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Chapter 1

Introduction

Efficient modeling, estimation, and control approaches for various dynamical systems are the
main concerns of control engineers. It is important to investigate and develop models that
can provide reliable estimates of the system’s dynamics and that require a low computation
time, and also control approaches that can efficiently steer the dynamical systems towards a
desired or an optimal performance. In this regards, for obtaining the main aim of this thesis
which is to efficiently control urban traffic networks for green mobility, we have investigated
the problem from different points-of-view, i.e., the main focus of this thesis is on developing
efficient estimation, modeling, and control approaches for traffic networks. The thesis in-
cludes three parts, where The main aim of Part I is to develop algorithms and formulas that
increase the accuracy of the traffic computations and estimations. Part II focuses on efficient
control and optimization methods for achieving green mobility in urban areas. The aim of
Part III is to introduce a control framework that is efficient, adaptive, and that has the poten-
tial to be applied to large-scale systems such as traffic networks.

This chapter motivates the need for designing efficient estimation and control approaches
for traffic networks, in particular for achieving green urban mobility. Moreover, it motivates
the choice of using model-predictive control (MPC) and fuzzy logic control approaches to
achieve green urban mobility. Next, the main contributions of the thesis are given, and the
chapter closes by an overview and a road map of the thesis.

1.1 Motivation

Due to the various negative effects of highly congested traffic (especially in urban areas) on
different aspects of life (e.g., economics, health and well-being of the urban population, en-
vironment, etc.), this issue should be tackled efficiently. Spending time in very long queues
on streets is a waste of time and energy. Moreover, it increases the level of the fuel consump-
tion and the amount of harmful substances emitted into the air. Hence, the solutions that
are considered for traffic problems should take into account both the time that is spent by
the urban population in traffic, and the environmental effects (i.e., the level of emissions, fuel
consumption, and noise) of traffic.

1
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In order to tackle the issues that are caused by congested traffic in urban areas, several so-
lutions have been proposed. These solutions include increasing the capacity of the available
roads by constructing additional roads, decreasing the traffic demand (e.g., via road pricing or
by restricting regulations for entering certain traffic areas during the day or at particular times
of the day), and managing the existing capacity of the roads via efficient control approaches.
The first two approaches may often be of less interest, since they require high budgets and
also create restrictions for the urban population in their daily trips. This highlights the role
of efficient control approaches in managing traffic in urban areas. In this thesis, we therefore
focus on the third strategy, i.e., on developing efficient control approaches for urban traffic
networks.

MPC is an optimization-based control approach that has proven to be efficient for han-
dling problems with input and state constraints, with nonlinear dynamics and constraints,
and with multi-objective cost functions. For the urban traffic problem discussed above, we
face a multi-objective problem that aims to reduce both the total travel time and the total
emissions caused by urban traffic, where the dynamics of urban traffic networks can be highly
nonlinear. In this thesis, the control variable is the green time of the traffic lights (assuming
that we have fixed cycle times for the traffic lights). The green time is constrained by a lower
bound (due to safety reasons) and an upper bound (due to the fixed cycle time). Moreover,
the summation of the green, yellow, and red light for each direction of movement should not
exceed the cycle time of the traffic light, which itself introduces an additional constraint on
the control variables. In summary, we will have a multi-objective nonlinear minimization
problem that is subject to state and input constraints. Hence, considering the mentioned
characteristics for MPC, this control method seems to be a promising approach for solving
our problem.

Fuzzy logic control uses fuzzy logic to design a control system that translates human-
defined linguistic rules into automatic strategies. Moreover, it is simple and flexible, and re-
quires a low computation time. Fuzzy logic control can handle problems with incomplete
or imprecise information, and the resulting control system can easily be updated and main-
tained over time. All these characteristics, and in particular the fact that traffic regulations
are by nature rule-based (i.e., they have originally been controlled via human-defined rules),
motivate the use of a rule-based control approach, such as fuzzy logic control for traffic net-
works.

1.2 Main focus and contributions

The main focus of this thesis is on developing efficient estimation and control approaches
for traffic networks. Two control approaches are considered for that aim: MPC and fuzzy
logic control. We discuss different methods (including smooth and nonsmooth) to efficiently
solve the nonsmooth optimization problem of the MPC controller. Moreover, in the last part
of the thesis, we combine the idea of fuzzy logic control with a predictive and model-based
control approach to develop a coordinative multi-agent control architecture that can be used
to control large-scale urban traffic networks.
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The main contributions of the three parts of the thesis are listed below:

• In Part I of the thesis, we address an issue that is missing in the existing literature, i.e.,
we propose efficient formulas and algorithms to estimate the temporal-spatial funda-
mental traffic variables (including the time-space mean speed (TSMS)). The focus is on
developing accurate formulas that are based on a microscopic point-of-view, and on
using data from point measurements. We show via extensive simulations based on real-
life datasets and on MATLAB that the proposed approaches for estimating the TSMS
are much more accurate in approximating the average traffic speed compared with the
methods available in literature, which consider the space mean speed as an approxima-
tion for the average traffic speed. Part I of the thesis is based on [63–65].

• In Part II of the thesis, we develop efficient optimization-based control approaches for
achieving green urban mobility. To that aim, we first develop a general framework for
integrating traffic flow and emission models. The resulting model is in nature meso-
scopic, which makes it fast for real-time computations. We show via simulations that
this model produces very accurate estimations for the emission levels. Next, we develop
general smoothening methods that can be used to make the nonsmooth formulations
of a cost function or the constraints of an optimization problem smooth. Using the
smoothening approaches and the mesoscopic flow and emission model, we develop an
MPC controller that uses efficient gradient-based approaches to solve the MPC opti-
mization problem online. Finally, we develop formulas for endpoint penalties that can
be used in the formulation of the cost function to approximate a finite-horizon MPC
problem with an infinite-horizon one with a low computational burden. Part II of the
thesis is based on [67–70, 72, 73].

• In Part III of the thesis, we propose an approach for integrating fast intelligent control
methods (e.g., fuzzy logic control or artificial neural networks) and optimization-based
and model-based control approaches to obtain a fast real-time control system with a
highly satisfactory performance. We propose a general treatment of type-2 fuzzy sets
and fuzzy membership functions by introducing two forms of type-2 fuzzy member-
ship functions called probabilistic-fuzzy and fuzzy-fuzzy. We then introduce a two-layer
adaptive type-2 fuzzy control scheme that is capable of tuning its parameters online. We
use a predictive optimization-based controller next to the fuzzy controller to provide es-
timates of the future states for the controller and also to make it capable of coordinating
with neighboring fuzzy controllers in a multi-agent control architecture. Part III of the
thesis is based on [66, 71].

1.3 Overview of the thesis

An overview of the thesis is shown in Figure 1.1. This thesis has been written in three main
parts, where each part starts with a background chapter. Part I of the thesis includes Chap-
ters 2-4. The main focus of this part is on the temporal-spatial definitions for the fundamental
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Figure 1.1: Road map of the thesis.

traffic variables and on developing efficient and accurate estimating formulas and algorithms
for computing the temporal-spatial traffic variables, in particular the time-space mean speed.
Part II of the thesis, which includes Chapters 5-8, focuses on fast and accurate modeling of
traffic for real-time model-based analysis and control of traffic. Moreover, Part II focuses
on efficient control approaches for achieving green mobility in urban traffic networks. In
this part, we develop fast and accurate methods for jointly modeling the traffic flow and the
emissions in urban networks. Moreover, we propose efficient methods for solving the opti-
mization problem of an MPC controller that finds a balanced trade-off between reduction of
the total time spent and reduction of the total emissions of the vehicles in the urban traffic
network. Finally, Part III of the thesis is allocated to the theory and application of fuzzy con-
trol approaches in adaptive and agent-based control schemes. We extend the definitions and
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concepts available for type-2 fuzzy sets and we combine the idea of fuzzy logic control and
predictive model-based control to provide an efficient control architecture for multi-agent
control of large-scale networks. An overall conclusion of the thesis together with the main
contributions and some suggestions for further research are given in Chapter 11.





Part I

Microscopic estimation approaches for

road traffic
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Chapter 2

Background: Temporal-spatial

point-of-view of the fundamental traffic

variables

2.1 Introduction

Macroscopic fundamental traffic variables (density, flow, and average speed) are important in
theory, analysis, control, and performance measurement of traffic (see, e.g., [34, 88, 91, 115,
139, 152]). In particular, the average speed of the vehicles traveling on a specific segment of
a road plays an important role in many model-based traffic applications and in performance
and control-related studies of traffic. Most of the traffic simulation models use the average
speed in accident analyses, in economic studies, as an indication of the service level on the
road, and as an input in order to estimate other performance indicators such as the fuel con-
sumption, the vehicle emissions, the travel time, and the traffic noise [111]. Moreover, the
average speed is known to be a fundamental measurement in traffic studies. Indeed, the av-
erage speed together with the flow and the density are commonly called the fundamental

variables of traffic, since a basic relationship is established between the flow and the density
by means of the average speed, which is known as the fundamental relationship or the funda-

mental equation of traffic [35, 153]. We will later use this equation, specifically in Chapter 4,
to develop an algorithm that produces the fundamental traffic variables from point measure-
ments.

In addition to the discussed importance of the average speed, the availability of a reliable
value of the travel time is important for traffic engineers in applications such as traffic signal
coordination, in ‘before’ and ‘after’ studies of traffic, and also in estimation of other traffic
states [18, 111]. Furthermore, the travel time together with the average speed is used to iden-
tify and assess operational problems within highways. Two main methodologies are applied
in order to measure or estimate the travel time on a road: the direct measurement method
and the indirect estimation method [117].

In the direct measurement method, the total travel time between two predefined reference
points is measured after all the vehicles have finished their itineraries. For the measurement,

9
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it is necessary to identify the time instant at which a particular vehicle appears at each of the
two reference points. Therefore, the identifying technologies (e.g., the automatic vehicle iden-
tification system) are implemented by means of license plates or toll tag IDs [142]. However, to
apply the identifying techniques, one needs to assume that the vehicles do not make interme-
diate stops in between the reference points. Besides this limitation, if additional information
including the time stopped, the fuel consumption, the number of brake applications, or the
travel time between other reference points were are needed, the license plate technique might
not be sufficient. The other shortcoming of direct measurements is the information delay in
real-time applications, since the measurements are obtained after the vehicle has finished its
trip.

The indirect travel time estimation is recommended as an alternative, where the funda-
mental traffic variables are measured at a specific point of the road link and an algorithm is
applied for estimation of the travel time. Mostly, the travel time is considered to be the ratio
of the length of the road’s section and the average speed [142]. To calculate the travel time,
therefore, the average speed on the particular section of the road is needed [56, 142, 153].
Further on, in Section 2.2, we introduce different averaging methods for computing the traffic
average speed, and we argue that the temporal-spatial definition (see Section 2.2.3), which is
an equivalent for the generalized speed given by Edie [43], is the best averaging method for
the speeds obtained from point measurements or data collecting methods that represent the
data as trajectories within the time-space plane.

The rest of the chapter is organized as follows. In Section 2.2 the average traffic speed is
defined from three different points-of-view, i.e., temporal, spatial, and temporal-spatial av-
erages. Section 2.3 discusses the prevalence of point measurements and consequently, the
importance of developing efficient approaches that can estimate the fundamental traffic vari-
ables from point measurements. In Section 2.4 we give an overview of the work done on both
estimation of the average traffic speed and estimation of the trajectories of the vehicles in be-
tween two consecutive point measurements. Finally, an overview of Part I of the thesis is given
in Section 2.5. The road map of Chapter 2 is represented in Figure 2.1, and the mathematical
notations that are used frequently in this chapter are given in Table 2.1.

2.2 Temporal, spatial, and temporal-spatial definitions of the

average traffic speed

The macroscopic fundamental traffic variables can be defined and formulated in two differ-
ent ways: classical and generalized. In the classical definition within the time-space plane,
the density is a spatial average (i.e., the average is made across the space axis), the flow is
a temporal average (i.e., the average is made across the time axis), and the average speed is
the ratio of the flow and the density [35, 153]. Edie [43] has proposed a more general defini-
tion for the fundamental traffic variables, where the averages are made within an area in the
time-space plane. Next, we present more details regarding these definitions for the average
speed.
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2.2. Temporal, spatial, and temporal-spatial definitions of the average traffic speed

2.2.1. Time-mean speed 2.2.2. Space-mean speed 2.2.3. Time-space-mean speed 2.2.4. TMS, SMS, and TSMS

2.3. Point measurements

2.4. Overview of previous work

2.4.1. Estimation of the SMS 2.4.2. Estimation of the trajectories of the vehicles

2.5. Overview of Part I

Figure 2.1: Road map of Chapter 2.

Table 2.1: Frequently used mathematical notations for Chapter 2.

p (t , x1, x2, . . . , xN ) joint probability function

pm
i

(t , x) marginal probability of vehicle i at time instant t and at position x

pd
i

(t , x) probability density of vehicle i at time instant t and at position x

ρA generalized traffic density within the time-space area A

qA generalized traffic flow within the time-space area A

v̄ A generalized average traffic speed within the time-space area A

NA total number of the trajectories of vehicles that are observed within the time-space area A

|A| surface of the time-space area A

tA,i time spent by the i th vehicle within the time-space area A

dA,i distance traveled by the i th vehicle within the time-space area A

TMS time-mean speed

SMS space-mean speed

TSMS time-space mean speed

σ2
TMS temporal standard deviation of the observed speeds of the vehicles

σ2
SMS spatial standard deviation of the observed speeds of the vehicles

2.2.1 Time-mean speed (TMS)

The time-mean speed (TMS) involves averaging the individual speeds of the vehicles at a fixed
location across a time interval (the mathematical formulation of the TMS will be given later
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time

space

t A,i

dA,i A

Figure 2.2: An arbitrary region in the time-space plane for defining the generalized fundamen-

tal traffic variables.

in Section 2.2.4). A stationary observer such as a loop detector observes the vehicles during a
sample period and at a fixed position. Hence, from the definition given above, the arithmetic
mean of the individual speeds observed by a loop detector gives the TMS.

2.2.2 Space-mean speed (SMS)

The space-mean speed (SMS) involves averaging the individual speeds of the vehicles observed
at a specific instant of time across a stretch of the road (the mathematical formulation of the
SMS will be given later in Section 2.2.4). Therefore, considering a traffic camera that cap-
tures at a specific time instant a photograph that covers a stretch of road of a fixed length, the
arithmetic mean of the individual speeds captured in the photograph is the SMS.

2.2.3 Time-space-mean speed (TSMS)

The generalized point-of-view for defining the traffic average speed results in an average
called the time-space-mean speed (TSMS). The fundamental traffic equation relates two fun-
damental traffic variables, the flow and the density (note that the flow is defined across a time
interval and the density is defined across a length interval). Considering the ratio of these
two variables, we need an intermediary variable (with the unit of length per time, i.e., the
speed unit) that is neither a local nor an instantaneous variable, but a variable defined simul-
taneously through both the time and the space axes. We call this variable the TSMS, which is
equivalent to the generalized speed introduced by Edie [43].

Since the definition of the intermediary variable that relates the flow and the density, de-
pends on how we define these two concepts, we will discuss these definitions. According
to the definitions given by Newell [122] for the flow and the density, which originate from a
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mathematical and physical perspective, the formulation given by Edie [43], which considers
a temporal-spatial average for the traffic speed, is the most appropriate formulation. More
specifically, Newell [122] starts with a purely physical interpretation, which because of the
specific characteristics of traffic leads to a mathematical analysis. Newell [122] considers the
analogy between the concepts of density in traffic (where we need to know the number of ve-
hicles per unit length), and density in fluid dynamics (where we need to know the mass per
unit volume).

To define density, both homogeneity and also a sufficient number of vehicles/atoms on the
corresponding segment of the road/volume are required. For a small volume of a fluid, there
is still a considerable number of particles, while based on physical laws, local concentrations
of particles diffuse quite rapidly. Therefore, the possible observed fluctuations in the proper-
ties of the selected volume are negligible with respect to the huge number of particles. Thus
existence of both homogeneity and sufficient number of atoms lets the density be defined
simply. However, a small segment of the road with zero length limit contains either 0 or 1 ve-
hicle. Consequently, traffic density on this small road segment will be either zero or infinite.
Therefore, fulfillment of either homogeneity or sufficiency of numbers causes the other one
to be violated.

Correspondingly, Newell [122] shifts to a mathematical interpretation for the traffic den-
sity. First a joint probability function1 p (t , x1, x2, . . . , xN ) is defined, which is the probability
that at time instant t vehicle i has a position strictly less than xi , for i ∈ {1, 2, . . . , N }, where
N is the total number of vehicles. Hence, the marginal probability pm

i
for the i th vehicle at

time instant t and at position x (i.e., the probability that at time instant t , the i th vehicle has a
position less than x) is given by

pm
i (t , x) = p(t ,L+∆, . . . ,L+∆, x,L+∆, . . . ,L+∆), (2.1)

where L is the length of the road segment and ∆≫ 0. Therefore, the probability for the vehicle
to be located between position x and position x+dx (with dx an infinitesimally small positive
length increment) at time instant t , is pm

i
(t , x +dx)−pm

i
(t , x). Then we define a probability

density function pd
i

for the i th vehicle at time instant t and at position x, which is given by

pd
i (t , x) =

∂

∂x
pm

i (t , x). (2.2)

Finally, the total density for all the n observed vehicles at time instant t and at position x

(which can indeed be considered as the instantaneous density apart from the generalized den-
sity, which will be defined afterwards) on the road segment is obtained by

ρ(t , x) =
N∑

i=1
pd

i (t , x). (2.3)

The flow can similarly be defined through the time axis.
The practical way of implementing the mathematical interpretation of the density, the

1This function is assumed to be differentiable.
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flow, and correspondingly the average speed for a traffic network is given by Edie [43] where
the generalized definitions of the fundamental variables are represented. For a given time-
space detection area A (see Figure 2.2), the generalized definitions of the fundamental vari-
ables describe the average behavior of a traffic stream in the time-space plane where the gen-
eralized density ρA and the generalized flow qA are given by

ρA =
1

|A|

NA∑

i=1
tA,i , (2.4)

qA =
1

|A|

NA∑

i=1
dA,i , (2.5)

with tA,i and dA,i , respectively, the time spent and the distance traveled by the i th vehicle
in the time-space area A, |A| the surface of the detection area, and NA the number of the
trajectories of vehicles that are observed in area A.

Newell [122] shows that Edie’s definitions of the generalized fundamental variables are
equivalent to the mathematical definitions of density given by (2.3) and flow (which is ob-
tained following the same reasoning as for the density). Finally, the generalized average speed
v̄ A within the detection area A is defined as the ratio of the generalized flow and the general-
ized density, i.e.,

v̄ A =
qA

ρA
=

NA∑

i=1
dA,i

NA∑

i=1
tA,i

. (2.6)

2.2.4 Relation between TMS, SMS, and TSMS

In the following discussion, we consider the relationships between the TMS and the TSMS,
and also between the SMS and the TSMS. We apply the definition of the generalized average
speed to the following two cases:

1. A thin horizontal sampling window with length d x and width TAH (see Figure 2.3(a))

2. A thin vertical sampling window with length L AV and width d t (see Figure 2.3(b))

The first case can represent the detection zone AH of a loop detector. Due to the fact that d x is
very small, the possibility that a trajectory enters or leaves the window through its left or right
edge is negligible. Hence, from (2.6) and from the definition of TMS given in Section 2.2.1, we
can write

TSMSAH =

NAH∑

i=1
dAH,i

NAH∑

i=1
tAH,i

=
dx ·NAH

NAH∑

i=1

dx

v AH,i

=
1

1
NAH

NAH∑

i=1

1

v AH,i

, (2.7)
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(a) A thin horizontal sampling window.
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(b) A thin vertical sampling window.

Figure 2.3: The TMS and SMS and their relationship with the TSMS.

and

TMSAH =
1

NAH

NAH∑

i=1
v AH,i , (2.8)

where NAH is the number of vehicles observed within the thin horizontal sampling window
during the sampling time TAH , and v AH,i is the observed speed for the i th vehicle within the
area. Thus, for a thin horizontal sampling window the TSMS is the harmonic mean of the
detected speeds, while the TMS is the arithmetic mean of the speeds. This is also discussed
extensively by Treiber and Kesting [149].

The observation area of a camera can be illustrated by the sampling window of case two. Due
to the fact that d t is very small, the possibility that a trajectory enters or leaves the window
through its bottom or top edge is negligible. Therefore, from (2.6) and from the definition of
SMS given in Section 2.2.2, we have

TSMSAV =

NAV∑

i=1
dA,i

NAV∑

i=1
tAV,i

=

NAV∑

i=1
d t ·v AV,i

d t ·NAV

=
1

NAV

NAV∑

i=1
v AV,i , (2.9)

and

SMSAV =
1

NAV

NAV∑

i=1
v AV,i , (2.10)

where NAV is the number of vehicles observed in the thin vertical sampling window, and v AV,i

is the observed speed for the i th vehicle within the area. Then the TSMS at a specific instant
of time is the arithmetic mean of the speeds being observed, where this is by definition the
SMS. Therefore, for a thin vertical rectangle the TSMS and the SMS are equivalent.
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2.3 Point measurements

Since the introduction of inductive loop detectors in the early 1960’s, they have been widely
used for the purpose of vehicle detection on roads and for point measurement of the speeds
of vehicles. In fact, according to Klein et al. [83] inductive loop detectors are the most pop-
ular and the most widely used forms of traffic detection systems. Moreover, Bickel et al. [13]
indicate that: “Point sensors implemented by inductive loops provide 95% of the data used
by DoTs (Departments of Transportation) and traffic analysts worldwide”. Hence, due to their
extensive use and high costs of substituting the available inductive loop detectors with new
detection technologies, there is a high chance that they are still in use for at least the next
10–15 years.

Both microscopic and macroscopic characteristics of the traffic flow can be determined
using inductive loop detectors. Single-loop detectors have been deployed in order to provide
information on the traffic flow (i.e., the number of vehicles passing a specific point on the
road per unit time) and the lane occupancy (i.e., the fraction of the observation time interval
that the loop’s detection zone is occupied by vehicles). Microscopic traffic flow characteristics
including the time headway2, the vehicle occupancy time, and the space headway can be es-
timated using a single-loop detector [104]. A double-loop detector is constructed by installing
two single-loop detectors consecutively a few meters apart from one another. The main ad-
vantage of a double-loop detector over a single-loop detector is that it can provide individual
speed data [151].

The extensive use of inductive loop detectors in traffic systems all around the world and
the relatively high costs of substituting them with modern detecting instruments has incited
the development of efficient ways for estimating the fundamental traffic variables based on
the information provided by these loop detectors.

2.4 Overview of previous work on estimation of the traffic av-

erage speed

2.4.1 Estimation of the SMS

As motivated in this chapter, the temporal-spatial definition of the fundamental traffic vari-
ables plays an important role in traffic theory and applications. However, the available liter-
ature mostly focuses on estimation of the traffic variables in their classical definition. To the
best of our knowledge, there is no work on estimation of the generalized average speed from
point measurements. In this section, we briefly review some of the most significant work done
on estimation of the classical traffic average speed.

Dailey [36] presents an algorithm to estimate the mean speed using data from a single-
loop detector. Dailey [36] considers the statistical nature of the measurements made by single-

2The time between consecutive vehicle observations at a fixed location is usually called the time headway,
and the distance separation between consecutive vehicles at a given time instant is called the distance headway
[111] or alternatively the space headway if we follow the terminology used by Daganzo [35].
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loop detectors and presents an algorithm that estimates the speed. However, Dailey [36] does
not distinguish between the TMS, the SMS, and the TSMS and only uses the notation v̄ in gen-
eral (note that the SMS best applies to the formula given by Dailey [36]). The measurements
are by their nature realizations taken from the probability distributions of the underlying vari-
ables. Two typical measurements, i.e., the flow q and the occupancy o, are taken into account.
Hence,

o =
1

T

q·T∑

i=1

li

vi
, (2.11)

where li is the effective length (i.e., the length of the vehicle plus the length of the detection
zone) of the i th vehicle, and T is the duration of the measurement.

Furthermore, the speed and the length of the vehicles are random variables that can be
rewritten as the summation of their expected value (respectively, v̄ and l̄ ) and the deviation
that occurs for the observations (respectively, ∆vi and ∆li ). Using these expressions, Dailey
[36] obtains the following equation for the mean speed, v̄ :

o
T

l̄
v̄ 3

−qv̄ 2
−qσ2

v = 0. (2.12)

Two new estimation methods are also introduced by Dailey [36]; the first one is the ‘root find-

ing’ method, which is based on the deterministic speed values and yields an unbiased esti-
mator for v̄ when there are idealized noiseless measurements (which is almost never the case
in practice), and the second one is the ‘filtering’ method, which addresses the reliability of the
measurements.

Wardrop [153] develops a relationship between the SMS and the TMS using a macroscopic
point-of-view, which estimates the TMS from a known SMS. The equation given by Wardrop
states that

TMS= SMS+
σ2

SMS

SMS
, (2.13)

with σ2
SMS the spatial standard deviation of the observed speeds. However, since in the case of

a loop detector the only available information is the TMS, it is not straightforward to estimate
σ2

SMS.

Han et al. [56] suggest a different representation of (2.13) that does not involve σSMS, but
adds the mean value of the individual speed values. Han et al. [56] discuss a theoretical ap-
proach in combination with an empirical method to solve (2.13) for the SMS using the defini-
tion of σ2

SMS. The applied procedure is as follows:

σ2
SMS = E

[

(vi −SMS)2]

= E
[

v 2
i

]

+SMS2
−2SMS ·TMS,

(2.14)

where vi is the speed of the i th entering vehicle passing through the loop detector, and E[.]
denotes the expected value operator. The above relation is applied to (2.13) and the resulting
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quadratic equation is solved, which finally results in

SMS=
3TMS±

√

9TMS2 −8E
[

v 2
i

]

4
. (2.15)

In (2.15) the value of E
[

v 2
i

]

is unknown. Han et al. [56] propose a quadratic relationship be-
tween E

[

v 2
i

]

and E [vi ], which is given by

E
[

v 2
i

]

= a ·TMS2
+b ·TMS+c, (2.16)

where a set of data from the loop detectors should be used to estimate the constant coeffi-
cients a, b, and c empirically.

Rakha and Zhang [134] propose an approach for extracting the formula that has been in-
troduced by Khisty and Lall [82] for estimating the SMS. This formula is given by

SMS≃ TMS−
σ2

TMS

TMS
, (2.17)

where σTMS is the temporal standard deviation of the individual speeds of the observed vehi-
cles. In (2.17) for estimation of the SMS, we need to know the values of the TMS and also of
σ2

TMS. However, loop detectors only report the value of the TMS. As a consequence, Soriguera
and Robusté [141] propose to use a normal distribution for the vehicle speeds on a particular
lane of the road to find an estimate for σTMS and to apply it to (2.17). A confidence interval
is also formulated by Soriguera and Robusté [141] for the estimated value of the SMS, which
delimits the error for a desired confidence level. The formula proposed by Soriguera and Ro-
busté [141] is given by

σTMS =
v∗

−TMS

φ−1
(

Nv∗

N

) , (2.18)

with v∗ a particular speed threshold,φ(·) the cumulative distribution function of the standard
normal distribution, Nv∗ the number of observed vehicles moving with speed v∗, and N the
total number of observed vehicles.

2.4.2 Estimation of the trajectories of the vehicles

In Chapter 4, we will propose a new method for approximating the trajectories of the vehi-
cles in the time-space plane, which is inspired by Coifman [31]. Hence, we also explain this
approach briefly here. Coifman [31] proposes a method to estimate trajectories of vehicles
between two consecutive double-loop detectors based on available point measurements. Ac-
cording to Lighthill and Whitham [94], if a change in speed occurs at a point of a certain traffic
stream, this change will back-propagate through the traffic stream with a fixed speed. The
speed of the back-propagation of the change depends on the governing traffic situation (free-
flow or congested). Coifman [31] applies this result to find the approximate trajectories. Sup-
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Figure 2.4: Estimating the trajectories of vehicles based on the approach of Coifman [31].

pose that speed measurements of two successive vehicles are available at points “A” and “B”
within the time-space plane (see Figure 2.4), with these points located at the loop detector
line and corresponding to time instants tA and tB.

Coifman [31] plots the back-propagation lines (see the blue dashed-dotted lines in Fig-
ure 2.4) with a fixed slope equal to the back-propagation speed. These back-propagation lines
originate at points in the time-space plane, where speed measurements are available (e.g., at
point “B” in Figure 2.4). As soon as a vehicle’s trajectory intersects with one of these back-
propagation lines, it changes its slope to the one of the trajectory of the leading vehicle (e.g.,
at point “C” in Figure 2.4, the trajectory changes its slope to the slope of the trajectory of the
vehicle observed at point “B”).

This actually means that the vehicle observed at point “B” has been following the vehicle
observed at point “A”, and at point “B”, this vehicle adapts its speed to the speed of the leading
vehicle at point “C”. In practice, since the speed measurements are available only at the loop
detector line (i.e., at location x j in Figure 2.4), the slope of the trajectory of the leading vehicle
at point “C” can be extracted from the slope of the trajectory of the following vehicle at point
“B”. This is not a problem for off-line processing of the dataset of course, but this approach
cannot be implemented online.

Note that the approach proposed by Coifman [31] is based on the Newell’s car-following
model [123] and on the assumption that the adapting point of the following vehicle, i.e., the
point in the time-space plane at which the following vehicle changes its speed to that of the
leading vehicle, is located at the loop detector line.
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2.5 Overview of Part I

The aim of this part of the thesis is to cover the current gap in the existing literature on the
topic of estimating the TSMS. For this aim, in Chapter 3, we propose a novel approach for
approximating the TSMS based on a microscopic point-of-view and point measurements. An
upper and a lower bound for the TSMS are developed first, and later the approach is extended
with the aim of making the bounds tighter. Finally, a convex combination of the upper and
lower bound is proposed to estimate the TSMS, while coping with the cases where the tra-
jectories of the vehicles in the time-space plane might not be straight lines. Moreover, in
Chapter 4 a sequential algorithm is introduced that gives an estimate for the generalized traf-
fic variables, including the TSMS, using point measurements. The algorithm considers those
vehicles that stay on the segment of the road between two consecutive measurement points
for more than one sampling cycle and hence, are not detected by either of the upstream or
downstream loop detectors. The proposed algorithm can be used to upgrade or to reprogram
inductive double-loop detectors so as to provide a more accurate approximation of the TSMS.



Chapter 3

Estimation of the temporal-spatial traffic

variables

3.1 Introduction

The average speed of vehicles plays an important role in traffic engineering. Almost in any
model-based traffic monitoring, analysis, and control application the average speed is re-
quired as a measure of performance or as an input for traffic models where fuel consump-
tion, vehicle emissions, or traffic noise is to be estimated. The average speed is also used in
algorithms that estimate the travel time. It also appears in the fundamental equation of traffic
where density is calculated based on measurements of average speed and flow. This chapter
presents a new methodology for estimating the time-space-mean speed (TSMS), which is an
equivalent for the definition initially given by Edie [43] as the generalized speed. To this aim,
first tight upper and lower bounds are developed for the TSMS using individual speeds of the
vehicles that are obtained via point measurements. To estimate the TSMS from the bounds,
and to deal with the cases where the trajectories of the vehicles might not be straight lines, a
convex combination of the upper and lower bounds is introduced.

In order to assess the convex combination and to compare its performance with other for-
mulas in literature, real-life datasets including the NGSIM dataset and the Rotterdam-Delft
dataset are used. NGSIM data provides detailed information of the trajectories for the I-80
freeway in the San Francisco Bay Area, while the Rotterdam-Delft dataset provides micro-
scopic data on freeway A13 in the Netherlands. At the end, we include simulations in MATLAB
to cover the possible scenarios that are not included in real-life datasets. The results produced
by the new formula, both for the real-life datasets and for the MATLAB simulations, are found
to be more exact compared with other available formulas in literature.

Contributions and organization of the chapter

The main contributions of this chapter are as follows:

1. We present a new approach based on a microscopic point-of-view that produces a tight

21
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upper and a tight lower bound for the time-space-mean speed.

2. We construct a formula that uses a convex combination of these bounds to find a reli-
able estimate of the time-space-mean speed.

3. We assess and compare the new formula with available formulas in literature using real-
life datasets, i.e., the NGSIM dataset and the Rotterdam-Delft dataset.

The rest of the chapter is organized as follows; Section 3.2 describes the problem that is
going to be discussed in this chapter. Section 3.3 proposes a new method for finding a tight
upper and a tight lower bound for the time-space-mean speed (TSMS), a convex combina-
tion for estimating the TSMS from these tight bounds, and the proofs for developing the tight
upper and lower bounds. Moreover, at the end of this section, we show that the developed
formulas can be used for an arbitrary time headway distribution and the assumptions made
before can easily be relaxed. Finally, the results for real-life datasets and also for MATLAB sim-
ulations are presented and discussed in Section 3.4. Section 3.5 is allocated to the conclusions
and topics for further research. The schematic view of the chapter’s road map is represented
in Figure 3.1, and Table 3.1 presents the frequently used mathematical notations of this chap-
ter.

This chapter of the thesis is based on [63].

3.2 Problem definition

In this chapter, we solve the problem of finding the appropriate average speed (which we have
argued to be the TSMS in Section 2.2.3) giving a formula that covers microscopic data of point
measurement type. Note that from (2.7), the TSMS is equal to the harmonic mean of the in-
dividual speeds of the observed vehicles, in case the time-space area is a very thin horizontal
rectangle (e.g., see the detection zone of loop detector 1 of the road section illustrated in Fig-
ure 3.4(a), where this detection zone is represented by a dashed thin horizontal rectangle in
Figure 3.4(b)). However, in case the area of interest in the time-space plane is a rectangle with
a considerable length (see rectangle v1v2v3v4 in Figure 3.4(b), which illustrates the time-space
area corresponding to a piece of a single-direction road section between two consecutive loop
detectors), the harmonic mean might not be a reliable estimate of the TSMS anymore.

Defining the sampling windows for estimation of the TSMS

Since for the TSMS, the traffic information is averaged within an area (i.e., over two dimen-
sions, the space and the time, simultaneously), and since we use the trajectories of the ve-
hicles to consider features of the traffic stream, the area of interest is the time-space plane.
We consider a rectangular window in the time-space plane, which forms the main idea of the
new methodology given in this chapter. This window represents the considered segment of
the road during one sampling cycle. From now, we simply call this rectangular time-space
window the sampling window.
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Figure 3.1: Road map of Chapter 3.

First we explain how the equivalent sampling window of a road section within the time-
space plane can be constructed. Consider a road of length Lroad, with nloop inductive loop
detectors indicated by D j installed at positions x j , j ∈ {1,2, . . . ,nloop}, where the distance L j

between any two consecutive loop detectors D j and D j+1 is represented by

L j = x j+1 −x j . (3.1)

Moreover, the distance L
endpoint

nloop between the last loop detector and the endpoint of the road
is obtained via

L
endpoint

nloop = xendpoint
−xnloop .
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Table 3.1: Frequently used mathematical notations for Chapter 3.

NA total number of vehicles observed within the sampling road section A

TA sampling cycle of the loop detector installed at the beginning of the sampling road section A

L A spatial length of the sampling road section A

v A,i speed of the i th vehicle observed on the sampling road section A

HA,1→ncell,A−mA+1 harmonic mean of the speeds of vehicles that correspond to the first ncell,A −mA +1 grid cells

assuming equal time headway distribution for the vehicles

vcell,A the cell speed corresponding to the sampling window A

vmin,A minimum observed speed on the sampling road section A

vmax,A maximum observed speed on the sampling road section A

hA,i time headway between the i th and the (i +1)th vehicle on the sampling road section A

hA mean time headway of the observed vehicles on the sampling road section A

ncell,A number of grid cells in the sampling road section A for an equal time headway distribution

tA,i travel time of vehicle i within the sampling road section A

dA,i traveled distance of vehicle i within the sampling road section A

xA,i position of vehicle i within the sampling road section A

xloop position of the loop detector “loop”

v̄ A generalized average traffic speed (TSMS) corresponding to the sampling road section A

v̄ lower
A a lower bound for v̄ A

v̄
upper
A

an upper bound for v̄ A

TSMSlower
A the tight lower bound for v̄ A

TSMSupper
A

the tight upper bound for v̄ A

TSMSest
A the estimated v̄ A from TSMSlower

A and TSMSupper
A

with xendpoint the position of the endpoint of the road. Note that to define the positions and
distances on a road, we first consider a virtual curve that coincides with the centerline of the
road (see the dashed curve in Figure 3.2). Then we consider an equivalent straight road for
which the length is equal to the length of the centerline curve (see Figure 3.3). Note that all
positions are measured along the centerline of the road.

Now Consider the road section illustrated in Figure 3.4(a), where two consecutive loop
detectors are shown. Suppose that the sampling cycle of the loop detectors is TA, and the
distance between the two loop detectors, i.e., the length of the black dashed line, representing
the middle of the road, is L A. Then the length and the width of the sampling window are,
respectively, L A and TA (see Figure 3.4(b)). Loop detector 1 collects data in its detection zone,
which is illustrated by the thin dashed rectangle at x = xloop1 in Figure 3.4(b). Under such
a configuration, where point measurements are available for discrete points on the road at
the locations at which the loop detectors are installed, the challenge is to find an approach to
estimate the average speed during each sampling cycle.
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Figure 3.2: Real shape of the single-lane road (D j and D j+1 are two consecutive loop detectors

on the road and L j is the distance between these loop detectors along the centerline

of the road). The dashed dotted line indicates the virtual centerline of the road.

D jD j+1

L j

Figure 3.3: Mapping the real road into Cartesian coordinates.
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two consecutive loop detectors.
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(b) The sampling window A with length L A and width TA

corresponding to the sampling road section.

Figure 3.4: Specifying a sampling window for a sampling road section in the time-space plane

to estimate the TSMS.
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Figure 3.5: Trajectories of the observed vehicles within the sampling window A.

3.3 New formulas for a tight upper and a tight lower bound for

the TSMS

3.3.1 Division of the sampling window into grid cells

Consider the sampling window (TA,L A) shown in Figure 3.5, which contains the trajectories
of the vehicles that have been observed by the loop detector installed at the beginning of
the road section. The number of observed vehicles by the loop detector within the sampling
window A is NA, and the corresponding microscopic data that can be extracted from the loop
detector during one sampling cycle are given by

VA = {v A,i | i = 1, 2, . . . , NA},

HA = {hA,i−1 | i = 1, 2, . . . , NA},
(3.2)

where v A,i and hA,i−1 are, respectively, the speed of the i th observed vehicle, and the time
headway between the (i −1)th and the i th vehicle if i 6= 1, where for i = 1, hA,0 indicates the
time duration from the beginning of the observation cycle until the first vehicle is observed.
We assume that for the sampling window A, hA,0 = 0. From the given measurements, we
obtain the following information

vmin,A = min
i=1,...,NA

(v A,i ), (3.3)

vmax,A = max
i=1,...,NA

(v A,i ), (3.4)

where vmin,A and vmax,A are the minimum and maximum speed of the observed vehicle.
The area is first divided into ncell,A grid cells of length L A and width hA (see Figure 3.6). A

grid cell, which is defined corresponding to a sampling window within the time-space plane,
is indeed a time-space rectangular area of the same length as its corresponding sampling win-
dow and of a width that is less than or equal to the width of the sampling window. These cells



Chapter 3 - Estimation of the temporal-spatial traffic variables 27

time

sp
a

ce

hA

L A

Figure 3.6: Dividing the time-space sampling window into ncell,A grid cells (the dashed-dotted

lines show the added part to the original sampling window, which is done to make

the dimensions of the last grid cell equal to those of the other grid cells).

are obtained from splitting the original sampling window into ncell,A identical rectangular ar-
eas. Note that we assume that at the left bottom corner of each grid cell, one and only one
vehicle is located. We have

ncell,A :=

⌈
TA

hA

⌉

, (3.5)

where ⌈·⌉ denotes the ceiling function. Note that the two parameters ncell,A and NA are not
necessarily equal. However, in the following case they are the same:

Tres,A < hA ⇒ ncell,A = NA, (3.6)

where Tres,A is the time duration from the last observation until the end of the sampling cycle.
The above fact comes from

NA =
1

hA

NA∑

i=1
hA,i−1 =

1

hA
(TA −Tres,A)

if Tres,A<hA ,
========⇒
since NA∈N

NA =

⌈
TA

hA

⌉

:= ncell,A. (3.7)

From now, as shown in Figure 3.6, we assume ncell,A = NA to ease the formulations. Extension
of the proposed approach to the case where ncell,A 6= NA is straightforward.

Next, we introduce a new parameter called the cell speed, which depends on the dimen-
sions of the sampling window and is defined by

vcell,A =
L A

hA
. (3.8)

The cell speed defined for the sampling window A, is indeed the least required speed for trav-
eling the complete length L A of the road within one grid cell. We also introduce two integers
denoted by mA and MA with the following physical definitions for the sampling window A.
The value of mA −1 indicates the total number of those vehicles that arrive in the detection
zone of the loop detector corresponding to the sampling window A, when it is impossible
for them to leave the sampling road section during the current sampling cycle assuming that
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they are moving by the speed v A,min. Moreover, MA −2 indicates the total number of vehicles
that have arrived in the detection zone of the loop detector during the current sampling cycle
so late that even if they keep on moving forward by the speed v A,max, they cannot leave the
sampling road section within the current sampling cycle. Hence, we can write

mA =

(

number of vehicles arriving in the last L A

v A,min
time units of current sampling cycle

)

+1,

(3.9)

MA =

(

number of vehicles arriving in the last L A

v A,max
time units of current sampling cycle

)

+1.

(3.10)

For the case of equal time headways, these integers are given by

mA −1 ≤
vcell,A

vmin,A
< mA ⇔ mA =

⌊
L A

hA vmin,A

⌋

+1. (3.11)

MA −1 ≤
vcell,A

vmax,A
< MA ⇔ MA =

⌊
L A

hA vmax,A

⌋

+1. (3.12)

Remark 3.1 The expressions given for mA and MA by (3.11) and (3.12) are based on the as-
sumption of vmax,A < vcell,A , which in practice is the most possible case to happen. Conse-
quently, the cases mA = 1 and MA = 1 are discarded. In case we have vmax,A ≥ vcell,A , we
propose to use the following equation to compute MA :

MA −1 ≤
vmax,A

vcell,A
< MA ⇒ MA =

⌊
hA vmax,A

L A

⌋

+1. (3.13)

Moreover, if we also have vmin,A ≥ vcell,A, then we can use the following equation to determine
mA:

mA −1 ≤
vmin,A

vcell,A
< mA ⇒ mA =

⌊
hA vmin,A

L A

⌋

+1. (3.14)

2

3.3.2 Equal time headway distribution

In Figure 3.7, a sampling window is shown that is divided into ncell,A grid cells. We first con-
sider the case for which the time headways of the vehicles are all the same. Later on, we will
expand the approach for arbitrary time headway distribution (see Section 3.3.6. Therefore, at
the left bottom corner of each grid cell, one and only one vehicle is located (taking into ac-
count the assumption of hA,0 = 0. In the following discussions, we divide the vehicles into two
sets based on the grid cell that they are at. We call these two sets the first set and the second

set. By the first set, we refer to the vehicles in the first ncell,A −mA +1 grid cells (we indicate
the corresponding part of the sampling window A by A1), and by the second set, we mean the
vehicles within the last mA −1 grid cells (the corresponding part of the sampling window A is
denoted by A2). Furthermore, the second set is also divided into two subsets called the first
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(ncell,A −mA +1) grid cells (mA −MA) grid cells (MA −1) grid cells

Figure 3.7: Dividing the grid cells into three parts in order to find a lower and an upper bound

of the TSMS.

subset and the second subset, where the first subset includes the first mA −MA +1 grid cells of
the second set and the second subset includes the remaining MA−2 grid cells (see Figure 3.7).

From (3.11), we have

vmin,A >
vcell,A

mA
, (3.15)

which, considering the definition of the cell speed, indicates that the vehicles that face mA or
more grid cells in front of them, travel a length greater than or at least equal to L A during the
observation time interval. From Figure 3.7, the vehicle with index ncell,A −mA +1 and all its
predecessors in A (i.e., the first set) fulfills this condition. Consequently, those vehicles that
enter the detection zone within the first (ncell,A −mA +1)hA seconds of the observation time
interval always leave the sampling window A through its upper edge, while for the vehicles
that enter the detection zone in the last (mA −1)hA seconds of the observation time interval,
the trajectories might intersect the right edge of the sampling window. Therefore, we need to
consider the vehicles in the second set more carefully. We expand (2.6) as

v̄ A =

ncell,A−mA+1
∑

i=1
L A +

mA−1∑

i=1
tA,ncell,A−i+1 ·v A,ncell,A−i+1

ncell,A−mA+1
∑

i=1

L A

v A,i
+

mA−1∑

i=1
tA,ncell,A−i+1

, (3.16)

reminding that tA,i indicates the time spent by the i th vehicle in area A. Next, we determine a
lower bound and an upper bound for (3.16). The detailed proofs and explanations are given
in Section 3.3.5.
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Lower bound

To find a lower bound for v̄ A in (3.16), we consider the case in which all vehicles within the
second group move with vmin,A. The TSMS for such a case is definitely a lower bound for any
other possible scenario. For this situation, all vehicles in the second set stay within A until the
end of the observation period. Therefore,

tA,ncell,A− j+1 = j hA, j = 1, 2, 3, . . . , mA −1. (3.17)

For the generalized mean speed given by (3.16), the following holds:

v̄ A ≥

ncell,A−mA+1
∑

i=1
L A +hA

mA−1∑

i=1
i ·v A,ncell,A−i+1

ncell,A−mA+1
∑

i=1

L A

v A,i
+hA

mA−1∑

i=1
i

. (3.18)

To continue, we find an upper bound for the denominator using the definition of MA in (3.12).
For the first ncell,A −mA +1 vehicles entering the area, we can write

hA ≤
L A

(MA −1)v A,i
⇒ (ncell,A −mA +1)hA ≤

1

(MA −1)

ncell,A−mA+1
∑

i=1

L A

v A,i
. (3.19)

Substituting hA for i = 1,2, . . . ,ncell,A −mA +1 in the denominator of (3.18) by its upper bound
from (3.19), and v A,i , i = ncell,A −mA + 2, . . . ,ncell,A in the numerator by the lower bound of
vmin,A from (3.11) a lower bound for v̄ A is obtained by

v̄ A >

(
ncell,A−mA+1

∑

i=1
L A

)

+hA

(
mA−1∑

i=1
i

)

L A

mAhA
(

ncell,A−mA+1
∑

i=1

L A

v A,i

)

+
1

(MA −1)(ncell,A −mA +1)

(
ncell,A−mA+1

∑

i=1

L A

v A,i

)
mA−1∑

i=1
i

. (3.20)

Finally, we obtain a lower bound for v̄ A, which is given by

v̄ lower
A =

ncell,A −
mA −1

2

(ncell,A −mA +1)+ mA −1
2

(
mA

MA −1

) HA,1→ncell,A−mA+1, (3.21)

where HA,1→ncell,A−mA+1 stands for the harmonic mean of the speeds of those vehicles, which
appear in the first ncell,A −mA +1 grid cells within the time-space plane.

Upper bound

To find an upper bound for v̄ A in (3.16), the case is considered in which all vehicles within the
second set move with vmax,A . The TSMS for any other scenario does not exceed the TSMS for
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the considered scenario here. From (3.12), we have

vmax,A <
vcell,A

MA −1
. (3.22)

From (3.22) and Figure 3.7 for those vehicles that are located in the first subset (i.e., in the first
mA −MA grid cells of the second set) a distance larger than or at least equal to L A is traveled
during the sampling cycle TA, whereas for vehicles in the second subset (i.e., in the last MA−1
grid cells of the second set) the traveled distance is less than L A.

Accordingly, to calculate an upper bound for v̄ A, the second term of the distance traveled
in the numerator of (3.16) is split into two terms, i.e.,

v̄ A <

(
ncell,A−mA+1

∑

i=1
L A

)

+ (mA −MA +1)L A +
1

MA −1

(
MA−1∑

i=1
i

)

L A

(
ncell,A−mA+1

∑

i=1

L A

v A,i

)

+ (mA −MA +1)(MA −1)hA +

(
MA−1∑

i=1
i

)

hA

, (3.23)

where the following expressions, which are obtained from Figure 3.7, for the travel time and
the traveled distance of vehicles in the last MA −2 grid cells have been substituted in (3.16).
Hence,

tA,ncell,A− j+1 = j hA,

dA,ncell,A− j+1 = v A,ncell,A− j+1 · tA,ncell,A− j+1 =
j

MA −1 L A,
for j = 1,2, . . . , MA −2.

Applying (3.11) to find a lower bound for hA in the denominator, we finally obtain an upper
bound for v̄ A, which is given by

v̄
upper
A

=

ncell,A −
MA

2
+1

(ncell,A −mA +1)+
(MA −1)

2mA
(2mA −MA)

HA,1→ncell,A−mA+1. (3.24)

3.3.3 Tightening the lower and upper bounds

In this section, we use the results of (3.21) and (3.24) in Section 3.3.2 with the aim of finding
bounds that are very tight. Suppose that we have the datasets given by (3.2) from a loop de-
tector, and therefore, we have the maximum and minimum speeds, vmax,A and vmin,A, and
the mean time headway, hA, given by (3.3) and (3.4). From vmax,A and vmin,A we derive the
parameters mA and MA by (3.11) and (3.12). Equations (3.21) and (3.24) yield a lower and an
upper bound for the TSMS. Therefore, we can write

v̄ lower
A ≤ v̄ A ≤ v̄

upper
A

. (3.25)
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Figure 3.8: Sampling windows A and B with the same datasets (i.e., speed values, number of

vehicles, and length of the window), but different time headways (we have ℓi > 1
and ℓi xA,i = L A).

Now we construct a new sampling window B (see Figure 3.8) with all speed data the same as
those of A, but with a different constant time headway, i.e.,

hB = hA +∆h, (3.26)

and
LB = L A, TB = ncell,AhB , (3.27)

and we want to find ∆h, such that

v̄ lower
B ≤ v̄ A ≤ v̄

upper
B

. (3.28)

Note that ncell,A = nB . From Figure 3.8 we see that for ∆h > 0 some of the vehicles that are
located in the second set for A, might be located in the first set for B . Let W be the number of
vehicles from the second set for A that are in the first set for B . Therefore, we have

mB = mA −W . (3.29)

Now we consider the upper and lower bounds separately, so we denote the extended sampling
window for the upper bound by Bu and for the lower bound by Bl. In addition, let Wu and Wl

be the number of vehicles from the second set for A that are, respectively, in the first set for
Bu and Bl.

First we consider the conditions under which the right-hand inequality in (3.28) is satisfied
for Bu. Now it can be verified (see Section 3.3.5 for the detailed proof) that the upper bound
calculated for the sampling window Bu, is also an upper bound for v̄ A if we have

Wu ≤ min

{

mA
MA −2

MA −1
,ncell,A −

MA

2
+1

}

. (3.30)
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Likewise, based on (3.28) we can show that if

Wl ≤ mA −MA +1, (3.31)

then the lower bound calculated for the sampling window B is also a lower bound for v̄ A.

Finally, if we seek for a very tight upper bound for the TSMS, from (3.29) and (3.30), we can
write

mBu = mA −min

{

mA
MA −2

MA −1
,ncell,A −

MA

2
+1

}

.

Then we can find hBu from (3.11), and correspondingly we can calculate MBu from (3.12).
Substituting mBu and MBu in (3.24), we have the desired upper bound. Similarly, a desired
tight lower bound can be found.

3.3.4 Estimation of the TSMS from the upper and lower bounds

In the previous section, we have determined tight upper and lower bounds for the TSMS
(note that the tightened v̄ lower

A
is denoted by TSMSlower

A
and the tightened v̄

upper
A

is denoted
by TSMSupper

A
). In this section, we introduce a formula for estimating the TSMS from the in-

troduced upper and lower bounds. For that we propose a convex combination of the lower
and upper bounds. Using a convex combination, we can also deal with the cases where the
trajectories of vehicles are not necessarily straight lines. The expression for the estimated
TSMS, TSMSest

A
, is proposed as

TSMSest
A =

TSMSlower
A +γATSMSupper

A

1+γA
with γA ≥ 0. (3.32)

In the above expression γA can be obtained from a dataset including individual speeds of the
vehicles if such a dataset is initially available for different traffic scenarios.

However, such an extensive dataset might not always be available or there might be a need
for immediate application of the formula for a new area (without a priori knowledge about the
possible traffic scenarios or any available data). For such cases, a parametric expression for
γA is more applicable. The following formula, which is a convex combination with the weight
being a function of the speed range is proposed for the TSMS:

TSMSest
A =

TSMSlower
A +

vmax,A

vmin,A
·TSMSupper

A

1+
vmax,A

vmin,A

. (3.33)

In (3.33) when the ratio of vmax,A and vmin,A increases, the share of the upper bound in the
estimated TSMS will be higher compared with the share of the lower bound.

Now we explain how to estimate the TSMS from the convex combination given by (3.33)
using the tight bounds for the TSMS given by (3.21) and (3.24). We use the bounds Wu and
Wl (see (3.30) and (3.31)) for the same sampling window to apply (3.33). Therefore, for the



34 Efficient Predictive Model-Based and Fuzzy Control for Green Urban Mobility

estimation of TSMS we substitute W with the following expression

W = min{Wu,Wl}, (3.34)

and correspondingly, we determine mB and MB and substitute them in (3.21) and (3.24)
to obtain v̄ lower

B
= TSMSlower

A
and v̄

upper
B

= TSMSupper
A

. Finally, we substitute TSMSlower
A

and
TSMSupper

A
in (3.33) to find an estimate for v̄ A.

3.3.5 Proofs for tightening the lower and the upper bounds

This section contains the extended proof on the method for tightening the lower bound given
by (3.21) and the tight upper bound (3.24), which has been presented in Section 3.3.3.

First we consider the upper bound of v̄B computed within the sampling window B in order
to find the conditions under which this upper bound is also an upper bound for v̄ A. From
(3.24) for the factor that is multiplied by HA,1→ncell,A−mA+1, i.e., for

f (mA) =
ncell,A −

MA

2
+1

(ncell,A −mA +1)+
(MA −1)

2mA
(2mA −MA)

,

with: MA =αAmA +1, 0<αA < 1,

(3.35)

we can easily show that

∂ f (mA)

∂mA
=

(2α2
A −6αA +4)ncell,A +2α2

A −4αA +2

4n2
cell,A + ( f1(αA)mA −4αA +8)ncell,A + f2(αA)m2

A + f3(αA)mA +α2
A −4αA +4

≥ 0,

(3.36)

with

f1(αA) =−4α2
A +8αA −8, (3.37)

f2(αA) =α4
A −4α3

A +8α2
A −8αA +4, (3.38)

f3(αA) = 2αA −8α2
A +12αA −8. (3.39)

Therefore, by reducing mA to mB (i.e., by increasing hA to hB ), the factor (3.35) becomes
smaller and can produce a tighter upper bound (note that the equality occurs for αA = 1,
i.e., for uniform speeds).

Now we should find the extreme/worst case, where v̄ A might violate v̄
upper
B

. Thus, we aim
to increase v̄ A and to decrease v̄

upper
B

at the same time in order to produce the worst possible
case. For the given A and B , the case where

v A, j = vmax,A, for j = ncell,A −mA +W , . . . ,ncell,A, (3.40)
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makes v̄ A increased with respect to v̄
upper
B

, because the speed values of the vehicles in (3.40)
do not appear in (3.24) for v̄

upper
B

, but increases v̄ A.

Now we consider the vehicles v A,i , i = ncell,A −mA, . . . ,ncell,A −mA +W − 1, where these
vehicles appear in both the harmonic mean of the first set for B and in v̄ A. We first introduce
the following lemmas:

Lemma 3.1 If v A,i < v A, j , for j = 1,2, . . . ,ncell,A −mA +1, then

H
(

{v A, j | j = 1,2, . . . ,ncell,A −mA +1}∪
{

v A,i
})

< TSMS
(

{v A, j | j = 1,2, . . . ,ncell,A −mA +1}∪
{

v A,i
})

,

where H(·) provides the harmonic mean of its arguments and TSMS(·) gives the TSMS of the

speeds given as its arguments.

Proof : We denote the traveled distance and the travel time of vehicle v A,k for k = 1, . . . ,ncell,A−

mA +1, i by, respectively, xA,k and tA,k and also j = 1,2, . . . ,ncell,A −mA +1 by j ∈ A1. Then, we
have

TSMS
(

{v A, j | j ∈ A1}∪
{

v A,i
})

=
xA,1 + . . .+xA,ncell,A−mA+1 +xA,i

tA,1 + . . .+ tA,ncell,A−mA+1 + tA,i
, (3.41)

H
(

{v A, j | j ∈ A1}∪
{

v A,i
})

=
ncell,A −mA

tA,1

xA,1
+ . . .+

tA,ncell,A−mA+1

xA,ncell,A−mA+1
+

tA,i

xA,i

, (3.42)

then

H
(

{v A, j | j ∈ A1}∪
{

v A,i
})

< TSMS
(

{v A, j | j ∈ A1}∪
{

v A,i
})

⇔ (xA,1 −xA,i )
(xA,1tA,i −xA,i tA,1)

xA,i
xA,2 . . . xA,ncell,A−mA+1+

...

+(xA,ncell,A−mA+1 −xA,i )
(xA,ncell,A−mA+1tA,i −xA,i tA,ncell,A−mA+1)

xA,i
xA,1 . . . xA,ncell,A−mA

+ (xA,2 −xA,1)(xA,2tA,1 −xA,1tA,2)xA,3 . . . xA,ncell,A−mA+1+

...

+ (xA,ncell,A−mA+1 −xA,ncell,A−mA )·

(xA,ncell,A−mA+1tA,ncell,A−mA −xA,ncell,A−mA tA,ncell,A−mA+1)xA,1 . . . xA,ncell,A−mA−1 > 0.

(3.43)

We want to find v A,i such that the left-hand side term in the above inequality is positive. Since

xA,1 = . . . = xA,ncell,A−mA+1 = L A , xA,i ≤ L A.

We have
xA, j −xA,i ≥ 0 for j ∈ A1. (3.44)
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Then if we have
xA, j tA,i

xA,i
− tA, j > 0⇔ v A, j > v A,i , (3.45)

then the red term in the left-hand side of (3.43) is definitely positive (note that the red and the
black terms vary independently, and v A,i only has effect on the red term).

