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Abstract. One of the major challenges of Evolutionary Robotics is to transfer

robot controllers evolved in simulation to robots in the real world. In this article,

we investigate abstraction on the sensory inputs and motor actions as a potential

solution to this problem. Abstraction means that the robot uses preprocessed sen-

sory inputs and closed loop low-level controllers that execute higher level motor

commands. We apply abstraction to the task of forming an asymmetric triangle

with a homogeneous swarm of MAVs. The results show that the evolved behav-

ior is effective both in simulation and reality, suggesting that abstraction can be

a useful tool in making evolved behavior robust to the reality gap. Furthermore,

we study the evolved solution, showing that it exploits the environment (in this

case the identical behavior of the other robots) and creates behavioral attractors

resulting in the creation of the required formation. Hence, the analysis suggests

that by using abstraction, sensory-motor coordination is not necessarily lost but

rather shifted to a higher level of abstraction.

1 Introduction

Evolutionary Robotics (ER) is a field of research which uses Evolutionary Computation

techniques to solve robotic tasks without explicit interaction from a human designer.

This approach requires a roboticist to define the problem to be solved and the evolu-

tionary optimization determines the behavior required solve it. Early work in this field

made quick progress showing that ER could automatically solve tasks such as: obsta-

cle avoidance [10], phototaxis [11] and chemotaxis [2]. Work was not restricted to the

evolution of the brain but was also used to evolve the physical body of the robot in a

form of co-evolution [4,17]. A comprehensive overview of this early work in ER can be

found in the book from Nolfi et. al. [21].

Despite this early sprint, the pace of development slowed as researchers attempted

more complex tasks. Some of the major challenges encountered include the reality gap,

reducing optimization time, fitness function design and behavior representation [3]. Al-

though all these issues must be addressed for ER to be truly successful, in this paper we

would like to address the reality gap.

ER typically utilizes simulated environments to evaluate the performance of gen-

erated candidate solutions. Although these faster-than-real-time simulations reduce the

total optimization time, differences between simulation and reality often result in re-

duced performance in reality when compared to that seen in simulation. This difference

is referred to as the reality gap.
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The apparent coupling seen between the perceived environment and emergent be-

havior that causes this reality gap is partly the result of Sensory-Motor Coordination

(SMC). This inherent coupling of perception and action with embodied agents results in

the observation that an agent can actively influence the perceived environment through

its actions [20]. Typical implementations of ER utilize raw sensor inputs to generate

low level control commands to the robotic platform. This approach has been shown to

be effective in the development of behavior which can solve non-trivial tasks with SMC

[1,20]. The evolved SMC will exploit the properties of the low-level sensors and mo-

tor actions in the simulated environment. Unfortunately, these properties in general are

quite different from those of the real robotic platform, causing a significant reality gap.

Much progress has been made towards solving the reality gap problem most no-

tably by Jakobi et. al. [15], Koos et. al. [16] and Eiben et. al. [8]. Jakobi suggests

hiding unnecessary features of the simulation in noise through minimal simulations.

Koos includes the transferability of the robotic behavior to the agent’s fitness evaluated

by intermittently testing the simulated behavior on real robots during evolution. Eiben

promotes on-line embodied evolution on a swarm of real robotic platforms to remove

the reality gap altogether. Some recent work has also suggested that improved insight

into the optimized behavior can enable the roboticist to actively reduce the reality gap

after optimization [24].

One method which has not been investigated in much detail is the use of abstrac-

tion to make the robotic control more robust to the reality gap. Generally, real robotic

platforms are controlled using closed loop control systems. These systems receive a

desired set-point as input and drive the output to reduce the perceived error. Closed

loop control has been mathematically proven to make the eventual control system more

robust to external disturbances or changes to the environment [18]. With the use of a

closed loop low-level control system, evolution would abstract away from the low-level

sensor inputs and actuator outputs. Some resent work has shown promising results in

bridging the reality gap using abstracted methods [5,7]. This however may come at a

price, as abstraction “hides” the properties of the raw sensory inputs and motor actions

to the controller, it may have as a disadvantage that the potential for SMC by the robot

is reduced.

