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Abstract

Studying the interactions of genes within a cell
is an area of significant interest in the field of
medicine as it can provide answers to what exactly
drives the behaviour of a cell under specific cir-
cumstances, such as diseases. Once understood,
gene interactions can enable the synthesis of ef-
ficient, possibly personalized treatments for these
diseases [1] and other disorders. However, study-
ing gene interactions requires a large amount of
samples which might be costly and laborious to ob-
tain in the case of rare disorders for which there is
not much recorded data. Geneformer, a ”context-
aware, attention-based deep-learning model” [2],
was created specifically for solving this problem.
The model makes use of transfer learning to apply
any relevant knowledge gained from a larger, simi-
lar domain onto a downstream domain with limited
data which can be used to further train the model.
In this paper, we assessed four fine-tuning strate-
gies, including the one used throughout the in silico
experiments presented in the original Geneformer
paper. We did this to assess whether the accuracy
of Geneformer on the downstream task of predict-
ing the sensitivity of cancer cells to different treat-
ments can be improved versus the default imple-
mentation as found within the model’s paper. The
model was firstly fine-tuned using a training dataset
compiled from the sciplex2 dataset [3], followed by
the prediction of the dosage levels to which sam-
ples from a test set were exposed. Upon perform-
ing the experiment, we concluded that, depending
on the way in which knowledge from the source
domain is stored inside the pre-trained model and
the similarity between the source and the target do-
mains, different fine-tuning strategies were suitable
for a given task. Hence, there is no single optimal
fine-tuning method which can be used to predict the
level to which cancer cells were exposed to treat-
ments such as nutlin-3A.

1 Introduction
Exploring how the interaction of genes inside a cell is influ-
enced by the state of the cell is a valuable topic for medical re-
search. It can provide a clear explanation to the behaviour of
a cell under specific circumstances, such as diseases [4]. Un-
derstanding these interactions is important as it can enable (1)
creating efficient, possibly personalized treatments for these
diseases [1] and other disorders, and (2) assessing the effects
of gene-drug-drug interactions over the human body. These
applications are important from both a medical and social
standpoint, especially when considering that adverse drug re-
actions have previously been reported to represent the fourth
leading cause of death in the US [5]. However, studying these
interactions requires a large amount of samples (i.e. both nor-
mal and diseased cells & tissues) which might not be possible
to obtain in the case of rare disorders [2]. Existing works [2;

6; 7; 8; 9; 10] attempted to solve this problem through trans-
fer learning, a method for learning from a larger corpus
of general data and using any relevant information to solve
a downstream task which has limited data of its own [2;
7].

Transfer learning is a versatile approach which can be used
to apply knowledge from a domain with large amounts of
data to a similar domain with limited amounts of data [6;
7]. Thanks to its ability to reduce the reliance on extensive
labelled medical datasets that are costly and time-consuming
to gather, it has seen a successful use in domains such as med-
ical imaging, where it was able to provide decision support [6;
8; 9]. However, transfer learning should not be regarded as a
universal solution, since significant differences between the
target and the source domains can lead to a decrease in the
overall task performance because of negative transfer [6; 11;
10; 12]. There are other challenges to consider too: pair-
ing the model with an architecture which is unsuitable for the
task at hand (i.e. too simple or too complex), the presence
of distribution shifts [11] (i.e. data distributions in the source
and the target domain being different [13], even though the
domains themselves might be related), and improperly tuned
hyper-parameters [14]. A part of the aforementioned issues
(i.e. the task-model mismatch) can be avoided by ensuring
that the environment used for an experiment complements the
type of the task and domain. This is done through trying mul-
tiple environment configurations [14].

There are different techniques for transfer learning which
can be grouped into multiple categories, two of which being:
(1) iterative approaches, in which the parameter space is ex-
plored using a heuristic function and the model layers are be
selectively fine-tuned; these approaches are effective but re-
quire a precise definition of the search space and are compu-
tationally expensive [6]; and (2) non-iterative approaches, in
which the parameters are adjusted on-the-go, without exhaus-
tive exploration [6]; they are less computationally demand-
ing.

