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We introduce a scheme for real-time nonlinear interpolation of a set of
shapes. The scheme exploits the structure of the shape interpolation prob-
lem, in particular, the fact that the set of all possible interpolated shapes is a
low-dimensional object in a high-dimensional shape space. The interpolated
shapes are defined as the minimizers of a nonlinear objective functional on
the shape space. Our approach is to construct a reduced optimization prob-
lem that approximates its unreduced counterpart and can be solved in mil-
liseconds. To achieve this, we restrict the optimization to a low-dimensional
subspace that is specifically designed for the shape interpolation problem.
The construction of the subspace is based on two components: a formula for
the calculation of derivatives of the interpolated shapes and a Krylov-type
sequence that combines the derivatives and the Hessian of the objective
functional. To make the computational cost for solving the reduced opti-
mization problem independent of the resolution of the example shapes, we
combine the dimensional reduction with schemes for the efficient approxi-
mation of the reduced nonlinear objective functional and its gradient. In our
experiments, we obtain rates of 20-100 interpolated shapes per second even
for the largest examples which have 500k vertices per example shape.
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1. INTRODUCTION

Efficient algorithms for the interpolation (or averaging) of shapes
are important for various tasks in graphics, including morphing,
pose and animation transfer, controlling deformable object simu-
lations using example-based materials, example-based shape edit-
ing, and shape exaggeration. These applications pose high demands

on a shape interpolation scheme. On one hand, “good” interpo-
lated shapes that match our intuition of how shapes deform are de-
sired. On the other hand, the computation must be fast since many
weighted average shapes have to be computed or even real-time
rates are required for interactive applications. Recently, nonlin-
ear geometric and physically-based approaches that produce very
pleasing interpolated shapes have been proposed. However, the
nonlinear modeling comes at high computational costs.

We propose an approach for real-time nonlinear shape interpola-
tion that exploits the following structural property of the shape in-
terpolation problem. An accurate representation of a detailed shape
requires a large number of triangles (or tets). Hence, the space of all
possible variations of the shape is of high dimension. In contrast,
the number m of example poses to be interpolated is typically very
small. Since an interpolated shape is specified by m − 1 weights,
the set of all possible interpolated shapes of m example poses is an
(m−1)-parameter family. Consequently, the optimization problem
we use to model the shape interpolation is high-dimensional—but
has only m− 1 input parameters.

Our approach is based on an offline-online framework. In the
offline phase, we construct a reduced optimization problem that
approximates the high-dimensional problem and can be efficiently
solved. In particular, the computational cost for solving the reduced
problem is independent of the resolution of the example poses; it
depends on the geometry of the example poses and the desired ac-
curacy of the approximation. We set up the reduced problem in
two steps. First, the space of possible shape variations is restricted
to a low-dimensional affine subspace. To do this, we propose an
efficient construction of reduced spaces for nonlinear shape inter-
polation based on differential properties of the objective functional.
By restricting the shape interpolation problem to this subspace, we
obtain a low-dimensional optimization problem. However, the cost
for evaluating the objective functional and gradient is still too high
for real-time performance since it depends on the resolution of the
example poses. To design schemes for the fast evaluation or ap-
proximation of the reduced objective functional and its gradient,
one can use the fact that the functional and gradient are only eval-
uated at points in the subspace and that only the projections of the
gradients to the subspace are needed. In the second step, we set
up the approximation of the reduced functional using quartic poly-
nomials [Barbič and James 2005], optimized cubature [An et al.
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2008], and mesh coarsening [Hildebrandt et al. 2011]. Our exam-
ples demonstrate that fairly low-dimensional reduced spaces (less
than 70-dimensional in all our examples) suffice to produce inter-
polated shapes that well-approximate the unreduced solution. Since
the computational cost for solving the reduced optimization prob-
lem mainly depends on the size of the reduced space, we obtain
real-time performance even for meshes that represent detailed sur-
faces. In our experiments, we obtain rates of 20-100 interpolated
shapes per second in all experiments—even for interpolating be-
tween meshes with 500k vertices.

We implemented the reduction technique for a broad framework
for nonlinear shape interpolation based on the approach for elastic
shape averaging introduced by Rumpf and Wirth [2009]. In this ap-
proach, every shape is assigned material properties, which are rep-
resented by a deformation energy. In the simplest case, all shapes
are given the same homogeneous and isotropic material. For an ar-
bitrary shape, one can compute the energy stored in the object when
it is deformed into this shape. To interpolate, we assign positive
weights to each of the example shapes (such that the weights sum
to one) and consider the weighted sum of the stored energies. The
weighted average shape is the minimizer of this weighted sum over
all admissible shapes. In [Rumpf and Wirth 2009], elastic shape
averaging is formulated for implicitly described shapes and the
optimization is performed over all possible correspondences be-
tween the shapes. We adapt the approach to our setting in which
the shapes are explicitly described (e.g. triangle or tet meshes) and
correspondences between the shapes are given. This setting, where
correspondences between the shapes are given, is typically consid-
ered in graphics. For example, correspondences are available when
the example shapes are poses of one character or object. Further-
more, it is important to preserve the correspondences (e.g., if the
example shapes have textures). For particular choices of deforma-
tion energies, we obtain optimization problems comparable to those
treated in [Fröhlich and Botsch 2011] and [Martin et al. 2011] and
for interpolating between two shapes, we obtain the interpolation
scheme considered in [Chao et al. 2010].

