernels is a crucial step toward revealing the funda-
mental information units of the raw acoustic waveform.
This progress can not only advance the development of
artificial, explainable models capable of synthesizing and
modifying mammalian vocalizations but also opens exciting
possibilities for deeper insights into animal communication.



This work lays a foundation for computational modeling
of animal auditory processing, thereby supporting future
research in decoding animal vocalizations and interspecies
communication.
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APPENDIX A
LEARNED DICTIONARIES
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Fig. 10: Learned Dictionary 1. Kernels, initialized at
400 samples and trained on a combination of social and
echolocation calls.
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Fig. 11: Learned Dictionary 2. Kernels, initialized at 400
samples and trained on echolocation calls only.
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Fig. 12: Learned Dictionary 3. Kernels, initialized at 400
samples and trained on social calls only.
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Fig. 13: Learned Dictionary 4. Kernels, initialized at
100 samples and trained on a combination of social and
echolocation calls.
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Fig. 14: Learned Dictionary 5. Kernels, initialized at 100
samples and trained on echolocation calls only.
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Fig. 15: Learned Dictionary 6. Kernels, initialized at 100
samples and trained on social calls only.

APPENDIX B
KERNEL ACTIVATIONS
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Fig. 16: Kernel activation counts across high-fidelity
reconstructions Shows the relative kernel usage for re-
constructions with an encoding rate of 18000 kernels/s.
Notably, the most frequently used kernels exhibit lower
centroid frequency and broad bandwidth, which hints that
they reconstruct FM sweeps and background noise.



APPENDIX C
ALL CLUSTERS

69.7 kHz| 69.7 kHz 69.7 kHz[69.7 kHZ[69.7 kHz,
— =¥ | r v
60 ms 160 ms 60 ms

717 kHz [ 71.7 kHz [ 71.7 kHz | 71.7 kHz
v v =% =¥

72.1kAz
67ms | 67ms | 67ms | 67ms | —Toems
732KkHz | 73.0KHz | 73.2kHz | 73.0KkHz | 73.2kHz
50
100 |_62ms | 60ms 85 ms 74 ms 62 ms 73 ms 73ms 73ms
70.3 kKHz 70.5 kHz 7L5KHz | 715kHz | 7L5kHz | 71.5KHz | 71.5KHz |70.3kHz
so [T = -~ = w3 L
100 |_50ms 74 ms 56 ms 56 ms 48ms | 48ms | 48ms | 39ms
50 (838 kHz| 83.8kHz | 84.0kHz | 85.7kHz 84.0kHz | B4.0KHz | 85.7khHz 85.7 kHz
100 |77 ms | 9oms 85 ms 110 ms 110 ms 94 ms 110 ms 110 ms
o re=y EF-fF Tra a0 darl.
50 | 81.8KkHz | 818kHz | 81.8kHz |816| = 8L6KHz 81.8 kHz 81.8KkHz | 81.BKkHz -
100|110 ms 160 ms 110ms | 60 160 ms 128 ms 160 ms 110 ms
68.4 kHz 68.4 kHz 68.2kHz | 68.4KHz | 68.2KkHz |66.2kHz|68.4KHz| 68.4 KHz
50 1M1 AR T A ARAAAA MMM AMM N AT mAmAmmASAA A MmN
100 |__616ms 960 ms 553ms | 610ms | 603ms | 455ms | 479ms | 710 ms