Geneformer, a ”context-aware, attention-based deep-
learning model” [2], was created specifically for solving the
problem of limited data in the context of mapping gene net-
works. The model has already shown promising results by
accurately predicting how a human cardiomyocyte’s gene ne-
towrk reacts to the deletion or activation of specific genes [2].

A prerequisite to seeing the adoption of Geneformer into
the medical field is optimizing it such that it can be used with
great confidence in real-life scenarios [15; 16]. One way of
doing so is coming up with a fine-tuning strategy such that
the predictive accuracy is increased for a desired task. Better
performance would promote human-AI collaboration through
an increased level of trust.

The existing works so far have focused on the ways in
which different strategies of implementing transfer learning
and fine-tuning can increase or decrease the accuracy of the
model for tasks such as medical image classification [6; 8;
9], surgical workflow analysis [17; 18], object identification
[19; 20], and segmentation [21]. Therefore, in this study we
focused our attention on whether the fine-tuning strategies
mentioned in other works also yield notable performance im-
provements in the context of predicting the sensitivity of hu-
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man lung adenocarcinoma cells to a treatment by looking at
non-iterative fine-tuning approaches.

In order to answer this question we will look at the follow-
ing key aspects:

• Given the same amount of data, which fine-tuning strat-
egy performs the best? Can we do better than the strat-
egy presented in Geneformer’s manuscript [2]?

• Are there any differences among the fine-tuning strate-
gies which seem to be particularly contributing towards
a higher accuracy for the task of predicting the sensi-
tivity of cancer cells to treatments? Can we gain any
insights from them?

In our study, we compared four different fine-tuning strate-
gies by starting from the same pre-trained Geneformer model
[22] and the sciplex2 dataset [3] (data accessible at NCBI
GEO database [23], accession GSM4150377). We also repro-
duced one of the classification experiments presented in the
Geneformer’s manuscript [2] in order to establish a baseline
metric. The fine-tuning strategies evaluated in this paper are:
(1) freezing the first two layers of the model (the implemen-
tation showcased in Geneformer’s manuscript [2]), (2) Linear
Probing [6; 24], (3) Gradual Unfreeze (last/all)(LP-FT) (grad-
ually unfreezing the pre-trained layers of Geneformer during
the fine-tuning process) [6; 24], and (4) Full Fine-tuning [6].
The methods have shown potential in the context of image
classification [6].

We ran two classification experiments involving human
adenocarcinoma cells [3]. In the first experiment, the sam-
ples have been exposed to Nutlin-3A at two different dosage
levels, those being 0µM and 25µM. In the second experi-
ment, four dosage levels were used: 0.25µM, 2.5µM, 25µM,
and 125µM respectively. The pre-trained Geneformer model
[2] was fine-tuned on samples from the task-specific dataset
using each of the strategies discussed. Subsequently, it was
tasked with predicting the dosage levels to which the samples
in the test set were exposed.

In Section 2 we present the problem in more detail, as well
as discussing the methodology used for conducting the ex-
periments. We provide a summary of the dataset used, the
selected fine-tuning strategies, and the implications of the ex-
periment. Section 3 elaborates on the evaluated fine-tuning
strategies in more detail: their unique features, as well as
advantages and weaknesses that inherently come with using
each method. The results are presented in Section 4, followed
by Section 5 which discusses the implications of the experi-
ment results. The conclusions and further work are specified
in Section 6, while Section 7 shows the ways in which we
ensured that our conclusions are creditable and representative
of a responsible research process.

2 Problem Description
On an abstract level, the main problem lies within finding an
efficient way to transfer knowledge from a source to a tar-
get domain. Thus, the focus of this paper is assessing how
using different fine-tuning strategies impacts the prediction
of the dosage levels at which human lung adenocarcinoma
cells which have been exposed to the compounds nutlin-3A

and the DMSO vehicle control [23; 3]. The dosage levels
range from 0µM to 125µM. The first experiment includes
two dosage levels, making it a two-class problem, whereas
the second experiment resembles a multi-classification prob-
lem with four levels. Based on these tasks, the aforemen-
tioned fine-tuning strategies (selective fine-tuning [6], Lin-
ear Probing [6; 24], Gradual Unfreeze (last/all)(LP-FT) [6;
24], and Full Fine-tuning [6]) were compared to one another.

