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INTRODUCTION

Nowadays, a high number of transactions are performed via internet banking. Rabobank processes more
than 10 million transactions per day. Most of these transactions are (part of) normal behaviour. On the other
hand, some transactions are considered to be out of the ordinary. These anomalous events occur relatively
infrequently (less than 10 per day). Employees, that try to find these anomalous events, combine the trans-
actions data, historical knowledge of the anomalous events and their expertise to detect and quantify them.
Several types of anomalies are considered to be interesting and so they are labelled. These anomalies need
to be detected, so they can be prevented in the future. The employees try to find events similar to known
anomalies. Characteristics of anomalies change over time and employees also need to detect this slightly
changed, but similar, behaviour. It is not our goal to detect completely new types of anomalies. In this thesis,
the focus lies on finding events similar to the known anomalies. In order to assist these employees, a model
that uses the transaction data and incorporates known anomalous events is built. Our model is able to score
new incoming transactions and use these to update the model parameters. The scores can be returned to the
employees to assist them in finding transactions that are similar to a particular type of anomaly.

A transaction that Rabobank finds interesting is called a case, from here on.

The transactions that are labelled by Rabobank are considered to be cases. For the unlabelled transactions,
it is unknown whether it is a case. Most of the unlabelled transactions will be non-cases, but the assumption
is that there could be cases that are unlabelled. Hence the data set contains positive and unlabelled transac-
tions. That is why this problem can be solved using Positive–Unlabelled learning (PU learning).

For every transaction i , we have a vector xi (the characteristics of transaction i ), a label si ∈ {0,1}, a
random ID and a time stamp. Vector xi contains the features of transaction i .

PU learning falls into the category of supervised anomaly detection, a subfield of machine learning. In Ap-
pendix B, more details are given about machine learning and especially about previous work in PU–learning.
In this field, statistics and optimization are used. Supervised learning is a machine learning task where la-
belled data is used. A supervised learning algorithm uses the training data to produce a probability density
function that can be used to map new examples to a probability, a score between 0 and 1. Given a threshold,
this score can be translated in a label (0 or 1). In the optimal scenario, the supervised learning algorithm
produces a function that maps all the new examples to the correct label.

The data set is split into two parts, a training set and a test set. Then traditionally, the complete training set is
used at once to train the model and the test set is used to test the performance of the model. But training with
the complete training set is rather expensive considering the amount of transactions available for training.
Our model will be an online learning model, where only one training example is used per iteration. The
advantage is that we only need one example from the training set and so we don’t need a lot of memory to
store all the data. Also we could use this property in practice, namely scoring a new transaction given the
current model parameters and using that transaction to update the model parameters.

Using the training set, we have tried to find the model parameters that fit the training data the best. Assume
that all the events, in both the training set and test set, are independent and identically distributed. Every
event x that is an anomaly is labelled s = 1, while the rest is labelled s = 0. To fit the model parameters,
we look at the the likelihood function, which is the product of the probability density function p(s|x). This
approach basically fits the conditional distribution of the labels, given the data and the model parameters,
for every type of anomaly. This approach also gives us for every event (from the test set) the probability that
it should be labelled as a similar event.
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2 LIST OF FIGURES

Outline of this thesis:

• Chapter 1 discusses the data set from Rabobank, and how the features are extracted from the data set.

• Chapter 2 describes the goal we want to achieve and explains how we want to reach our goal.

• Chapter 3 describes the final model, AdaGrad with diagonal matrices.

• Chapter 4 describes the testing procedure and discusses the results.

• Chapter 5 summarizes the main results and the conclusions.

• Chapter 6 sums up the improvements and remarks that can be made.

The appendices describe the following subjects:

• Appendix A discusses previous work done in the area of machine learning, online learning, and PU-
learning.

• Appendix B discusses probit regression, convex optimization and `2-regularization on AdaGrad with
diagonal matrices.

• Appendix C describes how our model would look like if the problem is treated as a missing data prob-
lem. Every iteration of the model will consist of two steps: imputing the missing data and updating the
parameters to fit the data better.

• In Appendix D, the most important MATLAB files are included.



1
EXPERIMENTAL SETUP

In this chapter, the properties of the data set and the adjustments to the data set are discussed. First, the
structure of the transactions and feature extraction are discussed. Then, the adjustments, that are made on
the extracted features, are discussed.

1.1. EXTRACTING FEATURES FROM THE DATA SET

The characteristics of internet banking transactions contain information about the client and their computer.
This information is private, and needs to be treated with care. That is why the data set, used for this thesis,
only contains anonymous data. The features are binned into 256 bins.

For this thesis, Rabobank provided a data set which consists approximately one 1000th of the transactions
from November 2013 up till October 2014. The data set is divided over 1521 files (each containing approx-
imately 1600 transactions), which gives us about 2.5 million transactions in total. All 806 anomalies of this
period, discovered by Rabobank, are delivered in separate files. Every transaction consists of the following
information, as listed Figure 1.1. The vector xi contains the characteristics of transaction i .

Transaction i :
• Random ID
• Time stamp
• Case type
• (Anonymous) characteristics of the transaction xi :

– categorical features
– numerical features

• si =
{

1, if transaction i is labelled (as a case)
0, if transaction i is unlabelled

Figure 1.1: Available information included for every transaction

From here on, an anomaly is called a case and every case belongs to a class of a certain case type. Every case
type gets a name (e.g. N9), consisting of a capital letter (A – Z) and a number (0 – 9). In this way, we are
able to test the model on a specific case type or on a combination of case types. Rabobank used the name
O0 for the non-cases, to group them as well. Every transaction has an (unique) random ID to identify which
transaction it is. To prevent problems with uniqueness and also to make it easier to find this transaction,
also the time stamp of the transaction is included. Every transaction has a case type, categorical features
and numerical features. For this research, the data was prepared such that everything is anonymous. The
meaning of the features and the names of the features are unknown to us. The features are derivatives of the

3



4 1. EXPERIMENTAL SETUP

actual characteristics of the transactions. This forced us to use only statistics and optimization to optimize
the model and the results. It also makes it possible to publish the model and the results.

First, a list of case types is chosen. The cases of these case types are labelled s = 1. The rest of the transactions
are unlabelled, hence s = 0. We are interested in whether a transaction is a case. The assumption is that the
cases provided by Rabobank are correctly labelled, but maybe there are also cases that are unlabelled. That is
why y is introduced.

yi =
{

1, if transaction i is a case
0, if transaction i is not a case

For a case, we have y = 1. We assume that for the rest of the transactions y is unknown.

1.1.1. OVERVIEW

For a transaction i :

• xi are the features.

• si is the label that is given to a transaction.

si =
{

1, if the transaction is labelled,
0, if the transaction is unlabelled.

• yi is the unobserved variable, in which we are interested.

yi =
{

1, if the transaction is a case,
0, if the transaction is a non-case.

Furthermore, x and s are called the observed variables and y is called unobserved variable.

Vectors are written bold.

1.1.2. HOW FEATURES ARE EXTRACTED FROM .ccr FILES

The data files are provided as .ccr files. Because of the huge amount of transactions that have to be stored,
these files are built with sequences of 0’s and 1’s. Eight bits (a 0 or 1) make a byte. Every byte corresponds to
one of the 256 categories (28 = 256), 0–255. Later on, more on how these categories are used to extract the
features, is discussed.

The first part of each .ccr file contains a receipt header (which indicates which rules are used to make the
file). After that, a couple of transactions are listed after each other. For each transaction, first the random ID
and the time stamp are spelled, using the ASCII value of the bytes. After that, the word DATA is spelled, again
using the ASCII values of the bytes. This is to assure that the next 10.000 numbers between 0 and 255 are
the data that belongs to that specific random ID and time stamp. It is possible that only a part of the 10.000
reserved spots are used. In our data set, only 1523 features are used.

The first feature will be named F0001. The second feature is F0002. And so on.

Now the meaning of the 256 categories, chosen to describe the features, is looked at. The categories 0 to 255
correspond to following meanings:
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0 : Empty.
1 – 200 : First of all, each feature is divided over a maximum of 200 bins, which corresponds to its

underlying value. Bins are chosen in such a way that the bins are evenly filled.
201 – 210 : Top-values. If a single value comes along often, more than 5% of all the events, then the

feature gets another category and the values are excluded from the first 200 bins. Most of
the time this corresponds to a special situation, for example a lot of empty values, a default
or a boolean.

211 – 250 : Spare. Saved for later use.
251 : Virtual class. When feature falls into 1 - 200, then also virtual in 251.
252 : Technical error.
253 : Logical error.
254 : Below the minimum value. So below bin 1.
255 : Above the maximum value. So above bin 200.

1.1.3. SPLIT INTO NUMERICAL AND CATEGORICAL FEATURES

The 1523 features, extracted from the .ccr files, are a combination of numerical and categorical features.
The values 0 – 200 are numerical. The values 201 – 255 are categorical. That is why, every feature is separated
into two features, one numerical and one categorical. Below is shown, what we do to split them:

Feature (from .ccr file) Numerical feature Categorical feature
0 : 0 V

1 – 200 : 1 – 200 V
201 – 210 : 0 A – J
251 – 255 : 0 V – Z

Numerical features will be named using the V (Values). Categorical features will be named using the T
(Top-values). For example, V0001 and T0001 correspond to F0001.

This means that 3046 features are available per transaction.

1.1.4. BINARY SETTING FOR CATEGORICAL VARIABLES

A total of 1523 categorical variables are presented by the letters A – Z. In order to use them, each variable is
split into 26 binary variables, containing only one 1 and twenty-five times a 0. The 1 is on the position of the
letter in the alphabet. For example, “B” corresponds to a 1 on the second position:

0, 1, 0, . . . 0.

1.1.5. FEATURE SCALING FOR NUMERICAL VARIABLES

A total of 1523 numerical variables that can take integer values from 0 to 200. In order to obtain better results
the numerical variables can better be normalized. For this the sample mean and sample variance are needed.
Keep in mind that all 1523 variables have to be normalized by the accompanying sample mean and sample
variance. This seems an easy task, but this can be quite tricky.

In Chan, Golub, and LeVeque [1], all sorts of algorithms for computing the sample variance are discussed.
First, simple algorithms and their disadvantages are discussed. Afterwards, an online algorithm is proposed
to compute the sample variance online.

TWO-PASS ALGORITHM

Fundamentally, one would compute the sample mean:

x̄ = 1

n

n∑
i=1

xi , (1.1)
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and use the sample mean to compute the sample variance,
S

n
(biased) or

S

n −1
(unbiased), where S is the

sum of squares of the deviations from the mean and computed as follows:

S =
n∑

i=1
(xi − x̄)2. (1.2)

The formulas (1.1) and (1.2) define a straightforward algorithm for computing S. This will be called the stan-
dard two-pass algorithm, since it requires passing through the data twice: once to compute x̄ and then again
to compute S. For our model, this method is impossible to use, since every record is only observed once.
Also, the large size of the data set prevents this. All transactions cannot be placed in memory to compute the
sample mean and sample variance.

ONE-PASS ALGORITHM

The textbook one-pass algorithm that only needs one sweep through the data. By keeping track of three values,
for every numerical variable, the sample mean and sample variance can be determined: nseen (number of

records seen so far), "total" =
nseen∑
i=1

xi and "squared total" =
nseen∑
i=1

x2
i .

This is because formula (1.2) for S can be rewritten as:

S =
n∑

i=1
x2

i −
1

n

(
n∑

i=1
xi

)2

.

The sample mean is defined as µ̂ = 1

nseen

nseen∑
i=1

xi and the biased sample variance as σ̂2 = 1

nseen

nseen∑
i=1

(µ̂−xi )2.

Note that the unbiased sample variance can be obtained from the biased sample variance by σ̄2 = nseen

nseen −1
·

σ̂2. It is easy to see that the sample mean is obtained by dividing "total" by nseen. To see how to calculate the

biased sample variance one can write out the squared expression to get σ̂2 =−µ̂2 + 1

nseen

nseen∑
i=1

x2
i .

Indeed, only three values have to be updated every record to obtain the sample mean and the unbiased sam-
ple variance. For now, a constant data set is used. In only one sweep through the data, the sample mean and
unbiased sample variance are obtained. But still, it is very inefficient considering that in practice the quanti-
ties "total" and "squared total" will become very large and eventually will be computed with some rounding
error.

ONLINE ALGORITHM

For this thesis, the textbook one-pass algorithm would suffice. The complete data set can be used to deter-
mine the sample mean and sample variance of each feature. When the model is used in the online setting,
where every transaction is loaded, used to update the parameters and deleted afterwards, the sample means
and sample variances are needed to normalize the features. Then the data set on which the model needs to
be trained, is changing constantly. Maybe, using a method that can update the sample mean and sample
variance, when a new transaction is added to the data set.

There is a method that is quite accurate and that can update the sample mean and sample variance in an
online setting. Furthermore, the method computes a running variance. That is, the method updates the
variance after each transaction. The features do not need to be kept in memory, since no second pass through
the data is needed. This method was first purposed in Welford [2]. In the Art of Computer Programming by
Knuth [3], this method is also mentioned.

Initialize M1 = x1 and S1 = 0. For subsequent xi ’s, use the following recurrence formulas

Mk = Mk−1 +
xk −Mk−1

k
,

Sk = Sk−1 + (xk −Mk−1) · (xk −Mk ),
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for 2 ≤ k ≤ n. The kth online estimate of the sample variance is σ2
k = Sk

k −1
.

Updating the sample mean and sample variance in an online setting, also means that every transaction is
normalized in a different way. That is why in this case, the sample mean and sample variance are determined
over the complete data set, before the model is run. In practice, the sample mean and sample variance can be
computed over a large proportion of the data to determine the sample mean and sample variance and keep
them while running the model.

1.1.6. FEATURE SELECTION

In the data set Rabobank presented, there was no feature selection done on the features. Features could be
correlated.

A colleague at Rabobank studied the data set and discovered that about 1000 features are constant, over all
transactions. These features were filtered out. Also, by comparing all features, it was discovered that about
500 features were exact copies of other features. These variables were left out as well. In practice, if one
assumes that these excluded features are in fact important, we recommend regularly checking whether these
features stay constant, or stay an exact copy of other features.

EXPERIMENTAL ORDERING OF FEATURES

R was used to order the remaining 1435 features. Using the function chisq.test (Pearson’s Chi-Squared test
of independence) was used to compare every feature to the ‘label’ (0 for non-cases and 1 for cases). Only a
subset of 4618 transactions was used. This ordering is therefore called experimental and the result does not
per definition represent the complete data set, but we are eager to know whether feature selection techniques,
like Principal Component Analysis (PCA), have potential.

This R function (chisq.test) was used to compute p-values, from the asymptotic chi-squared distribution
of the test statistic χ2:

χ2 =
r∑

i=1

c∑
j=1

(Oi , j −Ei , j )2

Ei , j
,

where Oi , j is an observed frequency, Ei , j the expected frequency, r the number or rows and c the number of
columns in the table (consisting a feature and the label). The expected frequency is computed as follows:

Ei , j =
(∑c

nc=1 Oi ,nc

)
·
(∑r

nr =1 Onr , j

)
N

,

where N is sum of all entries of the table described above. The degrees of freedom is equal to d = r + c −1.

This test of independence is used to determine whether the null hypothesis, that a feature and the label are
independent, is true. If the chi-squared probability (the p-value) is less than or equal to 0.05 (common choice,
but could choose another critical point), than the null hypothesis will be rejected.

These p-values can be used to make an ordering in the remaining features. The largest p-values indicate some
dependence between the label and these features. This information could be used to only take, for example
the top-100 features, and see whether the performance of the model improves. First the performance of the
model, using all of the 1435 remaining features, is studied. We believe that our model should be able to work
without this experimental ordering of features.





2
PREDICTING CASES

The goal is to predict the probability P(y = 1|x), since it tells us whether a transaction could be a case. This
probability cannot be computed directly, since the value of y is unknown for the unlabelled transactions.
Otherwise, logistic regression could be used directly to find the probability P(y = 1|x).

To reach our goal, the dependencies which are used to form the model, and the needed assumptions in order
to define the parameters of the model, are discussed.

2.1. DEPENDENCIES BETWEEN x, s AND y

In Figure 2.1 is shown how the situation looks like.

x y s

Features

Observed

Case or non-case

Partially observed

Labelled or unlabelled

Observed

Figure 2.1: Situation

2.2. ASSUMPTIONS

Assumptions are needed to estimate P(y = 1|x).

Assumption 1. Labelled transactions are cases, which is written as:

s = 1 ⇒ y = 1. (2.1)

Corollary 2.1. The first assumption (2.1) is equivalent to:

P(y = 1|s = 1,x) = 1, (2.2)

The contraposition from traditional logic is used to find that Assumption 2.1 is also equivalent to:

y = 0 ⇒ s = 0, (2.3)

9
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and can be also written as:

P(s = 1|y = 0,x) = 0, (2.4)

which translates to: Non-cases are never labelled.

From Assumption 1 (2.1), it appears that the difficulty lies in finding cases amongst the non-labelled transac-
tions. Since for every transaction the pair (x, s) is observed, the probability function p(s|x) is looked at. It can
be expressed in terms of the observed label s, the true label y and the features x:

p(s|x) =∑
y

p(s, y |x)

=∑
y

p(s|y,x)p(y |x) (2.5)

To obtain p(s|y,x), a second assumption is needed. This assumption is called ‘Selected completely at random’
in Elkan and Noto [4].

Assumption 2. Cases are labelled with probability c.

P(s = 1|x, y = 1) =P(s = 1|y = 1) = c ∈ [0,1]. (2.6)

The second assumption (2.6) can be formulated as: x and s are independent given y . Rabobank likes to think
that the second assumption is reasonable. The following result is found in Elkan and Noto [4] (as Lemma 1).
Only, the proof is different.

Corollary 2.2. When Assumption 1 (2.1) and Assumption 2 (2.6) hold, the following holds:

P(y = 1|x) = P(s = 1|x)

c
, (2.7)

where c ∈ [0,1] is the expected fraction of cases that is being labelled.

Proof. The corollary above follows from:

p(s = 1|x)
(2.5)= p(s = 1|y = 1,x)p(y = 1|x)+p(s = 1|y = 0,x)p(y = 0|x),

(2.4)= p(s = 1|y = 1,x)p(y = 1|x),

(2.6)= c ·p(y = 1|x).

In equation (2.5), p(y |x) is needed. Define p(y |x) for transaction i , as logistic regression with parameter θ:

p(y |x) =
{

f (θT x), if y = 1,
1− f (θT x), if y = 0.

(2.8)

where f (x) = 1

1+e−x is the logistic function. This can also be written as:

p(y |x) = y · f (θT x)+ (1− y) ·1− f (θT x). (2.9)

Another choice for f would be the probit function, if probit regression is used instead of logistic regression.
Both choices for f transform a linear combination of the variables, using parameter θ, into a probability. In
Appendix B.1, probit regression is discussed and the associated function f and its derivative are given.
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2.2.1. LOGISTIC REGRESSION

Logistic regression is a type of statistical classification model. It is used to predict a categorical response
variable, in particular a binary response variable. Logistic regression is used to predict the odds of being a
case based on the values of the variables. The odds are defined as the probability that a particular outcome is
a case, say p, divided by the probability that it is a non-case, 1−p. The natural logarithm of the odds, called
the logit, is then fitted using linear regression:

log

(
p

1−p

)
=β0 +β1x1 + . . .+βn xn ⇔

p

1−p
= eβ0+β1x1+...+βn xn ⇔

1

p
−1 = e−β0−β1x1−...−βn xn ⇔

p = 1

1+e−β0−β1x1−...−βn xn
. (2.10)

The combination of the variables and the parameters, β0+β1x1+ . . .+βn xn , is usually denoted as βT x, where
x = [1, x1, . . . , xn]T .

