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Abstract—Von Neumann-based architectures suffer from costly
communication between CPU and memory. This communica-
tion imposes several orders of magnitude more power and
performance overheads compared to the arithmetic operations
performed by the processor. This overhead becomes critical for
applications that require processing a large amount of data.
Computation-in-Memory (CIM) leveraging memristor devices
in the crossbar structure offers a potential solution to tackle
this challenge. However, support for the integer data type is
lacking in CIM approaches as most solutions operate on a
single/few bits only. This paper proposes a new organization of
the periphery (next to memristor crossbar) to compute matrix-
matrix multiplication (MMM) at the tile level. More precisely,
the analog additions performed in the crossbar is complemented
with additions performed in the digital periphery. In this mixed
analog-digital system, digital additions are performed in a way
that only the minimum size of adders are required - this is to
reduce the latency of the digital periphery as much as possible.
In addition, the design is customized to the number of ADCs as
well as datatype sizes to support different possible scenarios. The
results show that our organization reduces energy and latency up
to 50x and 3 X, respectively, compared to the reference design.

I. INTRODUCTION

Big data applications such as neural networks and databases
are being widely used in different domains. These applications
require processing of large amounts of data that is usually
located far away from the processing units. Consequently,
the transport of data between the processing unit(s) and the
memory leads to huge energy consumption and long latencies.
This greatly diminishes the usefulness of von Neumann com-
puters (to process the data) [1]-[3]. A solution to overcome
this is to employ the Computation-in-Memory (CIM) approach
that proposes the utilization of (new) technologies that allows
for both storage and computing within the same (storage)
structure. Such technologies include: resistive RAM (ReRAM)
[4], phase-change memory (PCM) [5], and spin-transfer torque
magnetic RAM (STT-RAM) [6]. Furthermore, they provide
additional benefits such as high density, near-zero standby
power, and non-volatility [7]. Although the memory crossbars
built from these devices are usually low power, the peripheral
circuits needed to control the crossbar can completely alleviate
the gains. As an example, many applications such as Neural
Networks (NNs) and Convolutional Neural Networks (CNN) at
least require to integer (number) computations. However, since
only limited levels can be stored in one memristor cell, the
(bit-)vector representing the number should be distributed over
multiple cells, which requires some extra processing outside

the crossbar to get a meaningful result. Therefore, great care
must be taken in the design of these peripheral circuits to
really deliver efficient in-memory computing systems.

Recent researches in the field of CIM can be categorized
as follows. First, the majority of researchers are focusing on
improving device characteristics such as performance, energy,
and endurance considering different technologies [8], [9].
Second, some works investigate different ways to perform
computation inside the crossbar [10]-[12]. Third, researchers
are focusing specifically on mapping NN and CNN appli-
cations to memristor crossbars to serve as accelerators for
these applications. [13]-[15]. However, no implementation
details are provided how to deal with the post-processing of
integer datatypes in the digital peripheral circuits surrounding
the crossbar. Until now and to the best of our knowledge,
only a single publication has addressed this challenge [16].
In this work, the authors perform the first stage of matrix-
matrix multiplication in the crossbar and continue performing
the remaining additions in the analog domain through use
of analog buffering and accumulation units. The advantage
is the reduction of analog-to-digital (ACD) operations, but at
the cost of a higher-precision ADC unit. This is worsened
when considering larger crossbars or larger integer word sizes.
Moreover, analog computing is more fragile to noise compared
to digital computing, which is critical for applications that
require high accuracy.

In this paper, in order to support the unsigned integer
datatype, we propose a new adder structure in the periphery
next to the memory crossbar. The proposed design utilizes
minimum-sized adders customized based on technology-driven
restrictions, e.g., the number of active crossbar rows per
addition. Furthermore, our approach takes into account the
number of ADCs employed by the crossbar. Finally, the
structure is not restricted to a single fixed integer word size
and can flexibly support different word sizes without hardware
changes. The contributions of this paper are the following:

e a new design is proposed to aid an in-memory crossbar
to perform additions targeting integer matrix-matrix mul-
tiplication (MMM).