In this paper we investigate whether abstraction can lead to an easy transfer of an

evolved robot controller from simulation to the real world. Moreover, we look into the

open question of how abstraction affects the ability of the robot to exploit its environ-

ment to solve a seemingly complex task. What happens to SMC when the agent doesn’t

have access to the raw sensor inputs and the ability to directly control the raw motor

outputs?

To investigate this we implement an experiment based on the work of Izzo et. al. [14]

to generate an asymmetric formation of a swarm of robots using a homogeneous control

system. The task will be discussed in more detail in Sect. 2. The implementation and

results of the evolutionary optimization of the robotic behavior is presented in Sect. 3.

A brief description of the flight hardware shown in Fig. 1 is given in Sect. 4 followed by

a discussion of the behavior on a swarm of real flying robots in Sect. 5. Sect. 6 dives a

bit deeper into the optimized behavior and the effect of abstraction on the SMC. Finally,

we summarize and make some conclusions in Sect. 7.
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Fig. 1. Swarm of homogeneous ARDrone 2 quadrotors autonomously used to form an asymmetric

triangle using evolved behavior.

2 Task

In this paper we would like to demonstrate the power of using high level control cues

with an underlying closed loop control system to reduce the reality gap. The use of

closed loop control systems helps to reject disturbances due to noise or small a mis-

matches between the dynamics in simulation and that in reality.

To this end we have selected the asymmetric formation flight as demonstrated in

simulation by Izzo et. al [14]. That paper described a homogeneous swarm of three

SPHERES spacecraft flying in a triangular formation where each side was a different

length. Methods have been developed to autonomously form symmetric formations us-

ing homogeneous swarms but asymmetric shapes have proven to be more difficult [13].

The design of asymmetric formations using a distributed control system without ex-

plicit roles in the formation is a non-trival task for most human designers making it an

ideal task for automatic optimization.

The work of Izzo et al. was confined to a simulated environment, in this paper we

would like to move to reality to demonstrate the effect of abstraction on crossing the

reality gap. Due to the lack of availability of the SPHERES vehicles on the Interna-

tional Space Station, the formation control is implemented on a swarm of Micro Air

Vehicles (MAVs). Notably, we constrain the problem to two dimensions to facilitate a

more straightforward analysis of the resultant behavior.

The goal of the swarm will be to achieve an asymmetric triangular formation with

sides of lengths: 0.7, 0.9 and 1.3m. The MAVs can observe the relative position of all

other members in the formation. The control system should use this information and

provide the MAV with a velocity set-point. As in [14], we utilize a single hidden layer

Artificial Neural Network (ANN) with three inputs and two outputs as shown in Fig. 2.

A tanh activation function was used in the neurons. Additionally, a bias neuron is added

to the input and hidden layer. The output of the network can be linearly scaled to the

limits of the vehicle, which in the case of this paper was set as ±0.5m/s. The inputs,

outputs and ranges of all parameters were chosen to be as similar to the original values

used by Izzo et. al. [14] to facilitate a fair comparison of our results with the original

work.

The inputs to the ANN are the sum of the Cartesian components of the relative

positions of the other members of the formation (r) and the sum of absolute distances



4 Kirk Y.W. Scheper et. al.

Fig. 2. Single hidden layer Neural Network topology used in this paper. Inputs are the summed

Cartesian components of the relative positions to the other vehicles in the formation (r) along

with the summed absolute distances (d).

(d) as given by (1) and (2). Note that r is mathematically equivalent to triple the distance

from the ownship to the centroid of the formation (c).

r =
k

∑
i=2

(pi −p1) (1)

d =
k

∑
i=2

|pi −p1| (2)

Where p is the position vector of a vehicle and k is the total number of vehicles

in the swarm. These inputs are computed for each vehicle where p1 is the ownship

location. Fig. 3 illustrates a possible solution to the formation problem. Combining the

positions of the other vehicles in this way is essential to ensure the input is invariant to

permutations of the vehicles. Adding a separate input for each vehicle would implicitly

encode a unique formation identifier for each vehicle. Additionally, only the relative

positions are required for the input rather than the absolute position, this would facilitate

a wide range of real world sensors to be used to provide this information. It should be

noted that as this input is from the point of view of each vehicle, a given set of inputs

describes a unique formation and is not rotationally invariant.