The logistic function, also referred to as logit function, is the link function for logistic regression. The link
function links the variables and the response variable in a continuous way.

THE DERIVATIVE OF THE LOGIT FUNCTION

The derivative of the function f is needed, further on. If the logistic function

f (x) = 1

1+exp(−x)
(2.11)

is used, then

f ′(x) = 1

2+exp(−x)+exp(x)
. (2.12)

2.3. ESTIMATING p(s|x)

The corollary of Assumption 1 (2.4) and Assumption 2 (2.6) make it possible to determine the conditional
distribution P(s|y,x):

s
0 1

y
0 1 0
1 1− c c

This can be translated as:

p(s|y,x) =
{

c s (1− c)1−s , if y = 1
1− s, if y = 0,

(2.13)

where c is the fraction of fraud events (y = 1) to be labelled as fraud (s = 1). The expression (2.13) is rewritten
as follows:

p(s|y,x) = y
(
c s (1− c)1−s)+ (1− y)(1− s). (2.14)

Implementing (2.9) and (2.14) in expression (2.5) gives us:

p(s|x) = c s (1− c)1−s · f
(
θT x

)+ (1− s) · (1− f
(
θT x

))
. (2.15)

Note that (2.15) is equivalent to:

p(s|x) =
{

c · f (θT x), if s = 1,
1− c · f (θT x), if s = 0.

(2.16)
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2.4. ESTIMATING P(y = 1|x)

Since s and x are known for each transaction, expression (2.16) can be used to estimate the parameters θ and
c. Once θ is known, expression (2.9) is used to compute P(y = 1|x).

Also, when c and P(y = 1|x) is known, we can compute:

P(y = 1|x, s = 0) = P(y = 1, s = 0|x)

P(s = 0|x)
,

= P(s = 0|x, y = 1) ·P(y = 1|x)

P(s = 0|x)
,

(2.6)&
(2.7)= (1− c) ·P(y = 1|x)

1− c ·P(y = 1|x)
.

This probability P(y = 1|x, s = 0) (also derived in [4]) could be used if 0 ≤ c ≤ 1 is estimated. When c = 0,
then P(y = 1|x, s = 0) = P(y = 1|x). When c = 1, P(y = 1|x, s = 0) = 0 for all transactions, which is reasonable
since c = 1 implies that all cases are already labelled and the probability of finding new cases amongst the
unlabelled examples is 0. If 0 < c < 1, then this probability could be used instead of P(y = 1|x) to improve the
scores and the performance.

Well, how do we estimate the parameters θ and c? Maximum Likelihood Estimation (MLE) is often used in
statistics to estimate the parameters of a statistical model. This method selects the parameters that maxi-
mizes the likelihood function.

Definition 2.1. The maximum likelihood estimators are defined by:

(θ∗,c∗) = argmax
θ,c

L (θ,c|(x1, s1), . . . , (xn , sn)).

Note that often the log-likelihood is used to find the estimated parameters θ∗ and c∗, since the logarithm
changes products into sums of logarithms.

Corollary 2.1.1.
(θ∗,c∗) = argmax

θ,c
`(θ,c|(x1, s1), . . . , (xn , sn)),

where
`(θ,c|(x1, s1), . . . , (xn , sn)) = logL (θ,c|(x1, s1), . . . , (xn , sn)).

2.4.1. LIKELIHOOD FUNCTION

Assumption 3. The labels of transactions are independent and identically distributed (i.i.d.), given that the
characteristics are known, i.e. si and s j are i.i.d., given xi and x j .

The likelihood function is equal to

L (θ,c|(x1, s1), . . . , (xn , sn))
(i .i .d .)=

n∏
i=1

p(si |xi )

(2.15)=
n∏

i=1

[
c si (1− c)1−si f (θT xi )+ (1− si )(1− f (θT xi ))

]
.

To simplify this expression, the set W is defined:

W = {i : si = 1} ,

which contains the labelled transactions. Note that W C = {i : si = 0}. In this way, expression (2.16) could be
used instead to give:

L (θ,c|(x1, s1), . . . , (xn , sn)) = ∏
i∈W

c · f (θT xi ) · ∏
i∈W C

[
1− c · f (θT xi )

]
. (2.17)
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Hence, the log-likelihood function looks like

`(θ,c|(x1, s1), . . . , (xn , sn)) = logL (θ,c|(x1, s1), . . . , (xn , sn))

= ∑
i∈W

log
(
c · f (θT xi )

)+ ∑
i∈W C

log
(
1− c · f (θT xi )

)
, (2.18)

where f is the logistic function.

2.4.2. DETERMINING THE MODEL PARAMETERS

To determine the maximum likelihood estimators, the gradient is needed. This is the vector of derivatives
with respect to every parameter θ j and c. Each component of the gradient could be set equal to 0 and try to
find direct expressions for θ∗ and c∗. First we compute the gradient.

GRADIENT

The derivatives of the log-likelihood function are equal to:

∂`

∂θ j
= ∑

i∈W

c · xi j · f ′(θT xi )

c · f (θT xi )
+ ∑

i∈W C

−c · xi j · f ′(θT xi )

1− c · f (θT xi )

= ∑
i∈W

xi j · f ′(θT xi )

f (θT xi )
− ∑

i∈W C

c · xi j · f ′(θT xi )

1− c · f (θT xi )
,

and
∂`

∂c
= ∑

i∈W

f (θT xi )

c · f (θT xi )
+ ∑

i∈W C

− f (θT xi )

1− c · f (θT xi )

= |W |
c

− ∑
i∈W C

f (θT xi )

1− c · f (θT xi )
,

where the expressions (2.11) and (2.12) are used for functions f and f ′.

Next section, we discuss reparameterizing c, which is needed to assure that 0 ≤ c ≤ 1.

Direct expressions for the maximum likelihood estimators cannot be found from the expressions above. That
is why, Adaptive Gradient Descent will be used to approximate the maximum likelihood estimators.

Then, Gradient Descend (see Section 2.4.2) and Stochastic Gradient Descent (see Section 2.4.2) are intro-
duced. In Chapter 3, our final algorithm (the AdaGrad algorithm with diagonal matrices) is discussed.

REPARAMETERIZING c

Recall the definition of c:

P(s = 1|y = 1,x) = c ∈ [0,1].

This property has to be guaranteed during the maximization step. This maximization problem is therefore a
constrained optimization problem, since 0 ≤ c ≤ 1. But this constraint can be omitted by reparametrising c.

Reparametrise c to γ, via:

c = 1

1+e−γ
, (2.19)

so that γ ∈R.

Hence, (2.19) is equivalent to:

γ= log(c)− log(1− c). (2.20)

When optimizing using γ instead of c, then the problem becomes an unconstrained optimization problem.
Before optimizing, c is converted to γ using (2.20). After optimizing, c is obtained using (2.19).
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The derivative with respect to γ, instead of c, needs to be computed. This is rather easy to do, using the chain
rule:

∂

∂γ
`(θ,c(γ)) = ∂

∂c
`(θ,c(γ)) · ∂

∂γ
c(γ),

where
∂

∂γ
c(γ) = 1

2+e−γ+eγ
.

Hence, the log-likelihood function becomes:

`(θ,γ|(x1, s1), . . . , (xn , sn)) = ∑
i∈W

log

(
f (θT xi )

1+e−γ

)
+ ∑

i∈W C

log

(
1− f (θT xi )

1+e−γ

)
, (2.21)

and the derivatives become:

∂`

∂θ j
= ∑

i∈W

xi j · f ′(θT xi )

f (θT xi )
− ∑

i∈W C

xi j · f ′(θT xi )

1+e−γ− f (θT xi )
,

and

∂`

∂γ
=

|W | · (1+e−γ
)− ∑

i∈W C

f (θT xi )

1− f (θT xi )

(1+e−γ)

 · 1

2+e−γ+eγ
.

GRADIENT DESCENT

In Gradient Descent (GD) methods, minimizes an objective function that can be written as a sum of functions
over all observations in the training set. In our case, the training set is filled with n transactions. Also, the
likelihood function needs to be maximized instead of minimized. By multiplying the likelihood function by
−1, this method can be used.

The objective is: to maximize expression (2.21) over θ and γ. Hence, our objective function:

Q(θ,γ) =− ∑
i∈W

log

(
f (θT xi )

1+e−γ

)
− ∑

i∈W C

log

(
1− f (θT xi )

1+e−γ

)
, (2.22)

needs to be minimized, where n is the number of transactions used for training and θ and γ are the parame-
ters which we would like to estimate. Define:

Qi (θ,γ) =


− log

(
f (θT xi )

1+e−γ

)
, if i ∈W,

− log

(
1− f (θT xi )

1+e−γ

)
, if i ∈W C ,

as the contribution associated with the i th transaction.

Using GD, the following iteration would be repeated to obtain the maximum likelihood estimators:[
θt+1

γt+1

]
=

[
θt

γt

]
−ηt∇Q(θt ,γ)

=
[
θt

γt

]
−ηt

n∑
i=1

∇Qi (θt ,γ),

where ηt is a step size (often called learning rate in machine learning) in iteration t , ∇Q is the gradient vector
associated with Q, θt and γt are the parameters in iteration t and θt+1 and γt+1 are the new parameters after
iteration t . The choice for the step size ηt is discussed in the next section.

Gradient Descent uses all transactions in the training set to perform an update in the parameters. In our case,
only a subset of the number of transactions is taken for the data set, and still the number of transactions is
huge (approximately 2.5 million transactions). Also, the amount of features is quite high (1435 variables).
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STOCHASTIC GRADIENT DESCENT

In this section, Stochastic Gradient Descent (SGD) is discussed, to maximize the likelihood function. Robbins
and Monro [5] were the first to propose stochastic approximation.

In Stochastic Gradient Descent methods, the true gradient∇Q(θ,γ) is approximated by the gradient of a single
transaction. Every iteration, one transaction is picked at random. For example, the kth transaction:[

θt+1

γt+1

]
=

[
θt

γt

]
−ηt∇Qk (θt ,γ),

where ηt is the step size at iteration t . When the Hessian matrix of Q, which is the matrix with all second
partial derivatives of Q, is strictly positive definite (zT Qz > 0 for all z), then the best convergence speed is

achieved using step sizes ηt ∼ t−1 (as purposed in [5]), e.g. ηt = η0

1+ξt
where hyperparameters η0 and ξ need

to be chosen. The choice for these hyperparameters is rather sensitive, with respect to the result. We will use
an adaptive step size, eventually, and then this problem becomes much less sensitive.

The goal is to find a Stochastic Gradient Decent method, where the regret:

R(T ) =
T∑

i=1
Qi (θi ,γ)− inf

θ∈Θ

T∑
i=1

Qi (θ,γ),

is small, which means we want to have an upper bound for the regret. The first sum represents the actual loss
and the second sum is the loss when using the best static predictors θ∗ and γ∗, after T iterations. Note that,
Θ is the set of allowed parameters, hence θ ∈ Θ. Small regret means small differences between the result of
the SGD method and the result obtained using all the data up to iteration T .

At every time step t , the gradient g t is obtained. The predictor θt is moved in the opposite direction of g t

(the vector with the derivatives with respect to θ), while assuring that θt+1 ∈Θ via a projection update. This
is called the Greedy Projection, or Lazy projection:

θt+1 =ΠΘ(θt −ηt g t ),

= argmin
θ∈Θ

‖θ− (θt −ηt g t )‖2
2,

= argmin
θ∈Θ

〈θ− (θt −ηt g t ),θ− (θt −ηt g t )〉.

Since γ ∈R has no restriction, we would use:

γt+1 = γt −ηt
∂Q

∂γ
(θt ,γt ),

to update parameter γ.

Standard stochastic gradient descent methods are oblivious to the characteristics of the observed data. Be-
cause of the imbalance of cases to non-cases, we want to consider slightly different stochastic gradient meth-
ods. Also, choosing the step size is a sensitive task. By adapting the step size, this problem will decrease
drastically.

ADAPTIVE (SUB)GRADIENT METHODS

Standard stochastic gradient descent methods are oblivious to the characteristics of the observed data. So,
the algorithm is altered in order to get an adaptive (sub)gradient method that gives frequently occurring fea-
tures very low learning rates and infrequent features high learning rates. The intuition is that each time an
infrequent feature is seen, the learner should “notice" this and use an increased step size. This makes it eas-
ier to find and identify predictive but rare features. In our problem, we expect that cases can be detected by
noticing predictive but rare features. This is why adaptive (sub)gradient methods are considered.

Subgradients would be needed in case gradients does not exist, due to the use non-differentiable functions.
In case of subgradient descent, the choice of the step size needs to be altered. In our objective function, we
do not need subgradients.
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The AdaGrad algorithm, an adaptive (sub)gradient method, is chosen. In Chapter 3, this algorithm is de-
scribed. AdaGrad uses an adaptive step size, which makes the problem of choosing the step size η much less
sensitive.

2.5. INCORPORATING PRIORS

We would like to incorporate a prior distribution to regulate the search for the parameters. In Section 2.5.1,
the Maximum a Posteriori estimate is discussed. It is closely related to the MLE method, but incorporates the
prior distribution into the estimation.

The prior probability function describes the uncertainty in the model parameter. Prior knowledge about the
model parameter can be incorporated in the estimation. Parameters of the prior probability function are
called hyperparameters. If no knowledge about the model parameter is available, an uniform distribution
can be chosen as prior distribution.

2.5.1. MAXIMUM A POSTERIORI ESTIMATION

The maximum a posteriori (MAP) probability estimate is the mode of the posterior distribution. Based on
the observed data, the MAP estimate can be obtained using a point estimate of an unobserved quantity. It is
closely related to determining the Maximum Likelihood (ML) estimators.

The Maximum Likelihood estimators are determined, as follows:

(θ∗
ML ,γ∗ML) = argmax

θ,γ
L (θ,γ|(x1, s1), . . . , (xn , sn))

= argmax
θ,γ

`(θ|(x1, s1), . . . , (xn , sn)).

The posterior distribution is an updated version of the prior distribution, when the data is considered as well.
The prior distributions, written as f (θ) and g (γ), reflect the belief about the parameter, before the model is
calibrated. The posterior distribution h is equal to:

h((x1, s1), . . . , (xn , sn)|θ,γ) ∝L (θ,γ|(x1, s1), . . . , (xn , sn)) f (θ)g (γ). (2.23)

In Equation 2.23, the denominator is left out. This constant is not important when the maximum is sought.
The MAP estimate is found using the posterior distribution:

(θ∗
M AP ,γ∗M AP ) = argmax

θ,γ
L (θ,γ|(x1, s1), . . . , (xn , sn)) f (θ)g (γ)

= argmax
θ,γ

log
(
L (θ,γ|(x1, s1), . . . , (xn , sn)) f (θ)g (γ)

)
,

= argmax
θ,γ

`(θ,c|(x1, s1), . . . , (xn , sn))+ log
(

f (θ)
)+ log

(
g (γ)

)
,

In this way, the prior knowledge of the parameters can be incorporated into the prior distribution.

2.5.2. PRIOR ON γ

For the prior distribution on γ, the Beta distribution is chosen, such that a preference for c ∈ [0,1] is achieved.
The reason is that this distribution has support on [0,1]. After determining the prior on c, we can determine
the prior on γ by using (2.19). Also, by choosing the hyperparameters, we can choose the appropriate shape
of the probability density function (pdf) of a Beta distribution. For the choice of the hyperparameters, we
asked Rabobank to choose the pdf that fits their belief about c the best.

Definition 2.2. The probability density function of a Beta distribution, with shape parameters α and β, is:

g (c) = cα−1(1− c)β−1

Beta(α,β)
,

where Beta is the Beta function.
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Definition 2.3. The Beta function is defined as:

Beta(α,β) = Γ(α) ·Γ(β)

Γ(α+β)
,

= (α−1)! · (β−1)!

(α+β−1)!
,

where Γ(n) = (n −1)!, when n is a positive integer, is the Gamma function.

Rabobank chose α = 15 and β = 1. The associated pdf is shown in Figure 2.2. Note that Beta(15,1) = 1
15 .

Hence, the prior on c is:
g (c) = 15 · c14.

Because, c was reparametrized to γ, we have:

g (γ) = 15

(1+e−γ)14 .

Figure 2.2: Beta prior, shape parameters: α= 15 and β= 1.

2.5.3. PRIOR ON θ

With the choice of the prior on θ, sparsity can be created in the parameters. This prior regulates the complex-
ity of the model. It assures that the most important features get a prominent role in the final parameters, and
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the rest of the (less important) features fade out.

SPARSITY-PROMOTING PRIORS

Sparsity in this context refers to a small number of non-zero elements in the model parameter. When a
sparsity-promoting prior is chosen, elements of the model parameter can become equal to 0. If such a prior is
not used, there could be elements close by 0, but not exactly 0. Elements of the model parameter being 0 has
the advantage that they do not need to be incorporated in the calculation. Secondly unimportant variables
being excluded is like performing a feature selection, which is desirable when a lot of variables are used.

Definition 2.4. A Laplacian prior on θ, the Laplace density as prior, looks like

p(θi |λ) =
p
λ

2
e−λ|θi |. (2.24)

Lemma 2.5. The Laplace prior can be rewritten in a hierarchical manner, as done by Figueiredo [6], to avoid
problems with the derivative at 0:

θ j |τi ∼N (θ j |0,τ j ) (2.25)

τ j |λ∼ Gamma(τ j |1,λ/2) = λ

2
e−λτ j /2. (2.26)

Each θ j has a zero-mean Gaussian prior with its own variance τ j and each τ j has the same exponential (hy-
per)prior, with hyperparameter λ.

Proof. Integrate out τ j to obtain a Laplacian density:

p(θ j |λ) =
∫ ∞

0
p(θ j |τ j )p(τ j |λ) ∂τ j (2.27)

=
p
λ

2
e−λ|θ j | (2.28)

This shows that the Laplacian prior is equivalent to a two-level hierarchical Bayes model.

2.5.4. REGULARIZATION

In this section, two versions of the Laplacian prior are purposed, which are equivalent to `2-regularization
and `1-regularization.

`2-REGULARIZATION

Using the `2-norm for regularization, is more easy than using the `1-norm, since projection on the `2-ball is
more easy. Just by dividing by the `2-norm, the parameter is projected on the `2-ball.

Take the following prior distribution:

p(θ|λ) ∝ e−λ‖θ‖
2
2 .

Suppose, the objective is to maximize the sum of log-likelihood and the prior on θ:

argmax
θ,c

[
`(θ,c|(x1, s1), . . . , (xn , sn))−λ‖θ‖2

2.
]

.

This maximization problem is equivalent to:

argmax
θ,c

[`(θ,c|(x1, s1), . . . , (xn , sn))] ,

subject to ‖θ‖2
2 ≤λ,

where `2-regularization is used on θ.
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`1-REGULARIZATION

But using l2-regularization does not give the sparsity in θ, we are looking for. Using a `1-norm has two ad-
vantages. First, it leads to sparsity in parameter. When the dimension of the parameter is very high, a sparse
solution is easier to interpret. Second, using `1-constraints in some cases leads to better results than `2-
constraints.