If we consider

v A, j = vmin,A, for j = ncell,A −mA, . . . ,ncell,A −mA +W −1, (3.46)

then (3.43) is satisfied while the red term adopts its maximum value. Moreover, the expres-
sions given by (3.44) adopt their maximum possible value since xA,i adopts its minimum.
Therefore, the largest difference between the realized value of H

(

{v A, j | j ∈ A1}∪
{

v A,i
})

and
the value of TSMS

(

{v A, j | j ∈ A1}∪
{

v A,i
})

takes place. 2

Lemma 3.2 For any two real-valued and non-negative parameters N , a ≥ 0 and any two real-

valued and positive parameters D,b > 0, we have a
b
≥ N

D
⇔ N +a

D +b
≥ N

D
.

Lemma 3.3 If for the real-valued and positive parameters w1, w ′
1, w2, w ′

2 ≥ 0, we have either of

C1.

w1 > w ′
1 and w2 < w ′

2 and
w1

w2
≥

w ′
1

w ′
2

, (3.47)

C2.

w1 > w ′
1 and w2 > w ′

2 and
w1 +1

w2
≥

w ′
1 +1

w ′
2

, (3.48)

C3.

w1 < w ′
1 and w2 < w ′

2 and
w1

w2 +1
≥

w ′
1

w ′
2 +1

, (3.49)

then, considering the real-valued parameter X within the range [Xmin, Xmax], we have

X +w1Xmax +w2Xmin

1+w1 +w2
≥

X +w ′
1Xmax +w ′

2Xmin

1+w ′
1 +w ′

2

. (3.50)

Proof : First, we consider the following definition:

D = (Xmax −Xmin) (w1w ′
2 −w ′

1w2)
︸ ︷︷ ︸

F1

+(Xmax −X ) (w1 −w ′
1)

︸ ︷︷ ︸

F2

+(X −Xmin) (w ′
2 −w2)

︸ ︷︷ ︸

F3

. (3.51)
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It is easy to verify that D ≥ 0. The equivalence of (3.50) and (3.51) being positive is as follows

D ≥ 0 ⇔

(Xmax −Xmin)(w1w ′
2 −w ′

1w2)+ (Xmax −X )(w1 −w ′
1)+ (X −Xmin)(w ′

2 −w2) ≥ 0⇔

w1w ′
2Xmax −w1w ′

2Xmin −w ′
1w2Xmax +w ′

1w2Xmin+

w1Xmax −w1X −w ′
1Xmax +w ′

1X+

w ′
2X −w ′

2Xmin −w2X +w2Xmin ≥ 0 ⇔

w1w ′
2Xmax +w ′

1w2Xmin +w1Xmax +w ′
1X +w ′

2X +w2Xmin+X +w ′
1w1Xmax +w ′

2w2Xmin

≥ w ′
1w2Xmax +w1X +w ′

1Xmax +w ′
2Xmin +w2X+X +w ′

1w1Xmax +w ′
2w2Xmin ⇔

(X +w1Xmax +w2Xmin)(1+w ′
1 +w ′

2) ≥ (X +w ′
1Xmax +w ′

2Xmin)(1+w ′
1 +w ′

2)

since w1, w ′
1, w2, w ′

2 ≥ 0
⇐==============⇒

X +w1Xmax +w2Xmin

1+w1 +w2
≥

X +w ′
1Xmax +w ′

2Xmin

1+w ′
1 +w ′

2

.

(3.52)
All the terms Xmax − Xmin, Xmax − X , and X − Xmin in (3.51) are non-negative. Now we study
three cases:

1. Suppose that we have case C1 defined by (3.47). Hence, we already know that F1, F2,
and F3 in (3.51) are positive. Then, we know definitely that D is non-negative.

2. Suppose that we have case C2, i.e., (3.48) holds. Considering (3.51) the minimum value
of D is obtained when X = Xmax and hence the value that is multiplied by the negative
factor F3 adopts its maximum value. Therefore (3.51) reduces to

DC2 = (Xmax −Xmin)(w1w ′
2 −w ′

1w2 +w ′
2 −w2). (3.53)

Then from (3.48) we can write

w1 +1

w2
≥

w ′
1 +1

w ′
2

⇔

(w1 +1)w ′
2 ≥ (w ′

1 +1)w2 ⇔ w1w ′
2 −w ′

1w2 +w ′
2 −w2 ≥ 0.

(3.54)

Hence, DC2 is definitely non-negative and so is D.

3. Suppose that we have case C3 defined by (3.49). Then the minimum value of D is ob-
tained when X = Xmin and the value multiplied by the negative factor F2 adopts its max-
imum value. Therefore, (3.51) reduces to

DC3 = (Xmax −Xmin)(w1w ′
2 −w ′

1w2 +w1 −w ′
1). (3.55)

Then from (3.49) we can write

w1

w2 +1
≥

w ′
1

w ′
2 +1

⇔

w1(w ′
2 +1) ≥ w ′

1(w2 +1) ⇔ w1w ′
2 −w ′

1w2 +w1 −w ′
1 ≥ 0.

(3.56)
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Then DC3 is definitely non-negative. This concludes the proof. 2

Lemma 3.4 For the real-valued and non-negative parameters X , a ≥ 0 and the real-valued and

positive parameters Y ,b > 0 we have X +a
Y +b

≤ X
Y

⇔ a
b
≤ X

Y
.

Based on Lemma 3.1, Lemma 3.2, and (3.40), we can conclude that

v̄ A ≥ TSMS
(

{v A, j | j ∈ A1}∪
{

v A,i
})

, (3.57)

and hence,
H

(

{v A, j | j ∈ A1}∪
{

v A,i
})

≥ v̄ A. (3.58)

Thus the worst case occurs if we have both (3.40) and (3.46).
We can write v̄ A and v̄

upper
B

for the worst case, as follows. First for v̄ A, we have

v̄ A =

∑

A,x +vmin,A

[

W
L A

vmin,A
−

W (W +1)

2
hA

]

+vmax,A

[

(mA −W −1)
L A

vmax,A
−

(MA −1)(MA −2)

2
hA

]

∑

A,t +W
L A

vmin,A
−

W (W +1)

2
hA + (mA −W −1)

L A

vmax,A
−

(MA −1)(MA −2)

2
hA

,

(3.59)

where
∑

A,x =

ncell,A−mA+1
∑

j=1
v A, j tA, j ,

∑

A,t =

ncell,A−mA+1
∑

j=1
tA, j ,

are the traveled distance and the travel time of the first set of vehicles for the sampling window
A. The second term of the denominator corresponds to the travel time of the first W vehicles
located in the second set of vehicles for the sampling window A, for which we have

ncell,A−mA+W
∑

j=ncell,A−mA+1
tA, j =

(
L A

vmin,A
−hA

)

+

(
L A

vmin,A
−2hA

)

+ . . .+

(
L A

vmin,A
−W hA

)

=W
L A

vmin,A
−

W (W +1)

2
hA,

and the second term of the numerator corresponds to the traveled distance of the first W

vehicles located in the second set of vehicles for the sampling window A.
The third term of the denominator corresponds to the travel time of the last mA −W −1

vehicles located in the second set of vehicles for the sampling window A, for which we have

ncell,A∑

j=ncell,A−mA+W +1
tA, j = (mA −W −1− (MA −2))

L A

vmax,A
+

(MA −2)

[(
L A

vmax,A
−hA

)

+

(
L A

vmax,A
−2hA

)

+ . . .+hA

]

= (mA −W −1)
L A

vmax,A
−

(MA −1)(MA −2)

2
hA,

(3.60)
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and the third term of the numerator corresponds to the traveled distance of the last mA−W −1
vehicles located in the second set of vehicles for the sampling window A.

Now we consider the upper bound of v̄B for the sampling window B . Here we know that
the first W vehicles in the second set of vehicles for the sampling window A are located in the
first set of vehicles for the sampling window B . Extension of the time headway (or the width
of the sampling window) might also have an effect on the number of vehicles in the second
subset of B2 (i.e., the last MB −2 vehicles in the second set of vehicles for the sampling window
B). Therefore, in general we consider W ′ vehicles that were in the second subset of A2 for A,
are now out of this subset for B . Consequently, we obtain

MB = MA −W ′.

For the upper bound for B from (3.23), we can write

v̄
upper
B

=

∑

x
+vmin,A

W L A

vmin,A
+vmax,A

[
(mA −W −1)L A

vmax,A
−

(MA −W ′
−1)(MA −W ′

−2)

2
(hA −∆hA)

]

∑

A,t +
W L A

vmin,A
+

(mA −W −1)L A

vmax,A
−

(MA −W ′
−1)(MA −W ′

−2)

2
(hA −∆h)

,

(3.61)

where the following summations in the numerator and denominator of v̄
upper
B

represent the
traveled distance and the travel time of the first set of vehicles for the sampling window B ,
respectively.
Traveled distance of the vehicles in B1:

∑

A,x +vmin,A
W L A

vmin,A
.

Travel time of the vehicles in B1:
∑

A,t +
W L A

vmin,A
.

Also the following two terms are the traveled distance and the travel time of the second set of
vehicles for the sampling window B .
Traveled distance of the vehicles in B2:

vmax,A

[
(mA −W −1)L A

vmax,A
−

(MA −W ′
−1)(MA −W ′

−2)

2
(hA −∆h)

]

.

Travel time of the vehicles in B2:

(mA −W −1)L A

vmax,A
−

(MA −W ′
−1)(MA −W ′

−2)

2
(hA −∆h).

We apply Lemma 3.3 to see what conditions are needed for (3.50) in order to be able to
apply it to (3.59) and (3.61). Equations (3.59) and (3.61) can be rewritten as

v̄ A =
TSMS

(

{v A, j | j ∈ A1}
) ∑

A,t +c ′1 ·vmax,A +c ′2 ·vmin,A
∑

A,t +c ′1 +c ′2
, (3.62)

where c ′1 =
(mA−W −1)L A

vmax,A
−

(MA −1)(MA −2)
2 hA and c ′2 =

W L A

vmin,A
−

W (W +1)
2 hA.
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Next we normalize the coefficients with respect to
∑

A,t ,

v̄ A =

TSMS
(

{v A, j | j ∈ A1}
)

+
c ′1

∑

A,t

·vmax,A +
c ′2

∑

A,t

·vmin,A

1+
c ′1

∑

A,t
︸ ︷︷ ︸

w ′
1

+
c ′2

∑

A,t
︸ ︷︷ ︸

w ′
2

. (3.63)

Similarly,

v̄
upper
B

=

TSMS
(

{v A, j | j ∈ A1}
)

+
c1

∑

A,t

·vmax,A +
c2

∑

A,t

·vmin,A

1+
c1

∑

A,t
︸ ︷︷ ︸

w1

+
c2

∑

A,t
︸ ︷︷ ︸

w2

, (3.64)

with c1 =
(mA−W −1)L A

vmax,A
−

(MA −W ′
−1)(MA −W ′

−2)
2 (hA −∆hA) and c2 =

W L A

vmin,A
.

Therefore, case C2 of the lemma 3.3 holds for (3.63) and (3.64) if we have

N ′

︷ ︸︸ ︷

(mA −W −1)
L A

vmax,A
−

(MA −W ′
−1)(MA −W ′

−2)

2
hA+(ncell,A −mA +1)(MA −1)hA +

(MA −W ′
−1)(MA −W ′

−2)

2
∆h

D
︷ ︸︸ ︷

W
L A

vmin,A
−

W (W +1)

2
hA +

W (W +1)

2
hA

≥

N
︷ ︸︸ ︷

(mA −W −1)
L A

vmax,A
−

(MA −1)(MA −2)

2
hA+(ncell,A −mA +1)(MA −1)hA

D
︷ ︸︸ ︷

W
L A

vmin,A
−

W (W +1)

2
hA

.

(3.65)

Note that from Lemma 3.3 the extreme case where the inequality given by (3.50) might be
violated takes place for X = Xmax or equivalently

TSMS
(

{v A, j | j ∈ A1}
)

= vmax,A ⇒
∑

A,t = (ncell,A −mA +1)(MA −1)hA.

Next we use Lemma 3.2, where for (3.65),

a =
(MA −W ′

−1)(M −W ′
−2)

2
∆h +

W ′(2MA −W ′
−3)

2
hA,

b =
W (W +1)

2
h.
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Since W ′ < MA − 2, then W ′ = MA − 3 makes a minimal. Now, if the following relationship
holds

(MA − (MA −3)−1)(MA − (MA −3)−2)

2
∆h +

(MA −3)(2MA − (MA −3)−3)

2
hA

��W (W +1)

2 �
�hA

≥

(mA −W −1)(MA −1)hA −
(MA −1)(MA −2)

2
hA + (ncell,A −mA +1)(MA −1)hA

��W mA�
�hA −

��W (W +1)

2 �
�hA

,

(3.66)

which can be simplified to the following expression:

∆h ≥

ncell,A MAW −MAW 2
−ncell,AW 2

−ncell,AW −M2
AmA −

1

2
MAW

2mA −W −1
hA. (3.67)

In addition, we have

(mA −W )(hA +∆h) = mAhA ⇒∆hA =
W

mA −W
hA. (3.68)

Then by substituting (3.68) in (3.67), we finally get

W ≥
ncell,A(MA −1)

ncell,A +MA
, (3.69)

and if we also have

(mA −W −1)(MA −1)hA −
(MA −1)(MA −2)

2
hA + (ncell,A −mA +1)(MA −1)hA ≥ 0 ⇔

W ≤ ncell,A −
MA

2
+1,

(3.70)

then based on Lemma 3.2, (3.61) is an upper bound for (3.59).

In addition, we know that in (3.61), the vehicles in the second subset of B compensate for
the reduction of v̄

upper
B

due to the W last vehicles in the first set of vehicles for the sampling
window B , which move with vmin,A . Therefore, we need to make sure that

hB ≤ (MA −1)hA. (3.71)

Then for the extreme case, we have

mA −W ≥
mAhA

(MA −1)hA
⇒W ≤ mA

(MA −2)

MA −1
.
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Hence, the following holds:

W ≤ min

{

mA
MA −2

MA −1
,ncell,A −

MA

2
+1

}

. (3.72)

Finally, we need to select W such that both (3.69) and (3.72) are satisfied at the same time.
Afterwards, from W we can obtain mB using (3.29), and then from (3.11) we have hB . Hence,
we can obtain MB from (3.12). Then using mB and MB , TSMSupper

B
is calculated by (3.24). The

obtained value is an upper bound for v̄ A.

Now, we consider the lower bound of v̄B corresponding to the sampling window B , and
we seek for conditions under which this bound is also a lower bound for v̄ A. With a similar
reasoning as we had for the upper bound, here the extreme case where v̄ A might become
equal to or less than v̄ lower

B is when we have

v A, j = vmin,A , for j = ncell,A −mA +W , . . . ,ncell,A. (3.73)

Additionally, the worst case corresponds to the situation where the W vehicles (that are lo-
cated in the second set of A, but in the first set of B) all move with vmax,A, i.e.,

v A, j = vmax,A, for j = ncell,A −mA, . . . ,ncell,A −mA +W −1. (3.74)

Finally, for v̄ A and v̄ lower
B (from (3.18)), we have

v̄ A =

∑

A,x +vmax,A

[
W L A

vmax,A
−

(W −mA +MA −1)(W −mA +MA)hA

2

]

+vmin,A
(mA −W −1)(mA −W )hA

2
∑

A,t +
W L A

vmax,A
−

(W −mA +MA −1)(W −mA +MA)hA

2
+

(mA −W −1)(mA −W )hA

2

,

(3.75)

v̄ lower
B =

∑

A,x +vmax,A
W L A

vmax,A
+vmin,A

(mA −W −1)(mA −W )

2
(hA +∆h)

∑

A,t +
W L A

vmax,A
+

(mA −W −1)(mA −W )

2
(hA +∆h)

. (3.76)

The second term of the numerator of (3.75) corresponds to the first W vehicles in the second
set of A. From (3.74) these move with vmax,A . Hence, the travel time of the first W vehicles in
the 2nd set of A is

L A

vmax,A
(mA −MA +1)

︸ ︷︷ ︸

vehicles in set 2, but outside of subset 2 of A2

+

[(
L A

vmax,A
−hA

)

+ . . .+

(
L A

vmax,A
− (W −mA +MA −1)hA

)]

︸ ︷︷ ︸

vehicles in subset 2 of A

.

(3.77)
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For (3.75) the third term of the numerator is corresponding to the last mA −W −1 vehicles in
the second set of A, i.e., the vehicles given by (3.73). We know that the travel time of v A,ncell,A

is hA, for v A,ncell,A−1 it is 2hA, and so on. Therefore, we have the following statement.
Travel time of the last mA −W −1 vehicles in the 2nd set for the sampling window A:

hA +2hA + . . .+ (mA −W −1)hA =
(mA −W −1)(mA −W )hA

2
.

For (3.76) the second term corresponds to the W vehicles that are in the second set of A, but in
the first set of B . The third term corresponds to the vehicles in the second set for the sampling
window B . Moreover, the following statement holds.
Travel time of the vehicles in the 2nd set for the sampling window B :

(hA +∆h)+2(hA +∆h)+ . . .+ (mA −W −1)(hA +∆h).

At the end, comparing (3.75) and (3.76) with the cases given in Lemma 3.3, case C3 is
applicable here. Therefore, if we have

W L A

vmax,A
−

(W −mA +MA −1)(W −mA +MA)

2
hA

(mA −W −1)(mA −W )

2
hA + (ncell,A −mA +1)mA hA

≥

W L A

vmax,A
−

(W −mA +MA −1)(W −mA +MA)

2
hA +

(W −mA +MA −1)(W −mA +MA)

2
hA

(mA −W −1)(mA −W )

2
hA + (ncell,A −mA +1)mAhA +

(mA −W −1)(mA −W )

2
∆h

.

(3.78)

Next we apply the Lemma 3.4. We have

W L A

vmax,A
−

(W −mA +MA −1)(W −mA +MA)

2
hA

(mA −W −1)(mA −W )

2
hA + (ncell,A −mA +1)mAhA

≥

(W −mA +MA −1)(W −mA +MA)

2
hA

(mA −W −1)(mA −W )

2
∆h

,

(3.79)

which reduces to

∆h ≥
(W −mA +MA −1)(W −mA +MA)

[

(W +mA)(W −mA +1)+2mA(ncell,A −W )
]

(mA −W −1)(mA −W )[−W 2
+ (2m −1)W + (M2

−2mM +M2
−M +m)]

hA,

(3.80)
and if in addition to (3.80), we have

2W (MA −1)− (W −mA +MA −1)(W −mA +MA) ≥ 0, (3.81)

which reduces to

W ≤ mA +
√

(2mA −MA)(MA −1)−
1

2
, (3.82)
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AA

First setFirst set Second setSecond set

t A,it A,i

dA,idA,i

v A,iv A,i

Figure 3.9: Considering a vehicle that is originally in the first set for the sampling window A,

and shifting its trajectory to the left (shown in the left-hand side figure) or to the

right (shown in the right-hand side figure) does not change the traveled distance

and the travel time of the vehicle as long as it stays in the first set.

then we can make sure that based on case C3 of Lemma 3.3 that

TSMSlower
B ≤ v̄ A.

Then similar to what we explained for the upper bound before, we have mB and MB and
correspondingly TSMSlower

B from (3.21), which can be used as a lower bound for v̄ A.
Note that a simple proposed range for W from (3.80) and (3.82) is the following, which indeed
satisfies both conditions:

W ≤ mA −MA +1. (3.83)

3.3.6 Arbitrary time headway distribution

In Section 3.3.2, we have developed equations for finding a lower and an upper bound for the
TSMS assuming that all the vehicles have an equal time headway. In this section, we general-
ize our proposed approach such that the formulas given in Section 3.3.2, and correspondingly
the tight upper and lower bounds and the estimated TSMS determined in Sections 3.3.3 and
3.3.4 can be used for a general case, i.e., even if the time headways of different vehicles are
not necessarily the same. We will also show that the assumption of hA,0 = 0, which has been
used in Section 3.3.2 to explain the proposed approach in a simpler way, can easily be relaxed,
while the proposed formulas remain valid.

First, we show that (3.21) and (3.24) are valid for an arbitrary distribution of the time head-
ways. We first consider those vehicles that are in the first set of the sampling window A (i.e.,
they are able to leave the sampling road section by the end of the current sampling cycle, even
if they move forward by the speed v A,min). For these vehicles, if the time headway is changed
from hA (which is the case considered in Figure 3.7 and also in extracting the formulas given
in Sections 3.3.2, 3.3.3, and 3.3.4), then it actually means that the corresponding trajectories
of these vehicles are moved to the left or to the right in the sampling window A within the
time-space plane. However, as long as these vehicles still stay in the first set, their effect on
the TSMS does not change as their traveled distance and their travel time are unchanged (see
Figure 3.9).

Next, we start by bringing the new vehicles one by one to either the first or the second set
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A

First set Second set

t (1)
A,i

d (1)
A,i

t (2)
A,i

d (2)
A,i

v A,iv A,i

Figure 3.10: Illustration of the traveled distance and the travel time of a vehicle in two cases, i.e.,

if the vehicle belongs to the first set of the sampling window A, and if the vehicle

belongs to the second set of the sampling window A.

of the sampling window A. For the first vehicle, if we add it to the first set, i.e., if we bring its
trajectory to the left-hand side of the red dashed splitting line shown in Figure 3.10, the trav-
eled distance and the travel time of the vehicle are indicated by d (1)

A,i and t (1)
A,i , respectively. If

we add this vehicle to the second set of vehicles, i.e., if we bring the trajectory of this vehicle to
the right-hand side of the red dashed splitting line shown in Figure 3.10, and indicate the trav-
eled distance and the travel time of the vehicle by, respectively, d (2)

A,i and t (2)
A,i , then d (1)

A,i > d (2)
A,i

and t (1)
A,i > t (2)

A,i hold (see Figure 3.10). We also use T (1) and D(1) for the total traveled distance
and the total travel time of the vehicles in the first set.

Suppose that the added vehicle moves with v A,min. Since we have v A,min ≤
D(1)

T (1) , hence

v A,minT (1) ≤ D(1) (note that D(1), T (1), and v A,min are positive quantities). Since t (1)
A,i − t (2)

A,i > 0,

we can multiply both sides of the resulting inequality by t (1)
A,i − t (2)

A,i , i.e.,

v A,minT (1)
(

t (1)
A,i − t (2)

A,i

)

≤ D(1)
(

t (1)
A,i − t (2)

A,i

)

.

Next we add v A,mint (1)
A,i t (2)

A,i +D(1)T (1) to both sides of the resulting inequality. We have

v A,minT (1)
(

t (1)
A,i − t (2)

A,i

)

+v A,mint (1)
A,i t (2)

A,i +D(1)T (1)
≤ D(1)

(

t (1)
A,i − t (2)

A,i

)

+v A,mint (1)
A,i t (2)

A,i +D(1)T (1).

The speed of the added vehicle is assumed to be v A,min. Hence, we can substitute v A,mint (1)
A,i

by d (1)
A,i and v A,mint (2)

A,i by d (2)
A,i . We obtain

T (1)
(

d (1)
A,i −d (2)

A,i

)

+d (1)
A,i t (2)

A,i +D(1)T (1)
≤ D(1)

(

t (1)
A,i − t (2)

A,i

)

+d (2)
A,i t (1)

A,i +D(1)T (1),

which reduces to (

D(1)
+d (1)

A,i

)(

T (1)
+ t (2)

A,i

)

≤

(

D(1)
+d (2)

A,i

)(

T (1)
+ t (1)

A,i

)

.

Then we have
D(1)

+d (1)
A,i

T (1)
+ t (1)

A,i

≤
D(1)

+d (2)
A,i

T (1)
+ t (2)

A,i

,
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which indicates that in order to find the lower bound v̄ lower
A

for the TSMS, we should add the
vehicle to the first set. The same reasoning holds if we add the second, third, and . . . vehicles
one by one. Hence, v̄ lower

A
is realized when all the trajectories of the vehicles are added to the

first set. Taking into account the physical definition of the integer mA given in Section 3.3.1,
for the case explained above, we have mA − 1 = 0. From (3.21), if we substitute mA = 1, we
obtain v̄ lower

A
= HA,1→ncell,A−mA+1, which is true since all the vehicles are now added to the first

set.
Additionally, we can show in a similar way that if the added vehicle moves forward by the

speed v A,max, then we have
D(1)

+d (1)
A,i

T (1)
+ t (1)

A,i

>
D(1)

+d (2)
A,i

T (1)
+ t (2)

A,i

,

which indicates that for v̄
upper
A

to be realized, all the vehicles should be in the first set. From
the physical definition of the integers mA and MA given in Section 3.3.1, the case described
above results in MA − 2 = 0 and also mA − 1 = 0, which together with (3.23) gives v̄

upper
A

=

HA,1→ncell,A−mA+1. This is again true, as all the vehicles have been added to the first set for the
sampling window A.

Finally, considering the definitions given for mA and MA by (3.9) and (3.10), for any ar-
bitrary case with a randomly distributed time headway for the vehicles, we can still use the
formulas developed earlier on in this chapter. Additionally, now that we have shown that by
changing the individual time headways hA,i for i ∈ {0, . . . , NA −1}, the formulas developed in
this chapter can still be used, we can conclude that this also holds for hA,0, i.e., the assumption
hA,0 = 0 made before can easily be relaxed and the formulas will still hold.

3.4 Case study

In this section we present the results for using the formulas given by Wardrop [153], i.e.,
(2.13), and by Rakha and Zhang [134], i.e., (2.17), and the new formula given in this chap-
ter, i.e., (3.33), for estimation of the TSMS. We first use real-life data from the NGSIM dataset
for the I-80 freeway (http://gateway.path.berkeley.edu/ngsimdocs/I-80/) and the Rotterdam-
Delft dataset for the A13 freeway (http://data.3tu.nl/repository/collection:traffic_flow_obs)
to determine the relative errors of these formulas with respect to the real TSMS. As a compar-
ison, we also present the relative error of the harmonic mean of the speeds with respect to the
TSMS.

The NGSIM dataset provides detailed information on trajectories of vehicles and has been
generated as part of the Next Generation SIMulation (NGSIM) project by the Federal Highway
Administration from a segment of the interstate freeway I-80 in San Francisco, California, US,
on April 13, 2005. The data has been collected via seven video cameras from 2.00 PM till
7.00 PM, and is available in 3 sets for the time periods between 4.00 PM and 4.15 PM, be-
tween 5.00 PM and 5.15 PM, and between 5.15 PM and 5.30 PM. In addition to that, real-life
data for the traffic flow on the A13 freeway, Rotterdam-Delft, extracted from movies that were
captured by a helicopter is used. Figure 3.11 shows the map of the A13 freeway where the

http://gateway.path.berkeley.edu/ngsimdocs/I-80/
http://data.3tu.nl/repository/collection:traffic_flow_obs
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Figure 3.11: Map displaying the A13 freeway, Rotterdam-Delft for which the real-life flow data

is available.

data has been collected. The movies and the corresponding point speed data are provided by
4TU.ResearchData, the joint center for research data of Delft University of Technology, Eind-
hoven University of Technology, University of Twente, and University of Wageningen.

Furthermore, to cover the possible scenarios that are not included in the real-life datasets,
we also include simulations in MATLAB at the end of this section.

3.4.1 Real-life data (NGSIM, I-80 and Rotterdam-Delft, A13)

On a road section, we might have a single scenario or a combination of different traffic sce-
narios. For cases involving a multi-lane road where lane-changing is also permitted, there
are two possible ways of estimating the average speed: the first considers the average speed
separately for each lane, and the other considers multiple lanes together and estimates their
overall average speed. Due to the lane changes, a measurement on one lane might affect the
speed on the other lane(s), which is a good reason for considering the collection of lanes. For
the real-life data in this section we therefore consider this joined case for the lanes.

Figure 3.12 demonstrates the relative error of the convex combination, the formulas by
Rakha and Zhang [134] and by Wardrop [153], and the harmonic mean of the speeds with
respect to the real TSMS for the NGSIM I-80 dataset. We have extracted four sub-datasets
from the NGSIM I-80 dataset, where the corresponding quantities for L A, hA, TA, vmin,A , and
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Table 3.2: The values of the traffic parameters for the NGSIM (I-80 freeway) dataset.

Dataset L A(m) hA (s) TA (min) vmin,A ( m
s ) vmax,A ( m

s )

DS 1 500 0.34 102.00 10.00 34.50
DS 2 500 0.34 102.56 18.25 33.09
DS 3 500 0.34 102.65 11.33 32.87
DS 4 500 0.34 102.36 17.96 30.85
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Figure 3.12: The percentage of errors for the formulas by Rakha and Zhang [134], by Wardrop

[153], the harmonic mean of the individual speeds, and the convex combination

developed in this chapter for the NGSIM (I-80 freeway) dataset.

vmax,A are given in Table 3.2. From the relative errors shown in Figure 3.12 we see that the
convex combination (3.33) has the best performance.

Next we performed the calculations for estimation of the TSMS for the eight datasets that
are extracted from the Rotterdam-Delft A13 real-life data. The values for L A, hA, TA, vmin,A ,
and vmax,A are given in Table 3.3.

Figure 3.13 demonstrates the relative error of the convex combination, the formulas by
Rakha and Zhang [134] and by Wardrop [153], and the harmonic mean of the speeds with re-
spect to the real TSMS for the Rotterdam Delft A13 real-life dataset. From Figure 3.13 for most
datasets the convex combination shows the best performance. Among the datasets, only for
DS 9 and DS 10 the harmonic mean and the formula by Rakha and Zhang [134] respectively,
produce smaller errors.
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Table 3.3: The values of the traffic parameters for the Rotterdam-Delft (A13 freeway) dataset.

Dataset L A(m) hA (s) TA (min) vmin,A ( m
s ) vmax,A ( m

s )

DS 5 300 0.81 183.00 6.82 38.94
DS 6 300 1.07 204.00 12.24 35.30
DS 7 300 1.01 220.00 13.33 34.24
DS 8 300 0.87 192.00 10.30 35.15
DS 9 300 0.92 213.00 12.42 39.55
DS 10 300 0.99 192.00 12.88 35.15
DS 11 300 0.93 387.00 6.81 38.94
DS 12 300 1.94 400.00 13.63 40.60
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Figure 3.13: The percentage of errors for the formulas by Rakha and Zhang [134], by Wardrop

[153], the harmonic mean of the individual speeds, and the convex combination

developed in this chapter for the Rotterdam-Delft (A13 highway) dataset.

3.4.2 MATLAB simulations

In this section we present some simulations using MATLAB in order to consider the scenarios
that are not covered by the real-life datasets given in Section 3.4.1. Using MATLAB simulations
we can repeat the experiments for different ranges of hA, vmin,A , and vmax,A as many times
as is desired, and construct the boxplots of the errors being produced by different averaging
formulas. Such a boxplot shows the shape of the distribution of the errors, its central value,
and variability. The produced picture consists of the most extreme values in the dataset, the
lower and upper quartiles, and the median.
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Table 3.4: Classification of speed ranges for flow scenarios.

Traffic scenario Range of speed ( m
s )

Over-saturated (Breakdown) < 15.5
Queue discharge 15.5−25.0
Under-saturated (Free flow) ≥ 25.0

Table 3.5: The values of the traffic variables for different traffic scenarios.

Scenario L A(m) hA (s) TA (min) vmin,A ( m
s ) vmax,A ( m

s )

Over-saturated 500 2.0 5 2.0 15.5
Queue discharge 500 1.0 5 15.5 25.0
Under-saturated 500 0.5 5 25.0 40.0

We produce the set of individual speeds using a normal1 distribution. In order to pro-
duce the individual speeds, we applied the standard deviations given by Huey et al. [61].
To find the real TSMS using (2.6), the trajectories of the vehicles are assumed to be straight
lines, an assumption which is confirmed by the trajectories obtained from the NGSIM and
the Rotterdam-Delft data. Since we consider loop detectors, we use L A = 500 m, which is the
prevalent distance between two consecutive loop detectors in most parts of Europe, and also
in many areas of the US.

We consider each of the scenarios given in Table 3.4, which is based on [57]. For the mean
time headway of the vehicles, hA, we can apply the results provided by Zou et al. [163] and
Brackstone et al. [19], where the correlation between the speed and the time headway is stud-
ied. Based on the results of these papers, we have selected hA for each scenario as is shown in
Table 3.5.

The results for MATLAB simulations are given in Figure 3.14. From this figure we see that
in general the errors by all formulas reduce when the flow scenario changes from the over-
saturated to the under-saturated case. In all cases the convex combination shows the best
performance. The difference in the performance is more highlighted for the over-saturated
case where the best formula is clearly the convex combination. In Figure 3.14(c) the errors for
the convex combination and the harmonic mean are negligible.

3.5 Conclusions and future work

We have developed tight upper and lower bounds for the TSMS, which is an equivalent for
the generalized average speed defined by Edie [43], using microscopic traffic point measure-
ments. Then we have introduced a convex combination of the upper and lower bounds such
that an appropriate estimate of the time-space-mean speed is obtained.

1According to May [111] one of the most commonly used mathematical distributions for representing the
measured speed values is the normal distribution.
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Figure 3.14: The box plots for the percentage of errors for the formulas by Wardrop [153], and

by Rakha and Zhang [134], the harmonic mean of the individual speeds, and the

convex combination developed in this chapter for MATLAB simulations, for N =

500 tests for the over-saturated (top figure), queue discharge (middle figure), and

under-saturated (bottom figure) scenarios.
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In order to assess and to compare performance of the different formulas, we have applied
real-life traffic datasets, the NGSIM dataset for the I-80 freeway (US) and the Rotterdam-Delft
dataset for the A13 freeway (The Netherlands). We have also included a limited number of
MATLAB simulations to consider some of the traffic scenarios that are not covered by the
real-life datasets. This way the three scenarios under-saturated, queue discharge, and over-
saturated flow are covered. The results from both the real-life data and from the MATLAB
simulations show that the values produced by the new formula give better estimates of the
TSMS compared with the formulas by Wardrop [153] and by Rakha and Zhang [134], and the
pure harmonic mean of the individual speeds.

For future work, the approach proposed in this chapter can be expanded such that the
trajectories of the vehicles are approximated in a more accurate way, and not by straight lines
only. A car-following model together with a lane-changing model may help us to approximate
these trajectories in a more accurate way.



Chapter 4

Sequential estimation algorithm for

estimating generalized fundamental traffic

variables

4.1 Introduction

This chapter proposes a new efficient sequential algorithm for estimating the generalized
traffic variables, including the generalized average speed or the TSMS, using point measure-
ments. The algorithm takes into account those vehicles that stay in between two consecu-
tive measurement points for more than one sampling cycle and that are not detected in the
meantime. The relative position of these vehicles w.r.t. the beginning point of the sampling
road section is computed and stored by the algorithm to be used as initial conditions for the
next sampling cycle. Consequently, we distinguish two main groups of vehicles per sampling
cycle: those vehicles that are detected at the beginning of the sampling road section within
the current sampling cycle are put in group 1, and those vehicles that have already been on
the sampling road section and their relative position is now used as an initial condition by
the sequential algorithm, are stored in group 2. The algorithm is introduced for single-lane
roads first, and then is extended to multi-lane roads. The sequential algorithm is developed
based on the assumption that vehicles will keep their original speed (i.e., the speed that has
been detected by the loop detector at the beginning of the sampling road section) while they
have not reached the next loop detector. Then the speed would immediately change to that
detected by the next loop detector.

In order to extend the sequential algorithm, and to make a more realistic and smooth tra-
jectory for each vehicle within the time-space plane that does not show sudden changes, in
Section 4.4 we use Newell’s car-following model to propose an approach for approximating
the trajectory of each vehicle in between two successive measurement points. In this section,
we briefly explain the main idea behind our proposed approach. The formulas for estimation
of the generalized fundamental traffic variables can then be developed using the same trend
and logic as in the previous sections. The proposed approach is inspired by the one given by
Coifman [31]. The main advantage of the proposed method is that the trajectory of the lead-

53
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ing vehicle can be estimated without any need to capture measurements from the following
vehicle at some time into the future. We propose a model for the movement of the leading
vehicle of a traffic stream that is based on the assumption that the leading vehicle intends to
reach the free-flow speed as soon as possible. Then, we just need to know the initial speed of
the leading vehicle in a sampling cycle in order to approximate its trajectory, where this initial
speed is either measured at a measurement point, or is computed by the proposed sequen-
tial algorithm in case the leading vehicle is located in between two consecutive measurement
points at the beginning of the sampling time. The trajectories of the following vehicles are
then found using Newell’s car-following model. Hence, the trajectory of a leading vehicle
is extracted independently from that of the following vehicle, and this makes our proposed
methodology suitable for online applications.

For evaluation of the proposed sequential algorithm, the NGSIM dataset, which provides
detailed information on trajectories of the vehicles on a segment of the interstate freeway
I-80 in San Francisco, California has been used. The simulation results illustrate the excel-
lent performance of the sequential procedure for estimating the generalized traffic variables
compared with previous approaches. The sequential algorithm proposed in this chapter is
suitable for upgrading or reprogramming the inductive loop detectors for a more accurate
estimation of the generalized fundamental traffic variables.

Contributions and organization of the chapter

The main contributions of this chapter include the following topics:

1. We propose a new efficient method for estimation of the generalized fundamental traf-
fic variables from point measurements. The proposed approach is suitable especially
for cases where there is missing, disrupted, or limited information about the vehicles in
between two consecutive measurement points.

2. We propose two methods to deal with the missing or disrupted information in between
two measurement points. For the two methods, vehicles in between two consecutive
measurement points follow two paradigms: constant speed and non-constant speed.
The non-constant speed case is inspired by the approach proposed by Coifman [31],
but we have changed the method so that it does not need the future information of a
leading vehicle to produce the approximate trajectory of the following vehicle at the
current time instant. Therefore, our approach can also be used for estimation of the
trajectory of vehicles in between two consecutive measurement points in real time.

3. We develop a new sequential algorithm that takes into account those vehicles on the
sampling road section that are not detected by the loop detector at the beginning of the
road section during the current sampling cycle. These are vehicles that are already on
the sampling road section at the beginning of the current sampling cycle. The proposed
sequential algorithm keeps track of the detected vehicles from the time instant they
are observed at one measurement point, until they reach the next measurement point.
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Figure 4.1: Road map of Chapter 4.

Hence, compared with previous work that does not take these vehicles into account,
our new approach can produce more accurate results.

4. We show via real-life NGSIM data (captured on a segment of the interstate freeway I-80
in San Francisco, California, US) that the proposed approach produces more accurate
results compared with the available approaches.

The rest of the chapter is organized as follows. In Section 4.2 we propose a representation
of the sampling road section for which we want to find the fundamental traffic variables, in
the time-space plane. We also introduce the concept of sampling window, which is a rectan-
gular time-space area representing the road section within a specific time interval. Section 4.3
introduces the new sequential algorithm that keeps track of the vehicles that are detected by
inductive loop detectors, and produces the generalized density, flow, and average speed of
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vehicles. In Section 4.3.1 first the algorithm is developed for single-lane roads assuming a
constant speed and hence a linear trajectory for all the vehicles in between of two consec-
utive loop detectors. Next, in Section 4.3.2 the algorithm is extended to multi-lane roads.
Section 4.4 explains how to find approximate trajectories of the vehicles that are traveling on
a sampling road section in between of two successive loop detectors relaxing the assumption
of having linear trajectories, i.e., in this section the possible accelerating and decelerating be-
haviors of the vehicles are also considered. In Section 4.5 we present the results of a case study
using NGSIM data in order to assess the efficiency of the proposed sequential algorithm com-
pared with formulas available in the literature. Finally, the chapter is concluded in Section 4.6
and suggestions for future work are proposed. A road map of the chapter is illustrated in Fig-
ure 4.1. In addition to that, Table 4.1 presents the frequently used mathematical notations
used within the chapter.

This chapter of the thesis is based on [64, 65].

4.2 Sampling of road sections in the time-space plane

Consider a single-lane road of length Lroad with nloop loop detectors D j , j ∈ {1,2, . . . ,nloop} in-
stalled at positions x j w.r.t. the beginning point of the road. We assume that the first loop
detector D1 is located at the beginning point of the road, and that the endpoint of the road
has the position xendpoint. This road will be processed within the time interval

[

t̄ initial, t̄ final
]

of length T road, i.e., the fundamental traffic variables in between each two consecutive loop
detectors are determined for the sampling cycles in between t̄ initial and t̄ final. Suppose that for
j ∈ {1,2, . . . ,nloop}, loop detector D j has a sampling cycle T j , where the time interval

[

t̄ initial, t̄ final
]

includes n
cyc
j

sampling cycles of this loop detector. The section of the road of length L j and
beginning at x j (i.e., D j is installed at the beginning of the road section) is called a sampling

road section, which is indexed by j . We first explain how to illustrate a sampling road section
by a sampling window within the time-space plane (note that since our focus is on the com-
putation of the generalized fundamental traffic variables and these variables are temporal-
spatial ones, we should first map the problem into the time-space plane).

To present and process traffic data, trajectories of the vehicles can be plotted in the time-
space plane [149], where the processing time is shown on the horizontal axis, and the pro-
cessed length of the road is shown on the vertical axis (see Figure 4.2). The representation of
the road of length Lroad in the time-space plane (see the main frame in Figure 4.2) is a rect-
angular frame of length Lroad (in between x1 and xendpoint along the space axis) and of width
T road (in between t̄ initial and t̄ final along the time axis). Note that for the single-lane road, the
space axis is along the direction of movement of the vehicles. Then sampling road section
j , j ∈ {1, . . . ,nloop} in the time-space plane is illustrated by a window of length L j (in between
x j and x j+1 along the space axis) and of width T j (in between t̄i−1, j and t̄i , j along the time
axis) called a sampling window that is indexed by the time step counter i and by index j of
the loop detector located at its beginning point. Figure 4.2 illustrates the time-space sampling
windows with a length of L j and a width of T j for j ∈ {1, . . . ,nloop} corresponding to the road.
For a sampling window wi , j , with j ∈ {1, 2, . . . ,nloop} and i ∈ {1, 2, . . . , n

cyc
j

}, the right, left, top,
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and bottom edges of the sampling window are denoted by, respectively, E|i , j , |Ei , j , E i , j , and
E i , j (see Figure 4.2). The trajectories of those vehicles that are observed by loop detector D j

during the current sampling cycle will intersect the lower edge E i , j of the sampling window.
Next it should be checked whether any of the trajectories of the vehicles observed within

the area of wi , j enter wi , j via the left-hand edge |Ei , j of the window. The vehicles that corre-
spond to these trajectories will spend some time on the sampling road section j and therefore,
will affect the average speed and the average density of the sampling window wi , j . However,
since they will not pass through the detection zone of loop detector D j within the current
sampling cycle, they will not be detected. Therefore, we should keep track of them from the
previous cycle(s), and then use their speed and location at t̄i−1, j as the initial conditions for
the current sampling cycle.

The main question here is whether we need to check all previous windows wa,b , for a =

1, 2, . . . , i −1 and b = 1, 2, . . . , j to process wi , j , or whether it is possible to reduce the effort.
Considering the rectangles in the same row of the grid shown in Figure 4.2 (e.g., the grey win-
dows for processing wi , j ) will be sufficient, because the trajectories of all vehicles that enter
wi , j and have previously traveled in the sampling windows located in lower rows of the grid
(i.e., with xb < x j ), should definitely cross the line x = x j before they enter wi , j and hence they
will once be observed by loop detector D j . However, the vehicles that are located at position
xc at t̄i , j with x j < xc < x j+1, i.e., vehicles that were (partly) traveling in the same road section
during the previous cycle, will not be detected by the upstream loop detector. To keep track of
these vehicles, we should consider the sampling window located in the left-hand side of wi , j

in the same row, i.e., wi−1, j (see Figure 4.2); and similarly for wi−1, j we should keep track of the
information in the sampling window wi−2, j , and so on. Consequently, we consider separate
time indicators t̄i , j , i ∈ {1, . . . ,n

cyc
j

} for each row of the sampling windows in Figure 4.2.
Note that in this chapter, we define four groups of vehicles for every sampling window

wi , j : G1,i , j , G2,i , j , G3,i , j , and G4,i , j referring to, respectively, the group of vehicles that enter the
sampling road section j during cycle i , the group of vehicles that are already in the sampling
road section j at the beginning of cycle i , the group of vehicles that leave the sampling road
section by the end of cycle i , and the group of vehicles that will stay on the sampling road
section at the end of cycle i .

4.3 A sequential algorithm for point measurements to keep

track of all vehicles

4.3.1 Single-lane roads

All discussions presented in this section are based on the following assumptions:

Assumption 1. The first loop detector on the processed road is located at the beginning point
of the road.

Assumption 2. The road is considered to have only a single lane (this assumption will later
on be relaxed in Section 4.3.2).
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Figure 4.2: The time-space plot for the sampling road sections on a road of length Lroad being

processed during a total time of T road using data from inductive loop detectors.

Assumption 3. All vehicles travel with a constant speed (reported by the upstream loop de-
tector) on each sampling road section, until a new speed value is detected for them by
the downstream loop detector (this assumption will be relaxed later on in Section 4.4).

For the work presented in this chapter, the assumption of stationary traffic conditions is not
required.

Figure 4.3(a) illustrates three sampling windows wi−1, j , wi , j , and wi+1, j in the time-space
plane that represent sampling road section j during three successive sampling cycles of length
T j starting at t̄i−2, j , t̄i−1, j , and t̄i , j . Figure 4.3(b) illustrates wi , j and different groups of vehi-
cles that are observed in this window. Note that for each sampling road section j , each vehicle
is indicated by a pair1 (c, ιc ). The first index c denotes the number of the vehicle in the set of
vehicles that are detected by the loop detector at the beginning of the sampling road section.
The vehicle keeps this index until it leaves the sampling road section, and it reaches the next
loop detector on the road. By using the index c only, a vehicle is not completely distinguished
from the rest of the vehicles. Hence, the second index ιc is also kept for the vehicle, which in-
dicates the number of the sampling cycle at which the vehicle has entered the sampling road
section. The pair of indices corresponding to those vehicles for which the trajectories pass

1Since the proposed sequential algorithm computes the fundamental traffic variables on a particular sam-
pling road section j , for the sake of simplicity in the notations, we have used c instead of c j . Note that c may
vary on different sampling road sections.
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(a) Successive sampling cycles (with (c̄ , i −1) ∈G1,i−1, j and (c̄, i −1) ∈G2,i , j and (c̄ , i −1) ∈G2,i+1, j ).
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(b) Sampling window wi , j and different groups of vehicles observed (with (c, i ) ∈G1,i , j and (c̄ , i −1) ∈G2,i , j ).

Figure 4.3: Sampling windows corresponding to the same road section during successive sam-

pling cycles.

through E i , j are stored in G1,i , j , and the pair of indices corresponding to those vehicles for
which the trajectories intersect |Ei , j are stored in G2,i , j . From Figure 4.3(a), for any vehicle
(c, i ) ∈G1,i , j in the sampling window wi , j , we obtain

Case 1. If send
(c,i ),1,i , j

≥ L j , then the vehicle leaves wi , j through its upper edge and will not
enter wi+1, j . Indices of those vehicles in G1,i , j that satisfy this condition are stored in

subgroup G (1)
1,i , j

of G1,i , j .

Case 2. If send
(c,i ),1,i , j

< L j , then the vehicle leaves wi , j through its right-hand edge, and
enters wi+1, j through its left-hand edge. Indices of those vehicles that satisfy this con-
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dition are stored in subgroup G (2)
1,i , j

of G1,i , j .

Similarly, for any vehicle (c̄ , ῑ) ∈ G2,i , j in the sampling window wi , j , where ῑ ∈ {1, . . . , i −1},
we have

Case 3. If send
(c̄ ,ῑ),2,i , j

≥ L j , then the vehicle leaves wi , j through its upper edge and will not
enter wi+1, j . Indices of those vehicles in G2,i , j that satisfy this condition are stored in

subgroup G (1)
2,i , j

of G2,i , j .

Case 4. If send
(c̄ ,ῑ),2,i , j

< L j , then the vehicle leaves wi , j through its right-hand edge, and
enters wi+1, j through its left-hand edge. Indices of those vehicles that satisfy this con-

dition are stored in subgroup G (2)
2,i , j

of G2,i , j .

Therefore, G (1)
1,i , j

and G (1)
2,i , j

will not play any role in the sampling window wi+1, j , while G (2)
1,i , j

and G (2)
2,i , j

will form a set indicated by G0,i , j (the index zero is chosen to show that the end
position of those vehicles for which the indices are stored in set G0,i , j will be used as the initial
conditions for the next sampling cycle). The set G0,i , j is indeed the same as the set G2,i+1, j ,
which will be used in the sampling window wi+1, j .

From Figure 4.3(b), the total travel time of a vehicle (c, i ) ∈ G1,i , j within one cycle time is
obtained by

t(c,i ),1,i , j = T j + t̄i−1, j −θc,i , j . (4.1)

The total traveled distance by vehicle (c, i ) during one sampling cycle equals

d(c,i ),1,i , j = v(c,i ),1,i , j · t(c,i ),1,i , j , (4.2)

and for the relative position of (c, i ) at t̄i−1, j and at t̄i , j w.r.t. x = x j ,

sstart
(c,i ),1,i , j = 0, (4.3)

send
(c,i ),1,i , j = d(c,i ),1,i , j . (4.4)

The total travel time of a vehicle (c̄ , ῑ) ∈G2,i , j during one sampling cycle is given by

t(c̄ ,ῑ),2,i , j = T j . (4.5)

The total distance traveled by vehicle (c̄, ῑ) during one sampling cycle is computed by

d(c̄ ,ῑ),2,i , j = v(c̄ ,ῑ),2,i , j · t(c̄ ,ῑ),2,i , j , (4.6)

in which
v(c̄ ,ῑ),2,i , j = v(c̄ ,ῑ),g(c̄ ,ῑ),2,i−1, j ,i−1, j , (4.7)

where g(c̄ ,ῑ),2,i−1, j ∈ {1,2} denotes the group that vehicle (c̄, ῑ) ∈ G2,i , j belongs to for that piece
of its trajectory that is located within the sampling window wi−1, j . Note that g(c̄ ,ῑ),2,i−1, j = 1, if
i − ῑ = 1, and g(c̄,ῑ),2,i−1, j = 2, if i − ῑ > 1. Hence the start and the end positions of vehicle (c̄ , ῑ)
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are obtained by

sstart
(c̄ ,ῑ),2,i , j = send

(c̄ ,ῑ),g(c̄ ,ῑ),2,i−1, j ,i−1, j , (4.8)

send
(c̄ ,ῑ),2,i , j = d(c̄ ,ῑ),2,i , j + sstart

(c̄ ,ῑ),2,i , j . (4.9)

The new procedure sequentially uses (4.1)-(4.9), and computes the generalized average
speed, the generalized flow, and the generalized density using the following equations:

ρi , j =
1

Ai , j

(

∑

(c,i )∈G1,i , j

min

{

t(c,i )),1,i , j ,
L j

v(c,i ),1,i , j

}

+
∑

(c̄,ῑ)∈G2,i , j

min

{

t(c̄ ,ῑ),2,i , j ,
L j − sstart

(c̄,ῑ),2,i , j

v(c̄ ,ῑ),2,i , j

})

,

(4.10)

qi , j =
1

Ai , j

(
∑

(c,i )∈G1,i , j

min
{

d(c,i ),1,i , j ,L j

}

+
∑

(c̄ ,ῑ)∈G2,i , j

min
{

d(c̄ ,ῑ),2,i , j ,L j − sstart
(c̄ ,ῑ),2,i , j

}
)

, (4.11)

v̄i , j =
ρi , j

qi , j
. (4.12)

Algorithm 4.1 on page 62 represents the sequential algorithm proposed for a single-lane road.
The total number of operations that the sequential algorithm involves can be determined as
follows. Suppose that for a specific loop detector, within one sampling cycle, n vehicles are
observed in total. Then, for Algorithm 4.1, the total number of multiplications is 3(n +1) and
the total number of additions is less than 3.5n, where the total number of additions depends
on the number of vehicles that are in either of groups 1 and 2 introduced in Section 4.2. Note
that 3.5n is the maximum possible number of the additions and is reached for the case where
there are the same number of vehicles in groups 1 and 2.

4.3.2 Multi-lane roads

In Section 4.3.1, we considered a single-lane road (see Assumption 2 of Section 4.3.1). Here we
will relax this assumption by considering a multi-lane road and by extending the sequential
procedure to a multi-lane road case (in order to avoid making the derived equations too com-
plicated by involving a lane-changing model, here we assume that there are no lane changes).

Suppose that the road has N lane lanes; we consider the sampling road section j that is ex-
tended between two consecutive loop detectors D j and D j+1. Suppose that during

[

t̄i−1, j , t̄i , j

]

,
N1,i , j vehicles have entered the sampling road section (through all N lane lanes) at time in-
stants θ1,i , j ,θ2,i , j , . . . ,θN1,i , j ,i , j , where the values of θc,i , j for (c, i ) ∈ G1,i , j are not necessarily
distinct, i.e., it is possible to have two vehicles entering the sampling road section j at the
same time instant via different lanes. Define v(c,i ),1,i , j ,ℓ as the speed of the cth vehicle that
enters the sampling road section j at time instant θc,i , j via lane ℓ, where ℓ ∈ {1, . . . , N lane}.

Now we can correspond to each lane of the sampling road section in the time-space plane
a sampling window wi , j ,ℓ, which indicates the sampling window corresponding to the ℓth

lane of the sampling road section j during the time interval
[

t̄i−1, j , t̄i , j

]

. Figure 4.4 illustrates
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Algorithm 4.1 Computation of the fundamental traffic variables on the single-lane road sec-
tion j , j ∈ {1,2, . . . ,nloop}.

1: Input:







Lroad, T road, L j , T j

vc1,1,i , j , θc1,i , j , t̄i−1, j ∀c1 ∈ {1, . . . , N1,i , j }, ∀i ∈ {1 . . . ,n
cyc
j

}, n
cyc
j

=

⌊
T road

T j

⌋

vc2,2,0, j ∀c2 ∈ {1, . . . , N2,0, j }

2: Output: ρi , j , qi , j , v̄i , j

3: for i = 1 to n
cyc
j

do

4: for c1 = 1 to N1,i , j do

5: compute tc1,1,i , j from (4.1),
6: compute dc1,1,i , j from (4.2),
7: compute send

c,1,i , j
from (4.4),

8: use Case 1 and Case 2 to construct G (1)
1,i , j

and G (2)
1,i , j

,

9: v
c
′′

2 ,2,i+1, j
← vc1,1,i , j {Where c

′′

2 is the index of vehicle c1 in G2,i+1, j }

10: end for

11: for c2 = 1 to N2,i , j do

12: compute tc2,2,i , j from (4.5),
13: compute dc2,2,i , j from (4.6),
14: compute send

c,2,i , j
from (4.9),

15: use Case 3 and C4 to construct G (1)
2,i , j

and G (2)
2,i , j

,

16: v
c
′′

2 ,2,i+1, j
← vc2,2,i , j , {Where c

′′

2 is the index of vehicle c2 in G2,i+1, j }

17: sstart
c,2,i+1, j

← send
c,2,i , j

18: end for

19: G2,i+1, j ←G (2)
1,i , j

⋃
G (2)

2,i , j

20: compute ρi , j from (4.10),
21: compute qi , j from (4.11),
22: compute v̄i , j from (4.12)

23: end for
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Figure 4.4: Time-space plots for a multi-lane road.
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such sampling windows. Suppose that the set of all distinct time instants in the time-space
plane for all sampling windows wi , j ,ℓ, has N d

1,i , j
elements (N d

1,i , j
≤ N1,i , j ). Then v(c,i ),1,i , j ,ℓ

for (c, i ) ∈ G1,i , j ,ℓ will be substituted by either the observed speed on lane ℓ at time instant
θc,i , j , or by zero if no vehicles have been observed (i.e., we consider a virtual vehicle with zero
speed in this case). This way we can summarize all the data corresponding to the sampling
road section in a matrix of dimension N lane ×N d

1,i , j
as follows (see also Figure 4.4):

V1,i , j =












v(1,i ),1,i , j ,1 v(2,i ),1,i , j ,1 v(3,i ),1,i , j ,1 0 . . . 0 v(Nd
1,i , j

,i ),1,i , j ,1

0 0 v(3,i ),1,i , j ,2 v(4,i ),1,i , j ,2 . . . 0 0
...

...
...

... . . .
...

...
...

...
...

... . . .
...

...
0 0 0 v(4,i ),1,i , j ,N lane . . . v(Nd

1,i , j
−1,i ),1,i , j ,N lane 0













.

(4.13)
The parameters θ(1,i ), j , θ(2,i ), j , . . . , θ(Nd

1,i , j
,i ), j are the time instants at which each of the vehicles

(real or virtual) is positioned at x j . We use an N d
1,i , j

×N d
1,i , j

matrix defined by

Θ1,i , j =












θ(1,i ), j 0 0 · · · 0
0 θ(2,i ), j 0 · · · 0
...

...
... · · ·

...
...

...
... · · ·

...
0 0 0 · · · θ(Nd

1,i , j
,i ), j












. (4.14)

We have

t(c,i ),1,i , j ,ℓ =
(

T j + t̄i−1, j −θ(c,i ), j

)

·sign
(

v(c,i ),1,i , j ,ℓ
)

, (4.15)

d(c,i ),1,i , j ,ℓ = v(c,i ),1,i , j ,ℓ · t(c,i ),1,i , j ,ℓ , (4.16)

sstart
(c,i ),1,i , j ,ℓ = 0, (4.17)

send
(c,i ),1,i , j ,ℓ = d(c,i ),1,i , j ,ℓ, (4.18)

where i ∈ {1, . . . ,n
cyc
j

}, j ∈ {1, . . . ,nloop}, (c, i ) ∈ G1,i , j ,ℓ, ℓ ∈ {1, . . . , N lane}, and for all ℓ we have

G1,i , j ,ℓ = {1, . . . , N d
1,i , j

}. Finally, we obtain the following equation for all those vehicles that are
in G1,i , j =

⋃

ℓ∈{1,...,N lane}
G1,i , j ,ℓ:

T1,i , j = sign
(

V1,i , j

)

·

(
(

T j + t̄i−1, j

)

· INd
1,i , j

×Nd
1,i , j

−Θ1,i , j

)

, (4.19)

D1,i , j =V1,i , j ·

(
(

T j + t̄i−1, j

)

· INd
1,i , j

×Nd
1,i , j

−Θ1,i , j

)

, (4.20)

Sstart
1,i , j = 0, (4.21)
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Send
1,i , j = D1,i , j , (4.22)

where sign(·) operates element-wise on a matrix, and produces a matrix with the same di-
mension as the input matrix, i.e., if S = sign(A) with A an m×n matrix, then S is also an m×n

matrix with si j = sign
(

ai j

)

. Moreover, T1,i , j , D1,i , j , Sstart
1,i , j

, and Send
1,i , j

are matrices of dimension

N lane ×N d
1,i , j

.