3 Evolutionary Optimization

There are many forms of evolutionary optimization in literature but they all have a few

things in common: a population of candidate solutions; a measure of fitness; a way of

evaluating the individuals on this fitness function; and a method to change individuals

to create the next population [9]. In this paper, we use a population of 100 candidate
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Fig. 3. Illustration of a possible formation. Vehicles are represented by a filled dot with the own-

ship in this example highlighted.

solutions expressed as ANNs. The fitness of an individual is determined with the use

of a multi-objective sorting algorithm based on Nondominated Sorting Genetic Algo-

rithm II (NSGA-II) [6]. Multiple objective optimization was used to promote effective

exploration of the fitness landscape. Again, to facilitate a fair comparison, the objective

functions used in this paper are based on those used in [14] and are given in (3).

f1 =
3

∑
n=1

|Ln − ln|

f2 =
3

∑
n=1

|vn|
2

f3 =

{

0, |c|< 2

1, else

(3)

Where L is the vector of the required distances, l is the vector of the distances

between the vehicles at the end of the simulation sorted in ascending order. Sorting the

distances makes the computation of the fitness it invariant to the vehicle order. v is the

velocity vector of the MAV at the end of the simulation and c is the location of the

centroid of the triangle. The first fitness function tries to have the MAVs end up in the

correct formation. The second promotes individuals that have a low final velocity. The

final function is an augmentation to the original set from [14] and promotes behavior

that results in the centroid of the formation remaining inside of a 2m radius of the origin

of the axis system. This requirement was added due to the practical limitation that the

vehicles must operate in a constrained 8× 8m flight arena.

A simulation was used to assign a fitness to the candidate solutions. A simple Euler

integration based kinematic simulation was implemented to ensure that computational

requirements of each simulation would remain low, speeding up the optimization. This

simulator captures the approximate kinematics of the real MAVs with a simple low pass
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Fig. 4. Progression of the performance of the best individual during evolution validated using 250

initialization points.

filtered velocity response with a time constant determined by performing real world

flight tests. Each simulation was initialized with the three MAVs at a stand still at ran-

dom locations in a 2×2m area with at least 1m separating each vehicle and the centroid

of the initial orientation located at the origin of the axis system. The vehicles were then

allowed to traverse the room in the x− y plane for a maximum of 50s. The simulation

can be prematurely terminated if the MAVs come within 30cm of each other as this

would constitute a collision on the real vehicles. At the end of the simulation run, the

final position and speed of the MAVs is used to assign a value to each fitness function

as given in (3).

Once the population is evaluated, they are sorted using the NSGA-II algorithm. The

best individuals are stored in an archive of 100 members. This archive is also used as the

mating pool which is used to generate the population of the next generation. Members

are selected from the mating pool using a tournament selection technique with a size

of 8 randomly selected members from the mating pool and the best individual averaged

over all fitness dimensions returned as a champion. Mutation was the only evolutionary

operator used in this paper as some works have shown that mutation only evolution to be

effective [25]. Each weight in the ANN was considered for mutation with a probability

of 5%. Mutation consisted of a random perturbation of the previous value by selecting

a new value based on statistical acceptance based on the previous value constrained on

the range [-1,1].

Fig. 4 shows the performance of the best individual from each generation of the

evolutionary optimization for this problem. Each individual was evaluated using 250

different combinations of initial conditions with a maximum simulation time of 50s.