Lemma 2.6. Using Laplacian priors on θi , for i ∈ {1, . . . ,n}, is the same as using `1-regularization, i.e. maxi-
mizing using ‖θ‖1 ≤λ.

Proof. Take the Laplacian prior on θi :

p(θi |λ) =
p
λ

2
e−λ|θ j |.

The prior distribution on θ will be:

p(θ|λ) =
n∏

j=1
p(θ j |λ)

=
(p

λ

2

)n

e−λ‖θ‖1

Remember, the objective is to maximize the sum of log-likelihood and the priors on θ and c:

argmax
θ,c

[
`(θ,c|(x1, s1), . . . , (xn , sn))−λ‖θ‖1 + log(g (c))

]
.

This maximization problem is equivalent to:

argmax
θ,c

[
`(θ,c|(x1, s1), . . . , (xn , sn))+ log(g (c))

]
,

subject to ‖θ‖1 ≤λ,

where `1-regularization is used on θ.

2.6. OBJECTIVE FUNCTION

The expression for the log-likelihood function, see expression (2.22), and the prior defined on c, see Section
2.5.2, are combined to form the final objective that we will optimize in the next chapter, using the AdaGrad
algorithm.

Minimize:

Q(θ,γ) =− ∑
i∈W

log

(
f (θT xi )

1+e−γ

)
− ∑

i∈W C

log

(
1− f (θT xi )

1+e−γ

)
− log

(
g (γ)

)
,

=− ∑
i∈W

log

(
f (θT xi )

1+e−γ

)
− ∑

i∈W C

log

(
1− f (θT xi )

1+e−γ

)
− log

(
15

(1+e−γ)14

)
, (2.29)

subjected to:
‖θ‖1 ≤λ.

For this, we will need the gradient of Q. The derivatives of Q with respect to θ j is:

∂Q

∂θ j
= ∑

i∈W

xi j · f ′(θT xi )

f (θT xi )
− ∑

i∈W C

xi j · f ′(θT xi )

1+e−γ− f (θT xi )
,
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and with respect to γ, will be:

∂Q

∂γ
=

|W | · (1+e−γ
)− ∑

i∈W C

f (θT xi )

1− f (θT xi )

(1+e−γ)

 · 1

2+e−γ+eγ
−14

e−γ

1+e−γ
.



3
ADAGRAD ALGORITHM

In Section 2.6, the objective function Q which needs to be minimized, is developed. Also in Chapter 2, adap-
tive gradient methods are introduced. The AdaGrad algorithm will be used to approximate the parameters θ
and γ. Before we explain the AdaGrad algorithm in detail, first recall the following.

Recall, at every time step t , the gradient g t is obtained. The predictor θt is moved in the opposite direction
of g t (the vector with the derivatives with respect to θ), while assuring that θt+1 ∈Θ via a projection update.
This is called the Greedy Projection, or Lazy projection:

θt+1 =ΠΘ(θt −ηt g t ), (3.1)

= argmin
θ∈Θ

‖θ− (θt −ηt g t )‖2
2,

= argmin
θ∈Θ

〈θ− (θt −ηt g t ),θ− (θt −ηt g t )〉.

Since γ ∈R has no restriction, we would use:

γt+1 = γt −ηt
∂Q

∂γ
(θt ,γt ),

to update parameter γ.

3.1. ADAGRAD WITH DIAGONAL MATRICES

The adaptive (sub)gradient method, called AdaGrad, is used. First, we introduce the version with full matri-
ces. In Section 3.1.1, we discuss the version with diagonal matrices, which we will use eventually, because
of its easy computation. Both version of AdaGrad are introduced by Duchi, Hazan, and Singer [7]. AdaGrad
looks like (3.1) but is slightly different, since AdaGrad uses a different norm to do the projection onΘ.

The AdaGrad algorithm uses the following parameter update:

θt+1 =ΠG1/2
t

Θ

(
θt −ηG−1/2

t g t
)

, (3.2)

= argmin
θ∈Θ

∥∥θ− (
θt −ηG−1/2

t g t
)∥∥

G−1/2
t

,

= argmin
θ∈Θ

〈
θ− (

θt −ηG−1/2
t g t

)
,G−1/2

t · (θ− (
θt −ηG−1/2

t g t
))〉

,

where Gt =∑t
τ=1 gτg T

τ is the outer product matrix. The norm used above is called the Mahalanobis norm.

Definition 3.1. Let A ∈Rd×d , where d is the length of θ. Define the Mahalanobis norm on vector κ:

‖κ‖A =
√
〈κ, Aκ〉,

=
√
κT Aκ,

21
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Now, the projection used in (3.2) is defined as:

Definition 3.2. The projection of vector κ onΘ according to A is defined as:

ΠA
Θ(κ) = argmin

θ∈Θ
‖θ−κ‖2

A ,

= argmin
θ∈Θ

〈θ−κ, A(θ−κ)〉.

This algorithm can be a computational challenge in high dimensions, since the inverse and root of matrix Gt

need to be computed.

3.1.1. DIAGONAL MATRICES

AdaGrad with diagonal matrices is used, which is a special version of (3.2):

θt+1 =ΠHt
Θ

(
θt −ηH−1

t g t
)

. (3.3)

= argmin
θ∈Θ

∥∥θ− (
θt −ηH−1

t g t
)∥∥2

Ht

= argmin
θ∈Θ

〈
θ− (

θt −ηH−1
t g t

)
, Ht ·

(
θ− (

θt −ηH−1
t g t

))〉
where Ht = δI +diag(Gt )1/2. In this case, Ht will be diagonal, and both the inverse and root of Ht can be
computed easily. Note that δ is a small positive number to ensure that the inverse of Ht exists.

From here on, denote θ̃t+1 = θt −ηH−1
t g t , hence:

θt+1 = argmin
θ∈Θ

〈
θ− θ̃t+1, Ht ·

(
θ− θ̃t+1

)〉
. (3.4)

To update parameter γ, we would use:

γt+1 = γt −ηt H−1
t

∂Q

∂γ
(θt ,γt ).

Hence, this can be written in two separate steps.

AdaGrad with diagonal matrices:

Step 1: Gradient step: θ̃t+1 = θt −ηH−1
t g t

Step 2: Projection step: θt+1 = argminθ∈Θ
〈
θ− θ̃t+1, Ht ·

(
θ− θ̃t+1

)〉
Repeat the two steps until all the transactions of the training set are used.

3.2. REGULARIZATION OF θ

In Section 3.1, the AdaGrad algorithm with diagonal matrices is introduced. Now, Θ = {θ : ‖θ‖1 ≤ λ} is used.
In Section 2.5.4, we showed that we could use `1-regularization to obtain the sparse solution we are looking
for. Hence:

θt+1 = arg min
‖θ‖1≤λ

〈
θ− θ̃t+1, Ht · (θ− θ̃t+1)

〉
= arg min

‖θ‖1≤λ
{〈θ, Htθ〉−2 · 〈Ht θ̃t+1,θ〉+〈θ̃t+1, Ht θ̃t+1〉

}
= arg min

‖θ‖1≤λ

{
1

2
θT Htθ− (Ht θ̃t+1)Tθ+C

}
. (3.5)

Note that in the last step, the objective function is divided by 2. Also, C = 2 · θ̃T
t+1Ht θ̃t+1 is defined, but does

not depend on θ and can be left out during minimization.
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In the projection step of AdaGrad with diagonal matrices, as seen in (3.5), we minimize a quadratic function
with Ht = (diag(Gt ))1/2 a diagonal matrix with non-negative entries (hence PSD) and we minimize over a
convex set (the `1-cone, which means we have a convex minimization problem. See Appendix B.2 for the
exact definition of a convex minimization problem.

The convex minimization problem in (3.5) cannot be solved as easily as projection on the `2-ball. For the
l2-projection used for AdaGrad with diagonal matrices look in Appendix B.2.2. The problem will be rewritten
in such a way, that it will be easier to solve.

Lemma 3.3. AdaGrad with diagonal matrices:

θt+1 = argmin
θ∈Θ

〈
θ− θ̃t+1, Ht (θ− θ̃t+1)

〉
(3.6)

with Θ= {θ : ‖θ‖1 ≤λ}, Ht =
(
diag(Gt )

)1/2 and θ̃t+1 = θt −ηH−1
t g t , is equivalent to:

minimizeu
1

2
‖u−v‖2

2 (3.7)

subject to
∑

i
ai |ui | ≤λ

with u = H 1/2
t θ, v = H 1/2

t θ̃t+1 and ai = (H−1/2
t )i ,i is the i th diagonal element of Ht .

Proof. The projection in expression (3.6) can be written as:

θt+1 =ΠHt
Θ

θ̃t+1,

= argmin
θ∈Θ

〈
θ− θ̃t+1, Ht (θ− θ̃t+1)

〉
,

= argmin
θ∈Θ

〈
H 1/2

t (θ− θ̃t+1), H 1/2
t (θ− θ̃t+1)

〉
,

= argmin
θ∈Θ

∥∥H 1/2
t (θ− θ̃t+1)

∥∥2
2 ,

= argmin
θ∈Θ

∥∥H 1/2
t θ−H 1/2

t θ̃t+1
∥∥2

2 . (3.8)

Divide (3.8) by 2 and make the following substitutions: u = H 1/2
t θ and v = H 1/2

t θ̃t+1. Then θ ∈Θ ⇔ u ∈ U =
{u :

∑
i ai |ui | ≤ γ}, where ai = (H−1/2

t )i ,i are the diagonal elements of Ht . Then the purposed minimization
problem comes to light.

The following algorithm is purposed by Duchi, Hazan, and Singer [7] (page 19). Note that the notation x º y ,
for vector x and y , means xi ≥ yi for all i . This algorithm can be implemented in O(d logd) time, where d is
the number of elements in v.

Algorithm to solve (3.7)

INPUT: v º 0, a º 0, γ≥ 0.
if

∑
i ai vi ≤ c then

u∗ = v
end if
SORT vi /ai into w = [vi j /ai j ] s.t. vi j /ai j ≥ vi j+1 /ai j+1

SET ρ = max

{
ρ :

∑ρ

j=1 ai j vi j −
viρ

aiρ

∑ρ

j=1 a2
i j
< γ

}

SET λ=
∑ρ

j=1 ai j vi j −γ∑ρ

j=1 a2
i j

RETURN u∗ where u∗ = [vi −λai ]+.

Then the parameter is updated by θt+1 = aT
i u∗.

The MATLAB code of this algorithm is found in Appendix D.1.2.
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Proof. This derivation is also given in Appendix E of Duchi, Hazan, and Singer [7]. But I will be more explicit
about why each step can be made.

Our original problem (3.7) is symmetric in its objective and constraint. So without loss of generality assume
that v º 0 (otherwise, we reverse the sign of each negative component in v, then flip the sign of the corre-
sponding component in the solution vector). This gives:

min
u

1

2
‖u−v‖2

2 s.t. 〈a,u〉 ≤λ, u º 0.

Clearly, if 〈a,v〉 ≤λ, then the optimal u∗ = v. Hence we assume that 〈a,v〉 >λ. We also assume without loss of
generality that vi /ai ≥ vi+1/ai+1 for simplicity of our derivation. Later on we will see that we will have to sort
wi = vi /ai in descending order, in order to assure this assumption.

Introducing KKT multipliers λ ∈ R+ for the constraint that 〈a,u〉 ≤ λ and µ ∈ Rd+ for the positivity constraint
on u, we get:

L (u,µ1,µ2) = 1

2
‖u−v‖2

2 +µ1(〈a,u〉−λ)−〈µ2,u〉.

Stationarity Computing the gradient of L , we have:

∇uL (u,µ1,µ2) = u−v+µ1a−µ2.

The stationarity condition states that ∇uL (u∗,µ∗
1 ,µ∗

2 ) = 0. Hence

u∗ = v−µ∗
1 a+µ∗

2 .

Complementary slackness on µ2 Complementary slackness condition on µ2 gives us:

〈µ∗
2 ,u∗〉 = 0.

We also use dual feasibility:
µ∗

2 º 0,

and primal feasibility:
u∗ º 0,

to see that the solution u∗ satisfies:

u∗
i = [vi −µ∗

1 ai ]+ =
{

vi −µ∗
1 ai if vi ≥µ∗

1 ai ,

0 otherwise.

Note that µ2(i ) = 0 if vi ≥ λ∗ai , and µ2(i ) = −(vi −λ∗ai ) otherwise. Then the complementary slackness
condition for µ2, and also primal and dual feasibility, are assured.

Complementary slackness on µ1 Analogously, the complimentary slackness conditions on µ1

µ∗
1

(〈a,u∗〉−λ)= 0,

and dual feasibility
µ∗

1 º 0,

gives us that:
µ∗

1 = 0 ∨ 〈a,u∗〉 =λ.

For the optimal solution we must have 〈a,u∗〉 ≤ λ. In case of the first condition we have that u∗ = v, but we
assumed that 〈a,v〉 >λ. The first condition cannot hold, hence µ∗

1 6= 0.

The second condition, 〈a,u∗〉 =λ, gives us:

〈a,u∗〉 =
d∑

i=1
ai [vi −µ∗

1 ai ]+ =λ



3.2. REGULARIZATION OF θ 25

⇔
d∑

i=1
a2

i

[
vi

ai
−µ∗

1

]
+
=λ. (3.9)

Now, let ρ be the largest index in {1, . . . ,d} such that vi −µ∗
1 ai > 0 for i ≤ ρ and vi −µ∗

1 ai ≤ 0 for i > ρ. This is
possible if we sort w = v/a such that vi /ai ≥ vi+1/ai+1 for all i . Then

ρ∑
i=1

a2
i

(
vi

ai
−λ∗

)
=λ,

⇔
ρ∑

i=1
ai vi −µ∗

1

ρ∑
i=1

a2
i =λ.

So, we need to find the largest non-zero integer ρ and take

µ∗
1 =

∑ρ

i=1 ai vi −λ∑ρ

i=1 a2
i

.





4
TESTING THE FINAL MODEL

In this chapter, the procedure, on how the model works, and also how the performance of the model is deter-
mined, is discussed. First the model is tested on dummy data, for which the intended result is known. Then
the model is tested on the data from Rabobank.

4.1. PROCEDURE

First the model is explained in detail. In Figure 4.1 an outline is shown. A data set is chosen and split into
a training and test set (see Figure 4.2). Next the complexity of the model is determined by validating λ (see
Figure 4.3). Remember the `1-condition: ‖θ‖1 ≤ λ. After λ is chosen, the model can be trained used the
training set (see Figure 4.4). Then the test set is used to determine the performance (see Figure 4.5).

Start model

Create data set

Validate λ

Train model

Test model

Performance

Figure 4.5

Figure 4.4

Figure 4.3

Figure 4.2

Figure 4.1: How the model works.

For both the training and test set the performance is determined. The performance of the training set is
expected to be (slightly) higher than the performance of the test set, since the model probably performance
better on examples that are used in training.

27
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4.1.1. CREATE DATA SET

Figure 4.2 illustrates how this phase works. Rabobank delivered the cases and the non-cases separately. The
cases and non-cases need to be divided over the training and test set. The total data set contains 805 cases,
which are divided over 20 types of cases, and 1382 files of each approximately 1600 non-cases, hence about
2.2 million non-cases. Note the large imbalance between the cases and the non-cases, which is intrinsic to
the problem.

In Chawla, Japkowicz, and Kotcz [8], this type of problem is called the class-imbalance problem and solu-
tions on data and algorithmic level are discussed. At the data level, several re-sampling techniques (random
oversampling, with replacement, random undersampling, etc.) are suggested to solve this imbalance. Also
was recommended to use ROC curves instead of evaluation measures as accuracy. The accuracy can be very
misleading because of the imbalance. At the algorithmic level, a cost analysis with adjusted costs per class
and adjusting the decision threshold are purposed. For this, a cost-matrix is needed. However, it is difficult
to determine this cost-matrix. Clever re-sampling and combination methods can do quite more than cost-
sensitive learning as they can provide new information or eliminate redundant information for the learning
algorithm, as shown in [9], [10], [11], [12] and [13].

In order to decrease the imbalance in the training set, random undersampling of the non-cases and random
oversampling with replacement of the cases is used. Random undersampling: First, the data set is taken in
which all 805 cases and 13 random files with about 1600 non-cases per file (approximately 21.000 non-cases),
which is approximately is 1% of the available files with non-cases, are taken. Random oversampling with
replacement: After every nsamp non-cases a case, that is selected at random from the pool of cases in the
training set, is injected to update the parameters.

Create data set

Cases

Training set

Divided into 9 subsets to validate λ

(9-fold cross-validation)

Validate λ

Non-cases

Test set

90% 10%90%10%

Figure 4.2: How the data set was created.

For the test set 10% of the non-cases and cases are used and the remaining 90% is used to form the training
set. The training set is first used to validate λ. To validate λ, stratified k-fold cross-validation is used (with
k = 9). That is why the training set is split into 9 subsets each containing approximately the same number of
cases and non-cases. This is discussed in more detail in 4.1.2.

4.1.2. VALIDATE λ

Figure 4.3 illustrates how this phase works. To validateλ, stratified k-fold cross-validation is used (with k = 9).
Stratified means that in each subset contains approximately the same amount of cases and non-cases, such
that each subset contains roughly the same proportions of the two classes. In k-fold cross-validation, the data
set is divided in k subsets of equal size. Of the k subsets, one subset is kept for validation, whilst the other
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k −1 subsets are used for training. The cross-validation is repeated k times, called the folds, where each time
a different subset is used as validation set. The results of the k folds can be averaged to have one estimation
of the performance.

This method is used to validate λ. For several values of λ, the performance on the training set can be esti-
mated, in order to choose the right value for λ. The AUC value on the training set is used to determine which
λ gives the best performance. Section 4.1.4 explains how to compute the AUC value.

Validate λ

Training set
(9 subsets)

9-fold cross-validation for λ

Pick 8 subsets for training

Train model for several λ

Validate using remaining subset

Compute AUC value

After validation: Choose λ

with the highest average AUC value

Train model

Repeat

Every subset will be

used once as validation set

Figure 4.3: How λ was validated.

4.1.3. TRAIN MODEL

Figure 4.4 illustrates how this phase works. The model takes the training set and transaction by transaction
the model updates the parameters θ and γ using AdaGrad with diagonal matrices and ‖θ‖1 ≤λ.

4.1.4. TEST MODEL

Figure 4.5 illustrates how this phase works. Given the parameters found in the training, the following proba-
bility is computed:

ŷi =P(yi = 1|xi ) = f (θT xi ) = 1

1+exp
(−θT xi

) ,

which we refer to as the score. Given the scores on the examples of the training and test set and a threshold
τ, the Confusion Matrix can be computed and looks like:

Actual label
1 0

Predicted label
1 True Positive (TP) False Positive (FP)
0 False Negative (FN) True Negative (TN)
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Train model

Training set

Load record from training set
(a case after nsamp non-cases)

Update parameters

Project parameters on `1-ball

After all records
of the training set:

Test model

Figure 4.4: How the model was trained.

Examples with a score above the threshold τ will be labelled 1 and the rest will be labelled 0, which can be
seen as:

ŷi < τ ⇒ ŝi (τ) = 0,

ŷi > τ ⇒ ŝi (τ) = 1.

Here ŝi (τ) is the predicted label for record i , given that threshold τ is used to determine the label. The label s
and the true label y of every example are known, so the Confusion Matrix can be determined.