For the second group G2,i , j =
⋃

ℓ∈{1,...,N lane}
G2,i , j ,ℓ of vehicles that have entered the sampling

road section within previous cycles, and their trajectories intersect the left-hand side edge of
the sampling windows, V2,i , j will again be a matrix of the following form (where ῑ ∈ {1, . . . , i −

1}):

V2,i , j =











v(c̄11,ῑ11),2,i , j ,1 v(c̄12,ῑ12),2,i , j ,1 . . . v(c̄
1N d

2,i , j
,ῑ

1N d
2,i , j

),2,i , j ,1

v(c̄21,ῑ21),2,i , j ,2 v(c̄22,ῑ22),2,i , j ,2 . . . v(c̄
2N d

2,i , j
,ῑ

2N d
2,i , j

),2,i , j ,2

...
... . . .

...
...

v(c̄
N lane1,ῑ

N lane1),2,i , j ,N lane v(c̄
N lane2,ῑ

N lane2),2,i , j ,N lane . . . v(c̄
N laneN d

2,i , j
,ῑ

N laneN d
2,i , j

),2,i , j ,N lane












,

(4.23)
which is of dimension N lane ×N d

2,i , j
, with N d

2,i , j
= max

ℓ∈{1,...,N lane}

{

N2,i , j ,ℓ
}

. Note that N2,i , j ,ℓ is the

number of vehicles in G2,i , j ,ℓ, i.e., the number of vehicles within group 2 for the sampling
window wi , j that are traveling on lane ℓ. In order to construct the matrix V2,i , j , we start by
filling the matrix from the first element of each row ℓ and put the speed of the vehicles (the
order does not matter) belonging to group 2 of the sampling window wi , j one by one at the
columns. If at any moment, the number of columns is more than the number of vehicles,
we put zero in that column. Then, we correspond to each vehicle (c̄, ῑ) moving on lane ℓ, a
value kc̄ ,ῑ,ℓ, which shows the number of column of V2,i , j at which the speed of this vehicle is
stored. Moreover, for all ℓ we have G2,i , j ,ℓ = {1, . . . , N d

2,i , j
}. For lanes with N2,i , j ,ℓ < N d

2,i , j
, the

corresponding elements of V2,i , j on columns N2,i , j ,ℓ+1 are set to zero. We obtain

t(c̄ ,ῑ),2,i , j ,ℓ = T j ·sign
(

v(c̄ ,ῑ),2,i , j ,ℓ
)

, (4.24)

d(c̄,ῑ),2,i , j ,ℓ = v(c̄ ,ῑ),2,i , j ,ℓ · t(c̄,ῑ),2,i , j ,ℓ, (4.25)

sstart
(c̄ ,ῑ),2,i , j ,ℓ = send

(c̄,ῑ),g(c̄ ,ῑ),2,i−1, j ,ℓ,i−1, j ,ℓ, (4.26)

send
(c̄ ,ῑ),2,i , j ,ℓ = d(c̄ ,ῑ),2,i , j ,ℓ+ sstart

(c̄ ,ῑ),2,i , j ,ℓ, (4.27)

where g(c̄,ῑ),2,i−1, j ,ℓ ∈ {1,2} is the group that vehicle (c̄, ῑ) ∈G2,i , j ,ℓ belongs to for that piece of its
trajectory that is located within the sampling window wi−1, j ,ℓ. Hence,

T2,i , j = sign
(

V2,i , j

)

·T j , (4.28)

D2,i , j = T j ·V2,i , j , (4.29)

Sstart
2,i , j = Send

0,i−1, j , (4.30)
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Send
2,i , j = D2,i , j +Sstart

2,i , j , (4.31)

with T2,i , j , D2,i , j , Sstart
2,i , j

, and Send
2,i , j

matrices of dimension N lane × N d
2,i , j

, and Send
0,i−1, j

a matrix
that includes all the end positions of those vehicles that their indices belong to G0,i−1, j .

In order to find the generalized density, flow, and average speed for each lane separately,
we can write

ρi , j ,ℓ =
1

Ai , j

(
∑

(c,i )∈G1,i , j ,ℓ

min

{
(

T1,i , j

)

ℓ,c ,
L j

v(c,i ),1,i , j ,ℓ

}

+

∑

(c̄,ῑ)∈G2,i , j ,ℓ

min

{

(

T2,i , j

)

ℓ,kc̄ ,ῑ,ℓ
,

L j − sstart
(c̄ ,ῑ),2,i , j ,ℓ

v(c̄ ,ῑ),2,i , j ,ℓ

})

,

(4.32)

qi , j ,ℓ =
1

Ai , j

(
∑

(c,i )∈G1,i , j ,ℓ

min
{(

D1,i , j

)

ℓ,c ,L j

}

+

∑

(c̄ ,ῑ)∈G2,i , j ,ℓ

min
{(

D2,i , j

)

ℓ,kc̄ ,ῑ,ℓ
,L j − sstart

(c̄,ῑ),2,i , j ,ℓ

})

,

(4.33)

v̄i , j ,ℓ =
ρi , j ,ℓ

qi , j ,ℓ
, (4.34)

where Xa,b indicates the element at row a and column b of the matrix X . Finally, to find the
generalized traffic variables for the lane altogether, we have

ρi , j =
1

Ai , j

N lane
∑

ℓ=1

ρi , j ,ℓ, (4.35)

qi , j =
1

Ai , j

N lane
∑

ℓ=1

qi , j ,ℓ, (4.36)

v̄i , j =
ρi , j

qi , j
. (4.37)

Algorithm 4.1 can easily be extended for the multi-lane road using the introduced matrices.

4.4 Approximate trajectories of vehicles based on Newell’s car-

following model

4.4.1 Leading and following vehicles

In the previous sections, we have considered that each vehicle will move with a constant speed
in the sampling window wi , j (see Assumption 3 of Section 4.3.1), i.e., for (c, i ) ∈G1,i , j and for
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Figure 4.5: Trajectory of a following vehicle with respect to the leading vehicle according to

Newell’s car-following model.

(c̄ , ῑ) ∈G2,i , j , we have

∀t̄ ∈
[

t̄i−1, j , t̄i , j

]

,
v(c,i ),1,i , j (t̄ ) = v(c,i ),1,i , j

(

θ(c,i ), j

)

,
v(c̄ ,ῑ),2,i , j (t̄ ) = v(c̄ ,ῑ),2,i , j (t̄i−1, j ).

However, this assumption could result in some issues, e.g., intersecting trajectories, which
is not realistic, especially for a single-lane road. Moreover, with the assumption of constant
speeds in between loop detectors D j and D j+1, there might be a large difference between
the estimated time-mean speed of the vehicles at position x j+1 and the reported value of the
time-mean speed at position x j+1. Therefore, using Newell’s car-following model [123], in
this section we will relax the assumption of having a constant speed for each vehicle that
travels in between two consecutive loop detectors. The approach proposed in this section is
inspired by the method given by Coifman [31] (see Chapter 2 for details). The main advantage
of the approach proposed in this section, compared with the approach by Coifman [31], is
that in our approach the trajectory of the leading vehicle is estimated without any need to
capture measurements from the following vehicle at some time into the future. Therefore,
our approach can also be used for real-time estimation of the trajectories for those vehicles
that are in between two consecutive measurement points.

Note that when a group of vehicles move on the same lane of a sampling road section, each
vehicle may act as a leading vehicle for the vehicle (if it exists) that moves behind it. Newell’s
car-following model gives a mathematical relationship between trajectories of a leading ve-
hicle and its following vehicle. In particular, with Newell’s car-following model, we can find
a trajectory for the following vehicle with a piecewise affine behavior. It is assumed that the
following vehicle adapts its speed to the speed of the leading vehicle in the time-space plane
with a time delay (see Figure 4.5). Suppose that the set of all vehicles that act as leading vehicle
within the sampling window wi , j is denoted by Glead,i , j , and the set of all vehicles that act as
following vehicle within the sampling window wi , j is denoted by Gfollow,i , j (note that a vehicle
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may appear in both sets for the sampling window wi , j , i.e., a vehicle that is a following vehicle
for the vehicle in front of it, might act as a leading vehicle for the vehicle behind it). Newell
proposes that the trajectory s lead

(cl,ιl),i , j
of a leading vehicle (cl, ιl) ∈Glead,i , j in the sampling win-

dow wi , j and the trajectory sfollow
(cf,ιf),i , j

of its following vehicle (cf, ιf) ∈ Gfollow,i , j are always at a
temporal distance of τ(cf,ιf),i , j and a spatial distance of δ(cf,ιf),i , j from each other in the time-
space plane. Hence, assuming that vehicle (cf, ιf) acts as a following vehicle for vehicle (cl, ιl)
within the sampling window wi , j , mathematically speaking we can write

sfollow
(cf,ιf),i , j (t̄ ) = s lead

(cl,ιl),i , j (t̄ −τ(cf,ιf),i , j )−δ(cf,ιf),i , j , t̄ ∈
[

t̄i−1, j , t̄i , j

]

. (4.38)

The parameters δ(cf,ιf),i , j and τ(cf,ιf),i , j may vary from driver to driver, as a result of different
driving behaviors, and from one sampling window to another one, considering different traf-
fic regimes. For example, the driver of vehicle (cf, ιf) chooses the spatial distance δ(cf,ιf),i , j

based on her/his feeling of the safe distance from the front vehicle on the road. Additionally,
τ(cf,ιf),i , j is the time delay of the driver of vehicle (cf, ιf) in responding to external stimuli. For
the sake of simplicity, we consider the same values for these two parameters for all the follow-
ing vehicles within all the sampling windows2. Hence, we use the average values of δ(cf,ιf),i , j

and τ(cf,ιf),i , j of all the following vehicles (cf, ιf) ∈ Gfollow,i , j across all the sampling windows,
and we denote them with δ̄ and τ̄, respectively. We have

τ̄=
1

∑

j∈{1,...,nloop}

∑

i∈{1,...,ncyc
j

}

(

Ni , j −1
)

∑

j∈{1,...,nloop}

∑

i∈{1,...,n
cyc
j

}

∑

(cf,ιf)∈Gfollow,i , j

τ(cf,ιf),i , j , (4.39)

δ̄=
1

∑

j∈{1,...,nloop}

∑

i∈{1,...,ncyc
j

}

(

Ni , j −1
)

∑

j∈{1,...,nloop}

∑

i∈{1,...,ncyc
j

}

∑

(cf,ιf)∈Gfollow,i , j

δ(cf,ιf),i , j , (4.40)

where Ni , j is the total number of vehicles that corresponds to the sampling window wi , j .

4.4.2 Determination of groups Glead,i , j and Gfollow,i , j

Next we continue with explaining our proposed algorithm for estimation of the trajectories of
the vehicles within one sampling window. In order to determine the two groups Glead,i , j and
Gfollow,i , j for the sampling window wi , j , we first order the values of sstart

(c̄ ,ῑ),2,i , j
for the vehicles

(c̄ , ῑ) ∈G2,i , j in a descending order, and keep the corresponding pair of indices of these vehicles
in an ordered set Oi , j . Next we put the pairs of indices corresponding to those vehicles that
enter the sampling road section during the current sampling cycle in Oi , j , one by one and
based on their order of entrance. Note that in construction of Oi , j , we just consider the relative
position of the vehicles on the road (i.e., whether a vehicle is located behind the other vehicle
or not). For a vehicle (cf, ιf) to act as a following vehicle for vehicle (cl, ιl), it is necessary, but
not sufficient, that it moves behind vehicle (cl, ιl) on the road. Next, we give the additional

2Note however that the proposed approach given in this section, can easily be generalized to a case where
the preferred temporal and spatial distances of drivers are different from each other.
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conditions, which together with the previous condition provide the sufficient conditions for
a vehicle to act as a following vehicle.

The temporal and spatial distance and the relative speed of the two vehicles might dictate
some interaction between the two vehicles. Therefore, the group Gfollow,i , j includes the e th

(e > 1) element of Oi , j , if this element satisfies at least one of the following conditions:

Spatial distance condition: If the spatial distance of two successive vehicles is lower than a
threshold δ̄, then the front vehicle acts as a leading vehicle and the other vehicle acts as
a following vehicle. Mathematically, if the following holds:

sstart
Oi , j (e−1),gOi , j (e−1),i , j ,i , j − sstart

Oi , j (e),gOi , j (e),i , j ,i , j < δ̄,

then the vehicle that corresponds to Oi , j (e) acts as a following vehicle for the vehicle
that corresponds to Oi , j (e−1). Note that gOi , j (e),i , j is the group number (i.e., gOi , j (e),i , j =

1, if Oi , j (e) ∈ G1,i , j and gOi , j (e),i , j = 2, if Oi , j (e) ∈ G2,i , j ) in the sampling window wi , j of

the vehicle that corresponds to the e th element of Oi , j .

Temporal distance condition: If the temporal distance of two successive vehicles is less than
a threshold τ̄, then the front vehicle acts as a leading vehicle and the other vehicle acts
as a following vehicle. Mathematically speaking, if the following condition holds:

θinitial
Oi , j (e),i , j −θinitial

Oi , j (e−1),i , j < τ̄,

where θinitial
Oi , j (e),i , j

= max
{

θOi , j (e),i , j , t̄i−1, j

}

, then the vehicle that corresponds to Oi , j (e)

acts as a following vehicle for the vehicle that corresponds to Oi , j (e −1).

Relative speed condition: Assume that the vehicles corresponding to Oi , j (e) and Oi , j (e −1)
keep on moving with their initial speeds within the sampling window wi , j . If in that
case their trajectories intersect at one point within the sampling window wi , j , then the
vehicle that moves in front should act as a leading vehicle and the other vehicle should
act as a following vehicle. Mathematically, if we have

L j − sstart
Oi , j (e),gOi , j (e),i , j ,i , j

v initial
Oi , j (e),i , j

+θinitial
Oi , j (e),i , j ≤

L j − sstart
Oi , j (e−1),gOi , j (e−1),i , j ,i , j

v initial
Oi , j (e−1),i , j

+θinitial
Oi , j (e−1),i , j ,

where v initial
Oi , j (e),i , j

is the initial speed of the e th element of Oi , j within the sampling win-

dow wi , j , then the vehicle that corresponds to Oi , j (e) acts as a following vehicle for the
vehicle that corresponds to Oi , j (e −1).

Note that for each vehicle corresponding to Oi , j (e) that goes into the group Gfollow,i , j , the
vehicle corresponding to Oi , j (e−1) goes into the group Glead,i , j and acts as the leading vehicle
for Oi , j (e).
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4.4.3 Trajectory approximation

First we consider those vehicles that appear in Glead,i , j , but do not appear in Gfollow,i , j . For
these leading vehicles, we propose the following rules:

• If v initial
(cl,ιl),i , j

= v free
i , j

, where by v free
i , j

we mean the free-flow speed of the vehicles3 on the

sampling road section j during
[

t̄i−1, j , t̄i , j

]

, then the leading vehicle keeps moving for-
ward with v free

i , j
till it leaves the sampling road section j .

• If v initial
(cl,ιl),i , j

< v free
i , j

, then the vehicle accelerates with aacc
cl,ιl , i.e., the maximum possible

acceleration rate for this vehicle, to obtain v free
i , j

. Then it keeps moving forward with

v free
i , j

till it leaves the sampling road section j .

A following vehicle (cf, ιf) may face three different situations w.r.t. its leading vehicle (cl, ιl),
i.e.,

Situation 1: The leading and the following vehicles both belong to G1,i , j .

Situation 2: The leading vehicle belongs to G2,i , j , while the following vehicle belongs to G1,i , j .

Situation 3: The leading and the following vehicles both belong to G2,i , j .

We distinguish the following two cases: v initial
(cl,ιl),i , j

= v free
i , j

and v initial
(cl,ιl),i , j

< v free
i , j

, and consequently
obtain the following conclusions:

• Suppose that we have v initial
(cl,ιl),i , j

= v free
i , j

(see Figure 4.6). In this case, for the following vehi-
cle to keep the safe temporal and spatial distances from its leading vehicle, its trajectory
in the time-space plane should not be located on the left-hand side of the dash-dotted
curves (called the borderline curves) illustrated in Figures 4.6(a)-4.6(c), which are lo-
cated at exactly a temporal distance τ̄ and a spatial distance δ̄ from the trajectory of the
following vehicle.

Then the borderline curves are defined as follows:

1. For situation 1, the trajectory of the leading vehicle (cl, ιl) is a straight line that in-
tersects the lower edge of the sampling window wi , j and that has a slope of v free

i , j

(see Figure 4.6(a)). Then the borderline curve corresponding to the leading vehi-
cle (cl, ιl) (indicated by sborderline

(cl,ιl),i , j
) is obtained by transferring the trajectory of the

leading vehicle τ̄ units to the right and δ̄ units to the bottom in the time-space
plane.

2. For situation 2 and situation 3, the trajectory of the leading vehicle is a straight
line with the slope v free

i , j
, which intersects the left-hand edge of the sampling win-

dow wi , j at a distance of sstart
(cl,ιl),2,i , j

from the left bottom corner of the window (see

3We consider a constant value for v free
i , j

throughout the sampling road section wi , j .
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Figures 4.6(b) and 4.6(c)). Then, the trajectory of the borderline curves corre-
sponding to the leading vehicle (cl, ιl) for these two situations are obtained via
transferring the trajectory of the leading vehicle τ̄ units to the right and δ̄ units
to the bottom in the time-space plane.

For situation 1 and situation 2 the trajectory of the following vehicle can then be char-
acterized as follows::

– If sborderline
(cl,ιl),i , j

(

θinitial
(cf,ιf),i , j

)

≥ 0, then in case the following vehicle has an initial speed of

v free
i , j

it keeps on moving with a constant speed. If the initial speed of the following

vehicle, however, is less than v free
i , j

it accelerates first until it reaches v free
i , j

and then
keeps on moving with a constant speed.

– If sborderline
(cl,ιl),i , j

(

θinitial
(cf,ιf),i , j

)

< 0, then the following vehicle is initially located on the left-

hand side of the borderline curve and hence, it should first decelerate until it reaches
the temporal and spatial distance of τ̄ and δ̄ and then accelerates to v free

i , j
(see Fig-

ure 4.6(a)).

For situation 3 we have:

– If sborderline
(cl,ιl),i , j

(

t̄i−1, j

)

≥ sstart
(cf,ιf),2,i , j

, then in case the following vehicle has an initial

speed of v free
i , j

it keeps on moving with a constant speed. If the initial speed of

the following vehicle, however, is less than v free
i , j

it accelerates first until it reaches

v free
i , j

and then keeps on moving with a constant speed.

– If sborderline
(cl,ιl),i , j

(

t̄i−1, j

)

< sstart
(cf,ιf),2,i , j

, then the following vehicle is initially located on the
left-hand side of the borderline curve and hence, it should first decelerate until it
reaches the temporal and spatial distance of τ̄ and δ̄ and then accelerates to v free

i , j

(see Figure 4.6(a)).

• Suppose that we have v initial
(cl,ιl),i , j

< v free
i , j

(see Figure 4.7). Similarly to the previous case

where v initial
(cl,ιl),i , j

= v free
i , j

, the trajectory of the following vehicle in the time-space plane
should not be located on the left-hand side of the borderline curves illustrated by dash-
dotted curves in Figures 4.7(a)-4.7(c).

The borderline curves are obtained as follows:

1. For situation 1, the trajectory of the leading vehicle is composed of a piece of a
parabola that corresponds to the accelerating behavior of the leading vehicle from
its initial speed v initial

(cl,ιl),i , j
to v free

i , j
(see Figure 4.7(a)) and a straight line that corre-

sponds to the free-flow behavior of the leading vehicle after its speed reaches v free
i , j

.
The parabolic part of the trajectory intersects the lower edge of the sampling win-
dow wi , j . Then the borderline curve corresponding to the leading vehicle (cl, ιl) is
obtained by transferring the trajectory of the leading vehicle τ̄ units to the right
and δ̄ units to the bottom in the time-space plane. The transition point between
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the parabolic part and affine part of the borderline curve is indicated by t switch
(cl,ιl),i , j

in
Figure 4.7(a).

2. For situation 2 and situation 3, the trajectory of the leading vehicle again has a
parabolic and an affine part. The parabolic part of the trajectory intersects the
left-hand edge of the sampling window wi , j at a distance of sstart

(cl,ιl),2,i , j
from the left

bottom corner of the window (see Figures 4.7(b) and 4.7(c)). Then the trajectory
of the borderline curve corresponding to the leading vehicle (cl, ιl) is obtained by
transferring the trajectory of the leading vehicle τ̄ units to the right and δ̄ units
to the bottom in the time-space plane. Note that on the left-hand side of point
‘A’ in Figures 4.7(b) and 4.7(c), a linear extension of the transferred trajectory is
considered.

For situation 1 and situation 2 the following facts hold:

– If sborderline
(cl,ιl),i , j

(

θinitial
(cf,ιf),i , j

)

≥ 0, then in case v initial
(cf,ιf),i , j

≤ v initial
(cl,ιl),i , j

+ aacc
cl,ιl ·θ

initial
(cf,ιf),i , j

is satis-

fied, then the following vehicle accelerates with aacc
cf,ιf to reach v free

i , j
. Otherwise, if

v initial
(cf,ιf),i , j

> v initial
(cl,ιl),i , j

+ aacc
cl,ιl · θ

initial
(cf,ιf),i , j

holds, the following vehicle tries to follow the
borderline curve. Hence, it first decelerates for

∆t̄ =
v initial

(cf,ιf),i , j −v initial
(cl,ιl),i , j −aacc

cl,ιlθ
initial
(cf,ιf),i , j

aacc
cl,ιl −adec

cf,ιf

time units, with adec
cf,ιf the deceleration rate of the following vehicle (cf, ιf). Then the

vehicle accelerates until it reaches v free
i , j

.

– If sborderline
(cl,ιl),i , j

(

θinitial
(cf,ιf),i , j

)

< 0, then the following vehicle starts to decelerate until its

trajectory intersects the borderline curve in the time-space plane. Then the fol-
lowing vehicle starts to accelerate with min

{

aacc
cl,ιl , aacc

cf,ιf

}

until it reaches the speed

v free
i , j

.

For situation 3 the following conclusions are made:

– If sborderline
(cl,ιl),i , j

(

t̄i−1, j

)

≥ sstart
(cf,ιf),2,i , j

, then in case v initial
(cf,ιf),i , j

≤ v initial
(cl,ιl),i , j

is satisfied, then the

following vehicle accelerates with aacc
cf,ιf to reach v free

i , j
. Otherwise, in case v initial

(cf,ιf),i , j
>

v initial
(cl,ιl),i , j

holds, the following vehicle tries to follow the borderline curve. Hence, it
first decelerates for

∆t̄ =
v initial

(cf,ιf),i , j −v initial
(cl,ιl),i , j

aacc
cl,ιl −adec

cf,ιf

time units. Then the vehicle accelerates until it reaches v free
i , j

.

– If sborderline
(cl,ιl),i , j

(

t̄i−1, j

)

< sstart
(cf,ιf),2,i , j

, then the following vehicle starts to decelerate until
its trajectory reaches the borderline curve in the time-space plane. Then the it
accelerates with min

{

aacc
cl,ιl , aacc

cf ,ιf

}

until it reaches the speed v free
i , j

.
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4.5 Case study

In this section, we present the results of a case study that uses real-life datasets of NGSIM.
These datasets are available on either of the following three websites:

1. http://www.ngsim-community.org/,

2. http://gateway.path.berkeley.edu/ngsimdocs/US-101/,

3. http://gateway.path.berkeley.edu/ngsimdocs/I-80/,

and provide detailed information including the positions and the speeds of individual vehi-
cles. For the experiment in this chapter, we have used the datasets that are available on the
third website. These datasets have been generated as part of the Next Generation SIMula-
tion (NGSIM) project by the Federal Highway Administration from a segment of the interstate
freeway I-80 in San Francisco, California, US, on April 13, 2005. The data has been collected
via seven video cameras from 2.00 PM till 7.00 PM, and is available in 3 sets for the time peri-
ods between 4.00 PM and 4.15 PM, between 5.00 PM and 5.15 PM, and between 5.15 PM and
5.30 PM. We indicate these three datasets by “dataset 1”, “dataset 2”, and “dataset 3”, respec-
tively.

From these datasets, we can extract the trajectories of the vehicles and compute the real
value of the generalized average speed. To assess the efficiency of the proposed sequential
algorithm, we use it to determine the generalized average speed of the vehicles. Moreover, we
implement the formulas given by Wardrop [153] and by Han et al. [56], by Rakha and Zhang
[134], by Soriguera and Robusté [141], and by Jamshidnejad and De Schutter [63] as a com-
parison (see also Chapter 3), since these papers represent the state-of-the-art for estimation
of the classical and the generalized average speed of the vehicles. The formulas proposed
by Wardrop [153] and by Rakha and Zhang [134] are the most well-known formulas in the
literature for estimating the space-mean speed of the vehicles on a road. Han et al. [56] and
Soriguera and Robusté [141] give formulas for estimating the, respectively, spatial and tempo-
ral standard deviation of the speeds of the observed vehicles. The spatial standard deviation
can be used in the formula by Wardrop [153] to estimate the space-mean speed of the vehicles,
while the temporal standard deviation in combination with the formula by Rakha and Zhang
[134] gives the estimated space-mean speed of the vehicles (see Chapter 2 for more details
regarding these formulas). Since all these formulas estimate the space-mean speed, we can
observe how in some cases the estimated value of the space-mean speed is close to the real
value of the generalized average speed, while in other cases the estimated space-mean speed
can deviate significantly from the real generalized average speed. Additionally, we use the for-
mula given by Jamshidnejad and De Schutter [63] as the only available formula that takes into
account estimation of the generalized average speed from point measurements. This formula
has proven to be very accurate compared with other formulas (see [63]), and hence, it can
provide a good comparison case for the proposed approach in this chapter.

For this case study, we extracted those sections of the trajectory plots from the NGSIM
datasets for which enough information was available, as the dataset gives the trajectories for
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some time intervals, and there are gaps between these intervals where no trajectories are
available. For each of the three datasets, we could extract four cases, i.e., 4 different sam-
pling road sections. Since the length of the time intervals for which trajectories were available
are short, we decided to choose sampling windows of dimensions L j = 150 m and 200 m by
T j = 5 s. In this way we could obtain five successive sampling windows for each of the four
selected cases that are illustrated in Figures 4.8(a)-4.11(a) for dataset 1, Figures 4.12(a)-4.15(a)
for dataset 2, and Figures 4.16(a)-4.19(a) for dataset 3.

We have considered 4 different sampling road sections for each dataset. For dataset 1,
the starting and end points of the first sampling road section are located at xu

1,1 = 50 m and

xd
1,1 = 250 m (see Figure 4.8(a)), with the upstream and downstream loop detectors located at

xu
1,1 and xd

1,1, respectively. The second sampling road section (see Figure 4.9(a)) corresponds

to the starting and end points xu
1,2 = 400 m and xd

1,2 = 600 m, with the upstream and down-

stream loop detectors at xu
1,2 and xd

1,2. The third sampling road section (see Figure 4.10(a))

starts at xu
1,3 = 800 m and ends at xd

1,3 = 1000 m, where the upstream loop detector is located

at xu
1,3 and the downstream loop detector is located at xd

1,3. Finally, the fourth sampling road

section (see Figure 4.11(a)) has the starting and end points at xu
1,4 = 1000 m and xd

1,4 = 1200 m,

with the upstream and downstream loop detectors located at xu
1,4 and xd

1,4. The time inter-
vals considered for the first sampling road section is between t = 920 s and t = 945 s (see
Figure 4.8(a)), for the second sampling road section it is between t = 955 s and t = 980 s (see
Figure 4.9(a)), for the third sampling road it section is between t = 925 s and t = 950 s (see
Figure 4.10(a)), and for the fourth sampling road section it is between t = 955 s and t = 980 s
(see Figure 4.11(a)).

For dataset 3, the first sampling road section (see Figure 4.16(a)) corresponds to xu
3,1 =

950 m and xd
3,1 = 1150 m, and the time interval between t = 1875 s and t = 1900 s. The second

sampling road section (see Figure 4.17(a)) corresponds to xu
3,2 = 1300 m and xd

3,2 = 1450 m,
and the time interval between t = 2400 s and t = 2425 s. The third sampling road section (see
Figure 4.18(a)) corresponds to xu

3,3 = 150 m and xd
3,3 = 300 m, and the time interval between

t = 1905 s and t = 1930 s. The fourth sampling road section (see Figure 4.19(a)) corresponds
to xu

3,4 = 1000 m and xd
3,4 = 1150 m, and the time interval between t = 2060 s and t = 2085 s.

Figures 4.8(b)-4.11(b), 4.12(b)-4.15(b), and 4.16(b)-4.19(b) illustrate the relative errors
w.r.t. the real value of the generalized average speed, which is computed by (2.6), i.e., the ratio
of the absolute difference between the generalized average speed and the computed average
speed via each of the formulas (by Rakha and Zhang [134], by Wardrop [153] and Han et al.
[56], by Jamshidnejad and De Schutter [63], by Soriguera and Robusté [141], and by the new
sequential algorithm), and the generalized average speed for datasets 1, 2, and 3, respectively.
For the 12 cases shown in Figures 4.8-4.19, the errors corresponding to the first sampling win-
dows are not shown because the main aim of the assessment is to investigate the efficiency of
the new sequential algorithm, including its capability for computing the initial conditions for
the next sampling window and in using the computed initial conditions for the current sam-
pling window. However, for the first sampling windows in Figures 4.8(a)-4.19(a), the initial
conditions are just given to the algorithm as an input of the problem, and therefore are not
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estimated by the algorithm itself. Hence, the first sampling windows in the four cases should
not be considered for assessment of the algorithm.

From Figure 4.8(b), we see that the proposed sequential algorithm shows the best perfor-
mance for the 2nd, 3rd, and 4th windows, while for the 5th window, the formula proposed by
Jamshidnejad and De Schutter [63] performs better. This can be explained by taking into ac-
count the main focus of each of these two approaches. Jamshidnejad and De Schutter [63]
mainly focus on each sampling window from a microscopic point-of-view, and make accu-
rate computations for each sampling window via partitioning it into smaller windows. The
new sequential algorithm proposed in this chapter, however, focuses on the common edges
of the sampling windows within the time-space plane, and those trajectories that intersect
these edges. Therefore, it does consider many details for each sampling window, but instead
it considers the details regarding transition of vehicle trajectories from one sampling window
to the neighboring window. Consequently, if there are more trajectories that intersect the
common edge of two neighboring sampling windows, we expect the proposed sequential al-
gorithm to produce more accurate results compared with other approaches. In Figure 4.8(b),
by considering the number of trajectories that intersect the left-hand edges of the sampling
windows w.r.t. the total number of trajectories observed in each of these windows, we see that
for the 2nd, 3rd, and 4th windows, this ratio is much larger (between 27%−50%) than for the
5th window (6%). Therefore, we expect the effect of ignoring these trajectories in the com-
putations to be more significant for the 2nd, 3rd, and 4th windows, and that the sequential
algorithm shows a better performance. This expectation is well supported by the results il-
lustrated in Figure 4.8(b). Moreover, from Figure 4.8, we see that when the formula proposed
by Soriguera and Robusté [141] is combined with the formula by Rakha and Zhang [134], it
produces more accurate results for 3 out of 4 experiments (see the results corresponding to
the 3rd, 4th, and 5th windows).

In Figure 4.9(b), the performance of the new sequential algorithm and the formula by
Jamshidnejad and De Schutter [63] are very close, i.e., for some windows the new sequential
algorithm shows the best performance, and for some other windows the formula by Jamshid-
nejad and De Schutter [63] works better. For this case we see that, on the one hand, there is
a relatively large number of vehicles for which the trajectory intersects the right-hand edge of
the sampling windows. On the other hand, there are some vehicles that change their speed
while traveling within the sampling windows (i.e., their trajectories do not have a straight lin-
ear shape). Since the sequential algorithm covers the first issue (intersecting trajectories) and
the formula by Jamshidnejad and De Schutter [63] uses a convex combination of the lower
and upper bounds of the generalized average speed (see Chapter 3), we can expect to see
such a close performance for these two approaches.

In Figure 4.10(b), for 3 out of the 4 sampling windows the best results correspond to the
new sequential algorithm. As we see from the curves of trajectories, the ratio of the trajec-
tories intersecting the left-hand edge of each window and the total number of trajectories in
that window is relatively large (between 23% and 40%). Therefore, we could expect the new
sequential algorithm, which keeps track of the trajectories that intersect the left-hand edge of
the sampling windows, to produce the best results. For Figure 4.11(b), in 3 out of 4 windows,
the sequential algorithm shows a significantly better performance, while for one window the
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formula by Jamshidnejad and De Schutter [63] is more accurate (note that the performance
of the sequential algorithm proposed in this chapter is still very close to the performance of
the formula by Jamshidnejad and De Schutter [63]).

Figures 4.12-4.15, which correspond to dataset 2, show that in 12 cases out of 16 cases (i.e.,
in 75% of the cases), the proposed sequential algorithm exhibits the best performance, and
for 3 out of 16 cases the formula by Jamshidnejad and De Schutter [63] performs better. From
Figures 4.16-4.19, which correspond to dataset 3, in 13 cases out of 16 cases (i.e., in 81.25%
of the cases), the proposed sequential algorithm performs the best. Note that compared with
the results obtained for dataset 1, where the relative error of the different formulas is always
less than 6%, for datasets 2 and 3 this error may become close to or even exceed 50% for some
formulas (but it never happens for the proposed sequential algorithm). In particular, in a few
cases, for example for dataset 2, the 3rd window of case 1 (see Figure 4.12(b)) and the 5th win-
dow of case 4 (see Figure 4.15(b)), and for dataset 3, the 5th window of case 3 (see Figure 4.18(b)
and the 3rd window of case 4 (see Figure 4.19(b)), for the formula proposed by Soriguera and
Robusté [141] combined with the formula by Rakha and Zhang [134] this error exceeds 50%.
However, for illustration purposes we have shown it at the highest percentage used for the
illustrations (i.e., 50%). In all these cases, however, the relative error of the proposed sequen-
tial algorithm almost never exceeds 10% (except for the 5th window of case 2 of dataset 3 (see
Figure 4.17(b))), where the relative error of the proposed sequential algorithm reaches almost
18%; note, however, that this is still the lowest percentage among all the formulas.

In general, considering Figures 4.8-4.19, we see that the new sequential algorithm shows
excellent performance in most cases compared to the other formulas. In most experiments,
either the new sequential procedure or the formula by Jamshidnejad and De Schutter [63]
produces the most accurate results, while the other formulas are less accurate. For situations
in which the formula by Jamshidnejad and De Schutter [63] is more accurate, the difference
between its result and the result of the sequential algorithm is rather small (less than 5%).
However, for the cases where the sequential algorithm is the most accurate approach, the dif-
ference between the results produced by the algorithm and by the formula by Jamshidnejad
and De Schutter [63] is larger, i.e., the error difference could be more than 10% based on the
results of the case study (e.g., see the 5th window of Figure 4.18(b)). The combination of the
formulas given by Rakha and Zhang [134] and by Soriguera and Robusté [141] shows the best
performance in 2 out of the 48 experiments (the proposed sequential algorithm in these cases
ranks second, with the difference of the errors of the combined formula by Rakha and Zhang
[134] and by Soriguera and Robusté [141], and the sequential algorithm being less than 0.3%),
and in 1 case out of 48 cases, both the proposed sequential algorithm and the combined for-
mula by Rakha and Zhang [134] and Soriguera and Robusté [141] perform best.

4.6 Conclusions and future work

In this chapter, a new sequential algorithm has been proposed for finding an accurate esti-
mate of the generalized traffic fundamental variables (i.e., the generalized density, flow, and
average speed), taking into account the effect of those vehicles that remain on the same sam-
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Figure 4.8: Dataset 1, first sampling road section: trajectories and relative errors w.r.t. the real

value of the generalized average speed for the formulas given by Rakha and Zhang

[134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schutter [63],

by Soriguera and Robusté [141], and by the new sequential algorithm.
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Figure 4.9: Dataset 1, second sampling road section: trajectories and relative errors w.r.t. the

real value of the generalized average speed for the formulas given by Rakha and

Zhang [134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schutter

[63], by Soriguera and Robusté [141], and by the new sequential algorithm.
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Figure 4.10: Dataset 1, third sampling road section: trajectories and relative errors w.r.t. the

real value of the generalized average speed for the formulas given by Rakha and

Zhang [134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schut-

ter [63], by Soriguera and Robusté [141], and by the new sequential algorithm.
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Figure 4.11: Dataset 1, fourth sampling road section: trajectories and relative errors w.r.t. the

real value of the generalized average speed for the formulas given by Rakha and

Zhang [134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schut-

ter [63], by Soriguera and Robusté [141], and by the new sequential algorithm.
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Figure 4.12: Dataset 2, first sampling road section: trajectories and relative errors w.r.t. the real

value of the generalized average speed for the formulas given by Rakha and Zhang

[134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schutter [63],

by Soriguera and Robusté [141], and by the new sequential algorithm (note that for

the 3rd window, the error of the formula by Soriguera and Robusté [141] exceeds

50%, but for the illustration purposes we have shown it at 50%).
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Figure 4.13: Dataset 2, second sampling road section: trajectories and relative errors w.r.t. the

real value of the generalized average speed for the formulas given by Rakha and

Zhang [134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schut-

ter [63], by Soriguera and Robusté [141], and by the new sequential algorithm.
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Figure 4.14: Dataset 2, third sampling road section: trajectories and relative errors w.r.t. the

real value of the generalized average speed for the formulas given by Rakha and

Zhang [134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schut-

ter [63], by Soriguera and Robusté [141], and by the new sequential algorithm.
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Figure 4.15: Dataset 2, fourth sampling road section: trajectories and relative errors w.r.t. the

real value of the generalized average speed for the formulas given by Rakha and

Zhang [134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schut-

ter [63], by Soriguera and Robusté [141], and by the new sequential algorithm (note

that for the 5th window, the error of the formula by Soriguera and Robusté [141] ex-

ceeds 50%, but for the illustration purposes we have shown it at 50%).
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Figure 4.16: Dataset 3, first sampling road section: trajectories and relative errors w.r.t. the real

value of the generalized average speed for the formulas given by Rakha and Zhang

[134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schutter [63],

by Soriguera and Robusté [141], and by the new sequential algorithm.
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Figure 4.17: Dataset 3, second sampling road section: trajectories and relative errors w.r.t. the

real value of the generalized average speed for the formulas given by Rakha and

Zhang [134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schut-

ter [63], by Soriguera and Robusté [141], and by the new sequential algorithm.
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Figure 4.18: Dataset 3, third sampling road section: trajectories and relative errors w.r.t. the

real value of the generalized average speed for the formulas given by Rakha and

Zhang [134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schut-

ter [63], by Soriguera and Robusté [141], and by the new sequential algorithm.
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Figure 4.19: Dataset 3, fourth sampling road section: trajectories and relative errors w.r.t. the

real value of the generalized average speed for the formulas given by Rakha and

Zhang [134], by Wardrop [153] and Han et al. [56], by Jamshidnejad and De Schut-

ter [63], by Soriguera and Robusté [141], and by the new sequential algorithm.
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pling road section for more than one sampling cycle. The algorithm has been developed for
both single-lane and multi-lane roads. In addition, we have also presented an approach that
produces approximate trajectories of the vehicles in each sampling window using Newell’s
car-following model.

The results of the case study, which has used the real-life dataset NGSIM, show the excel-
lent performance of the new sequential algorithm compared with other available formulas in
the literature. In some situations, the microscopic formula by Jamshidnejad and De Schutter
[63] (see also Chapter 3) performs better than the new sequential algorithm. Consequently,
we propose as a topic for future work to consider the possibility of combining the micro-
scopic formula given by Jamshidnejad and De Schutter [63] with the new sequential algorithm
proposed in this chapter. As a second topic for future work, the formulas for estimating the
fundamental traffic variables can be extracted for the approach proposed in Section 4.4.3 for
trajectory approximation. We also suggest to combine the approach for finding approximate
trajectories of vehicles based on Newell’s car-following model proposed in this chapter with a
lane-changing model to also take into account effects of lane change. Finally, we can consider
situations where measurements of the loop detectors are noisy and see how efficient the pro-
posed method is or what are the modifications we might need to make to improve the method
for noisy measurements.



Table 4.1: Frequently used mathematical notations for Chapter 4.

A area of a sampling region

nA total number of trajectories observed in the sampling region of area A

nt total number of trajectories observed on a stretch of the road at time t

T j sampling time for loop detector D j

n
cyc
j

number of whole sampling cycles occurring within
[

t̄ initial, t̄ final
]

wi , j time-space sampling window corresponding to a single-lane road section j at time step i

wi , j ,ℓ time-space sampling window corresponding to link ℓ of a multi-lane road section j at time step i

t̄i , j starting time instant corresponding to the sampling window wi , j

Ng ,i , j number of vehicles belonging to group g in the sampling window wi , j

Gg ,i , j set of indices of the vehicles belonging to group g in the sampling window wi , j

ρA generalized traffic density corresponding to the sampling area A

qA generalized traffic flow corresponding to the sampling area A

v̄ A generalized average traffic speed/TSMS corresponding to the sampling area A

ρi , j generalized density corresponding to the sampling window wi , j

qi , j generalized flow corresponding to the sampling window wi , j

v̄i , j generalized average speed corresponding to the sampling window wi , j

Ai , j area of window wi , j

θc ,i , j time instant at which the trajectory of vehicle c belonging to group 1 of the sampling window

wi , j enters the sampling window within the time-space plane

L
endpoint

nloop distance between the last loop detector and the endpoint of the road

sstart
(c ,ῑ),g ,i , j

relative position at the start of the current sampling cycle and w.r.t. the beginning of the

single-lane sampling road section j for vehicle c that has entered the road section in cycle ῑ and

that belongs to group g of the sampling window wi , j

send
(c ,ῑ),g ,i , j

relative position at the end of the current sampling cycle and w.r.t. the beginning of the

single-lane sampling road section j for vehicle c that has entered the road section in cycle ῑ and

that belongs to group g of the sampling window wi , j

d(c ,ῑ),g ,i , j traveled distance of vehicle c during one sampling cycle that has entered the single-lane sampling

road section j in cycle ῑ and that belongs to group g of the sampling window wi , j

t(c ,ῑ),g ,i , j travel time of vehicle c during one sampling cycle that has entered the single-lane sampling road

section j in cycle ῑ and belongs to group g of the sampling window wi , j

sstart
(c ,ῑ),g ,i , j ,ℓ relative position at the start of the current sampling cycle and w.r.t. the beginning of the multi-lane

sampling road section j for vehicle c that has entered the road section in cycle ῑ and belongs to

group g of the sampling window wi , j and moves on lane ℓ

send
(c ,ῑ),g ,i , j ,ℓ relative position at the end of the current sampling cycle and w.r.t. the beginning of the multi-lane

sampling road section j for vehicle c that has entered the road section in cycle ῑ and belongs to

group g of the sampling window wi , j and moves on lane ℓ

d(c ,ῑ),g ,i , j ,ℓ traveled distance of vehicle c that has entered the multi-lane sampling road section j in cycle ῑ and

belongs to group g of the sampling window wi , j and moves on lane ℓ

t(c ,ῑ),g ,i , j ,ℓ travel time of vehicle c that has entered the multi-lane sampling road section j in cycle ῑ and

belongs to group g of the sampling window wi , j and moves on lane ℓ
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Chapter 5

Background: Traffic modeling and control

5.1 Introduction

Traffic congestion in urban areas, especially when it becomes heavy and vehicles start to idle
in long queues, increases the level of fuel consumption and causes waste of time and en-
ergy. Additionally, emissions produced by the vehicles significantly increase the distribution

5.2. Model-predictive control (MPC)

5.3. Traffic flow and emission modeling

5.3.1. Urban traffic flow model: S-model 5.3.2. Microscopic traffic emission model: VT-micro

5.4. Smooth optimization: Pontryagin’s minimum principle

5.5. Resilient back-propagation algorithm

5.6. Overview of Part II

Figure 5.1: Road map of Chapter 5.
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Table 5.1: Frequently used mathematical notations for Chapter 5.

u a node in the S-model corresponding to an upstream intersection

d a node in the S-model corresponding to a downstream intersection

(u,d) a link in the S-model with u as its upstream node and d as its downstream node

kd simulation time step counter for link (u,d)

Kd set of simulation time steps for the links with node d as the downstream node

cd sampling time of the traffic light located at the intersection corresponding to node d

nu,d (kd ) total number of vehicles on link (u,d) in between time steps kd and kd +1

qu,d (kd ) number of vehicles in the queue on link (u,d) in between time steps kd and kd +1

qu,d ,o (kd ) number of vehicles in the queue on link (u,d) in between time steps kd and kd +1 that intend to

move to the outgoing link (d ,o) at time step kd

αenter,l
u,d (kd ) average entering flow rates of link (u,d) within the time interval [kd cd , (kd +1)cd )

αleave,l
u,d (kd ) average exiting flow rates of link (u,d) within the time interval [kd cd , (kd +1)cd )

αleave,l
u,d ,o (kd ) average leaving flow rate of the sub-stream on link (u,d) that intends to move towards o within

time interval [kd cd , (kd +1)cd )

α
arrive,q
u,d ,o (kd ) average arriving flow rate at the tail of the waiting queue on link (u,d) of the sub-stream that

intends to move towards o within [kd cd , (kd +1)cd )

βu,d ,o (kd ) fraction of the vehicles on link (u,d) that intend to turn to node o

µu,d saturated leaving flow rate of the vehicles on link (u,d)

gu,d ,o (kd ) green time length during the time interval [kd cd , (kd +1)cd ) for the traffic sub-stream that

leaves link (u,d) towards node o

Cu,d storage capacity of link (u,d)

of harmful substances in the air, e.g., carbon monoxide (CO) and dioxide (CO2), hydrocar-
bon (HC), and nitrogen oxides (NOx) [5, 9, 10, 140]. This is of course dangerous, especially
in sensitive urban areas, such as in the neighborhood of hospitals, nursing homes for the el-
derly people, daycare centers, or schools. The mentioned consequences can be a source of
huge economical and environmental costs in modern societies. The negative impacts of traf-
fic congestion and emissions have been assessed for the US, the UK, Germany, and France
in a report published by Center for Economics and Business Research [24]. According to this
report, the expected increase of costs caused by traffic in these countries is up to 46 % by 2030
w.r.t. 2013. Hence, from both an economical and an environmental point-of-view, efficient
actions should be undertaken to reduce traffic congestion and emissions in urban areas.

The main reason of congestion occurrence in urban traffic networks is inefficient use of
the available roads [148]. Expanding the current road capacity requires long-term planning
and can be highly costly. However, one solution that can be achieved in a relatively short
time period is to make the best use of the existing road capacity by introducing more efficient
traffic management and control systems. Real-time traffic-responsive control approaches are
widely known for their high efficiency compared with other traffic management methods, and
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for their adaptability to dynamic changes in the traffic network [39, 40]. One of the real-time
control categories that has been implemented extensively for different systems, including
traffic networks, includes optimization-based control approaches such as model-predictive
control (MPC) [105]. MPC has been used for freeway and urban traffic control and has proven
to be very efficient (see, e.g., [2, 11, 37, 150]).

The rest of this chapter is organized as follows. In Section 5.2 we briefly discuss the idea
of model-predictive control (MPC). Section 5.3 introduces two traffic models that will later
be used in this thesis, i.e., an urban traffic flow model called the S-model [98] and a micro-
scopic emission and fuel consumption model called VT-micro [3]. Section 5.4 explains the
Pontryagin’s minimum principle, which can be used for smooth optimization problems. A
smooth optimization algorithm that can be used together with the Pontryagin’s minimum
principle, called the resilient back-propagation algorithm, is explained in Section 5.5. Finally,
an overview of Part II of the thesis is given in Section 5.6. The road map of Chapter 5 is illus-
trated in Figure 5.1. Moreover, Table 5.1 gives the frequently used mathematical notations in
Chapter 5.

5.2 Model-predictive control (MPC)

MPC is a model-based control approach that has proven to be efficient for traffic networks
(see [2, 11, 39, 40, 150] for the application of MPC in urban traffic networks and freeways). In
this section we explain MPC briefly.

Model-predictive control (MPC) [105] is an optimization-based control approach that min-
imizes a cost function within a prediction window of a finite length spanning Np control time
steps (see Figure 5.2). MPC is a dynamic optimization approach, i.e., at every control time
step the MPC controller receives the state measurements as a feedback from the controlled
system. These measurements are considered as the initial state for the dynamics of the con-
trolled system to solve the optimization problem during the next Np control time steps ahead.
In Figure 5.2, xxxinit(kc) is the measured state at control time step kc and is used as the initial
state for solving the MPC optimization problem from time step kc to kc +Np. The indicated
characteristics make MPC different from optimal control strategies designed in an entirely
open-loop scheme, where the optimization problem is solved in an open loop and once for
the entire simulation period. Therefore, compared with classical optimal control approaches,
the suboptimal solution determined by an MPC controller is more robust towards unexpected
external disturbances [116].

MPC uses a prediction model to estimate the future states of the controlled system within
the prediction window based on the initial states. This model should preferably provide a
balanced trade-off between increasing the computation accuracy and reducing the compu-
tation time. Finally, a sequence of optimal control inputs within the prediction window is de-
termined using (numerical) optimization. The first element of the sequence is implemented
in practice for one control sampling time. At the subsequent control time step, the prediction
window is shifted forward for one control time step, new state measurements are received
from the controlled system, and the procedure of solving the optimization problem within
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Figure 5.2: Illustration of the main idea of MPC.

the prediction window is repeated. In order to reduce the computational burden sometimes
a control horizon Nc that is smaller than the prediction horizon is considered, which implies
that the control input should remain constant from the control time step kc+Nc on. This way
the number of optimization variables is reduced.

5.3 Traffic flow and emission modeling

To design an efficient MPC controller for sustainable urban traffic control, it is important to
develop and to improve urban emission models that give an estimate of the current and possi-
ble future emission and fuel consumption levels, if integrated with an urban traffic flow model
that can estimate and predict the current and future states of the traffic network.

Based on the level of detail, different traffic models (including flow and emission models)
can be categorized as microscopic, mesoscopic, and macroscopic. If the model is focused on
more details and takes into account the behavior of individual vehicles in the network, it is
called a microscopic traffic model [49, 132, 133]. Some traffic models describe the average be-
havior of the vehicles as a fluid. These models are known as macroscopic traffic models (see,
e.g., [115, 124]). There is also a third category for traffic models, known as mesoscopic mod-
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Figure 5.3: Illustration of a link in an urban traffic network at time step kd , with the entering,

arriving, and leaving flows.

els [59], which partly use the characteristics of microscopic and macroscopic models, i.e., the
level of detail for a mesoscopic model is less than a microscopic and greater than a macro-
scopic traffic model. More specifically, mesoscopic models specify the behavior of traffic by
groups of vehicles/drivers, where the interactions of these vehicles/drivers are described in a
low level of detail.

5.3.1 Urban traffic flow model: S-model

Different models have been proposed for urban traffic flow modeling, such as the store-and-
forward model [1], which has also been used in [39], the BLX model [97], the S-model [98],
and a macroscopic urban traffic flow model developed by Barisone et al. [8]. The S-model is
a nonlinear and discrete-time urban traffic flow model that provides an appropriate balance
between low computation time and desired accuracy, and can deal well with the nonlinear
behavior of traffic in urban areas. Hence, in this thesis we mainly use the S-model as the
urban traffic flow model. The S-model is explained briefly in this section.

The S-model was introduced by Lin et al. [98], where the simulation sampling time of the
S-model is one cycle time of the downstream intersection of a link. Therefore, the model
updates the states less frequently than other macroscopic traffic models that typically have a
sampling time of 1 s (such as the BLX model [97], the model of Kashani and Saridis [80], and
the model proposed by van den Berg et al. [150]). This characteristic helps the S-model to
be faster for model-based control applications, and to provide a trade-off between accuracy
and computation time. Moreover, the simulation sampling time for each link may differ from
other links.

In the S-model, a network is modeled as a collection of nodes and links, where each node
represents an intersection and each link represents a road. We use the pair (u,d) to indicate
a link with node u as its starting node (i.e., the upstream intersection of the corresponding
road), and node d as its end node (i.e., the downstream intersection of the corresponding
road). The set of all links and intersections within the network are denoted by, respectively,
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L and N , and the state variables of the model include the total number of vehicles nu,d (kd )
on link (u,d), and the number of vehicles qu,d ,o (kd ) in the queue on link (u,d) that intend to
move to the outgoing link (d ,o) at time step kd for all (u,d) ∈L. Both nu,d (kd ) and qu,d ,o (kd )
are given in “number of vehicles”, and admit real non-negative values instead of integers. The
set of all downstream nodes of the outgoing links of link (u,d) is denoted by Ou,d , and the set
of all upstream nodes of the incoming links of link (u,d) is denoted by Iu,d .

The state variables of the S-model are updated at every simulation time step kd of the link
(u,d) by

nu,d (kd +1)= nu,d (kd )+
(

αenter,l
u,d (kd )−αleave,l

u,d (kd )
)

cd , (5.1)

qu,d ,o (kd +1) = qu,d ,o (kd )+
(

α
arrive,q
u,d ,o (kd )−αleave,l

u,d ,o (kd )
)

cd , (5.2)

with

qu,d (kd ) =
∑

o∈Ou,d
qu,d ,o (kd ), (5.3)

where cd is the cycle time of the downstream intersection d , αenter,l
u,d (kd ) and αleave,l

u,d (kd ) are the
average entering and exiting flow rates of link (u,d) within the time interval [kd cd , (kd +1)cd ),
and α

arrive,q
u,d ,o (kd ) and αleave,l

u,d ,o (kd ) are the average arriving flow rate at the tail of the waiting
queue and the average leaving flow rate of the sub-stream on link (u,d) that intends to move
towards o within [kd cd , (kd + 1)cd ). Note that these flow rates are computed for all the in-
termediate links of the S-model using the equations that will be given in this section, except
for αenter,l of the source links and αleave,l of the exit links in the network. The entering flow
rates αenter,l of the source links are indeed the demand profiles that should either be given to
the network as an input, or that should be determined by a prediction model. Similarly, the
leaving flow rates αleave,l of the exit links should be given as the boundary conditions of the
network or should be predicted by a model. Moreover, qu,d (kd ) is the total number of vehicles
waiting in the queue on link u,d at time step kd . Moreover, we have (also see Figure 5.3):

αenter,l
u,d (kd ) =

∑

i∈Iu,d
αenter,l

i ,u,d (kd ), (5.4)

αleave,l
u,d (kd ) =

∑

o∈Ou,d
αleave,l

u,d ,o (kd ), (5.5)

αleave,l
u,d ,o (kd ) = min

(

βu,d ,o (kd ) ·µu,d ·
gu,d ,o (kd )

cd
,

qu,d ,o (kd )

cd

+α
arrive,q
u,d ,o (kd ),

βu,d ,o (kd )
∑

i∈Id ,o

βi ,d ,o (kd )
·

Cd ,o −nd ,o(kd )

cd

)

,
(5.6)

α
arrive,q
u,d (kd ) =

cd −γu,d (kd )

cd

∑

i∈Iu,d

αleave,l
i ,u,d (kd −δu,d (kd ))+

γu,d (kd )

cd

∑

i∈Iu,d

αleave,l
i ,u,d (kd −δu,d (kd )−1),

(5.7)
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α
arrive,q
u,d ,o (kd ) =βu,d ,o (kd ) ·αarrive,q

u,d (kd ), (5.8)

where

δu,d (kd ) =

⌊
τu,d (kd )

cd

⌋

, (5.9)

γu,d (kd ) = rem{τu,d (kd ),cd }, (5.10)

with µu,d the saturated leaving flow rate of link (u,d), gu,d ,o (kd ) the green time length during
[kd cd , (kd+1)cd ) for the traffic sub-stream that leaves link (u,d) towards node o, βu,d ,o (kd ) the

fraction of vehicles within link (u,d) that intend to turn to o, αarrive,q
u,d (kd ) the average within

[kd cd , (kd +1)cd ) of the flow rate of vehicles arriving at the tail of the queue in link (u,d), and
τu,d (kd ) the average delay time (from now on, we just call it the delay time) of the vehicles on
link (u,d) within the interval [kd cd , (kd + 1)cd ), i.e., the time vehicles entering the link need
to reach the tail of the waiting queue. In Chapter 6, we will propose some extensions for the
S-model with the aim of making this model more accurate.

In the S-model the simulation sampling time of different links might not be the same and
hence, their time steps may not be synchronized automatically. However, especially for the
neighboring links for which some variables are shared, synchronization of the joint variables
is essential. For instance, the flow αleave,l

i ,u,d that leaves link (i ,u) towards node d , at the same

time forms a fraction of αenter,l
u,d for link (u,d). However, αleave,l

i ,u,d is updated by the S-model at

ku ∈ Ku only, and αenter,l
u,d is updated by the S-model at time steps kd ∈ Kd , where ku and kd

may not be synchronized. Note that Ku and Kd are the set of simulation time steps for the
links with, respectively, node u and node d as the downstream node.

Synchronization of the joint variables

Figure 5.4 illustrates αleave,l
i ,u,d (·), which is updated at time steps ku ∈Ku , while we need to find

αenter,l
i ,u,d at time step kd . We first make the discrete-time functions αleave,l

i ,u,d and αenter,l
i ,u,d contin-

uous in time, using piecewise constant functions αleave,l,c
i ,u,d (·) and αenter,l,c

i ,u,d (·) for them. Hence,

αleave,l,c
i ,u,d (·) between any two consecutive time steps ku and ku +1 equals αleave,l

i ,u,d (ku). Similarly,

αenter,l,c
i ,u,d (·) between any two consecutive time steps kd and kd + 1 equals αleave,l

i ,u,d (kd ). Since
the number of vehicles that leave link (i ,u) and enter link (u,d) between any two consecutive
time steps kd and kd +1 are equal, the highlighted surfaces in Figure 5.4 should have the same
area, i.e.,1

αenter,l
i ,u,d (kd ) =

1

cd

∫(kd+1)cd

kd cd

αleave,l,c
i ,u,d (t ) ·dt . (5.11)

For more details about the S-model, we refer the readers to [98]. Moreover, some exten-
sions to this model are proposed in this thesis in Chapter 6 to make the model more accurate.

1Note that (5.11) is a corrected version of the corresponding equation given in [98].
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Figure 5.4: Synchronization of joint variables for the neighboring links in the S-model.