2. RELATED WORK

Many shape interpolation schemes are based on the following pro-
cedure. Select a number of geometric quantities of a shape that de-
termine the shape (often up to rigid motion). Then, for all example
shapes to be interpolated, compute and average the quantities. Fi-
nally, reconstruct the shape that best matches the averaged quanti-
ties. The differences between the methods lie in the choice of the
geometric quantities and in the way the quantities are averaged.
The reconstruction is typically done in a least-squares sense. De-
pending on whether the quantities depend linearly or nonlinearly
on the vertex positions, the reconstruction is a linear or nonlinear
least-squares problem. Examples of the first kind are the schemes
of Sumner and Popović [2004], Sumner et al. [2005], and Xu et
al. [2005]. The geometric quantities used are the deformation gra-
dients of the triangles (or tetrahedra) and the reconstruction is a
Poisson problem. The averaging is nonlinear—the rotational com-
ponents of the deformation gradients are extracted and nonlinearly
blended (e.g., by taking the shortest path in the rotation group).
Since the matrix in the Poisson problem does not change, a sparse
factorization of the matrix can be computed and used to solve the
systems, which makes the scheme very fast. A problem, however,
is that the blending of the rotations is done separately for each
triangle. This leads to undesirable interpolation results with large
distortions. We refer to [Kircher and Garland 2008; Chu and Lee
2009; Winkler et al. 2010] for examples and a thorough discus-

sion of this problem. To compensate for these effects, Kirchner and
Garland [2008] modify the averaging process and describe the rota-
tions relative to coordinate frames that vary over the surface. With
the same goal, Chu and Lee [2009] use machine learning for im-
proving the consistency of the blending of the rotations over the
surface. For both methods, the price to pay to improve the inter-
polation quality is a loss in computational speed. These methods
run at real-time rates only for coarse meshes. Another example of
the first kind uses the linear rotation invariant coordinates pro-
posed by Lipman et al. [2005]. To represent a surface mesh in a
rotation-invariant way, they combine coordinate frames located at
the vertices and connection maps, which describe transformations
between neighboring frames. These coordinates are well-suited to
represent deformations with rotational components (e.g. twists), but
have problems dealing with deformations that include stretching.
We refer to the survey [Botsch and Sorkine 2008] for an in-depth
discussion and experimental comparison of various linear deforma-
tion models. Linear rotation invariant coordinates are used for se-
mantic deformation transfer by Baran et al. [2009]. Their approach
allows for transferring deformations between shapes without estab-
lishing an explicit mapping between the shapes. Instead poses of
the models are matched and shape interpolation is used to transfer
the deformations.

Examples of the second kind are the methods of Winkler et
al. [2010] and Martin et al. [2011]. The geometric quantities used in
the first scheme are the edge lengths and dihedral angles of triangles
of a surface mesh and in the second the strain tensors of the tetra-
hedra of a volume mesh. Due to the nonlinear optimization needed
for the reconstruction, the methods run at real-time rates only for
very coarse meshes. Fröhlich and Botsch [2011] introduce a fast
approximation scheme for the interpolation based on edge lengths
and dihedral angles. Their scheme interpolates between simplified
meshes and uses deformation transfer [Botsch et al. 2006] to map
the coarse interpolated shapes to a fine mesh. In Section 6, we com-
pare results and timings of this scheme with our approach. Another
example of nonlinear coordinates are the Pyramid coordinates in-
troduced by Sheffer and Kraevoy [2004].

Related to shape interpolation are Riemannian metrics on shape
spaces. Such metrics measure the metric distortion or the viscous
dissipation required to physically deform an elastic object [Kilian
et al. 2007; Chao et al. 2010; Wirth et al. 2011; Heeren et al. 2012].
The corresponding Riemannian distance between two shapes is the
infimum of the length over all curves connecting the shapes. A
curve realizing this distance (a shortest geodesic) naturally inter-
polates between the two shapes in a shape space with a Rieman-
nian metric. Weighted averages of more than two shapes could be
defined using the Riemannian center of mass [Grove and Karcher
1973]. This is a very promising direction, but computationally
much more involved than the direction we take here.

In addition to the interpolation of curved surfaces and volumes,
the interpolation of planar shapes is an active research topic. For
an overview, we refer to the recent paper of Chen et al. [2013] and
references therein.

Creating continuous motions of objects and characters is an im-
portant problem in computer animation and is linked to shape inter-
polation. Typically, motions are created from keyframes (poses and
times) that are interpolated. However, in contrast to shape interpo-
lation usually wiggly (instead of smooth) motions, which exhibit
secondary motion effects, are desired and the control of velocities
is essential. Furthermore, the keyframes are ordered by their inter-
polation times and are successively interpolated—hence interpola-
tion between more than two shapes is not considered. Tradition-
ally, splines are used to interpolate between the poses. The space-
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Fig. 1. Snapshots from an interactive shape interpolation session with five example poses of an armadillo shell model with 332k triangles. After a preprocess,
our framework for nonlinear shape interpolation computes weighted average poses in real-time (see Table I).

time constraints paradigm, introduced by Witkin and Kass [1988],
is closer to our work. The goal is to simplify the creation of realis-
tic motion by combining physical simulation with keyframe inter-
polation. Motions are computed by solving nonlinear constrained
spacetime optimization problems and model reduction techniques
are used to accelerate the computations, see [Barbič et al. 2009;
Hildebrandt et al. 2012]. Recently, spacetime optimization of the
dynamics of elastic objects has been used for interactive edit-
ing of simulations and animations [Barbič et al. 2012; Li et al.
2014] and for creating motions that interpolate a set of partial
keyframes [Schulz et al. 2014].

3. BACKGROUND: DEFORMATION ENERGIES

One ingredient to the shape interpolation approach we describe in
the next section is a deformation energy, which is a measure of
the energy stored in any deformed configuration of a shape away
from its reference configuration. In our experiments, we focused on
deformation energies derived from elasticity. However, other types
of deformation energies may be used as well.