2.1 Classifying cardiomyocytes: performance
baseline for Geneformer

One of the practical examples discussed in the Geneformer
paper is the analysis of in silico treatments. As a prerequisite
of this experiment, the model was trained to distinguish be-
tween cardiomyocytes [25] from non-failing heart cells (n=9)
and cells affected by hypertrophic (n=11) or dilated (n=9) car-
diomyopathy with an overall out-of-sample accuracy of 90%
[2]. The experiment was performed in order to see whether
Geneformer’s in silico perturbation strategy could be applied
to model human disease and reveal candidate therapeutic tar-
gets [2]. We began our studies by reproducing the first part of
the experiment to set a performance baseline for the selective
fine-tuning configuration used in the paper and observe how
the predictive performance changes with a different dataset,
more specifically sciplex2 [3].

3 Materials and methods
This section elaborates on the model used for the prediction
task and its architecture, as well as the fine-tuning strategies
implemented and the dataset chosen for the experiment.

3.1 The Geneformer model
Geneformer consists of six transformer encoder units, each
containing a self-attention layer and a feed forward neural
network layer with 4 attention heads per layer. Implemen-
tation was done using pytorch [26; 27] and the Huggingface
Transformers library [28] was used for model configuration,
data loading, and training. The model works by taking in
single-cell transcriptomes, encoded in the form of rank values
which represent the expression of each gene within the cell,
and turning the encoded input into a 256-dimensional embed-
ding in which the relationships between the cell’s genes are
highlighted.

On top of the original Geneformer model, an additional
task-specific final transformer layer is then added [2]. In the
context of our experiment, this seventh layer acts as the clas-
sifier which predicts whether a cancer cell was exposed to
nutlin-3A and has shown sensitivity to it or not. This fi-
nal task-specific transformer layer, together with a chosen
amount of pre-trained layers from the original model, is to be
fine-tuned using the human lung adenocarcinoma samples.

A representation of Geneformer’s architecure can be seen
in Figure 1.

3.2 The sciplex2 dataset
Sciplex2 is a publicly available repository of A549 hu-
man lung adenocarcinoma cells which have been exposed to
BMS345541, dexamethasone, nutlin-3A, SAHA, or DMSO
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Figure 1: Geneformer’s architecture. The model takes in a single-cell transcriptome, in the form of rank values which represent the gene
expressions, and turns it into a 256-dimensional embedding. The embedding is then used as input for the final transformer layer as part of the
classification task.

vehicle control with varying dosages, ranging from 0µM to
250µM [3]. Sciplex2 is the result of ”sci-Plex”, a method of
increasing the cost-effectiveness of high-throughput screens
(HTSs) with scRNA-seq-based phenotyping by quantifying
the transcriptional responses to thousands of independent
perturbations at single-cell resoltuion using ”nuclear hash-
ing”, as described by Cao et al. [3] The cell sample en-
tries were generated according to the protocol described in
the manuscript [3], as well as in another work authored by
Cao et al. [29]

The dataset is accessible at the NCBI GEO database [23]
(accession GSM4150377).