This figure shows that evolution gradually reduces the error in the final vehicle distances
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Fig. 5. Ground tracks of a collision free flight and a flight that would have ended in a collision of

three ARDrones performing the asymmetric formation task. The length of each side is shown in

text, + marks the start location and the circle with the dot in the center marks the end location

with the diameter of the vehicle to scale.

and the final velocity. This figure also shows that the behavior does not guarantee a

collision free flight for all initial conditions. After 1000 generations the average error

of each side of the formation is about 5cm.

The member with the lowest average score over the three fitness functions from

the last generation of the evolutionary optimization was selected for further analysis

and implementation on the real swarm of three MAVs. Here we will first analyze the

behavior exhibited by the ANN controller to gain some insight into the solution to the

problem.

The behavior was evaluated by a validation run of 250 different initial conditions.

During the validation run, the simulation was not cut short if a collision occurred. A

formation is considered accurate when the summed error of the lengths is below 0.15m

or 5cm average error. The results show that 98% of runs resulted in a successful triangle

formation within 50s of which 14% would have incurred a crash. Of these successful

runs, the mean error was 0.0222m with a standard deviation of 0.0262. In 2% of the

runs the triangle was not formed within 50s. Fig. 5 shows one of the successful runs of

the formation behavior and one case where a collision would have occurred.

4 Flight Hardware

The flight tests performed in this paper were conducted using the 420g Parrot ARDrone

2 quadrotor MAV. This vehicle is equipped with a 1GHz 32 bit ARM Cortex A8 pro-

cessor running an embedded Linux operating system [22]. The default flight software

provided by Parrot was overwritten by custom flight software implemented using Pa-

parazzi, an open-source flight control software [12,23].



8 Kirk Y.W. Scheper et. al.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0.746

0.903

1.316

x

y

(a) Real world

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0.901

0.710

1.305

x

y

(b) Simulation

Fig. 6. Ground track of the real world flight test and the simulated flight for the same initial

positions. The length of each side is shown in text, + marks the start location and the circle with

a dot in the center marks the end location with the diameter of the vehicle to scale.

5 Flight Tests Results

Moving from the simulated environment to the real world, the behavior shown above

was implemented on a swarm of three ARDrones. Flights were performed in an 8×8m

flight arena and the flight path of the vehicles was captured using an Optitrack motion

camera system [19]. The position of all vehicles were broadcast at 5Hz so all vehicles

know the relative position of the other swarm members. For the first set of tests, as in

simulation, the three vehicles were initialized at random in a 3× 3m area in the flight

arena with the centroid of the initial formation at the origin of the arena. Fig. 6 shows

the result of one test performed.

It was observed that the quadrotors were so close to each other that the downwash

from one quadrotor would interact with the other vehicles causing significant external

disturbances. Fig. 7 shows the commanded velocity of the ANN and the true vehicle

velocity along with the result of the simulation. In contrast with the simulation, the

real-world quadrotors have clear errors in tracking the desired velocities, in part due to

the aerodynamic interactions. These tracking errors represent a significant reality gap.

Despite this apparent mismatch between simulation and reality, the observed behav-

ior is very similar to that seen in simulation with the correct formation achieved with

an accuracy of ±0.034.

6 Analysis of the Sensory-Motor Coordination

To analyze the effect of abstraction on the extent to which evolved robots exploit their

environment and make use of SMC, we must first diver deeper into the optimized be-

havior. In Izzo et al., an analysis of the evolved behavior was performed. As a part of
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Fig. 7. Tracking performance of the velocity controller on the simulated and real ARDrone 2

given the same velocity command highlighting the reality gap.

the analysis, two robot satellites were fixed at one of the desired distances. The third

satellite was left free to move but did not settle into a position which completed the for-

mation. This led them to an interesting hypothesis: perhaps the asymmetric formation

could only be reached if all three satellites were free to move. Here we will investigate

if we can observe a similar phenomenon for our specific evolved solution, and evaluate

whether SMC plays a role in successful formation flight.