The presentation of the elastic shape averaging in the next sec-
tion simplifies if we use a differential geometric approach to de-
scribe elastic potentials. In particular, we consider a manifold M
and represent the reference and deformed configuration of an elas-
tic object using maps fromM to R3. Whereas this setting is com-
monly used for describing deformations of elastic shells, for elastic
solids, a simpler setting in which the reference configuration is a
domain in R3 and a deformation is given by a mapping from this
domain to R3 is often considered. Therefore, we briefly review ba-
sics concerning potentials of elastic solids and introduce our no-
tation. For a general introduction to the theory of elasticity from
a differential geometric point of view, we refer to [Marsden and
Hughes 1994] and the introductory book [Ciarlet 2005].

Consider an elastic body whose reference configuration is de-
scribed by a (regular enough) map X:M→R3, where M is a
three-dimensional manifold. A deformed configuration of the body
is given by a map Y :M → R3. Here,M can be a domain in R3,
e.g., the reference configuration, or an abstract manifold. In the case
thatM is the reference configuration, the map X is the embedding
of M in R3. Our first step is to define the strain tensor E , which
provides a complete description of the strain (e.g. stretching, shear-
ing, twisting) induced by a deformation. The definition involves the
Riemannian metrics gX and gY onM induced by the maps X and
Y . For every point p ∈ M, gX (and analogously gY ) provides a

scalar product on TpM that is given by

gX(φ,ψ) = 〈dX(φ), dX(ψ)〉 ,

where φ,ψ ∈ TpM are tangential vectors, dX is the differential
of X , and 〈·, ·〉 is the standard scalar product of R3. The Cauchy–
Green tensor is the unique gX -symmetric tensor field C that for
every p ∈M satisfies

gX(φ, Cψ) = gY (φ,ψ)

for all φ,ψ ∈ TpM. Then, the strain tensor

E =
1

2
(C − I),

induced by the deformation fromX to Y measures the deviation of
C from the identity I. For example, a deformation is isometric if gX
equals gY . Then, C is the identity and the strain tensor vanishes.

The stresses in an object resulting from a deformation depend on
properties of its material. In an elastic material, the stresses depend
only on the reference and deformed configurationsX,Y and are in-
dependent of the deformation path and speed. We consider hypere-
lastic materials, for which additionally the energy stored in a defor-
mation Y is independent of the deformation path. For such materi-
als, the energy stored in the deformation from the reference config-
uration X to the configuration Y is given by a function Ω(X,Y ),
which is called the potential. The stresses in a hyperelastic material
can be described using the derivatives of the potential.

A material is called objective if considering the object from a ro-
tated point of view, results in stresses that are transformed with the
same rotation. For an objective material, there is an energy density
function W that depends onM and E such that the potential can
be written as an integral

Ω(X,Y ) =

∫
M
W (p, E(p))dvolX , (1)

where dvolX is the volume form onM induced by X . A material
is isotropic if W (p, ·) depends only on the eigenvalues λ1, λ2, λ3

of E(p) instead of E(p) itself. For such materials the potentials
Ω(X,Y ) are invariant under rigid transformations of X and Y .
The material is called homogeneous if the energy density does not
depend onM. Then all material parameters are constant onM. An
example is the homogeneous St. Venant–Kirchhoff (StVK) material
with density function

WStVK(λ1, λ2, λ3) =
α

2
(λ1 + λ2 + λ3)2 + β (λ2

1 + λ2
2 + λ2

3).
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Here α and β are material parameters.

4. ELASTIC SHAPE AVERAGING

Elastic shape averaging is a concept for computing weighted av-
erages of a set of deformable objects. It was introduced by Rumpf
and Wirth [2009] in the context of image processing and was for-
mulated for implicitly defined objects in 2D and 3D images. Here
we use this concept for interpolating between explicitly defined ob-
jects, e.g. immersed manifolds (in the continuous case) and triangle
or tet meshes (in the discrete case). Since the example shapes are
immersions of the same manifold (or meshes with the same con-
nectivity in the discrete setting), correspondences between them
are implicitly given and the interpolation is defined with respect to
these correspondences. In contrast, in the work of Rumpf and Wirth
the optimization is performed over all possible correspondences.

We consider m deformable objects whose reference configura-
tions are given by maps Xk:M → R3. Then, we have m elastic
potentials

Ωk(·) = Ω(Xk, ·). (2)

For any configuration Y :M → R3, Ωk(Y ) measures the energy
stored in the kth object when it is deformed to the configuration Y .
For a vector ω = (ω1, ω2, ..., ωm) of m positive weights, we con-
sider the weighted sum of the elastic potentials Ωk. The weighted
average shape A(ω) corresponding to a weight vector ω is defined
as the configuration that minimizes the weighted sum of the Ωk

A(ω) = arg min
Y

m∑
k=1

ωk Ωk(Y ). (3)

The idea is to deform m objects Xk to the same configuration Y
and we search for the configuration whose total energy (weighted
with the weights ωk) required to deform all m objects is minimal.

In the following, we discuss some properties of (this variant of)
elastic shape averaging:

—The weighted average shape is independent of the choice of a
base manifoldM: If M̃ is a manifold and φ : M̃ →M a diffeo-
morphism, then the weighted average shapes A(ω) : M → R3

and Ã(ω) : M̃ → R3 satisfy Ã(ω) = A(ω) ◦ φ. The reason
is that the elastic potentials are independent of the base mani-
fold. For configurations X,Y : M → R3 and corresponding
configurations X̃, Ỹ : M̃ → R3, the potentials agree

Ω(X,Y ) = Ω̃(X̃, Ỹ ).

As a consequence the weighted sum of the potentials (3) is inde-
pendent of the choice of the base manifold.

—Homogeneity. The map A, which maps a weight vector ω to the
weighted average shape A(ω), is homogeneous

A(ω1, ω2, ..., ωm) = A(ξω1, ξω2, ..., ξωm) for any ξ ∈ R+.