5.3.2 Microscopic traffic emission model: VT-micro

In order to compute the emissions, several models from different classes (i.e., microscopic,
mesoscopic, and macroscopic) have been developed (see, e.g., the macroscopic models by
Ntziachristos et al. [124] and by Csikós et al. [32], the mesoscopic models by Rakha et al. [135]
and by Gori et al. [51], and the microscopic models by Ahn et al. [3], by Ligterink et al. [95], and
by Chen and Yu [27]). Some macroscopic models provide a high computation speed (such
as COPERT [124], which is based on the average speed of the vehicles and the macroscopic
model based on the total travel distance and the average speed of [32]), while they ignore the
effect of acceleration and deceleration of the vehicles. This may bring issues for the accuracy
of the results, especially in urban traffic areas with signalized intersections. More specifically,
experiments show that in case of a positive acceleration, and in particular for the emissions
of NOx, the minimum of the emissions (in g/km) as a function of speed does not always cor-
respond to the urban free-flow speed. Hence, minimizing the total delays of the vehicles does
not necessarily lead to minimization of the emissions.

In this thesis, for computation of the emissions, we consider VT-micro [3]. VT-micro is a
microscopic model that computes the instantaneous emissions of different substances such
as CO, HC, and NOx, and also the fuel consumption of vehicles based on their individual speed
and acceleration. Suppose that for vehicle i , the observed values of the instantaneous speed
and acceleration at time instant t are denoted by vi (t ) and ai (t ), respectively. First, we con-
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struct two vectors ṽvv(t ) and ãaa(t ) of dimension 4 that are defined by

ṽvv i (t ) =
[

1 vi (t ) vi
2(t ) vi

3(t )
]⊤

,

ãaai (t ) =
[
1 ai (t ) ai

2(t ) ai
3(t )

]⊤
.

(5.12)

The instantaneous emission/consumption of e ∈ {CO, HC, NOx, fuel} by vehicle i at time in-
stant t is given by

Ep (vvv i (t ), aaai (t )) = exp
(

ṽvv⊤
i (t ) ·Πp · ãaai (t )

)

, (5.13)

where Πp are 4×4 precalibrated matrices, which are given by Zegeye [160], for computing the
emissions in [kg/s] or the fuel consumption in [l/s]:

ΠCO = 0.01








−1292.8100 48.8324 32.8837 −4.7675
23.2920 4.1656 −3.2843 0.0000
−0.8503 0.3291 0.5700 −0.0532
0.0163 −0.0082 −0.0118 0.0000








,

ΠHC = 0.01








−1454.4000 0.0000 25.1563 −0.3284
8.1857 10.9200 −1.9423 −1.2745
−0.2260 −0.3531 0.4356 0.1258
0.0069 0.0072 −0.0080 −0.0021








,

ΠNOx = 0.01








−1488.3200 83.4524 9.5433 −3.3549
15.2306 16.6647 10.1565 −3.7076
−0.1830 −0.4591 −0.6836 0.0737
0.0020 0.0038 0.0091 −0.0016








,

Πfuel = 0.01






−753.7000 44.3809 17.1641 −4.2024
9.7326 5.1753 0.0109 0.0116
0.0053 0.0006 −0.0010 −0.0006




 .

5.4 Smooth optimization: Pontryagin’s minimum principle

Pontryagin minimum principle (also known as Pontryagin maximum principle in some lit-
erature) is the main theory in optimal control that provides some necessary conditions on
optimality. This theorem was developed and formulated by the Soviet mathematician Lev Se-
myonovich Pontryagin in 1956 [30]. Suppose that we want to find a suboptimal control input
for a system that is described by the following discrete-time nonlinear equation:

xxx(k +1) = fff (k, xxx(k),uuu(k)), (5.14)

where fff (·) can in general be a nonlinear smooth function. If the formulation of the optimiza-
tion problem is smooth, we can solve it using Pontryagin’s minimum principle [92]. Next we
explain the Pontryagin’s minimum principle.
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Define a (smooth) performance index for (5.14) during the prediction time interval2

[kcTc, (kc +Np)Tc) by

J (kc) =J t(kc)+
kc+Np−1

∑

k=kc

J s(k), (5.15)

with J s(·) the stage cost function, which at control time step k ∈
{

kc, . . . ,kc +Np −1
}

can be
given by an expression of the control time step k, the state vector xxx(k), and the control input
uuu(k), i.e., J s(k) = J s (k, xxx(k),uuu(k)), and with J t(·) the terminal cost function, which at con-
trol time step kc can be given by an expression of the terminal control time step kc +Np and
the terminal state vector xxx(kc + Np), i.e., J t(kc) = J t

(

kc +Np, xxx
(

kc +Np
))

. The Hamiltonian
function [92] for minimizing (5.15) w.r.t. (5.14) at control time step k ∈

{

kc, . . . ,kc +Np −1
}

is
defined by

H(k,λλλ(k +1), xxx(k),uuu(k)) = J s (k, xxx(k),uuu(k))+λλλ⊤(k +1) · fff (k, xxx(k),uuu(k)), (5.16)

where λλλ(·) is called the costate. Pontryagin’s minimum principle [79] states that for an input
function ūuu(·) to make the performance index (5.15) optimal, the following should hold for all
k ∈ {kc, . . . ,kc +Np −1} at the same time [92]:

xxx(k +1) =
∂H(k,λλλ(k +1), xxx(k), ūuu(k))

∂λλλ(k +1)
, (5.17)

λλλ(k) =
∂H(k,λλλ(k +1), xxx(k), ūuu(k))

∂xxx(k)
, (5.18)

GGG(k) =
∂H(k,λλλ(k +1), xxx(k), ūuu(k))

∂uuu(k)
= 0, (5.19)

where GGG(·) is called the reduced gradient [128]. In order to numerically solve (5.17), we can
start from the initial state of the system, xxx(kc). To solve (5.18) via backward integration, we
start from λλλ(kc +Np), which is given by

λλλ(kc +Np) =
∂J t (kc +Np, xxx(kc +Np)

)

∂xxx(kc +Np)
. (5.20)

To find the optimal uuu(k) that makes the reduced gradient (5.19) zero, we can use different op-
timization algorithms, e.g., the resilient back-propagation algorithm (briefly called the RProp)
[137], which is explained in the next section.

5.5 Resilient back-propagation algorithm

Using RProp, we can find the increment ∆ūuu(l ) of the control vector at iteration l based on
the values of the reduced gradients in the current and in the previous iterations, i.e., GGG (l )

2Note that for the sake of simplicity of the notations, here we assume that Tc = Tmodel, where Tc is the control
sampling time and Tmodel is the model sampling time.
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uuu

∆uuu(l−1)∆uuu(l−1)

H

∆uuu(l)∆uuu(l)

uuuopt GGG (l)GGG (l) GGG (l−1)GGG (l−1)

(a) RProp when the optimization variable for the pre-
vious and current iterations are on the same side of the
optimum.

uuu
∆uuu(l−1)

H

∆uuu(l)

uuuopt
GGG (l)GGG (l−1)

(b) RProp when the optimization variable for the pre-
vious and current iterations are on different sides of
the optimum.

Figure 5.5: The resilient back-propagation (RProp) algorithm (note that in the figure it is

assumed that u is a scalar, l is the iteration index, the green lines illustrate the

tangent lines, and the red arrows are the gradients, i.e., they point in the direction

of the increase of the function and their magnitudes represent the slope of the

tangent line at the corresponding point on the graph of the function).

and GGG (l−1). The elements of GGG and ∆ūuu are indicated by, respectively, Gi and ∆ūi for i =

1, . . . , |ūuu|, where | · | gives the number of entries of a vector. The elements of ūuu(l ) at time step
k ∈ {kc, . . . ,kc +Np −1} are updated by

ūi ,(l )(k) = sat
(

ūi ,(l−1)(k)+∆ūi ,(l )(k), ūmin,i , ūmax,i
)

, (5.21)

where

sat(ūi ) =







ūmax,i , if ūi ≥ ūmax,i ,
ūi , if ūmin,i < ūi < ūmax,i ,
ūmin,i , if ūi ≤ ūmin,i ,

(5.22)

with ūmax,i and ūmin,i the upper and the lower bound for the element ūi . Finally, for the
elements of ∆ūuu(ℓ)(k), for i = 1, . . . , |ūuu| RProp gives

∆ui ,(l )(k) =

{

−sign
(

Gi ,(l )(k)
)

η+|∆ui ,(l−1)(k)| for Gi ,(l−1)(k)Gi ,(l )(k) > 0,

−η−∆ui ,(l−1)(k) otherwise,
(5.23)

with η+ > 1 and 0< η− < 1.

Figure 5.5 demonstrates the performance of the RProp algorithm for the two cases in (5.23)
(note that uuu is considered to be a scalar in this figure). The x-axis corresponds to the control
input and the y-axis corresponds to the Hamiltonian function. The green lines are the tangent
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lines at the corresponding point of uuu(l ) on the graph of the Hamiltonian function, and the red
arrows are the reduced gradients computed by (5.19) at the corresponding point of uuu(l ), i.e.,
they point in the direction of the increase of the function and their magnitude equals the slope
of the corresponding tangent line. In Figure 5.5(a), the red arrows on the left-hand side of the
optimal control input uuuopt correspond to a case where the reduced gradient has a negative
sign for two consecutive iterations l − 1 and l ,i.e., the resulting values of uuu(l−1) and uuu(l ) for
these two iterations are smaller than the optimal value of uuu (equivalently, uuu(l−1) and uuu(l ) are
located on the left-hand side of the optimum point on the x-axis). Hence, the first condition
of (5.23) is satisfied and at iteration l +1, a control input increment in the same direction as
that of iteration l , but with a magnitude larger than the control input increment at iteration l

will be produced in order to speed up the movement towards the optimum point.
The red arrows on the right-hand side of the optimum point in Figure 5.5(a) correspond

to a case where both reduced gradients have a positive sign for two consecutive iterations
l −1 and l , i.e., the resulting values of uuu(l−1) and uuu(l ) for these two iterations are larger than
the optimal value of uuu (equivalently, uuu(l−1) and uuu(l ) are located on the right-hand side of the
optimum point on the x-axis). Hence the first condition of (5.23) is again satisfied and at
iteration l +1, the control input increment computed by (5.23) will be in the same direction
as the control input increment at iteration l , but its magnitude will be larger than the control
input increment at iteration l . Therefore, a larger step towards the optimum point will be
taken at iteration l +1.

Figure 5.5(b) represents a case where the reduced gradient at iteration l − 1 is negative
and hence the resulting value of uuu(l−1) is smaller than the optimal value of uuu (i.e., uuu(l−1) is
located on the left-hand side of the optimum point on the x-axis). Then a jump from the left-
hand side of the optimum point to its right-hand side occurs from iteration l −1 to iteration
l . Hence, the reduced gradient at iteration l becomes positive and the resulting value of uuu(l )

at iteration l is larger than the optimal value of uuu. Therefore, the second condition of (5.23) is
satisfied and the control input increment at iteration l +1 will be in the opposite direction of
the control input increment at iteration l so that it gets back closer to the optimum point. Note
that the second relationship in (5.23) results in a magnitude for the control input increment
at iteration l + 1 that is smaller than that of iteration l . Hence, we can make sure that the
resulting value of uuu(l+1) will never be smaller than the value of uuu(l−1) (i.e., the algorithm does
not allow the resulting uuu(l+1) to get farther from the optimum point than it was before).

5.6 Overview of Part II

The aim of Part II of the thesis is to propose methods for fast and accurate modeling of ur-
ban traffic networks, and also efficient approaches for urban traffic control. Hence, in Chap-
ter 6, we introduce a novel integrating and interfacing framework for macroscopic urban traf-
fic flow models and microscopic emission and fuel consumption models. The resulting in-
tegrated model has a mesoscopic nature, which provides a balance between accuracy and
computation time of the model. In Chapter 7, we propose general smoothening methods to
make nonsmooth optimization problems smooth. Hence, efficient gradient-based optimiza-
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tion approaches can be used to solve the resulting smooth optimization problem. We also
design a smooth MPC controller for an urban traffic network that aims to find a balanced
trade-off between reducing the total time spent and total emissions produced by the vehi-
cles in the traffic network. Finally, in Chapter 8, we propose to include endpoint penalties
in the formulation of the MPC optimization problem in order to approximate the solution
of an infinite-horizon MPC problem using a finite-horizon MPC optimization problem. The
efficiency of the approaches proposed in Chapters 6-8 are evaluated via case studies.





Chapter 6

A mesoscopic framework for integrating

traffic flow and emission models

6.1 Introduction

The focus of this chapter is on the introduction and development of a new framework for
integrating and interfacing any macroscopic urban traffic flow model that updates the total
number of vehicles in the links and the number of vehicles standing in the queues as the states
of the traffic network, e.g., the S-model by Lin et al. [98] (see Section 5 for details), with any
microscopic fuel consumption and emission model that uses both the speed and the acceler-
ation of the individual vehicles, e.g., VT-micro by Ahn et al. [3] (see Section 5 for details) and
VERSIT+ by Ligterink et al. [95]. The proposed approach will result in a new mesoscopic in-
tegrated urban traffic flow-emission model that provides a balanced trade-off between high
accuracy and low computation time. The resulting model belongs to the mesoscopic category
considering the following characteristic given for mesoscopic traffic models by Hoogendoorn
and Bovy [59]: mesoscopic models specify the behavior of traffic by groups of vehicles/drivers,
where the interactions of these vehicles/drivers are described in a low level of detail.Hence, in
our proposed framework, we take into account the effect of the acceleration and deceleration
of the vehicles to improve the accuracy of the results for urban traffic networks.

The mesoscopic emission model developed by Rakha et al. [135] provides promising re-
sults w.r.t. the microscopic model VT-micro (the errors are within the range of 10-27%). In this
chapter, we aim to improve the accuracy of these results to an even higher level for a meso-
scopic model that is resulting from our proposed integrating framework. Hence, we start from
a microscopic point-of-view, by considering the time-speed trajectories of individual vehicles
in the traffic network. Then we distinguish some groups of vehicles with similar traffic be-
haviors and we define a (virtual) representative vehicle for each group. Afterwards, we use a
microscopic emission model (such as VT-micro or VERSIT+) to compute the instantaneous
emissions of the representative vehicle for each specific traffic behavior (free-flow, idling, de-
celerating, accelerating). By multiplying the resulting emissions by the total number of ve-
hicles in each group and by the average time of the given behavior, we obtain a mesoscopic
emission model.

109
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The simulation results show that the relative error of the computed emissions by our pro-
posed mesoscopic approach are less than 6%. Hence, we will successfully improve the results
w.r.t. [135]. Compared with the mesoscopic model proposed by Gori et al. [51], which is lim-
ited to signalized intersections and which ignores the decelerating behavior of the vehicles,
our framework is more general and can be used for both signalized and non-signalized traffic
networks. As mentioned earlier, we do not ignore the decelerating behavior by the vehicles.
Gori et al. [51] consider two different traffic scenarios in an urban traffic network, i.e., the
under-saturated and the saturated scenarios. We add a third scenario, i.e., the over-saturated
scenario, which helps us to provide more accuracy.

Chen and Yu [27] develop a microscopic simulation platform by integrating the micro-
scopic traffic simulator VISSIM and the microscopic modal emission model CMEM. The main
aim of their work is to provide a platform to assess the effect of various factors of a traffic net-
work on the amount of emissions. Our focus in this chapter is mostly on providing a mathe-
matical model for computation of emissions that can be applied in model-based analysis and
control of traffic.

Previous work on integrating traffic flow and emission models include the work by Zeg-
eye et al. [161], where METANET [115], a macroscopic freeway flow model, and VT-micro are
integrated. For urban traffic, an integrated flow and emission model has been developed by
Lin et al. [99], where the S-model is integrated with VT-micro to form a simple integrated
model that suits real-time control applications. The proposed macroscopic model has a low
computation time and in a case study given in [99] shows satisfactory results when used as
the internal model of a model-predictive controller. Inspired by the macroscopic integrated
model given by Lin et al. [99] and by Zegeye et al. [161], in this chapter we develop a general
mesoscopic framework to integrate macroscopic traffic flow models and microscopic emis-
sion models (i.e., our proposed framework is not limited to specific flow and emission mod-
els). The aim is to provide even more accuracy, while keeping the computation speed still
high. Therefore, similar to the work by Lin et al. [99], we divide the possible traffic states in
an urban traffic network into three different scenarios, i.e., under-saturated, saturated, and
over-saturated. In addition to that, we distinguish different groups of vehicles that may be
observed for each traffic scenario. Hence, compared with the macroscopic model proposed
by Lin et al. [99], we build up a mesoscopic framework that takes into account more details
than a macroscopic one. Moreover, we define a (virtual) representative vehicle that should re-
flect an average behavior for all the vehicles in a group. In summary, our proposed framework
provides more details compared with the previous work, while it still guarantees a trade-off
between high accuracy and low computation time.

Contributions and organization of the chapter

The main contributions of the chapter include:

1. We propose some extensions for the S-model to make it more accurate. We also de-
velop a general formulation for transforming a time-delayed system with a time-varying
delay given in the continuous-time domain into an equivalent time-delayed system in
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6.1. Introduction

6.2. Extensions for the S-model

6.2.1. Source queues: Formulation 6.2.2. Extended formulation for the time-delayed equation

6.3. General formulation for emission models

6.3.1. Traffic behaviors for urban networks 6.3.2. Emissions for different traffic behaviors

6.4. Flow-emission model for the under-saturated scenario

6.5. Flow-emission model for the saturated scenario

6.5.1. Case 1: αarrive,q
u,d (kd ) <µu,d 6.5.2. Case 2: αarrive,q

u,d (kd ) ≥µu,d

6.6. Flow-emission model for the over-saturated scenario

6.7. Case study

6.8. Conclusions and future work

Figure 6.1: Road map of Chapter 6.

the discrete-time domain (see Section 6.2.2). The resulting formulation can be used in
discrete-time physical models of systems that involve time-varying time delays, and can
give much more accurate results than a time-independent delay approximation.

2. We give a general framework for constructing mesoscopic emission models including
formulations for computing the instantaneous emissions for different traffic behaviors
observed in a traffic network (e.g., uniform speed, accelerating, decelerating, etc.), ap-
plying microscopic models that use speed and/or acceleration of vehicles.

3. For urban traffic networks, we distinguish different possible traffic scenarios (including
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Table 6.1: Frequently used mathematical notations for Chapter 6.

u a node in the S-model corresponding to an upstream intersection

d a node in the S-model corresponding to a downstream intersection

(u,d) a link in the S-model with u as its upstream node and d as its downstream node

N lane
u,d number of lanes in link (u,d)

kd simulation time step counter for link (u,d)

cd sampling time of the traffic light located at the intersection corresponding to node d

nu,d (kd ) total number of vehicles on link (u,d) in between time steps kd and kd +1

qu,d (kd ) number of vehicles in the queue on link (u,d) in between time steps kd and kd +1

qu,d ,o (kd ) number of vehicles in the queue on link (u,d) in between time steps kd and kd +1 that intend to

move to the outgoing link (d ,o) at time step kd

Ou,d set of all downstream nodes of the outgoing links of link (u,d)

Iu,d set of all upstream nodes of the incoming links of link (u,d)

αenter,l
u,d (kd ) average entering flow rates of link (u,d) within the time interval [kd cd , (kd +1)cd )

αleave,l
u,d (kd ) average exiting flow rates of link (u,d) within the time interval [kd cd , (kd +1)cd )

αleave,l
u,d ,o (kd ) average leaving flow rate of the sub-stream on link (u,d) that intends to move towards o within

time interval [kd cd , (kd +1)cd )

α
arrive,q
u,d ,o (kd ) average arriving flow rate at the tail of the waiting queue on link (u,d) of the sub-stream that

intends to move towards o within [kd cd , (kd +1)cd )

βu,d ,o (kd ) fraction of the vehicles on link (u,d) that intend to turn to node o

µu,d saturated leaving flow rate of the vehicles on link (u,d)

gu,d ,o (kd ) green time length during the time interval [kd cd , (kd +1)cd ) for the traffic sub-stream that

leaves link (u,d) towards node o

Cu,d storage capacity of link (u,d)

τu,d (kd ) average delay time of the vehicles on link (u,d) within the time interval [kd cd , (kd +1)cd ) that is

needed by the entering vehicles to the link to reach the tail of the waiting queue

aacc
u,d acceleration rate of the vehicles on link (u,d)

adec
u,d deceleration rate of the vehicles on link (u,d)

v free
u,d free-flow speed of the vehicles moving on link (u,d)

v idle
u,d idling speed of the vehicles in the queue on link (u,d)

Ē b
e,u,d total emissions of pollutant e on link (u,d) caused by those vehicles that show behavior b

(free-flow, idling, decelerating, accelerating) on this link

l veh average length of the vehicles

under-saturated, saturated, and over-saturated) within a mesoscopic structure. Then
we separate different groups of vehicles that may be observed for each scenario. The
distinction is based on the traffic behavior each group of vehicles show within the net-
work. Time-speed curves are extracted for different groups of vehicles for each traffic
scenario, where the curve represents the average behavior of the vehicles in that group
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for a (possibly virtual) representative vehicle.

4. We extract the formulas that compute the time spent and the emissions of the represen-
tative vehicle of each group, which, multiplied by the total number of vehicles within the
group, give the total time spent and the total emissions of the vehicles in that group.

5. The interfacing and integrating framework proposed in this chapter results in a meso-
scopic flow and emission model, where the proposed integrating approach is applica-
ble to any macroscopic flow model that updates at every simulation time step the total
number of vehicles observed in a link and the number of vehicles waiting in the queue
in a link, and also any microscopic emission model that computes the emissions and/or
fuel consumption of the vehicles in a network based on their individual instantaneous
speed and acceleration.

The rest of the chapter is organized as follows. Section 6.2 proposes some extensions for
the original S-model in order to make this model more accurate. In Section 6.3, we give gen-
eral formulations to compute the emissions using the instantaneous speed and the instan-
taneous acceleration of the vehicles for different traffic behaviors in urban traffic networks.
Sections 6.4, 6.5, and 6.6 present formulations for adapting the equations given in Section 6.3
for different urban traffic scenarios, i.e., the under-saturated, saturated, and over-saturated
scenarios. Section 6.7 presents the results of some case studies, where the traffic microsim-
ulator SUMO is used together with VT-micro as the evaluation platform for estimating the
emission levels. These estimated emission values are compared with the emissions computed
by the new mesoscopic integrated flow-emission model. Section 6.8 concludes the work and
gives topics for future work. The road map of this chapter is shown in Figure 6.1. Moreover,
Table 6.1 gives the mathematical notations that are frequently used in Chapter 6.

This chapter of the thesis is based on [73].

6.2 Extensions for the S-model

One possible option for an urban traffic flow model that can be used in our proposed inte-
grated framework is the S-model (see Section 5 for details regarding the original model). In
the original S-model, only the dynamics of the system within the network of interest is con-
sidered. However, the dynamics of the source nodes, which are located on the boundaries of
the network, is missing. This may not bring issues when the source links of the network are
under-saturated. However, for larger demands at the source nodes, this may result in satu-
rated and over-saturated links; hence, defining the appropriate dynamics for the boundaries
of the network is essential. This is because the additional vehicles that cannot immediately
enter the network should not be injected into the entering links. However, such an issue oc-
curs with the original S-model and may lead to negative states with large absolute values. In
contrast, those vehicles should be kept in queues that will gradually form at the sources of the
network, and they should be injected into the network only when the available free space of
the source links allows it.
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Figure 6.2: Two source links (us,1, s) and (us,2, s) that feed links (s,ds,1) and (s,ds,2) of the net-

work via source node s.

In addition, in the original S-model the formula for the computation of the arriving flow
α

arrive,q
u,d ,o (kd ) (see (5.7)) is extracted based on the (hidden) assumption that the delay times for

the vehicles are time-independent1 (see [96] for more details). Numerical experiments show
that with this assumption and by using (5.7), in some cases the error in computation of the
updated states can grow up to 50% (this error is larger when the difference between the previ-
ous and current delay times is prominent, e.g., when the traffic scenario on the link changes
from under-saturated to saturated or over-saturated in between two consecutive time steps).

Therefore, in this section, we first propose some extensions for the S-model to make it
more accurate. To solve the first issue, we propose an additional network element for the
S-model called the source link, which is a link that has one of the source nodes of the net-
work as its downstream node (see Figure 6.2), and that feeds the network with new demand at
every time step. Moreover, we develop a general formulation for discrete-time systems with
time-varying delays, which produces accurate results compared with the results produced by
the continuous-time formulation. We later use this discrete-time representation to compute
α

arrive,q
u,d ,o (kd ).

6.2.1 Source queues

The original S-model allows any number of vehicles that is dictated by the demands to enter
the sources of the urban traffic network. This causes the model to fail in reliable estimation of
the traffic states, especially for high demands at the sources of the network, which may result
in saturated and over-saturated scenarios. For instance, the total number of the vehicle on
the entrance links of the urban traffic network may grow exponentially as the demand grows,
and hence can easily exceed the link’s capacity. Therefore, in this section we define additional
formulations for the S-model, which allow some origin queues to be formed at the entrances

1We call it a hidden assumption since in the formulas given by Lin et al. [98], the delay time is expressed as
a function of time, but later on it is treated as a time-independent variable.
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of the urban traffic network in case there is no available space for the vehicles that intend to
enter the traffic network.

Suppose thatS is the set of all source nodes of the network, U (s) andD(s) are the sets of all
upstream nodes of s ∈S outside of the network and all downstream nodes of s ∈S inside the
network, us,i ∈ U (s), i ∈ {1, . . . ,card(U (s))} denotes the upstream nodes of source node s ∈ S

outside of the network, and ds, j ∈D(s), j ∈ {1, . . . ,card(D(s))} denotes the downstream nodes
of source node s inside of the network. A queue will be formed within a source link (us,i , s),
if there is not enough free space for the given demand on those links of the network that are
connected to this source link via node s (i.e., links (s,ds, j ), j ∈ {1, . . . ,card(D(s))}). We define
qsource

s (ks ), called the source queue, as the overall queue length in [veh/s] at source node s

at time step ks . Thus the source queue qsource
s is the summation of all queue lengths for the

source links for node s. We then have

qsource
s (ks +1) = qsource

s (ks )+
(

αdem
s (ks)−αleave,l

s (ks )
)

cs , (6.1)

where αdem
s (ks ) is the cumulative demand flow in [veh/s] at source node s at time step ks ,

given by

αdem
s (ks ) =

∑card(D(s))
j=1 αdem

s,ds, j
(ks ), (6.2)

and αleave,l
s (ks ) is the cumulative leaving flow in [veh/s] at source node s at time step ks (i.e.,

the total flow of vehicles that can enter the network via source node s during [ks cs , (ks +1)cs )).
We have

αleave,l
s (ks) = min

{

µs ,αdem
s (ks)+

qsource
s (kds

)

cs
,
∑card(D(s))

j=1

Cs,ds, j
−ns,ds, j

(kds
)

cs

}

,

with µs =
∑card(U (s))

i=1 µus,i ,s the cumulative saturated leaving flow rate at source node s. Then

αenter,l
s,ds, j

=βsource
s,ds, j

·αleave,l
s (ks), whereβsource

s,ds, j
=

∑card(U (s))
i=1 βus,i ,s,ds, j

∑card(U (s))
i=1

∑card(D(s))
j=1 βus,i ,s,ds, j

and j ∈ {1, . . . ,card(D(s))}.

6.2.2 Extended formulation of the time-delayed equation for arriving flow

To compute α
arrive,q
u,d (kd ), we should consider the time the entering vehicles in link (u,d) need

to reach the tail of the waiting queue, i.e., the delay time τu,d (kd ), and the entering rate of the
vehicles in the link τu,d (kd ) time units ago. Hence, for the queue length qu,d ,o (kd ), we actually
have a time-delayed difference equation in the discrete-time domain. We first consider a gen-
eral case and propose and prove a lemma that can also be used to formulate the discrete-time
delayed equation of the S-model.

Consider the time-delayed differential equation

ẋ(t ) = Ax(t )+Bu(t −τ(t ))+C e(t ), (6.3)

with u(·) and e(·) two continuous-time functions representing the inflow and outflow func-
tions of the dynamic system. We should first discretize the model to find x̃(k + 1) from the
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current state x̃(k), where the discrete-time variables are identified by a tilde, and the time
step counter is denoted by k. Additionally, we define

τ(t ) = δ(t )h +γ(t ), (6.4)

δ(t ) =
⌊

τ(t )/h
⌋

, (6.5)

γ(t ) = rem{τ(t ),h}, (6.6)

where h is the sampling time. Note that for the discrete form of τ(t ), δ(t ), and γ(t ), we will use
τ̃(k), δ̃(k), and γ̃(k), respectively.

Lemma 6.1 The equivalent difference equation in the discrete-time domain of the delayed dif-

ferential equation (6.3), and with an input function u(·) that is piece-wise constant in the in-

terval [ch, (c +1)h), c ∈Z, is

x̃(k +1) = Ãx̃(k)+
|δ̃(k−1)−δ̃(k)+1|∑

i=0
B̃i (k)ũ

(

k −1−max
(

δ̃(k), δ̃(k −1)+1
)

+ i
)

+C̃ ẽ(k), (6.7)

with

B̃0(k) =

{
γ̃(k −1)/h, if δ̃(k −1)+1 ≥ δ̃(k),
γ̃(k)/h, if δ̃(k −1)+1 < δ̃(k),

B̃i (k) = 1, for i ∈
{

1, . . . ,
∣
∣δ̃(k −1)− δ̃(k)+1

∣
∣−1

}

,

B̃|δ̃(k−1)−δ̃(k)+1|(k) =

{ (

h − γ̃(k)
)

/h, if δ̃(k −1)+1 ≥ δ̃(k),
(

h − γ̃(k −1)
)

/h, if δ̃(k −1)+1 < δ̃(k).

Proof : We should find the effective inflow ūh(t ) during (t −h, t ] for the delayed differential
equation (6.3) with a time-varying delay function. From (6.3), the effective inflow at time
instant t is the delayed inflow u(t −τ(t )). Therefore, the effective inflow within the interval
(t −h, t ] is indeed the cumulative value of the inflows from time instant t −h −τ(t ) until time
instant t −τ(t ). Correspondingly, we have

ūh(t ) =
1

h

∫t−τ(t)

t−h−τ(t−h)
u(θ)dθ. (6.8)

Remark 6.1 The inequality δ̃(k) ≤ δ̃(k − 1) in the discrete-time domain is equivalent to the
inequality t −h −τ(t −h) < t −τ(t ) in the continuous-time domain as explained next:

δ̃(k) ≤ δ̃(k −1) ⇒ δ̃(k) < δ̃(k −1)+1

Since both sides of the inequality are integer numbers, by adding two values smaller than
unity to both sides, the strict inequality still holds. Hence,

δ̃(k)+
γ̃(k)

h
< δ̃(k −1)+

γ̃(k −1)

h
+1 ⇒
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δ̃(k)h + γ̃(k) < δ̃(k −1)h + γ̃(k −1)+h ⇒

τ(t ) < τ(t −h)+h ⇒

t −h −τ(t −h) < t −τ(t ).

Similarly, we can show that the inequality δ̃(k) > δ̃(k−1) in the discrete-time domain is equiv-
alent to the inequality t −h −τ(t −h) ≥ t −τ(t ) in the continuous-time domain. 2

Assume a piece-wise constant inflow function u(·) in [st , st +h), s ∈ Z, (see Figure 6.3), and
τ(θ) = δ(θ)h+γ(θ) (with θ a continuous-time variable). We separate the two cases δ̃(k) ≤ δ̃(k−

1) or equivalently in the continuous-time domain t −h −τ(t −h) < t −τ(t ) (see Remark 6.1),
and δ̃(k) > δ̃(k −1) or equivalently in the continuous-time domain t −h −τ(t −h) ≥ t −τ(t )
(see Remark 6.1). These two cases are represented in Figures 6.3 and 6.4).

Case 1. δ̃(k) ≤ δ̃(k −1): (6.8) can be expanded as follows (also see Figure 6.3):

ūh(t ) =
1

h

∫t−h−δ(t−h)h

t−h−δ(t−h)h−γ(t−h)
u(θ)dθ

+
1

h

∫t−h−(δ(t−h)−1)h

t−h−δ(t−h)h
u(θ)dθ

+ . . .

+
1

h

∫t−h−δ(t)h

t−h−(δ(t)+1)h
u(θ)dθ

+
1

h

∫t−δ(t)h−γ(t)

t−h−δ(t)h
u(θ)dθ

=
1

h
γ(t −h)u (t −h − (δ(t −h)+1)h)

+
1

h

(

h
δ(t−h)−δ(t)∑

i=1
u (t −h − (δ(t −h)− i +1)h)

)

+
h −γ(t )

h
u (t −h −δ(t )h) .

(6.9)

Knowing that t −h and t in the continuous-time domain correspond, respectively, to
k −1 and k in the discrete-time domain, the above equation can be written as

˜̄uh(k) =
δ̃(k−1)−δ̃(k)+1∑

i=0
B̃i (k)ũ

(

k −1− δ̃(k −1)−1+ i
)

, (6.10)

with

B̃0(k) = γ̃(k −1)/h,

B̃i (k) = 1, for i ∈
{

1, . . . , δ̃(k −1)− ˜δ(k)
}

,

B̃δ̃(k−1)−δ̃(k)+1(k) =
(

h − γ̃(k)
)

/h.
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inflow

time

γ(t −h) γ(t )
∆t = h

u(t −h)

u(t )
u(t −h −δ(t −h)h)

u(t −h − (δ(t −h)+1)h)
u(t −h −δ(t )h)

t −h t +htt −h −δ(t )ht −h −δ(t −h)h

τ(t −h)

τ(t )

Figure 6.3: Case 1. δ̃(k) ≤ δ̃(k −1): the effective inflow during (t −h, t ] for a delayed-time

differential equation with a time-varying delay.

Case 2. δ̃(k) > δ̃(k −1): (6.8) can be expanded as follows (also see Figure 6.4):

ūh(t ) =
1

h

∫t−δ(t)h

t−δ(t)h−γ(t)
u(θ)dθ

+
1

h

∫t−δ(t)h+h

t−δ(t)h
u(θ)dθ

+ . . .

+
1

h

∫t−h−δ(t−h)h−γ(t−h)

t−h−δ(t−h)h−h
u(θ)dθ

=
1

h
γ(t )u (t − (δ(t )+1)h)

+
1

h

(

h
δ(t)−δ(t−h)−2∑

i=1
u (t − (δ(t )− i +1)h)

)

+
h −γ(t −h)

h
u (t −h −δ(t −h)h −h) .

(6.11)

Knowing that t −h and t in the continuous-time domain correspond, respectively, to
k −1 and k in the discrete-time domain, the above equation can be written as

˜̄uh(k) =
δ̃(k)−δ̃(k−1)−1∑

i=0
B̃i (k)ũ

(

k −1− δ̃(k)+ i
)

, (6.12)

with

B̃0(k) = γ̃(k)/h,

B̃i (k) = 1, for i ∈
{

1, . . . , δ̃(k)− δ̃(k −1)−2
}

,
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inflow

time

γ(t −h)γ(t )
∆t = h

u(t −h)

u(t )
u(t −δ(t )h)

u(t −h −δ(t −h)h −h)
u(t − (δ(t )+1)h)

t −h t +htt −h −δ(t −h)h −ht −δ(t )h

τ(t −h)

τ(t )

Figure 6.4: Case 2. ˜δ(k) > δ̃(k −1): the effective inflow during (t −h, t ] for a delayed-time

differential equation with a time-varying delay.

B̃δ̃(k)−δ̃(k−1)−1(k) =
(

h − γ̃(k −1)
)

/h.

From (6.10) and (6.12), we can obtain (6.7). 2

Using Lemma 6.1, x̃(k) will be substituted by qu,d ,o (kd ), and the factors Ã and C̃ by 1 and
−1. We obtain

qu,d ,o (kd +1) = qu,d ,o (kd )+

βu,d ,o (kd ) ·

|δ̃u,d (kd−1)−
δ̃u,d (kd )+1|∑

i=0
B̃u,d ,i (kd )αenter,l

u,d

(

kd −1−max
(

δ̃u,d (kd ), δ̃u,d (kd −1)+1
)

+ i
)

−

αleave,l
u,d ,o (kd )cd ,

(6.13)
where

B̃u,d ,0(kd ) =

{
γ̃u,d (kd −1)/cd , if δ̃u,d (kd −1)+1 ≥ δ̃u,d (kd ),
γ̃u,d (kd )/cd , if δ̃u,d (kd −1)+1 < δ̃u,d (kd ),

B̃u,d ,i (kd ) = 1, for i ∈
{

1, . . . ,
∣
∣δ̃u,d (kd −1)− δ̃u,d (kd )+1

∣
∣−1

}

,

B̃u,d ,|δ̃u,d (kd−1)−δ̃u,d (kd )+1|(kd ) =

{ (

cd − γ̃u,d (kd )
)

/cd , if δ̃u,d (kd −1)+1 ≥ δ̃u,d (kd ),
(

cd − γ̃u,d (kd −1)
)

/cd , if δ̃u,d (kd −1)+1 < δ̃u,d (kd ).
(6.14)

and

δu,d (t ) =

⌊
τu,d (t )

cd

⌋

, (6.15)

γu,d (t ) = rem
{

τu,d (t ),cd

}

. (6.16)
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Comparing (6.13) with (5.2) and (5.8), we conclude that

α
arrive,q
u,d (kd ) =

|δ̃u,d (kd−1)−

δ̃u,d (kd )+1|∑

i=0
B̃u,d ,i (kd )αenter,l

u,d

(

kd −1−max
(

δ̃u,d (kd ), δ̃u,d (kd −1)+1
)

+ i
)

.

(6.17)
Moreover, the delay time τ̃u,d (kd ) at time step kd (assumed to be constant within [kd cd , (kd +

1)cd )) is computed as follows. Vehicles are assumed to enter the link with2 the free-flow speed
and will move for T free

u,d (kd ) time units with this speed. If there is an idling queue in front of
them, after a while they will decelerate to reach the idling speed of the vehicles in the queue.
During this period, the distance between the upstream intersection and the tail of the waiting
queue will be traveled by these vehicles (note that in the original S-model [98], it is assumed
that this distance is traveled with a constant speed v free

u,d ).
The following lemma, which is trivial to prove, will be used to determine the delay time:

Lemma 6.2 For a particle that starts moving with the initial speed “v0” with a constant accel-

eration “a” the displacement, ∆x(t ), after t time units is

∆x(t ) =
1

2
at 2

+v0t .

Therefore, for the vehicles that enter the link and then reach the idling queue after a while, we
can write

(

Cu,d −qave
u,d (kd )

)

l veh

N lane
u,d

= v free
u,d ·T free

u,d (kd )+
1

2
adec

u,d

(
v idle

u,d −v free
u,d

adec
u,d

)2

+v free
u,d

(
v idle

u,d −v free
u,d

adec
u,d

)

, (6.18)

where Cu,d is the storage capacity of link (u,d), qave
u,d (kd ) is the average queue length on link

(u,d) within [kd cd , (kd +1)cd ), l veh is the average length of the vehicles, N lane
u,d is the number

of lanes in link (u,d), v free
u,d and v idle

u,d are the free-flow and idling speed on link (u,d), T free
u,d (kd )

is the time that the vehicles on link (u,d) move with a free-flow speed before they reach the
tail of the waiting queue, and adec

u,d is the deceleration of the vehicles on link (u,d). Note that

v idle
u,d −v free

u,d

adec
u,d

is the time needed for vehicles to reach v idle
u,d from v free

u,d by the constant decelera-

tion adec
u,d . Then the delay time τ̃u,d (kd ) of the vehicles is obtained by

τ̃u,d (kd ) = T free
u,d (kd )+

v idle
u,d −v free

u,d

adec
u,d

, (6.19)

2The typical values of the free-flow speeds and accelerations/decelerations can be determined via identify-
ing the S-model’s parameters w.r.t. real-life data or data from a traffic microsimulator. The difference between
the output produced by the model and the data is then minimized by solving an optimization problem offline
[131].



Chapter 6 - A mesoscopic framework for integrating traffic flow and emission models 121

where the value of T free
u,d (kd ) is computed from (6.18). Hence, the delay time is

τ̃u,d (kd ) =

(

Cu,d −qave
u,d (kd )

)

l veh

N lane
u,d v free

u,d

−

(

v idle
u,d −v free

u,d

)2

2adec
u,d v free

u,d

. (6.20)

In order to compute the average queue length qave
u,d (kd ), we propose the following three op-

tions:

Option 1. The average queue length is approximated by the queue length at kd (computed
by (5.2) and (5.3)), i.e.,

qave
u,d (kd ) = qu,d (kd ). (6.21)

Option 2. The average queue length is approximated by the average of the queue lengths at
kd and at kd +1, where to estimate qu,d (kd +1) at kd we can use extrapolation3, i.e.,

qu,d (kd +1) = qu,d (kd )+
(

qu,d (kd )−qu,d (kd −1)
)

.

Then we have:

qave
u,d (kd ) =

qu,d (kd )+qu,d (kd +1)

2

=
3

2
qu,d (kd )−

1

2
qu,d (kd −1).

(6.22)

Option 3. The output of a predictor-corrector procedure, such as the procedure explained
below:

step 1. Use either (6.21) or (6.22) to initialize the value of qave
u,d (kd ).

step 2. Apply this qave
u,d (kd ) to (6.20) and estimate τ̃u,d (kd ).

step 3. Use the computed value of τ̃u,d (kd ) in (6.15), (6.16), and (6.14).

step 4. Substitute the values that are determined in step 3 in (6.13) and (5.3) to get an
update for qu,d (kd +1).

step 5. Apply (6.22) to estimate an updated value for qave
u,d (kd ).

step 6. If a predefined convergence criterion or maximum number of iterations is
reached, then stop the procedure. Otherwise, go to step 2.

6.3 General framework for emission models

In this section, we integrate the S-model with the VT-micro emission model, which produces
the instantaneous fuel consumption and the instantaneous emissions of CO, HC, and NOx

3Note that for computing qu,d (kd +1) using (5.2) and (5.3), we should already know τ̃u,d (kd ). Hence, we use
extrapolation first to estimate qu,d (kd +1) from the known values of qu,d (kd −1) and qu,d (kd ). Then we can use
this estimated value in (6.18) to compute τ̃u,d (kd ).
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for a vehicle based on its instantaneous speed and acceleration. In the end, we will see that
the developed mesoscopic integrated model can admit any urban traffic flow model that pro-
duces the number of vehicles and the queue lengths on different links, and any microscopic
emission model that computes the instantaneous fuel consumption and the instantaneous
emissions of e ∈ E, with E the set of all polluting substances that are taken into account by the
model, from the instantaneous speed vi (k) and the instantaneous acceleration ai (k) of indi-
vidual vehicles. Hence, we should extract vi (k) and ai (k) from the urban traffic flow model
for groups of vehicles (also called the traffic streams) that show a similar behavior. We first
categorize different driving behaviors observed in urban traffic networks for different traffic
scenarios.

6.3.1 Traffic behaviors for urban networks

We simplify the possible driving behaviors that might be observed for vehicles in parts of the
simulation time slot and in different urban traffic scenarios via the following categories:

1. Free-flow behavior, for which the traffic stream moves with the free-flow speed v free
u,d on

link (u,d), and afree
u,d = 0.

2. Idling behavior, for which the traffic stream is waiting in a queue; we assume that the
vehicles have a constant idling speed v idle

u,d , and aidle
u,d = 0.

3. Decelerating behavior, for which the traffic stream decreases its speed from v
b1
u,d to

v
b2
u,d with a constant deceleration adec

u,d , with b1 ∈ {free,middle} and b2 ∈ {middle, idle},

and b1 6= b2. Note that v middle
u,d is a speed higher than the idling speed v idle

u,d and lower

than the free-flow speed v free
u,d . The traffic stream that already has an accelerating (a

decelerating) behavior, would change its behavior to a decelerating (an accelerating)
one as its speed reaches v middle

u,d (more details will be given later in this chapter).

4. Accelerating behavior, for which the traffic stream increases its speed from v
b2
u,d to v

b1
u,d

with a constant acceleration4 aacc
u,d , with b1 ∈ {free,middle} and b2 ∈ {middle, idle}, and

b1 6= b2.

5. Nonstop behavior, for which the traffic stream that has had a free-flow behavior dur-
ing the current cycle, faces a green light at the end of the cycle. For a nonstop traffic
behavior, two different reactions by the drivers might be observed:

• In case the number of vehicles on the road is relatively low, as the traffic stream
approaches the green light it might increase its speed from v free

u,d to v free+
u,d by a con-

stant acceleration aacc
u,d . This situation actually indicates that the ratio of the arriv-

ing flow at the end of the link, αarrive,q
u,d (kd ), and the saturated average leaving flow,

4The acceleration and deceleration in this thesis adopt signed numbers, i.e., adec
u,d < 0 and aacc

u,d > 0.
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µu,d , is less than or equal to a predefined threshold, λu,d . Hence,

α
arrive,q
u,d (kd )

µu,d
≤λu,d ,

with λu,d ∈ [0,1]. The parameter λu,d could be determined via offline model iden-
tification using real-life datasets or data from a traffic microsimulator [131].

• In case the number of vehicles on the road is relatively high, as the traffic stream
approaches the green light it might decrease its speed from v free

u,d to v free−
u,d by a con-

stant deceleration adec
u,d . Mathematically, this situation can be formulated by

α
arrive,q
u,d (kd )

µu,d
>λu,d .

In the following section, we formulate the instantaneous emissions for each of the above
behaviors, using a microscopic emission model that uses the instantaneous acceleration and
the instantaneous speed of the vehicles. Note that since the nature of a nonstop behavior is
either an accelerating or a decelerating behavior, we do not distinguish the nonstop behavior
from the accelerating/decelerating behaviors in the following discussions.

6.3.2 Emissions for different traffic behaviors

In the previous section, we distinguished different traffic behaviors that may be observed in
an urban traffic network. Next, we will formulate the emissions that are produced by the
vehicles that show these behaviors.

• Total emissions of e ∈ E caused by free-flow behavior on link (u,d) within the interval

I
free
u,d (kd ), with I

free
u,d (kd ) the union of all sub-intervals I

free, j

u,d (kd ) of [kd cd , (kd + 1)cd ) for
which at least one vehicle on the link shows a free-flow behavior, is given by

Ē free
e,u,d (kd ) =

N free
u,d (kd )
∑

j=1

(

n
free, j

u,d (kd )T
free, j

u,d (kd )
)

·Ee

(

v free
u,d ,0

)

, (6.23)

where N free
u,d (kd ) denotes the number of all sub-intervals I

free, j

u,d (kd ) of [kd cd , (kd +1)cd ),

during which free-flow behavior is observed (i.e., I
free
u,d (kd ) =

N free
u,d (kd )
⋃

j=1
I
free, j

u,d (kd )), and

n
free, j

u,d (kd ) is the total number of vehicles that show a free-flow behavior within I
free, j

u,d (kd ),

and T
free, j

u,d (kd ) is the length of Ifree, j

u,d (kd ).

• Total emissions of e ∈ E caused by idling behavior on link (u,d) within the interval

I
idle
u,d (kd ), with I

idle
u,d (kd ) the union of all sub-intervals I

idle, j

u,d (kd ) of [kd cd , (kd + 1)cd ) for
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which at least one vehicle on the link shows an idling behavior, is given by

Ē idle
e,u,d (kd ) =

N idle
u,d (kd )
∑

j=1

(

n
idle, j

u,d (kd )T
idle, j

u,d (kd )
)

·Ee

(

v idle
u,d ,0

)

, (6.24)

where N idle
u,d (kd ) denotes the number of all sub-intervals I

idle, j

u,d (kd ) of [kd cd , (kd +1)cd ),

during which idling behavior is observed, and n
idle, j

u,d (kd ) is the total number of vehicles

that show an idling behavior within I
idle, j

u,d (kd ), and T
idle, j

u,d (kd ) is the length of Iidle, j

u,d (kd ).

• Total emissions of e ∈ E caused by decelerating behavior on link (u,d) within the inter-

val Idec
u,d (kd ), with I

dec
u,d (kd ) the union of all sub-intervals Idec, j

u,d (kd ) of [kd cd , (kd +1)cd ) for
which at least one vehicle on the link shows a decelerating behavior, is given by

Ē dec
e,u,d (kd ) =

Ndec
u,d (kd )
∑

j=1
n

dec, j

u,d (kd ) ·
∫

I
dec, j

u,d (kd )

Ee

(

v(t ), adec
u,d

)

·dt , (6.25)

where N dec
u,d (kd ) denotes the number of all sub-intervals I

dec, j

u,d (kd ) of [kd cd , (kd +1)cd ),

during which a decelerating behavior is observed, n
dec, j

u,d (kd ) is the number of vehi-

cles that show a decelerating behavior within I
dec, j

u,d (kd ), and T
dec, j

u,d (kd ) is the length of

I
dec, j

u,d (kd ). Suppose that

I
dec, j

u,d (kd ) =
[

t
b1, j

u,d , t
b2, j

u,d

]

, j ∈ {1, . . . , N dec
u,d (kd )},

then by changing the integration variable from time t to speed v (knowing that dv =

adec
u,d ·dt ), we obtain:

Ē dec
e,u,d (kd ) =

Ndec
u,d (kd )
∑

j=1
n

dec, j

u,d (kd ) ·

t
b2, j

u,d∫

t
b1, j

u,d

Ee

(

v(t ), adec
u,d

)

·dt

=

Ndec
u,d (kd )
∑

j=1

n
dec, j

u,d (kd )

adec
u,d

·

v
b2, j

u,d∫

v
b1, j

u,d

Ee

(

v, adec
u,d

)

·dv,

(6.26)

with v
b1, j

u,d and v
b2, j

u,d the speed of the decelerating vehicles in I
dec, j

u,d (kd ) at, respectively,

t
b1, j

u,d and t
b2, j

u,d , and with the following possible combinations for b1 and b2:

b1 = free ∧ b2 = middle,
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b1 = middle ∧ b2 = idle,

b1 = free ∧ b2 = idle.

• Total emissions caused by accelerating behavior on link (u,d) can be computed using a
similar approach as we used for the decelerating behavior. We have

Ē acc
e,u,d (kd ) =

Nacc
u,d (kd )
∑

j=1

n
acc, j

u,d (kd )

aacc
u,d

·

v
b2, j

u,d∫

v
b1, j

u,d

Ee

(

v, aacc
u,d

)

·dv, (6.27)

where N acc
u,d (kd ) denotes the number of all sub-intervals Iacc, j

u,d (kd ) of [kd cd , (kd +1)cd ), during

which an accelerating behavior is observed, n
acc, j

u,d (kd ) is the number of vehicles that show an

accelerating behavior within I
acc, j

u,d (kd ), and T
acc, j

u,d (kd ) is the length of Iacc, j

u,d (kd ). Moreover, the
following combinations can be used for b1 and b2:

b1 = middle ∧ b2 = free,

b1 = idle ∧ b2 = middle,

b1 = idle ∧ b2 = free.

In the next sections (i.e., Sections 6.4, 6.5, and 6.6), we consider the following three traffic
scenarios that might happen in an urban traffic network:

• under-saturated scenario,

• saturated scenario,

• over-saturated scenario.

For each of the above scenarios, we distinguish different groups of vehicles based on the traffic
behaviors observed (see Section 6.3.1 for potential traffic behaviors). The traffic behavior of
each group of vehicles is then illustrated via a time-speed curve, where this curve represents
the behavior of a single representative vehicle, which shows the average collective behavior
of that group. We define this average behavior as follows: since vehicles in each group will
enter the link at different time instants, the starting time of the average time-speed curve is
considered as the midpoint of the starting times of the curves corresponding to the first and
the last vehicle in that group. Therefore, the time-speed curve corresponding to the represen-
tative vehicle illustrates the average time spent on a specific behavior that might be observed
for each vehicle in that group. Later on, by computing the total number of vehicles in each
group, we can find an estimate of the total emission of the vehicles in that group.

For the sake of simplicity, we suppose that all vehicles waiting in a queue will instanta-
neously react to the traffic light as it turns green, and that there will be no delay for the follow-
ing vehicles to imitate the speed of the leading vehicles. Therefore, for the vehicles that idle
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t0 t1

Figure 6.5: Traffic behaviors on link (u,d) within one cycle for the under-saturated urban traf-

fic scenario.

in front of a red light, after the light turns green the time-speed curves will overlap. Vehicles
in each group will show the same combination of behaviors given in Section 6.3.1. For the
representative vehicle, the time duration of each of these behaviors is considered to be the
average of the time durations with that specific behavior for the first and the last vehicle in
the group.

6.4 Flow-emission model for the under-saturated scenario

The under-saturated scenario is observed when the demand (i.e., the number of vehicles wait-
ing in the queue and the number of the arriving vehicles at the tail of the queue) is less than
the number of vehicles that can be discharged by the saturated average leaving flow rate in
one cycle. Hence, for the under-saturated scenario, the queue within the link will be com-
pletely dissolved during one cycle. Mathematically, this is expressed as follows:

qu,d (kd )+cd ·α
arrive,q
u,d (kd ) ≤

∑

o∈Ou,d

βu,d ,o ·µu,d ·gu,d ,o (kd ). (6.28)

Suppose that each cycle starts by a red phase; then the vehicles observed within one cycle
with an under-saturated condition are divided into the following four groups:

Group 1: composed of those vehicles that are already in the link standing in a queue at the
beginning of the cycle (see the blue curve in Figure 6.5 for the average behavior of this
group); they idle with a constant speed v idle

u,d from the beginning of the cycle till the traf-
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fic light turns green (at t1 in Figure 6.5); then they accelerate5 with aacc
u,d and move ahead

till they leave the link. Looking at the average behavior of the representative vehicle of
group 1 (the blue curve in Figure 6.5), the time instant at which the representative ve-
hicle starts to accelerate is to the right of the instant t1. This is because when the traffic
light turns green, the vehicles in the queue can accelerate only one-by-one, i.e., the first
vehicle in the queue starts to accelerate at t1, while the other vehicles can accelerate
only when the rest of the vehicles in the queue front of them have already accelerated
(also see Figure 6.6(a), which represents the time-speed curve of the first and the last
vehicle of group 1). As shown in Figure 6.5, this group of vehicles might also show a
free-flow behavior at the end before they leave the link.

Group 2: composed of those vehicles that arrive at the tail of the waiting queue in the current
cycle, after they decelerate from v free

u,d to v idle
u,d . They idle for a while together with the

waiting queue, and then start to accelerate as the traffic light turns green. The average
behavior of this group is shown by the red time-speed curve in Figure 6.5.

Group 3: composed of those vehicles that arrive at the tail of the waiting queue in the current
cycle, when the queue has already started to move. The representative of this group
will decelerate with adec

u,d to the speed v middle
u,d . For v middle

u,d we have (this formula will be
motivated later in this chapter)

v middle
u,d =

v free
u,d +v idle

u,d

2
. (6.29)

The green curve in Figure 6.5 shows the average behavior of this group. These vehicles
might show a free-flow behavior at the end of their trip in the link.

Group 4: composed of those vehicles that arrive in the link with v free
u,d , and continue moving

ahead with this speed until they approach the end of the link and show a nonstop be-
havior (see the black curve in Figure 6.5 for the average behavior of this group).

We first give the formulas that represent the emission model corresponding to the urban
under-saturated scenario. Then we explain in more detail how the time-speed curves and the
following formulas are obtained. For the number of vehicles in each group, we have

n
G1,usat
u,d (kd ) = qu,d (kd ), (6.30)

n
G2,usat
u,d (kd ) =α

arrive,q
u,d (kd ) ·T arrive,G2,usat

u,d (kd ), (6.31)

n
G3,usat
u,d (kd ) =α

arrive,q
u,d (kd ) ·T arrive,G3,usat

u,d (kd ), (6.32)

5For the sake of simplicity in the notations, for all the three scenarios under-saturated, saturated, and over-
saturated, we have used the same acceleration aacc

u,d and deceleration adec
u,d . This can easily be extended by consid-

ering different acceleration rates aacc,usat
u,d , aacc,sat

u,d , and aacc,osat
u,d , and different deceleration rates adec,usat

u,d , adec,sat
u,d ,

and adec,osat
u,d for different traffic scenarios, where “usat” refers to the under-saturated scenario, “sat” refers to the

saturated scenario, and “osat” refers to the over-saturated scenario.
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n
G4,usat
u,d (kd ) = nusat

u,d (kd )−
3∑

i=1
n

Gi ,usat
u,d (kd ), (6.33)

with

T
arrive,G2,usat
u,d (kd ) =

µu,d

µu,d −α
arrive,q
u,d (kd )



cd − gu,d (kd )+
n

G1,usat
u,d (kd )

µu,d
−τ

usat,G2
u,d (kd )



 , (6.34)

T
arrive,G3,usat
u,d (kd ) = τ

usat,G2
u,d (kd )+

v free
u,d −v idle

u,d

aacc
u,d

, (6.35)

where τ
usat,G2
u,d (kd ) is the average time that vehicles in group 2 take to reach the tail of the

waiting queue in front of them from the time they enter the link (note that although in Sec-
tion 6.2.2, we have distinguished the discrete-time variables from their corresponding
continuous-time ones by a tilde symbol, for the sake of simplicity for the notations, we do not
use a tilde symbol for the discrete-time delay in the rest of the thesis). To compute τ

usat,G2
u,d (kd )

within the time interval [kd cd , (kd +1)cd ), we use (6.18) with6 q
G2,ave
u,d (kd ) = n

G1,usat
u,d (kd ), which

gives

τ
usat,G2
u,d (kd ) =

(

Cu,d −n
G1,usat
u,d (kd )

)

l veh

N lane
u,d v free

u,d

−

(

v idle
u,d −v free

u,d

)2

2adec
u,d v free

u,d

. (6.36)

In order to compute the emissions for the under-saturated scenario, we need to determine
the number of the vehicles that show each of the driving behaviors “free”, “idling”, “decelerat-
ing”, “accelerating”, and “non-stop”, and also the time duration of the free and idling behaviors
during one cycle. These variables can be computed as follows:

• The number of vehicles in each of the groups 1-4 that show a free-flow behavior within
the given cycle is

n
free,G1,usat
u,d (kd ) = n

G1,usat
u,d (kd ),

n
free,G2,usat
u,d (kd ) = n

G2,usat
u,d (kd ),

n
free,G3,usat
u,d (kd ) = n

G3,usat
u,d (kd ),

n
free,G4,usat
u,d (kd ) = n

G4,usat
u,d (kd ),

(6.37)

and the average time that a vehicle in each of the groups spends showing the free-flow
behavior is

T
free,G1,usat
u,d (kd ) =

(

0.5n
G1,usat
u,d (kd )

)

l veh

N lane
u,d v free

u,d

−

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

,

6Note that based on the definitions given above for different groups of vehicles, the queue in front of the
vehicles in group 2 is formed by the vehicles in group 1 (also see Figure 6.5).
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T
free,G2,usat
u,d (kd ) = τ

usat,G2
u,d (kd )−

v idle
u,d −v free

u,d

adec
u,d

+

(

n
G1,usat
u,d (kd )+0.5n

G2,usat
u,d (kd )

)

l veh

N lane
u,d v free

u,d

−

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

,

T
free,G3,usat
u,d (kd ) =

Cu,d l veh

N lane
u,d v free

u,a

+

(

v free
u,d −v idle

u,d

) aacc
u,d −adec

u,d

2adec
u,d aacc

u,d

,

T
free,G4,usat
u,d (kd ) =

n
G4,usat
u,d (kd )

α
arrive,q
u,d (kd )

−T
nonstop
u,d (kd ),

(6.38)

with

T
nonstop
u,d (kd ) =







v free+
u,d −v free

u,d

aacc
u,d

, if
α

arrive,q
u,d (k)

µu,d
≤λu,d ,

v free
u,d −v free−

u,d

adec
u,d

, if
α

arrive,q
u,d (k)

µu,d
>λu,d ,

(6.39)

with λu,d defined in Section 6.3.1 as a threshold for detecting heavy or light traffic con-
ditions in the link (u,d).