3.3 Steps to classify transcriptomic data from
cancer cells

As mentioned in Section 2, Geneformer was evaluated on the
2-class problem of differentiating between human lung ade-
nocarcinoma cells exposed to either nutlin-3A or the DMSO
vehicle control with dosages of 0µM and 25µM, and on the
multi-classification task which implied exposure to nutlin-3A
at dosage levels of 0.25µM, 2.5µM, 25µM, and 125µM re-
spectively [3]. For the 2-class problem, we began with pre-
processing the sciplex2 dataset by filtering its samples into a
subset containing only the relevant transcriptomic data (can-
cer cells exposed to DSMO vehicle control and nutlin-3a with
the specified dosages) and then tokenizing those into a format
which could be used by the deep-learning model using the
Geneformer’s tokenizer implementation [2]. The subset was
split into an evaluation set and a test set with a ratio of 8:2.
We then fine-tuned the model, which was pre-trained using
the Genecorpus-30M dataset comprising of 29.9 million hu-
man single-cell transcriptomes from a broad range of tissues
from publicly available data [2], on the training set using the
fine-tuning methods mentioned. The fine-tuned model’s task
performance was then evaluated on the test set, followed by
compiling the confusion matrices and gathering metrics for
the accuracy and F1-score.

The same steps were followed in the case of the 4-class

problem. The only difference lied in the set of samples that
were used for training and evaluating the model.

3.4 Fine-tuning strategies
Given their efficiency in avoiding multiple training iterations
which are resource-intensive [6], these non-iterative fine-
tuning strategies are appealing in mapping gene networks.
Some of the methods, like Full Fine-tuning, are already a
standard in transfer learning [6], and thus it is worth evalu-
ating them for the task at hand.

Selective Fine-tuning [6]
Selective fine-tuning is a strategy where parameters such as
the learning rate and the number of frozen layers are fixed
beforehand, following that they stay the same throughout
the retraining [6]. This strategy was adopted in the Gene-
former’s manuscript; it was used in different applications,
among which was also the cardiomyocytes classification task
which was reproduced in our study to establish a baseline.

The effectiveness of this method is highly dependent on
the type of downstream task, the similarity of the domains,
and the hyper-parameters chosen. Acceptable accuracy rates
can be achieved, provided that suitable parameters are cho-
sen. However, this strategy implies the time-consuming task
of manually selecting and testing hyper-parameter configura-
tions for the model.

Geneformer’s manuscript reported that an out-of-sample
accuracy of 90% was achieved by freezing the first two layers
of the model and fine-tuning the rest [2].

Linear Probing [24]
Linear probing is similar to selective fine-tuning: the strategy
consists of freezing all pre-trained layers and only training the
additional classifier layer on the target dataset. An advantage
of this strategy is that it is less computationally-demanding
since only the last layer is trained. The original features of the
pre-trained model are fully preserved. However, the model
might not fully capture the nuances of the downstream task
[6], and thus the predictive performance can be lower.
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Gradual Unfreeze (last/all) (LP-FT) [24]
This strategy is the result of combining Linear Probing and
Full Fine-tuning. Initially, all but the last classifier layer are
frozen. The last layer is trained for an arbitrary amount of
epochs after which all the layers are unfrozen. The fine-
tuning then continues over the whole model for the remain-
ing number of epochs. This approach enables tuning the pre-
trained model for the downstream task while ensuring that the
model weights still hold a specific degree of knowledge from
the source domain.

Full Fine-tuning [6]
Full Fine-tuning is a standard, widely-used method [6] which
implies training all the layers of the pre-trained model, as well
as the additional classifier layer, on the task-specific dataset.
Depending on the type of downstream task, it is hypothesized
that this method could yield the highest accuracy rate, given
that all layers are tuned specifically to solve the downstream
task. However, when compared to the other strategies, an
increased risk of overfitting and losing the original features
[30; 6] should be taken into account.

Hyper-parameters for Fine-tuning
Throughout our experiments, all hyper-parameters besides
the number of frozen layers were fixed as follows: max learn-
ing rate, 5 × 10–5; learning scheduler, linear with warmup;
optimizer, Adam with weight decay fix160; warmup steps,
500; weight decay, 0.001; batch size, 12. These parameters
are the same as the ones chosen in Geneformer’s manuscript
[2].

4 Results
4.1 Classification of cardiomyocytes from

non-failing hearts and hearts affected by
hypertrophic or dilated cardiomyopathy &
Selective Fine-tuning

The reproduction experiment yielded comparable results as
was reported by the developers of Geneformer. We obtained
an out-of-sample accuracy of 87.3%, with an F1-score of
0.85. The confusion matrix can be seen in Figure 2. The
configuration was the same as the one presented in the origi-
nal manuscript: the first two layers of the model were frozen,
and the original hyperparameters were kept in place.