In the flight tests performed in this paper, it was observed that all successful for-

mations resulted in a triangular formation with the same rotational orientation to the

Cartesian axis system. The orientation can be seen in Fig. 5 and Fig. 6. As there is a

unique set of inputs to describe every possible rotational orientation of the triangle for-

mation, this alludes us to the possibility that the ANN is trying to solve the formation

for a fixed set of sensory inputs (rx,ry,d) rather than a set of linear combinations that

would define a rotationally independent formation. This demonstrates how influential

the fitness function is to the final solution. The function used in this paper requires the

formation of a triangle with three fixed length sides but makes no definition of the re-

quired orientation. Given that freedom, the optimization finds the simplest solution to

the problem, which in this case is a unique formation.

This solution also suggests a level of inherent environmental exploitation, namely

that the other vehicles will comply and also move in such a way to solve the problem.

We can test this by fixing two of the vehicles in an orientation different to that con-

verged upon when they are all free. If we initialize the third vehicle at various locations

around the other two and allow the vehicle to move for 500s we should be able to iden-

tify the basin of attraction this configuration. Fig. 8 shows a basin of attraction for the

situation when the longest side of the formation is fixed along the x-axis. This figure

shows the magnitude of the commanded velocity of the free vehicle at all locations

in around the other two fixed vehicles. It also shows that the velocity vector field has
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Fig. 8. Basin of attraction showing the velocity magnitude for one vehicle given the other two

vehicles (dark dots) are fixed in space. The hollow circles highlight the possible solutions to the

formation problem and the light dots show the stable attractor points.

three attractor points, none of which are correct locations to complete the formation.

Notably, although the highlighted spots are stable points when the two other vehicles

are fixed, the commanded velocities of the other two vehicles is non-zero showing that

this formation itself is not stable.

If we repeat this for the case when the two fixed vehicles form the angle which is

converged upon when all vehicles are free we are left with the basin of attraction seen

in Fig. 9. This analysis shows that in this new configuration there is only one stable

attractor in the velocity map which would indeed solve the formation problem. In this

location the fixed vehicles have near zero velocity set-points.

We also performed real flight tests with two vehicles fixed along the correct orien-

tation and distance of one side of the formation. Fig. 9 shows that the ground tracks of

the real flights overlap almost exactly with this velocity field.

Nolfi et. al. suggest that the emergence of behavioral attractors is indicative of SMC

[20]. Given this, the behavior we have shown here would seem to exhibit some form of

SMC albeit on a more abstract level. Although the evolution has no access to the low

level control or sensory inputs, the resultant behavior was still able to exploit the implicit

knowledge that the other members of the swarm would unintentionally cooperate to

solve the task.

This result also sheds some light onto the result of Izzo et. al.. It may not have

been necessary for all the vehicles to be moving to achieve the formation but rather the

relative orientation of the members must facilitate the behavioral attractor.
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vehicles (dark dots) are fixed in space. The hollow circle highlights the solution to the formation

problem. Overlain are ground tracks of all real world flights with the light dot showing the loca-

tion the real robots converged toward. This shows that the real world performance mirrors what

is expected from simulation quite well despite a clear reality gap.

7 Conclusions

In this paper we investigated the application of abstraction on the inputs and outputs

of a neural network controller within the Evolutionary Robotics paradigm. The evolu-

tionary optimization was tasked with forming an asymmetric triangle with MAVs. The

optimized behavior was effective both in simulation and reality suggesting that abstrac-

tion can be a useful tool in making evolved behavior robust to the reality gap. We also

showed that sensory-motor coordination which is a typical emergent phenomenon of

reactive agents is not necessarily lost when abstracting away from the raw inputs and

output but is rather shifted to a higher level of abstraction. Future work will implement

the task presented here with the control on a lower level of abstraction to more explicitly

investigate the influence of abstraction through direct comparison.