« the proposed design is customizable in order to support
a varying number of ADCs.

o the proposed design is evaluated in terms of energy
and performance using our in-house simulator configured
with the parameters defined by technology and synthe-
sized designs.



8L

wL

BL
R /g\/
. P
.
a5 !
Ref signal Ref signal
Switching voltage SA,
HE b@

Switching voltage

a. Programming to LRS
b. Programming to HRS

Fig. 1: Pinched hysteresis v-i curve considered as Memristor’s
fingerprint [17], 1T-1R crossbar structure and Bipolar switching

The remainder of this paper is organized as follows. In
Section II, the state-of-the-art which is categorized in different
levels of CIM abstraction will be explained briefly. In addition,
the way that analog computation performed in the memristor
crossbar is described briefly. Section III presents the orga-
nization of the addition unit. In Section IV, the evaluation
model and the experimental results will be discussed. Finally,
Section V concludes the paper.

II. BACKGROUND
A. Memristor devices

Memristors are devices that could achieve multiple distinct
resistive levels; in the case of 2 resistive levels — High or
Low — either of these sates can represent one of the binary
values ‘0’ or ‘1’. Once the device obtains either of the states,
it would be able to keep its state for a relatively long period
of time without consuming energy, therefore, memristors are
considered as non-volatile memories (NVMs). Switching a
device state from one state to the other can be performed in
either a unipolar or a bipolar manner; in unipolar switching,
the specific values of voltage (or current) are used to make the
device to switch and in the bipolar switching, different polarity
of voltage (or current) needs to be applied to the device in
order to switch. To read the data from memristive devices, a
signal (voltage or current) is applied to the cell and the value of
the output signal determines the data stored in a cell. The read
signal must be small to prevent the cell from being disturbed.
Memristors can be used in a crossbar network with a structure
of 1TIR. Fig 1 shows the I-V curve of the memristor which
is a pinched hysteresis under sinusoid input [17], a crossbar
structure, and bipolar switching.

B. Memristor-based computation circuits

Computation-in-Memory (CIM) is an approach to overcome
the memory wall problem by reducing the distance between
data and computation within the same memory array by
exploiting new memory technologies. Within this approach, we
can clearly distinguish two directions by looking at where the
results of the computation is being produced. CIM-A is used to
denote when the results are produced within the memory array
and CIM-P is used to denote when the results are produced in

the periphery [18]. A brief description of CIM-A and CIM-P
are presented in the following:

o CIM-A: The main advantage of CIM-A is the achiev-
able high bandwidth of computations as data is stored
and computed within the same memory array. However,
storing the results in the same memory also means an
increased amount of write operations within the array.
The latter is detrimental due to the limited endurance of
current-day NVMs. Moreover, performing computations
within the array requires significant modifications to the
(analog) array as well as the (digital) periphery. [19], [20]
are examples of CIM-A approaches.

e CIM-P: In comparison to CIM-A, the computational
bandwidth of CIM-P approaches is reduced — still, it is
much higher than approaches that need to transfer the
data out of the memory tile. However, as less writes to
the memory array are needed, the endurance issue can
be avoided. Furthermore, the memory array requires far
fewer modifications. Moreover, changes in the (digital)
periphery are easier to implement.

C. In-memory architecture

A few promising studies design application-specific ac-
celerators enjoying CIM concept mostly for NNs. ISAAC
[13] designs an accelerator for convolutional neural networks
using ReRAM devices to exploit the efficiency of in-memory
computing. PRIME [14] targets NN as an application and
proposes an architecture that enables the authors to configure
some portion of memory as a computation unit according
to the requirements. To control the memristor-based memory,
new in-memory instructions were proposed [15] based on the
SIMD execution model. However, none of the aforementioned
works provide implementation details to show how to support
integer MMM in the tile-level.