The choice of the threshold τ determines the Confusion Matrix and influences the resulting (false) alarms.
That is why ROC (Receiver Operating Characteristic) curves are often used. According to Fawcett [14], ROC
Curves also have an attractive property: they are insentive to changes in class distribution. If the proportion
of cases to non-cases changes in a test set, the ROC curves will not change. To construct a ROC curve the
Confusion Matrix is determined for every possible threshold τ between 0 and 1. The ROC curve plots the
False Positive Rate (FPR), also called fall-out, against the True Positive Rate (TPR), also called sensitivity, for
every possible threshold τ between 0 and 1. The definitions are:

FPR = FP

FP+TN
,

TPR = TP

TP+FN
.

Then the AUC (Area Under Curve) value, which is the area under the ROC curve, is computed.

Also the specificity (SPC), also called True Negative Rate, and the accuracy (ACC), are computed:

SPC = TN

FP+TN
= 1−FPR,

ACC = TP+TN

TP+FN+TN+FP
.

Because of the imbalance between the cases and non-cases, the accuracy alone is not a very good number to
look at the performance. Note that labelling all the records as “non-cases”, a very good accuracy is achieved.
This value is still computed, because in combination with a high AUC value the accuracy is still a valuable
number to look at.
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Score all examples
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TP FP
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Performance
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Figure 4.5: How the model was tested.
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4.2. TESTING THE MODEL ON DATA GENERATED FROM THE MODEL

First realistic data, which is constructed using the model, is used to ensure that the model works.

The data is constructed as follows. “Transactions” are created containing a number of binary variables. The
number of “transactions” created is equal to 100.000. The features are sampled from Bernoulli distributions,
xi ∼ Ber(p). The parameters for these fea are chosen in such a way that the first two variables are the ones
determining whether a record is a case. In other words, when x1 and x2 are both equal to 1 the probability
ŷi = P(yi = 1|xi ) is close to 1, and for every other combination of x1 and x2 the probabilities ŷi = P(yi = 1|xi )
are low. The combination of θ and p, where p j corresponds to the j th feature, determines the number of
cases introduced into the data set. We will consider different choices for these.

A large proportion of the cases are labelled, some are left out. Take s ∼ Ber(c), where c =P(s = 1|y = 1,x).

The data set is split into a training and a test set. First, 90% of the cases are taken for the training set. The
remaining 10% of the cases are taken for the test set. The ratio of 5 : 1 (non-cases : cases) is taken for training
set. After taken 90% of the case for the training set, 5 times more non-cases are randomly chosen to be in the
training set. The remaining non-cases are put in the test set.

4.2.1. EXAMPLES

For every example, 100,000 transactions are used. The number of cases is determined by the choice of θ and
p. The following values are used for the examples that are discussed below:

Example 1 Number of features = 10, λ= 50, c = 0.9,
θ = [−15,10,10,0,0,0,0,0,0,0,0], p = [0.1,0.1,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]

Example 2 Number of features = 10, validate λ (result: λ= 20), c = 0.9,
θ = [−15,10,10,0,0,0,0,0,0,0,0], p = [p

0.001,
p

0.001,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5
]

Example 3 Number of features = 1000, λ= 20, c = 0.9,
θ = [−15,10,10,0, . . . ,0], p = [p

0.001,
p

0.001,0.5, . . . ,0.5
]

Example 4 Number of features = 10, λ= 20, c = 0.9,
θ = [−7,5,5,0,0,0,0,0,0,0,0], p = [p

0.001,
p

0.001,0.5, . . . ,0.5
]

Example 5 Number of features = 10, λ= 20, c0 = 0.9, fix c ∈ {0.1,0.2, . . . ,1.0} and compute the AUC values,
θ = [−15,10,10,0,0,0,0,0,0,0,0], p = [p

0.001,
p

0.001,0.5, . . . ,0.5
]

Example 1. The choice of θ0, θ1 and θ2 makes sure that with high probability the transactions, where x1 = 1 and
x2 = 1, are labelled as a case. Namely, when the true values for θ are used to compute the scores ŷ =P(y = 1|x),
then:

(x1, x2) = (1,1) ⇒ ŷ = 1

1+e−5 ≈ 0.9933

(x1, x2) = (0,1) ⇒ ŷ = 1

1+e5 ≈ 0.0067

(x1, x2) = (1,0) ⇒ ŷ = 1

1+e5 ≈ 0.0067

(x1, x2) = (0,0) ⇒ ŷ = 1

1+e10 ≈ 0.0000

Approximately one out of hundred records will be case (since p1 ·p2 = 0.1 ·0.1 = 0.01). Hence about 1000 cases
will be in the data set.

Using glmfit in MATLAB, which is used to fit a logistic regression model to the data, we got the following
parameters θGLM :

θGLM = [−12.490,7.327,7.625,−0.086,−0.120,−0.192,0.146,−0.180,−0.248,0.147,−0.050]

The resulting parameters, obtained using the AdaGrad algorithm with diagonal matrices, are:

θ̂ = [−5.272,7.238,7.990,−0.237,−0.309,−0.467,−0.037,0.285,−0.297,0.169,−0.170], γ̂= 13.6355 and ĉ = 1.0000.
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Figure 4.6 shows the ROC curves for the training set and the test set using both θGLM and θ̂. The performance
of the result of the model is better than the performance using the result of glmfit.

For threshold τ= 0.5:

SPCtrain = 0.8166, ACCtrain = 0.8185, SPCtest = 0.8210, ACCtest = 0.8228.

Confusion Matrix for training
TP : 899 FP : 16338
FN : 0 TN : 72762

Confusion Matrix for test
TP : 100 FP : 1772
FN : 0 TN : 8129

The final parameters θ̂ look like the parameters θGLM , which is positive. Only the intercept (the first parameter
is different). Both the Area Under the ROC Curve and accuracy are very high. The performance of the model
using the parameters θGLM , instead of the final parameters of the model, would drastically decrease the AUC
values.

Choosing the threshold τ:

Now, the threshold was chosen naively: τ= 0.5. How would we eventually choose the threshold? When the Con-
fusion Matrix is computed for the threshold τ= 0.5, we see that the number of False Positives is approximately
17 times larger than the True Positives. That means that hopefully after every 18 alarms, there is one correct
alarm. When looking at the results on the test set, we see that 1872 alarms were given by the model, of which
100 correct alarms (TP) and 1772 false alarms (FP). Rabobank has the capacity to check about 100 alarms per
day. This is why choosing the threshold is important when the model needs to give an alarm. Tuning the thresh-
old would prevent that this many alarms would come up. Choose the lowest threshold such that TP+FP < 100.
Another solution would be to deliver the 100 highest scores to Rabobank.
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Figure 4.6: ROC curves for Example 1, AUCtrain = 0.9920 (solid red), AUCtest = 0.9914 (solid blue), AUCtrain = 0.9524 (dotted red),
AUCtest = 0.9544 (dotted blue).
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Example 2. Now cross-validation on λ is used, where λ ∈ {5,10,15,20,25,30,50}. The highest average AUC
value was achieved using λ = 20, so λ = 20 was chosen. The probability that a case occurs decreases, because
p is changed. Approximately one out of thousand records will be case (since p1 ·p2 =

p
0.001 ·p0.001 = 0.001).

Hence, about 100 cases will be in the data set.

Using glmfit in MATLAB, which is used to fit a logistic regression model to the data, we got the following
parameters θGLM :

θGLM = [−11.598,6.605,6.704,0.254,0.575,−0.511,−0.101,−0.138,0.009,−0.041,−0.098]

The resulting parameters, obtained using the AdaGrad algorithm with diagonal matrices, are:

θ̂ = [−3.636,6.598,7.070,0.667,0.885,−0.495,−0.217,−0.026,−0.282,0.013,0.083], γ̂= 13.6398 and ĉ = 1.0000.

Figure 4.7 shows the ROC curves for the training set and the test set.

For threshold τ= 0.5: SPCtrain = 0.9373, ACCtrain = 0.9374, SPCtest = 0.9407, ACCtest = 0.9408.

Confusion Matrix for training
TP : 114 FP : 5636
FN : 0 TN : 84249

Confusion Matrix for test
TP : 13 FP : 592
FN : 0 TN : 9396

The final parameters θ̂ look like the parameters θGLM , which is positive. Again, the first element of θ̂ is different
from the GLM approximation. The performance is this time also better (not shown in the figure). Both the Area
Under the ROC Curve and accuracy are very high, but slightly worse than in Example 1. Considering there are
less cases to train and test on, this difference is expected.
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Figure 4.7: ROC curves for Example 2, AUCtrain = 0.9899, AUCtest = 0.9871.
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Example 3. Now, 1000 variables are used, for which the first two are still the ones determining the cases. The
question is whether the model suffers from all the noise which is added. Only part of the resulting parameters
is displayed below. The resulting parameters, obtained using the AdaGrad algorithm with diagonal matrices,
are:

θ̂ = [−1.064,3.597,4.204,−0.007,−0.020,−0.012,−0.007,−0.003,−0.006,−0.014,−0.006,−0.001,0.015, . . .

. . . ,0.010,−0.014,0.009,−0.005,0.000,0.012,−0.013,0.006,0.001,−0.002,−0.006,−0.019]

Figure 4.8 shows the ROC curves for the training set and the test set.

For threshold τ= 0.5:

SPCtrain = 0.9383, ACCtrain = 0.9383, SPCtest = 0.9378, ACCtest = 0.9379.

Confusion Matrix for training
TP : 120 FP : 5549
FN : 0 TN : 84330

Confusion Matrix for test
TP : 14 FP : 621
FN : 0 TN : 9366

The results are similar to Example 2, also slightly worse than Example 3. But not very alarming.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

ROC curves

 

 

Training set
Test set

Figure 4.8: ROC curves for Example 3, AUCtrain = 0.9933, AUCtest = 0.9872.

Example 4. Use the same settings as in Example 2, but take θ = [−7,5,5,0,0,0,0,0,0,0,0] instead.

The choice of θ0, θ1 and θ2 makes sure that with high probability the records where x1 = 1 and x2 = 1, are
labelled as a case. But, this time the chosen parameters also let some false alarms slip into the cases. Namely,
when the true values for θ are used to compute the scores ŷ =P(y = 1|x), then:
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(x1, x2) = (1,1) ⇒ ŷ = 1

1+e−3 ≈ 0.9526

(x1, x2) = (0,1) ⇒ ŷ = 1

1+e2 ≈ 0.1192

(x1, x2) = (1,0) ⇒ ŷ = 1

1+e2 ≈ 0.1192

(x1, x2) = (0,0) ⇒ ŷ = 1

1+e7 ≈ 0.0009

The resulting parameters, obtained using the AdaGrad algorithm with diagonal matrices, are:

θ̂ = [−2.511,4.857,5.028,0.275,0.318,0.008,0.015,−0.011,0.139,0.036,−0.117], γ̂= 13.4667 and ĉ = 1.0000.

Figure 4.9 shows the ROC curves for the training set and the test set.

For τ= 0.5:

SPCtrain = 0.9450, ACCtrain = 0.9447, SPCtest = 0.9437, ACCtest = 0.9438.

Confusion Matrix for training
TP : 689 FP : 4904
FN : 73 TN : 84333

Confusion Matrix for test
TP : 81 FP : 558
FN : 4 TN : 9358

The AUC values are slightly lower than the previous examples, because the altering of θ caused some noise in
the cases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

ROC curves

 

 

Training set
Test set

Figure 4.9: ROC curves for Example 4, AUCtrain = 0.9282, AUCtest = 0.9467.
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Example 5. Now, take different values for c and don’t use the estimate for c provided by the model. The question
is whether that changes the performance. The same settings as in Example 2 are used.

Figure 4.10 shows the AUC values for the training set and the test set, computed using the model, and the AUC
values for fixed values of c. Note that the differences between the AUC values are not large, for large values of
c. For low values of c, the AUC value on the test set is increased for a fixed c.Also, the performance on the test
set in Example 2 is comparable to the performance here. We do not exactly know why this behaviour is seen.
Probably, it has to do with the gradient (especially the derivative with respect to θ j ) in which c determines the
influence of the unlabelled transactions.
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Figure 4.10: AUC values for Example 5.
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4.3. TESTING THE MODEL ON RABOBANK DATA

The data set provided by Rabobank is used to test the model. The data consists of two types of features,
categorical and numerical features. Categorical features are converted to a binary setting. Numerical features
are normalized. Amongst those features, constant features and exact copies of other features were detected
and left out. See Chapter 1 for more details.

The procedure for choosing λ, which is used to limit the `1-norm (‖θ‖1 ≤ λ), was discussed in Section 4.1.2.
The value of λ determines the complexity of the model. If λ is too small the parameter cannot reflect the
complexity of the model and if λ is too high the parameter will not be sparse.

Again, the AUC value and the accuracy for both the training and test sets are computed.

Lastly, the estimation of c is discussed. The model is constructed to have a value c = P(s = 1|x, y = 1) incor-
porated. The question is whether that was really necessary and whether learning c while running the model
(instead of choosing a constant c) was needed. The log-likelihood function looked almost as a log-likelihood
of a simple regression model. Note that, for c = 1 the log-likelihoods would be equal:

`(θ,1) = logL (θ,1) = ∑
i∈W

log
(

f (θT xi )
)+ ∑

i∈W C

log
(
1− f (θT xi )

)
,

During the training the value of c is updated, using the gradient of the log-likelihood and step size. The ques-
tion is whether it is was needed to use another model than a simple regression model. In order to compare
the result, the model is run several times, where constant values for c are used, and the results are compared
to when c was estimated by the model.

4.3.1. TEST RESULTS

Figure 4.11 shows the result, after running the model on the Rabobank data. The performance is really bad.

For this, the following settings are used:

λ= 5 (validated choosing from [5,10,15,20,25]), η= 1, δ= 0.01, nsamp = 22, number of features = 1435.

1% of the non-cases used (13 files of each approximately 1600 transactions) : 11 files used for training, 2 files
used for testing.

805 cases: 724 cases used for training, 81 cases used for testing.

SUBSET OF FEATURES

The performance of the model using all 1435 features was not so good. We would like to see whether the
model works, when features are used which are more distinctive than others. That’s why, we take the top-75
features. How the features were selected, was discussed in Section 1.1.6. Figure 4.12 shows the result. The
performance is much better.

λ= 27, η= 1, δ= 0.01, nsamp = 22, number of features = 75.

1% of the non-cases used (13 files of each approximately 1600 transactions) : 9 files used for training, 4 files
used for testing.

805 cases: 563 cases used for training, 242 cases used for testing.

Figure 4.13 and 4.14 show the resulting scores computed using the model. The first shows the scores for all
the cases in the test set. And the second shows the scores for all the non-cases in the test set. Note that, using
a threshold, e.g. τ= 0.5, would mean that all the alarmed transactions were indeed cases.
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Figure 4.11: ROC curves, AUCtrain = 0.5279, AUCtest = 0.4792.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

ROC curves

 

 

Training set
Test set

Figure 4.12: ROC curves, AUCtrain = 0.7234, AUCtest = 0.7510.
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Figure 4.13: All the scores on the cases, when the top-75 features are used.
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Figure 4.14: All the scores on the non-cases, when the top-75 features are used.
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4.3.2. TAKING A CONSTANT VALUE FOR c

The model looks like a standard regression model, but is slightly different because of the appearance of c.
Note that for c = 1, the model is precisely a (simple) regression model. We want to see whether it was needed
to incorporate the estimation of c. So a data set is taken, split it into a training and test set, λ is chosen and
the model is used without estimation of c. Instead a couple of constant values for c are used to see what the
performance of the model is. Figure 4.15 shows the result. From this, we see that if c is fixed and chosen really
low, then the performance on the training and test set is higher. For higher values of c, we see that fixing c or
estimating c is similar in performance.
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Figure 4.15: Red line and blue line indicate AUC values when c is estimated by the model.
The stars indicate the AUC values when c is fixed.





5
CONCLUSIONS

In this chapter, the main results and the conclusions are discussed. The main conclusion is that the Adagrad
algorithm with diagonal matrices has the potential to discover cases, when a subset of the features is taken.
On the complete set of features, we wanted to utilize the sparsity in θ to work as feature selection, where
unimportant features eventually get filtered out and important features are kept. This goal was not achieved.

Sparsity in θ. By restricting θ with a `1-norm (‖θ‖1 ≤ λ), we hoped to achieve that only rare but important
features would determine the final score, and thereby performance could be increased. In other words, spar-
sity in θ would work like feature selection. As we have seen, this does not work as we had hoped. Probably, the
choosing of λ is more difficult than we anticipated. On forehand, a set of possible λ’s are selected to choose
from using cross-validation. Reducing the number of features (in which the top-75 features is used) showed
that in that case the performance was not to bad.

Choosing an appropriate λ is important, because λ determines the complexity of the model. If λ is to low,
important features could be excluded, and ifλ is too high the model takes into account unimportant features.
Stratified k-fold cross-validation is used to determine λ. Before this cross-validation, a couple of values for λ
needed to be chosen, for which the performance is tested. It is hard to choose the right values for λ.

Estimating c. In the model, c was incorporated to suggest that there are cases missing, which can be found
in the unlabelled transactions. The question is whether estimating c is necessary. We could choose a fixed
0 < c < 1 throughout the iterations and see what the result would be. If c = 1, then the suggestion would be
that all the cases are labelled. Also, it would suggest that simple logistic regression, using the transactions and
the labels, would suffice to determine the parameters θ.

The advantage of our model that it can be used on large data sets and also is usable in case of a constantly
changing data set (as in online learning). The model can be used to score an incoming transaction and then
this transaction is used to update the model. That is why, we chose this model in the first place. Also, since
our model is trained using only one transaction at one time, the amount of memory needed to stored the data
is not that much.
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6
DISCUSSION

In this chapter, the improvements and remarks are discussed that can be made about this thesis project.

In the beginning, we started building a model that incorporates c into the estimation of parameters θ. Both θ

and c are estimated using an Adaptive Gradient Descent method in combination with a `1-norm restriction
on θ, in the hope that we could use them to compute scores using either P(y = 1|x) or P(y = 1|x, s = 0). We
say in both a generated data set and the data set of Rabobank that choosing a low value for c would increase
the performance of the model. Possible explanation for this could be that a low c decreases the influence of
unlabelled examples on the gradient.

The question arises when discussing Assumption 2 (see expression 2.6), which is: ‘Is this assumption rea-
sonable?’ or even ‘Is this assumption realistic?’. The answers are ‘yes’ and ‘probably not’ in the data set of
Rabobank. One could say that the probability that Rabobank missed a case, after some fixed time, is always
approximately the same. On the other hand, the cases are divided in 20 different groups of different case
types. But, in our analysis we used all the cases as one group. To make the model more realistic, the value of c
could vary for each case type. Intuitively, it is possible that some case type can be labelled easily and the other
case type is harder to identify. Therefore, the values of c would be different. The likelihood function could in
this case be split in more groups of labelled examples.

The data set, that was given by Rabobank, contains only labelled cases. There is no case that is left unlabelled.
So, we separated the data set into a training set and a test set. On the training set, we used all labelled and
unlabelled transactions to determine the parameters θ and c. But in the training set, there was no unlabelled
case, so it is not weird that we got c = 1 after running the model. On the test set, we tested the model. All
the transactions got a score and were then compare to the actual label. Now, looking back at the procedure
we described, I think that the following could make the test more reliable. Take all the cases (y=1) and take
s ∼ Ber(c) for some 0 < c < 1. Use the labelled transactions and unlabelled transactions to estimate θ. Now,
score all the unlabelled transactions and then compare this to actual label. This procedure looks more like
the real situation, where transactions are always unlabelled at first, since they only just took place. Our model
gives a score on the transaction and then uses it to update the model. Later on, a employee can decide to label
the transaction as a case, and is added to the labelled transactions. For this procedure, there is no need to
split up the complete data set into two sets, but only the cases need to be split (labelled and unlabelled).