The model obtained an overall good accuracy rate, high-
lighting the power of transfer learning when applied in a sit-
uation with similar domains and a potential distribution shift.
The domains for this task were the Genecorpus-30M dataset
and the single-nucleus cell profiling dataset representing both
healthy human hearts and hearts affected by dilated and hy-
pertrophic cardiomyopathy.

4.2 Prediction of human lung adenocarcinoma cell
exposure to nutlin-3A/DSMO vehicle control
with two dosage levels

We firstly fine-tuned the pre-trained model with the origi-
nal configuration as presented in the Geneformer manuscript:
this implied fine-tuning the model throughout only one epoch
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Figure 2: Confusion matrix for the cardiomyocytes classification
task.

in order to avoid overfitting [2]. We then tried the same con-
figuration while using 10 epochs. The performance of the
model was boosted by a considerable amount, as can be seen
in Table 1. This was not an unexpected result, as it was
mentioned in Geneformer’s manuscript that ”hyperparameter
tuning for deep learning applications generally significantly
enhances learning and so it is likely that the maximum pre-
dictive potential of Geneformer in these downstream applica-
tions is significantly underestimated” [2].

It can be argued that the increase in accuracy could have
been the result of overfitting, but that would have lead to a test
performance substantially worse than the levels of accuracy
reached during the training stage. No significant difference
between the two scores has been noticed.

Accuracies and F1-scores
Strategy Accuracy F1-score
Two layers frozen
(1 epoch)

93.3% 0.89

Two layers frozen
(10 epochs) (Default)

96.0% 0.94

Linear Probing
(10 epochs)

96.6% 0.95

Gradual Unfreeze (last/all)
(LP-FT)
(10 epochs)

97.3% 0.96

Full Fine-tuning
(10 epochs)

95.1% 0.93

Table 1: Comparison of the different fine-tuning methods for the
two-class human lung adenocarcinoma cell classification task.

Linear Probing obtained a very good accuracy, proving its
suitability for the task at hand wherever a lower resource con-
sumption is of utmost importance. However, despite the re-
markable scores, it should be noted that the method had a ten-
dency to return more false negatives compared to other strate-
gies, as can be seen in Figure 5A. One must ensure that the
model does not become too biased towards the ”Untreated”
category, as this could lead to serious implications in a real-
life setting.

The Gradual Unfreeze strategy obtained the highest accu-
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Figure 3: Comparison of the fine-tuning strategies relative to the
default configuration of freezing the first two layers of Geneformer
and training the rest over 10 epochs, % score change, two dosage
level prediction task.
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Figure 4: Confusion matrices for the 2-class cancer cell classifica-
tion task (Left: 2 frozen layers, one epoch; Right: two frozen layers,
10 epochs).
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Figure 5: Confusion matrices for the 2-class cancer cell classifica-
tion task (Left: Linear Probing, 10 epochs; Right: Gradual Unfreeze
(last/all)(LP-FT), 10 epochs).

racy rate. This means that preserving the pre-trained weights
to a higher degree was better for our task than fine-tuning all
the layers from the beginning on the task-specific training set.
In our experiment setup for the Gradual Unfreeze method, we
decided to freeze the pre-trained layers for 5 epochs before
unfreezing them and proceeding with a full model retraining.

Given that Full Fine-tuning performed better only when
compared to the original Geneformer configuration which
was trained using one epoch, it would be advisable to avoid
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Figure 6: Confusion matrices for the 2-class cancer cell classifica-
tion task (Full Fine-tuning, 10 epochs).

employing the strategy in this particular context. The greater
effort of training the whole model on the task-specific dataset
did not lead to the performance improvement that would jus-
tify using it. Quite the contrary, the fully fine-tuned Gene-
former model performed worse than its original counterpart
with two layers frozen when trained over 10 epochs. This is
indicative of a loss of relevant knowledge from the first two
layers, an aspect which we elaborated on in Section 5.