To the best of our knowledge, CASCADE [16] is the
only work providing implementation details to support inte-
ger numbers for MMM. In this work, by employing analog
buffers, some parts of partial sum and accumulation happen
in an analog way, which helps to reduce the number of
ADC conversions. Although the number of conversions are
decreased leveraging this approach, the resolution of ADCs
should be increased, which imposes energy overhead that
grows exponentially [13]. Furthermore, as the number of
columns contribute to the analog partial sum and accumula-
tion increased, the relative difference between voltage/current
levels of output reduced, which requires more complex ADCs.
Equations 1 and 2 demonstrate a set of equivalent resistance
for one column as well as several columns when they are
attached to each other, respectively.

Req €L = {RoffaRonaRon/Qv ~~7Ron/n}

1
n : number of crossbar rows 0
Req el = {Roff, Ron, Ron/Q, ey Ron/(’m * n)}
n : number of crossbar rows 2)

m : number of connected columns
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Fig. 3: Analog addition inside the crossbar

According to the equations, the relative difference between
resistance levels is reduced more as the datatype size increases.
In addition, despite the reference architectures that can perform
precise MMM, it was assumed that approximation can be
tolerated to be able to remove ADCs for some columns.
Finally, besides the complexity for placement and routing of
many analog buffers considered in the periphery, the maximum
current that can be tolerated according to the technology
constraint has to be taken into account.

III. OVERALL ADDITION UNIT ORGANIZATION

In this section, the proposed periphery design to support
integer MMM is explained. First, the mapping of data to
the crossbar is discussed. Subsequently, the digital processing
which has to be performed on the output of the crossbar, to
prepare the final result of MMM, is presented. This processing
has to be performed in several steps, which depends on
the number and precision of ADCs used in the CIM tile.
We elaborate on different scenarios to see what changes are
required for each.

A. Integer data mapping

In the following, we will utilize a simplified MMM example
in order to highlight the mapping of the multiplicands in the
crossbar. We assume that the calculation of a single element z1
(in the result matrix) is as follows: axj+bxm--cx*p. All values
are assumed to be 3 bits in this example. The values a, b, and
¢ are the multipliers and j, m, and p are the multiplicands.
Furthermore, we assume that the multiplicands are needed
again in other MMM operations and this is the reason to map
them into the crossbar - this avoids multiple writes to the
crossbar. Figure 2 depicts the multiplication (for z1) written
out in full and the mapping of the multiplicands to the crossbar
assuming that each cell can only store a single bit. It should
be clear from the figure that we first multiply the zero-th bit
of the multipliers with the multiplicands and sum them up
as they pertain to the same weight (2°) in the final result.
The same multiplicands (indicated in yellow) are needed again
when multiplying them with higher-order multiplier bits. In
case the crossbar has more columns, the multiplicands k and
1 can also be mapped. Otherwise, different tiles are needed to
map those multiplicands.

B. Proposed organization for addition units

Our proposed adder design clearly distinguishes three
adder stages to perform the MMM operation. The design
considerations of each stage are described in the following.
Stage 1: Adding one column
In this stage, the addition within a single column is
performed - indicated by the orange-brown arrow(s) in
Figure 3. Essentially, the addition in this stage is performed
in an analog manner - using Kirchhoff’s Law - if and only
if (1) the analog-to-digital converter (ADC) is capable of
distinguishing between all the possible current levels and
(2) all the necessary rows (related to the multiplier) can be
activated at the same time - this is dictated by the utilized
technology. If either (or both) of the mentioned conditions
is (are) not met, the addition needs to be broken down to
only adding those number of rows that can be supported by
the ADC accuracy or technology. This means that the analog
addition is only performed among a smaller number of rows
and the resulting intermediate results need to be summed
up together in the digital domain. The latter is depicted in
Figure 4(b). It should be noted that the size of the digital
adder here is determined by the largest possible results after
all rows have been added - worst case: logs(rows). The
result of this stage is the summation of all the terms related
to one bit-position of the multiplier and one bit-position of
the multiplicand.