The reason is that when ω is scaled by a factor ξ ∈ R+, the ob-
jective functional in (3), which is the weighted sum of the poten-
tials, scales with ξ as well. Since scaling the objective functional
does not change the minimizers, the weighted average shapes re-
main the same. A consequence of homogeneity is that it suffices
to consider weights ωk that sum to one.

—Invariance under rigid motion. The weighted average shape is
only determined up to rigid motion and it does not change if any
of the example shapesXk is transformed by a rigid motion. This
property is a consequence of the fact that the elastic potentials,
Ω(X,Y ), are invariant under rigid transformations of X and Y .

—Lagrange property. The weighted average shape A(ek) equals
Xk (up to rigid motion), where ek = (0, 0, ..., 0, 1, 0, ..., 0) is
the kth standard basis vector of Rm. This means that the weighted
average shape of the weight vector ek is the kth example shape.
The reason is that in this case the objective functional in (3)
agrees with the potential Ωk and the minimizer of Ωk is the ref-
erence configuration Xk.

—The weighted average shape is determined by the reference con-
figurations {X1,X2, . . . ,Xm}, their material properties, and the
weight vector ω. It is independent of any ordering on the set of
reference shapes. This independence follows from the fact that
the order of summands in (3) can be altered while the sum re-
mains the same.

4.1 Elastic shape averaging for meshes

In the discrete setting, the reference configurations and the
weighted average shapes are tet or triangle meshes that have the
same connectivity. The abstract manifoldM is replaced by an ab-
stract simplicial manifold and the reference and weighted average
shapes are given by embeddings of the simplicial manifold in R3.
For the implementation this means that we have only one indexed
face list (encoding the abstract simplicial manifold) which is used
for all meshes. Then, the reference configurations and the weighted
average shapes are given by 3n-vectors (where n is the number of
vertices) that list the coordinates in R3 for every vertex. We use
lower-case letters to denote the discrete reference shapes xk and
deformations y.

In addition, we will need elastic potentials for the discrete
shapes. Since the maps that describe deformations between meshes
with the same connectivity are continuous and piecewise linear, we
can directly use finite element discretizations with linear Lagrange
elements. For details on finite element discretizations for elastic-
ity, we refer to [Bonet and Wood 2008] and for open source im-
plementations of different materials to the VegaFEM library [Sin
et al. 2013]. In our experiments, we used finite element discretiza-
tions of elastic solids (tet meshes) with homogeneous St. Venant–
Kirchhoff (StVK) and Mooney–Rivlin (MR) materials. For elastic
shells (triangle meshes), we used Discrete Shells (DS) [Grinspun
et al. 2003; Hildebrandt et al. 2010; Heeren et al. 2012] and As-
Rigid-As-Possible (ARAP) [Sorkine and Alexa 2007; Chao et al.
2010; Jacobson et al. 2012]. The resulting discrete deformation en-
ergies are nonlinear functionsW : R3n×R3n → R, where the first
argument is the list of vertex positions of the reference configura-
tion and the second argument specifies the deformed configuration.

Fig. 2. Weighted elastic averages of three Neptune solids with 691k tets
using the nonlinear Mooney–Rivlin material computed at rates around
100 interpolated shapes per second (see Table I).
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We define the discrete energies

Wk(·) =W(xk, ·)

and the weighted average shapes

a(ω) = arg min
y

m∑
k=1

ωkWk(y) (4)

analogous to (2) and (3). To compute a weighted average shape, a
nonlinear optimization problem in R3n has to be solved.

5. REAL-TIME SHAPE INTERPOLATION

In this section, we introduce an efficient scheme for the approxima-
tion of weighted average shapes that achieves interactive response
times even for complex geometries and general nonlinear poten-
tial energies. The idea is to replace the complex optimization prob-
lem (4) by a reduced problem that can be solved much faster. One
design principle is that the reduced problem should be independent
of the resolution of the shapes that are to be averaged. We achieve
this goal by combining two components: a low-dimensional affine
subspace of the shape space, specifically designed for the interpo-
lation problem, and a scheme for the fast approximation of the re-
duced objective functional and its gradient. The motivation for us-
ing this strategy is the special structure of the shape interpolation
problem. To represent the geometries accurately, detailed meshes
are needed. Compared to this, the number m of example shapes
is very small. Therefore, the variation within the set of interpo-
lated shapes is of low rank: all possible weighted average shapes
can be parametrized by m − 1 parameters. We want to exploit the
resulting correlations between the degrees of freedom in the high-
dimensional optimization problem.

5.1 Subspace construction

The first ingredients to construct the affine subspace are the exam-
ple configurations xk. We use τ = x1 as a reference point for the
affine subspace and collect the vectors xk−x1 for k ∈ {2, 3, ...,m}
in a set V . The affine space will be the linear span of V attached to
the reference point τ . Including the difference vectors in V ensures
that the resulting space includes all the example shapes.

For the second ingredient, we use the derivatives of the weighted
average a(ω) with respect to the variation of ω. For any variation of
ω around a fixed ω0, the corresponding derivative of the weighted
average shape is a vector in R3n. The linear span of all these vectors
attached to the shape a(ω0) is the (m− 1)-dimensional affine sub-
space of R3n that locally around a(ω0) best approximates the set
of the weighted average shapes. One can think of this affine space
as the tangent space at a(ω0) of the submanifold of R3n consisting
of all interpolated shapes. We want to compute the smallest affine
subspace of R3n that contains the union of the tangent spaces of
the m example shapes. To do this, we compute vectors spanning
the tangent spaces at the m example shapes and add these vectors
to the set V . Since the set V also contains the difference vectors
xk − x1, the linear span of V attached to the reference point τ is
the desired affine space.

To compute the tangent space at an interpolated shape, we need
the derivatives of the energiesWk : the forces Fk and the tangential
stiffness matrices (or Hessians) Kk. They are defined as

Fk = −DWk and Kk = −DFk = D2Wk.