References

1. Agmon, E., Beer, R.D.: The evolution and analysis of action switching in embodied agents.

Adaptive Behavior 22(1), 3–20 (2013)

2. Beer, R.D., Gallagher, J.C.: Evolving Dynamical Neural Networks for Adaptive Behavior.

Adaptive Behavior 1(1), 91–122 (1992)

3. Bongard, J.C.: Evolutionary Robotics. Communications of the ACM 56(8), 74–83 (2013)

4. Bongard, J.C., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling.

Science 314(5802), 1118–21 (2006)



12 Kirk Y.W. Scheper et. al.

5. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that

can adapt like animals. Nature 521(7553), 503–507 (may 2015),

http://dx.doi.org/10.1038/nature14422http://10.1038/nature14422http://www.nature.com/n

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

7. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.:

Evolution of collective behaviors for a real swarm of aquatic surface robots. PLoS ONE

11(3), 1–25 (2016)

8. Eiben, A.E., Kernbach, S., Haasdijk, E.: Embodied artificial evolution: Artificial evolutionary

systems in the 21st Century. Evolutionary Intelligence 5(4), 261–272 (2012)

9. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer-Verlag, Berlin

Heidelberg, 2 edn. (2015)

10. Floreano, D., Mondada, F.: Automatic Creation of an Autonomous Agent: Genetic Evolu-

tion of a Neural-Network Driven robot. In: Cliff, D., Husbands, P., Meyer, J.A., Wilson, S.

(eds.) Proceedings of the Third International Conference on Simulation of Adaptive Behav-

ior: From Animals to Animats 3. pp. 421–430. MIT Press, Cambridge, MA (1994)

11. Floreano, D., Mondada, F.: Evolution of homing navigation in a real mobile robot. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26(3), 396–407 (1996)

12. Hattenberger, G., Bronz, M., Gorraz, M.: Using the Paparazzi UAV System for Scientific

Research. In: International Micro Air Vehicle Conference and Competition 2014. pp. 247–

252. IMAV, Delft, Netherlands (2014)

13. Izzo, D., Pettazzi, L.: Autonomous and Distributed Motion Planning for Satellite Swarm.

Journal of Guidance, Control, and Dynamics 30(2), 449–459 (2007)

14. Izzo, D., Simões, L.F., de Croon, G.C.H.E.: An evolutionary robotics approach for the dis-

tributed control of satellite formations. Evolutionary Intelligence 7(2), 107–118 (2014)

15. Jakobi, N.: Minimal Simulations For Evolutionary Robotics. Ph.D. thesis, University of Sus-

sex (1998)

16. Koos, S., Mouret, J.B., Doncieux, S.: The Transferability Approach: Crossing the Reality

Gap in Evolutionary Robotics. Transactions on Evolutionary Computation 17(1), 122–145

(feb 2013)

17. Lipson, H.: Evolutionary Robotics: Emergence of Communication. Current Biology 17(9),

129–155 (2007)

18. Love, J.: Process Automation Handbook. No. 800 in Production & Process Engineering,

Springer, London, 1 edn. (2007)

19. Natural Point Inc: Optitrack (2014), www.naturalpoint.com/optitrack/

20. Nolfi, S.: Power and limits of reactive agents. Neurocomputing 42, 119–145 (2002)

21. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence and Technology.

MIT Press, Cambridge, MA (2000)

22. Parrot: ARDrone 2, www.ardrone2.parrot.com/

23. Remes, B., Hensen, D., van Tienen, F., de Wagter, C., van der Horst, E., de Croon, G.:

Paparazzi: How to make a swarm of Parrot AR Drones fly autonomously based on GPS. In:

Proceedings of the International Micro Air Vehicle Conference and Flight Competition. pp.

17–20. IMAV, Toulouse, France (2013)

24. Scheper, K.Y.W., Tijmons, S., de Visser, C.C., de Croon, G.C.H.E.: Behaviour Trees for

Evolutionary Robotics. Artificial life 22(1), 23–48 (2016)

25. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447

(1999)

http://dx.doi.org/10.1038/nature14422 http://10.1038/nature14422 http://www.nature.com/nature/journal/v521/n7553/abs/nature14422.html{#}supplementary-information
www.naturalpoint.com/optitrack/
www.ardrone2.parrot.com/

	Abstraction as a Mechanism to Cross the Reality Gap in Evolutionary Robotics