• The number of vehicles that show an idling behavior within the given cycle is

n
idle,G1,usat
u,d (kd ) = n

G1,usat
u,d (kd ),

n
idle,G2,usat
u,d (kd ) = n

G2,usat
u,d (kd ),

n
idle,G3,usat
u,d (kd ) = 0,

n
idle,G4,usat
u,d (kd ) = 0,

(6.40)

and the average time that a vehicle in each of the groups spends showing the idling
behavior is

T
idle,G1,usat
u,d (kd ) = cd − gu,d (kd )+

n
G1,usat
u,d (kd )

2µu,d
,

T
idle,G2,usat
u,d (kd ) = T

idle,G1,usat
u,d (kd )−τ

usat,G2
u,d (kd ),

T
idle,G3,usat
u,d (kd ) = 0,

T
idle,G4,usat
u,d (kd ) = 0.

(6.41)

• The number of vehicles that show a decelerating behavior within the given cycle is

n
dec,G1,usat
u,d (kd ) = 0,

n
dec,G2,usat
u,d (kd ) = n

G2,usat
u,d (kd ),

n
dec,G3,usat
u,d (kd ) = n

G3,usat
u,d (kd ),

n
dec,G4,usat
u,d (kd ) =

{

0, for light traffic,

n
G4,usat
u,d (kd ), for heavy traffic,

(6.42)
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and the average time that a vehicle spends showing the decelerating behavior is

T
dec,G1,usat
u,d (kd ) = 0,

T
dec,G2,usat
u,d (kd ) =

v idle
u,d −v free

u,d

adec
u,d

,

T
dec,G3,usat
u,d (kd ) =

v middle
u,d −v free

u,d

adec
u,d

,

T
dec,G4,usat
u,d (kd ) =







0, for light traffic,
v free−

u,d −v free
u,d

adec
u,d

, for heavy traffic.

(6.43)

• The number of vehicles that show an accelerating behavior within the given cycle is

n
acc,G1 ,usat
u,d (kd ) = n

G2,usat
u,d (kd ),

n
acc,G2 ,usat
u,d (kd ) = n

G2,usat
u,d (kd ),

n
acc,G3 ,usat
u,d (kd ) = n

G3,usat
u,d (kd ),

n
acc,G4 ,usat
u,d (kd ) =

{

n
G4,usat
u,d (kd ), for light traffic,

0, for heavy traffic,

(6.44)

and the average time that a vehicle spends showing the accelerating behavior is

T
acc,G1,usat
u,d (kd ) =

v free
u,d −v idle

u,d

aacc
u,d

,

T
acc,G2,usat
u,d (kd ) =

v free
u,d −v idle

u,d

aacc
u,d

,

T
acc,G3,usat
u,d (kd ) =

v free
u,d −v middle

u,d

aacc
u,d

,

T
acc,G4,usat
u,d (kd ) =







v free+
u,d −v free

u,d

aacc
u,d

, for light traffic,

0, for heavy traffic.

(6.45)

Next we explain in more detail how the time-speed curves represented in Figure 6.5 and
correspondingly the given equations for the under-saturated scenario are obtained. Since
for the under-saturated scenario all vehicles that are initially waiting in the queue will have
enough time to leave the link within one cycle, we consider them as one group, and illustrate
the behavior of the representative of this group (shown in blue in Figure 6.5) as the average of
the time-speed curves of the first and the last vehicle in the group.

In Figure 6.6(a), the time-speed curves of the first, the last, and the representative vehicle
in group 1 are shown. The blue (solid) curve in this figure, which demonstrates the behav-
ior of the representative vehicle, is the same as the blue curve in Figure 6.5. The first vehicle
of group 1 will immediately start to accelerate as the traffic light turns green at t1 (see Fig-
ure 6.6(a)). After its speed reaches v free

u,d , this vehicle might move with v free
u,d (depending on the
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Figure 6.6: Traffic behavior of different groups for the under-saturated urban traffic scenario.
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length of the link, the free-flow speed, etc.) for a while before it leaves the link. The last vehicle
of group 1 will start to accelerate only after all other vehicles in group 1 have done so.

Looking at the representative vehicle of group 1, this vehicle should travel the distance of
0.5n

G1,usat
u,d (kd )l veh

N lane
u,d

partly with the constant acceleration aacc
u,d and partly by the constant speed

v free
u,d . Hence, for the representative vehicle of group 1 we can write

0.5n
G1,sat
u,d (kd )l veh

N lane
u,d

= v free
u,d ·T

free,G1
rep (kd )+

aacc
u,d

2

(
v free

u,d −v idle
u,d

aacc
u,d

)2

+v idle
u,d

(
v free

u,d −v idle
u,d

aacc
u,d

)

, (6.46)

which results in the first equation of (6.38) when solved for T free
rep,G1

(kd ).
Since for the under-saturated scenario, the leaving rate of the vehicles in the queue is the

saturated leaving flow rate (i.e., µu,d ), we can write

t
acc,G1,usat
last (kd )− t

acc,G1,usat
first (kd ) =

n
G1,usat
u,d (kd )

µu,d
, (6.47)

where t
acc,usat,G1
first (kd ) and t

acc,usat,G1
last (kd ) denote, respectively, the time instant the first and the

last vehicle in group 1 start to accelerate. Hence, the idling times of the first and the last
vehicle in group 1 are

T
idle,G1 ,usat
first (kd ) = cd − gu,d (kd ), (6.48)

T
idle,G1 ,usat
last (kd ) = cd − gu,d (kd )+

n
G1,usat
u,d (kd )

µu,d
. (6.49)

The idling time of the representative vehicle of group 1 for the under-saturated scenario is the
average of the idling times of the first and the last vehicle (see the first equation of (6.41)), i.e.,

T
idle,G1 ,usat
rep (kd ) = cd − gu,d (kd )+

n
G1,usat
u,d (kd )

2µu,d
. (6.50)

Figure 6.6(b) illustrates the time-speed curves of the first, the last, and the representative
vehicle in group 2 of the under-saturated scenario, where the red curve (corresponding to the
representative vehicle of group 2) is identical to the red (solid) curve in Figure 6.5. Similar
to the vehicles in group 1, a free-flow behavior might or might not be observed at the end
of the trip for vehicles in group 2. After the traffic light turns green, vehicles in group 2 will
start to accelerate with a delay: the first vehicle will accelerate just after the last vehicle in
group 1 does (i.e., at t

acc,G1,usat
last (kd ) in Figure 6.6(a), which is the same as t

acc,G2,usat
first (kd ) in

Figure 6.6(b)). The last vehicle of group 2 will move ahead such that it starts to accelerate
immediately after it reaches v idle

u,d (see Figure 6.6(b)). Note that since the next arriving vehicle

decelerates to a speed higher than v idle
u,d (i.e., it does not idle at all), it will be put in a separate

group, i.e., group 3 discussed later.
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All vehicles in group 2 become a part of the waiting queue before they start to accelerate,
and they will also leave the link with rate µu,d . The total travel time of the first vehicle in
group 2 is composed of the following terms:

• free-flow (start) + decelerating term:

τ
usat,G2
u,d (kd ), (6.51)

where τ
usat,G2
u,d (kd ) is the average time duration for the vehicles in group 2 to reach the

tail of the waiting queue from the instant they enter the link (see Figure 6.6(b)). Note
that the time period of the free-flow behavior (at start) alone is

τ
usat,G2
u,d (kd )−

v idle
u,d −v free

u,d

adec
u,d

; (6.52)

• idling (see Figure 6.6(b)) term:

T
idle,G1 ,usat
last (kd )−τ

usat,G2
u,d (kd ); (6.53)

• accelerating term:
v free

u,d −v idle
u,d

aacc
u,d

; (6.54)

• free-flow (end) term:

n
G1,usat
u,d (kd )l veh

N lane
u,d v free

u,d

−

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

. (6.55)

We should notice that the number of the vehicles in front of the first vehicle in group 2 is

n
G1,usat
u,d (kd ) when the traffic light turns green. This means that a distance of

n
G1,usat
u,d (kd )l veh

N lane
u,d

should be traveled by the first vehicle of this group to cross the traffic light (partly with the
constant acceleration aacc

u,d and partly with the constant speed v free
u,d ). From Lemma 6.2, we

obtain

n
G1,sat
u,d (kd )l veh

N lane
u,d

= v free
u,d ·T

free,G2
first (kd )+

aacc
u,d

2

(
v free

u,d −v idle
u,d

aacc
u,d

)2

+v idle
u,d

(
v free

u,d −v idle
u,d

aacc
u,d

)

, (6.56)

which reduces to (6.55) when solved for T
free,G2
first (kd ).

Similarly, we can find the total travel time of the last vehicle of group 2, which is the same
as that of the first vehicle (resulting in the second equations of (6.41), (6.43), and (6.45)) except
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that it does not include the idling time, and that the free-flow (end) time using Lemma 6.2 is7

(

n
G1,usat
u,d (kd )+n

G2,usat
u,d (kd )

)

l veh

N lane
u,d v free

u,d

−

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

. (6.57)

Therefore, for the representative vehicle of group 2, the time duration of the free-flow behavior
at the end of its presence in the link (see the first two equations of (6.38)) is:

(

n
G1,usat
u,d (kd )+0.5n

G2,usat
u,d (kd )

)

l veh

N lane
u,d v free

u,d

−

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

. (6.58)

Finally, for the vehicles in group 2 we can write

α
arrive,q
u,d (kd )T

arrive,G2,usat
u,d (kd ) =µu,d T

leave,G2,usat
u,d (kd ), (6.59)

where T
arrive,G2,usat
u,d (kd ) is the duration of the time period during which vehicles in group 2

reach the tail of the queue, and T
leave,G2,usat
u,d (kd ) is the duration of the time period during

which vehicles in group 2 leave the link. Moreover, from Figure 6.6(b) we have

T
arrive,G2,usat
u,d (kd )+T

total,G2,usat
last (kd ) = T

leave,G2,usat
u,d (kd )+T

total,G2,usat
first (kd ), (6.60)

which results in (6.34) when solved for T
arrive,G2,usat
u,d (kd ). Note that from (6.28), αarrive,q

u,d (kd ) <
µu,d , and hence the denominator of (6.34) will never become zero.

As indicated before the arriving vehicles are divided into three groups for the under-
saturated scenario, and since the vehicles that are already in the link at the beginning of the
current cycle are put in group 1, then these three groups extracted from the arriving vehicles
are put in group 2–group 4 of the under-saturated scenario. The vehicles in group 3 are differ-
ent from the vehicles in group 2 in the sense that they will also decelerate, but to speed values
larger than v idle

u,d (since the queue composed of groups 1 and 2 has already started to move and
there is no need anymore for the arriving vehicles to idle). Figure 6.6(c) shows the time-speed
curves of the first, the last, and the representative vehicle in group 3. Comparing this figure
with Figure 6.5, the green curves, i.e., the time-speed curves of the representative vehicle in
group 3, are identical.

The first vehicle in group 3 arrives just after the last vehicle in group 2 (see Figure 6.6(c)).
In the limit, the time-speed curves of the last vehicle in group 2 and the first vehicle in group 3
become exactly the same (compare Figures 6.6(b) and 6.6(c)). The next arriving vehicles will
show the same behavior as the first vehicle, but each of them decelerates to a speed (we call
it the transition speed) that is in general larger than the speed of the previous vehicle (i.e.,
the transition speed increases gradually for successive vehicles). The time-speed curve corre-
sponding to the last vehicle in group 3 becomes a straight line in the limit (see Figure 6.6(c)).

7Note that the number of the vehicles in front of the last vehicle in group 2 is n
G1,usat
u,d (kd )+n

G2,usat
u,d (kd ).
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Assuming that the changes observed in the transition speed of the vehicles in group 3 occurs
gradually and linearly, then the middle speed that corresponds to the representative vehicle
of group 3 is the average of the transition speed of the first vehicle in this group (i.e., v idle

u,d ) and

the transition speed of the last vehicle in this group (which in the limit is v free
u,d . This explains

(6.29). Note that the point “P” in this figure separates groups 3 and 4, w.r.t. the arrival times.
The point “Q” is the starting point of the time-speed curve of the last vehicle in group 3. The
transition speed corresponding to the representative vehicle in group 3, i.e., the middle speed
v middle

u,d is the mean value of the transition speed of the first vehicles (i.e., v idle
u,d ) and the last

vehicle (i.e., v free
u,d ). Therefore, we obtain (6.29).

Moreover, since the vehicles in group 3 will not idle at all during the entire cycle, the leav-
ing flow rate for them is the same as their arriving flow rate, i.e.,

α
leave,l,G3
u,d (kd ) =α

arrive,l,G3
u,d (kd ). (6.61)

From Figure 6.6(c), we can write

α
arrive,q
u,d (kd )T

arrive,G3,usat
u,d (kd ) =αleave,l

u,d (kd )T
leave,G3 ,usat
u,d (kd ), (6.62)

which in combination with (6.61) gives

T
arrive,G3,usat
u,d (kd ) = T

leave,G3,usat
u,d (kd ). (6.63)

In addition, from (6.63) and Figure 6.6(c), we obtain

T
total,G3,usat
last (kd ) = T

total,G3,usat
first (kd ). (6.64)

The last vehicle in group 3 travels through the entire link with a constant speed v free
u,d .

Hence,

T
G3,usat
last (kd ) =

Cu,d l veh

N lane
u,d v free

u,d

, (6.65)

where
Cu,d l veh

N lane
u,d

is the total length of the link. For the first vehicle in group 3 we have:

T
total,G3,usat
first (kd ) =

v idle
u,d −v free

u,d

adec
u,d

+
v free

u,d −v idle
u,d

aacc
u,d

+T
free,G3 ,usat
first (kd ), (6.66)

and from (6.64) and (6.65), we finally have

T
free,G3,usat
first (kd ) =

Cu,d l veh

N lane
u,d v free

u,d

−
v idle

u,d −v free
u,d

adec
u,d

−
v free

u,d −v idle
u,d

aacc
u,d

, (6.67)
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which is indeed the third equation of (6.38). Note that in the limit, the points P and Q will
coincide, and therefore, (6.35) will be obtained.

The rest of the equations of the under-saturated model that are not explicitly explained in
detail can easily be obtained with a similar approach (also see Figure 6.5).

6.5 Flow-emission model for the saturated scenario

The saturated scenario is observed when the demand is larger than the number of vehicles
that can be discharged by the saturated average leaving flow rate in one cycle. For the sat-
urated traffic scenario, the initial queue in the link will completely be dissolved during one
cycle, but a new queue will be formed by a part of the arriving vehicles (i.e., not all the arriving
vehicles in a saturated traffic scenario can leave the link during the green phase). Mathemat-
ically, this is formulated as follows:

qu,d (kd ) ≤
∑

o∈Ou,d

βu,d ,o ·µu,d ·gu,d ,o (kd ) < qu,d (kd )+cd ·α
arrive,q
u,d (kd ). (6.68)

For a saturated urban traffic scenario, the average leaving flow rate during the entire cycle
is the saturated leaving flow rate, µu,d . Two cases are possible, i.e., αarrive,q

u,d (kd ) < µu,d and

α
arrive,q
u,d (kd ) ≥ µu,d , which result in different model equations. We first develop the model for

case 1, i.e., αarrive,q
u,d (kd ) < µu,d , and later we extend the model for case 2, i.e., αarrive,q

u,d (kd ) ≥
µu,d .

6.5.1 Case 1: α
arrive,q

u,d (kd ) <µu,d

First, we give the equations, and then we explain how the equations are obtained. Some of the
equations may not be explained explicitly, as they can be easily found with a similar approach
as for the under-saturated scenario considering Figure 6.8. The vehicles observed during one
cycle are divided into the following three groups:

Group 1: composed of those vehicles that are already in the link standing in a queue at the
beginning of the cycle (see the blue curve in Figure 6.7 for the average behavior of this
group); the average behavior of this group is identical to that of the first group for an
under-saturated scenario (see Section 6.4).

Group 2: composed of those vehicles that arrive at the tail of the waiting queue during the
current cycle after they decelerate from v free

u,d to v idle
u,d . They idle for a while behind the ini-

tial queue, and then accelerate just after the queue in front of them has been dissolved.
They finally leave the link during the current cycle (see the red curve in Figure 6.7 for
the average behavior of this group). The observed behavior for this group of vehicles, is
the same as the observed behavior for group 2 in the under-saturated scenario.

Group 3: composed of those vehicles that arrive at the tail of the queue in the current cycle,
when the queue in front of them has already started to move. Therefore, they should
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v free
u,d

v middle,sat,1
u,d (kd )

v middle,sat,2
u,d (kd )

v idle
u,d

cd

Red+Yellow Greenspeed

time

Group 1
Group 2
Group 3

gu,d (kd )cd − gu,d (kd )

t0 t1

Figure 6.7: Traffic behaviors on link (u,d) within one cycle for the saturated urban traffic sce-

nario, case 1: α
arrive,q

u,d (kd ) <µu,d .

first decelerate from v free
u,d to a speed value larger than v idle

u,d , i.e., to v middle,sat,1
u,d (kd ) (see

the green curve in Figure 6.7 for the average behavior of this group). Then, with the
moving traffic they also accelerate to reach the speed v middle,sat,2

u,d (kd ), when they notice
that there is not enough time to reach and pass the traffic light, and they decelerate
again to reach v idle

u,d by the time the traffic light turns red. The values of v middle,sat,1
u,d (kd )

and v middle,sat,2
u,d are computed by

v middle,sat,1
u,d (kd ) =

v idle
u,d +v middle,sat,2

u,d (kd )

2
, (6.69)

v middle,sat,2
u,d (kd ) = v idle

u,d +
n

G3,sat
u,d (kd )

α
arrive,q
u,d (kd )

·
aacc

u,d adec
u,d

adec
u,d −aacc

u,d

. (6.70)

For the number of vehicles in each of the groups, we have

n
G1,sat
u,d (kd ) = qu,d (kd ), (6.71)

n
G2,sat
u,d (kd ) = min






nsat

u,d (kd )−n
G1,sat
u,d (kd ),max






α

arrive,q
u,d (kd ) ·T arrive,G2,sat

u,d (kd ),

nsat
u,d (kd )−n

G1,sat
u,d (kd )−α

arrive,q
u,d (kd )

(

v free
u,d −v idle

u,d

)
(

1

aacc
u,d

−
1

adec
u,d

)











, (6.72)
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n
G3,sat
u,d (kd ) = nsat

u,d (kd )−
2∑

i=1
n

Gi ,sat
u,d (kd ), (6.73)

with T
arrive,G2,sat
u,d (kd ) computed by

T
arrive,G2,sat
u,d (kd ) =

N lane
u,d v free

u,d

N lane
u,d v free

u,d +α
arrive,q
u,d (kd )l veh

·




cd −

n
G1,sat
u,d (kd )l veh

N lane
u,d v free

u,d

+

(

v free
u,d

)2
−

(

v idle
u,d

)2

2v free
u,d aacc

u,d

−τ
sat,G2
u,d (kd )




 ,

(6.74)

and τ
sat,G2
u,d (kd ) computed similarly to τ

usat,G2
u,d (kd ), see (6.36).

The number of vehicles in each group that show a specific behavior, and also the time
that the representative vehicle shows the behavior are given next. These values can be used
to compute the emissions in the saturated scenario using the equations introduced in Sec-
tion 6.3.2.

• For the free-flow behavior, we have

n
free,G1,sat
u,d (kd ) = n

G1,sat
u,d (kd ),

n
free,G2,sat
u,d (kd ) = n

G2,sat
u,d (kd ),

n
free,G3,sat
u,d (kd ) = n

G3,sat
u,d (kd ),

(6.75)

and

T
free,G1,sat
u,d (kd ) =

(

n
G1,sat
u,d (kd )+0.5n

G2,sat
u,d (kd )

)

l veh

v free
u,d

−

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

,

T
free,G2,sat
u,d (kd ) = τ

sat,G2
u,d (kd )−

v idle
u,d −v free

u,d

adec
u,d

+T
free,G1,sat
u,d (kd ),

T
free,G3,sat
u,d (kd ) = τ

sat,G3
u,d (kd )−

v middle,sat,1
u,d (kd )−v free

u,d

adec
u,d

,

(6.76)

with τ
sat,G3
u,d (kd ) computed by8

τ
sat,G3
u,d (kd ) =

Cu,d −n
G1,usat
u,d (kd )−n

G2,usat
u,d (kd )

N lane
u,d v free

u,d

l veh
−

(

v middle,sat,1
u,d (kd )−v free

u,d

)2

2adec
u,d v free

u,d

. (6.77)

8Note that the number of vehicles already in the queue in front of group 3 is n
G1,usat
u,d (kd )+n

G2,usat
u,d (kd ), and

the queue is already moving forward with vmiddle,sat,1
u,d (kd ).
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• For the idling behavior, we have

n
idle,G1,sat
u,d (kd ) = n

G1,sat
u,d (kd ),

n
idle,G2,sat
u,d (kd ) = n

G2,sat
u,d (kd ),

n
idle,G3,sat
u,d (kd ) = 0,

(6.78)

and

T
idle,G1,sat
u,d (kd ) = cd − gu,d (kd )+

0.5n
G1,sat
u,d (kd )
µu,d

,

T
idle,G2,sat
u,d (kd ) = T

idle,G1 ,sat
u,d (kd )−τ

sat,G2
u,d (kd ),

T
idle,G3,sat
u,d (kd ) = 0.

(6.79)

• For the decelerating behavior, we have

n
dec,G1,sat
u,d (kd ) = 0,

n
dec,G2,sat
u,d (kd ) = n

G2,sat
u,d (kd ),

n
dec,G3,sat
u,d (kd ) = n

G3,sat
u,d (kd ),

(6.80)

and
T

dec,G1,sat
u,d (kd ) = 0,

T
dec,G2,sat
u,d (kd ) =

v idle
u,d −v free

u,d

adec
u,d

,

T
dec,G3,sat
u,d (kd ) =

v middle,sat,1
u,d (kd )−v free

u,d

adec
u,d

+
v idle

u,d −v middle,sat,2
u,d (kd )

adec
u,d

.

(6.81)

• For the accelerating behavior, we have

n
acc,G1,sat
u,d (kd ) = n

G1,sat
u,d (kd ),

n
acc,G2,sat
u,d (kd ) = n

G2,sat
u,d (kd ),

n
acc,G3,sat
u,d (kd ) = n

G3,sat
u,d (kd ),

(6.82)

and

T
acc,G1,sat
u,d (kd ) =

v free
u,d −v idle

u,d

aacc
u,d

,

T
acc,G2,sat
u,d (kd ) =

v free
u,d −v idle

u,d

aacc
u,d

,

T
acc,G3,sat
u,d (kd ) =

v middle,sat,2
u,d (kd )−v middle,sat,1

u,d (kd )

aacc
u,d

.

(6.83)

Now, we explain in more detail how the equations presented above are obtained. Since
α

arrive,q
u,d (kd ) < µu,d , i.e., the arriving flow of the vehicles is less than the leaving flow rate, the

temporal distance between the arrival times of two successive vehicles in group 2 should be
less than the temporal distance between their leaving times. This implies that for each vehicle
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Figure 6.8: Traffic behavior of different groups for the saturated urban traffic scenario, case 1.

in group 2 compared with its predecessor, the length of the idling behavior will be reduced in
the time-speed curve. Figure 6.8(a), illustrating the time-speed curves of the first, last, and
representative vehicle of group 2, is obtained based on this fact. From this figure, the arrival
time of the vehicles in group 2 (i.e., the time period between the arrival instant of the first and
the last vehicle) for the saturated scenario is

T
arrive,G2,sat
u,d (kd ) = cd −T

total,G2,sat
last (kd ). (6.84)
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Moreover, for the last vehicle in group 2, from Lemma 6.2 for the accelerating and for the
free-flow behavior at the end, we can write

(

n
G1,sat
u,d (kd )+n

G2,sat
u,d (kd )

)

l veh

N lane
u,d

= v free
u,d ·T free,end(kd )+

aacc
u,d

2

(
v free

u,d −v idle
u,d

aacc
u,d

)2

+v idle
u,d

(
v free

u,d −v idle
u,d

aacc
u,d

)

,

(6.85)

from which T free,end(kd ) is found. Moreover,

T
total,G2,sat
last (kd ) = τ

sat,G2
u,d (kd )+

v free
u,d −v idle

u,d

aacc
u,d

+T free,end(kd ), (6.86)

and
n

G2,sat
u,d (kd ) =α

arrive,q
u,d (kd )T

arrive,G2,sat
u,d (kd ). (6.87)

By substituting (6.86) into (6.84) and (6.87) into the expression for T free,end(kd ) resulting from
(6.85), (6.74) is obtained.

Next, we explain how Equations (6.69) and (6.70) are obtained. We consider the time-
speed curves of the first, the last, and the representative vehicle in group 3 (see Figure 6.8(b)).
Since v middle,sat,1

u,d (kd ) corresponds to the average behavior of group 3, we consider it as the

average of v idle
u,d (corresponding to the first vehicle) and v middle,sat,2

u,d (kd ) (corresponding to the

last vehicle (see (6.69))). To obtain v middle,sat,2
u,d (kd ), we can write the following relationships:

nsat
u,d (kd ) =

3∑

i=1
n

Gi ,sat
u,d (kd ), (6.88)

where nsat
u,d (kd ) is computed by the flow model. We can write

T
arrive,G3,sat
u,d (kd ) =

n
G3,sat
u,d (kd )

α
arrive,q
u,d (kd )

. (6.89)

Moreover, from Figure 6.8(b) we have

T
arrive,G3,sat
u,d (kd ) =

v middle,sat,2
u,d (kd )−v idle

u,d

aacc
u,d

+
v idle

u,d −v middle,sat,2
u,d (kd )

adec
u,d

=

(

v middle,sat,2
u,d (kd )−v idle

u,d

)
(

1

aacc
u,d

−
1

adec
u,d

)

.

(6.90)
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Therefore, we obtain (6.70), i.e.,

v middle,sat,2
u,d (kd ) = v idle

u,d +
n

G3,sat
u,d (kd )

α
arrive,q
u,d (kd )

(
aacc

u,d adec
u,d

adec
u,d −aacc

u,d

)

. (6.91)

However, there is no guarantee yet that v middle,sat,2
u,d (kd ) given by (6.91) does never exceed v free

u,d .

The definition of n
G2,sat
u,d (kd ) given by (6.72) gives us this guarantee, since v middle,sat,2

u,d (kd ) ≤ v free
u,d

implies that

(

v middle,sat,2
u,d (kd )−v idle

u,d

)
(

1

aacc
u,d

−
1

adec
u,d

)

≤

(

v free
u,d −v idle

u,d

)
(

1

aacc
u,d

−
1

adec
u,d

)

, (6.92)

with the left-hand side of (6.92) equal to T
arrive,G3,sat
u,d (kd ) (see (6.90)). Hence, from (6.89) we

obtain

n
G3,sat
u,d (kd ) ≤α

arrive,q
u,d (kd )

(

v free
u,d −v idle

u,d

)
(

1

aacc
u,d

−
1

adec
u,d

)

. (6.93)

Finally, from (6.88) and (6.93) we obtain (6.72). Moreover, (6.72) together with (6.88) results in
(6.93); (6.93) yields (6.92), which itself implies that v middle,sat,2

u,d (kd ) ≤ v free
u,d should hold.

6.5.2 Case 2: α
arrive,q

u,d (kd ) ≥µu,d

For the second case of the saturated urban traffic scenario, i.e., for α
arrive,q
u,d (kd ) ≥ µu,d , the

vehicles observed during one cycle are divided into four groups:

Group 1: composed of those vehicles that are already in the link standing in a queue at the
beginning of the cycle (see the blue curve in Figure 6.9 for the average behavior of this
group); the average behavior of this group is exactly similar to that of the first group for
case 1 of the saturated scenario (see Section 6.5.1).

Group 2: composed of those vehicles that arrive at the tail of the waiting queue during the
current cycle after they decelerate from v free

u,d to v idle
u,d . They idle for a while behind the ini-

tial queue, and then accelerate just after the queue in front of them has been dissolved.
They finally leave the link during the current cycle (see the red curve in Figure 6.9 for
the average behavior of this group). The observed behavior for this group of vehicles
is similar to the observed behavior for group 2 for case 1 of the saturated scenario (see
Section 6.5.1), except that for the same queue number and green time values, the repre-
sentative vehicle of group 2 shows an idling behavior for a longer period compared with
case 1 (compare Figures 6.7 and 6.9).

Group 3: composed of those vehicles that should decelerate after a while as they approach
the idling queue in front of them consisting of the vehicles in group 1 and group 2 (see
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the green curve in Figure 6.9 for the average behavior of this group). They reach v idle
u,d ,

idle for a while, and then accelerate to reach v middle,sat,2
u,d (kd ) when they notice that there

is not enough time to reach and pass the traffic light. Hence, they decelerate to v idle
u,d .

The value of v middle,sat,2
u,d is given by

v middle,sat,2
u,d (kd ) = v idle

u,d +
aacc

u,d adec
u,d

adec
u,d −aacc

u,d

·

(

cd −
n

G2,sat
u,d (kd )+n

G3,sat
u,d (kd )

α
arrive,q
u,d (kd )

−

Cu,d −n
G1,sat
u,d (kd )−n

G2,sat
u,d (kd )−n

G3,sat
u,d (kd )

N lane
u,d v free

u,d

l veh
+

(

v free
u,d −v idle

u,d

)2

2aacc
u,d v free

u,d

)

.

(6.94)

Group 4: composed of those vehicles that arrive at the tail of the queue consisting of the ve-
hicles in groups 1, 2, and 3, when the queue has already started to move forward (see
the black curve in Figure 6.9 for the average behavior of vehicles in group 4). Hence, as
they approach the moving queue they decelerate to reach v middle,sat,1

u,d (kd ) given by

v middle,sat,1
u,d (kd ) =

v idle
u,d +v middle,sat,2

u,d (kd )

2
. (6.95)

Then they accelerate with the queue until they reach v middle,sat,2
u,d (kd ). At this moment,

since the vehicles in group 3 in front of them start to decelerate, the vehicles in group 4
will follow the same behavior and decelerate to v idle

u,d .

For the number of vehicles in each group, we have

n
G1,sat
u,d (kd ) = qu,d (kd ), (6.96)

n
G2,sat
u,d (kd ) = min

{

α
arrive,q
u,d (kd ) ·T arrive,G2,sat

u,d (kd ),nsat
u,d (kd )−n

G1,sat
u,d (kd )

}

, (6.97)

n
G3,sat
u,d (kd ) = min

{

α
arrive,q
u,d (kd ) ·T arrive,G3,sat

u,d (kd ),

(

v free
u,d

)2
−

(

v idle
u,d

)2

l veh
N lane

u,d

(

1

aacc
u,d

−
1

adec
u,d

)

−n
G1,sat
u,d (kd )−n

G2,sat
u,d (kd )

}

,

(6.98)

n
G4,sat
u,d (kd ) = nsat

u,d (kd )−
3∑

i=1
n

Gi ,sat
u,d (kd ), (6.99)
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Figure 6.9: Traffic behaviors on link (u,d) within one cycle for the saturated urban traffic sce-

nario, case 2: α
arrive,q

u,d (kd ) ≥µu,d .

with T
arrive,G2,sat
u,d (kd ) and T

arrive,G3,sat
u,d (kd ) computed by

T
arrive,G2,sat
u,d (kd ) =

N lane
u,d v free

u,d

2αarrive,q
u,d (kd )

µu,d
N lane

u,d v free
u,d +α

arrive,q
u,d (kd )l veh

·




gu,d (kd )−

n
G1,sat
u,d (kd )l veh

N lane
u,d v free

u,d

−

(

v free
u,d −v idle

u,d

)2

2v free
u,d aacc

u,d




 ,

(6.100)

T
arrive,G3,sat
u,d (kd ) =

(

v middle,sat,2
u,d (kd )

)2
−

(

v idle
u,d

)2

α
arrive,q
u,d (kd )l veh

N lane
u,d

(

1

aacc
u,d

−
1

adec
u,d

)

−T
arrive,G2,sat
u,d (kd )−

n
G1,sat
u,d (kd )

α
arrive,q
u,d (kd )

,

(6.101)

and τ
sat,G2
u,d (kd ) by (6.36). Note that we should use the minimum function in (6.97) and (6.98) to

make sure that the number of vehicles is non-negative and also that v middle,sat,2
u,d (kd ) does not

exceed v free
u,d (for more details we refer the readers to the explanations given in Section 6.5.1 for

case 1).

The number of vehicles in each group that show a specific behavior and the time duration
of each behavior for case 2 of the urban saturated scenario is given next:
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• For the free-flow behavior, we have

n
free,G1,sat
u,d (kd ) = n

G1,sat
u,d (kd ),

n
free,G2,sat
u,d (kd ) = n

G2,sat
u,d (kd ),

n
free,G3,sat
u,d (kd ) = n

G3,sat
u,d (kd ),

n
free,G4,sat
u,d (kd ) = n

G4,sat
u,d (kd ),

(6.102)

and

T
free,G1,sat
u,d (kd ) =

(

n
G1,sat
u,d (kd )+0.5n

G2,sat
u,d (kd )

)

l veh

v free
u,d

−

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

,

T
free,G2,sat
u,d (kd ) = τ

sat,G2
u,d (kd )−

v idle
u,d −v free

u,d

adec
u,d

+T
free,G1,sat
u,d (kd ),

T
free,G3,sat
u,d (kd ) = τ

sat,G3
u,d (kd )−

v idle
u,d −v free

u,d

adec
u,d

,

T
free,G4,sat
u,d (kd ) = τ

sat,G4
u,d (kd )−

v middle,sat,1
u,d (kd )−v free

u,d

adec
u,d

,

(6.103)

with τ
sat,G3
u,d (kd ) computed by (6.77).

• For the idling behavior, we have

n
idle,G1,sat
u,d (kd ) = n

G1,sat
u,d (kd ),

n
idle,G2,sat
u,d (kd ) = n

G2,sat
u,d (kd ),

n
idle,G3,sat
u,d (kd ) = n

G3,sat
u,d (kd ),

n
idle,G4,sat
u,d (kd ) = 0,

(6.104)

and

T
idle,G1,sat
u,d (kd ) = cd − gu,d (kd )+

0.5n
G1,sat
u,d (kd )
µu,d

,

T
idle,G2,sat
u,d (kd ) = cd − gu,d (kd )+

n
G1,sat
u,d (kd )
µu,d

−τ
sat,G2
u,d (kd )+

0.5n
idle,G2,sat
u,d (kd )

(

1
µu,d

− 1
α

arrive,q
u,d (kd )

)

,

T
idle,G3,sat
u,d (kd ) = 0.5

(

cd − gu,d (kd )+
n

G1,sat
u,d (kd )
µu,d

−τ
sat,G2
u,d (kd )+

n
idle,G2,sat
u,d (kd )

(

1
µu,d

−
1

α
arrive,q
u,d (kd )

))

,

T
idle,G4,sat
u,d (kd ) = 0.

(6.105)
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• For the decelerating behavior, we have

n
dec,G1,sat
u,d (kd ) = 0,

n
dec,G2,sat
u,d (kd ) = n

G2,sat
u,d (kd ),

n
dec,G3,sat
u,d (kd ) = n

G3,sat
u,d (kd ),

n
dec,G4,sat
u,d (kd ) = n

G4,sat
u,d (kd ),

(6.106)

and

T
dec,G1,sat
u,d (kd ) = 0,

T
dec,G2,sat
u,d (kd ) =

v idle
u,d −v free

u,d

adec
u,d

,

T
acc,G3,sat
u,d (kd ) =

v idle
u,d (kd )−v free

u,d (kd )

adec
u,d

+
v idle

u,d (kd )−v middle,sat,2
u,d (kd )

adec
u,d

,

T
dec,G4,sat
u,d (kd ) =

v middle,sat,1
u,d (kd )−v free

u,d

adec
u,d

+
v idle

u,d −v middle,sat,2
u,d (kd )

adec
u,d

.

(6.107)

• For the accelerating behavior, we have

n
acc,G1,sat
u,d (kd ) = n

G1,sat
u,d (kd ),

n
acc,G2,sat
u,d (kd ) = n

G2,sat
u,d (kd ),

n
acc,G3,sat
u,d (kd ) = n

G3,sat
u,d (kd ),

n
acc,G4,sat
u,d (kd ) = n

G4,sat
u,d (kd ),

(6.108)

and

T
acc,G1,sat
u,d (kd ) =

v free
u,d −v idle

u,d

aacc
u,d

,

T
acc,G2,sat
u,d (kd ) =

v free
u,d −v idle

u,d

aacc
u,d

,

T
acc,G3,sat
u,d (kd ) =

v idle
u,d (kd )−v middle,sat,2

u,d (kd )

aacc
u,d

,

T
acc,G4,sat
u,d (kd ) =

v middle,sat,2
u,d (kd )−v middle,sat,1

u,d (kd )

aacc
u,d

.

(6.109)

Next we explain in more detail how the equations given in this section are derived con-
sidering the time-speed curves of each group of vehicles for case 2 of the saturated scenario.
Figure 6.10 illustrates the time-speed curves of the first, last, and representative vehicle in
groups 2, 3, and 4 for case 2 of the saturated urban traffic scenario (the time-speed curves of
the vehicles in group 1 are not shown, since they are the same as for case 1). Since for case 2
we have α

arrive,q
u,d (kd ) ≥ µu,d , the temporal distance between the starting points of the time-

speed curves of every two successive vehicles in group 2 should be greater than or equal to
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Figure 6.10: Traffic behavior of different groups for the saturated urban traffic scenario, Case 2.
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the temporal distance between the endpoints of the curves. This implies that the idling time
of a vehicle in group 2 compared with its predecessor increases.

For the first vehicle in group 2 (see Figure 6.10(a)), the time-speed curve includes the fol-
lowing behaviors for the given time durations:

• free-flow (start) + decelerating term:

τ
sat,G2
u,d (kd ), (6.110)

where τ
sat,G2
u,d (kd ) is computed similar to (6.36).

• idling term (the idling time of the first vehicle in group 2 is in the limit equal to the idling
time of the last vehicle in group 1 minus τsat,G2

u,d (kd )):

cd − gu,d (kd )+
n

G1,sat
u,d (kd )

µu,d
−τ

sat,G2
u,d (kd ); (6.111)

• accelerating term:
v free

u,d −v idle
u,d

aacc
u,d

; (6.112)

• free-flow (end)9 term:

n
G1,sat
u,d (kd )

N lane
u,d v free

u,d

l veh
−

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

. (6.113)

Similarly, for the last vehicle in group 2, we can see that the time duration of each behavior is
the same as for the first vehicle, except for the idling and for the free-flow behavior at the end,
where we have

• idling term:

cd − gu,d (kd )+
n

G1,sat
u,d (kd )

µu,d
−τ

sat,G2
u,d (kd )+n

G2,sat
u,d (kd )




1

µu,d
−

1

α
arrive,q
u,d (kd )



 . (6.114)

Note that the last term in (6.114) shows that for case 2, the idling time of the vehi-
cles in group 2 increases gradually for each two successive vehicles. To obtain this
term, from the fact that the leaving flow rate of the vehicles in a saturated urban traf-

fic scenario is µu,d , we obtain α
arrive,q
u,d (kd ) =

n
G2,sat
u,d (kd )

T
arrive,G2,sat
u,d (kd )

and µu,d =
n

G2,sat
u,d (kd )

T
leave,G2,sat
u,d (kd )

,

with T
leave,G2,sat
u,d (kd ) the time that vehicles in group 2 need to leave the link (see Fig-

ure 6.10(a)). Moreover, the difference between T
arrive,G2,sat
u,d (kd ) and T

leave,G2,sat
u,d (kd ) shows

9The number of vehicles in front of the first vehicle in group 2 is equal to n
G1,sat
u,d (kd ).
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the excess time that the last vehicle in group 2 spends idling within the queue w.r.t. the
first vehicle. Therefore, the last term in (6.114) is obtained.

• free-flow (end) term:

(

n
G1,sat
u,d (kd )+n

G2,sat
u,d (kd )

)

N lane
u,d v free

u,d

l veh
−

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

. (6.115)

Now we can also find an expression for T
arrive,G2,sat
u,d (kd ), T

arrive,G3,sat
u,d (kd ), and v middle,sat,2

u,d (kd ).

From Figures 6.10(a) for T
arrive,G2,sat
u,d (kd ) we can write

T
arrive,G2,sat
u,d (kd ) = cd −T

total,G2,sat
last (kd ). (6.116)

Hence,

T
arrive,G2,sat
u,d (kd ) =cd −τ

sat,G2
u,d (kd )−cd + gu,d (kd )−

n
G2,sat
u,d (kd )

µu,d
+τ

sat,G2
u,d (kd )−n

G2,sat
u,d (kd )




1

µu,d
−

1

α
arrive,q
u,d (kd )



−

v free
u,d −v idle

u,d

aacc
u,d

−

(

n
G1,sat
u,d (kd )+n

G2,sat
u,d (kd )

)

N lane
u,d v free

u,d

l veh
+

(

v free
u,d

)2
−

(

v idle
u,d

)2

2aacc
u,d v free

u,d

,

(6.117)

with
n

G2,sat
u,d (kd ) =α

arrive,q
u,d (kd ) ·T arrive,G2,sat

u,d (kd ). (6.118)

From (6.116), (6.117), and (6.118), (6.100) is found.
From Figures 6.10(a), 6.10(b), and 6.10(c), we have

T
arrive,G2,sat
u,d (kd )+T

arrive,G3,sat
u,d (kd )+T

first,G4,sat
u,d (kd ) = cd . (6.119)

Moreover, the first vehicle of group 4 should travel a distance of
Cu,d · l veh

N lane
u,d

in total during the

current cycle. Hence, from Lemma 6.2 we can write

(

n
G1,sat
u,d (kd )+n

G2,sat
u,d (kd )+n

G3,sat
u,d (kd )

) l veh

N lane
u,d

=

1

2
aacc

u,d




v middle,sat,2

u,d (kd )−v idle
u,d

aacc
u,d





2

+v idle
u,d




v middle,sat,2

u,d (kd )−v idle
u,d

aacc
u,d



+

1

2
adec

u,d




v idle

u,d −v middle,sat,2
u,d (kd )

adec
u,d





2

+v middle,sat,2
u,d (kd )




v idle

u,d −v middle,sat,2
u,d (kd )

adec
u,d



 .

(6.120)
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Substituting n
G2,sat
u,d (kd ) by (6.118) and n

G3,sat
u,d (kd ) by

n
G3,sat
u,d (kd ) =α

arrive,q
u,d (kd ) ·T arrive,G3,sat

u,d (kd ), (6.121)

we obtain (6.101).

Since for the first vehicle in group 4, we have

T
first,G4,sat
u,d (kd ) = τ

sat,G4
u,d (kd )+

(

v middle,sat,2
u,d (kd )−v idle

u,d

)
(

1

aacc
u,d

−
1

adec
u,d

)

, (6.122)

with τ
sat,G4
u,d (kd ) found similar to τ

sat,G2
u,d (kd ) by

τ
sat,G4
u,d (kd ) =

(

Cu,d −n
G1,sat
u,d (kd )−n

G2,sat
u,d (kd )−n

G3,sat
u,d (kd )

)

l veh

N lane
u,d v free

u,d

−

(

v idle
u,d −v free

u,d

)2

2adec
u,d v free

u,d

. (6.123)

From (6.119)-(6.123), (6.94) is obtained.

6.6 Flow-emission model for the over-saturated scenario

For the over-saturated urban traffic scenario, not all the vehicles that are initially in the queue
can leave the link within one cycle. Mathematically, this is expressed as follows:

∑

o∈Ou,d

βu,d ,o ·µu,d ·gu,d ,o (kd ) < qu,d (kd ). (6.124)

Therefore, for this scenario we divide the vehicles that are observed in a link in the following
three groups:

Group 1: composed of those vehicles in the queue that can leave the link during the current
cycle (see the blue curve in Figure 6.11 for the average behavior of this group).

Group 2: composed of those vehicles in the queue that do not have enough time during the
current cycle to pass through the traffic light (see the dark blue curve in Figure 6.11 for
the average behavior of this group). These vehicles first accelerate as soon as the last
vehicle in the queue in front of them composed of vehicles of group 1 starts to move
forward. However, since there is not enough time left for them to leave the link, after
they reach v middle,osat

u,d (kd ) they decelerate to v idle
u,d and stop in front of the red light for at

least another cycle time. We set

v middle,osat
u,d (kd ) = v idle

u,d +T
leave,osat,G1
u,d (kd )

adec
u,d −aacc

u,d

2adec
u,d aacc

u,d

, (6.125)
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Figure 6.11: Traffic behaviors on link (u,d) within one cycle for the over-saturated urban traffic

scenario.

with

T
leave,osat,G1
u,d (kd ) =

µu,d l vehgu,d (kd )

2v free
u,d +µu,d l veh

+

(

v free
u,d −v idle

u,d

)2

aacc
u,d

(

2v free
u,d +µu,d l veh

) . (6.126)

Group 3: composed of the vehicles that arrive at the tail of the queue during the current cycle.
These vehicles first decelerate and then idle for the rest of the cycle (see the red curve in
Figure 6.11 for the average behavior of this group).

The leaving flow rate of the vehicles for the over-saturated scenario is the saturated leaving
flow rate, µu,d . Hence, for the number of vehicles in each of these three groups, we can write

n
G1,osat
u,d (kd ) =µu,d

(

gu,d (kd )−T
leave,osat,G1
u,d (kd )

)

, (6.127)

n
G2,osat
u,d (kd ) = qu,d (kd )−n

G1,osat
u,d (kd ), (6.128)

n
G3,osat
u,d (kd ) = nosat

u,d (kd )−
2∑

i=1
n

Gi ,osat
u,d (kd ). (6.129)

Next, we determine the number of vehicles in each group that show a specific behavior, and
also the average time that the representative vehicle shows the behavior.

• For the free-flow behavior, we have

n
free,G1,osat
u,d (kd ) = n

G1,osat
u,d (kd ),

n
free,G2,osat
u,d (kd ) = 0,

n
free,G3,osat
u,d (kd ) = n

G3,osat
u,d (kd ),

(6.130)
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and similarly to the under-saturated scenario,

T
free,G1,osat
u,d (kd ) =

µu,d l vehgu,d (kd )

2v free
u,d +µu,d l veh −

(

v free
u,d −v idle

u,d

)(

µu,d l veh
+v free

u,d +v idle
u,d

)

aacc
u,d

(

2v free
u,d +µu,d l veh

) ,

T
free,G2,osat
u,d (kd ) = 0,

T
free,G3,osat
u,d (kd ) = τ

osat,G3
u,d (kd )−

v idle
u,d −v free

u,d

adec
u,d

,

(6.131)

with

τ
osat,G3
u,d (kd ) =

(

Cu,d −n
G1,osat
u,d (kd )−n

G2,osat
u,d (kd )

)

l veh

N lane
u,d v free

u,d

. (6.132)

• For the idling behavior, we have

n
idle,G1,osat
u,d (kd ) = n

G1,osat
u,d (kd ),

n
idle,G2,osat
u,d (kd ) = n

G2,osat
u,d (kd ),

n
idle,G3,osat
u,d (kd ) = n

G3,osat
u,d (kd ),

(6.133)

and

T
idle,G1,osat
u,d (kd ) = cd − gu,d (kd )+

n
G1,osat
u,d (kd )

2µu,d
,

T
idle,G2,osat
u,d (kd ) = cd −

v free
u,d −v idle

u,d

aacc
u,d

,

T
idle,G3,osat
u,d (kd ) =

cd −τ
osat,G3
u,d (kd )

2 .

(6.134)

• For the decelerating behavior, we have

n
dec,G1 ,osat
u,d (kd ) = 0,

n
dec,G2 ,osat
u,d (kd ) = n

G2,osat
u,d (kd ),

n
dec,G3 ,osat
u,d (kd ) = n

G3,osat
u,d (kd ),

(6.135)

and
T

dec,G1,osat
u,d (kd ) = 0,

T
dec,G2,osat
u,d (kd ) =

v idle
u,d −v middle,osat

u,d (kd )

adec
u,d

,

T
dec,G3,osat
u,d (kd ) =

v idle
u,d −v free

u,d

adec
u,d

.

(6.136)
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• For the accelerating behavior, we have

n
acc,G1,osat
u,d (kd ) = n

G2,osat
u,d (kd ),

n
acc,G2,osat
u,d (kd ) = n

G3,osat
u,d (kd ),

n
acc,G3,osat
u,d (kd ) = 0,

(6.137)

and

T
acc,G1,osat
u,d (kd ) =

v free
u,d −v idle

u,d

aacc
u,d

,

T
acc,G2,osat
u,d (kd ) =

v middle,osat
u,d (kd )−v idle

u,d

aacc
u,d

,

T
acc,G3,osat
u,d (kd ) = 0.

(6.138)

Now we explain in more detail how the main equations given in this section are obtained.
Figure 6.12 illustrates the time-speed curves of the first, last, and representative vehicle of
groups 2 and 3 for the over-saturated urban scenario. The dashed line on the left-hand side in
Figure 6.12(a) shows the time-speed curve of the first vehicle in group 1, and the dashed line
on the right-hand side in this figure shows the time-speed curve of the last vehicle in group 1
that can still accelerate and leave the link. However, the next vehicle in the queue (i.e., the first
vehicle in group 2) is the first vehicle in the queue that should necessarily decelerate after its
speed reaches v middle,osat

first,u,d (kd ), so that it can stop in front of the red light at the end of the cycle.

Next, we compute T
leave,osat,G1
u,d (kd ) (i.e., the time that each vehicle in group 1 needs af-

ter idling to leave the link), T
free,G1,osat
u,d (kd ) (i.e., the time duration of the free-flow behavior

for each vehicle in group 1), v middle,osat
first,u,d (kd ) corresponding to the first vehicle of group 2, and

v middle,osat
u,d (kd ) corresponding to the representative vehicle of group 2. For the sake of simplic-

ity, we assume that the traveled distance to the end of the link for all vehicles in group 1 is the
same and is equal to 0.5n

G1,osat
u,d (kd )l veh (i.e., we assume to have a vertical queue composed of

vehicles in group 1).

For the last vehicle in group 1 that will show an accelerating and (possibly a free-flow be-
havior at the end), using Lemma 6.2 we obtain

n
G1,osat
u,d (kd )l veh

2
=

1

2
aacc

u,d

(
v free

u,d −v idle
u,d

aacc
u,d

)2

+v idle
u,d

(
v free

u,d −v idle
u,d

aacc
u,d

)

+v free
u,d ·T

free,G1 ,osat
u,d (kd ). (6.139)

Moreover, since the leaving flow rate of group 1 in the over-saturated scenario is µu,d , we can
write

n
G1,osat
u,d (kd ) =µu,d

(

gu,d (kd )−T
leave,G1,osat
u,d (kd )

)

, (6.140)
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Figure 6.12: Traffic behavior of different groups for the over-saturated urban traffic scenario.

where gu,d (kd )−T
leave,G1,osat
u,d (kd ) denotes the temporal distance between the two dashed curves

in Figure 6.12(a). Additionally, from this figure we have

T
leave,G1 ,osat
u,d (kd ) =

v free
u,d −v idle

u,d

aacc
u,d

+T
free,G1,osat
u,d (kd ), (6.141)

where from (6.139), (6.140), and (6.141) we obtain

T
leave,G1,osat
u,d (kd ) =

µu,d l vehgu,d (kd )

2v free
u,d +µu,d l veh

+

(

v free
u,d −v idle

u,d

)2

aacc
u,d

(

2v free
u,d +µu,d l veh

) , (6.142)
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and

T
free,G1,osat
u,d (kd ) =

µu,d l vehgu,d (kd )

2v free
u,d +µu,d l veh

−

(

v free
u,d −v idle

u,d

)(

µu,d l veh
+v free

u,d +v idle
u,d

)

aacc
u,d

(

2v free
u,d +µu,d l veh

) . (6.143)

For v middle,osat
u,d (kd ), from the time-speed curve of the first vehicle (see Figure 6.12(a)), we

can write

T
leave,G1 ,osat
u,d (kd ) =

v middle,osat
first,u,d (kd )−v idle

u,d

aacc
u,d

+
v idle

u,d −v middle,osat
first,u,d (kd )

adec
u,d

, (6.144)

which gives

v middle,osat
first,u,d (kd ) = v idle

u,d +T
leave,G1 ,osat
u,d (kd )

adec
u,d −aacc

u,d

adec
u,d aacc

u,d

, (6.145)

and since v middle,osat
u,d (kd ) is the mean value of v middle,osat

first,u,d (kd ) and v idle
u,d , we obtain

v middle,osat
u,d (kd ) = v idle

u,d +T
leave,G1 ,osat
u,d (kd )

adec
u,d −aacc

u,d

2adec
u,d aacc

u,d

. (6.146)

Figure 6.12(b) shows the time-speed curves of the first, last, and representative vehicle of
group 3 in the over-saturated scenario. From this figure the free-flow, decelerating, and idling
time durations of the representative vehicle are obtained as follows:

• free-flow time duration:

τ
osat,G3
u,d (kd )−

v idle
u,d −v free

u,d

adec
u,d

; (6.147)

• decelerating time duration:
v idle

u,d −v free
u,d

adec
u,d

; (6.148)

• idling time duration:

τ
osat,G3
u,d (kd )−

cd −τ
osat,G3
u,d (kd )

2
, (6.149)

where τ
osat,G3
u,d (kd ) is given by (6.132).

6.7 Case study

In this section, we present some results of a simulation-based case study to evaluate the per-
formance of the proposed mesoscopic integrated flow-emission model. As an evaluation plat-
form, we use the traffic microsimulator SUMO (Simulation of Urban MObility) [85, 86], which
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Figure 6.13: Urban traffic network used for the case study.

is an open-source microscopic traffic flow simulator (continuous-space and discrete-time)
developed by the Institute for Transportation Research, German Aerospace Center (Deutsches
Zentrum für Luft- und Raumfahrt, DLR). Since its initial release in 2002, SUMO has evolved
into a reliable and versatile platform that provides full-featured simulation and analysis tools
for traffic networks (see [86] for more details). Moreover, a remote traffic control interface,
called “TraCI” [154], is available, which provides an interface between SUMO and different
programming languages including MATLAB for various online analysis and control scenar-
ios.

The focus of this chapter and the case study presented in this section is on the interface
of the macroscopic flow models and microscopic emission models. For this case study, in
order to assess the accuracy of the interface, we use SUMO and VT-micro to generate both
the microscopic and the mesoscopic data. More specifically, for evaluation of the mesoscopic
integrated flow-emission model developed via the integrating and interfacing approach pro-
posed in this chapter, the urban traffic network represented in Figure 6.13 is considered. This
traffic network includes 12 nodes, 11 single-lane links of length 500 m, four entrances (i.e.,
links (1,5), (2,5), (3,6), and (4,6)), three exits (i.e., links (7,9), (8,10), and (11,12)), and three
traffic lights located at nodes 3, 8, and 11. The entering flows to the network are denoted by
αenter

1 , αenter
2 , αenter

3 , and αenter
4 , and the turning rates (i.e., the percentage of vehicles on a link

that intend to turn to a specific downstream link) β5,7,9, β5,7,11, β6,8,10, and β6,8,11 are assumed
to be 0.4, 0.6, 0.4, and 0.6, respectively. Note that β5,7,9 and β5,7,11 are the turning rates for
the vehicles on link (5,7) to, respectively, link 9 and link 11, and that β6,8,10 and β6,8,11 are the
turning rates for the vehicles on link (6,8) to, respectively, link 10 and link 11 (see Figure 6.13).

The traffic network shown in Figure 6.13 was modeled in SUMO, where the measurements
obtained from SUMO were coupled with the microscopic emission model VT-micro explained
(see Chapter 5 for details about VT-micro). VT-micro is selected here because it can provide
the instantaneous emissions of CO, HC, and NOx based on both the speed and the accelera-
tion of individual vehicles in the traffic network. Before we start to implement the proposed
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model, we should identify the parameters of the model by solving an offline identification
optimization problem. For identifying the parameters and for computation of the emissions
by the proposed mesoscopic integrated flow-emission model, VT-micro was used as the mi-
croscopic emission model. An extensive dataset was collected by running various traffic sce-
narios in SUMO. The demand profiles, the cycle time and the green times of the traffic lights,
and the turning rates of the links are the inputs of the identification procedure. The data
that should be collected includes the total number of vehicles on each link within the net-
work and the number of vehicles waiting in the queue on each link. The total emissions of
CO, HC, and NOx computed by VT-micro based on the flow data captured by SUMO are the
outputs of the identification procedure. Moreover, the set of parameters that should be iden-
tified include the free-flow and the idling speed, the acceleration and deceleration, the link
capacities, the saturated leaving flow rates (i.e., the maximum possible discharge rates) of the
links, and the average vehicle length in the network. Then an optimization problem was for-
mulated that minimizes the relative error of the produced emissions via the proposed model
w.r.t. the computed emissions by SUMO and VT-micro, with the parameter vector considered
as the optimization variable. We used the “lsqnonlin” solver with the “trust-region-reflective”
algorithm of the MATLAB optimization toolbox to find the parameters. The parameter values
found via model identification for the emissions of CO, HC, and NOx are given 10 in Tables 6.2,
6.3, and 6.4.

Remark 6.2 Note that the identified values of the traffic parameters may differ from their real
physical values as a result of the assumptions and simplifications made for developing the
mathematical model. In particular, in addition to the dynamic variables such as the speeds
and the acceleration and deceleration, we should also identify other parameters such as the
link capacities to minimize the mismatch between the two mesoscopic and microscopic mod-
els. 2

To evaluate the performance of the proposed model, new traffic scenarios that are differ-
ent from those used for model identification were simulated in SUMO. The total number of
vehicles in each link and the number of vehicles standing in the queue in each link were ex-
tracted from SUMO. Then for each link, the average value of the total number of vehicles and
the average value of the queue length were computed per model time step (i.e., per cycle time
of the traffic lights, which is 60 s in our simulations).