The vector Fk(y) is the interior force resulting from deforming xk
into y. By definition, at a weighted average a(ω) the weighted sum

of these forces is balanced

0 =
∑
k

ωkFk(a(ω)). (5)

By differentiating this equation, we obtain the derivative of the
weighted average shape, which we summarize in the following
lemma. We postpone the proof to the appendix.

LEMMA 1. If allWks are twice differentiable at a(ω) and a is
differentiable at ω, then the derivative of a(ω) in direction ν ∈ Rm
satisfies ∑

k

ωkKk(a(ω))Dνa(ω) =
∑
k

νkFk(a(ω)). (6)

The matrix
∑
ωkKk(a(ω)) is the Hessian of the objective func-

tional (4) at a(ω) and Fk(a(ω)) is the stress in the shape xk when
it is deformed to the configuration a(ω). For the construction of
the subspace, we compute the derivatives at the example shape xk.
Using (6), we get

Kk(a(ek))Deja(ek) = Fj(a(ek)).

The linear subspace of R3n spanned by all the derivatives at
a(ek) is spanned by the m − 1 vectors Deja, where j ∈
{1, 2, ..., k − 1, k + 1, ...,m}. The vector Deka(ek) vanishes be-
cause Fk(a(ek)) = 0. We denote this tangent space by Tk. We
compute allm−1 derivatives at them example shapes and add the
resulting vectors to V . For efficiency, we compute sparse factoriza-
tions of the matrices Kk and use each factorization to obtain all
m − 1 derivatives at the corresponding a(ek). The set V contains
m2 − 1 vectors.

In the following, we describe a strategy for extending the set V ,
which can be used to improve the approximation of the set of in-
terpolated shapes. Such a strategy is particularly helpful when the
number m of shapes to be averaged is small. For example, for in-
terpolating between two shapes, we get three-dimensional spaces.
In such a case, we want to be able to add more variability to the
subspaces. Still, when experimenting with the three-dimensional
spaces, we found that they can already contain surprisingly good
approximations of the unreduced interpolated shapes (compare Ta-
ble III). One strategy for extending the subspace would be to com-
pute samples, e.g., interpolated shapes for some random weight
vectors. The drawback of this approach is that computing the
samples is costly, in particular, for the case of shells and highly-
resolved meshes.

We propose a strategy that adapts the concept of Ritz vectors,
which was introduced by Wilson et al. [1982], to our setting and
involves only the forces Fk and the tangent stiffness matrices Kk

at the configutations xk. Ritz vectors are an established technique
for the dimension reduction of physical systems (see [Lülf et al.
2013] for a recent comparison of dimension reduction techniques).
To compute Ritz vectors, a set of loads has to be specified. In our
setting, these loads are the forces Fl(xk) acting on the shape xl
when it is deformed to the configuration xk. The Ritz vectors pro-
vide us with shape deformations corresponding to these forces. In
other words, the Ritz vectors allow us to use information about the
shape interpolation problem to construct degrees of freedom for in-
terpolating between a specific set of example shapes.

For each of the m tangent spaces Tk, we compute the first ρ+ 1
elements of the Krylov-type sequence

{Tk,K−1k MkTk,
(
K−1k Mk

)2
Tk, ...},
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Fig. 3. Weighted elastic average shapes computed in real-time. On the right is a user-interface for exploring the space of shapes spanned by five example
poses of the centaur shell model.

where Mk is the mass matrix of the example shape xk, and add
bases of these spaces to the set V . This can be done by comput-
ing the corresponding Krylov sequences for all the tangent vectors
Deja(ek) and adding them to V .

Directly computing this sequence is numerically unstable, so we
use an algorithm that produces a sequence that has the same lin-
ear span. The construction of the subspace basis is listed in Algo-
rithm 1. The computation of the Krylov sequences is the inner for-
loop running over the index “l”. The vectors produced by the inner
for-loop are pairwise Mk-orthogonal. To ensure this, it suffices to
orthogonalize only against the last two elements of the sequences.
This technique is borrowed from the Hermitian Lanczos algorithm
(see [Saad 1992]). The computation of the Krylov sequences is fast
because we can re-use the sparse factorizations we already used to
determine the tangent vectors. In addition to the sequences gener-
ated from the tangent vectors, one can use the sequence generated
from the difference vectors xk − xj between the positions of the
shapes. After we collected the difference vectors, the tangent vec-
tors, and Krylov sequences in the set V , we use an SVD to compute
an orthonormal basis of the linear span of V . Then the affine sub-
space we use for the shape interpolation is the linear span of V
attached to the reference point τ .

Algorithm: Subspace construction
Data: Example poses {xk}k∈{1,2,...,m}
Result: Subspace basis {b1, b2, . . . , bd}
V ← {}; v0 ← ~0;
for k = 2, 3, . . . ,m do
V ← V ∪ {xk − x1};

for j, k = 1, 2, . . . ,m; j 6= k do
Solve Kk w = Fj ;
β1 ← ‖w‖Mk

;
v1 ← w/β1;
for l = 1, 2, . . . ρ do

Solve Kk w = Mk vl;
αl ← 〈w, vl〉Mk

;
w ← w − αlvl − βlvl−1;
βl+1 ← ‖w‖Mk

;
vl+1 ← w/βl+1;

V ← V ∪ {v1, . . . , vρ+1};
{b1, b2, . . . , bd} ← compute basis of span(V);

Algorithm 1: Construction of the subspace for shape interpola-
tion.