Overall, the results from all fine-tuning methods proved
to be promising, indicating the ability to use less
computationally-demanding strategies such as linear probing
with little to no compromise with regard to the predictive ac-
curacy. Surprisingly, using Linear Probing in our situation led
to a better model performance compared to all but one other
fine-tuning method.

4.3 Prediction of human lung adenocarcinoma cell
exposure to nutlin-3A/DSMO vehicle control
with four dosage levels

The multi-dosage prediction task proved to be more difficult
for Geneformer which obtained an average accuracy of 68%.
The average does not include the one epoch fine-tuning con-
figuration. The scores for each method can be seen in Table
2.

Accuracies and F1-scores
Strategy Accuracy F1-score
Two layers frozen
(1 epoch)

52.6% 0.40

Two layers frozen
(10 epochs) (Default)

71.0% 0.70

Linear Probing
(10 epochs)

65.8% 0.62

Gradual Unfreeze (last/all)
(LP-FT)
(10 epochs)

66.5% 0.63

Full Fine-tuning
(10 epochs)

68.9% 0.65

Table 2: Comparison of the different fine-tuning methods for the
multi-class human lung adenocarcinoma cell classification task.

Here, freezing the first two layers and training the rest of
the model seemed to fare best both in terms of accuracy and
the F1-score. The strategy led to an accuracy of 71%. As
can be seen in Figure 8B, the model was able to differentiate
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Figure 7: Comparison of the fine-tuning strategies relative to the
default configuration of freezing the first two layers of Geneformer
and training the rest over 10 epochs, % score change, four dosage
level prediction task.

between cells exposed to nutlin-3A at dosage levels < 10.0
and cell exposed at levels ≥ 10.0 with relative ease. How-
ever, within each of those two ranges, the predictive accuracy
worsened. This is indicative of a general grouping of the sam-
ple data into two main clusters, a trend highlighted when the
same configuration was used to tune Geneformer over a sin-
gle epoch (Figure 8A). This was discussed in more detail in
Section 5.

The second best strategy was Full Fine-tuning with an ac-
curacy of 68.9%, F1-score 0.65, followed by Gradual Un-
freeze with an accuracy of 66.5%, F1-score 0.63 (Figure 9B,
Figure 10). Corroborating those results with the scores ob-
tained by the best configuration, we noticed an importance of
choosing what layers are frozen during the fine-tuning and
the number of epochs for which they are frozen: interest-
ingly enough, fully training the weights on the target domain
seems to be removing features from the pre-trained weights
that are relevant to differentiating between dosage levels 10.0
and 50.0. On the other hand, gradually unfreezing the layers
improved the prediction of samples exposed to dosage levels
0.1 and 50.0 at the cost of a higher rate of error for dosage
levels 1.0 and 10.0.

Linear Probing behaved in a manner similar to training
Geneformer with the first two layers frozen. The model could
discriminate the cluster of samples exposed to dosages < 10.0
from the one of samples exposed to dosages ≥ 10.0 with
higher accuracy than the predictions made within the pairs
{0.1, 1.0} and {10.0, 50.0}.

5 Discussion
Our findings show that no single fine-tuning method can
outperform all other options across the different scenarios.
Thus, there is no configuration which is optimal. The same
conclusion was reached for tasks involving medical imaging
processing and other real-world tasks involving distribution
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Figure 8: Confusion matrices for the multi-class cancer cell classi-
fication task (Left: 2 frozen layers, one epoch; Right: two frozen
layers, 10 epochs).
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Figure 9: Confusion matrices for the multi-class cancer cell classi-
fication task (Left: Linear Probing, 10 epochs; Right: Gradual Un-
freeze (last/all)(LP-FT), 10 epochs).
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Figure 10: Confusion matrices for the multi-class cancer cell classi-
fication task (Full Fine-tuning, 10 epochs).

shifts [6; 30]. Depending on the application, various config-
urations should be considered and tested as they differently
influence how information is being stored within the layers
of Geneformer.