AdaGrad with diagonal matrices uses a correction factor (Ht ) j , for the j th feature, to correct the step size
η (also called learning rate). This correction factor makes sure that frequent unimportant features get can-
celled out and that rare but important features get important. Also, we used oversampling of the cases and
undersampling of the non-cases. Rare features that would predict cases will also fade out since the cases
are presented much more than they should. Also, the undersampling of non-cases causes unimportant fea-
tures to stay longer important. In a realistic situation, all transactions are scored and used to update the
model, even before they were labelled as case. After evaluation of an employee, some transactions would be
considered as case. This group of cases needs to be presented to the model, where this time the label is 1.
The question is whether a case needs to be presented more times or only once to the model. After a couple
updates of the model using non-cases, the model could be forgotten which features were important to look
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at. So, the question remains what the best frequency is to present cases to the model. For our analysis, we
injected a case after each 20 unlabelled transactions (acquired by validation).

PU–learning is a hard problem. There are other methods purposed to solve this problem. For example, in
Liu, Dai, Li, Lee, and Yu [15], they try to built a set of negative examples and choose a classifier, from a set of
classifiers, that predicts both the negative and positive examples correctly. In Appendix A.4, this method is
discussed in more detail.



A
PREVIOUS WORK

In this chapter, previous work done in the field of machine learning is discussed. In particular, some back-
ground is given about supervised learning, online learning and PU–learning.

A.1. MACHINE LEARNING

Machine learning is a subfield of pattern recognition. Also data mining is considered closely related to these
fields. Machine learning, pattern recognition and data mining are subfields of computer science and artificial
intelligence, and also are strongly dependent on statistics and optimization. In machine learning data is used
in order to understand the underlying system. We try to reveal the underlying pattern. That’s why machine
learning is a form of pattern recognition. Within machine learning we have supervised and unsupervised
learning. The difference lies in the availability of labels in the data. In unsupervised learning we don’t have
these labels.

A.2. SUPERVISED LEARNING

Supervised learning is the machine learning task where we have labelled training data. The training data con-
sists of training examples. These training examples could be positive and negative examples. Each example
is a pair of the input (vector) and the expected output (label). The supervised learning algorithm uses the
training data to produce a function that can be used for mapping the new records to a label. In the optimal
scenario the supervised learning algorithm produces a function that maps all the new records to the correct
label.

A.3. ONLINE LEARNING

Traditionally machine learning uses a static training set to train the model. With static, we mean that during
training the training set does not change. It is also referred to as batch learning, or offline learning. Also the
underlying distribution from which the training examples are taken does not change over time.

In our case, we have to assume that the underlying distribution changes over time, because anomalies change
through time. That is where online learning comes in. Online learning is used when data becomes available
through time. An advantage, when a new training example presents itself, is that the mapping to create the
output is simply updated. In batch algorithms the whole data set needs to be represented to train the model.
This can save time and also the memory needed is much less than when a batch algorithm is used and ideally
the memory needed is constant.

Online machine learning is a subfield of supervised machine learning where the model learns one example
at a time. The algorithm consists of three sub steps. First an example is presented to the algorithm. Then
the model predicts the label of the example. In the third step we get the true label of the example. This
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information is then used to improve the model. The model is updated. The goal is to predict labels that are
close to the true labels.

A.4. PU-LEARNING

PU (Positive Unlabelled) learning, a special form of supervised learning, has only labels on interesting cases.
For the rest of the records we don’t whether it is uninterested to look at. They are called unlabelled.

In Elkan and Noto [4], PU–learning is explained and c is introduced as the approximation of P(s = 1|x, y = 1),
which is independent of the features x. The data used contains positive examples (which are labelled) and
unlabelled examples for which is unknown whether it is positive or negative. Hence, the label s is known,
but the question is whether all positive examples are indeed labelled. They propose to use a classical learn-
ing classifier using the labels s to approximate the probability P(y = 1|x, s = 0). Also, for this the value of c
is needed. They estimate this by averaging the result of the classical learning classifier for all the positive
examples.

In Liu, Dai, Li, Lee, and Yu [15], all sorts of PU–learning algorithms are build. They use a different approach
that contains two steps:

1. Identify a set of reliable negative examples from the unlabelled set.

2. Build a set of classifiers applying a classification algorithm and then choose a good classifier.

These two steps can be repeated to increase the number of negative examples that are classified as negative,
while maintaining that positive examples are correctly classified.

In Lee and Liu [16], PU–learning is used with Weighted Logistic Regression. They define:

P(s = 1|y = 1) = 1−α

and
P(s = 0|y = 1) =α

where α is unknown. To avoid the problem of not knowing α, the expected sum of false positive and false
negative error frequencies is minimized. This is shown to be equal to expected weighted error where false
positives are multiplied by P(s = 0) and false negatives by P(s = 1). Logistic regression with regularization
(adding the sum of squared weights) is performed to approximate the conditional probability P(s = 1|x). This
function is convex, en therefore with simple gradient descent the optimum can be found (under some con-
ditions).



B
BACKGROUND INFORMATION

In this chapter, some background information is given about probit regression, convex optimization and `2-
optimization.

B.1. PROBIT REGRESSION

Probit regression is a type of statistical classification model. It is used to predict a binary response variable,
in our case y ∈ {0,1}. The name probit originates from probability unit. The model gives us the probability
that y = 1. Then a threshold can be chosen to determine which probability is high enough to be classified as
a case.

The probit function is equal to

f (x) =Φ(x) = 1

2

[
1+erf

(
xp
2

)]
,

which is the link function for probit regression. The link function links the variables and the response variable
in a continuous way.

THE DERIVATIVE OF THE PROBIT FUNCTION

The derivative of the function f is needed, further on. If the probit model is used, hence f (x) = Φ(x) =
1
2

[
1+erf( xp

2
)
]

, then

f ′(x) =φ(x) = e
1
2 x2

p
2π

,

where φ(x) is the pdf andΦ(x) is the cdf of the standard normal distribution.
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B.2. CONVEX OPTIMIZATION

Convex optimization, a subfield of optimization, looks at minimizing convex functions over convex sets. Be-
cause of the convexity property a local minimum must be a global minimum.

An optimization problem, finding some w∗ ∈W ⊂Rd such that

f (w∗) = min
{

f (w) : w ∈W
}

,

is called convex, if W is a closed convex set and f (w) is convex in W . We call W the feasible set, which is the
set of all the possible values of the parameters w, and f (w) :Rd ⇒R is the objective function, which we’d like
to minimize.

In Dattorro [17], the following definitions for convex sets and convex functions are used:

Definition B.1. A set W is convex ⇔ for all w1, w2 ∈W and 0 ≤µ≤ 1:

µw1 + (1−µ)w2 ∈W .

Definition B.2. Let W be a convex set and let f : W → R be a function. Function f is called convex in W ⇔ for
all w1, w2 ∈W and 0 ≤µ≤ 1:

f (µw1 + (1−µ)w2) ≤µ f (w1)+ (1−µ) f (w2). (B.1)

If the inequality in (B.1) in Definition B.2 can be replaced by a strict inequality, then we have that function f
is strictly convex. Also by reversing the inequality sign in Definition B.2 flips the definition to concavity. In
other words:

Definition B.3. Function f : W →R is concave ⇔− f is convex.

The standard form is often used to describe optimization problems. In Boyd and Vandenberghe [18], the
standard form is discussed more in detail and also a couple of variants are discussed.

The standard form for a optimization problem is:

minimizew f (w)

subject to gi (w) ≤ 0 i = 1, . . . ,m

h j (w) = 0 j = 1, . . . , p

Definition B.4. An optimization problem, in the standard form, is called convex ⇔ f (w) and gi (w), for every
i ∈ {1, . . . ,m}, are convex functions and h j (w) is linear, or affine (both convex and concave).

The use of the standard form is to make it more easy to compare different optimization problems and also to
define when we call it a convex optimization problem.

Note that h j (w) = 0 can be written as two inequality constrains h j (w) ≤ 0 and −h j (w) ≤ 0. This shows that
the equality constraints are unneeded, but in practice can be convenient. Furthermore it shows why h j (w)
should be affine. Because if h j (w) is convex, then h j (w) ≤ 0 is convex, but −h j (w) ≤ 0 would be concave. And
vice versa, hence h j (w) cannot be convex or concave, so it must be affine (linear).

B.2.1. PENALIZED CONVEX OPTIMIZATION

In penalized convex optimization, we try to find a solution for vector w that minimizes a convex objective
function in w with an additional term that regulates the complexity of w. Two common choices for this
penalty are the `1-norm and the squared `2-norm.

Mathematically equivalent is formulating a constrained convex optimization problem. The penalty can be
implemented as an inequality where the penalty is smaller or equal than a certain number. In this way, we
can optimize the objective function in order to find a solution with a bounded norm.
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B.2.2. USING `2-PROJECTION WITH ADAGRAD WITH DIAGONAL MATRICES

SupposeΘ= {θ : ‖θ‖2
2 ≤λ}.

Lemma B.5. The convex minimization problem is:

minimizeθ
1

2
θT Htθ+qTθ (B.2)

subject to ‖θ‖2
2 ≤λ.

where q =−Ht θ̃t+1, solved by:
θt+1 = θ̃t+1, if ‖θ∗‖2

2 ≤λ.

Otherwise, solve
n∑

i=1

q2
i

(ai +µ)2 =λ,

for µ and insert µ into
θt+1 = (Ht +µI )−1Ht θ̃t+1

to get the solution.

Proof. Note that ‖θ‖2
2 ≤λ is equivalent to θTθ ≤λ. The augmented Lagrangian will look like:

L (θ,µ) = 1

2
θT Htθ+qTθ+ 1

2
µ(θTθ−λ)

where µ is twice the Lagrange multiplier.

The Karush–Kuhn–Tucker (KKT) conditions, that must hold for the optimal point θ∗:, are used:

Stationarity: ∇θL (θ∗,µ) = Htθ
∗+q +µθ∗ = 0,

Complementary slackness: µ · ((θ∗)Tθ∗−λ) = 0,
Condition: µ≥ 0.

Complementary slackness gives two cases:

(a) µ= 0, which gives us the unconstrained case,

(b) (θ∗)Tθ∗ =λ.

Case (a): µ= 0.

Then, stationarity gives us the solution:

Htθ
∗+q = 0

Htθ
∗ =−q

θ∗ =−H−1
t q.

Check whether ‖θ∗‖2
2 ≤λ. Otherwise, go to case (b).

Case (b): (θ∗)Tθ∗ =λ.

The following three conditions need to be met:

Htθ
∗+q +µθ∗ = 0 (B.3)

(θ∗)Tθ∗ =λ (B.4)

µ> 0 (B.5)

From Condition (B.3), we get:
(Ht +µI )θ∗ =−q.
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If µ was known, then the solution will be equal to:

θ∗ =−(Ht +µI )−1q. (B.6)

Condition (B.3) is used to find µ. Multiply (B.6) by (θ∗)T from the left side:

(θ∗)Tθ∗ = qT (Ht +µI )−2q, (B.7)

and from Condition (B.3), we get:

qT (Ht +µI )−2q =λ. (B.8)

Suppose that the quadratic form (B.8) has two solution µ1 and µ2.

Take µ= max{ 0, max{ µ1,µ2 } } and use µ=µ in (B.6) to compute θ∗.

Since matrix Ht is diagonal, we can rewrite (B.8).

Suppose ai is the ith element on the diagonal of Ht . Find µ, such that:

n∑
i=1

q2
i

(ai +µ)2 =λ.



C
MISSING DATA PROBLEM

In this chapter, the assumption is that there is missing data in our problem. Rabobank provided a list of
cases, transactions for which the label s = 1. For these transactions, we know that y = 1. For the rest for the
transactions, the assumption is that the value for y , their “true label", is missing. Two methods, that both
handle this missing data, will be discussed. In Section C.2, the Expectation-Maximization method, which is
a frequentistic method, is explained. In Section C.3, the Data Augmentation method, which is a Bayesian
method, is discussed. For both models, the likelihood function is needed. In Section C.1, the likelihood
function will be derived.

These models could not incorporate the value of c = P(s = 1|x, y = 1). Because, we though this was essential
information to use in our model, we chose to take a slightly different model.

C.1. LIKELIHOOD FUNCTION

Suppose that each transaction i is labelled (so si = 0 or si = 1). Remember that transactions with label si = 1,
are cases (so yi = 1), because of Assumption 1 (2.2). For the rest of the transactions, labelled s = 0, the value
of y is unknown. The complete data set would be for every transaction i with features xi to know whether
yi = 1, if the transaction is a case, else yi = 0. But the sequence of yi ’s is incomplete.

The following assumption holds for every transaction i , when the value of yi is unknown:

P(yi = 1|xi ) = f (θT xi ), (C.1)

where f :R→ [0,1] is either the logistic function ψ(x) = 1

1+e−x or the standard normal distribution function

Φ(x) = e−
1
2 x2

p
2π

, depending on whether logistic regression or probit regression is used. Both functions have the

same co-domain, namely [0,1], which is the allowed area of a probability.

Only when the complete data is available (i.e. y complete), the likelihood can be computed. This likelihood is
called the complete data likelihood, and denote it as L C , where a superscripted C indicates that the complete
data is used. Hence, as if all yi were available.

C.1.1. THE COMPLETE DATA LIKELIHOOD

The complete data likelihood function will become:

L C (θ|y1, . . . , yn) =
n∏

i=1
P(yi |θ,xi )

=
n∏

i=1

[
f (θT xi )

]yi · [1− f (θT xi )
]1−yi .

53
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Then the logarithm of the complete data likelihood is taken:

`C (θ|y1, . . . , yn) = logL C (θ|y1, . . . , yn)

=
n∑

i=1

[
yi · log( f (θT xi ))+ (1− yi ) · log

(
1− f (θT xi )

)]
(C.2)

Because of assumption 1, equation (C.2) can be rewritten. The complete log-likelihood function is split into
two parts, the first part for the labelled transactions (which are cases) and the other for the non-labelled
transactions. Let W = {transaction i : si = 1} the set of labelled transactions, which implicates that for these
transactions also holds yi = 1 for i ∈W . Equation (C.2) will become:

`C (θ|y1, . . . , yn) = ∑
i∈W

log
(

f (θT xi )
)+ ∑

i∈W C

[
yi · log( f (θT xi ))+ (1− yi ) · log

(
1− f (θT xi )

)]
(C.3)

C.2. EXPECTATION–MAXIMIZATION ALGORITHM

The Expectation-Maximization (EM) algorithm is first introduced in Dempster, Laird, and Rubin [19]. Since
then the EM algorithm is used to solve a variety of problems.

In Borman [20], the following description is given: “The Expectation–Maximization (EM) algorithm is an ef-
ficient iterative procedure to compute the Maximum Likelihood (ML) estimate in the presence of missing or
hidden data. In ML estimation, we wish to estimate the model parameter for which the observed data are the
most likely.
Each iteration of the EM algorithm consists of two processes: The E-step, and the M-step. In the expectation, or
E-step, the missing data are estimated given the observed data and current estimate of the model parameters.
This is achieved using the conditional expectation, explaining the choice of terminology. In the M-step, the
likelihood function is maximized under the assumption that the missing data are known. The estimate of the
missing data from the E-step are used in the M-step as if they were the actual missing data.
Convergence is assured since the algorithm is guaranteed to increase the likelihood at each iteration.”

Expectation–Maximization algorithm

1. INITIATE θ0.

2. COMPUTE Q(θ|θ0,x) = Eθ0 [logL C (θ|x,y)] = Eθ0 [`C (θ|x,y)] where the expectation is with respect
to k

(
y|θ0,x

)
.

3. COMPUTE θ1 = argmaxθQ(θ|θ1,x).

4. Stop when the increment of the likelihood is small. When this is not the case go to Step 2. using
θ0 = θ1.

For the EM algorithm, logistic regression was chosen, hence the logit function f (x) = 1

1+e−x is used to predict

y. The function k(y|θ,xi ), from step 2. in the EM algorithm, is equal to the function f , namely

P(Y = 1|θ̃,xi ) = k
(
y|θ̃,xi

)= f
(
θ̃

T
xi

)
= 1

1+e−θ̃
T

xi

= pi .

The power of the EM algorithm lies in easy expressions that comes out of step 2 and 3.

C.2.1. E - STEP

Q(θ|θ̃,x) is computed, using expression ( ) from Section 2.2.1:

Q(θ|θ̃,x) = Eθ̃[`C (θ|x,y)]

= Eθ̃
[
−

n∑
i=1

log
(
1+e−θ

T x
)
+

n∑
i=1

yiθ
T x

]
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=−
n∑

i=1
log

(
1+e−θ

T x
)
+Eθ̃

[
n∑

i=1
yiθ

T x

]

=−
n∑

i=1
log

(
1+e−θ

T x
)
+

n∑
i=1

Eθ̃
[

yiθ
T x

]
=−

n∑
i=1

log
(
1+e−θ

T x
)
+

n∑
i=1

∑
y ∈ {0,1}

[
P(Y = y |θ̃,xi ) · yi ·θT x

]
=−

n∑
i=1

log
(
1+e−θ

T x
)
+

n∑
i=1

[
pi ·1 ·θT x+ (1−pi ) ·0 ·θT x

]
=−

n∑
i=1

log
(
1+e−θ

T x
)
+

n∑
i=1

[
pi ·θT x

]
where

pi = f
(
θ̃

T
xi

)
= 1

1+e−θ̃
T

xi

.

C.2.2. M - STEP

Then Q(θ|θ̃,x) in θ is maximized. Suppose that θ is d-dimensional. The derivative with respect to θ j is taken:

∂Q

∂θ j

(
θ|θ̃,x

)=−
n∑

i=1

xi j e−θ
T xi

1+e−θT xi
+

n∑
i=1

pi ·xi j

=−
n∑

i=1

xi j

1+eθ
T xi

+
n∑

i=1
pi ·xi j

=
n∑

i=1
xi j ·

(
pi − 1

1+eθ
T xi

)
,

where xi j is the element of x in the i th row and the j th column.

The derivatives need to be equal to 0 in order to find a maximal value for Q(θ|θ̃,x). When looking at the
derivatives above, there is no explicit form for θ, for which the derivatives are all equal to zero. The power of
the EM algorithm should lie in a direct way to compute θ given the xi and the previous parameter θ̃.

C.3. DATA AUGMENTATION METHOD

The Data Augmentation (DA) algorithm, a special case of the Gibbs sampler, which is a special case of the
Metropolis-Hastings algorithm, is explained. The Gibbs sampler is a Markov Chain Monte Carlo (MCMC)
method for obtaining samples from a multivariate probability function, when direct sampling is difficult.
These samples can be used to approximate the joint distribution. For example, the joint distribution of two
random variables, called W1 and W2, is of interest, but direct sampling is impossible. By sampling from the
conditional distributions W1|W2 and W2|W1 iteratively, samples from the joint distribution are obtained.

The missing values of y are simulated and used to update our parameter θ. First, the needed assumptions are
stated. Then the two steps of the Data Augmentation algorithm are explained.

The basic model will be logistic regression. Hence

P(y = 1|s = 0) = f (θT x),

where f (x) is the logistic function ψ(x).