5.2 Reduced functional and gradient approximation

Once a subspace basis {b1, b2, . . . , bd} and reference point τ are
computed, we can restrict the optimization problem (4) to this
affine subspace of R3n. Let U = [b1, . . . , bd] be the matrix whose
columns are the basis vectors. Then, the reduced optimization prob-
lem is

ã(ω) = arg min
q∈Rd

m∑
k=1

ωk W̃k(q), (7)

where W̃k(q) =Wk(Uq + τ) and q is the vector of reduced coor-
dinates. Solving the interpolation problem in the low-dimensional
reduced space holds the promise of superior runtime performance.
However, to attain real-time rates even for larger meshes, we need a
strategy to evaluate the reduced objective functional (and its deriva-
tives) at costs independent of the resolution of the example shapes.
This, in turn, requires an efficient evaluation or approximation of
the reduced energies W̃k which itself is a challenging problem for
general complex materials and arbitrary geometries.

A method that achieves resolution independence, due to Barbič
and James [2005], used the fact that for the special case of linear
materials, the (reduced) energy is a multivariate quartic polynomial
in the (reduced) coordinates. By precomputing the coefficients of
the reduced polynomial, an exact evaluation of the reduced energy
is achieved at a cost complexity that scales O(d4). While we can
employ this scheme for the materially linear St. Venant–Kirchhoff
model, we have to resort to approximation for general nonlinear
materials. To this end, we adopt the optimized cubature by An et
al. [2008]. Their approach solves a best subset selection problem
to determine a set of cubature points and weights that minimize a
fitting error of the reduced forces to training data. The number of
cubature points necessary was found to grow linearly with the sub-
space dimension, thus furnishing fast reduced evaluation at O(d2)
cost. In our implementation, we apply the automatic training pose
generation by von Tycowicz et al. [2013] to each example pose and
then compute separate cubatures for the W̃ks. We also employ their
NN-HTP solver for fast cubature optimization. An option for the
shell models is the coarsening-based approach presented in [Hilde-
brandt et al. 2011]. This technique constructs a low-resolution ver-
sion ofM (called a ghost) together with a reduced space. By con-
struction, both reduced spaces are isomorphic and we use the iso-
morphism to pull the energy from the subspace of the ghost to the
subspace of the full mesh thus achieving approximation costs in-
dependent of the resolution of the full mesh. Due to the lower pre-
processing costs (potentially at the price of approximation quality),
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we prefer the coarsening approach over the cubature for the shell
models in our experiments.

5.3 Solver

Even though the reduced problem is low-dimensional, it is still
challenging to solve at real-time rates due to the nonlinear terms
in the objective functional. An efficient family of solvers for this
type of problem is the Broyden class of quasi-Newton methods.
Members of the Broyden class construct a model of the objective
functional that is good enough to produce superlinear convergence
by measuring changes in gradients and hence do not require sec-
ond derivatives to be supplied at each iteration. In particular, we
opt for the BFGS method (see [Nocedal and Wright 2006]) that di-
rectly approximates the inverse Hessian of the objective functional
avoiding costly linear system solves. To achieve a warm start of
our solver, we compute the inverse of the reduced Hessian at the
reduced mean shape once during the offline phase and use it as an
initial inverse Hessian approximation for the BFGS solver in the
online phase.

6. RESULTS AND DISCUSSION

We tested the shape interpolation scheme with different elastic
potentials: (finite element discretizations of) St. Venant–Kirchhoff
and Mooney–Rivlin solids, Discrete Shells, and the As-Rigid-As-
Possible energy. For the shells, we employed the coarsening-based
energy approximation; for the St. Venant–Kirchhoff and Mooney–
Rivlin solids we used polynomial-based and cubature-based ap-
proaches, respectively. To set up the energy approximations, we
used the configurations from the original publications, i.e., we com-
puted cubatures with about 3d (d being the subspace dimension)
cubature points on 1k training poses, and, for the ghosts, we used
coarse meshes with 500 to 1k vertices. In all of our experiments,
we used homogeneous elastic materials. Furthermore, we use diag-
onal (or lumped) mass matrices Mk for which the diagonal entry is
the mass of the corresponding vertex, which is a third of the com-
bined area of the adjacent triangles and a fourth of the combined
volume of the adjacent tets for shells and solids, respectively. We
carried out experiments for both unconstrained models and models
with equality constrained vertices that stay fixed throughout the in-
terpolation. In the latter case, we color-coded the fixed vertices in
gray in the figures and accompanying video.

In Table I we list statistics for both the offline and online phase
of our framework for various geometries and parameter settings.
This includes timings for the construction of the low-dimensional
subspace and for setting up the quartic polynomial, cubature, and
coarse mesh. Both steps dominate the offline phase and their com-
putational cost depends mostly on the resolution and number of
example shapes, and the approximation strategy.

To evaluate the runtime performance of our framework, we im-
plemented a user interface that provides an intuitive metaphor for
exploring the shapes contained in the span of the example poses.
The user can drag a point in a two-dimensional control polygon for
which each vertex corresponds to an example shape. Whenever the
point is dragged, the framework computes an interpolated shape us-
ing the barycentric coordinates of the point as interpolation weights
(see Fig. 3 for an illustration). Due to the resolution independence
of our framework, the interpolated shapes are computed in fractions
of a second yielding interactive feedback to the user. The accom-
panying video contains screen captured sequences of live shape ex-
ploration sessions. Additionally, we list runtime statistics for all our
experiments in Table I. The armadillo experiment shown in Fig. 1

Table I. Performance statistics
Model #v W m d V W̃ BFGS

Armadillo 166k
DS 5 64 420s 8s 6ms (6)
DS 2 41 178s 4s 3ms (4)
ARAP 2 41 177s 4s 15ms (4)

Centaur 16k DS 5 64 36s 2s 6ms (3)
Ch. dragon 130k DS 2 17 121s 3s 1ms (2)
Dinosaur 28k StVK 2 17 8s 338s 0.2ms (6)
Elephant 42k DS 3 20 59s 2s 5ms (2)
Face 500k DS 5 64 1456s 6s 7ms (3)
Hand 6k DS 6 65 17s 0.5s 12ms (4)
Neptune 178k MR 3 26 100s 1076s 2ms (5)
Livingstone