The suitability of Linear Probing as a fine-tuning method is
mainly limited to tasks where the problem complexity is re-
duced or where the source and target domains share a high de-
gree of similarity, given that all model layers besides the addi-
tional transformer layer at the end are frozen during the train-
ing process. For the two-fold classification task, the method
managed to obtain the highest scores, however a noticeable
decline in the predictive accuracy was observed after running
the four class classification task.

Using Geneformer with Full Fine-tuning led to a perfor-
mance decrease in both tasks. These results are contrary to
the hypothesis that tuning all the layers on the downstream
domain should improve the model’s performance within the
domain. Moreover, it implies that one should pay attention
when updating the pre-trained weights: sometimes it is better
to preserve those to a higher degree.
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Keeping a balance between preserving the existing knowl-
edge and tuning the model to the target domain can be best
done using Gradual Unfreezing, as it offers a higher degree
of freedom with regard to how much each layer is tuned by
enabling the selection of the number of layers to freeze, as
well as setting the amount of epochs for which they remain
frozen. Despite this, an optimal configuration can be more
difficult to find, since there are more parameters which have
to be adjusted manually. This can be mitigated by automati-
cally tuning the hyperparameters over multiple training itera-
tions [6], a method out of the scope of this paper.

During both experiments, the number of epochs over which
the first two layers of Geneformer were trained had a notable
impact over the accuracy of the predictions. Even when no
fine-tuning was performed on these layers, the model still at-
tained a reasonable performance, a sign that the pre-trained
weights already stored information which was closely related
to knowledge specific of the target domain. Tuning those two
layers over a limited amount of epochs could lead to a perfor-
mance boost, however over-training them worsened the out-
of-sample predictive accuracy.

Figure 11: UMAP plot of the human adenocarcinoma cells exposed
to nutlin-3A at dosage levels of 0µM, 0.25µM, 1.25µM, 2.5µM,
25µM, 125µM, and 250µM.

The confusion matrices generated by the fine-tuning strate-
gies in the four-level dosage prediction task unveiled a ten-
dency to group the test samples into two clusters: one of cells
exposed to nutlin-3A with dosage levels < 10.0, and another
one of cells exposed at levels ≥ 10.0. This could mean that
rising the dosage level of the compound is not proportional
to the changes in its impact over the cell, the biggest changes
being observed within the range [1.0, 10.0]. This is supported
by Figure 11, which shows a clear separation between the two
clusters mentioned above.

It is possible that the performance obtained from the fine-
tuning methods be further improved by also tuning the other
training hyperparameters accordingly. They have not been
specifically adapted for the tasks at hand, since the scope of
our research was solely to conduct an objective comparison
of the fine-tuning strategies themselves.

6 Conclusions & Future Work
Our study has evaluated the performance of Geneformer,
a ”context-aware, attention-based deep-learning model” [2],

over the task of predicting the effects of Nutlin-3A applied to
human adenocarcinoma cells. We combined the model with
widely-used fine-tuning methods and evaluated their impact
over the predictive accuracy. We did this to assess Gene-
former’s ability to leverage the potential of transfer learning
in the context of mapping gene networks for cancer cells.
The model has already shown promising results when used
for other tasks involving transcriptomic data, such as in sil-
ico cell perturbations and classifying healthy cardiomyocytes
from diseased cardiomyocytes, and thus it may contribute to-
wards developing personalized treatments in the future. Ex-
isting research has compared the fine-tuning methods shown
here for medical imaging; our work expanded on it by explor-
ing a different medical domain.

We sought to answer what different strategies can be em-
ployed to fine-tune Geneformer so that it is able to correctly
identify a sample taken from a cancer cell line as either un-
treated/not sensitive to a treatment, or treated and sensitive
to the treatment, as well as looking into features of the fine-
tuning methods that seemed to particularly impact the overall
accuracy.