We observe the pairs (xi , si ) for i = 1, . . . ,n. For each j , where s j = 1, we have y j = 1. The rest of the y are
missing values. We would like to have the pairs (xi , yi ) for i = 1, . . . ,n. Remember the definition of W =
{event i : si = 1}.

Inspiration for the data augmentation implemented for the problem comes from Example 5 in Hobert [21].
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With the data augmentation algorithm wee want to generate samples from the distribution of θ and {yi : i ∉
W } given {yi : i ∈ W }. In this way we predict our parameter θ and impute the missing values {yi : i ∉ W }. In
order to so we will have to sample from the following two distributions iteratively:

1. {yi : i ∉W } given θ and {yi : i ∈W },

2. θ given {yi : i ∉W } and {yi : i ∈W }.

Sampling from the first distribution can be done easily, as seen in step 1 below. Sampling from the second
is more difficult. We will have to introduce a latent variable z in order to do so. Actually we sample from the
second distribution using the data augmentation again. So we will sample from

2. θ, z given {yi : i ∉W } and {yi : i ∈W },

by sampling from

2a. θ given z, {yi : i ∉W } and {yi : i ∈W },

2b. z given θ, {yi : i ∉W } and {yi : i ∈W }.

Below, we discuss this procedure in more detail.

C.3.1. STEP 0: CHOOSE A START VALUE FOR θ

First, choose a start value for the parameters θ. Call the choice θ0.

C.3.2. STEP 1: DATA AUGMENTATION

In this step, the missing values of y are simulated. For each j ∈W C , so where s j = 0:

y j =
{

1, with probability f (θT x),
0, with probability 1− f (θT x).

(C.4)

Hence, from the distribution of {yi : i ∉W } given θ and {yi : i ∈W } is sampled.

C.3.3. STEP 2: UPDATING PARAMETER θ

The missing values of y are simulated in Step 1. Hence, now a complete sequence yi for i = 1, . . . ,n is available.
With this sequence, the parameter θ is updated. Now generate a sample from π(θ, z|y), where z is a dummy
variable. Below, is discussed how the z is chosen. In order to sample from π(θ, z|y), we sample from π(z|θ, y)
and π(θ|z, y). A common problem is that z and θ influence each other. In order to lower the dependence
between z and θ, z is scaled:

z ′ =p
v z.

This step consists of three sub steps. The first sub step is generating z from the truncated normal distribution.
Let TN(µ,σ2,u) denote a normal distribution with mean µ and variance σ2 that is truncated to be positive if
u = 1 and negative if u = 0. The second sub step draws a sample v from a Gamma distribution and then
z ′ =p

v z is computed. The third step updates the parameter θ.

Adding step 2a to the data augmentation model, makes it easier to get samples from π(θ, z|y). Adding step
2b, makes the model a Haar PX-DA model, which means it’s a fast mixing Parameter eXpanded DA algorithm
using an improper Haar density. The PX-DA algorithm is sometimes called Marginal Augmentation and can
be used with a variety of densities. Step 2b can be excluded, if there is no sign of autocorrelation, by using just
z for step 2c.

STEP 2A: GENERATING z

Given the θ and y the zi ’s are independent. Draw Z1, . . . , Zn independently such that Zi ∼ TN(θT x,1, yi ), and
call the result z = (z1, . . . , zn)T . A method called the inverse transform method is used to generate the samples
from the truncated normal distribution.
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If you want z to be sampled from a truncated standard normal distribution on (a,b), then:

z =Φ−1 (Φ(a)+ (Φ(b)−Φ(a)) ·U ) ,

whereΦ is the cumulative distribution function,Φ−1 its inverse and U a vector of random numbers on [0,1].

The truncated normal distribution on (−∞,0) is needed, when yi = 0, and on (0,∞), when yi = 1. Remember
thatΦ(−∞) = 0 andΦ(∞) = 1. Hence:

zi =
{
Φ̃−1

(
Φ̃(0) ·ui

)
, if yi = 0,

Φ̃−1
(
Φ̃(0)+ (

1− Φ̃(0)
) ·ui

)
, if yi = 1,

(C.5)

where Φ̃ and Φ̃−1, with mean θT x and variance 1, are used. The expression could be rewritten using the cdf
of the standard normal distributionΦ(·), using the following identities:

Φ̃(α) =Φ
(α−µ

σ

)
,

and
Φ̃−1(β) =Φ−1(β) ·σ+µ,

where µ is the mean of the normal distribution, in this case θT x, and σ is the variance, which is 1 in our case.
Remember also thatΦ(−x) = 1−Φ(x) andΦ(x) =−Φ(1−x) hold. Then, the second part of equation (C.5) can
be rewritten:

zi ·1{yi=1} = Φ̃−1 (
Φ̃(0)+ (

1− Φ̃(0)
) ·ui

)
,

=Φ−1 (
Φ(−µ)+ (

1−Φ(−µ)
) ·ui

)+µ,

=−Φ−1 (
1−Φ(−µ)− (

1−Φ(−µ)
) ·ui

)+µ,

=−Φ−1 (
Φ(µ)−Φ(µ) ·ui

)+µ,

=−Φ−1 (
Φ(µ) · (1−ui )

)+µ,

=−Φ−1 (
Φ(µ) · ũi )

)+µ,

where ũi is also a sample from a uniform distribution on [0,1]. Hence

zi =
{
Φ−1

(
Φ(−µ) ·ui

)+µ, if yi = 0,
−Φ−1

(
Φ(µ) ·ui

)+µ, if yi = 1,
(C.6)

with Φ(·) the cdf of the standard normal distribution, its inverse Φ−1(·), and ui sampled from a uniform dis-
tribution on [0,1].

STEP 2B: GENERATING z ′

This step is to lower the dependence between z and θ. Draw v ∼ Gamma

(
n

2
,

zT (I −H)z

2

)
, where H =

x(xT x)−1xT . Set z ′ =p
v z.

STEP 2C: UPDATING PARAMETER θ

Draw the next state Xn+1 ∼ N
(
θ̃(z ′), (xT x)−1

)
, where θ̃(z ′) = (xT x)−1xT z ′. This sample will be our new θ.

In order to avoid taking the inverse of xT x, we consider a QR decomposition on x. Hence two matrices are
found, a orthogonal matrix Q and an upper triangular matrix R, such that x =QR.

From the following equation θ̃(z) is obtained:

θ̃ = (xT x)−1xT z ′,
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⇔ xT xθ̃ = xT z ′,

⇔ (QR)T QRθ̃ = (QR)T z ′,

⇔ RT QT QRθ̃ = RT QT z ′,

⇔ RT Rθ̃ = RT QT z ′,

⇔ Rθ̃ =QT z ′,

by using Gauss elimination instead of the inverse of R.

Sampling from the multivariate distribution of Xn+1 can be done in the following way:

{
Rv = w
Xn+1 = θ̃+v ,

(C.7)

where w is a vector of samples from the standard normal distribution. Since:

Xn+1 ∼ N
(
θ̃, (RT R)−1) ,

Xn+1 = θ̃+R−1w.

This can be rewritten as R(Xn+1 − θ̃) = w. Call v = Xn+1 − θ̃, then this is the same as in (C.7).



D
MATLAB CODE

This chapter displays the files created with MATLAB.

D.1. ADAGRAD ALGORITHM

D.1.1. RUN MODEL

This code uses the following other codes:

• startup_model.m (see D.1.1)

• make_training_and_test_set.m (see D.1.1)

• save_facts.m (see D.1.1)

• pick_case.m (see D.1.1)

• pick_record.m (see D.1.1)

• update_parameter.m (see D.1.1)

• test_record.m (see D.1.1)

• test_training_record.m (see D.1.1)

• compute_AUC_value.m (see D.1.1)

• performance.m (see D.1.1)

1 %% F i r s t time run startup_model
2 % Choose whether you want to clear and close everything
3 closing = 1 ;
4 i f closing == 1
5 close a l l
6 end
7 clearing = 1 ;
8 i f c learing == 1
9 clear a l l

10 end
11

12 t imer_total = t i c ;
13 normalizing = 0 ;
14 scal ing = 0 ;
15 maximum_value = [ ] ;
16 sample_mean = [ ] ;

59
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17 sample_variance = [ ] ;
18

19 % I n i t i a t e parameters , learning rate , l_1−r e s t r i c t i o n , etc .
20 casetype = ’ a l l ’ ; % Choose casetype
21 lambda = 5 ; % l_1−constraint : 1−norm leq delta
22 eta = 1 ; % Learning rate eta
23 v e r s i e = 100; % Version
24 prior = 1 ; % 0 : take no prior on c // 1 : take a prior on c .
25

26 load ( ’ Result / selected_variables . mat ’ , ’ se lected_variables ’ )
27 selected_variables = sort ( selected_variables ( : ) ) ;
28

29 map_result = [ ’ Result \ ’ , casetype , ’ _version ’ , num2str ( v e r s i e ) , ’ \ ’ ] ; % Save in
map_result

30 mkdir ( map_result )
31

32 [m, type , ext1 ,map1, ext2 ,map2, l i s t , l i s t 2 , l ikel ihood , w_last , wt ,G,H, projv , s , delta ] =
startup_model ( casetype , lambda , selected_variables ) ;

33

34 %% Prepare
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
36 % Make training and t e s t set
37 make_new_set = 1 ;
38 n_sub = 0 . 0 1 ; % Take t h i s percentage of the non−cases .
39 n_samp = 20; % Once every n_samp non−cases , i n s e r t a case .
40 perc = 0 . 9 ; % Percentages used for the training set .
41 n_subsets = 9 ;
42 [n , perm, n_subtotal , n_train , n_test , n_save , number_of_cases , m_train , m_test , perm2 ,

perm_train , perm_test , count ] = make_training_and_test_set ( make_new_set , l i s t 2 , l i s t ,
map1, casetype , n_sub , n_samp , perc , map_result ) ;

43 count_inf i le = cumsum( count ) ;
44

45 % Scaling or normalizing
46 sample_struct = load ( ’ sample . mat ’ , ’maximum ’ , ’sample_mean ’ , ’ sample_variance ’ ) ;
47 normalizing = 1 ;
48 %scal ing = 1 ;
49 i _ s e l e c t e d = selected_variables ( find ( selected_variables >1523) ) −1523;
50 i f scal ing == 1
51 maximum_value2 = sample_struct .maximum;
52 maximum_value ( 1 , : ) = maximum_value2( i _ s e l e c t e d ) ’ ;
53 clear maximum_value2
54 e l s e i f normalizing == 1
55 sample_mean2 = sample_struct . sample_mean ;
56 sample_variance2 = sample_struct . sample_variance ;
57

58 sample_mean = sample_mean2( i _ s e l e c t e d ) ;
59 sample_variance = sample_variance2 ( i _ s e l e c t e d ) ;
60 clear sample_mean2
61 clear sample_variance2
62 end
63 clear i _ s e l e c t e d
64 clear sample_struct
65

66 %% Validate
67 v a l i d a t i n g = 0 ;
68
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69 i f v a l i d a t i n g == 1
70 lambda_test = 1 : 5 ;
71

72 % Cases
73 m8 = c e i l ( m_train/ n_subsets ) ;
74 m9 = m_train − 8*m8;
75 s t a r t = 0 ; s t a r t 2 =0;
76 for i =1: n_subsets
77 i f i ==n_subsets
78 trainingset_cases ( i , 1 :m9) =perm_train ( ( 1 :m9) + s t a r t ) ;
79 trainingset_noncases ( i , 1 ) =perm(1+ s t a r t 2 ) ;
80 else
81 trainingset_cases ( i , 1 :m8) =perm_train ( ( 1 :m8) + s t a r t ) ;
82 trainingset_noncases ( i , 1 ) =perm(1+ s t a r t 2 ) ;
83 s t a r t = s t a r t + m8;
84 s t a r t 2 = s t a r t 2 + 1 ;
85 end
86 end
87

88 % Validate
89 for i =1: n_subsets
90 disp ( ’ ’ )
91 disp ( [ ’ Validation step ’ , num2str ( i ) , ’ has started . ’ ] )
92 disp ( ’ ’ )
93 numbers=1: n_subsets ;
94 numbers( i ) = [ ] ;
95 clear train_indices
96 n_end = m9;
97

98 for j =1: length ( lambda_test )
99 AUC( i , j +10) = compute_AUC( lambda_test ( j ) , trainingset_cases ,

trainingset_noncases , numbers , i , n_end , w_last , type , delta , eta , l i s t 2 ,map2,
l i s t ,map1, count_infi le , prior , selected_variables , sample_mean ,
sample_variance , maximum_value , normalizing , scal ing ) ;

100 end
101 disp ( ’ ’ )
102 disp ( [ ’ Validation step ’ , num2str ( i ) , ’ i s f inished . ’ ] )
103 end
104

105 average_AUC = sum(AUC, 1 ) / s i z e (AUC, 1 ) ;
106 [ sorted_average_AUC , indices_sort ] = sort ( average_AUC , ’ descend ’ ) ;
107 lambda = lambda_test ( indices_sort ( 1 ) ) ;
108 else
109 %lambda = 15;
110 end
111

112 %% Save f a c t s
113 permission = ’w’ ; % overwrite
114 %permission = ’ a ’ ; % add
115 save_facts ( permission , casetype , lambda , eta , type , delta , n_subtotal , n_train , n_test ,

n_save , n_samp , m_train , m_test ,m, number_of_cases , map_result , perc , selected_variables
) ;

116

117 % Load format s p e c i f i c a t i o n s
118 f i l e I D = fopen ( ’ FormatSpec . t x t ’ , ’ r ’ ) ;
119 FormatSpec = fscanf ( f i l e I D , ’%s ’ ) ;
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120 f c l o s e ( f i l e I D ) ;
121

122 %% Train
123 % lambda = 5
124 % save_facts ( permission , casetype , lambda , eta , type , delta , n_subtotal , n_train , n_test ,

n_save , n_samp , m_train , m_test ,m, number_of_cases , [ map_result , ’ lambda5 \ ’ ] , perc ,
selected_variables ) ;

125 %%%%%%%%%%%%%%%%%%%
126 % S t a r t training
127 %%%%%%%%%%%%%%%%%%%
128 disp ( ’ ’ )
129 disp ( ’−− Training has started −− ’ )
130 disp ( ’ ’ )
131 l a s t = 0 ;
132 indices_train = perm_train ( randperm ( length ( perm_train ) ) ) ;
133 k_case = 1 ;
134

135 for i = 1 : n_train
136 % Load . csv−f i l e , pick a l l records and store in ’ records ’
137 records = pick_record ( l i s t 2 (perm( i ) ) .name,map2) ;
138 disp ( [ ’ F i l e # ’ , num2str ( i ) , ’ : Found ’ , num2str ( s i z e ( records , 1 ) ) , ’ records . ’ ] )
139 disp ( [ ’Name: ’ , l i s t 2 (perm( i ) ) .name] )
140 disp ( ’ ’ )
141

142 % For t h i s f i l e , use each record for training
143 for j = 1 : s i z e ( records , 1 )
144 % S t a r t with a case and a f t e r every n_samp non−cases i n j e c t a case .
145 i f mod( l a s t +j , n_samp) ==0 | | l a s t + j == 1
146 % Pick a random case from the training set
147 place = indices_train ( k_case ) ;
148 temp = find ( count_inf i le >= place ) ;
149 k = temp( 1 ) ;
150 clear temp
151 i f k == 1
152 p l a c e _ i n f i l e = place ;
153 else
154 p l a c e _ i n f i l e = place − count_inf i le ( k−1) ;
155 end
156

157 % Load variables from case
158 record = pick_case ( l i s t ( k ) .name,map1, p l a c e _ i n f i l e ) ;
159 disp ( ’ ’ )
160 disp ( [ ’ Case # ’ , num2str ( p l a c e _ i n f i l e ) , ’ , from ’ , l i s t ( k ) .name, ’ , i s loaded

. ’ ] )
161

162 % Update parameters
163 [randomID( l a s t +j , 1 ) , timestamp ( l a s t +j , 1 ) , l ab e l { l a s t +j , 1 } , s ( l a s t + j ) ,

l ikel ihood ( l a s t +j , 1 ) ,G, ~ ,w_new, ~ ] = update_parameter ( record , w_last ,G,
delta , type ,m, l a s t +j , eta , lambda , prior , selected_variables , sample_mean ,
sample_variance , maximum_value , normalizing , scal ing ) ; %#ok<SAGROW>

164

165 w_last = w_new;
166 disp ( [ ’ Case # ’ , num2str ( place ) , ’ , from ’ , l i s t ( k ) .name, ’ , i s f inished . ’ ] )
167

168 l a s t = l a s t + 1 ;
169 i f k_case+1 <= length ( perm_train )
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170 k_case = k_case + 1 ;
171 else
172 k_case = 1 ;
173 end
174 end
175 % Use a non−case from ’ records ’ to update model
176 disp ( ’ ’ )
177 disp ( [ ’ F i l e # ’ , num2str ( i ) , ’ : Record # ’ , num2str ( j ) , ’ / ’ , num2str ( s i z e ( records

, 1 ) ) , ’ i s loaded . ’ ] )
178

179 % Take one of the non−cases in ’ records ’
180 record = records { j , 1 } ;
181

182 % Update parameters
183 [randomID( l a s t +j , 1 ) , timestamp ( l a s t +j , 1 ) , l ab e l { l a s t +j , 1 } , s ( l a s t + j ) , l ikel ihood

( l a s t +j , 1 ) ,G,H,w_new] = update_parameter ( record , w_last ,G, delta , type ,m,
l a s t +j , eta , lambda , prior , selected_variables , sample_mean , sample_variance ,
maximum_value , normalizing , scal ing ) ; %#ok<SAGROW>

184

185 % Save parameter in w_last
186 w_last = w_new;
187 disp ( [ ’ F i l e # ’ , num2str ( i ) , ’ : ’ , ’ Record # ’ , num2str ( j ) , ’ / ’ , num2str ( s i z e (

records , 1 ) ) , ’ i s f inished . ’ ] )
188 end
189 l a s t = l a s t + s i z e ( records , 1 ) ;
190 clear records
191 disp ( [ ’ F i l e # ’ , num2str ( i ) , ’ i s f inished . ’ ] )
192 end
193

194 %% Train on a case one more time
195 k_case = 1 ;
196

197 % Pick a random case from the training set
198 for i = 1:1
199 place = indices_train ( k_case ) ;
200 temp = find ( count_inf i le >= place ) ;
201 k = temp( 1 ) ;
202 clear temp
203 i f k == 1
204 p l a c e _ i n f i l e = place ;
205 else
206 p l a c e _ i n f i l e = place − count_inf i le ( k−1) ;
207 end
208

209 % Load variables from case
210 record = pick_case ( l i s t ( k ) .name,map1, p l a c e _ i n f i l e ) ;
211 disp ( ’ ’ )
212 disp ( [ ’ Case # ’ , num2str ( place ) , ’ , from ’ , l i s t ( k ) .name, ’ , i s loaded . ’ ] )
213

214 % Update parameters
215 l a s t = s i z e (randomID, 1 ) ;
216 [randomID( l a s t +1 ,1) , timestamp ( l a s t +1 ,1) , l ab e l { l a s t +1 ,1} , s ( l a s t + j ) , l ikel ihood (

l a s t +1 ,1) ,G,H,w_new] = update_parameter ( record , w_last ,G, delta , type ,m, l a s t +j ,
eta , lambda , prior , selected_variables , sample_mean , sample_variance , maximum_value
, normalizing , scal ing ) ; %#ok<SAGROW>