40k
DS 2 39 41s 2s 3ms (3)

elephant ARAP 2 39 41s 2s 19ms (3)

Statistics measured on a 2012 MacBook Pro Retina 2.6GHz. From left to right: num-
ber of vertices, material, number of poses, subspace dimension, time for computation
of subspace, time for construction of energy approximation, and time for one BFGS
iteration (average number of iterations until convergence).

demonstrates the runtime performance. By restricting the 498k-
dimensional optimization problem to a 64-dimensional subspace
and employing energy approximation, our framework can deter-
mine reduced interpolated shapes in about 36 ms. Using a jCUDA-
based matrix-vector multiplication we can map the reduced coordi-
nates to the full 498k-dimensional space in 4 ms yielding response
times of about 40 ms.

In addition to the shells, we also present experiments with tetra-
hedral meshes. We model the dinosaur (see Fig. 7 top row) as a
St. Venant–Kirchhoff deformable object and the Neptune in Fig. 2
as an elastic solid with Mooney–Rivlin material, i.e., a nonlinear
constitutive model. For the latter, we computed cubatures for each

Fig. 4. Comparison to previous work from [Winkler et al. 2010] (top
row), [Kircher and Garland 2008] (middle row), and [Fröhlich and Botsch
2011] (bottom row). From left to right in each row: example poses, mean
shape from previous work and our method using the DS energy (for the
armadillo and the Livingstone elephant we also provide our results using
the ARAP energy).
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Fig. 5. Comparison of subspace constructions. From left to right in each
row: example poses, unreduced mean shape, and mean shapes in reduced
spaces based on our construction and the one from [Barbič et al. 2009] (see
Tbl. II for details).

energy comprising 81 out of the 691k tetrahedra furnishing rates of
about 100 interpolations per second.

Comparison to previous work. We compare our method to
the state-of-the-art nonlinear interpolation schemes in [Kircher and
Garland 2008], [Winkler et al. 2010], and [Fröhlich and Botsch
2011] for which results were kindly provided by their respective
authors. Fig. 4 shows example poses and mean shapes obtained
by our and previous work. The comparison illustrates that the pro-
posed scheme is able to produce visually comparable interpolation
results while featuring superior runtime performance. For exam-
ple, for the interpolation of the armadillo model, Winkler et al. and
Fröhlich and Botsch report timings of about 18.9 and 1.4 seconds
per interpolated shape, respectively, while our framework computes
interpolated shapes and maps them to the full space in only 15 mil-
liseconds.

Additionally to the results with the Discrete Shells energy, we
present interpolated shapes based on the As-Rigid-As-Possible en-
ergy for both the armadillo example by Winkler et al. and the Liv-
ingstone elephant example by Fröhlich and Botsch. These exam-
ples demonstrate that the choice of deformation energy affects the
interpolation results. All shown mean shapes between the armadillo
with straight legs and the armadillo with bent legs, for example, dif-
fer slightly by the extend to which the legs are bent. We provide a
more detailed juxtaposition of the armadillo and elephant compar-
ison (for which the authors provided densely sampled trajectories)
in the accompanying video.

We are presenting the first subspace construction for the shape
interpolation problem. However, constructions of subspaces have
been introduced in other contexts. We are comparing results for
shape interpolation in subspaces constructed with our method to
the results obtained in subspaces using the construction introduced
in [Barbič et al. 2009].

Before discussing the comparison, we want to emphasize that
the construction in [Barbič et al. 2009] has not been introduced for
the shape interpolation problem, but for generating realistic mo-
tion from keyframes. Therefore a different physical system is con-
sidered. Their goal is to modify the trajectory of an elastic solid
such that it interpolates keyframes and exhibits secondary motion
effects. Therefore, they consider an elastic object with a (fixed) ref-
erence configuration. In contrast, we are using elasticity to model
shape interpolation and consider a fictitious force field that is de-
rived from a combination of elastic potentials with different refer-
ence configurations (which are the example shapes). On a struc-
tural level there is a similarity between the constructions: both are

Table II. Comparison of subspace constructions
Model #v m d Our Barbič et al.

Aorta 10k 2
3 1.61 15.48
9 0.06 2.48

17 0.06 0.66

Bar
(90◦ twist)

4k 2
3 0.70 5.70
9 0.14 3.20

17 0.14 1.38

Bar
(180◦ twist)

4k 2
3 5.84 26.75
9 1.44 7.30

17 0.59 6.80

Dragon 26k 3
8 0.18 5.65

14 0.11 2.88
32 0.05 0.38

From left to right: number of vertices, number of poses, subspace dimension, and rel-
ative L2-errors (in 10−4) for interpolation results obtained in reduced spaces using
our construction and the one from [Barbič et al. 2009]. For each model, we compare
subspaces constructed from differences and tangents only (1st row) and extended
spaces of increasing dimension (2nd and 3rd row).

using the difference vectors between the shapes and certain tan-
gent vectors. However, the tangents used are fundamentally differ-
ent. In [Barbič et al. 2009] the tangents of so-called “deformation
curves” are computed. These tangents (and curves) depend on the
reference configuration of the elastic object considered (which is
important for their application). In contrast, we are combining m
elastic potentials whose rest configurations are the example poses
to get the derivatives of the weighted elastic average shapes. The
computation of the derivatives always mixes the Hessians and the
gradients of elastic potentials with different rest configurations,
which do not exist in the problem setting considered in [Barbič
et al. 2009].