We performed two in silico experiments by gathering rel-
evant samples from the sciplex2 dataset, namely human ade-
nocarcinoma cells exposed to the compound Nutlin-3A with
varying dosage levels. We used those samples to create an
evaluation and a test set. We then tuned the pre-trained
Geneformer model using each of the fine-tuning methods dis-
cussed (freezing the first 2 layers, Linear Probing, Full Fine-
tuning, Gradual Unfreeze (Last/All)(LP-FT)), following that
we evaluated the configuration over the test set and plotted
the results.

We concluded that, depending on the way in which knowl-
edge from the source domain is stored inside the pre-trained
model and the similarity between the source and the target
domains, each fine-tuning strategy can either be suitable or
not for a given task. There is no single optimal solution.

However, our study has limitations. Firstly, we focused our
attention on a particular subset of fine-tuning strategies, those
being non-iterative methods. We also trained and evaluated
said methods on a relatively small set of samples, those be-
ing human adenocarcinoma cells exposed to two compounds:
nutlin-3A and the DMSO vehicle control. We relied on just
the Sciplex2 dataset in order to create the test set on which the
performance of the model was measured. Further research
could improve on this analysis by showcasing the effects of
other types of fine-tuning strategies, i.e. iterative methods,
over Geneformer’s predictive accuracy. The model could also
be tested in more diverse scenarios in order to assess its gen-
eralization capability. This could be done by training and
testing Geneformer over different cancer cell lines exposed
to other types of compounds. Finally, a more comprehen-
sive exploration of the hyperparameter space should reveal
whether an even better performance can be obtained out of
Geneformer.

We believe that this paper will serve as a starting point for
thoroughly assessing Geneformer’s ability to be used for pre-
dicting the impact of new drugs over the phenotype of a cell in
the emerging field of machine learning-aided pharmaceutical
research and development.
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7 Responsible Research
Performing research with ethics in mind from the start is cru-
cial for ensuring that the results of the experiments are ac-
curate, representative, and reproducible. Being critical with
regard to the ethical implications of a study is something to be
though about throughout the entire duration of the study and
the researcher should always adhere to guidelines for respon-
sible research [31]. Throughout the research presented in this
paper, we ensured that the experiments we made are repro-
ducible by the specialist reader. We also assessed the ethical
implications of the study in a holistic manner: the main points
are discussed in Section 7.2.

7.1 Reproducibility of experiments
The focus of this paper is the assessment of different fine-
tuning strategies for Geneformer [2] such that an efficient, ac-
curate classification of cancer cells exposed to different types
of treatments as either sensitive or insensitive to the treat-
ments can be performed, as discussed in Section 2. This im-
plies several experiments where Geneformer was fine-tuned
on part of the sciplex2 dataset [3] using different fine-tuning
strategies and then evaluated on a test set. To ensure their
reproducibility, the methods chosen and the steps taken were
thoroughly documented in Section 3. The materials used by
the methods were referenced such that they can be easily ob-
tained by the reader.

7.2 Other ethical considerations
We firmly believe that the findings of our study can aid future
technological breakthroughs in medicine. Accessible person-
alized treatments for disorders is something that we consider
everyone should have access to at a reasonable cost. That
being said, there are some important ethical considerations
that come with using large medical databases for Machine
Learning-related purposes:

• Privacy: the use of potentially sensitive medical data
should be done in a way that protects the privacy of any
patients whose genetic data could have been included
in the datasets [32]. The patients should be aware that
their genetic data, over which they have full authority,
has been used.

• Accurate representation of data: the data used to train
deep-learning models for the purpose of aiding with the
treatment of disorders should be representative of a di-
verse population [33; 34], such that the model predic-
tions remain trustworthy over a wide range of pheno-
types and they are not biased towards a group of the
population.

• Clinical implications: deep-learning models could be
used to aid with decision making in clinical contexts in
the future [33]. As such, it is crucial to think about their
impact and the implications of Artificial Intelligence in
this scenario. Misclassification can potentially lead to
inappropriate treatment choices being made [35; 36; 37],
and thus the accuracy and the reliability of AI models
become crucial.
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