Stage 2: Adding multiple columns

As the result of the first stage relates to the summation of
only a single bit-position of the multiplicand, the second
stage adds up all the terms (i.e., all bit positions) related to
the multiplicand (multiplied with only one bit-position of the
multiplier) - see blue box in Figure 3. In this stage, we are
assuming that the multiple columns are sharing one ADC
and that (for now) the integer word size (of multiplicands)
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Fig. 4: Required digital processing phases per ADC

does not exceed this number. The first assumption is not a
restriction as all operations described in this stage remain the
same if assumption would not hold. The second assumption is
a restriction as loosening it would require additional logic to
combine the (intermediate) results. Since this would severely
complicate the introduction of our approach at this stage,
we defer it to a later section in this paper. The results of
each column (see Figure 4(a)) relate to different weights of
the multiplicand. Consequently, we can use the same adder
(maximum size: logs(rows)) to perform addition as long as
each time the addition is performed, the intermediate result is
shifted by one position. This means that the lowest significant
bit, which is shifted out, can be stored in a temporary register
(R2¢emp)- The higher order bits are stored in (R1ieyyp) - this
register must be initialized to zero before the MMM operation
is started. The aforementioned addition can be performed
while the ADC is “scanning” the columns. The result of the
second stage is a partial result of the MMM operation that
relates to a single bit-position of the multiplier, e.g., ag, bo,
and cg.

Stage 3: Adding higher-order results

In this stage, the partial sums related to different bit positions
of the multiplier need to be summed up. This is depicted in
Figure 4(c). The partial sums related to O-th bit position of
the multiplier (gray box) need to added to the partial sum of
the 1-st bit position of the multiplier (blue box), and so on.
Here, we can employ the same adder structure as described
in stage 2 - see Figure 4(a). Only now, the adder and needed
temporary registers are larger in size.

Figure 5 puts together all the hardware discussed before for
each processing phase. Following is the generalized size of the
registers used in the proposed organization. Clearly, the size
of the adders is equal to their corresponding registers.

RO = R1=R2=Rlyep, =

3
log, (crossbar height) + logy (cell level s) ©)
themp = R3temp = (4)
int size(multiplicand) + log,(crossbar height)
R4temp =
int size(multiplier) + int size(multiplicand) )

+ log, (crossbar height)

e\ /

| Rétemp |

Fig. 5: The overall organization required per ADC

What we discussed so far, was based on the assumption that
the size of integer numbers stored in the crossbar matches to
the number of columns shared an ADC. However, two other
possible scenarios have to be considered. First, by increasing
the number of ADCs, a number stored in the crossbar might
be split and distributed over multiple ADCs. To claritfy this
further, Figure 6 illustrates this scenario in which 32-bit
numbers distributed over 4 ADCs. Accordingly, to obtain the
final result, the values stored in all the R4;c, registers,
employed for each ADC, have to be summed up. Although
more hardware is required as the number of ADCs increased,
the length of the registers and adders employed for processes
per ADC are decreased.

IV. EVALUATION AND DISCUSSION

In this section, we will evaluate our design against a
reference design. First, we introduce the reference design
and the target technology. Subsequently, the results regarding
the performance and energy of our proposed design will be
discussed.

A. Experimental setup

Reference architecture. In the reference design, we assume
that a single adder to perform accumulation between shared
columns and different bit positions of the multiplier are con-
nected to each ADC. The size of the adder is fixed and must
be chosen based on the largest possible value resulting from
the MMM - it is specified in Equation 6. This means that the
value produced by the ADC is merely an intermediate result
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TABLE I: Tile configuration