Our experiments comprise comparisons for interpolation prob-
lems of elastic (StVK) solids with different number of poses, ge-
ometric complexity, and magnitude of deformation. For each set-
ting, we provide comparisons of the solutions obtained in reduced
spaces of varying size. In particular, we employ spaces from differ-
ence and tangent vectors and spaces enriched with Ritz vectors and
linear vibration modes, as proposed here and in [Barbič et al. 2009],
respectively. The number of Ritz vectors and vibration modes have
been chosen such that the resulting subspaces are of equal dimen-
sion. For example, adding three vibration modes around each ex-

Fig. 6. Approximation errors for interpolating a straight and 90◦ twisted
bar in reduced spaces of varying size using our construction and the one
from [Barbič et al. 2009] (see also 2nd row in Tbl. II for relative L2-errors).
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ample pose (or three Ritz vectors for each tangent), we obtain
9-dimensional spaces for the two-pose examples. In Table II, we
list details of the interpolation problems together with relative L2-
errors to the unreduced reference solutions (computed on about 100
interpolating shapes obtained by uniformly sampling the parame-
ter domain). The results show that our proposed spaces are able to
provide approximation errors that are an order of magnitude lower
than those obtained by employing the construction from [Barbič
et al. 2009]. A more detailed comparison of the approximation er-
ror is shown in Figure 6 which visualizes the L2-error as a function
of the interpolation weight ω1 for the 90◦ twisted bar example. Ad-
ditionally, in Figure 5 we show unreduced mean shapes in compar-
ison to mean shapes computed in reduced spaces spanned only by
differences and our tangent vectors and the ones from [Barbič et al.
2009].

Subspace accuracy. To further evaluate the fidelity of the re-
duced interpolation problem, we measured the deviation of the re-
duced from the reference-full solution for a solid (the dinosaur) and
a shell (the Chinese dragon) model. In Table III, we list Hausdorff
distances for solutions obtained in subspaces of varying size. The
examples show that the proposed scheme is able to closely match
the unreduced interpolated shapes even in very low-dimensional
subspaces. In particular, the reduced Chinese dragon mean shape
computed in a three-dimensional subspace is visually comparable
to the unreduced one (see Fig. 7 bottom). The dinosaur, on the
contrary, is an example where a three-dimensional space does not
resolve the nonlinearities sufficiently illustrating the effect of our
Krylov-type extension—adding Ritz vectors significantly improves
the approximation performance of the reduced spaces (see Fig. 7
top). Though the result in the three-dimensional space is not a good
approximation in terms of the Hausdorff distance, it is a smooth
shape.

7. CONCLUSION

We introduce a scheme for nonlinear shape interpolation that is
based on an offline-online framework. In the online phase, it al-
lows for real-time computation of interpolated shapes. This makes
the method well-suited for real-time applications that involve shape
interpolation and for tools that need to compute a large number of
interpolated shapes. The scheme is based on a novel construction
of low-dimensional shape spaces that use the specific structure of
the interpolation problem. The dimensional reduction is combined
with schemes for the fast approximation of the nonlinear objective

Fig. 7. Subspace fidelity. Mean shapes of the dinosaur and Chinese
dragon model computed in spaces of varying size. From left to right: the
two example poses, mean shapes obtained in a 3 dim., 17 dim., and unre-
duced space. (See Tbl. III for Hausdorff distances.)

Table III. Subspace fidelity

Model #v d (#rv)
Hausdorff distance

0.25 0.5 0.75

Dinosaur 28k
3 (0) 1.87 7.96 9.17
9 (6) 0.49 0.87 1.63

17 (14) 0.38 0.69 0.49

Chinese dragon 130k
3 (0) 1.16 1.73 1.46
9 (6) 0.59 0.82 0.59

17 (14) 0.18 0.24 0.17

From left to right: number of vertices, subspace dimension (number of Ritz vectors),
and Hausdorff distances to the unreduced reference solution (divided by the length
of the bounding box diagonal) for various weights. Example poses and mean shapes
are shown in Fig. 7.

functional and gradient. The scheme is implemented for a broad
approach to shape interpolation that we obtain by translating the
approach for elastic shape averaging by Rumpf and Wirth [2009]
from implicitly to explicitly described shapes.

Limitations and Challenges. Our current construction of the
subspaces leaves room for improvement. Instead of a straightfor-
ward computation of the tangents and Krylov sequences on the
large meshes, one could try to develop efficient approximation tech-
niques. In addition, the computation of the basis vectors could be
done in parallel for allm shapes (or even for all Krylov sequences).
In our present framework, there is no control over the approxima-
tion error. An interesting problem would be to integrate an accu-
racy control into the subspace construction. Another direction for
future work is to use the subspace construction for accelerating the
computation of geodesics in shape space. Furthermore, it would be
interesting to test the averaging approach with geometrically mo-
tivated energies, e.g., to get weighted averages that are invariant
under affine (or Möbius) transformations of the example shapes.
Recent schemes for deformation-based modeling [Gal et al. 2009;
Wu et al. 2014] preserve automatically detected or user-specified
structure of a shape, e.g. symmetries or planarity constraints, dur-
ing modeling. An interesting question is how such structural infor-
mation could be integrated to shape interpolation.
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APPENDIX

A. TANGENT SPACES

In this appendix, we derive the formula (6) for the derivative of
the weighted average deformation with respect to variation of the
weights ω.

PROOF OF LEMMA 1. At any weighted average deformation
the forces pulling towards the shapes xk are balanced, i.e., Equation
(5) is satisfied. Hence, the directional derivative of the ω-weighted

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



10 • C. v. Tycowicz et al.

sum of the forces must vanish and we get

0 = Dν
∑
k

ωkFk(a(ω))

=
∑
k

νkFk(a(ω)) +
∑
k

ωkDνFk(a(ω))

=
∑
k

νkFk(a(ω))−
∑
k

ωkKk(a(ω))Dνa(ω),

which verifies Equation (6).
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