217



64 D. MATLAB CODE

218 k_case = k_case + 1 ;
219 end
220 w_last = w_new;
221

222 % Save parameters w_last and w_new
223 save_parameter ( w_last ,w_new, map_result ) ;
224 disp ( [ ’ Case # ’ , num2str ( place ) , ’ , from ’ , l i s t ( k ) .name, ’ , i s f inished . ’ ] )
225

226 % Scale gamma to c again
227 c _ f i n a l = 1/(1+exp ( w_last (m+1) ) ) ;
228

229 % End of training
230 disp ( [ num2str ( l a s t ) , ’ records used during training ’ ] )
231 disp ( ’ ’ )
232 disp ( ’−− Training has ended −− ’ )
233 disp ( ’ ’ )
234

235 %% Testing the r e s u l t
236 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
237 % Testing on the t e s t set
238 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
239 disp ( ’ ’ )
240 disp ( ’−− Testing has started ( part 1) −− ’ )
241 disp ( ’ ’ )
242 l a s t = 0 ;
243

244 % Test on non−cases in t e s t set
245 for i = n_train +1: n_subtotal
246 records = pick_record ( l i s t 2 (perm( i ) ) .name,map2) ;
247 disp ( [ ’ F i l e # ’ , num2str ( i ) , ’ : Found ’ , num2str ( s i z e ( records , 1 ) ) , ’ records . ’ ] )
248 disp ( [ ’Name: ’ , l i s t 2 (perm( i ) ) .name] )
249

250 for j = 1 : s i z e ( records , 1 )
251 record = records { j , 1 } ;
252

253 [ test_randomID ( l a s t +j , 1 ) , test_timestamp ( l a s t +j , 1 ) , true_label { l a s t +j , 1 } ,
true_s ( l a s t +j , 1 ) , t e s t _ y ( l a s t +j , 1 ) ] = test_record ( record , w_last , type ,
selected_variables , sample_mean , sample_variance , maximum_value , normalizing ,
scal ing ) ; %#ok<SAGROW>

254 end
255 l a s t = l a s t + s i z e ( records , 1 ) ;
256 clear records
257 disp ( [ ’ F i l e # ’ , num2str ( i ) , ’ i s f inished . ’ ] )
258 disp ( ’ ’ )
259 end
260

261 % Test on cases in t e s t set
262 perm_test = sort ( perm_test ) ;
263 for j = 1 : length ( perm_test )
264 place = perm_test ( j ) ;
265 temp = find ( count_inf i le >= place ) ;
266 k = temp( 1 ) ;
267 clear temp
268 i f k == 1
269 p l a c e _ i n f i l e = place ;
270 else
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271 p l a c e _ i n f i l e = place − count_inf i le ( k−1) ;
272 end
273 record = pick_case ( l i s t ( k ) .name,map1, p l a c e _ i n f i l e ) ;
274

275 disp ( [ ’ Case # ’ , num2str ( p l a c e _ i n f i l e ) , ’ from : ’ , l i s t ( k ) .name] )
276

277 [ test_randomID ( l a s t +j , 1 ) , test_timestamp ( l a s t +j , 1 ) , true_label { l a s t +j , 1 } , true_s (
l a s t +j , 1 ) , t e s t _ y ( l a s t +j , 1 ) ] = test_record ( record , w_last , type ,
selected_variables , sample_mean , sample_variance , maximum_value , normalizing ,
scal ing ) ; %#ok<SAGROW>

278 end
279

280 % Save t e s t r e s u l t
281 save ( [ map_result , ’ \ scores_on_testset_label ’ , casetype , ’ . mat ’ ] , ’ perm_test ’ , ’ t e s t _ y ’ , ’

true_s ’ , ’ test_randomID ’ , ’ test_timestamp ’ ) ;
282 disp ( ’ ’ )
283 disp ( ’−− Testing has ended ( part 1) −− ’ )
284 disp ( ’ ’ )
285

286 %% Testing on training set
287 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
288 disp ( ’ ’ )
289 disp ( ’−− Testing has started ( part 2) −− ’ )
290 disp ( ’ ’ )
291 l a s t = 0 ;
292

293 % Test on non−cases in training set
294 for i = 1 : n_train
295 records = pick_record ( l i s t 2 (perm( i ) ) .name,map2) ;
296 disp ( [ ’ F i l e # ’ , num2str ( i ) , ’ : Found ’ , num2str ( s i z e ( records , 1 ) ) , ’ records . ’ ] )
297 disp ( [ ’Name: ’ , l i s t 2 (perm( i ) ) .name] )
298

299 for j = 1 : s i z e ( records , 1 )
300 record = records { j , 1 } ;
301

302 [ train_randomID ( l a s t +j , 1 ) , train_timestamp ( l a s t +j , 1 ) , true_label2 { l a s t +j , 1 } ,
true_s2 ( l a s t +j , 1 ) , train_y ( l a s t +j , 1 ) ] = test_training_record ( record , w_last
, type , selected_variables , sample_mean , sample_variance , maximum_value ,
normalizing , scal ing ) ; %#ok<SAGROW>

303 end
304 l a s t = l a s t + s i z e ( records , 1 ) ;
305 clear records
306 disp ( [ ’ F i l e # ’ , num2str ( i ) , ’ i s f inished . ’ ] )
307 disp ( ’ ’ )
308 end
309

310 % Test on cases in training set
311 perm_train = sort ( perm_train ) ;
312 for j = 1 : length ( perm_train )
313 place = perm_train ( j ) ;
314 temp = find ( count_inf i le >= place ) ;
315 k = temp( 1 ) ;
316 clear temp
317 i f k == 1
318 p l a c e _ i n f i l e = place ;
319 else
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320 p l a c e _ i n f i l e = place − count_inf i le ( k−1) ;
321 end
322 record = pick_case ( l i s t ( k ) .name,map1, p l a c e _ i n f i l e ) ;
323

324 disp ( [ ’ Case # ’ , num2str ( p l a c e _ i n f i l e ) , ’ from : ’ , l i s t ( k ) .name] )
325

326 [ train_randomID ( l a s t +j , 1 ) , train_timestamp ( l a s t +j , 1 ) , true_label2 { l a s t +j , 1 } ,
true_s2 ( l a s t +j , 1 ) , train_y ( l a s t +j , 1 ) ] = test_training_record ( record , w_last ,
type , selected_variables , sample_mean , sample_variance , maximum_value , normalizing
, scal ing ) ; %#ok<SAGROW>

327 end
328

329 % Save t e s t r e s u l t
330 save ( [ map_result , ’ scores_on_trainingset_label ’ , casetype , ’ . mat ’ ] , ’ perm_train ’ , ’

train_y ’ , ’ true_s2 ’ , ’ train_randomID ’ , ’ train_timestamp ’ ) ;
331 disp ( ’ ’ )
332 disp ( ’−− Testing has ended ( part 2) −− ’ )
333 disp ( ’ ’ )
334

335 %% Gathering r e s u l t s
336 %%%%%%%%%%%%%%%%%%%%%%
337 fo nts iz e = 12;
338 width = 2 ;
339 stepsize = 0 . 0 1 ;
340 interest ing_threshold = 0 . 5 ;
341

342 % On the t e s t set
343 [ AUC_test , TPR1 , FPR1 , SPC1 , ACC1, CF1] = compute_AUC_value ( test_y , true_s , stepsize ) ;
344

345 t e s t _ r e s u l t = [ test_y , true_s ] ;
346

347 x_standard = linspace (0 ,1 ,1000) ;
348

349 % Save r e s u l t s
350 save ( [ map_result , ’ FPRandTPR_test ’ , casetype , ’ . mat ’ ] , ’FPR1 ’ , ’TPR1 ’ , ’SPC1 ’ , ’ACC1 ’ , ’

AUC_test ’ , ’CF1 ’ , ’ t e s t _ r e s u l t ’ ) ;
351

352 % On the training set
353 [ AUC_train , TPR4 , FPR4 , SPC4 , ACC4, CF4] = compute_AUC_value ( train_y , true_s2 , stepsize ) ;
354

355 t r a i n _ r e s u l t = [ train_y , true_s2 ] ;
356

357 % Plot for the training set
358 h1 = f i g u r e ;
359 plot ( x_standard , x_standard , ’ k ’ ) ;
360 hold on
361 xlabel ( ’FPR ’ , ’ FontSize ’ , fo nts i z e )
362 ylabel ( ’TPR ’ , ’ FontSize ’ , fo nts i z e )
363 t i t l e ( ’ROC curves ’ )
364 plot (FPR4 , TPR4 , ’ r ’ , ’ LineWidth ’ , width )
365 plot (FPR1 , TPR1 , ’b ’ , ’ LineWidth ’ , width )
366 legend ( ’ ’ , ’ Training set ’ , ’ Test set ’ , ’ Location ’ , ’ SouthEast ’ )
367 hold o f f
368 set ( gca , ’XLim ’ , [ 0 1 ] , ’YLim ’ , [ 0 1 . 0 5 ] , ’ FontSize ’ , fo nts i z e )
369

370 % Save r e s u l t s
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371 save ( [ map_result , ’ FPRandTPR_train ’ , casetype , ’ . mat ’ ] , ’FPR4 ’ , ’TPR4 ’ , ’SPC4 ’ , ’ACC4 ’ , ’CF4
’ , ’ AUC_train ’ , ’ t r a i n _ r e s u l t ’ ) ;

372

373 % Save pictures
374 saveas ( h1 , [ map_result , ’ROCcurves . eps ’ ] , ’ psc2 ’ )
375 saveas ( h1 , [ map_result , ’ROCcurves . jpg ’ ] )
376

377

378 % Displaying the AUC values
379 disp ( [ ’ Test : The AUC value for t e s t i n g i s equal to ’ , num2str ( AUC_test ) , ’ . ’ ] )
380 disp ( [ ’The AUC value for training i s equal to ’ , num2str ( AUC_train ) , ’ . ’ ] )
381

382 total_time = toc ( t imer_total ) ;

STARTUP_MODEL.M

1 function [m, type , ext1 ,map1, ext2 ,map2, l i s t , l i s t 2 , l ikel ihood , w_last , wt ,G,H, projv , s ,
delta ] = startup_model ( casetype , lambda , selected_variables )

2 %% I n i t i a t e
3 ind = sum( selected_variables <=1523) ;
4 ind2 = sum( selected_variables >1523) ;
5 % Choose s t a r t values for our parameters : theta and c
6 c_0 = 0 . 9 ;
7 gamma_0 = log ( c_0 )−log(1−c_0 ) ;
8 theta_0 = ones(1+ ind*26+ind2 , 1 ) /(1+ ind*26+ind2 ) *lambda ;
9 m = length ( theta_0 ) ;

10

11 % L o g i s t i c regression or probit regression
12 type = ’ l o g i t ’ ;
13 % type = ’ probit ’ ;
14

15 % Making a l i s t of f i l e s
16 i f strcmp ( casetype , ’ a l l ’ ) == 1
17 casetype = ’ * ’ ;
18 end
19 ext1 = [ ’ * l a be l ’ , casetype , ’ . csv ’ ] ;
20 map1 = ’ Data_csv\Anon TM Cases CSV\ ’ ;
21 nameoffiles = [map1, ext1 ] ;
22 len = length ( dir ( nameoffiles ) ) ;
23 l i s t ( 1 : len , 1 ) = dir ( nameoffiles ) ;
24 ext2 = ’ * . csv ’ ;
25 map2 = ’ Data_csv\Anon TM CSV\ ’ ;
26 nameoffiles2 = [map2, ext2 ] ;
27 l i s t 2 ( 1 : length ( dir ( nameoffiles2 ) ) ) = dir ( nameoffiles2 ) ;
28

29 % I n i t i a t e
30 l ikel ihood = [ ] ;
31 w_last = [ theta_0 ;gamma_0 ] ;
32 wt = zeros (m+1 ,1) ;
33 G = zeros (m+1 ,1) ;
34 H = zeros (m+1 ,1) ;
35 projv = zeros (m+1 ,1) ;
36 s = [ ] ;
37 delta = 0 . 0 1 ;
38

39 end
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MAKE_TRAINING_AND_TEST_SET.M

1 function [n , perm, n_subtotal , n_train , n_test , n_save , number_of_cases , m_train , m_test ,
perm2 , perm_train , perm_test , count ] = make_training_and_test_set ( make_new_set , l i s t 2
, l i s t ,map1, casetype , n_sub , n_samp, perc , map_result )

2 i f make_new_set == 1
3 % Number of f i l e s
4 n = length ( l i s t 2 ) ;
5 perm = randperm (n , n) ;
6

7 % Take a sub set of the data
8 n_subtotal = f l o o r ( n_sub*n) ;
9

10 % S p l i t t i n g non−cases into a training and a t e s t set
11 n_train = f l o o r ( perc * n_subtotal ) ;
12 n_test = n_subtotal − n_train ;
13

14 % Save every n_save i t e r a t i o n
15 n_save = 10000;
16

17 % S p l i t t i n g cases into a training and a t e s t set
18 number_of_cases = 0 ;
19 for i = 1 : length ( l i s t )
20 [~ , ~ , count ( i ) ] = pick_case ( l i s t ( i ) .name,map1, 0 ) ;
21 number_of_cases = number_of_cases + count ( i ) ;
22 end
23 m_train = f l o o r ( perc * number_of_cases ) ;
24 m_test = number_of_cases − m_train ;
25 perm2 = randperm ( number_of_cases , number_of_cases ) ;
26 perm_train = perm2 ( 1 : m_train ) ;
27 perm_test = perm2( m_train +1: number_of_cases ) ;
28

29 % Save permutations
30 save ( [ map_result , ’ permutations_label ’ , casetype , ’ . mat ’ ] , ’perm ’ , ’perm2 ’ , ’

perm_train ’ , ’ perm_test ’ , ’ n_subtotal ’ , ’n ’ , ’ n_subtotal ’ , ’ n_train ’ , ’ n_test ’ , ’
n_save ’ , ’n_samp ’ , ’ m_train ’ , ’ m_test ’ , ’ number_of_cases ’ , ’ n_sub ’ ) ;

31 else
32 load ( [ map_result , ’ permutations_label ’ , casetype , ’ . mat ’ ] , ’perm ’ , ’perm2 ’ , ’

perm_train ’ , ’ perm_test ’ , ’ n_subtotal ’ , ’n ’ , ’ n_subtotal ’ , ’ n_train ’ , ’ n_test ’ , ’
n_save ’ , ’n_samp ’ , ’ m_train ’ , ’ m_test ’ , ’ number_of_cases ’ , ’ n_sub ’ ) ;

33 end
34

35 end

SAVE_FACTS.M

1 function save_facts ( permission , casetype , lambda , eta , type , delta , n_subtotal , n_train ,
n_test , n_save , n_samp , m_train , m_test ,m, number_of_cases , map_result , perc ,
selected_variables )

2 nov = length ( selected_variables ) ;
3 i f nov == 3046
4 lov = ’ a l l var iables ’ ;
5 else
6 lov = num2str ( selected_variables ) ;
7 end
8

9 f i l e I D = fopen ( [ map_result , ’ f a c t s _ l a b e l ’ , casetype , ’ . t x t ’ ] , permission ) ;
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10 % Save the f a c t s used to run the model
11 f p r i n t f ( f i l e I D , ’%s \ r \n ’ , [ ’ A l l f a c t s about the run for l a be l ’ , casetype ] ) ;
12 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’Number of cases for t h i s casetype : number_of_cases = ’ ,

number_of_cases ) ;
13 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’ l1−r e s t r i c t i o n : lambda = ’ , lambda) ;
14 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’ Learning rate : eta = ’ , eta ) ;
15 f p r i n t f ( f i l e I D , ’%s %s \ r \n ’ , ’ Logit / Probit model : type = ’ , type ) ;
16 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’ H_t = delta + diag ( G_t ) ^(1/2) : delta = ’ , delta ) ;
17 f p r i n t f ( f i l e I D , ’%s %i %s \ r \n ’ , ’ Percentage used for training i s ’ , perc , ’ %. ’ ) ;
18 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’Number of f i l e s of non−cases selected : n_subtotal = ’ ,

n_subtotal ) ;
19 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’Number of f i l e s of non−cases selected for training :

n_train = ’ , n_train ) ;
20 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’Number of f i l e s of non−cases selected for t e s t i n g :

n_test = ’ , n_test ) ;
21 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’ Save every n_save th i t e r a t i o n : n_save = ’ , n_save ) ;
22 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’ 1 case injected a f t e r n_samp non−cases : n_samp = ’ ,

n_samp) ;
23 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’Number of f i l e s of cases selected for training : m_train

= ’ , m_train ) ;
24 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’Number of f i l e s of cases selected for t e s t i n g : m_test =

’ , m_test ) ;
25 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’Number of parameters : m = ’ ,m+1) ;
26 f p r i n t f ( f i l e I D , ’%s %i \ r \n ’ , ’Number of var iables : nov ’ ,nov ) ;
27 f p r i n t f ( f i l e I D , ’%s %s \ r \n ’ , ’ L i s t of var iables : ’ , lov ) ;
28 f c l o s e ( f i l e I D ) ;
29 end

PICK_CASE.M

1 function [M, i , f i l e _ l e n g t h ] = pick_case ( filename ,map, place )
2 filename = [map, filename ] ;
3

4 % Read whole f i l e
5 f i l e I D = fopen ( filename ) ;
6

7 % Pick record at spot n+1
8 M = textscan ( f i l e I D , ’%s ’ ,3049 , ’ HeaderLines ’ , place , ’ Delimiter ’ , { ’ , ’ , ’ \ r ’ } ) ;
9

10 % Close f i l e
11 f c l o s e ( f i l e I D ) ;
12

13 i f nargout > 1
14 i = place ;
15 end
16

17 i f nargout > 2
18 f i l e _ l e n g t h = length ( csvread ( filename ,1 ,3048) ) ;
19 end
20

21 end

PICK_RECORD.M

1 function M = pick_record ( filename ,map)
2 filename = [map, filename ] ;
3
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4 % Read whole f i l e
5 f i l e I D = fopen ( filename ) ;
6 f i l e _ l e n g t h = length ( csvread ( filename ,1 ,3048) ) ;
7

8 % Pick record at spot n+1
9 for i = 1 : f i l e _ l e n g t h

10 M{ i , 1 } = textscan ( f i l e I D , ’%s ’ ,3049 , ’ HeaderLines ’ ,1 , ’ Delimiter ’ , { ’ , ’ , ’ \ r ’ } ) ;
11 end
12

13 % Close f i l e
14 f c l o s e ( f i l e I D ) ;
15 end

UPDATE_PARAMETER.M

This code uses myfun.m (see D.1.3), projectv.m (see D.1.2) and determinelocation.m (see D.1.3).