Figures 6.14 and 6.15 show the demand profiles (i.e., αenter
i

, i = 1,2,3,4) for two differ-
ent traffic scenarios, where the first scenario corresponds to a low demand and the second
scenario corresponds to a high demand. Note that for this scenario the green times of the
three traffic lights of the urban traffic network are assumed to be 30 s. The instantaneous
speed and the instantaneous acceleration profiles of the individual vehicles within the net-
work were extracted from SUMO for the two given cases, and the emissions of CO, HC, and

10To identify the parameters of the model for the case study, we have considered the same acceleration and
deceleration rates for the under-saturated, saturated, and over-saturated traffic scenarios (in order to reduce the
number of parameters that should be determined via the identification optimization problem). However, since
this optimization problem is solved offline, one could consider different acceleration and deceleration rates,
which may possibly result in more accurate results.
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Table 6.2: Identified traffic parameters for the emissions of CO using SUMO.

v free [m/s] v idle [m/s] aacc [m/s2] adec [m/s2] C [veh] µ [veh/s] l veh [m]
11.8 0.1 1.60 -1.80 14.3 0.9 5.4

Table 6.3: Identified traffic parameters for the emissions of HC using SUMO.

v free [m/s] v idle [m/s] aacc [m/s2] adec [m/s2] C [veh] µ [veh/s] l veh [m]
16.9 0.1 1.99 -1.25 71.6 4.9 3.5

Table 6.4: Identified traffic parameters for the emissions of NOx using SUMO.

v free [m/s] v idle [m/s] aacc [m/s2] adec [m/s2] C [veh] µ [veh/s] l veh [m]
13.8 0.1 1.36 -1.05 62.7 3.8 5.7

NOx produced by each vehicle were computed using VT-micro. Summing up these individual
values, the total emissions of CO, HC, and NOx by the vehicles for the entire simulated period
were obtained. These resulting values were divided into two set to provide a training dataset
and a validation dataset. The training dataset has been used to train the parameters of the
model, and the validation dataset has been used for evaluation of the emission values that are
computed via the proposed mesoscopic flow-emission model. The identified values of the
model parameters are given in Tables 6.2, 6.3, and 6.4 for, respectively, the emissions of CO,
the emissions of HC, and the emissions of NOx.

Figures 6.17(a), 6.18(a), and 6.19(a) (which correspond to case 1 with low demands) show
the relative error of the instantaneous emissions computed by the proposed integrated flow-
emission model w.r.t. the instantaneous emissions captured from SUMO combined with VT-
micro. The relative error is given in percentage and as a function of time step for a one-hour
simulation. The relative error for the pollutant e ∈ {CO,HC,NOx} is defined by

ǫrel
e =

∣
∣
∣TEmodel

e −TEmicrosimulator
e

∣
∣
∣

TEmicrosimulator
e

. (6.150)

Table 6.5 summarizes the results of the simulations for the instantaneous emissions. From
this table, the relative error of the instantaneous emissions of CO has a mean value of 0.152%,
a standard deviation of 0.149, and a maximum of 0.593%. The mean value, the standard devi-
ation, and the maximum value of the instantaneous emissions of HC are, respectively, 0.226%,
0.189, and 0.884%. For the instantaneous emissions of NOx, the mean value of the relative er-
ror is 0.226%, the standard deviation of the relative error is 0.223, and its maximum value is
1.13%.

Figures 6.17(b), 6.18(b), and 6.19(b) show the relative error in percentage of the cumula-
tive total emissions of CO, HC, and NOx (which is the sum of the instantaneous emissions
from the first time step till the current time step) for case 1 w.r.t. the emissions computed via
SUMO and VT-micro. From these figures, Table 6.6 was extracted, which shows that the rela-
tive error of the cumulative emissions of CO during a 1-hour simulation does not exceed 2%,
where this relative error has a mean value and a standard deviation of, respectively, 0.483%
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Figure 6.14: Demand profiles for the case study for case 1 (low demand) for a 1-hour simulation

(the green times are 30 s).

and 0.368. For the cumulative total emissions of HC, the mean value and the standard devia-
tion of the relative error are, respectively, 0.848% and 0.617, while the relative error is always
less than 2.5%. Finally, from Figure 6.19(b), for the cumulative total emissions of NOx, the
mean value is 0.887%, the standard deviation is 0.617, and the relative error does not go higher
than 2.5%. These results prove the excellent accuracy provided by the mesoscopic integrated
flow-emission model, which is based on the integrating and interfacing approach proposed
in this chapter.

Moreover, the results corresponding to case 2 are shown in Figures 6.20(a), 6.21(a), and
6.22(a), which show the relative error in percentage of the instantaneous emissions of CO, HC,
and NOx as a function of the time step, and also in Figures 6.20(b), 6.21(b), and 6.22(b), which
show the relative error in percentage of the cumulative total emissions of CO, HC, and NOx.
These results are summarized in Tables 6.7 and 6.8, where we can see that the relative error
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Figure 6.15: Demand profiles for the case study for case 2 (high demand) for a 1-hour simula-

tion (the green times are 30 s).

Figure 6.16: Demand profiles for the case study (case 1: low demand, case 2: high demand).

of the instantaneous emissions of CO, HC, and NOx is less than, respectively, 3.233%, 5.310%,
and 2.778%. Additionally, the standard deviations of the relative errors are always less than
1.6. For the relative error of the cumulative emissions of CO, HC, and NOx, the relative error
does not exceed 2.3%, the mean value of the relative error is less than 1.4%, and the standard
deviation is below 0.32.

6.8 Conclusions and future work

In this chapter, we have proposed a general framework to integrate and interface traffic flow
and emission models. Using the proposed approach, a mesoscopic integrated flow-emission
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(a) Relative errors (%) of the instantaneous CO emissions computed
by the integrating and interfacing approach proposed in this chapter
w.r.t. the instantaneous CO emissions by the combined SUMO and VT-
micro model for the demand profiles of case 1.
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(b) Relative errors (%) of the cumulative CO emissions computed by the
integrating and interfacing approach proposed in this chapter w.r.t. the
cumulative CO emissions by the combined SUMO and VT-micro model
for the demand profiles of case 1.

Figure 6.17: Results for CO emissions for case 1 (low demand).



162 Efficient Predictive Model-Based and Fuzzy Control for Green Urban Mobility

          5         10        15        20        25        30        35        40        45        50        55        60
0

0.5

1

1.5

2

2.5

R
el

at
iv

e 
er

ro
r 

(%
) 

fo
r 

in
st

an
ta

ne
ou

s 
H

C
 e

m
is

si
on

s

Model time step kd

(a) Relative errors (%) of the instantaneous HC emissions computed
by the integrating and interfacing approach proposed in this chapter
w.r.t. the instantaneous HC emissions by the combined SUMO and VT-
micro model for the demand profiles of case 1.
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(b) Relative errors (%) of the cumulative HC emissions computed by the
integrating and interfacing approach proposed in this chapter w.r.t. the
cumulative HC emissions by the combined SUMO and VT-micro model
for the demand profiles of case 1.

Figure 6.18: Results for HC emissions for case 1 (low demand).
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(a) Relative errors (%) of the instantaneous NOx emissions computed
by the integrating and interfacing approach proposed in this chapter
w.r.t. the instantaneous NOx emissions by the combined SUMO and VT-
micro model for the demand profiles of case 1.
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(b) Relative errors (%) of the cumulative NOx emissions computed by the
integrating and interfacing approach proposed in this chapter w.r.t. the
cumulative NOx emissions by the combined SUMO and VT-micro model
for the demand profiles of case 1.

Figure 6.19: Results for NOx emissions for case 1 (low demand).
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(a) Relative errors (%) of the instantaneous CO emissions computed
by the integrating and interfacing approach proposed in this chapter
w.r.t. the instantaneous CO emissions by the combined SUMO and VT-
micro model for the demand profiles of case 2.

          5         10        15        20        25        30        35        40        45        50        55        60
0

0.5

1

1.5

2

2.5

Model time step kd

R
el

at
iv

e
er

ro
r

(%
)

fo
r

cu
m

u
la

ti
ve

C
O

em
is

si
o

n
s

(b) Relative errors (%) of the cumulative CO emissions computed by the
integrating and interfacing approach proposed in this chapter w.r.t. the
cumulative CO emissions by the combined SUMO and VT-micro model
for the demand profiles of case 2.

Figure 6.20: Results for CO emissions for case 2 (high demand).
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(a) Relative errors (%) of the instantaneous HC emissions computed
by the integrating and interfacing approach proposed in this chapter
w.r.t. the instantaneous HC emissions by the combined SUMO and VT-
micro model for the demand profiles of case 2.
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(b) Relative errors (%) of the cumulative HC emissions computed by the
integrating and interfacing approach proposed in this chapter w.r.t. the
cumulative HC emissions by the combined SUMO and VT-micro model
for the demand profiles of case 2.

Figure 6.21: Results for HC emissions for case 2 (high demand).
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(a) Relative errors (%) of the instantaneous NOx emissions computed
by the integrating and interfacing approach proposed in this chapter
w.r.t. the instantaneous NOx emissions by the combined SUMO and VT-
micro model for the demand profiles of case 2.
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(b) Relative errors (%) of the cumulative NOx emissions computed by the
integrating and interfacing approach proposed in this chapter w.r.t. the
cumulative NOx emissions by the combined SUMO and VT-micro model
for the demand profiles of case 2.

Figure 6.22: Results for NOx emissions for case 2 (high demand).
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Table 6.5: Mean and standard deviation of the relative error of the instantaneous emissions for

case 1 (low demand).

mean of the standard deviation of maximum of the
relative error (%) the relative error relative error (%)

TECO 0.152 0.149 0.593
TEHC 0.226 0.189 0.884
TENOx 0.226 0.223 1.130

Table 6.6: Mean and standard deviation of the relative error of the cumulative emissions for

case 1 (low demand).

mean of the standard deviation of maximum of the
relative error (%) the relative error relative error (%)

TECO 0.483 0.368 1.776
TEHC 0.848 0.617 2.260
TENOx 0.887 0.525 2.226

Table 6.7: Mean and standard deviation of the relative error of the instantaneous emissions for

case 2 (high demand).

mean of the standard deviation of maximum of the
relative error (%) the relative error relative error (%)

TECO 1.303 0.772 3.233
TEHC 2.036 1.542 5.310
TENOx 1.255 0.746 2.778

Table 6.8: Mean and standard deviation of the relative error of the cumulative emissions for

case 2 (high demand).

mean of the standard deviation of maximum of the
relative error (%) the relative error relative error (%)

TECO 1.377 0.154 2.273
TEHC 0.810 0.313 1.322
TENOx 0.566 0.209 1.481

traffic model is generated that considers an aggregated behavior for groups of vehicles instead
of considering the behavior of individual vehicles. The proposed approach can integrate any
traffic flow model that updates the total number of vehicles in the links and the number of
vehicles in the queues on the links at every model time step, and any microscopic emission
model that takes into account the individual speed and acceleration of vehicles in the net-
work. In this chapter, we have also introduced a general formulation for transforming a time-
delayed differential equation in the continuous-time domain into an equivalent discrete-time
difference equation.



168 Efficient Predictive Model-Based and Fuzzy Control for Green Urban Mobility

The resulting mesoscopic integrated flow-emission models are, on the one hand, fast enough
for real-time computations due to their mesoscopic nature. On the other hand, the resulting
models provide a high level of accuracy for computation of the total emissions and the total
fuel consumption of the vehicles compared with microscopic traffic models, based on the re-
sults of a case study presented in this chapter. The results of the case study show that the rela-
tive error (in percentage) of the instantaneous total emissions of the vehicles computed by the
mesoscopic integrated flow-emission model generated via the proposed approach w.r.t. the
instantaneous total emissions found via the microsimulation traffic software SUMO and the
microscopic emission model VT-micro does not exceed 5.3% for CO, HC, and NOx. More-
over, the mean value and the standard deviation of the relative error are, respectively, less
than 2% and 1.6 for CO, HC, and NOx. Moreover, the relative error (%) of the cumulative total
emissions of the vehicles for the mesoscopic integrated flow-emission model w.r.t. SUMO and
VT-micro does not exceed 2.3% for CO, HC, and NOx. The mean value of the relative error is
less than 1.4%, and the standard deviation is less than 0.7.

As a topic for future work, due to the resulting low computation time and high accuracy,
the proposed integrating and interfacing approach can be used to generate mesoscopic inte-
grated flow-emission models suited for (real-time) model-based traffic applications. A more
extensive assessment of the proposed integrating and interfacing approach can be done for
further set-ups, scenarios, and traffic signal control strategies. An extensive and in-depth sen-
sitivity analysis of the results produced by the model w.r.t. the parameters used in the model
is another topic for future work. Moreover, one could also consider combinations of other
macroscopic traffic flow models and microscopic emission models.



Chapter 7

Efficient optimization for MPC:

Comparison between smooth and

nonsmooth methods

7.1 Introduction

The focus of this chapter is on the development of MPC strategies for urban traffic networks
in order to reduce both congestion and emissions. The MPC controller needs a model of
the system that is accurate, and at the same time simple and fast for real-time applications.
Hence, as the prediction model of the MPC controller we will use the mesoscopic integrated
model developed in Chapter 6, where for the flow model we consider the S-model [98] (see
Chapter 5 for details regarding the S-model), and for the emission model, we consider VT-
micro[3] (see also Chapter 6).

Moreover, to solve the optimization problem of the MPC controller, it will be useful if we
can apply efficient gradient-based approaches. However, many of the available mathematical
models, including traffic models, have nonsmooth functions or discrete variables in their for-
mulations. Applying these models as prediction models of MPC controllers results in a nons-
mooth MPC optimization problem, which restricts application of gradient-based approaches
(e.g., methods that are based on Pontryagin’s principle [79, 92]). Hence, we propose general
smoothening methods for mathematical models of physical systems, and we apply them for
the S-model to obtain a smooth model and hence, a smooth optimization problem.

One of the efficient gradient-based approaches that has been widely used [127, 130] is
the feasible-direction algorithm proposed by Papageorgiou and Marinaki [128]. To identify
an efficient search direction for the optimization, we will apply the latest version of a well-
known approach called the resilient back-propagation (RProp) given by Bailey [7], while the
main approach has initially been introduced by Riedmiller and Braun [137] (see Chapter 5 for
details on the RProp approach).

169
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7.1. Introduction

7.2. General smoothening methods for mathematical models of physical systems

7.2.1. Indicator function 7.2.2. Maximum and minimum function

7.2.3. Floor and ceiling function 7.2.4. Remainder function

7.3. MPC for urban traffic networks

7.3.1. Formulation of the MPC optimization problem 7.3.2. Computation of the cost function

7.4. Case study: Urban traffic network

7.4.1. Setup 7.4.2. Controllers 7.4.3. Results and discussions

7.5. Conclusions and future work

Figure 7.1: Road map of Chapter 7.

Contributions and organization of the chapter

The main contributions of the chapter include:

• We propose general smoothening methods for mathematical models of physical sys-
tems, where the proposed methods can be applied to various models with nonsmooth
functions, including transportation models (see Section 7.2). The resulting smooth
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models can be used in model-based optimal control techniques, e.g., in MPC, where the
optimization problem can be solved by efficient smooth and gradient-based solvers.

• Implementing the proposed general smoothening methods, we show that even for non-
smooth and nonlinear flow models, we can easily apply an efficient gradient-based op-
timization approach that uses resilient back-propagation (RProp) and solves the op-
timization problem of the MPC controller much faster than nonsmooth optimization
approaches. Finally, all these methods are combined to develop a novel approach to
urban traffic network control aiming at optimizing a trade-off of congestion mitigation
versus emission reduction (see Section 7.4).

The structure of this chapter is as follows. In Section 7.2 we introduce general smoothen-
ing approaches for mathematical models of physical systems that involve nonsmooth func-
tions. When these nonsmooth models are used to formulate an optimization problem, these
smoothening methods can transform the resulting nonsmooth problem into a smooth one,
which can then be solved by efficient gradient-based optimization methods. In Section 7.3
an MPC controller for urban traffic networks is developed that finds a balanced trade-off be-
tween reduction of the total time spent and total emissions of the vehicles. We discuss how
to formulate the optimization problem of the MPC controller and how to compute the cor-
responding cost function. For application, we can use the smoothening methods proposed
in Section 7.2 to make the optimization problem smooth. Correspondingly, we consider a
gradient-based optimization solver that benefits from the resilient back-propagation (RProp)
method. Section 7.4 presents the results of a case study and the gradient-based approach
for solving the MPC optimization problem. Finally, Section 7.5 concludes the work and pro-
poses topics for future work. The road map of Chapter 7 is illustrated in Figure 7.1. Moreover,
Table 7.1 gives the frequently used mathematical notations of this chapter.

This chapter of the thesis is based on [72].

7.2 General smoothening methods for mathematical models

of physical systems

Many of the available mathematical models of physical systems, including transportation
networks, involve nonsmooth functions in their formulations. Some examples of such trans-
portation models include the cell transmission model (CTM) [33], the dynamic IFTN model
[93] applied in modeling the container flows, and also max-plus-linear models, e.g., see [52],
that are used to model railway transportation systems. It is very beneficial if we can use these
models as the prediction model of an MPC controller, and still apply efficient gradient-based
approaches (e.g., Pontryagin’s approach [79]) to solve the optimization problem of the MPC.
For this aim, we first need to find general approaches to render these nonsmooth functions
smooth and hence, differentiable. In this section, we develop smooth approximate functions
for the nonsmooth indicator, maximum, minimum, floor, ceiling, and remainder functions
that appear frequently in mathematical models of physical systems.
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Table 7.1: Frequently used mathematical notations for Chapter 7.

α smoothening parameter

IL indicator function for the logical statement L

⌊·⌋ floor function

⌈·⌉ ceiling function

rem{·, ·} remainder function

J (·) cost function

J t(·) terminal cost function

J s(·) stage cost function

J s,cum(·) cumulative stage cost function

kc control time step counter

Tc control sampling time

kd simulation time step counter

cd simulation sampling time

Np prediction horizon of the MPC controller

uuu(kc) control input at control time step kc

ũuu(kc) a vector that contains control inputs uuu (kc) , . . . ,uuu
(

kc +Np −1
)

TTS(k) total time spent of the vehicles in between time steps k and k +1

TEp (k) total emissions of the pollutant p by the vehicles in between time steps k and k +1

TTSt typical value of the total time spent of the vehicles within one prediction window

TEt
p typical value of the total emissions of the vehicles within one prediction window

7.2.1 Indicator function

The indicator function Ix≥a is defined by

Ix≥a =

{
1, x ≥ a

0, x < a
, (7.1)

and hence is nonsmooth at zero. In [25] the smooth form of the indicator function is approx-
imated by a sigmoid function (see Figure 7.2, which shows the indicator function with a solid
black curve and its smooth approximate with a dashed red curve):

Ix≥0 ≈
(

1+e−αx
)−1 , α> 0, (7.2)

with α a smoothening parameter.

7.2.2 Maximum and minimum functions

In this section, we consider the maximum and minimum functions, which both are nons-
mooth and which are also easily transformable into one another. In general, we are looking



Chapter 7 - Efficient optimization for MPC: Comparison between smooth and nonsmooth methods 173

-5 0 5
 x

0

0.5

1

1.5

 I
x≥

a

 a=2

Figure 7.2: Indicator function of Ix≥a and its smooth approximation.
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Figure 7.3: Maximum function and its smooth approximation.

for the smooth form of max
i=1,...,n

{xi } and min
i=1,...,n

{xi }. Figure 7.3 illustrates the maximum function

max{x,b} for b = 1 with a solid black curve and its smooth form with a dashed red curve. We
have

max{x1, x2} ≈
1

α

(

eαx1 +eαx2
)

. (7.3)

From the fact that
max{x1, x2, x3} = max{x1,max{x2, x3}} ,

and by mathematical induction, we can easily obtain the following general form of the smooth
maximum function:

max
i=1,...,n

{xi } ≈
1

α

n∑

i=1
eαxi . (7.4)
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Figure 7.4: Ceiling function and its approximation.
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Figure 7.5: Floor function and its approximation.

For the minimum function, we have

min
i=1,...,n

{xi } =− max
i=1,...,n

{−xi },

which together with (7.4) gives

min
i=1,...,n

{xi } ≈−
1

α

n∑

i=1
e−αxi . (7.5)

7.2.3 Floor and ceiling functions

The ceiling and the floor functions may appear in mathematical models of different physi-
cal systems, especially for discrete-time models. The ceiling function ⌈x⌉, which operates on
x ∈ R, is defined as the least integer that is not less than x. The floor function ⌊x⌋, which also
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operates on x ∈R, is defined as the largest integer that is not larger than x. Figures 7.4 and 7.5
illustrate the ceiling and the floor functions by solid black curves and their smooth approxi-
mates by dashed red curves. From these figures, it is observed that at the integer points on
the horizontal axis, both the ceiling and the floor function show a nonsmooth behavior.

Consider the indicator function (see Section 7.2.1) together with an infinite number of
transformed indicator functions, with the first transformed function shifted for one unit to the
right, the second transformed function shifted for two units to the right, and so on. The ceil-
ing function on the right-hand side of the vertical axis (see Figure 7.4), i.e., for non-negative
integers k ∈ {0,1, . . .}, is obtained from the summation of the indicator function and all these
transformed indicator functions over the range of the non-negative integers. Next consider
an infinite number of transformed indicator functions, where the first transformed function
is shifted for one unit to the left, the second transformed function is shifted for two units to
the left, and so on. Moreover, all the transformed indicator functions are shifted down for one
unit. The summation of these functions within the range of negative integers produces the
ceiling function for the negative integer values. Hence, to approximate the ceiling function
with a smooth function, we can consider the summation of the sigmoid function (see Sec-
tion 7.2.1) and the corresponding transformed sigmoid functions for the appropriate integer
ranges as explained above.

In summary, for the smooth approximation of the ceiling function we have

⌈x⌉ ≈
∑

k∈{0,1,2,...}

(

1+e−α(x−k)
)−1

+
∑

k∈{...,−2,−1}

((

1+e−α(x−k)
)−1

−1

)

, (7.6)

or equivalently

⌈x⌉ ≈ 0.5+
∑

k∈Z

((

1+e−α(x−k)
)−1

−0.5

)

. (7.7)

Since ⌊x⌋ = ⌈x⌉−1, we can write

⌊x⌋ ≈−0.5+
∑

k∈Z

((

1+e−α(x−k)
)−1

−0.5

)

. (7.8)

7.2.4 Remainder function

The remainder function rem{a,b} yields the remainder value of the division of a by b, i.e.,

rem{a,b} = a−qb, (7.9)

where q is the quotient. Figure 7.6 illustrates the graph representing rem{a,b} for b = 2. We
consider the concept of Euclidean division:

• for a positive divisor b > 0, we have q =

⌊
a
b

⌋

,

• for a negative divisor b < 0, we have q =

⌈
a
b

⌉

.
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Figure 7.6: Remainder function and its smooth approximation.

The above expressions can equivalently be expressed by

q =
1+ sign(b)

2

⌊a

b

⌋

+
1− sign(b)

2

⌈a

b

⌉

, (7.10)

with sign(·) indicating the sign function:

sign(x) =

{
1 x > 0,
−1 x < 0.

We can write sign(x) = Ix≥0 − Ix≤0. Therefore,

sign(x) ≈
(

1+e−αx
)−1

−
(

1+eαx
)−1 , (7.11)

and for the remainder function we obtain

rem{a,b} ≈ a−b
∑

k∈Z

((

1+e−α
(

a
b
−k

))−1
−0.5

)

+
b

2

((

1+e−αb
)−1

−

(

1+eαb
)−1

)

. (7.12)

7.3 MPC for urban traffic networks

Taking into account the positive characteristics of an MPC controller (i.e., it performs a
feedback-based and to some extent robust control approach), which fit well the requirements
that are usually expected for management of traffic networks with highly dynamic behaviors,
we consider the MPC approach for urban traffic control. In this section, the aim of the con-
troller is to find a balanced trade-off between prevention/reduction of congestion and reduc-
tion of emissions. Therefore, for the prediction model of the MPC controller, the integrated
flow and emission framework introduced in Chapter 6 including the extended S-model (see
Section 6.2) and VT-micro (see Section 5.3.2) is used.
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7.3.1 Formulation of the MPC optimization problem

min
ũuu(kc)

J (kc) = min
˜uuu(kc)

(

J t(kc)+J s,cum(kc)
)

,

s.t.

(7.15), (7.16), and (7.20),
Integrated flow and emission model (see Chapter 6),
U (ũuu(kc)) = 0 (e.g., see (7.14)),
uuumin ≤ ũuu(kc) ≤ uuumax,

(7.13)

where J (kc) denotes the summation of the terminal objective J t(kc) and the cumulative
stage objective function J s,cum(kc) that is computed within one prediction window starting
at control time step kc, i.e., within [kcTc,

(

kc +Np
)

Tc) with Tc the control sampling cycle. Fur-
thermore, the optimization variable ũuu(kc) is a vector that includes uuu⊤(kc), . . . ,uuu⊤(kc+Np−1),
uuu(kc) is a vector that includes all control inputs of the system (the green time lengths for an
urban traffic network along the prediction window) at control time step kc, uuumin and uuumax are
vectors of the same size as uuu(kc) that include element-wise the minimum and maximum al-
lowed values for the control inputs within uuu(kc), and U (uuu(kc)) = 0 indicates the equality con-
straints on the control vector. For example, U (uuu(kc)) = 0 may indicate that the summation of
the green and yellow times for each intersection equals the cycle time for that intersection.
More specifically, suppose that ud ,i (l ) for all d ∈ Ictrl (with Ictrl the set of all intersections
of the urban traffic network that are controlled by traffic signals) and i ∈

{

1, . . . ,n
green
d

}

(with

n
green
d

the number of green signals1 of intersection d) indicates the i th traffic signal at inter-

section d . Then for all d ∈ Ictrl, U (uuu(kc)) = 0 is a relationship of the form

n
green
d∑

i=1
ud ,i (l ) = cd − yd , l ∈

{

kc, . . . ,kc +Np −1
}

, (7.14)

where yd indicates the total yellow or all-red time within one cycle of the intersection corre-
sponding to node d .

The main aim of the urban traffic control system is to find a balanced trade-off between
reducing the congestion level, reducing the total emissions, and preventing high fluctuations
in time for the control inputs. Hence, the stage cost function of the MPC controller is for-
mulated as a weighted combination of the total time spent (which quantifies the congestion
level), the total emissions, and the absolute difference of two temporally successive control
vectors. We have

J s,cum(kc) =
kc+Np−1

∑

k=kc

J s(k), (7.15)

J s(k) = wTTS
TTS(k)

TTSt +
∑

p∈P

wTEp

TEp (k)

TEt
p

+wv
V(uuu(k))

Vn , (7.16)

1Note that at intersection d , for each right-of-way, we consider a traffic signal.
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with TTS(k) and TEp (k) the total time spent and total emissions of p ∈ P (where P is a set of
pollutants, e.g., P = {CO, HC, NOx}) within one control sampling time (i.e., within [kTc, (k +

1)Tc) for k ∈
{

kc, . . . ,kc +Np −1
}

), TTSt and TEt
p typical values of TTS(·) and TEp (·) within one

prediction window, V(uuu(kc)) = ‖uuu(kc)−uuu(kc −1)‖ for some norm function ‖·‖, and Vn a nom-
inal value for V(·) in one control sampling time that may be computed by ‖uuumax −uuumin‖.

In our problem, for the terminal cost function, we have considered the following formula-
tion:

J t(kc +Np) =α
∥
∥xxx(kc +Np)

∥
∥ , (7.17)

with α a positive constant and xxx the state vector (including the total number of vehicles in a
link and the number of vehicles waiting in the queue on a link). The aim of this terminal cost
is to reduce the final queue lengths on the links. Moreover, for the stage cost function (7.16),
we should determine TTSu,d (k) and TEp,u,d (k) for all links (u,d) within the traffic network
and sum them up to obtain TTS(k) and TEp,u,d (k) of all the links in the traffic network for
control sampling cycle k. First the governing traffic scenario on each link is detected using
(6.28), (6.68), and (6.124). Then for the under-saturated scenario, we use (6.37)-(6.45), for
case 1 of the saturated scenario, we use (6.75)-(6.83), for case 2 of the saturated scenario, we
use (6.102)-(6.109), and for the over-saturated scenario, we use (6.130)-(6.138) to obtain the
TTS of each link. Moreover, using (6.23)-(6.27) together with the mentioned equations, we
can obtain the TE on each link.

7.3.2 Computation of the cost function

In general, the system’s sampling time and the control sampling time might not be equal and
therefore, the time instants kd cd and kcTc (correspondingly the simulation time step kd of
link (u,d) and the control time step kc of the network) may not coincide. Hence, we should
find a relationship between kd and kc. Suppose that kc = 0 corresponds to the absolute time
instant t = 0 (see Figure 7.7). Then, the first upcoming simulation time step k+

d
(kc) for link

(u,d) at time instant kcTc is computed by

k+
d (kc) =

⌈
kcTc −∆Td ,0

cd

⌉

, (7.18)
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where ∆Td ,0 is the offset between the first simulation time instant of link (u,d) (correspond-
ing to the simulation time step kd = 0 in Figure 7.7), and the first control time instant (corre-
sponding to kc = 0 or t = 0 in Figure 7.7). For k++

d
(kc), i.e., the last simulation time step that

occurs during the current prediction time interval (see Figure 7.7), we can write

k++
d (kc) =

⌊
(kc +Np)Tc −∆Td ,0

cd

⌋

. (7.19)

In (7.16), TTS(·) and TEp (·) are the summation of the total time spent and total emissions for
all links in the traffic network. For the total time spent by the vehicles on link (u,d) at time
step kc, we have

TTSu,d (kc) =
N s

G∑

i=1

∑

b∈B

(

nb,i ,s
u,d

(

k+
d (kc)−1

)

min
{

T b,i ,s
u,d

(

k+
d (kc)−1

)

,k+
d (kc)cd −kcTc

})

+

k++
d

(kc)−1
∑

j=k+
d

(kc)

N s
G∑

i=1

∑

b∈B

nb,i ,s
u,d ( j )T b,i ,s

u,d ( j )

+

N s
G∑

i=1

∑

b∈B

(

nb,i ,s
u,d

(

k++
d (kc)

)

min
{

T b,i ,s
u,d

(

k++
d (kc)

)

, (kc +Np)Tc −k++
d (kc)cd

})

,

(7.20)

where s adopts under-saturated, saturated, and over-saturated based on the ongoing traf-
fic scenario on the link, B={free, idling, dec, acc}, N s

G shows the number of different groups

for the ongoing traffic state, and T
b,Gi ,s
u,d (kd ) is computed by the equations given in Chapter 6

(Sections 6.4), 6.5, and 6.6), recalling that nb,i ,s
u,d (kd ) and T b,i ,s

u,d (kd ) refer to the total number
of vehicles and the average travel time for each of these vehicles on link (u,d) that belong
to group i , and that show the traffic behavior b during [kd cd , (kd +1)cd ), while the govern-
ing traffic scenario on the link is scenario s. The total emissions Ep of p for each link of the
network can be computed via (6.23), (6.24), (6.26), and (6.27).

Note that in (7.20), we have assumed that nb,i ,s
u,d (·) follows a piecewise constant trajectory,

i.e., its value is fixed in the intervals [kd cd , (kd +1)cd ). Therefore,

nb,i ,s
u,d (kc) = nb,i ,s

u,d

(

k+
d (kc)−1

)

, for k+
d (kc)−1 ≤ kc < k+

d (kc).

One may assume a linear extrapolation approximation for the state instead, which is based
on the two consecutive system’s time steps, i.e.,

nlinear,b,i ,s
u,d (kc) = nb,i ,s

u,d

(
k+

d (kc)
)
+

(

kc
Tc

cd

−k+

d (kc)

)

· (nb,i ,s
u,d

(
k+

d (kc)
)
−nb,i ,s

u,d

(
k+

d (kc)−1)
)

. (7.21)

7.4 Case study

In this section, we consider a case study to evaluate the designed smooth MPC controller. We
focus on both the performance and the computation speed of the proposed control approach.
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Table 7.2: Network parameters

N lane [-] ℓlink [m] µ [veh/s] c [s] β5,7,9 β5,7,11 β6,8,11 β6,8,10

1 500 0.8 60 0.6 0.4 0.6 0.4

Table 7.3: Model parameters

v free [m/s] v idle [m/s] aacc [m/s2] adec [m/s2] l veh [m]
14 0.4 2 -2 7

In order to evaluate the performance of the MPC controller, we compare the values of total
time spent, total emissions, and the value of the cost function computed by (7.15)-(7.17) for
the MPC controller with those of the no-control case and an efficient fixed-time traffic control
approach that has been precomputed offline. We also evaluate the controller from the point
of computational efficiency (i.e., the CPU time).

7.4.1 Setup

The urban traffic network we use for the case study is the one used in Chapter 6 shown in
Figure 6.13. The network consists of 11 links, where all links have the same characteristics, i.e.,
the same number of lanes N lane, length ℓlink, and saturated leaving flow rate µ. Moreover, the
traffic lights of all the three intersections that are controlled (see Figure 6.13) have the same
cycle time c. The parameters β1, β2, β3, and β4 are the turning rates (i.e., the percentage of
vehicles on a link that turn to a specific downstream link) of the vehicles at the corresponding
intersection. We use the integrated flow and emission model proposed in Chapter 6 with the
traffic parameters listed in Tables 7.2 and 7.3 to simulate the traffic in this network.

We run the simulations for three different demand profiles shown in Figure 7.8, where
αenter

1 , αenter
2 , αenter

3 , and αenter
4 are the demands (i.e., the entering flow rates) of, respectively,

origin 1, 2, 3, and 4 in Figure 6.13. These profiles have been selected in such a way that they
highlight specific features, and such that they result in various traffic scenarios (e.g., under-
saturated, saturated, and over-saturated) on different links of the traffic network. More specif-
ically, ‘Demand profile 1’ corresponds to a relatively balanced case for the four demands
αenter

1 , . . . , αenter
4 . ‘Demand profile 2’ is a case where the demands at origin 2 (αenter

2 ) and 3
(αenter

3 ) are medium. For ‘Demand profile 3’, the demand at origin 3 is very high, while at the
other origins the demand is low to medium. Comparing ‘Demand profile 2’ and ‘Demand
profile 3’, we see a more irregular pattern for the latter case. Note that for each of the three
demand profiles, at some periods during the simulation congestion occurs, more specifically
on links (1,5), (2,5), (3,6), (4,6), (7,11), and (8,11). Moreover, on the intermediate links (5,7)
and (6,8), a moderately congested traffic is sometimes observed. Each simulation run covers
an entire hour. For each demand profile, we repeat the simulations 10 times and compute the
CPU time and the realized values of the objective function, the total time spent, and the total
emissions of CO, HC, and NOx for each run. We will consider and compare the performance
of different controllers that are described in Section 7.4.2 with the no-control case, which cor-
responds to a case where there are no traffic lights at all at the intersections (i.e., all links are
always open to the vehicles, unless the downstream road is blocked).
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7.4.2 Controllers

State-feedback controller

At every control time step k, the state-feedback controller divides the green times gu1,d and
gu2,d between two incoming links (u1,d) and (u2,d) at an intersection d taking into account
the total number of vehicles nu1,d and nu2,d on the links, and the number of vehicles in the
queues qu1,d and qu2 ,d , i.e., division of the green times between the links is based on the ratios

nu1,d (k)+ρqu1,d (k)

nu1,d (k)+nu2,d (k)+ρ
(

qu1,d (k)+qu2 ,d (k)
) and

nu2,d (k)+ρqu2,d (k)

nu1,d (k)+nu2,d (k)+ρ
(

qu1,d (k)+qu2 ,d (k)
) , respectively. Note that ρ

is a parameter that can be tuned.

Optimal fixed-time controller

This controller has constant signal settings that have been optimized offline for each de-
mand class (Demand profiles 1, 2, 3) separately. For this aim, the objective function (i.e., the
weighted sum of the total time spent and total emissions) was minimized for each demand
class in a 1-h simulation using brute force with a grid size of 0.1, and a fixed traffic signal
setting was obtained.

MPC controller with RProp

This controller uses a gradient-based optimization approach based on the resilient back-
propagation algorithm (see Sections 5.4 and 5.5), and is designed as explained in Section 7.3,
with the smooth and extended S-model (see Sections 7.2 and 6.2) as the prediction flow model
and VT-micro [3] as the prediction emission model of the controller. Note that in the S-model,
the minimum, floor, and remainder functions that appear respectively in (5.6), (5.9), and
(5.10), will be smoothened using (7.5), (7.8), and (7.12). These two models are integrated us-
ing the mesoscopic framework proposed in Chapter 6. The control sampling time is equal to
the cycle time of the traffic lights in the traffic network (60 s), and the length of the prediction
horizon is 7 time steps (note that according to the tuning rules proposed by Hegyi et al. [58],
the horizon length is selected such that it is longer than the time needed for vehicles to cross
the network).

MPC controller with pattern search

For evaluation of the CPU time, we compare the smooth MPC controller with a nonsmooth
MPC controller. In general, several nonsmooth optimization algorithms exist, among which
pattern search and genetic algorithm are the most frequently used algorithms. We noticed
from several experiments that the performance and the computation speed for pattern search
are more satisfactory than those of the genetic algorithm. Hence, we used pattern search for
the case study that is implemented in the Global Optimization Toolbox of MATLAB, version
R2015B.

The experiments were run on a PC with an Intel Xeon Quad core E5-1620 V3 CPU with a
clock speed of 3.5 GHz.
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Figure 7.8: Different demand profiles used for 3 simulations cases.
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7.4.3 Results and discussion

Since the MPC optimization problem may in general be a nonconvex one, in order to prevent
the gradient-based approach from giving a solution that is only locally optimal and that may
give a much worse performance than the global optimal value, we first ran a set of offline
experiments (see [129]). The aim was to determine how selection of different starting points
may play a role in getting a good approximation for the global optimum, and that what is
the best choice for the selection of the starting points. These points have been selected in a
structured way, i.e., we have three sets of deterministic starting points and two sets of random
ones. The deterministic starting points include the shifted suboptimal solution of the previ-
ous control time step, the average of the shifted suboptimal solutions determined in the two
previous control time steps, and the average of all the shifted suboptimal solutions found in
the previous control time steps. The random starting points are uniformly distributed over
the feasible region. The results of the offline optimization did not show a noticeable differ-
ence in the overall performance of the controlled system for the different choices of the start-
ing points. Hence, for the online application of the optimization-based control approaches
in this chapter, we used one set of starting points at every control time step, in particular, the
shifted suboptimal solution of the previous control time step. For pattern search, we used a
similar approach.

Tables 7.4-7.8 show the resulting value of the objective function, the total time spent, and
the total emissions of CO, HC, NOx for the no-control case, and for the state-feedback, op-
timal fixed-time, and smooth and nonsmooth MPC controllers applied to the urban traffic
network illustrated in Figure 6.13. We have considered the following values for the parame-
ters given in (7.15): wT = 0.3, wECO = wEHC = wENOx

= 0.2, T t = 105 [s], E t
CO = E t

HC = E t
NOx

=

1 [kg], wv = 0. These results show that compared with the no-control case, the overall perfor-
mance of the system is improved significantly with the state-feedback and optimal feedback
controllers. The reason that the fixed-time traffic signal setting performs much worse than
the state-feedback controller for Demand profile 3, is the irregular pattern of this demand
profile compared with the other two profiles (see Figure 7.8). A constant setting is of course
not always expected to be the best choice for both a very high and a very low demand, which
occurs in Demand profile 3 for origin 3. However, a state-feedback controller that considers
the queue lengths can adapt its traffic signal setting w.r.t. the current traffic state, and hence
performs better than the fixed-time controller.

From Table 7.7, the improvement of the system’s performance for the smooth MPC con-
troller is higher than for the other controllers w.r.t. the no-control case. Therefore, we can
conclude that the online smooth MPC approach for the given case study is highly beneficial
compared with the other given controllers.

Next, we compare both the computation time and the performance of the smooth MPC
controller that uses RProp with those of a nonsmooth MPC controller that uses pattern search.
The corresponding results showing the performance of pattern search are given in Table 7.8
(note that the average CPU time per control time step is indeed the total CPU time for all
iterations divided by the total number of control time steps). We see that for all the given de-
mand profiles, the CPU time for the MPC controller with RProp is 12-45 times less than the
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Table 7.4: Value of the objective function, total time spent, and total emissions over the entire

simulation period for the no-control case

Objective function TTS [veh.s] TECO [kg] TEHC [kg] TENOx [kg]
Demand profile 1 214.2 2.9016 ·107 540.2 34.2 61.4
Demand profile 2 91.0 1.2279 ·107 230.3 14.6 26.0
Demand profile 3 61.8 8.3106 ·106 156.8 9.9 17.7

Table 7.5: Value of the objective function, total time spent, and total emissions over the entire

simulation period for the state-feedback controller

Objective function TTS [veh.s] TECO [kg] TEHC [kg] TENOx [kg]
Demand profile 1 4.7 6.2404 ·105 12.0 0.8 1.2
Demand profile 2 5.3 7.0179 ·105 13.6 0.9 1.4
Demand profile 3 6.2 8.1954 ·105 16.0 1.0 1.7

Table 7.6: Value of the objective function, total time spent, and total emissions over the entire

simulation period for the optimal fixed-time controller

Objective function TTS [veh.s] TECO [kg] TEHC [kg] TENOx [kg]
Demand profile 1 4.9 6.2580 ·105 12.9 0.8 1.3
Demand profile 2 1.2 1.2192 ·105 3.6 0.3 0.3
Demand profile 3 54.9 7.4177 ·105 138.8 8.8 15.7

Table 7.7: Value of the average CPU time, objective function, total time spent, and total emis-

sions over the entire simulation period for the smooth MPC controller with RProp

Average CPU time per
control time step [s]

Objective
function

TTS
[veh.s]

TECO

[kg]
TEHC

[kg]
TENOx

[kg]
Demand profile 1 1697 4.4 6.4377 ·105 10.7 0.7 1.1
Demand profile 2 5466 0.8 1.0326 ·105 2.0 0.1 0.2
Demand profile 3 13241 3.3 4.4603 ·105 8.4 0.5 0.9

Table 7.8: Value of the average CPU time, objective function, total time spent, and total emis-

sions over the entire simulation period for the nonsmooth MPC controller with pat-

tern search

Average CPU time per
control time step [s]

Objective
function

TTS
[veh.s]

TECO

[kg]
TEHC

[kg]
TENOx

[kg]
Demand profile 1 76479 14.0 1.8726 ·106 35.8 2.3 3.9
Demand profile 2 152631 7.0 9.4632 ·105 17.9 1.2 1.9
Demand profile 3 151867 28.2 3.7954 ·106 71.6 4.5 8.0
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Table 7.9: Percentage of improvement of the objective value w.r.t. the state-feedback controller:
Jstate-feedback−JMPC

Jstate-feedback
(+: improved, -: became worse)

MPC with RProp MPC with pattern search
Demand profile 1 +6% -66%
Demand profile 2 +84% -32%
Demand profile 3 +47% -354%

Table 7.10: Percentage of improvement of the objective value w.r.t. the optimal fixed-time con-

troller:
Jfixed-time−JMPC

Jfixed-time
(+: improved, -: became worse)

MPC with RProp MPC with pattern search
Demand profile 1 +10% -185%
Demand profile 2 +34% -483%
Demand profile 3 +94% +48.6%

CPU time for pattern search. This indicates that the gradient-based optimization approach
performs significantly better than pattern search considering the computation speed. More-
over, the realized value of the objective function for a 1-hour simulation for the gradient-
based optimization approach is almost 31.5% of the realized value of the objective function
for pattern search for ‘Demand profile 1’, 11% for ‘Demand profile 2’, and 11.5% for ‘Demand
profile 3’ (compare Tables 7.7 and 7.8). In addition to that, by looking at the realized val-
ues of the total time spent and total emissions of CO, HC, and NOx individually, we see that
all these quantities are prominently smaller for the gradient-based optimization compared
with pattern search. Note that for pattern search the optimization procedure takes long and
hence, sometimes the maximum number of iterations is reached before the optimum values
are found.

We have listed the percentages of improvement for the MPC controllers w.r.t. the state-
feedback and optimal fixed-time controllers in Tables 7.9 and 7.10. These results show that
for the traffic network shown in Figure 6.13, the proposed smooth MPC controller that uses
RProp is the most efficient controller among the other given controllers. Additionally, from
the smooth and nonsmooth MPC controllers, both the performance and the CPU time of the
smooth one are much better.

7.5 Conclusions and future work

In this chapter, we have introduced general smoothening methods for nonsmooth mathemat-
ical models. Therefore, when the resulting models are used together with an optimization-
based controller, e.g., an MPC controller, the resulting smooth optimization problem can
be solved using available efficient gradient-based optimization approaches. Then we have
formulated a highly efficient smooth model-predictive controller for urban traffic networks.
The proposed MPC controller has been made smooth using the proposed approaches in this
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chapter. The aim of the controller is to find a balanced trade-off between reduction of the
total time spent by the vehicles and the total emissions. We have applied a gradient-based
optimization approach based on the resilient back-propagation (RProp) algorithm to find the
suboptimal solution of the MPC controller.

The simulation results for the given case study have shown that the smooth MPC con-
troller improves the performance of the network significantly w.r.t. the no-control case, and
state-feedback, optimal fixed-time, and nonsmooth MPC-based controlled cases. Moreover,
the smooth (gradient-based) optimization method is much faster than the nonsmooth one
(the CPU time of the smooth method is 12-45 times less than the CPU time of the nonsmooth
method). Note that although the resulting CPU time for the smooth optimization-based con-
troller shows a significant decrease compared to that of the nonsmooth optimization-based
controller, it is currently not yet suited for real-time control. Therefore, further improvements
in computation speed of the smooth optimization-based controller should be obtained. This
improvement may be achieved by using dedicated software and hardware, distributed MPC,
fast MPC techniques, parameterized control approaches, etc.

Topics for future work include implementing the smooth optimization approach to a large-
scale network considering a multi-level and/or multi-agent control architecture. Additionally,
to make the MPC controller faster, we can consider parameterized control laws. We also sug-
gest an extensive validation of the proposed control approach for various networks with real-
life datasets.



Chapter 8

MPC with endpoint penalties for urban

traffic control

8.1 Introduction

In this chapter, we propose to include endpoint penalties in formulating the optimization
problem of the MPC controller designed in Chapter 7 for an urban traffic network. Endpoint
penalties can be added to the formulation of a finite-horizon MPC optimization problem to
approximate the solution of an infinite-horizon MPC problem, without resulting in additional
computational burdens. Endpoint penalties provide a set of equations that are extracted
based on some simplifying assumptions and a simple static model of the controlled system.
This set of equations is used to approximate the cost function of the optimization problem
beyond the prediction horizon.

Endpoint penalties have been used before in formulating the optimization problem of
MPC controllers for stability guarantees, and in order to assure that the states beyond the
prediction interval adopt a desired value (see, e.g., [14, 28, 81, 87, 118, 136]). In addition to
stability guarantee reasons, endpoint penalties may also be added to the cost function of an
MPC controller with the aim of improving the performance of the controller. For example
Liu et al. [100] consider endpoint penalties for freeway traffic control and show via simula-
tions that the performance of the resulting MPC controller improves compared with an MPC
controller that does not consider these endpoint penalties.

Contributions and organization of the chapter

The main contributions of the chapter include:

• We propose an MPC controller for urban traffic networks that considers the effect of
endpoint penalties in its optimization problem. Hence, in addition to the total time
spent and total emissions within one prediction window (the cumulative stage cost),
we consider the approximate total time spent and the approximate total emissions of

187
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8.1. Introduction

8.2. Endpoint penalties for urban traffic MPC

8.2.1. Determining the most used paths 8.2.2. Computation of the endpoint penalties

8.3. Simulation and results

8.4. Conclusions and future work

Figure 8.1: Road map of Chapter 8.

those vehicles that are already in the link at the end of the current prediction interval
until they leave the network in formulating the optimization problem.

• In order to estimate the endpoint penalties, we introduce a novel and efficient approach
that is based on a K shortest path algorithm.

The rest of the chapter is organized as follows. In Section 8.2 we propose an approach
for estimating the endpoint penalties (i.e., the total time spent and the total emissions of the
vehicles that are already in the traffic network at the end of the prediction interval until they
leave the network) for an urban traffic network. We first propose a method that is based on
a K shortest-path algorithm in order to find the most used paths by the vehicles. Then we
develop the formulas for computation of the endpoint penalties. In Section 8.3 we perform
a simulation considering the endpoint penalties and the total time spent of the vehicles as
the cost function of the MPC controller. Finally, Section 8.4 concludes the chapters and gives
some topics for future work. The road map of Chapter 8 is illustrated in Figure 8.1. Moreover,
Table 8.1 gives the frequently used mathematical notations of this chapter.

This chapter of the thesis is based on [67–70].

8.2 Endpoint penalties for urban traffic MPC

Estimation of the endpoint penalties for the MPC optimization problem of the urban traffic
network described in this chapter is based on the following two assumptions:

Assumption 1. In estimating the endpoint penalties for the urban traffic network, we take
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Table 8.1: Frequently used mathematical notations for Chapter 8.

P j (d) a path between node d and the virtual node v in the graph that corresponds to the

traffic network

N
path
d

the number of all possible paths beginning at node d and ending at node v

(excluding the cyclic paths)

di

(

P j (d)
)

the downstream node of the i th link within path P j (d)

n̄ j the number of real links in path P j (d)

πveh
u the percentage of vehicles that a path receives

χcum
u

(

P j (d)
)

the cumulative cost of path P j (d)

χdi

(

P j (d)
)

,di+1
(

P j (d)
)
(

P j (d)
)

the cost of link
(

di

(

P j (d)
)

,di+1
(

P j (d)
))

corresponding to path P j (d) in the recast

shortest-path problem

ζu

(

P j (d)
)

the percentage of vehicles on link (u,d) that intend to leave the traffic network via

path P j (d)

TTSendpoint (kc) the total time spent for those vehicles that are already in the traffic network at the

end of the prediction interval, from time instant
(

kc +Np
)

Tc until they leave the

traffic network

TEendpoint
p (kc) the total emissions of the pollutant p ∈P for those vehicles that are already in the

traffic network at the end of the prediction interval, from time instant
(

kc +Np
)

Tc

until they leave the traffic network

TTSpath
(

P j (d)
)

the total time spent by the vehicles that are traveling via path P j (d)

TEpath
p

(

P j (d)
)

the total emissions of the pollutant p by the vehicles that are traveling via path P j (d)

N the set of all nodes in the graph that corresponds to the traffic network

Ud the set of all upstream nodes of node d in the graph that corresponds to the traffic

network

into account only those vehicles that are already in the traffic network at the end of the
prediction interval until they all leave the traffic network.

Assumption 2. We assume that the speed of the vehicles is constant beyond the prediction
interval, and is equal to their own speed or the average speed of all the vehicles on the
same link at the end of the prediction interval (i.e., at time instant

(

kc +Np
)

Tc). Note
that this is different from considering fixed states for the traffic network (reminding that
the states of the traffic network include the total number of vehicles in the links and the
number of vehicles waiting in the queues).

Now, suppose that for the time interval beyond the prediction interval, i.e., from time instant
(

kc +Np
)

Tc until the vehicles that are in the traffic network at the end of the prediction inter-
val leave the traffic network, we use a static model of the traffic network that is destination-
independent. Note that in a static mathematical model the equilibrium/steady-state condi-
tion of the modeled system is considered. We should highlight it here that by static we refer
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A B

CDE

Figure 8.2: A grid-shaped network that creates an infinite number of path choices (because of

the cyclic path A-B-C-D-A) for a vehicle at node A to exit via node E.

to the steady dynamics of the traffic network.

In order to estimate the endpoint penalties for the urban traffic network, we should first
allocate a path to each of the existing vehicles in the network at time instant

(

kc +Np
)

Tc (the
main reason for allocating these paths becomes more clear in Section 8.2.2, where (8.12) and
(8.13) are developed for computing the endpoint penalties). This path should lead the vehicle
to one of the exits of the traffic network. Based on the geometry and the traffic rules of the
network, there might be multiple path choices per vehicle. However, if we consider all the
possible paths to the exits of the traffic network, the number of path choices for some vehi-
cles may become infinite. For instance, for a grid-shaped network, some vehicles might move
within cyclic paths forever and this makes the number of possible paths to become infinity
(see Figure 8.2, for which a vehicle that is located at node A may turn several (up to an infi-
nite number of) times within the cyclic path A-B-C-D-A before it exits the network via node
E). To prevent this situation, for the vehicles that are located on a link (u,d) at time instant
(

kc +Np
)

Tc, we determine a limited number Ku,d of the most likely used paths from node d

to the exit nodes of the network by those vehicles that are located on link (u,d) at the end
of the prediction interval. The number Ku,d is indeed a design parameter for the endpoint
penalty approach that should be determined beforehand. After Ku,d is known, the paths can
be found using an existing shortest-path algorithm, e.g., Yen’s algorithm (see [16]).

8.2.1 Determining the mostly used paths in the traffic network

In the setup of a shortest-path algorithm, each link that connects two consecutive nodes cor-
responds to a predefined value called the link cost. A path between a starting node s and an
end node e is defined as a set of consecutive links, where s is the upstream node of the first
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link in the path and e is the downstream node of the last link in the path. A shortest-path al-
gorithm solves a problem known as the shortest-path problem, i.e., it selects one path among
all the possible paths that connect s and e , where for the selected path the cumulative cost for
all the involved links is the minimum compared with the cumulative cost of the links within
the other paths between these two nodes. Next we explain how our problem can be translated
as a shortest-path problem.

Although for the illustration purposes and to clarify the discussions, we use the traffic
network shown in Figure 8.3, the proposed approach in this chapter can be used for various
traffic networks modeled as a collection of nodes and links. Since a shortest-path problem is
usually formulated for a single end node, we first consider a single virtual end node (indicated
by “v” in Figure 8.3) and connect all the exit nodes of the traffic network by virtual links to
node “v”. Note that by virtual links we mean those links that do not really exist in the traffic
network and are added to the graph representation of the network to formulate the endpoint
penalties. These virtual links are represented by dashed lines in Figure 8.3. By using the term
real links, we exclude the virtual links and consider only the links that really exist in the graph
representation of the traffic network. Real links are illustrated by solid lines in Figure 8.3).

Finally, we obtain a point-to-point representation of our problem, which suits the for-
mulation of a shortest-path problem. Then, a path P j (d) between node d and node v, with

j ∈
{

1, . . . , N
path
d

}

and N
path
d

the number of all possible paths beginning at node d and ending

at node v (excluding the cyclic paths), is defined by

P j (d) =
{(

d ,d1
(

P j (d)
))

,
(

d1
(

P j (d)
)

,d2
(

P j (d)
))

, . . . ,
(

dn̄ j

(

P j (d)
)

,v
)}

, (8.1)

with di

(

P j (d)
)

for i ∈ {1, . . . , n̄ j } the downstream node of the i th link within the path P j (d),
d0

(

P j (d)
)

:= d , and n̄ j the number of real links in the path. The links colored in red in Fig-
ure 8.3 demonstrate a path P j (d) from node d to node v.

We should also redefine some of the concepts for the recast problem. To define a cost value
for each link, we make use of the turning rates, which are also used in the S-model explained
in Section 5.3.1. Note that all the virtual links are assumed to have a cost value equal to zero.
Therefore, finding the Ku,d shortest paths from node d to the virtual node v for those vehicles
that are on link (u,d) is equivalent to finding the Ku,d shortest paths from node d to the exit
nodes of the traffic network. We are looking for a path that receives the largest percentage of
vehicles, i.e., a path that has the maximum πveh

u defined by

πveh
u

(

P j (d)
)

=βstatic
u,d ,d1(P j (d)) (kc)

n̄ j−2
∏

i=0
βstatic

di (P j (d)),di+1(P j (d)),di+2(P j (d)) (kc) , j ∈
{

1, . . . , N
path
d

}

,

(8.2)
where the turning rate of the last link in the path towards the corresponding consecutive vir-
tual link is 1, and the superscript “static” refers to the static situation. Hence, for two connect-
ing links (di ,di+1) and (di+1,di+2), the turning rate βstatic

di ,di+1 ,di+2
(kc) is given by

βstatic
di ,di+1 ,di+2

(kc) =βdi ,di+1 ,di+2

(

kc +Np
)

. (8.3)
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Figure 8.3: Considering a point-to-point problem to find the Ku,d most likely used paths for the

vehicles on link (u,d) in a traffic network for the endpoint penalties corresponding

to the prediction interval
[

kcTc,
(

kc +Np
)

Tc
)

(the broken red line indicates a set of

intermediate links that have not been shown).

Note that the following equality always holds (assuming that we have already excluded those
paths for which πveh

u is zero):

arg max
j∈

{

1,...,Npath
d

}

(

πveh
u

(

P j (d)
))

= arg max
j∈

{

1,...,Npath
d

}

(

log
(

πveh
u

(

P j (d)
)))

. (8.4)

Moreover, we have

max
j∈

{

1,...,Npath
d

}

(

log
(

πveh
u

(

P j (d)
)))

= min
j∈

{

1,...,Npath
d

}

(

− log
(

πveh
u

(

P j (d)
)))

. (8.5)

Therefore, considering (8.2) our problem is equivalent to the problem of finding a path among

the j paths starting at node d , with j ∈
{

1, . . . , N
path
d

}

, for the vehicles that are on link (u,d) that

has the minimum value of

χcum
u

(

P j (d)
)

=− log

(

βstatic
u,d ,d1(P j (d)) (kc)

n̄ j−2
∏

i=0
βstatic

di (P j (d)),di+1(P j (d)),di+2(P j (d)) (kc)

)

, (8.6)

where from the objective of a shortest-path problem (i.e., finding a path that has the mini-
mum cumulative cost value for the involving links), we see that χcum

u

(

P j (d)
)

can indeed rep-

resent the cumulative cost of path P j (d) for our problem. Additionally, for j ∈
{

1, . . . , N
path
d

}

,
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we have

− log

(

βstatic
u,d ,d1(P j (d)) (kc)

n̄ j −2
∏

i=0
βstatic

di (P j (d)),di+1(P j (d)),di+2(P j (d)) (kc)

)

=

− log
(

βstatic
u,d ,d1(P j (d)) (kc)

)

+

n̄ j−2
∑

i=0

(

− log
(

βstatic
di (P j (d)),di+1(P j (d)),di+2(P j (d)) (kc)

))

.