Y =

79.7 kHz 79.9 kHz 79.9kHz  [80.1kHz| 79.7kHz | 79.7 kEz 79.7 kHz| 79.7 kHz

100 110 ms 110 ms 60 ms 80 ms 85 ms 60 ms 85 ms
65.8 kHz | 65.8 kHz 65.8 kHz 65.8 kHz
“ pasaiell il - — | —
100 60 ms 83 ms 60 ms 67 ms
78.3 kHz 78.3 kHz 78.5 kHz 76.8 kH;
i ] | | ="
50
100 85 ms 56 ms 60 ms 60 ms 60 ms 56 ms
68.0 kHz |" 68.0 kHz 68.0 kHz 68.0 kHZ\ |68.0 kHz|  68.0 kHz 68.0 kHz 68.0 kHz
W= s =\ — —
1oo |__72ms |- 66ms 77 ms 70 ms 77 ms 70 ms 06
50 [82.6 kHz|82.8 kHz| 82.8 kHz 82.4 kHz 82.6 kHz 82.4 kHz 82.4 kHz 82.6 kHz
100 60 ms 60 ms 85 ms 79 ms 85 ms 110 ms 110 ms 60 ms
P o i 1 s N L R ; 2
— 50 (85.0 kHz| 83.4 kHz 84.6 kHz |85.0 kHz 83.0 kHz 85.0 kHz 83.0 kHz 85.0 kHz ;
N
2
AIé 100 56 ms 82 ms 79 ms 59 ms 96 ms 77 ms 139 ms 77 ms g
> 69.9 kHz 1 69.9 kHz 69.9 kHz 70.1 kHz 69.9kHz| + 70.1kHz + g
é 50 "~ - ¥ 609 | 699 v W= | e v =
3 5
S’ 100 109 ms 210 ms 76 76 198 ms 197 ms 109 ms 193 ms 3
iy Q
Y EEers : T EV-F EEY 2
50 81.2 kHz 81.2 kHz 81.2 kHz 81.2 kHz 81.2 kHz [81.2 kHz| 81.2 kHz 81.2 kHz g
3
100 110 ms 85 ms 85 ms 105 ms 85ms 60 ms 85 ms 110 ms a
73.2 kHz 73.2 kHz 73.2 kHz 73.0 kHz 72.9kHz 14 =
[EaRag aspgias i paaaginay mmmmmMmmmmm™m A
50 £ic o e B S
100 210 ms 122 214 ms 140 118 187 ms 382 ms 453 ms -
73.6 kHz 73.6 kHz 74.0 kHz| 73.6 kHz |73.8 kHz| 73.4 kHz 73.6 kHz 73% kHZ 0.4
50 =
100 122 ms 122 ms 75 ms 86 ms 75 ms 122 ms 122 ms 122 ms
68.2 kHz 68.4 kHz|68.2 kHz|68.4 kHz|68.2 kHz| 68.4 kHz 68.2 kHz 68.4 kHz
WV e Y v ¥
100 110 ms 61lms | 60ms | 60ms | 60 ms 128 ms 66 ms 160 ms
74.6 kHz 74.6 kHz 74.2 kHz 74.8 kHz 74.8kHz | 74.2 kHz 74.6 kHz 74.6 kHz
B S P A S
50
100 160 ms 110 ms 110 ms 110 ms 110 ms
50 [93.6 kHz(93.0 kHz| 93.7 kHz |93.9 kHz|92.2 kHz| 93.4 kHz 91.2 kHz 92.0 kHz
100 110 ms | 110 ms 160 ms 110 ms | 110 ms 160 ms 310 ms 210 ms
70.9 kHz | 70.9 kHz 70.7 kHz 70.9 kHz 70.7 kHz | 71.1 kHz 71.1 kHz 71.1 kHz
i R o S
50
100 63 ms 63 ms 80 ms 96 ms 67 ms 57 ms 79 ms 79 ms
f SRR . e
ngn it malm gt el masmagamg af o
50 81.6 kHz 81.4 kHz 81.6 kHz 81.6 kHz 81.6 1.6 kHZ 81.8 81.6 02
100 510 ms 410 ms 610 ms 710 ms 285 760 ms
73.0 kHz|73.0 kHz| 91.4 kH®m 85 2ucHes - )
= . B

f MM nfEsR e e oMT 6 fF I} 1
geiiL M

50 79.7kHz  [80.1kHz| 79.3 kHz 79.9 kHz 80.1 80.3 kHz
100 |_260ms 360 ms 210ms | 260 ms 360 ms 198 | 160 460 ms
AAmEMOmEaAn mapmammyannamnnnmm nnnnmmnmmammn
50 812kHz | 812 [81.1kHz| 81.1kHz 81.1 kHz 81.1kHz 8Ll |8Ll
100 660 ms 855 ms 310 | 238
0.9 kHz 80.1kHz &
50 —
100 60 ms 35ms |26ms 60 ms 60 ms
M T Mmooy ATAY A -
50 (80.7 kH] 80.7 811 kHz
160 ms 360 ms 110 | 146 |64 110 | 160 810 ms U
Time (ms)

Fig. 17: Clustering results. The top eight most central
recordings per cluster (row) are shown. Clusters 20, 23
and 26 seem to be grouping together empty recordings and
irregularly-shaped calls, respectively.
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