1 function [randomID , timestamp , label , s , l ikel ihood ,G,H,w_new, X] = update_parameter (
record , w_last ,G, delta , type ,m, current_record , eta , lambda , prior , selected_variables ,
sample_mean , sample_variance , maximum_value , normalizing , scal ing )

2 % Extract information from record
3 randomID = record { 1 , 1 } ( 1 ) ;
4 timestamp = record { 1 , 1 } ( 2 ) ;
5 l a be l = char ( record { 1 , 1 } ( 3 ) ) ;
6 s = double ( strcmp ( label , ’O0 ’ ) ~=1) ;
7

8 % Take data from record
9 data = zeros ( 1 , length ( selected_variables ) ) ;

10 t_values = sum( selected_variables <=1523) ;
11 t_ indices = find ( selected_variables <=1523) ;
12 data ( 1 , 1 : t_values ) = double ( char ( record { 1 , 1 } ( 3 + t_indices ) ) ) −64; %

Top−values T0001 − T1523
13

14 v_indices = find ( selected_variables >1523) ;
15 temp1 = record { 1 , 1 } ( 1 5 2 7 : length ( record { 1 , 1 } ) ) ;
16 data2 (1 ,1 :1523) = sscanf ( s p r i n t f ( ’%s * ’ , temp1 { : } ) , ’%i * ’ ) ; % Values V0001 − V1523
17 data ( 1 , t_values +1: length ( selected_variables ) ) = data2 ( 1 , selected_variables ( v_indices

)−1523) ; %#ok<FNDSB>
18 clear data2
19 clear temp1
20

21 % Normalize numerical var iables
22 i f normalizing == 1
23 data ( 1 , t_values +1: length ( selected_variables ) ) = normalize ( data ( 1 , t_values +1:

length ( selected_variables ) ) ,sample_mean , sample_variance ) ;
24 e l s e i f scal ing == 1
25 data ( 1 , t_values +1: length ( selected_variables ) ) = scale ( data ( 1 , t_values +1: length (

selected_variables ) ) ,maximum_value) ;
26 end
27

28 % Store data in a c e l l ’X ’
29 X{ 1 , 1 } = data ;
30

31 % Compute g_t , G_t and H_t
32 [ l ikel ihood , g ] = myfun( w_last , X , s , type , prior , se lected_variables ) ;
33 G = G + g . ^ 2 ;
34 H = delta + sqrt (G) ;
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35

36 % Gradient step
37 i_up = determinelocation (X{ 1 , 1 } , selected_variables ) ;
38 wt = w_last ;
39 wt ( i_up , 1 ) = w_last ( i_up , 1 ) − eta *g ( i_up ) . / (H( i_up ) ) ;
40

41 % Change of variables
42 v = sqrt (H) . * wt ;
43 a = H.^(−1/2) ;
44

45 % Projection step
46 projv = projectv ( v ( 1 :m) , a ( 1 :m) , lambda) ;
47 projv = [ projv ; v (m+1) ] ;
48

49 % Return to o r i g i n a l var iables
50 w_new = a . * projv ;
51 i f sum( isnan (w_new) ) >= 1
52 disp ( ’NaN value in the parameter . ’ )
53 return
54 end
55 t e l l e r = 1 ;
56 while sum( abs (w_new( 1 :m) ) ) > lambda+0.5
57 i f t e l l e r == 1
58 disp ( ’ Parameters do not f u l l f i l l l_1−constraint . ’ )
59 return
60 end
61 disp ( [ ’ Try # ’ , num2str ( t e l l e r ) , ’ : l_1 norm = ’ , num2str (sum( abs (w_new( 1 :m) ) ) ) , ’ >

’ , num2str ( lambda) ] )
62 t e l l e r = t e l l e r + 1 ;
63 w_new = a . * projectv ( sqrt (H) . * w_new, a , lambda) ;
64 i f t e l l e r == 1000
65 disp ( [ ’ Stopped at record # ’ , num2str ( current_record ) , ’ . ’ ] )
66 return
67 end
68 end
69

70 % Clear var iables col lected from . csv− f i l e
71 clear record
72 clear data
73 end

TEST_RECORD.M

1 function [ test_randomID , test_timestamp , true_label , true_s , t e s t _ y ] = test_record (
record , w_last , type , selected_variables , sample_mean , sample_variance , maximum_value ,
normalizing , scal ing )

2 % Extract information from record
3 test_randomID = record { 1 , 1 } ( 1 ) ;
4 test_timestamp = record { 1 , 1 } ( 2 ) ;
5 true_label = char ( record { 1 , 1 } ( 3 ) ) ;
6 true_s = double ( strcmp ( true_label , ’O0 ’ ) ~=1) ;
7

8 % What i s theta ?
9 theta = w_last ( 1 : s i z e ( w_last , 1 ) −1 ,1) ;

10

11 % Take data from record
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12 data = zeros ( 1 , length ( selected_variables ) ) ;
13 t_values = sum( selected_variables <=1523) ;
14 t_ indices = find ( selected_variables <=1523) ;
15 data ( 1 , 1 : t_values ) = double ( char ( record { 1 , 1 } ( 3 + t_indices ) ) ) −64; %

Top−values T0001 − T1523
16

17 v_indices = find ( selected_variables >1523) ;
18 temp1 = record { 1 , 1 } ( 1 5 2 7 : length ( record { 1 , 1 } ) ) ;
19 data2 (1 ,1 :1523) = sscanf ( s p r i n t f ( ’%s * ’ , temp1 { : } ) , ’%f * ’ ) ;
20 data ( 1 , t_values +1: length ( selected_variables ) ) = data2 ( 1 , selected_variables ( v_indices

)−1523) ;
21 clear data2
22 clear temp1
23

24 % Normalize numerical var iables
25 i f normalizing == 1
26 data ( 1 , t_values +1: length ( selected_variables ) ) = normalize ( data ( 1 , t_values +1:

length ( selected_variables ) ) ,sample_mean , sample_variance ) ;
27 e l s e i f scal ing == 1
28 data ( 1 , t_values +1: length ( selected_variables ) ) = scale ( data ( 1 , t_values +1: length (

selected_variables ) ) ,maximum_value) ;
29 end
30

31 % Store data in a c e l l ’X ’
32 X{ 1 , 1 } = data ;
33 [ j , border ] = determinelocation (X{ 1 , 1 } , selected_variables ) ;
34

35 % Compute t e s t score , the probabi l i ty that y = 1 .
36 t e s t _ y = f ( prodthetax ( theta , X{ 1 , 1 } , j , border ) , type ) ;
37

38 % Clear var iables col lected from . csv− f i l e
39 clear record
40 clear data
41

42 end

TEST_TRAINING_RECORD.M

1 function [ test_randomID , test_timestamp , true_label , true_s , t e s t _ y ] =
test_training_record ( record , w_last , type , selected_variables , sample_mean ,
sample_variance , maximum_value , normalizing , scal ing )

2 % Extract information from record
3 test_randomID = record { 1 , 1 } ( 1 ) ;
4 test_timestamp = record { 1 , 1 } ( 2 ) ;
5 true_label = char ( record { 1 , 1 } ( 3 ) ) ;
6 true_s = double ( strcmp ( true_label , ’O0 ’ ) ~=1) ;
7

8 % What i s theta ?
9 theta = w_last ( 1 : s i z e ( w_last , 1 ) −1 ,1) ;

10

11 % Take data from record
12 data = zeros ( 1 , length ( selected_variables ) ) ;
13 t_values = sum( selected_variables <=1523) ;
14 t_ indices = find ( selected_variables <=1523) ;
15 data ( 1 , 1 : t_values ) = double ( char ( record { 1 , 1 } ( 3 + t_indices ) ) ) −64; %

Top−values T0001 − T1523
16
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17 v_indices = find ( selected_variables >1523) ;
18 temp1 = record { 1 , 1 } ( 1 5 2 7 : length ( record { 1 , 1 } ) ) ;
19 data2 (1 ,1 :1523) = sscanf ( s p r i n t f ( ’%s * ’ , temp1 { : } ) , ’%f * ’ ) ;
20 data ( 1 , t_values +1: length ( selected_variables ) ) = data2 ( 1 , selected_variables ( v_indices

)−1523) ;
21 clear data2
22 clear temp1
23

24 % Normalize numerical var iables
25 i f normalizing == 1
26 data ( 1 , t_values +1: length ( selected_variables ) ) = normalize ( data ( 1 , t_values +1:

length ( selected_variables ) ) ,sample_mean , sample_variance ) ;
27 e l s e i f scal ing == 1
28 data ( 1 , t_values +1: length ( selected_variables ) ) = scale ( data ( 1 , t_values +1: length (

selected_variables ) ) ,maximum_value) ;
29 end
30

31 % Store data in a c e l l ’X ’
32 X{ 1 , 1 } = data ;
33 [ j , border ] = determinelocation (X{ 1 , 1 } , selected_variables ) ;
34

35 % Compute t e s t score , the probabi l i ty that y = 1 .
36 t e s t _ y = f ( prodthetax ( theta , X{ 1 , 1 } , j , border ) , type ) ;
37

38 % Clear var iables col lected from . csv− f i l e
39 clear record
40 clear data
41

42 end

COMPUTE_AUC_VALUE.M

This code uses performance.m (see D.1.1).

1 function [ AUC_value , TPR, FPR , SPC ,ACC, CF] = compute_AUC_value ( scores , true_label ,
stepsize )

2 FPR = 1 ;
3 TPR = 1 ;
4 threshold = stepsize ;
5 AUC_value = 0 ;
6 i =2;
7

8 while threshold < 1
9 t r a i n _ l a b e l = double ( scores > threshold ) ;

10

11 % Confusion_matrix = [TP , FP ; FN, TN]
12 % False P o s i t i v e Rate / f a l l −out : FPR = FP / (FP + TN)
13 % True Postive Rate / S e n s i t i v i t y : TPR = TP / (TP + FN)
14 % S p e c i f i c i t y or True Negative Rate : SPC = TN / (TN + FP)
15 % Accuracy : (TP + TN) / (TP + TN + FP + FN)
16 i f nargout >3
17 [CF, TPR( i ) ,FPR( i ) ,SPC( i ) ,ACC( i ) ] = performance ( true_label , t r a i n _ l a b e l ) ;
18 else
19 [~ ,TPR( i ) ,FPR( i ) ,~ ,~] = performance ( true_label , t r a i n _ l a b e l ) ;
20 end
21

22 % AUC value
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23 AUC_value = AUC_value + (FPR( i −1)−FPR( i ) ) *TPR( i ) +0 .5 *(FPR( i −1)−FPR( i ) ) * (TPR( i −1)
−TPR( i ) ) ;

24

25 % Next threshold
26 threshold = threshold + stepsize ;
27 i = i +1;
28 end
29

30 TPR = [TPR , 0 ] ;
31 FPR = [FPR , 0 ] ;
32 AUC_value = AUC_value + (FPR( i −1)−FPR( i ) ) *TPR( i ) +0 .5 *(FPR( i −1)−FPR( i ) ) * (TPR( i −1)−TPR

( i ) ) ;
33

34 end

PERFORMANCE.M

1 function [ Confusion_matrix , TPR, FPR , SPC ,ACC] = performance ( v1 , v2 )
2 %% How did we perform ?
3 % v1 i s the r e a l value
4 % v2 i s the labeled value
5 TN = length ( find ( v1==0&v2==0) ) ;
6 FP = length ( find ( v1==0&v2==1) ) ;
7 FN = length ( find ( v1==1&v2==0) ) ;
8 TP = length ( find ( v1==1&v2==1) ) ;
9

10 Confusion_matrix = [TP , FP ; FN, TN] ;
11

12 i f nargout > 1
13 % True p o s i t i v e rate a . k . a . s e n s i t i v i t y
14 TPR = TP /(TP + FN) ;
15 i f nargout > 2
16 % S p e c i f i c i t y = 1 − f a l s e p o s i t i v e rate
17 FPR = FP /(FP + TN) ;
18 i f nargout > 3
19 SPC = 1 − FPR ;
20

21 i f nargout > 4
22 % Accuracy
23 ACC = (TP + TN) / (TP + TN + FP + FN) ;
24 end
25 end
26 end
27 end
28 % Adjusted accuracy
29 ACC_adjusted = TN / (TN + FP + FN) ;
30

31 end
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D.1.2. PROJECTION ALGORITHM

The projection algorithm, described in Section 3.2, has the following code:

1 function z_star = projectv ( v , a , c )
2 % v = −eta t H_t^(−1/2) overl ine ( g ) _t
3 % a ( i ) = ( diag ( G_t ) ^(−1/2) ) ( i , i )
4 ind = find ( v < 0) ;
5 pv = abs ( v ) ;
6

7 % Check input
8 i f sum( a<0)~= 0 % Not every element >= 0
9 disp ( ’ Vector a has a element below zero . ’ )

10 return
11 end
12 i f c<0
13 disp ( ’ Scalar c cannot be below zero . ’ )
14 return
15 end
16

17 % I s projection needed?
18 i f sum( a . * pv ) <=c
19 % No
20 z_star = pv ;
21 %disp ( ’ Project v : No projection was needed . ’ )
22 else
23 % disp ( ’ Project v : Projection i s needed . ’ )
24 % Yes
25 [mu, i ] = sort ( pv . / a , 1 , ’ descend ’ ) ;
26 % disp ( ’ Sorted . ’ )
27 % Determine rho , the l a r g e s t integer s . t .
28 % sum( a ( i ( 1 : rho ) ) . * pv ( i ( 1 : rho ) ) ) − mu( i ( rho ) ) *sum( a ( i ( 1 : rho ) ) . ^ 2 ) < c
29 minus = 0 ;
30 rho = f l o o r ( 0 . 5 * length (mu) ) ;
31 maxus = length (mu) ;
32 while (sum( a ( i ( 1 : rho ) ) . * pv ( i ( 1 : rho ) ) ) − mu( rho ) *sum( a ( i ( 1 : rho ) ) . ^ 2 ) >= c ) | | (

sum( a ( i ( 1 : rho+1) ) . * pv ( i ( 1 : rho+1) ) ) − mu( rho+1) *sum( a ( i ( 1 : rho+1) ) . ^ 2 ) < c )
33 i f sum( a ( i ( 1 : rho ) ) . * pv ( i ( 1 : rho ) ) ) − mu( rho ) *sum( a ( i ( 1 : rho ) ) . ^ 2 ) >= c
34 maxus = rho ;
35 rho = f l o o r ( ( minus+maxus) /2) ;
36 else
37 minus = rho ;
38 rho = f l o o r ( ( minus+maxus) /2) ;
39 end
40 i f rho == length (mu)−1
41 %disp ( ’ Maximal ’ )
42 break
43 e l s e i f rho == 1
44 disp ( ’ Minimal ’ )
45 break
46 end
47 end
48 % disp ( ’Found rho . ’ )
49 i f rho == 0
50 disp ( ’ Error : Rho i s equal to 0 . No rho found . . . ’ )
51 return
52 end
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53

54 % Determine the f a c t o r that needs to be extracted
55 theta = (sum( a ( i ( 1 : rho ) ) . * pv ( i ( 1 : rho ) ) ) − c ) / (sum( a ( i ( 1 : rho ) ) . ^ 2 ) ) ;
56

57 % Correction
58 z_star = max( pv − theta *a , 0) ;
59 % disp ( ’ Projection i s f inished . ’ )
60 end
61

62 % Put back the o r i g i n a l signs
63 z_star ( ind ) = − z_star ( ind ) ;
64 end
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D.1.3. OBJECTIVE FUNCTION FOR ADAGRAD

Main file to compute the objective function and the gradient, defined in Section 2.6. The code uses two other
MATLAB files: determinelocation.m (see Section D.1.3) and prodthetax.m (see Section D.1.3).

1 function [ h1 , h2 ] = myfun( variable , X , s , type , prior , se lected_variables )
2 % Renaming the variables
3 theta = variable ( 1 : s i z e ( variable , 1 ) −1 ,1) ;
4 gamma = variable ( s i z e ( variable , 1 ) , 1 ) ;
5 c = 1/(1+exp(−gamma) ) ;
6

7 % Number of records
8 N = s i z e (X, 2 ) ;
9

10 % I n i t i a t e
11 func = zeros (N, 1 ) ;
12 func_deriv = zeros (N, 1 ) ;
13

14 % I t e r a t e
15 for i = 1 :N
16 % Gathering the indices of theta worth using
17 [ j , border ] = determinelocation (X{ 1 , i } , se lected_variables ) ;
18

19 % Compute f ( theta^T x )
20 func ( i , 1 ) = f ( prodthetax ( theta , X{ 1 , i } , j , border ) , type ) ;
21 func_deriv ( i , 1 ) = f_accent ( prodthetax ( theta , X{ 1 , i } , j , border ) , type ) ;
22 end
23 cf = c . * func ;
24

25 % Prior for c
26 i f prior == 1
27 a = 15;
28 b = 1 ;
29 prior_c = c ^(a−1)*(1−c ) ^(b−1)/ beta ( a , b) ;
30 factor_c = ( a−1)/c−(b−1)/(1−c ) ;
31 end
32

33 % Calculate objective function
34 i f prior == 1
35 h1 = − (sum( log ( s . * cf +(1−s ) .*(1− cf ) ) ) + log ( prior_c ) ) ;
36 else
37 h1 = − (sum( log ( s . * cf +(1−s ) .*(1− cf ) ) ) ) ;
38 end
39

40 i f nargout > 1 % i f gradient required
41 n = s i z e ( variable , 1 ) ;
42 h2 = zeros (n , 1 ) ;
43 h2 ( 1 ) = sum( s . * ( func_deriv . / func ) − (1−s ) . * ( c . * ( func_deriv ./(1− cf ) ) ) ) ;
44 i f prior == 1
45 h2 (n) = sum( s ) /c − sum((1−s ) . * ( func ./(1− cf ) ) ) + factor_c ;
46 else
47 h2 (n) = sum( s ) /c − sum((1−s ) . * ( func ./(1− cf ) ) ) ;
48 end
49 for i = 1 :N % per record
50 % Which X are non−zero ?
51 [ j , ~ ] = determinelocation (X{ 1 , i } , se lected_variables ) ;
52 % What i s the l ab e l ?
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53 i f s ( i ) ==1
54 h2 ( j ) = h2 ( j ) + ( func_deriv ( i ) . / func ( i ) ) ; % Theta
55 else
56 h2 ( j ) = h2 ( j ) − ( c * ( func_deriv ( i ) ./(1− cf ( i ) ) ) ) ; % Theta
57 end
58 end
59 h2 (n) = h2 (n) / (2+exp(−gamma) +exp (gamma) ) ;
60 h2 ( : ) = −h2 ( : ) ;
61 end
62

63 end

DETERMINELOCATION.M

1 function [ vector , number] = determinelocation ( x , selected_variables )
2 % Record gives us 1523 c a t e g o r i c a l and 1523 numerical var iables . We’ d l i k e
3 % to determine the indices in theta to which these values correspond .
4 ind = sum( selected_variables <=1523) ;
5 ind2 = sum( selected_variables >1523) ;
6

7 vector ( 1 , 1 : ind ) = x ( 1 : ind ) + ( 0 : 2 6 : ( ind−1) *26) + 1 ;
8 vector ( 1 , ind +1: ind+ind2 ) = ( 1 : ind2 ) ’ + ind *26 + 1 ;
9

10 number = ind *26 + 1 ;
11 end

PRODTHETAX.M

1 function number = prodthetax ( theta , x , indices , border )
2 % We determine the inner product between theta and x . In order to do so we
3 % use indices to save time . In indices the locations in theta and x are
4 % saved .
5 ind = find ( indices <=border ) ;
6 ind2 = indices ( ind ) ;
7

8 ind3 = find ( indices >border ) ;
9 ind4 = indices ( ind3 ) ;

10

11 % Theta_0
12 number = theta ( 1 ) ;
13

14 % Theta ’ s corresponding to the c a te g o r i c a l var iables
15 number = number + sum( theta ( ind2 ) ) ;
16

17 % Theta ’ s corresponding t o t the numerical var iables ( multiplied by the
18 % value for x
19 number = number + x ( length ( ind ) +1: length ( ind ) +length ( ind3 ) ) * theta ( ind4 ) ;
20 end
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