Crossbar
Technology ReRAM (256x256 @1bit)
Read energy 0.4pj per cell
Write energy 40pj per cell
Read/Write latency 100ns
ADC (8-bit)
Energy 2pj per sample
Latency Ins per sample
Carry-lookahead Adder
Size Energy (per computation) | Latency
8-bit 0.01pj Ins
16-bit 0.03pj 2.2ns
24-bit 0.08pj 3.2ns
40-bit 0.25pj 5.6ns
72-bit 0.78pj 9.8ns

that must be summed up into the accumulator - remember
that only a single bit of the multiplier is multiplied with the
multiplicand and each ADC read-out corresponds only to a
single bit-position of the multiplicand. Due to the previously
stated manner of summation, the intermediate results must
be shifted by the correct number of positions (based on the
bit-positions of the multiplier and the multiplicand) before
entering the adder.

Adder size =
int size(multiplier) + int size(multiplicand) (6)
+ log, (crossbar height)

In order to evaluate our design (against the reference
design), we have synthesized both designs using Cadence
Genus with standard cell 90nm UMC library to generate
latency and energy numbers. The latency and energy numbers
related to the crossbar (assumed to use ReRAM for now)
and (SAR) ADCs are taken from [21] and [22], respectively.
These numbers are summarized in Table I and more detail
information about ReRAM device can be found in [21].
Subsequently, these numbers serve as input to our in-house tile
simulator. Our simulator is capable of executing programs and
capturing the behavior of the crossbar and peripheral circuit.

proposed reference improvement
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Fig. 8: Energy consumption of addition unit for different datatype
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As a benchmark, we have chosen the linear-algebra kernel
“gemm” from the Polybench/C benchmark suite. In this kernel,
first the multiplicands are written into the crossbar and then the
actual multiplication is performed. We utilized our in-house
developed compiler to translate the gemm benchmark into a
sequence of in-memory instructions controlling the crossbar
and its peripheral circuits.

B. Experimental results

Reading data from the crossbar’s columns (read out phase)
is inherently slow mainly because of the shared ADC between
multiple columns and can be considered as the bottleneck
of the architecture. However, as the size of adder grows, its
latency can be dominant over the latency imposed by ADC.
Considering the proposed design in our experiment, since the
crossbar has 256 rows, the maximum size of the first two
adders (see Figure 5) is always 8-bit regardless of datatype
size. Therefore, there is no extra overhead on the latency of
read out phase. Rather, in the reference design and according
to the Equation 6, the required size of adder is much larger.
Accordingly, considering a 1 ns latency for the ADC, as
the size of adder increased more than 8-bit, it becomes the
bottleneck of the system and makes the read out phase more
costly.

Figure 7 depicts the execution time of the kernel (including
writing to the crossbar). In this experiment, we assume that the
size of the integer numbers matches the number of columns
shared by one ADC. According to the figure, the size of the
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first two adders for the proposed design are always constant
(here 8-bit). Rather, as the datatype size increases, a larger
adder has to be employed for the reference design. Considering
an 8-bit datatype size in Figure 7, a 24-bit adder has to be
used for the reference design, which imposes a 3 times bigger
latency than an ADC. However, due to the abundance of
ADCs, the entire readout phase is not the bottleneck of the
system (see Table I for the crossbar latency). Therefore, there
is no performance improvement at this point. Figure 8 shows
the energy improvement achieved by the proposed design.
Although the number of computations is always the same,
they are performed with smaller adders, which has a positive
impact on the energy consumption of the addition unit. Finally,
the impact of the number of ADCs on the execution time
and energy of the addition unit using 32-bit datatype size are
presented in Figure 9. As the number of ADCs increased, the
performance is improved. In addition, although more adders
are employed (see Figure 6), their size is decreased, which
leads to less energy consumption.

V. CONCLUSION

In this paper, we proposed a new organization for
memristor-based crossbar periphery to support integer matrix-
matrix multiplication at the tile level. Besides to the analog
additions in the crossbar, digital additions are performed in a
way that minimum adder sizes are required. The results show
that using the proposed design, performance improved up to 3x
and energy reduced by 50x compared to the reference design.
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