(8.7)

Suppose that we denote the cost of link
(

di

(

P j (d)
)

,di+1
(

P j (d)
))

in path P j (d) for i = 0 by
χ0,u

d ,d1(P j (d))
(

P j (d)
)

, and for i ∈ {1, . . . , n̄ j − 1} by χdi (P j (d)),di+1(P j (d))
(

P j (d)
)

. Then from (8.6)

and (8.7), we can write

χ0,u
d ,d1(P j (d))

(

P j (d)
)

+

n̄ j −2
∑

i=0
χdi+1(P j (d)),di+2(P j (d))

(

P j (d)
)

=

− log
(

βstatic
u,d ,d1(P j (d)) (kc)

)

+

n̄ j−2
∑

i=0

(

− log
(

βstatic
di (P j (d)),di+1(P j (d)),di+2(P j (d)) (kc)

))

,

(8.8)

which implies that the cost of a link in the network that belongs to the j th path between the

downstream node of that link and the virtual node v, for j ∈
{

1, . . . , N
path
d

}

, can be defined by

χ0,u
d ,d1(P j (d))

(

P j (d)
)

=− log
(

βstatic
u,d ,d1(P j (d)) (kc)

)

, (8.9)

χdi+1(P j (d)),di+2(P j (d))
(

P j (d)
)

=− log
(

βstatic
di (P j (d)),di+1(P j (d)),di+2(P j (d)) (kc)

)

, i ∈ {0, . . . , n̄ j −2}.

(8.10)

Note that the cost of the virtual links in the expanded graph is also zero. The definitions given
by (8.9) and (8.10) are legitimate definitions for the cost, since we know that the turning rates
are less than or equal to one and hence the evaluated functions defined by (8.9) and (8.10)
are always greater than or equal to zero. Moreover, as we can see from (8.9) and (8.10), the
cost of a link for a given path is defined as a function of the turning rate from the upstream
link of that link to the link for the given path. Hence, a link may adopt different cost values
in different paths. A shortest-path algorithm, however, accepts only unique cost values per
link. Therefore, before we are able to use such an algorithm for a link (u,d), as an intermedi-
ate stage we should construct a new graph, called the “expanded graph”, that includes all the
paths that exist between node d and the virtual node v in the original network for those vehi-
cles that are on link (u,d). In this expanded graph, for each link from the original network, we
may consider multiple links (where the number of these links equals the number of the paths
in the original network from node d to node v to which the given link belongs to). Therefore,
in the expanded, each link can belong to one and only one path. Depending on the path that
the link belongs to in the expanded graph, we assign the link the cost value that corresponds
to that path and that is computed by either (8.9) or (8.10).

For example, Figure 8.5 illustrates such an expanded graph for the subgraph shown in
Figure 8.4. In Figure 8.4, all the paths in between node d and node v for those vehicles
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Figure 8.5: The expanded graph corresponding to all the paths that are in between node d and

the virtual node v in the original network for the vehicles that are on link (u,d).

that are on link (u,d) are illustrated. For this specific case, four paths exist (shown by the
dashed green, blue, orange, and red curves). The expanded graph of this subgraph is illus-
trated in Figure 8.5, where each link in the original graph that exists in several paths (e.g.,
link (d1 (P1(d)) ,d2 (P1(d))), which is the same as link (d1 (P2(d)) ,d2 (P2(d)))) will yield mul-
tiple links in the expanded graph, and each time adopts the cost value that is computed by
either (8.9) or (8.10) for the corresponding path.

At this stage, by using one of the existing shortest-path algorithms, we can determine the
Ku,d shortest paths from node d to the exit nodes of the traffic network for the vehicles on
links (u,d). This way, for each subgraph that corresponds to a link (u,d), another subgraph
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is obtained, which includes only those paths that are determined via the shortest-path al-
gorithm. For instance, Figure 8.6 illustrates the obtained subgraph corresponding to the sub-
graph shown in Figure 8.4. The solid black links are those links that belong to the Ku,d shortest
paths determined by the algorithm, while the eliminated links are shown by gray lines. In this
figure, we assume that Ku,d = 2 and paths P1(d) and P4(d) have been returned by the shortest-
path algorithm.

8.2.2 Computation of the endpoint penalties for the MPC cost function

Since some links are eliminated by the shortest-path algorithm, the static turning rates de-
fined by (8.3) may not be valid anymore. For example, in Figure 8.6 for the turning rates at
node d2 (P4(d)), we initially have

βstatic
d1(P4(d)),d2(P4(d)),d3(P4(d)) (kc)+βstatic

d1(P4(d)),d2(P4(d)),d3(P3(d)) (kc) = 1,

noting that d1 (P3(d)) = d1 (P4(d)) and d2 (P3(d)) = d2 (P4(d)). However, as we are going to
eliminate link (d2 (P4(d)) ,d3 (P3(d))) in the recast problem, if βstatic

d1(P4(d)),d2(P4(d)),d3(P3(d)) (kc) 6= 0,
then the fact that the summation of the turning rates at all nodes in the traffic network should
be unity is violated. Therefore, we should redefine and reformulate the turning rates for the
recast problem. First, for the sake of simplicity in the notations we assume that the number-
ing of the Ku,d returned paths by the shortest-path algorithm is reset. In our notations, we
show the newly numbered shortest paths by P s

j
(d). Since in the recast problem, we will con-

sider the travel times and the emissions on paths instead of on individual links, we define the

turning rates for different paths. Hence, the turning rate ζu

(

P s
j
(d)

)

at node d is defined as

the percentage of vehicles on link (u,d) that intend to leave the traffic network via path P s
j
(d).

Hence, ζu

(

P s
j
(d)

)

is formulated by

ζu

(

P s
j (d)

)

=

πveh
u

(

P s
j (d)

)

Ku,d∑

ℓ=1

πveh
u

(

P s
ℓ(d)

)

. (8.11)

Finally, we can compute the endpoint penalties at control time step kc, i.e., the total time

spent TTSendpoint (kc) and the total emissions TEendpoint
p (kc) of the pollutant p ∈ P (where P

includes different pollutants such as CO, HC, NOx, etc.) for those vehicles that are already in
the traffic network at the end of the prediction interval, from time instant

(

kc +Np
)

Tc until
they leave the traffic network. We have

TTSendpoint (kc) =
∑

d∈N

∑

u∈Ud

nu,d
(
kc +Np

)

(

TTSendpoint
u,d (kc)+

Ku,d∑

j=1

(

ζu

(

P s
j (d)

)

TTSpath
(

P s
j (d)

))
)

,

(8.12)
where TTSendpoint

u,d (kc) is the total time spent on link (u,d) by the vehicles that are on link (u,d)
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Figure 8.6: The subgraph for link (u,d) obtained by eliminating those links that are not in-

cluded in the Ku,d shortest paths that connect node d and node v.

at the end of the prediction interval, TTSpath(·) is the total time spent by the vehicles that are
traveling via a specific path.

Similarly, for TEendpoint
p (kc), we have

TEendpoint
p (kc) =

∑

d∈N

∑

u∈Ud

nu,d
(
kc +Np

)

(

TEendpoint
p,u,d (kc)+

Ku,d∑

j=1

(

ζu

(

P s
j (d)

)

TEpath
p

(

P s
j (d)

))
)

,

(8.13)
withN the set of all nodes in the graph that corresponds to the traffic network,Ud the set of all

upstream nodes of node d , TEendpoint
p,u,d (kc) the total emissions of the pollutant p for the vehicles

that are on link (u,d) at the end of the prediction interval while they are traveling on link

(u,d), and TEpath
p (·) the total emissions of the pollutant p for those vehicles that are traveling

via a specific path. In order to evaluate (8.12) and (8.13), we assume that all the vehicles that
are located on link (di−1,di ) for i ∈ {0, . . . , n̄ j } and for j ∈ {1, . . . ,Ku,d } and with d−1 := u at
time instant

(

kc +Np
)

Tc will keep on traveling in the traffic network with the constant static
speed v static

di−1 ,di
(kc) (see Assumption 2), which can considered to be a weighted average of the

individual speeds (based on the flow model that is used) of the vehicles on the link. Then for
j ∈ {1, . . . ,Ku,d } and d ∈N , we can write

TTSpath
(

P s
j (d)

)

=

n̄ j−1
∑

i=0

C
di

(

Ps
j
(d)

)

,di+1

(

Ps
j
(d)

) · l veh

v static

di

(

Ps
j
(d)

)

,di+1

(

Ps
j
(d)

)(kc)
. (8.14)

Moreover, for u ∈Ud we have

TTSendpoint
u,d (kc) =

Cu,d · l veh

2v static
u,d (kc)

. (8.15)

Note that in order to make the equations simple and to reduce the computational complexity,
in (8.12) and (8.13), we have assumed that all the vehicles on link (u,d) are located at the
middle of the link at time instant

(

kc +Np
)

Tc. From Section 6.3, and also considering the
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Figure 8.7: Urban traffic network used for the case study.

assumption of constant speeds, we can write
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and

TEendpoint
p,u,d (kc) =

Cu,d · l veh

2v static
u,d (kc)

·Ep

(

v static
u,d (kc),0

)

, (8.17)

where Ep (·, ·) is a microscopic emission model (see, e.g., (5.13)) that computes the instanta-
neous emissions of the pollutant p based on the instantaneous speed and the instantaneous
acceleration of the vehicles.

8.3 Case study

In this section, to examine the effect of considering the endpoint penalties in the formula-
tion of the MPC optimization problem, we consider an urban traffic network (see Figure 8.7)
that has 6 nodes and is composed of two entrance links (i.e., links (1,3) and (2,3)), two exit
links (i.e., links (4,5) and (4,6), and one intermediate link (link (3,4). A traffic light is lo-
cated at the intersecting node of the two entrance links, i.e., at node 3. The parameters
and their corresponding values used for the case study are listed in Table 8.2, where l veh

is the average length of the vehicles within the traffic network, gmax and gmin denote the
maximum and minimum possible values of the green time for the traffic lights, Cu,d with
(u,d) ∈ {(1,3), (2,3), (3,4), (4,5), (4,6)} is the capacity of link (u,d), µu,d indicates the saturated
leaving flow rate of link (u,d), v free

u,d indicates the free-flow speed of the vehicles on link (u,d),
cd is the cycle time of the intersection corresponding to node d , and β3,4,5 and β3,4,6 are the
turning rates for the vehicles on link (3,4) towards, respectively, nodes 5 and 6. Note that since
the network used for the case study is small, network reduction has not been used for this case
study.
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Table 8.2: Parameters used for the case study.

Parameter Value
l veh [m] 7
gmax [s] 55
gmin [s] 5
C1,3 [veh] 55
C2,3 [veh] 50
C3,4 [veh] 75
C4,5 [veh] 65
C4,6 [veh] 50
µ1,3 [veh/s] 1.5
µ2,3 [veh/s] 1.5
µ3,4 [veh/s] 1.5
µ4,5 [veh/s] 1.5
µ4,6 [veh/s] 1.5
v free

1,3 [m/s] 12
v free

2,3 [m/s] 12
v free

3,4 [m/s] 12
v free

4,5 [m/s] 12
v free

4,6 [m/s] 12
c3 [s] 60
β3,4,5 [-] 0.7
β3,4,6 [-] 0.3

Table 8.3: Initial entering flow rates [veh/s].

αenter,l
1,3 (0) αenter,l

2,3 (0)
Case 1 1.2 0.5
Case 2 1.0 1.0
Case 3 0.2 1.3

Table 8.4: Effective total time spent for closed-loop simulation [min].

Without endpoint penalties With endpoint penalties
TTS [veh.min] for Case 1 1771 1744
TTS [veh.min] for Case 2 2073 2031
TTS [veh.min] for Case 3 1556 1542

We simulate three different traffic scenarios (called case 1, 2, and 3), which include three
different pairs of profiles for the entering flow rates from links 1 and 2. Note that we assume
that the simulation sampling time and the control sampling time are equal and that the sim-
ulation and the control time steps are synchronized. For each of the three cases, the entering
flow rates are initially (i.e., at control time step kc = 0) set to those values given in Table 8.3. We
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consider a sine function with an amplitude equal to αenter
i

(0) and a frequency of π
10 to model

the entering flow rates through time. The aim is to control the two traffic lights using an MPC
controller such that the total time spent by the vehicles in the traffic network is minimized.
We formulate the MPC optimization problem twice, once without considering the endpoint
penalties and once with the endpoint penalties. The total simulation time for each of the
three simulations is 75 min. The total time spent by the vehicles in the traffic network during
the entire simulation period has been computed for each of the three cases and is presented
in Table 8.4. The results show that the total time spent by the vehicles for an MPC controller
that considers the effect of the endpoint penalties is smaller for all the three cases compared
with an MPC controller that ignores the effect of the endpoint penalties, i.e., by considering
the endpoint penalties in the formulation of the MPC optimization problem, the total time
spent by the vehicles can be reduced up to 2%.

8.4 Conclusions and future work

In this chapter, we have considered the effect of considering some endpoint penalties in the
formulation of the MPC optimization problem of an urban traffic controller on the perfor-
mance of the control system. Endpoint penalties are implemented in order to approximate
an infinite-horizon MPC optimization problem by a finite-horizon MPC optimization prob-
lem. We have formulated the endpoint penalties for an arbitrary urban traffic network. The
formulas that we have developed in this chapter, are for those vehicles that are in the traffic
network at the end of the prediction interval. We estimate the total time spent and the total
emissions of these vehicles for the time period from the end of the prediction interval un-
til these vehicles leave the traffic network. A case study has been performed where the total
time spent of the vehicles is considered as the cost function that should be minimized by the
MPC controller. The results of the case study show that if the effect of the endpoint penalties
is taken into account, the total time spent of the vehicles for a 75-min simulation can be re-
duced by up to 2 % compared with an MPC controller that ignores the effect of the endpoint
penalties. Hence, for the given case study in this chapter, the added value of the endpoint
penalties is relatively small.

For future work, a general analysis about the endpoint penalties can be done to determine
whether they are useful, and in case they are, when and under what conditions their use is rec-
ommended. We also propose to perform a case study that considers both the total time spent
and the total emissions of the vehicles, and then evaluate more accurately the added value of
the endpoint penalties for the proposed formulations. Moreover, alternative approximations
and definitions may be used to formulate these endpoint penalties. In order to make a more
concrete conclusion about the added value of the endpoint penalties, extensive assessment
for different formulations of the endpoint penalties, and for various traffic networks, setups,
and demand profiles should be done.
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Chapter 9

Background: Type-2 fuzzy sets and

agent-based control

9.1 Introduction

In Part III of the thesis, we consider fuzzy logic control (FLC) to design agent-based con-
trollers. We propose to combine the fuzzy control approach with a predictive model-based
control approach. The proposed combined control architecture includes two layers, where in
the first layer the fuzzy controller performs at every control time step. In the second layer, the
predictive model-based controller is located, which is called by the first layer (not necessarily
at every control time step) to provide its optimal control decision. This decision is then used
to tune the parameters of the fuzzy controller. As the predictive controller can look further
in the future, it takes into account the possible effects of the control decision made by the
fuzzy controller on the other subsystems in the neighborhood of the fuzzy controller that are
not controlled by that fuzzy controller. Additionally, the predictive controller considers the
possible effects of the decisions that are made by other controllers within the neighborhood
on the future states of the subsystem that is controlled by the fuzzy controller. This way, we
can obtain a control system that can be used in a multi-agent coordinative architecture for
control of large-scale systems.

The rest of this chapter is organized as follows. In Section 9.2 we discuss multi-agent con-
trol systems, which can be used in a decentralized or a distributed framework to control a
large-scale system. We briefly indicate the main characteristics of multi-agent control sys-
tems. Section 9.3 is about fuzzy logic control (FLC), and in particular, model-based FLC. In
Section 9.4 we give the mathematical definitions of type-1 and type-2 fuzzy sets and type-1
and type-2 fuzzy membership functions. Section 9.5 presents an overview of the previous
work on using a specific form of type-2 fuzzy membership functions, called interval type-2
fuzzy membership function. Finally, in Section 9.6 an overview of Part III is given. The road
map of Chapter 9 is represented in Figure 9.1, and the mathematical notations that are fre-
quently used in this chapter are given in Table 9.1.

203
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9.2. Multi-agent systems

9.3. Fuzzy logic control (FLC)

9.4. Fuzzy sets: type-1 and type-2

9.5. Overview of previous work

9.6. Overview of Part III

Figure 9.1: Road map of Chapter 9.

Table 9.1: Frequently used mathematical notations for Chapter 9.

X domain of the independent variable x

F t1 type-1 fuzzy set

f t1(·) type-1 fuzzy membership function

F t2 type-2 fuzzy set

f t1
p (·) primary type-1 fuzzy membership function

f t1
s (x, ·) secondary type-1 fuzzy membership function at the point x ∈X

9.2 Multi-agent systems

Large-scale control systems can be controlled in several ways, among which are centralized,
decentralized, and distributed [107]. In a centralized control architecture, the control prob-
lem of the system is formulated and solved as a single problem. In case the control problem
is divided into multiple (possibly coupled) smaller problems and each of these smaller prob-
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lems is solved by one controller, a decentralized or a distributed control architecture arises. In
a decentralized control architecture, there is no information exchange among the individual
controllers, while in a distributed control architecture the individual controllers may coordi-
nate and/or cooperate before they make their decisions (see [20] for more details).

Although a centralized optimal controller may in theory find the globally optimal control
input for the entire controlled system, in practice, when the control problem grows (both in
size and in complexity), then solving a single problem may become intractable. Examples of
such complicated problems include control of large-scale networks, such as urban and free-
way traffic networks, water networks, power networks, etc. Hence, for large-scale systems
it is best to divide the controlled system into smaller subsystems and allocate an individual
controller to each subsystem. The controllers that are assigned to these subsystems may use
different control approaches, including optimization-based control approaches such as opti-
mal control and MPC, intelligent control approaches such as neural network and neuro-fuzzy
controllers [155], knowledge-based control such as fuzzy logic control (FLC) [108, 109], etc.

Multi-agent control systems have been developed to tackle complex and/or large-scale
problems that are beyond the capabilities of a single agent [76, 110, 125, 144]. Multi-agent
control systems have been widely used and proven their efficiency in different fields such
as distributed model-predictive control, chilled-water systems, robot teams, industrial prob-
lems, data interpretation, power systems, management of business processes, health care
management, and transportation systems (see [42, 48, 60, 75, 77, 110, 119–121, 147]).

Division of a centralized control system into multiple distributed interacting controllers,
each solving a subproblem extracted from the main control problem, may lead to less com-
putation efforts and a more simple and reliable control system [15, 74, 138]. However, differ-
ent agents might have incomplete or different views on the controlled system. To deal with
this problem, agents can be coordinated and exchange their local information so that the
global performance of the system improves. Different coordination policies of agents within
a multi-agent architecture include reactive, anticipatory, unilateral, bilateral, selfish, and col-
laborative coordination (see [23] for more details). Sometimes, individual agents might fail to
achieve their predefined control goal or they might face an unexpected situation, for which
they have not been prepared [146]. An adaptive scheme for controlling the system may be
used to solve such challenges and difficulties [106].

Some of the main advantages of a multi-agent control system according to Sycara [144]
include:

• Computational efficiency, which refers to the fact that in a multi-agent system, multiple
smaller and simpler problems are solved (in parallel) instead of a complicated central
problem (note that when the central problem is divided into multiple coupled smaller
problems, some interaction and communication may be needed among the agents,
which may bring some computational difficulties itself. Hence, here we assume that
the communications are kept minimal and in a high level rather than in a low and de-
tailed level.).

• Reliability, which means that in case an agent fails to achieve its predefined goals, then
it can be removed from the multi-agent control architecture causing the least possible
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disruption for the entire control procedure.

• Extensibility, which means that the number of agents may be increased in response to
the dynamic needs of the control system. Additionally, the tasks that are assigned to an
agent might alter over time if needed.

• Robustness, which refers to the fact that a multi-agent control system has a higher tol-
erance towards uncertainties compared with a centralized control system due to the
communication and the information exchange among different agents.

Next section briefly discusses fuzzy logic control, including model-based FLC. Note that in
Part III, capital letters are used to indicate sets and small letters are used to indicate functions.
Moreover, for mathematical notations, regular capital letters are used for sets, bold capital
letters are used for matrices, regular small letters are used for scalars, and bold small letters
are used for vectors.

9.3 Fuzzy logic control (FLC)

Fuzzy logic and, correspondingly, type-1 fuzzy sets were introduced by Zadeh [157, 159].
Fuzzy logic was later applied to control theory in the context of Fuzzy Logic Control (FLC),
which was introduced by Mamdani [108] and Mamdani and Assilian [109]. In FLC, fuzzy logic
is implemented to translate human-defined linguistic control rules into automatic strategies
for a control system. The main attractions of fuzzy logic include:

• Fuzzy logic converts user-supplied rules formulated in human (sometimes vague) lan-
guage into their mathematical equivalents.

• Fuzzy logic is capable of handling problems with vague, imprecise, or incomplete infor-
mation and datasets.

• Fuzzy logic can model various nonlinear functions with different levels of complexity.

• Fuzzy logic-based systems are easily updatable ans maintainable over time.

In fuzzy logic, a truth value within [0,1] is assigned to a logical proposition, while in clas-
sical logic, a logical proposition is either “true” or “false”, i.e., it takes a crisp value in {0,1}. A
type-1 fuzzy set F t1 is a generalized form of a crisp set. For a type-1 fuzzy set F t1, a type-1
membership function f t1 : X → [0,1] is defined, where X is the domain of the independent
variable x. Any realized value of x ∈ X belongs to F t1 with a certain percentage (i.e., a value
in [0,1]) called the membership value, f t1(x). In classical set theory, however, a realized value
of x either “belongs to” a crisp set (i.e., it has a membership value of 1 from a fuzzy point-
of-view) or “does not belong to” it (i.e., it has a membership value of 0 from a fuzzy point-of-
view). A type-2 fuzzy set, compared with a type-1 fuzzy set, can handle the uncertainties that
may exist in the membership values (more details regarding type-2 fuzzy sets will be given in
Section 9.4).
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A fuzzy control system is composed of if–then fuzzy rules of the form “If antecedent state-

ment, then consequent statement”. The antecedent statement expresses a qualitative value
of the system’s state, and the consequent statement proposes a qualitative value for the con-
trolled variables [6]. An FLC system is mainly composed of four components [89, 90]:

1. Fuzzification interface: Translates the quantitative input into a qualitative one.

2. Knowledge base: Includes all the if–then fuzzy rules.

3. Decision making logic: Is the core of the FLC system, and finds the best qualitative out-
put using the knowledge base.

4. Defuzzification interface: Translates the qualitative output into a quantitative one to be
implemented by the actuators.

FLC systems vary in the way they are generated, or in the way the rules in the rule bases
are established. In his survey paper, Feng [47] divides the different types of FLC systems into
the following six categories:

1. Conventional FLC systems

2. Fuzzy PID control systems

3. Neuro-fuzzy control systems

4. Fuzzy sliding mode control systems

5. Adaptive FLC systems

6. Takagi-Sugeno (TS) model-based FLC systems

Our focus in Part III of the thesis is on designing an adaptive FLC system (item 5) within a
multi-agent architecture, with a model-based control approach (item 6). Rules of an FLC sys-
tem are mostly based on the (possibly heuristic) human-defined (e.g., an expert who is expe-
rienced in the field) rules. When the structure of the control system is more complicated, e.g.,
for a multi-input multi-output control system (see [17, 126]), designing such an FLC system
becomes more difficult. In model-based FLC, the fuzzy rules of the controller are designed
based on a model of the open-loop system, taking into account the expected characteristics
of the closed-loop controlled system. Hence, a more systematic way of training the fuzzy rules
can be followed in a model-based FLC system.

In Part III of this thesis, we propose a general representation for a type-2 nonlinear fuzzy
model, which is inspired by the main idea of the TS model. Therefore, we first give a brief
introduction on the Takagi-Sugeno-Kang (TSK) model, which is an extended form of the TS
model.
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Figure 9.2: Type-1 membership function (continuous domain).

Takagi-Sugeno-Kang (TSK) model

Takagi and Sugeno [145] in 1985 proposed a mathematical tool for constructing fuzzy models
of systems, called the Takagi-Sugeno or TS model. It has been proven that TS fuzzy models are
universal approximators for smooth nonlinear functions [21, 46, 78], and this was a motiva-
tion to apply the TS model for FLC systems. The TS model was later extended by Sugeno and
Kang [143], and therefore it is nowadays also known as the Takagi-Sugeno-Kang (TSK) model.
The TSK model of a dynamical system includes locally linearized submodels R of the system
represented by

R : If zzz in
1 ∈ F1 and . . . and zzz in

N ∈ FN , then zzzout
= aaa0 +

N∑

i=1
AAAi · zzz in

i , (9.1)

with zzz in
i

, i ∈ {1, . . . , N } the input vectors, zzzout the output of the dynamical system, F1, . . . ,FN

fuzzy sets, aaa0 a vector of the same size as the state vector, and AAAi a matrix of appropriate
dimension. Therefore, in the TSK model the if-part of a rule activates an affine relationship
among input vectors. These submodels are connected smoothly via fuzzy membership func-
tions [47, 145]. For example, suppose that the input set is divided into n crisp subsets, where
an affine relationship Rr for r ∈ {1, . . . ,n} similar to (9.1) describes the submodel that corre-
sponds to subset r . Then these submodels may be connected with a smooth linear relation-
ship such as:

zzzout
=

1
n∑

r=1
µ̄r

n∑

r=1
µ̄r zzzout

r , (9.2)

where zzzout
r indicates the output of the r th affine relationship, and µ̄r is the truth value of this

output. Note that the truth value is a t-norm of the fuzzy membership values of the input
vectors corresponding to the antecedent of Rr .
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9.4 Fuzzy sets: Type-1 and type-2

Two types of fuzzy sets, i.e., type-1 and type-2, have been introduced in the literature [157,
158]. A type-1 fuzzy set F t1 corresponds to a type-1 membership function f t1(·) and is defined
by

F t1
=

{(

x, f t1(x)
)

,∀x ∈X

}

. (9.3)

For a type-1 fuzzy set, each point within the domain adopts a single (crisp) membership value
(see Figure 9.2). However, sometimes interpretation of the information that is available for a
certain dataset may result in more than a single membership value for a specific point. For
instance, if we use the opinion or interpretation of the public on a specific topic, we may
come up with different conclusions and interpretations that are not even close or similar to
each other. Consequently, the membership values that are defined based on this information
for each point within the domain are not crisp values, but include uncertainties. In this case,
a type-1 fuzzy set cannot be used [112–114], which leads us towards using type-2 fuzzy sets
and correspondingly, type-2 membership functions as an alternative.

Type-2 fuzzy sets were introduced by Zadeh [158] to deal with the uncertainties that may
exist in datasets. These are fuzzy sets that assign a set of n values (where in the limit n →∞)
instead of a single value to the membership value of a point x within the domain X. In other
words, in a type-2 fuzzy set each independent variable x may adopt a fuzzy membership value
instead of a crisp one. Each of these values is called a “primary membership value”. Each

primary membership value f t1
p,i (x) for point x has a weight f t1

s

(

x, f t1
p,i (x)

)

(a number between

0 and 1), where this weight is called the “secondary membership value” of point x. Figure 9.3
illustrates a case where the point x ∈X has three different primary membership values, i.e., in
this figure we have

f t1
p,1(x) = µ̄1,1(x), f t1

p,2(x) = µ̄1,2(x), f t1
p,3(x) = µ̄1,3(x).

Moreover, in Figure 9.3, each of these three membership values corresponds to a secondary
membership value, i.e.,

f t1
s

(

x, f t1
p,1(x)

)

= µ̄2
(

µ̄1,1(x)
)

, f t1
s

(

x, f t1
p,2(x)

)

= µ̄2
(

µ̄1,2(x)
)

, f t1
s

(

x, f t1
p,3(x)

)

= µ̄2
(

µ̄1,3(x)
)

.

Correspondingly, we define n primary type-1 membership functions f t1
p,1 < f t1

p,2 < . . . < f t1
p,n ,

where f t1
p,i < f t1

p, j
indicates that for all x ∈X, f t1

p,i (x) < f t1
p, j

(x). Then, a type-2 fuzzy set is defined
by

F t2
=

{(

x, f t1
p,i (x), f t2

(

x, f t1
p,i (x)

))

,∀x ∈X, ∀i ∈Nn

}

, (9.4)

where Nn = {1, . . . ,n}. Moreover f t1
s (x, ·) : f t1

p,i (x) → f t2
(

x, f t1
p,i (x)

)

for i ∈Nn is called the sec-

ondary type-1 membership function of the type-2 membership function f t2 at the point x ∈X.
Membership functions of a type-2 fuzzy set may be illustrated in a 3-dimensional space rather
than a 2-dimensional one. Figure 9.4 shows a continuous-domain type-2 membership func-
tion with its secondary type-1 membership functions. In this figure, the three dimensions are



210 Efficient Predictive Model-Based and Fuzzy Control for Green Urban Mobility

µ̄2

µ̄1

x

x

µ̄1,1(x)

µ̄1,2(x)

µ̄1,3(x)

µ̄2
(

µ̄1,1(x)
)

µ̄2
(

µ̄1,2(x)
)

µ̄2
(

µ̄1,3(x)
)

Figure 9.3: Illustration of the primary and secondary membership values for the point x ∈ X,

where it is assumed that x has three different fuzzy membership values.

indicated by x, µ̄1, and µ̄2, where x corresponds to the independent variable, µ̄1 corresponds
to the primary membership values, and µ̄2 corresponds to the secondary membership values.
Additionally, f t1

s (x, ·) is the secondary type-1 fuzzy membership function of the type-2 fuzzy
membership function at the point x ∈ X. This function is indeed the cross section of the 3-
dimensional type-2 fuzzy membership function with a plane in parallel to the µ̄1 − µ̄2 plane
that passes through point x.

In the literature, a special case of the type-2 fuzzy membership functions is particularly
taken into account, which is called the “interval type-2 membership function” [112]. The sec-
ondary type-1 membership function of an interval type-2 membership function is constant
for all x ∈ X, i.e., it is the unity function. To the best of our knowledge, interval type-2 fuzzy
membership functions are the only type-2 fuzzy membership functions that have been used
in practice for modeling and for control. In the next section, we briefly introduce the work
that has been done on interval type-2 fuzzy membership functions.

9.5 Overview of previous work: Interval type-2 fuzzy mem-

bership functions

Hagras [53] develops a hierarchical (2-level) type-2 FLC system for mobile robots that should
navigate in a dynamic changing environment with uncertainties involved. For the proposed
FLC system, both the input and the output of the system are represented by interval type-2
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Figure 9.4: Type-2 membership function (continuous domain).

fuzzy sets instead of general type-2 fuzzy sets. A type reduction approach is used, through
which the type-2 output fuzzy sets are reduced to type-1 fuzzy sets. After defuzzification, a
crisp output is produced.

Wu and Tan [156] introduce a type-2 FLC system for controlling a liquid-level procedure.
They use a design approach to find interval type-2 fuzzy sets. This approach is known as
the “partially dependent approach”. First, type-1 fuzzy sets are considered, and the design
parameters are found via an optimization procedure that applies a genetic algorithm. Then,
the input variables of the type-1 fuzzy sets are uniformly blurred to produce the footprint of
uncertainties for the corresponding interval type-2 fuzzy sets.

Hagras [54] gives some applications of interval type-2 fuzzy sets for control procedures in
industry, such as for the speed control of a marine diesel engine, for control of a buck DC-DC
converter, for control of a group of mobile robots, and for control of the ambient intelligent
environments.

Hagras et al. [55] propose a model-free approach that is based on designing an adaptive in-
terval type-2 FLC system to control an ambient intelligent environment. Eight phases are con-
sidered for the FLC system, where the environment is monitored during phase 1 and input-
output data is captured. In phase 2 type-1 fuzzy sets are constructed using data from phase 1;
phases 3 and 4 are corresponding to the implementation of the type-1 FLC system and to
adding or adapting the rules based on the feedback received from the system. In phase 5 the
system is remonitored to collect a new set of input-output data, so that in phase 6 new type-2
fuzzy sets are extracted from this dataset. Phases 7 and 8 are allocated to implementing the
type-2 FLC system and to adding or adapting the rules. If needed, the system will go back to
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phase 5 to repeat the entire sequence of steps of phase 5-phase 8. Note that the work pre-
sented by Hagras et al. [55] is a continuation of the work done by Doctor et al. [41], where only
the first five phases (i.e., a type-1 FLC system) are discussed.

9.6 Overview of Part III

The main aim of Part III of the thesis is to develop a multi-agent control system that is suited
for controlling large-scale systems. To this aim, we first develop a two-layer fuzzy controller.
The rules of the fuzzy controller are constructed from type-2 fuzzy sets and are tuned online. A
predictive model-based and optimization-based controller is designed next to the fuzzy con-
troller to steer the fuzzy controller. The predictive controller considers the mutual effects of
the fuzzy controller’s decisions and the decisions made by the neighboring controllers. At ev-
ery time step that the fuzzy controller tunes its parameters, the computations of the predictive
controller can be used to bring the possible effects of the future time steps due to the neigh-
boring controllers into the tuning procedure. The resulting agent-based fuzzy and predictive
control system is embedded in a multi-agent architecture to control large-scale systems.



Chapter 10

Multi-agent predictive and adaptive

model-based type-2 fuzzy control

10.1 Introduction

In this chapter, we propose to integrate intelligent control approaches, which have a low com-
putation time and fit real-time control applications, with MPC controllers that take care of the
optimality requirements of the control system. The main aim is to obtain a fast control system
for real-time applications with adaptivity, high performance, and capability of coordinating
effectively with other controllers within a multi-agent control architecture. The resulting con-
trol system benefits from the characteristics of both control methods (i.e., reasonable com-
putation time and suboptimality), while the intelligent control module takes into account the
delayed effect of the previous states, and the MPC controller involves the impact of the cur-
rent control decision on the expected future states and performance of both the controlled
system and the connected systems to it (the dynamics of which may affect the dynamics of
the controlled system). A prediction model of the external disturbances can also be linked
to the intelligent control module to allow it to make the control decision considering the ex-
pected cumulative disturbances in the near future.

For our specific application, i.e., for urban traffic networks, we focus on fuzzy logic control
for the intelligent control module. This is because traffic has originally been controlled using
human-defined rules, and hence traffic regulations are by nature rule-based, which is in line
with the rule-based nature of fuzzy logic control. The discussions are, however, easily extend-
able to other intelligent control methods such as artificial neural network-based controllers.

We consider the problem of controlling multiple connected subsystems the dynamics of
which might be affected by time-delayed states in addition to the current state. We con-
sider subsystems with limited memory and limited storage space for the measured states,
with costly or missing measurements, with slow sensors, etc. For such systems the time-
delayed states are not always available, and hence using state augmentation [84] is not possi-
ble. Therefore, we first introduce type-2 fuzzy models of the subsystems that receive the cur-
rent and some previous control inputs and estimate the future or the missing previous states.
Additionally, we propose two forms of type-2 fuzzy membership functions, i.e., probabilistic-

213



214 Efficient Predictive Model-Based and Fuzzy Control for Green Urban Mobility

fuzzy and fuzzy-fuzzy. A general adaptive scheme is proposed to produce fuzzy rules that
include type-2 fuzzy sets in their antecedent to deal with uncertainties in the dataset, and a
generally nonlinear function of the current and/or delayed inputs and outputs, and the dis-
turbances in their consequent. The proposed scheme can be used to provide a prediction
model of the controlled system for the MPC controller, to generate a prediction model of the
expected external disturbances based on the collected historical data that can be used within
a model-based control architecture together with the fuzzy controller, and to design fuzzy
controllers that perform within a two-layer adaptive control architecture.

The MPC controller in the second control layer looks ahead in time, and takes into
account the interactions among the subsystems. The optimal performance index determined
by the MPC controller is used in tuning the adaptive parameters of the fuzzy controller in
order to improve the performance of the controlled subsystem and to include the effects of
interactions with the other controllers in the multi-agent control architecture. The second
layer of control is called by the fuzzy controller at certain tuning time steps, and also when a
predefined tuning criterion is triggered.

Contributions and organization of the chapter

Table 10.1: Frequently used mathematical notations for Chapter 10.

er a random event

ef a fuzzy event

k time step counter

K set of all time steps

K
identify set of identification time steps

K
tune set of tuning time steps

xxx(k) measured state at time step k

xxxm estimated state by the fuzzy model at time state k

uuu(k) control input vector at time step k

X t2
i , j

(k) type-2 fuzzy sets of the antecedent of the model’s fuzzy rules at time step k

θθθm(k) parameter vector of the consequent of the model’s fuzzy rules at time step k

U t2
i , j

(k) type-2 fuzzy sets of the antecedent of the controller’s fuzzy rules

θθθc(k) parameter vector of the consequent of the controller’s fuzzy rules at time step k

J (·) cost function

ννν(k) vector of disturbances at time step k

The main contributions of the chapter are listed below:

• We present a general and extensive treatment of type-2 fuzzy sets and fuzzy member-
ship functions. Compared with the available literature, we explain type-2 fuzzy sets
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10.5. Case study

10.6. Conclusions and future work

Figure 10.1: Road map of Chapter 10.

in a 3-dimensional space and with more clear and more structured mathematical for-
mulations. Moreover, we propose a new terminology in our discussions for type-2 fuzzy
membership functions, where we divide these functions into two types called
“probabilistic-fuzzy” and “fuzzy-fuzzy” membership functions. We believe the new ter-
minology fits well the definitions and the concepts we present.

• We introduce a novel two-layer adaptive control system that integrates an MPC
controller in the second layer with an intelligent controller in the first layer. The result-
ing control system provides adaptivity, efficiency and good performance, and coordina-
tion among the intelligent controller and other controllers in a multi-agent architecture.

• We propose a general formulation for producing type-2 fuzzy rules. With this formula-
tion, fuzzy controllers are developed to be used as the intelligent control module within
the proposed adaptive control system. Moreover, prediction models of the controlled
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system and the expected external disturbances can be constructed using these type-2
fuzzy rules, which can be used respectively as the prediction model of the MPC con-
troller in the second control layer and in a model-based structure with the fuzzy con-
troller. The developed control system is implemented and evaluated for reducing the
total travel time in an urban traffic network.

In addition, we also discuss two types of uncertainties (probabilistic and fuzzy) that may occur
in different datasets, and correspondingly, we propose two forms of type-2 fuzzy membership
functions, which we call probabilistic and fuzzy-fuzzy membership functions.

The rest of the chapter is organized as follows. In Section 10.2 we discuss two different
forms of uncertainties (probabilistic and fuzzy) that may occur in datasets. Correspondingly,
we introduce two forms of type-2 fuzzy membership functions, which we call probabilistic-
fuzzy and fuzzy-fuzzy membership functions. Section 10.3 proposes a nonlinear scheme for
constructing the rule base of a fuzzy model that corresponds to a time-delayed system with
missing or limited data. Additionally, the proposed scheme can also be used to generate a
state-feedback fuzzy controller. Section 10.4 presents a two-layer control architecture that
can be used in a multi-agent control system. The first layer of the control architecture in-
cludes state-feedback fuzzy controllers with rules that follow the general structure proposed
in Section 10.3, and the second layer includes a predictive and optimization-based controller.
Whenever called by the first layer, the predictive controller steers the fuzzy controller to tune
its parameters adaptively. In Section 10.5 a case study is done where an urban traffic net-
work with two adjacent intersections is considered. The traffic network is once controlled
by a centralized MPC controller and once by a two-layer adaptive controller as proposed in
this chapter. Finally, Section 10.6 concludes the chapter and proposes some topics for future
work. The road map of this chapter is shown in Figure 10.1. Moreover, Table 10.1 gives the
mathematical notations that are frequently used in Chapter 6.

This chapter of the thesis is based on [72].

10.2 Uncertainties: Probability versus fuzziness

In Chapter 9, we have given the definitions of type-1 and type-2 fuzzy sets, and correspond-
ingly type-1 and type-2 fuzzy membership functions. However, in Section 9.4, we did not
expand the basic ideas considered in the literature for type-2 fuzzy sets and fuzzy member-
ship functions. In this section, we look at type-2 fuzzy sets and the motivation for using
them in more detail. Since type-2 fuzzy sets have been introduced with the aim of dealing
with uncertainties, we first discuss the possible natures of the uncertainties that may occur,
i.e., probabilistic and fuzzy uncertainties. Note that in fuzzy formulations, a fuzzy set corre-
sponds to a fuzzy membership function. Correspondingly, we expand the current concept of
type-2 fuzzy membership function to two types of fuzzy membership functions, which we call
probabilistic-fuzzy and fuzzy-fuzzy membership functions.

Uncertainties may appear in two different ways: probabilistic and fuzzy [44]. The first is

observed when a known set Er =

{

er
1, . . . ,er

nEr

}

of random events exists, and based on probabil-

ity theory [44] each of these events has a certain probability of occurrence less than or equal
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to 100%. The summation of these probabilities for all the random events in E
r should exactly

be 100%. To elaborate the concept of a random event, we give an example.

Example 1: Random events

Suppose that we have a thermometer with a resolution of 10◦C. Now, consider the follow-
ing three statements, which represent three random events as the given statements are pre-
cise and refer to a certain fact. Therefore, these statements describe completely independent
(non-overlapping) situations:

er
1 : The temperature in this room is 10◦C.

er
2 : The temperature in this room is 20◦C.

er
3 : The temperature in this room is 30◦C.

Each of these statements refers to a certain value of the state of the room and gives a quantita-
tive expression of this value. Hence, these statements can be interpreted in one way only (i.e.,
there are no different interpretations for a quantitative expression such as 5◦C). At a specific
instant of time and in a specific room, only one of these statements can occur. Therefore, if
per

i
denotes the probability of occurrence of er

i
, then for i ∈ {1,2,3} we have

0 ≤ per
i
≤ 1,

3∑

i=1
per

i
= 1.

Hence, for a set of random events, the logical statements corresponding to these events are
certain statements, i.e., there is no qualitative information in these statements that may be
interpreted differently by various people. For a set of random events, the uncertainty is in the
possibility of occurrence of each random event. For instance, in Example 1 somebody who
is outside the room and has no information about the temperature of the room except that
either of er

1, er
2, or er

3 holds, cannot express by certainty that which of the three statements
holds in reality.

Alternatively, uncertainty may occur due to the use of qualitative expressions in a logi-
cal statement, where these qualitative expressions can have different interpretations by vari-

ous people. In this case, we have a set Ef =

{

e f
1, . . . ,e f

n
Ef

}

of fuzzy events, where unlike a ran-

dom statement er
i
, the qualitative expression of a fuzzy event e f

i
may be interpreted as various

quantitative expressions that may not be identical at all. For instance, when we say “this stu-
dent has received a high grade in math”, one may interpret the qualitative expression of “high
grade” to be a grade between 7 and 10, while another person may consider a high grade to
be between 8.5 and 10. Each fuzzy event corresponds to a membership value less than or
equal to 100%. Due to the different interpretations of fuzzy statements, there may be overlaps
in the quantitative interpretation of the fuzzy events in a set (i.e., the occurrence of a fuzzy
event may not exclude the probability of occurrence of other fuzzy events). For instance, in
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the given statement about the student’s grade, the range of 8.5 to 10 appears in both given in-
terpretations. Consequently, the summation of the membership values of all the fuzzy events
in E

f may exceed or be lower than 100%.
The following example contains three fuzzy events. The given qualitative statements for

the three events include terms (i.e., cold, moderate, and warm) that may be interpreted in
different ways by different people.

Example 2: Fuzzy events

e f
1 : The climate in this room is cold.

e f
2 : The climate in this room is moderate.

e f
3 : The climate in this room is warm.

The terms “cold”, “moderate”, and “warm” are qualitative. Hence, each of them may be in-
terpreted differently. For example, someone may consider the following interpretations for
them:

Interpretation 1:

The term “cold” corresponds to a temperature around 2◦C or less.

The term “moderate” corresponds to a temperature around 23◦C.

The term “warm” corresponds to a temperature around 30◦C or more.

From this interpretation, one may conclude that the curves shown in Figure 10.2 illustrate one
possible fuzzy description of the climate of the room, where the membership values of 0 and
1 are extracted based on the above interpretations of the terms cold, moderate, and warm,
and for the rest of the temperature range, membership functions are defined that gradually
transfer from one climate (i.e., cold, moderate, or warm) to another one. Now if the real tem-
perature of the room is 18◦C, then from Figure 10.2 the climate of the room may be considered
to be cold with a possibility of 2% (i.e., the possibility of the realization of e f

1 is 2%). The cli-
mate of the room may be considered as moderate with a possibility of 45% (i.e., the possibility
of the realization of e f

2 is 45%). Moreover, there is no possibility that the climate of the room is
considered to be warm (i.e., the possibility of the realization of e f

3 is 0%). Therefore, for a set
of fuzzy events in contrast to a set of random events, the summation of the chance of occur-
rence of different fuzzy events at the same time is not necessarily equal to 1 (e.g., in the given
example this summation is 47%).

As explained in Section 10.3, type-2 membership functions are mostly considered when
there is uncertainty in the realized value of the primary type-1 membership degrees of points
within the domain. Considering the two types of uncertainties explained above, we define
two types of type-2 membership functions, called the probabilistic-fuzzy and the fuzzy-fuzzy
membership functions. We use the term fuzzy-fuzzy membership function, as an alterna-
tive term for type-2 fuzzy membership functions defined in Section 9.4. Since the secondary
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Figure 10.2: A possible option for type-1 fuzzy membership functions of the climates “cold”,

“moderate”, and “warm” based on the statements given in “Interpretation 1”.

membership function f t1
s (x, ·) is itself a type-1 fuzzy membership function (see Section 9.4

for more details), i.e., the concept of fuzziness is repeated twice, we find it more suitable to
call this form of type-2 fuzzy membership functions fuzzy-fuzzy membership functions.

The probabilistic-fuzzy case is a new concept that we introduce and implement in this
chapter. The secondary membership function f t1

s (x, ·) of a probabilistic-fuzzy type-2 mem-
bership function can be any probability function that satisfies

∫

M1(x)
f t1

s (x, µ̄1) ·dµ̄1 = 1, ∀x ∈X,

where M1(x) is an interval defined by M1(x) =
[

f t1
p,1(x), f t1

p,n(x)
]

, recalling that n is the total

number of the primary type-1 fuzzy membership functions. In order to explain and to clarify
the difference between a case that can be formulated by a probabilistic-fuzzy membership
function, and a case that can be modeled by a fuzzy-fuzzy membership function, we give two
examples.

Example 3: Probabilistic-fuzzy case

Suppose that we ask 10 different people, who are assumed to represent the population per-
fectly, to give their opinions about the “level of convenience” of a room. The information we
provide for these people includes the temperature of the room (i.e., quantitative information)
and the following fuzzy statements (i.e., qualitative information):

e f
1,0 : If the climate in the room is a little bit warm or very warm, then the room is not conve-

nient.

e f
2,0 : If the climate in the room is moderately warm, then the room is convenient.

These people should first translate the quantitative information about the temperature of
the room into a qualitative one about the climate of the room (i.e., “cold”, “moderate”, and
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Figure 10.3: A possible option for type-1 fuzzy membership functions of the climates “cold”,

“moderate”, and “warm” based on the statements given in “Interpretation 2”.
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Figure 10.4: A possible option for type-1 fuzzy membership functions of the climates “cold”,

“moderate”, and “warm” based on the statements given in “Interpretation 3”.

“warm”) and also decide about the qualitative degree of the warmth (i.e., “a little bit”, “mod-
erately”, or “very”). Based on these translated information, they can decide about the “level
of convenience” of the room.

Suppose that 3 out of the 10 people agree with the interpretations given in Example 2 for
the terms “cold”, “moderate”, and “cold”, 5 out of the 10 people consider interpretation 2, and
the other 2 people consider interpretation 3 for these terms:

Interpretation 2:

The term “cold” corresponds to a temperature around 6◦C or less.

The term “moderate” corresponds to a temperature around 20◦C.

The term “warm” corresponds to a temperature around 27◦C or more.

Interpretation 3:
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The term “cold” corresponds to a temperature around 6◦C or less.

The term “moderate” corresponds to a temperature around 18◦C.

The term “warm” corresponds to a temperature around 24◦C or more.

Similar to Figure 10.2, type-1 fuzzy membership functions may be extracted based on the
interpretations given by the people in groups 2 and 3 (see Figures 10.3 and 10.4), where com-
pared with Figure 10.2, the midpoints of the fuzzy sets have been shifted to the given values in
the second and the third interpretations. Suppose that the temperature of the room is 26◦C.
The membership value of temperature 26◦C for the climate “warm” for the first 3 people is 5%
(see Figure 10.2), for the second 5 people it is 84% (see Figure 10.3), and for the last 2 peo-
ple it is 100% (see Figure 10.4). These membership values should next be translated into the
qualitative expressions “a little bit”, “moderately”, and “very”.

Assume that all these 10 people have the following interpretation:

Interpretation 4:

The term “a little bit” refers to a percentage less than 10%.

The term “moderately” refers to a percentage between 10% and 85%.

The term “very” refers to a percentage greater than 85%.

Although the statements that are given in interpretation 4 include qualitative terms, the infor-
mation that is conveyed about these terms is certain (i.e., these statements express random
events as defined earlier on). Therefore, the following fuzzy statements can be extracted based
on the interpretation of, respectively, 30%, 50%, and 20% of the people:

e f
1,1 : The climate in this room is a little bit warm.

e f
2,1 : The climate in this room is moderately warm.

e f
3,1 : The climate in this room is very warm.

Now these 10 people can match their translated qualitative interpretations, which are stated
by e f

1,1, e f
2,1, and e f

3,1 with the qualitative information they have been given through e f
1,0 and

e f
2,0, which results in the following conclusions:

• Based on the opinion of 50% of the population (i.e., the first 3 people and the last 2
people), the room is not convenient.

• Based on the opinion of 50% of the population (i.e., the second 5 people), the room is
convenient.
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Figure 10.5: A possible option for type-1 fuzzy membership functions of the terms “a little bit”,

“moderately”, and “very” based on the statements given in “Interpretation 5”.

Although the procedure of making the above conclusions involves fuzzification (i.e., transla-
tion of the quantitative information into qualitative ones) and decision making based on fuzzy
statements (given by Interpretations 1–3) in the first stage, for the second stage where the final
conclusions are made, probability theory is used. This is because the people involved in mak-
ing the conclusion have different fuzzy interpretations for the terms “cold”, “moderate”, and
“warm”, while they all agree on the same fuzzy interpretation for the terms “a little bit”, “mod-
erately, and “very” given by Interpretation 4. Hence, we call such a case a fuzzy-probabilistic
case.

Example 4: Fuzzy-fuzzy case

Consider once more the case that is described in Example 3, but this time assume that all
these 10 people have the following interpretation for the terms “a little bit”, “moderately”, and
“very”:

Interpretation 5:

The term “a little bit” refers to a percentage around 10% or less.

The term “moderately” refers to a percentage around 65%.

The term “very” refers to a percentage around 90% or more.

These statements do not convey a certain opinion about the terms they describe. Hence, they
are fuzzy statements and they can be modeled by type-1 fuzzy membership functions. Fig-
ure 10.5 shows one example of such fuzzy membership functions. Therefore, from Figure 10.5
for the first group of people (who find the climate to be 5% warm), the membership value of
5% for “a little bit” is 100%, and the membership value for “moderately” and for “very” is zero.
For the second group of people (who find the climate to be 84% warm), the membership value
of 84% for “a little bit” is zero, for “moderately” it is 55%, and for “very” it is 60%. Finally, for
the third group of people (who find the climate to be 100% warm), the membership value of



Chapter 10 - Multi-agent predictive and adaptive model-based type-2 fuzzy control 223

100% for “a little bit” and for “moderately” it is zero, and for “very” it is 100%. Therefore, the
following fuzzy statements can be extracted based on the interpretation of these 10 people:

e f
1,2 : The climate in this room is a little bit warm.

e f
2,2 : The climate in this room is 55% moderately warm and 60% very warm.

e f
3,2 : The climate in this room is very warm.

As we see above, e f
2,2 includes both quantitative and qualitative information. However, the

information that is given by e f
1,0 and e f

2,0 involve qualitative information only. Hence, before

we can make the final conclusions, e f
2,2 should be translated into a completely qualitative

statement. This is usually done using a fuzzy inference method. For instance, one may say
that since 60% is greater than 55%, the part “55% moderately warm” can be dropped from
the statement and only one state, i.e., “very warm”, is considered for the room. This inference
results in the following fuzzy statement from e f

2,2:

The climate in this room is very warm.

Then, the final conclusion is given by

• Based on the opinion of 100% of the population, the room is not convenient.

In Example 4, the procedure of making the final conclusion involves fuzzification and decision
making based on fuzzy statements (given by Interpretations 1–3) in the first stage. Moreover,
in the second stage, fuzzy statements (given by Interpretation 5) are again involved. This
results in statements that should first be processed using a fuzzy inference approach before a
final conclusion can be made. Therefore, the case given by Example 4, is called a fuzzy-fuzzy
case. Note that for the specific case described in Example 4, fuzzy inference is not needed
for statements e f

1,2 and e f
3,2, because they include 100% certainty. In different examples, there

may be more statements that need a fuzzy inference approach before they can be used to
make the final conclusion.

Based on Example 3 and Example 4, we summarize our explanations as follows: when a
dataset includes human interpretations of different terms, and inferring a conclusion needs
more than one step of interpretation (e.g., in the given examples the quantitative temperature
was first translated into a qualitative one, and then the resulting quantitative membership
values were again translated into qualitative terms), two cases may occur, i.e., probabilistic-
fuzzy (see Example 3) and fuzzy-fuzzy (see Example 4). In particular, if in the second step of
interpretation we use probabilistic statements, the probabilistic-fuzzy case occurs. However,
if in the second step we use fuzzy statements, the fuzzy-fuzzy case occurs.

10.3 Type-2 nonlinear fuzzy rules for delayed systems

Some systems (including electric networks, pneumatic and hydraulic networks, chemical pro-
cesses, long transmission lines [38]) involve time-delayed states and/or inputs in their dy-
namics. This delay can be a result of the time required for transferring the sensed data to the
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controller, or for transferring the decision made by the controller to the system’s actuators. In
this section, we consider systems with a time-delayed state. For such systems, the dynamics
are affected by the state variables measured at the previous simulation time steps. We discuss
a case for which parts of the previous states may not be available. This can happen when due
to the limited memory and limited storage space, the measured states cannot be stored, or
when parts of the measurements are missing or faulty, or the measurement procedure and
tools are costly, or when the state cannot be measured at every simulation time step due to
the slow sensors and measurement tools.

For many dynamical systems, the number of input variables is less than the total number
of state variables. Hence, it is less costly and needs a smaller memory size to store the input
variables instead of the measured state variables for such systems. Moreover, the control in-
puts are computed by the control systems we design, and hence the corresponding values at
every time step are available and do not need to be measured. Correspondingly, we should
not be worried about the measurement tools and procedures, and about the missing or faulty
measurements. Hence, it is sometimes beneficial to develop a model of dynamical systems
with time-delayed state variables that estimates the updated state of the system based on the
previous and the current control inputs and the disturbances (as we know that the previous
control inputs and disturbances have affected the state variables of the previous time steps).

In this section, we propose a new scheme for a fuzzy model of a dynamical system that
considers the current and the delayed input variables in the antecedent of its rules, and that
produces the updated state of the dynamical system. The antecedents include type-2 fuzzy
sets, where the motivation for using type-2 fuzzy sets in the proposed scheme is to cover the
ambiguities that may occur in interpreting the dataset that forms the basis of the fuzzy rule
base (for more details see Section 10.2 and Example 4). The antecedent statements are con-
sidered to be related by logical “and”s. Inspired by the TSK model explained in Section 9.3,
we propose to divide the input set into subsets, and to consider a nonlinear expression of the
system’s current states, current and time-delayed inputs, and the external inputs (i.e., distur-
bances) for the dynamics of the system in each resulting subset. Note that these submodels
will have a simpler form than a single nonlinear model over the entire input set. Moreover,
identifying or tuning the parameters of these submodels independently can be easier and
can result in a more accurate model. These submodels can then be connected via a smooth
relationship such as (9.2).

For a MIMO system with nin input variables zzz in
i

(k), i ∈ {1, . . . ,nin} and nout output variables
zzzout

j
(k), j ∈ {1, . . . ,nout}, the proposed type-2 fuzzy model is expressed by rules of the following

form:

if zzz in
1 (k) ∈ F t2

1,0(k) and zzz in
1

(

k −δin
1,1

)

∈ F t2
1,1(k) and

. . . and zzz in
1

(

k −δin
1,d1

)

∈ F t2
1,d1

(k)

...

and zzz in
nin (k) ∈ F t2

nin,0
(k) and zzz in

nin

(

k −δin
nin ,1

)

∈ F t2
nin,1

(k)
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and . . . and zzz in
nin

(

k −δin
1,d

nin

)

∈ F t2
1,d

nin
(k)

then zzzout(k +1) = fff
(

θθθ(k), zzzout(k), zzz in(k), zzz in
d (k),ννν(k)

)

,

where k is the discrete time step counter, F t2
i , j

(k) for i ∈ {1, . . . ,nin}, j ∈ {0, . . . ,di } indicate

type-2 fuzzy sets that may be time-varying and their parameters1 may be tuned at time steps
k ∈K

identify (where the set Kidentify may not necessarily include all the discrete time steps k),
δin

i , j
and di are non-negative integers, fff is, in general, a nonlinear function,θθθ(k) is a vector that

contains the parameters of the consequent of the model’s fuzzy rules at time step k, and that
may be tuned at time steps k ∈ K

identify, zzzout(k) is an nout-dimensional vector that includes
all the output vectors of the modeled system at time step k, zzz in(k) is an nin-dimensional vec-
tor that includes all the input vectors at time step k, and zzz in

d (k) is a vector with e in elements
(

e in =
∑nin

i=1

∑di

j=0δ
in
i , j

)

that includes all the time-delayed input vectors at time step k, and ννν(k)

is the noise or disturbance vector at time step k.
Note that later on, we will consider two variants for zzz in and for zzzout. The first variant is

used for the fuzzy model of the dynamical system (see Section 10.4.1), where zzz in is substituted
by uuu (the control input) and zzzout(k) is substituted by xxxm (the state estimated by the fuzzy
model). The second variant is used for expressing the fuzzy controllers (see Section 10.4.2),
where zzz in is substituted by xxxm (the previous states estimated by the system’s model) and zzzout

is substituted by uuu (the control input produced by the fuzzy controller).

10.4 Two-layer adaptive fuzzy and predictive model-based

control architecture

In this section, we propose a two-layer control architecture that aims to minimize an over-
all cost value for a controlled system with dynamics that involves delayed states. The con-
trolled system is divided into subsystems with local cost functions, where each subsystem
is controlled by an agent. The agents make use of controllers with fuzzy rule bases that in-
volve if–then rules with the adaptive parameters and the type-2 nonlinear structure proposed
in Section 10.3. These fuzzy controllers form the first layer of control. Suppose that due to
limited memory and storage space, missing and/or faulty measurements, and costly or slow
measurement tools and sensors, not all the previous measured state variables are available.
Hence, each agent uses a fuzzy model of its subsystem that also follows the scheme proposed
in Section 10.3 to estimate the missing or unavailable state variables. Moreover, we propose
to link a prediction model of the external disturbances to the fuzzy controllers so that they
can make the control decisions not only based on the current and the delayed states, but also
by taking into account the expected external disturbances in the near future.

Subsystems controlled by the agents may not be completely isolated from each other, i.e.,
part of the dynamics of these subsystems might be shared. Therefore, the control decision of
one agent may affect the dynamics, and consequently the cost value of the connected subsys-

1For the sake of compactness in the notations, these parameters are not added as arguments for fuzzy sets.



226 Efficient Predictive Model-Based and Fuzzy Control for Green Urban Mobility

tems. Hence, the connected agents should coordinate to assure that their decisions will not
affect the states of the connecting subsystems in a negative way and vice versa. To that aim,
a predictive and optimization-based controller, such as an MPC controller, is proposed in the
second layer of control to steer the type-2 fuzzy controllers to adaptively tune their parame-
ters taking into account the effect of the connected subsystems. The optimization problem of
the predictive controller is solved by a decomposition method, and the determined optimal
solutions are used for tuning the parameters of the type-2 fuzzy controller (see Section 10.4.4
for more details). The second control layer will be activated only at some predefined tuning
time steps (i.e., in a periodic way), and possibly at some other control time steps in case a
predefined tuning criterion is triggered (i.e., in an event-triggered way). This criterion may be
defined in various ways, e.g., in case the realized value of the cost function in the most recent
sampling time exceeds a threshold the tuning criterion can be triggered. This avoids solving
an optimization problem at every control time step and saves some time for the two-layer
control system.

The main advantage of using the proposed two-layer adaptive control architecture com-
pared with a distributed MPC architecture is that fuzzy controllers perform faster than MPC
controllers that should solve an optimization problem. In the proposed architecture, the fuzzy
controllers consider the delayed state variables of the controlled system and the expected ex-
ternal disturbances in the near future. Since they do not have access to the predicted states of
the controlled system in the future, the MPC controller in the second control layer looks in the
future and considers these predicted states, in addition to the interactions among different
connected subsystems. Hence, for large-scale systems that are affected by some time-delayed
variables at every time step (e.g., dynamical systems with time-delayed state variables), and
that should deal with limited, missing, or faulty measurements from the previous time steps,
the proposed two-layer fuzzy and predictive control architecture can be of more interest than
other control architectures, e.g., distributed MPC.

In the following sections, we discuss the formulation of the fuzzy model of the subsystems
and the fuzzy controllers used by agents, and we propose efficient approaches for identifying
the parameters of the fuzzy submodels and for tuning the parameters of the fuzzy controllers.
Note that each subsystem and its controller can be distinguished from other submodels and
other controllers using an additional subscript. However, in the following section, we drop
this additional subscript for the sake of simplicity of the mathematical notations.

10.4.1 Fuzzy model of subsystems

A subsystem that involves dynamics affected by the delayed states, but does not have access
to all the previously measured states, can be modeled by type-2 nonlinear fuzzy rules of the
following form, considering the indirect effect of the delayed control inputs on the updated
and the previous states:

if uuu1(k) ∈U t2
1,0(k) and uuu1

(

k −δc
1,1

)

∈U t2
1,1(k) and

. . . and uuu1

(

k −δc
1,dc

1

)

∈U t2
1,dc

1
(k)
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...

and uuunu (k) ∈U t2
nu ,0(k) and uuunu

(

k −δc
nu ,1

)

∈U t2
nu ,1(k)

and . . . and uuunu

(

k −δc
nu ,dc

nu

)

∈U t2
nu ,dc

nu
(k)

then xxxm(k +1) = fff m
(

θθθm(k), xxxm(k),uuu(k),uuud(k),ννν(k)
)

, (10.1)

with k ∈K the discrete-time step counter and K the set of all time steps, uuui (k), i ∈ {1, . . . ,nu}
the control input vectors at time step k, uuu(k) a vector that includes uuui (k) for all i ∈ {1, . . . ,nu},
δc

i , j
, j ∈ {0, . . . ,d c

i
} and d c

i
non-negative integers, U t2

i , j
(k) type-2 fuzzy sets that may be time-

varying (i.e., their parameters collected in vectors θθθU
i , j may be updated at identification time

steps k ∈ K
identify, which are not necessarily every time step k ∈ K), xxxm(k) the state vector

of the system estimated by the fuzzy model at time step k, fff m a nonlinear function, uuud(k)

a vector that includes all the delayed control inputs with eu elements (eu =
∑nu

i=1

∑dc
i

j=0 δ
c
i , j

)
at time step k, ννν(k) the disturbance vector at time step k (note that the disturbance of each
subsystem may include the state vectors of the connecting subsystems), and θθθm(k) a vector
that includes all parameters of the consequent of the fuzzy rule at time step k (similar to the
type-2 fuzzy sets of the fuzzy models, the elements of θθθm may be updated at identification
time steps k ∈K

identify).

The proposed model can be used to provide estimations for the previous states in cooper-
ation with a controller that is affected by the delayed states of the subsystem (see Figure 10.6).
At time step k, the controller receives the estimated states (including the delayed states) from
the fuzzy model, and produces the control input uuu(k), which is sent to the subsystem and
to the fuzzy model together with the required delayed control inputs that may be stored in
a memory unit. At time step k ∈ K

identify, when the state of the subsystem is measured, the
parameters of the fuzzy model are re-tuned (see Section 10.4.3 for more details).

Note that a prediction model of the subsystem for the MPC controller in the second layer
can also be developed in a similar way. Moreover, using some historical data from the external
disturbances, a fuzzy model can be trained that predicts the future external disturbances and
that can be linked to the fuzzy controllers in the first layer.

10.4.2 Fuzzy controller of subsystems

Each agent uses a two-layer adaptive fuzzy and predictive control architecture for its subsys-
tem. The first layer includes a state-feedback controller that is defined by the following fuzzy
rules:

if xxxm
1 (k) ∈ X t2

1,0(k) and xxxm
1

(

k −δm
1,1

)

∈ X t2
1,1(k) and

. . . and xxxm
1

(

k −δm
1,dm

1

)

∈ X t2
1,dm

1
(k)

...

and xxxm
nx

(k) ∈ X t2
nx ,0(k) and xxxm

nx

(

k −δm
nx ,1

)

∈ X t2
nx ,1(k)
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and . . . and xxxm
nx

(

k −δm
nx ,dm

nx

)

∈ X t2
1,dm

nx
(k)

then uuu(k) = fff c
(

θθθc(k), xxxm(k), xxxm
d (k), J (k −1)

)

, (10.2)

with xxxm
i

(k), i ∈ {1, . . . ,nx } state vectors, which together construct a vector xxxm(k) at time step
k, δm

i , j
, j ∈ {0, . . . ,d m

i
} and d m

i
non-negative integers, X t2

i , j
(k) type-2 fuzzy sets that may be

time-varying (i.e., their parameters collected in vectors θθθX
i , j may be updated at tuning time

steps k ∈K
tune, which are not necessarily every time step k ∈K), uuu(k) the control input vector

at time step k, fff c a nonlinear function, θθθc(k) a vector including the adjustment parameters
for the adaptive fuzzy controller at time step k (similar to the type-2 fuzzy sets of the fuzzy
controller, the elements of θθθc may be updated at tuning time steps k ∈K

tune), xxxm
d (k) a vector

that includes all the delayed states with ex elements (ex =
∑nu

i=1

∑dm
i

j=0δ
m
i , j

) at time step k, and
J (·) the cost function of the subsystem, given by

J (k) =J (xxxm(k),∆uuu(k)), (10.3)

where J : Rnx ×R
nu → R is, in general, a nonlinear function that computes the cost function,

and ∆uuu(k) = uuu(k)−uuu(k −1).
Note that due to the limitations in the memory and storage space, we do not save the

estimated values of the delayed state variables. Whenever we need to know these values, we
estimate them via (10.1) using the updated parameter values.

10.4.3 Parameter identification for the fuzzy model

The parameters θθθU
i , j (k) of the type-2 fuzzy sets in the antecedent of the fuzzy rules and the

parameter vector θθθm(k) in the consequent of the fuzzy rules for the fuzzy model of a subsys-
tem are re-identified at time steps k ∈ K

identify. The set Kidentify includes those time steps at
which a measurement of the states of the subsystem is available. Re-identification of θθθU

i , j (k) is

based on the most recent value determined for these parameters, i.e., θθθU
i , j

(

k −k−,identify
)

and

the measured state xxx(k) of the subsystem at time step k ∈K
identify. Note that k−,identify is the

most recent element of Kidentify before time step k. To re-identify θθθU
i , j (k), we use dataset Dm

k
,

which includes the data that has been collected in the last N sampling time steps. Then the
antecedent’s parameters are updated as follows (also see [26]):

θθθU
i , j (k) =Θ

U
(

θθθU
i , j (k −1),Dm

k

)

, i ∈ {1, . . . ,nu}, j ∈ {0, . . . ,d c
i }, (10.4)

and the updated type-2 fuzzy sets for the antecedents of the fuzzy rules of the submodels are
obtained by

U t2
i , j (k) =ΠU

(

θθθU
i , j (k)

)

, i ∈ {1, . . . ,nu}, j ∈ {0, . . . ,d c
i }, (10.5)

where Θ
U (·) is a nonlinear operator used for updating the parameters of the type-2 fuzzy sets,

and ΠU (·) is an operator that receives the corresponding parameters and gives the fuzzy sets
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U t2
i , j

.

The parameter vector θθθm of the consequent of the rules for the fuzzy model can be up-
dated at time step k ∈K

identify by minimizing the cumulative error of the states estimated by
the fuzzy model within a time window L

identify(k) that includes the p identify most recent ele-
ments of Kidentify at time step k, w.r.t. the measured states at these time steps. Therefore, we
can write

min
θθθm(k)

(

∑

l∈Lidentify(k)

∥
∥
∥xxx(l )−xxxm

(

l
∣
∣
∣θθθm(l ) = θθθm(k)

)∥
∥
∥

)

,

s.t.

(10.1) and (10.2) hold for l ∈ L
identify(k),

(10.6)

which is a minimization problem with θθθm(k) the optimization variable, and with xxx(l ) the mea-
sured value of the state vector of the controlled system at time step l . In (10.6), the fuzzy model
given by (10.1) is re-run within the time window L

identify(k), considering the updated θθθm(k) at
time step k.

Note that the optimization problem given by (10.6) is in general a nonlinear, nonsmooth
and nonconvex optimization problem, hence it can be solved by standard optimization algo-
rithms such as pattern search, genetic algorithm, or gradient-based optimization approaches,
using multiple starting points (see Chapter 7 for detailed information about these optimiza-
tion methods).

Figure 10.6 shows the identification procedure for the fuzzy model. As we see in this figure,
the current and the delayed input vectors are injected into the fuzzy model. At the identifica-
tion time steps k ∈K

identify, the state xxx(k) of the system is measured, and the corresponding
error of the estimated state by the fuzzy model w.r.t. the measured state, which is indicated
by eeem(k) in Figure 10.6, is sent to the identification module, where θθθm(k) is re-identified via
(10.6). Moreover, the parameters θθθU

i , j (k) of the type-2 fuzzy sets are re-identified using (10.4).

10.4.4 Parameter tuning for the fuzzy controller

The second layer of each fuzzy controller is responsible for tuning the parameters of the fuzzy
rules in the first layer of the controller at time steps k ∈ K

tune. The set Ktune is constructed
using a combination of a repetitive approach and an event-triggered one. Therefore, at every
N tune time steps tuning can occur, in addition to some intermediate time steps at which a
tuning criterion is triggered (note that Ktune may be different from K

identify). The second layer
of a fuzzy controller updates the controller’s parameters θθθX

i , j in a similar way as for θθθU
i , j , i.e.,

θθθX
i , j (k) =Θ

X
(

θθθX
i , j (k −1),Dc

k

)

. (10.7)

Additionally, we have

X t2
i , j (k) =ΠX

(

θθθX
i , j (k)

)

, i ∈ {1, . . . ,nx}, j ∈ {0, . . . ,d m
i }, (10.8)



230 Efficient Predictive Model-Based and Fuzzy Control for Green Urban Mobility

ννν(k),

xxxm(k), k ∈K

xx x
m

(k
),

k
∈
K

id
en

ti
fy

xxx(k), k ∈K
identify

xx x
(k

),
k
∈
K

id
en

ti
fy

ee e
m

(k
),

k
∈
K

id
en

ti
fy

xxxm
d (k), k ∈K

uuu(k), k ∈K

k ∈K

k ∈K

uuud(k),
δδδc

δδδm

Identification module of the model

ΠU

(

θθθU
i , j (k)

)

,

k ∈K
identify,

i ∈ {1, . . . ,nu},

j ∈ {1, . . . ,d c
i }θθ θ

m
(k

),
k
∈
K

id
en

ti
fy

+++
−−−

Subsystem’s model

Identifying via (10.6) Identifying via (10.4)

Subsystem to

be controlled

Controller
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identify, when measurements from the state of the subsystem

are available).

where Θ
X (·) is a nonlinear operator used for updating the parameters of the type-2 fuzzy sets,

D
c
k

for k ∈K
tune is a dataset that includes the data that has been collected in the last N sam-

pling time steps, and ΠX (·) is an operator that receives the corresponding parameters and
produces the fuzzy sets X t2

i , j
.

The aim of the proposed two-layer controller is to reduce the realized value of a prede-
fined cost function (see (10.3)). Therefore, the parameters θθθc of the fuzzy controller should be
updated taking into account this aim of the controller. We define the following minimization
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Figure 10.7: A two-layer architecture for online adaptive tuning of the parameters of a fuzzy

controller.

problem, where θθθc(k) is the optimization variable:

min
θθθc(k)



w p
∑

l∈Ltune(k)

J
(

xxxm(l |θθθc(l ) = θθθc(k)),∆uuu(l |θθθc(l ) = θθθc(k))
)

+

w f

∣
∣
∣
∣
∣
Θ(k)−

k+2∑

l=k

J
(

xxxm(l |θθθc(l ) = θθθc(k)),∆uuu(l |θθθc(l ) = θθθc(k))
)

∣
∣
∣
∣
∣



,

s.t.

(10.1) and (10.2) hold for l ∈ L
tune(k),

(10.9)

where w p and w f are weighting factors, Ltune(k) is a time window that includes the most re-
cent p elements of K before time step k, and Θ(k) is the optimal cumulative future cost func-
tion from now until two time steps further in the future, which is computed by the predictive
and model-based controller in the second layer of the proposed control architecture. Details
regarding computation of Θ(k) will be presented in Section 10.4.5. The first term in the mini-
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mization problem of (10.9), i.e.,

∑

l∈Ltune(k)

J
(

xxxm(l |θθθc(l ) = θθθc(k)),∆uuu(l |θθθc(l ) = θθθc(k))
)

,

formulates the cumulative cost of the last p time steps. We should re-run the fuzzy model of
(10.1) to re-estimate the previous states using θθθc(k) for the parameters of the antecedent. The
second term in the minimization problem of (10.9), i.e.,

∣
∣
∣
∣
∣
Θ(k)−

k+2∑

l=k

J
(

xxxm(l |θθθc(l ) = θθθc(k)),∆uuu(l |θθθc(l ) = θθθc(k))
)

∣
∣
∣
∣
∣
,

formulates the difference between an optimal value for the cumulative cost function for two
time steps in future and the realized value of the cumulative future cost function, if the fuzzy
controller is used to control the subsystem in the coming two time steps (see the next sec-
tion for more details regarding using two future time steps). These two terms are weighted
by w p and w f in (10.9). The optimization problem given by (10.9) is in general a nonlinear,
nonsmooth and nonconvex optimization problem, and can be solved by standard optimiza-
tion algorithms such as pattern search, genetic algorithm, or gradient-based optimization
approaches, using multiple starting optimization points (see Chapter 7 for more details).

Figure 10.7 shows the main structure of the two-layer adaptive fuzzy and predictive model-
based controller proposed in this chapter. Note that the illustrated two-layer controller en-
closed by the dashed box in the figure, elaborates the controller block that is shown in Fig-
ure 10.6. From Figure 10.7, the type-2 fuzzy controller, which is located in the first layer of the
control architecture, computes the control input uuu(k) at every time step k ∈K. At tuning time
steps k ∈K

tune, the parameters θθθX
i , j (k) of the type-2 fuzzy sets are re-tuned using (10.7). Addi-

tionally, the parameter vector θθθc(k) of the fuzzy controller is also re-tuned using the predictive
and model-based controller, which is located in the second layer of the control architecture,
and via the minimization problem of (10.9).

10.4.5 Predictive and optimization-based controller

As indicated before, the two-layer control architecture proposed in this chapter is considered
for use in a multi-agent control system. In a multi-agent control system, in general, all or
some agents are connected, i.e., their local dynamics affect each other’s dynamics. Hence,
each of these agents should take into account the connected agents whenever it manipulates
its local dynamics by implementing a control input that is produced by the two-layer con-
troller. For the sake of simplicity, we consider two connected agents and indicate them by the
indices 1 and 2 (see Figure 10.8). Hence, from now on, whenever we refer to a variable that has
been used in the previous sections, we may add an additional subscript that distinguishes the
corresponding agent in the multi-agent architecture. Note that extension of the discussions
given in this section to a multi-agent system with more than two agents is straightforward.

Each agent uses a fuzzy model of its subsystem given by (10.1) and a two-layer controller,
where the fuzzy controller in the first layer is given by (10.2). Some elements of the state vector
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Figure 10.8: Two connected agents with fuzzy models of subsystems and two-layer fuzzy and

predictive model-based controllers.

of one subsystem may directly affect the dynamics of the other subsystem. Suppose that xxx12

denotes the subvector of xxx1 that directly affects the dynamics of subsystem 2, and xxx21 denotes
the subvector of xxx2 that directly affects the dynamics of subsystem 1 (see Figure 10.8). Hence,
we have

ννν1(k) = xxx21(k), (10.10)

ννν2(k) = xxx12(k). (10.11)

Note that we assume that the two agents have synchronized time steps. The effect of the in-
teractions among connected agents is represented in the second term of the minimization
problem (10.9), where we consider the error between the cumulative future cost function re-
sulting from using the fuzzy controller w.r.t. Θ, which is the cumulative future cost function
computed by the predictive controller.

In this section, we show howΘ(k) can be determined2 using a decomposition method [12],
such as the primal decomposition approach. Consider the following minimization problem:

min
φ

Φ(φ) = min
φ1,φ2,θ

(

Φ1(φ1,θ)+Φ2(φ2,θ)
)

, (10.12)

with private variables φ1 and φ2, and complicating variable θ, i.e., φ = [φ1,φ2,θ]⊤. The min-
imization problem (10.12) yields the following equivalent optimization problem, called the
“master problem”, which involves only the complicating variable as the optimization variable:

min
θ

(Θ1(θ)+Θ2(θ)) . (10.13)

2For the sake of simplicity in the mathematical notations from now on we skip the argument k.
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In (10.13), Θ1(θ) and Θ2(θ) are optimal values for the following two optimization problems:

• min
φ1

Φ1(φ1,θ),

• min
φ2

Φ1(φ2,θ).

Using a standard optimization method, the master problem (10.13) can be solved to find an
optimal θopt, and to determine optimal values of Θ1(θopt) and Θ2(θopt) correspondingly.

Next, we formulate the optimization problem of the multi-agent control system shown in
Figure 10.8 using the primal decomposition approach. The overall cost function of the system
at time control step k is indicated by J sys(k). Note that from (10.3), uuu1(k) affects J sys(k) and
J sys(k+1) by affecting the cost function of subsystem 1. The same holds for agent 2. Moreover,
from (10.1), the decision uuu1(k) of agent 1 at time step k affects the state of subsystem 1 at the
next time step, i.e., xxxm

1 (k + 1), whereas the decision uuu2(k) of agent 2 at time step k affects
xxxm

2 (k +1). The state xxxm
1 (k +1) acts as disturbance for the connected subsystem 2 at time step

k +1, while xxxm
2 (k +1) acts as disturbance for subsystem 1 at time step k +1. Therefore, based

on from (10.1), the effect of uuu1(k) on the state of subsystem 2 and the effect of uuu2(k) on the
state of subsystem 1 are observed at time step k + 2 only. Hence, in addition to J sys(k) and
J sys(k +1), J sys(k +2) will also be affected by uuu1(k) and uuu2(k).

Therefore, in order to find an optimal value of the control input uuu(k) = [uuu1(k) uuu2(k)]⊤

at time step k, in addition to the current cost functions of subsystems 1 and 2, we also look
at the cost functions of these subsystems within two time steps from k considering all the
effective control inputs as the optimization variable. Hence, at time step k, we minimize the
summation of the cost functions of subsystems 1 and 2 at time steps k, k+1, and k+2, finding
optimal profiles for uuu(k),uuu(k +1),uuu(k +2). So we obtain

min
uuu1(k),uuu1(k+1),uuu1(k+2),
uuu2(k),uuu2(k+1),uuu2(k+2)

k+2∑

l=k

∑

ℓ∈{1,2}

Jℓ

(

xxxm
ℓ (l ),∆uuuℓ(l )

)

. (10.14)

Next, from (10.1), we can write:

Jℓ

(

xxxm
ℓ (k +1),‖uuuℓ(k +1)−uuuℓ(k)‖

)

=

Jℓ

(

fff m
ℓ

(

θθθm
ℓ (k +1), xxxm

ℓ (k),uuuℓ(k),uuud,ℓ(k), xxxm
ℓ̄

(k)
)

,‖uuuℓ(k +1)−uuuℓ(k)‖
)

.
(10.15)

Using (10.1) once more, we obtain

Jℓ

(

xxxm
ℓ (k +2),∆uuuℓ(k +2)

)

=

Jℓ

(

fff m
ℓ

(

θθθm
ℓ (k +2), xxxm

ℓ (k +1),uuuℓ(k +1),uuud,ℓ(k +1), xxxm
ℓ̄

(k +1)
)

,‖uuuℓ(k +2)−uuuℓ(k +1)‖
)

,

(10.16)
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with

xxxm
ℓ (k +1) = fff m

ℓ

(

θθθm
ℓ (k +1), xxxm

ℓ (k),uuuℓ(k),uuud,ℓ(k), xxxm
ℓ̄

(k)
)

,

xxxm
ℓ̄

(k +1) = fff m
ℓ̄

(

θθθm
ℓ̄

(k +1), xxxm
ℓ̄

(k),uuuℓ̄(k),uuud,ℓ̄(k), xxxm
ℓ (k)

)

,

uuud,ℓ(k +1) = [uuu⊤
ℓ (k),uuu⊤

d,ℓ(k)]⊤.

(10.17)

Then for ℓ ∈ {1,2}, we define

Qℓ(uuuℓ(k),uuuℓ(k +1),uuuℓ(k +2),uuuℓ̄(k)) :=
k+2∑

l=k

Jℓ

(

xxxm
ℓ (l ),∆uuuℓ(l )

)

, (10.18)

with ℓ̄ = 2 for ℓ = 1 and ℓ̄ = 1 for ℓ = 2. Equation (10.18) simplifies the given optimization
problem to a formulation similar to (10.12) with

• Complicating variables:

θθθ(k) :=
[

uuu⊤
ℓ (k),uuu⊤

ℓ̄
(k)

]⊤

. (10.19)

• Private variables:
φφφℓ(k) :=

[

uuu⊤
ℓ

(k +1),uuu⊤
ℓ

(k +2)
]⊤

φφφℓ̄(k) :=
[

uuu⊤

ℓ̄
(k +1),uuu⊤

ℓ̄
(k +2)

]⊤ . (10.20)

• Decomposed (local) cost functions:

Φℓ(k,φφφℓ,θθθ) =Qℓ(φφφℓ,θθθ)
Φℓ̄(k,φφφℓ̄,θθθ) =Qℓ̄(φφφℓ̄,θθθ)

. (10.21)

By solving the resulting optimization problem, we obtain an optimal value for θθθ, φφφℓ, and
φφφℓ̄ denoted by θθθopt, φφφopt

ℓ
, and φφφ

opt

ℓ̄
, and also for Φℓ(k,φφφℓ,θθθ) and Φℓ̄(k,φφφℓ̄,θθθ) denoted by, re-

spectively, Θℓ(k,θopt) and Θℓ̄(k,θopt). In the second term of (10.9), we can then use Θℓ̄(k,θopt)
and Θℓ̄(k,θopt) to tune the parameters of the fuzzy controller. Since these two optimal values
have been computed taking into account the complicating variable, they include the effects
of interactions among the connected agents. Note that when (10.9) is solved for a fuzzy con-
troller in a multi-agent control architecture, we assume that the other fuzzy controllers in the
system are using the most recent updated values for their tuning parameters.

Also note that using a prediction window including 3 time steps provides the minimum
horizon needed for providing the coordination of the connected agents (see the explanations
given above at the beginning of this section). However, one may choose a horizon of any
multiple of 3 time steps for the predictive controller.



236 Efficient Predictive Model-Based and Fuzzy Control for Green Urban Mobility

1L

4L

3L6L

2L 5R2R

3R6R

4R

1R

Figure 10.9: Urban traffic network with two adjacent intersections used for the case study.

10.5 Case study

In this section, the two-layer adaptive control system proposed in Section 10.4 is implemented
to an urban traffic network consisting of two adjacent intersections (see Figure 10.9). All links
that are depicted in Figure 10.9 include two lanes, where the right-hand side lane of each link
at an intersection acts as an entrance lane and the left-hand side lane acts as en exit lane (see
the red arrows in Figure 10.9). The vehicles entering an intersection via a specific link are al-
lowed to move to any of the exit lanes of the intersection, except for the exit lane on the same
link (i.e., U-turns are forbidden at the intersections). The black arrows shown in Figure 10.9,
illustrate the three possible routes that can be taken by a vehicle that enters the left-hand side
intersection via the southern link. Each of the two intersections is controlled by four traffic
signals, where each traffic signal corresponds to all the rights-of-way of the corresponding
lane of the intersection. The traffic signals that are located at opposite entrance lanes of an
intersection will follow the same schedule (i.e., their green and red phases coincide).

A simulation of half an hour is considered and is repeated twice, once with the two-layer
adaptive control system proposed in Section 10.4, where the urban traffic network is divided
into two subnetworks colored in grey and in pink in Figure 10.9, and once with a centralized
MPC controller for the entire urban traffic network. The traffic on the links is simulated using
the extended version of the S-model (see Chapter 6). The parameters used for the case study
are given in Table 10.2, where C and Ccon refer to the capacity of the boundary and the con-
necting lanes respectively, β is the turning rate for all the lanes in the traffic network (note that
there are three possible turning directions for each lane as illustrated in Figure 10.9, and we
assume that all the corresponding turning rates are equal), the saturation leaving flow rates
for all the lanes are the same and are denoted by µ, c is the cycle time of the two intersections,
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Table 10.2: Parameters used for the case study.

C [veh] Ccon [veh] β µ [veh/s] c [s] l veh [m] v free [m/s]
70 120 1/3 0.8 60 4.5 13.5
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Figure 10.10: Demand in vehicles per second at the entrances of the urban traffic network.

l veh is the average vehicle length, and v free is the free-flow speed for the vehicles on all lanes of
the urban traffic network. For both simulations, the minimum and maximum allowed values
of the green time are, respectively, 6 s and 55 s. The demand profiles at the entrances of the
urban traffic network (i.e., sources 1L, 2L, 3L, 1R, 2R, and 3R in Figure 10.9) for the simulation
period are illustrated in Figure 10.10. We assume the simulations to start from an empty traffic
network.

The two-layer adaptive control system includes two fuzzy controllers for the two subnet-
works in its first layer. These fuzzy controllers include fuzzy rules that have the following
structure for each of the entrance lanes of the intersection:
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“If queue length is short /medium /long and expected cumulative demand is low /high, then
green time of the lane= a0,l+a1,l ·(current queue length)+a2,l ·(expected cumulative demand)”.

The parameters a0,l , a1,l , and a2,l are the tuning parameters for the entrance lane l . We as-
sume to have a perfect model of the external disturbances. Moreover, the expected cumula-
tive demand is computed from the current time step until the end of the intersection’s cycle
time. Since each fuzzy controller takes care of four entrance lanes of its intersection, and six
fuzzy rules (resulting from the 3 fuzzy state values for the queue length and the 2 fuzzy state
values for the expected cumulative demand) govern each of these lanes, the total number of
the tuning parameters for each fuzzy controller is 72 (i.e., 4 lanes · 6 rules · 3 parameters).
The terms “short”, “medium”, and “long” for the boundary and the connecting lanes are for-
mulated via triangular fuzzy membership functions that are shown in Figure 10.11. Note that
the range of the queue lengths for the boundary lanes is [0,C ] and for the connecting lanes
is [0,Ccon]. The triangular fuzzy membership functions corresponding to the terms “low”
and “high” for the expected cumulative demand for a lane in the upcoming cycle are shown
in Figure 10.12. Note that we assume the demand varies from 0 veh/s to 1 veh/s. There-
fore, the range of the expected cumulative demand of a lane per cycle is between 0 [veh] and
1 [veh/s]·c [s], i.e., in [0,c].

In the second control layer, an MPC controller is considered that has a prediction horizon
of three, and that uses the S-model as the prediction model. To solve the nonsmooth opti-
mization problem, the MPC controller uses pattern search with a single starting point (note
that by repeating the simulation for different numbers of starting points, we noticed that a
single starting point works well). Moreover, for tuning the parameters of the fuzzy controller
using (10.9), the cost function is considered to be the total time spent by the vehicles, and for
estimation of the past states within the time window L

tune of length 3, we have again used the
S-model. The tuning is redone in a periodic way at control time steps 5, 10, 15, 20, and 25.

For the second simulation with a centralized MPC controller, the cost function of the op-
timization problem is the total time spent by the vehicles in the urban traffic network. We
consider a prediction horizon of seven, the S-model as the prediction model, pattern search
as the optimization solver, and 5 random starting points per optimization problem for deal-
ing with the nonconvexity of the optimization problem (the number 5 was determined by
repeating the simulation for different numbers of starting points each time and by selecting a
number that works well for all the control time steps).

For both simulations with the centralized MPC controller and with the two-layer adaptive
controller, the total time spent of the vehicles in the urban traffic network has been computed
and the computation times for solving the optimization problems have been measured. The
results are shown in Tables 10.3 and 10.4. From these results, we see that the total time spent
of the vehicles for the two-layer adaptive controller compared with the total time spent of the
vehicles for the centralized MPC controller is very satisfactory. Indeed, the reduction of the
total time spent using the centralized MPC controller w.r.t. the two-layer adaptive controller
is only 2%, while the average computation time for the centralized MPC controller per control
step is almost 10.5 s (i.e., 315 [s]/30, with 30 the number of control time steps within the 1/2
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Figure 10.11: Membership functions corresponding to the terms “short”, “medium”, and “long”

for the boundary links (top plot) and the connecting links (bottom plot).

hour simulation run), and the online computation time for the fuzzy controllers is almost zero
(fuzzy controllers do not need to solve time-consuming optimization problems). Moreover,
the computation time needed for tuning the parameters of the fuzzy controllers (see the last
row of Table 10.4 at control time steps 5, 10, 15, 20, and 25) are all less than one sampling cycle
of the intersections, i.e., 60 s. This indicates that the updated values of the tuning parameters
are always available at the first control time step after each tuning operation.

For this case study, we can conclude that while the CPU time of the online computations
for the two-layer adaptive control system is almost zero, its performance is very close to that of
a centralized MPC controller with a computation time of 315 s. Hence, the approach proposed
in this chapter can result in a promising control system that provides a high performance (i.e.,
comparable to that of a centralized MPC controller) with a very low computation time.

10.6 Conclusions and future work

In this chapter, we have combined fuzzy logic control, model-based control, and predictive
control approaches to obtain an efficient controller with a satisfactory performance for real-
time applications. We have considered the problem of controlling multiple connected sub-
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Figure 10.12: Membership functions corresponding to the terms “low” and “high” for the ex-

pected cumulative demand for the lanes in the urban traffic network within the

upcoming cycle.

Table 10.3: Total time spent of the vehicles [veh.s] for the simulations with the centralized MPC

controller and with the two-layer adaptive controller.

Centralized MPC controller 8.15 ·107

Two-layer adaptive controller 8.38 ·107

Table 10.4: Computation times [s] for the simulations with the centralized MPC controller (total

computation time) and with the two-layer adaptive controller (computation times

at periodic tuning time steps).

Centralized MPC controller
Total computation time

315

Two-layer adaptive controller
k = 5 k = 10 k = 15 k = 20 k = 25

4.8 10.2 6.3 5.5 3.8

systems with time-delayed states. We have taken into account those cases where due to the
costly or missing measurements, slow sensors, limited memory and limited storage space for
the measured states, etc. the previous states might not always be available, and hence state
augmentation cannot be used. We have proposed type-2 fuzzy rules, which involve type-2
fuzzy sets in their antecedents and a generally nonlinear function of the inputs, outputs, and
disturbances in their consequents. Using the proposed fuzzy rules, we have generated type-2
fuzzy models and type-2 fuzzy controllers for the subsystems. The fuzzy controllers, which
are fast and hence suit real-time computations, are embedded in a two-layer control archi-
tecture. The fuzzy controllers are located in the first layer and perform at all control time
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steps, and they take care of the uncertainties in the state or in the system’s model, and take
into account the effect of the delayed states. These fuzzy controllers are also linked to a pre-
diction model that estimates the expected external disturbances of the controlled system in
the near future. The second layer of the proposed control system includes an MPC controller
that is called at certain tuning time steps, or whenever a predefined criterion is triggered. The
MPC controller steers the fuzzy controller in the first layer to tune its parameters adaptively.
Additionally, in this chapter, we have discussed different ways that uncertainties may appear
(i.e., probabilistic and fuzzy). Accordingly, we have proposed two forms of type-2 fuzzy mem-
bership functions, which we call probabilistic-fuzzy and fuzzy-fuzzy membership functions.
Finally, we have performed a case study for an urban traffic network to evaluate the perfor-
mance of the integrated fuzzy, model-based, and predictive controller compared with a cen-
tralized MPC controller. The results of the simulation show that the adaptive two-layer fuzzy
controller performs almost as good as the centralized MPC controller, while the computation
time of the fuzzy controllers are almost zero.

As a topic for future work, we propose for the case study to use trained adaptive fuzzy
models for the urban traffic subnetworks and for the external disturbances (i.e., for the de-
mand profiles) based on some historical data, together with fuzzy-fuzzy and probabilistic-
fuzzy membership functions for defining the fuzzy rule bases. We also propose to use a traffic
microsimulator both for evaluation of the controller, and for identifying the parameters of the
fuzzy models. Finally, we propose to extend the case study to a larger traffic network with
more than two subnetworks.





Chapter 11

Overall conclusions and topics for future

research

In this thesis, we have presented efficient microscopic formulas and algorithms for estima-
tion of the fundamental traffic variables. Additionally, we have developed and investigated
fast, accurate, and efficient modeling and control methods for green urban mobility. In that
context, we have developed a general mesoscopic modeling framework for integrating traf-
fic flow and emission models, and we have discussed efficient control approaches with a fo-
cus on comparing smooth and nonsmooth optimization solvers. Finally, we have included
and expanded fuzzy control approaches within a predictive and coordinative multi-agent ar-
chitecture to develop an efficient control architecture that can also be used for urban traffic
control.

In this last chapter of the thesis, we first briefly present the main contributions and results
of the thesis. Moreover, we suggest some topics, which we believe to be very promising for
further research in the future.

11.1 Main contributions of the thesis

The major contributions of the thesis are as follows:

• Efficient microscopic formulas for temporal-spatial traffic variables

In Part I of the thesis, we have introduced new formulas for accurate estimation of the
time-space fundamental traffic variables (in particular the time-space mean speed or
the TSMS) using point measurements such as inductive loop detectors. According to
the literature (see Section 2.3 of the thesis), loop detectors will still be widely in use
during the upcoming 10-15 years. The formulas developed in Part I of the thesis have
proven via simulations of Chapter 3 and 4 to be much more accurate than other avail-
able formulas for estimation of the average traffic speed. Hence, these formulas are of
high importance for those traffic management and analysis centers worldwide that still
collect their traffic data from point measurements.
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• A general mesoscopic framework for integration of the traffic flow and emission mod-

els

In Chapter 6 of the thesis, we have introduced a general framework to interface and in-
tegrate macroscopic traffic flow models and microscopic emission models. As a result,
a new mesoscopic integrated flow-emission model is obtained. Due to its high accuracy
and high speed in computations, the proposed modeling approach is very suitable for
real-time model-based control approaches.

• Efficient smoothening methods for nonsmooth models and optimization problems

In Chapter 7, we have proposed general smoothening methods that can be used to make
the nonsmooth mathematical models of different physical systems, and the nonsmooth
constrains and cost functions of optimization problems smooth. Consequently, avail-
able efficient gradient-based optimization approaches can be implemented to solve the
resulting smooth optimization problem.

• Coordinative and predictive multi-agent type-2 fuzzy control

In Part III of the thesis, we have proposed a general adaptive scheme for producing fuzzy
rules that include type-2 fuzzy sets in order to deal with uncertainties in the datasets.
We have also introduced two forms of type-2 fuzzy membership functions that we have
called probabilistic-fuzzy and fuzzy-fuzzy membership functions. Using the proposed
scheme, we have developed a two-layer adaptive fuzzy control architecture that is capa-
ble of tuning its parameters adaptively. We have also used a predictive and optimization-
based controller next to the fuzzy control system to provide coordination and interac-
tion among different fuzzy controllers within a multi-agent control architecture.

In addition to the major contributions given above, in this thesis we have also considered
the following additional contributions:

• Considering the initial conditions of the traffic estimations that are based on point mea-
surements.

• Developing an extension to the urban traffic flow S-model for increased accuracy.

• Formulating the endpoint penalties for urban traffic MPC.

11.2 Suggestions for further research

In this section, we introduce challenging open issues and topics for future research. These
topics are summarized in the following list.

Further theoretical research

In continuation of the topics that have been discussed and developed in this thesis, we pro-
pose the following fundamental and theoretical topics for further research.
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• Consideration of lane changing in approximating the trajectories of the vehicles

In Chapter 4 of the thesis, we have proposed some approaches for approximating the
trajectories of vehicles in between two consecutive loop detectors. In these formula-
tions, we have not considered the effect of lane changing by the vehicles. In order to
have a possibly more realistic trajectory approximation method, it will be of interest to
consider well-known lane-changing models in the formulations.

• Nonsmooth analysis of nonsmooth optimization problems

The term “nonsmooth analysis” [29] refers to the theory of developing differential cal-
culus for those functions that are not differentiable. The main elements of nonsmooth
analysis include: generalized gradients and Jacobians, proximal subgradients,
sub-differentials, and generalized directional derivatives. Nonsmooth analysis is nor-
mally used when linearization of nonlinear (nonsmooth) systems is not applicable. Fur-
ther theoretical investigation and analysis is of interest, in particular, in the fields of
optimal control, stability analysis, distributed control, hybrid systems, and LPV (linear
parameter-varying) control systems.

Further application-based research

In addition to the applications we have considered in this thesis, we propose the following
application-based topics for further research.

• Extensive validation of the formulas introduced in Chapter 3 for estimation of the

TSMS

The formulas developed in Chapter 3 for estimation of the time-space-mean speed and
tight upper and lower bounds for this mean speed can more extensively be validated
using real-life datasets. We also propose an extensive analysis of different cases for de-
tecting the traffic scenarios and conditions for which each of the formulas discussed in
Chapter 3 might give a more reliable estimate of the average traffic speed.

• Validation of the approach of Chapter 4 for approximating the trajectories of the ve-

hicles

The trajectory approximating approach proposed in Chapter 4, has not been tested and
evaluated in this thesis. Using real-life data for this aim can help to evaluate and, if
needed, to improve the proposed formulations. Note that improvement of the proposed
trajectory approximator might need a detailed microscopic study of different traffic be-
haviors and psychological aspects of different drivers in making their decisions.

• Calibration and validation of the integrated mesoscopic model for different flow and

emission models

The proposed general integrating and interfacing framework for urban traffic flow and
emission models has been used in Chapter 6 to integrate the flow S-model [98] and VT-
micro [3]. The resulting model has proven to provide a balanced trade-off between a
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high computation speed and a high accuracy of computations, which makes it a per-
fect candidate for the prediction model of an urban traffic MPC controller. Hence, it is
of value to integrate other macroscopic flow models (e.g., the cell transmission model
[33]) and microscopic emission model (e.g., VERSIT+ [95]), and to calibrate the resulting
mesoscopic model with real-life data and various demand scenarios.

• Extensive practical comparison between nonsmooth and smooth approaches for non-

smooth optimization problems

Further practical investigations are recommended for determining the advantages and
disadvantages of using smooth analysis, which has been proposed in this thesis in Chap-
ter 7 compared with the advantages and disadvantages of using the known approaches
of nonsmooth analysis (see, e.g., [62]). Some aspects that might be of interest within this
context are further analysis and reasoning regarding the relatively poor performance of
the known nonsmooth optimization solvers such as the genetic algorithm and the pat-
tern search compared with the smooth approaches, the rate of increase of the compu-
tational complexity and the computation time for each of the smooth and nonsmooth
optimization approaches w.r.t. the size of the traffic network (or the other controlled
systems that are considered in the further case studies).

• Further investigation of the added value of endpoint penalties in finite-horizon MPC

In Chapter 8 of this thesis, we have proposed some general formulations for approx-
imating the endpoint penalties for urban traffic networks, where the cost function of
the MPC controller includes a weighted summation of the total time spent and the total
emissions of the vehicles. The added value of endpoint penalties has not become clear
yet. Hence, further research in this field is of interest in order to compare the trunca-
tion error of a finite-horizon MPC controller w.r.t. an infinite MPC controller and the
error of approximating the finite-horizon MPC controller with an infinite-horizon MPC
controller considering endpoint penalties in formulating the cost function of the MPC
optimization problem.

Additional research beyond the topics of the thesis

Going further than the topics within the field of this thesis, we also propose the following
additional topics for future research.

• Fast MPC methods for urban traffic control

One important aspect of many MPC controllers that are used to control a dynamical sys-
tem is that they should be capable of operating in real time. Hence, taking further steps
with the aim of providing an MPC controller that performs fast enough for real-time
control purposes is of a high importance. Some techniques that we propose to consider
for this aim include parameterized MPC approaches [22, 162], developing methods for
providing good starting points for the optimization solver of the MPC controller, and
fast MPC approaches (see, e.g., [4, 101]).



Chapter 11 - Overall conclusions and topics for future research 247

• Stability analysis of the proposed smooth MPC controller

Existence of conditions that can guarantee the stability of the smooth MPC controller
developed in Chapter 7 should be investigated. Hence, as a topic for future research we
propose the stability analysis of the smooth MPC controller.

• Robust control of time-delayed LPV systems

Time delays exist in both modeling (see Section 6.2.2 of the thesis) and control of traffic
networks (see, e.g., [45]). Moreover, recently more researches consider LPV models for
traffic networks. For instance, Luspay et al. [102] use an LPV formalism to model the
traffic on freeway networks, and [103], which develops a control system for such a free-
way network that is modeled by an LPV system. Hence, theoretical research in the field
of LPV systems with time-delayed state and/or control variables aimed at developing
robust MPC controllers is suggested.

• Embedding several smooth MPC controllers within a distributed control architecture

for large-scale traffic networks

In Part II of the thesis, we have proposed efficient methods for developing a smooth
MPC controller for green urban mobility. For a large-scale urban traffic network, which
includes a relatively large number of state and control variables, however, using a cen-
tralized smooth MPC controller might not be computationally efficient. Moreover, any
failure of the centralized MPC controller will disturb the entire traffic network. Hence,
for future work we propose to consider a distributed control architecture, where multi-
ple smooth MPC controllers can exchange information and can coordinate to achieve
the overall objective of the urban traffic network.

• Constructing a multi-level control architecture with multiple control levels

Traffic networks are, in general, large-scale systems. Hence, it would be of benefit, both
computationally and from a performance point-of-view, if such systems are controlled
by a multi-level control system, where the levels will operate at different spatial and
temporal scales. Hence, we propose to design such a multi-level control system that
can use available macroscopic control approaches (e.g., control methods based on net-
worked fundamental diagrams (see [50] for more details)) in the higher levels that in-
clude larger traffic subnetworks (e.g., an entire city). For the middle levels, which cor-
respond to the average-sized traffic subnetworks (e.g., a relatively big collection of sev-
eral intersections and main roads of a city), MPC controllers that are based on the ap-
proaches proposed in Part II of the thesis can be used. For lower control levels that will
include small urban traffic subnetworks (e.g., a collection of a few intersections and ur-
ban links), the coordinative and predictive fuzzy controller proposed in Chapter 10 can
be a suitable choice. The overall objective of the control system (i.e., finding a balanced
trade-off between reduction of the total time spent and reduction of the total emissions
of the vehicles) will then be distributed among these different control levels. One chal-
lenge for this topic that should be tackled will be to provide coordination across and
within these control levels.
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• Efficient smooth MPC for green mobility in integrated urban-freeway traffic networks

The control approaches proposed in this thesis have been applied to urban traffic net-
works. However, in reality, urban traffic networks might be connected to some freeways.
This results in a mutual effect of the traffic situations of the two traffic networks on each
other. If this effect is ignored in designing the control system for either of these traffic
networks, it may results in failures and/or significant performance reduction of either
of these control systems in practice. The efficient MPC controller introduced in Chap-
ters 6 and 7 together with the endpoint penalties developed and formulated in Chap-
ter 8 should further be extended to a freeway traffic network. Moreover, one aspect that
should in particular be considered for designing the integrated MPC controller is effi-
cient formulation of the shared states and shared control variables in between the two
traffic networks (e.g., these mutual effects might be formulated as constraints for the
optimization problems of the MPC controllers). If we consider a centralized MPC con-
troller, then we need an integrated flow and emission model that covers the integrated
urban-freeway traffic network. However, we can simplify the structure of the model and
the controller by considering a distributed control architecture, where a few of these
MPC controllers take care of the connecting boundaries of the two traffic networks and
hence can use a simpler integrated model.

• Applying predictive model-based fuzzy controller for multi-agent control systems in

unknown environments

The proposed control architecture of Chapter 10 considers a type-2 fuzzy model of the
controlled system that is developed based on the historical data of each agent and that is
modified adaptively based on the information collected by each agent during the online
control procedure. Hence, a promising application of the proposed control architecture
is for agents that should operated in an environment about which the agent has only
limited or no information at all. Examples of such situations include search-and-rescue
missions in buildings after an incident or in cities struck by earthquakes, deep space
exploration, underwater operations, and autonomous aircraft.
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Summary

Efficient Predictive Model-Based and Fuzzy Control for Green

Urban Mobility

In this thesis, we develop efficient predictive model-based control approaches, including
model-predictive control (MPC) and model-based fuzzy control, for application in urban traf-
fic networks with the aim of reducing a combination of the total time spent by the vehicles
within the network and the total emissions. The thesis includes three main parts, where in
the first part the main focus is on accurate approaches for estimating the macroscopic traf-
fic variables, such as the temporal-spatial averages, from a microscopic point-of-view. The
second part includes efficient approaches for solving the optimization problem of the non-
linear MPC controller. The third and last part of the thesis proposes an adaptive and predic-
tive model-based type-2 fuzzy control scheme that can be implemented within a multi-agent
control architecture.

Flow and density are mainly used to characterize partly the state of physical systems with
moving particles. Flow and density are macroscopic concepts, i.e., they involve average val-
ues. For dynamic systems that include moving particles, such as for traffic networks, these av-
erages may be defined in three different ways: temporal, spatial, and temporal-spatial. Com-
putation of the first two averages is straightforward, but for the third average only a general
formulation is suggested by Edie (1963), while details regarding computation of this general
formula are missing in literature. Since flow and density play a prominent role in model-based
analysis and control of long traffic roads, in the first part of the thesis, we focus on microscopic
approaches for accurate estimation of these variables in the temporal-spatial sense. The pro-
posed approaches can be applied to any dynamic physical system with moving particles, in
particular traffic networks, which are the main concern of this thesis.

The second part of the thesis is focused on developing efficient and fast model-predictive
control approaches for systems with a highly nonlinear behavior (such as traffic networks),
gradient-based optimization is an efficient and fast method for finding local optima of non-
linear functions. For many nonconvex functions, this approach can still be efficiently applied
considering multiple initial starting points for searching. We apply this approach to solve the
optimization problem of the MPC controller. In this context, we discuss two cases that may
occur in solving a nonlinear MPC optimization problem: smooth case and nonsmooth case,
where the first one can be dealt with via gradient-based methods. We then develop general
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smoothening approaches to readjust nonsmooth optimization problems into smooth ones,
which can be solved by a gradient-based optimization method. The resulting control sys-
tem is implemented in an urban traffic network with the aim of finding a balanced trade-off
between prevention/reduction of traffic congestion and decreasing the level of emitted pol-
lutants. Additionally, to predict the future evolution of the states of the traffic network in a
reliable way and within a reasonable time span, we develop a general framework to integrate
and interface macroscopic traffic flow models and microscopic emission models, which re-
sults in a computationally efficient and accurate mesoscopic traffic flow and emission model
that can be used as prediction model for MPC.

In the third and last part of the thesis, we combine predictive and model-based control
methods with intelligent control approaches with a low computation time. Consequently, a
two-layer adaptive control system with an MPC controller in the top layer and a fuzzy con-
troller in the bottom layer is developed that can be used in a coordinative multi-agent control
architecture, in particular for processes with time-delayed states. The fuzzy controller uses a
prediction model to estimate the expected inputs of the controlled system within a near fu-
ture. To this aim, we first extend the affine formulation of the Takagi-Sugeno model-based
fuzzy approach to a nonlinear one, and propose a general nonlinear type-2 fuzzy formulation
for modeling time-delayed systems. The proposed fuzzy rules are constructed from type-2
fuzzy sets, which can deal with uncertainties and ambiguities regarding the available infor-
mation for the modeled system. This new formulation can be applied to both the fuzzy con-
troller and the prediction models of both controllers. The fuzzy controller includes a set of
adaptive parameters that will be tuned during the online control procedure in both a periodic
and an event-triggered way. At the tuning time steps, an optimizer determines an optimal
value for the tuning parameters minimizing a cost function that takes into account a given
number of past inputs and states, as well as the expected inputs and states in the near future.

In summary, the main contributions of this thesis are

• We introduce accurate microscopic approaches for estimating the temporal-spatial
macroscopic traffic variables.

• We develop efficient methods for solving the nonlinear optimization problem of the
MPC controller by smoothening the nonsmooth optimization problem and via imple-
menting a gradient-based optimization approach.

• We introduce a general mesoscopic framework for integrating macroscopic traffic flow
models with microscopic emission models. The resulting model can provide fast and
accurate estimates of the future emissions and the future total time spent by the vehi-
cles.

• We propose an adaptive nonlinear control scheme that integrates fuzzy, model-based,
and predictive control approaches and that can be used within a multi-agent control
architecture, in particular, for processes that involve time-delayed states.

Anahita Jamshidnejad



Samenvatting

Efficiënte voorspellende modelgebaseerde en vage regelingen

voor groene stedelijke mobiliteit

In dit proefschrift ontwikkelen we efficiënte modelgebaseerde regelmethoden, in het bijzon-
der modelgebaseerde voorspellende regelingen (in het Engels: model-predictive control

(MPC)) en modelgebaseerde vage regelingen (in het Engels: fuzzy control) voor gebruik in
stedelijke verkeersnetwerken met het oog op het verminderen van zowel de totale reistijd van
de voertuigen in het netwerk als de totale uitstoot. Het proefschrift omvat drie delen, waarbij
in het eerste deel de focus ligt op nauwkeurige methoden voor het schatten van macroscopi-
sche verkeersgrootheden zoals tijds-ruimte-gemiddelden vanuit een microscopisch oogpunt.
Het tweede deel omvat het ontwikkelen van efficiënte methoden voor het oplossen van niet-
lineaire MPC-optimalisatieproblemen. In het derde en laatste deel van het proefschrift stellen
we een adaptief en voorspellend modelgebaseerd type-2 vage-regelingschema voor dat geïm-
plementeerd kan worden in een multi-agent regelarchitectuur.

Intensiteit en dichtheid worden in hoofdzaak gebruikt om gedeeltelijk de toestand te ka-
rakteriseren van fysische systemen met bewegende deeltjes. Intensiteit en dichtheid zijn ma-
croscopische concepten, d.w.z. dat ze gemiddelde waarden zijn. Voor dynamische systemen
met bewegende deeltjes, zoals verkeersnetwerken, kunnen deze gemiddelden op drie ver-
schillende manieren gedefinieerd worden: als tijdsgemiddelde, ruimtegemiddelde, of tijds-
ruimte-gemiddelde. De berekening van de eerste twee gemiddelden is eenvoudig, maar voor
het derde gemiddelde heeft Edie (1963) enkel een algemene formulering voorgesteld, terwijl
details i.v.m. de berekeningen ontbreken in de literatuur. Omdat intensiteit en dichtheid een
prominente rol spelen in de modelgebaseerde analyse en regeling van verkeersnetwerken, fo-
cussen we in het eerste deel van het proefschift op microscopische methoden voor accurate
schatting van deze variabelen in een tijds-ruimte-context. De voorgestelde methoden kun-
nen gebruikt worden voor elk dynamisch fysisch systeem met bewegende deeltjes, en in het
bijzonder voor verkeersnetwerken, die de hoofdonderwerp vormen van dit proefschift.

Het tweede deel van het proefschift richt zich op het ontwikkelen van efficiënte en snelle
modelgebaseerde regelmethoden voor systemen met een sterk niet-lineair gedrag (zoals ver-
keersnetwerken). Gradiëntgebaseerde optimalisatie is een efficiënte en snelle methode voor
het vinden van lokale optima van niet-lineaire functies. Voor vele niet-convexe functies kan
deze werkwijze nog altijd efficiënt toepast worden door verscheidene startpunten te beschou-
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wen voor de optimalisatie. Wij passen deze werkwijze toe om MPC-optimalisatieproblemen
op te lossen. In dit verband beschouwen we twee gevallen die kunnen voorkomen bij het
oplossen van niet-lineaire MPC-optimalisatieproblemen: het gladde (in het Engels: smooth)
geval en het niet-gladde geval, waarbij het eerste geval opgelost kan worden met behulp van
gradiëntgebaseerde optimalisatiemethoden. Vervolgens ontwikkelen we algemene metho-
den om niet-gladde optimalisatieproblemen om te vormen in gladde optimalisatieproble-
men, die opgelost kunnen worden met behulp van gradiëntgebaseerde optimalisatiemetho-
den. Het resulterende regelsysteem wordt vervolgens geïmplementeerd voor een stedelijk
verkeersnetwerk met het doel een gebalanceerde afweging te vinden tussen het voorkomen
en verminderen van opstoppingen en het verminderen van de uitstoot. Daarnaast ontwik-
kelen we — met het oog op het betrouwbaar voorspellen van de toekomstige evolutie van de
toestanden van een verkeersnetwerk binnen een aanvaardbare tijdspanne — een algemeen
raamwerk om macroscopische verkeersstroommodellen en microscopische uitstootmodel-
len te integreren en met elkaar te koppelen. Dit resulteert in een vanuit rekenoogpunt ef-
ficiënt en accuraat mesoscopisch model voor verkeersstromen en uitstoot dat gebruikt kan
worden als voorspellingsmodel voor MPC-regeling.

In het derde en laatste deel van het proefschift combineren we voorspellende en modelge-
baseerde regelmethoden met werkwijzen uit de intelligente regeling met een lage rekentijd.
Op deze manier wordt een twee-laags adaptief vage-regeling-systeem ontwikkeld met een
MPC-regelaar in de bovenste laag en een vage regelaar in de onderstaande laag dat gebruikt
kan worden in een coördinatieve multi-agent regelarchitectuur, in het bijzonder voor proces-
sen met tijdsvertraagde ingangen en toestanden. De vage regelaar gebruikt een voorspellings-
model om de verwachte ingangen van het geregelde systeem in de nabije toekomst te schat-
ten. Daartoe breiden we eerst de affiene formulering van de Takagi-Sugeno modelgebaseerde
vage aanpak uit tot een niet-lineaire formulering en stellen we een algemene niet-lineaire
type-2 vage formulering voor voor het modelleren van systemen met tijdsvertragingen. De
voorgestelde vage regels worden geconstrueerd op basis van type-2 vage verzamelingen, die
kunnen omgaan met onzekerheden en dubbelzinnigheden met betrekking tot de beschikbare
informatie over het gemodelleerde systeem. Deze nieuwe formulering kan toegepast worden
op zowel de vage regelaar als de voorspellingsmodellen van beide regelaars. De vage regelaar
gebruikt een aantal adaptieve parameters die ingesteld worden tijdens de online regelproce-
dure op zowel een periodieke als gebeurtenis-geïnduceerde manier. Op de insteltijdstippen
bepaalt een optimalisatieprocedure de optimale waarden van de instelparameters zodat een
kostfunctie geminimaliseerd wordt die rekening houdt met een gegeven aantal ingangen en
toestanden uit het verleden alsmede de verwachte ingangen en toestanden in de nabije toe-
komst.

De hoofdbijdragen van dit proefschift kunnen als volgt samengevat worden:

• We stellen nauwkeurige microscopische methoden voor voor het schatten van tijds-
ruimte macroscopische verkeersgrootheden.

• We ontwikkelen efficiënte methoden voor het oplossen van niet-lineaire MPC-optima-
lisatieprobleem door het niet-gladde optimalisatieprobleem glad te maken en door een
gradiëntgebaseerde optimalisatiemethode te gebruiken.
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• We stellen een algemeen mesoscopisch raamwerk voor voor het integreren van macro-
scopische verkeersstroommodellen met microscopische uitstootmodellen. Het resulte-
rende model kan snel nauwkeurige schattingen genereren van de toekomstige uitstoot
en van de toekomstige reistijd van de voertuigen in een verkeersnetwerk.

• We ontwikkelen een adaptief niet-lineair regelschema dat vage, modelgebaseerde en
voorspellende regelaanpakken integreert en dat kan gebruikt worden in een multi-agent
regelarchitectuur, in het bijzonder voor processen met tijdsvertraagde toestanden.

Anahita Jamshidnejad
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