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Abstract

The World Wide Web is growing fast. Web content is growing as well. To cope
with this trend, server infrastructures must be able to serve a huge amount of traffic.
When this cannot happen, service denial is the consequence.Small content publishers
are the most affected by this phenomenon. At the same time, BitTorrent is leading
the file sharing world, generating a big part of the network traffic. Therefore com-
bining HTTP and BitTorrent is a candidate solution for dealing with phenomena like
flashcrowds. But how to merge the HTTP and BitTorrent protocols? How to leverage
the P2P network when the only input is the web content URL? This document pro-
poses an approach to support HTTP with the BitTorrent protocol. The architecture of
HTTP2P, a tool capable of hybrid download, is described in its details. It is shown that
the main problem to face when creating such an hybrid is preventing content pollution
attacks. The solution to this problem is the Pollution Prevention algorithm presented in
this work. The experiment results show that the achieved performance when combin-
ing HTTP and BitTorrent is the best of both protocols: slow start-up delay, improved
download speed and server load reduction.
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Chapter 1

Introduction

TheWebis growing fast. From the first static pages containing mainly text, a few
links and pictures browsed by few users per hour, the World Wide Web evolved
to dynamically-changing and media-rich content pages, browsable by sophisticated
tools at a rate of nearly a million requests per day.

Web content size is also growing hand in hand with connectionspeed. One
of the recent steps forward in modern browsers has been the integration of video
content rendering directly in pages (HTML 5) and not throughthe use of an external
plug-in [11]. This marks the trend of including video content (one of the largest
types of content) in web sites. For popular web content distributors this means that
the delivery infrastructure has to be able to provide a largeupload bandwidth for
a huge number of users. Today, technology offers high performance servers and
the possibility to cluster these powerful machines in largescale content delivery
systems. However, the costs to set up and maintain such systems are very high, and
hence not affordable by all content publishers.

Besides web content size, popularity is another factor thatcould require the
content provider to set up expensive content-delivery systems. When a specific web
page or web content becomes very popular in a short time (for exampleSlashdot[9]
or Digg) the delivery infrastructure gets overrun with user requests. This consistent
growth in user requests is calledFlash Crowd. Most of the small web content hosts
can not cope with this huge increase of traffic and become temporarily unavailable.

At the same time, peer-to-peer (P2P) protocols are succeeding in the file-sharing
world due to their capability to be highly scalable in environments with a large
number of users. Files of the magnitude of 1 GB can be spread between 100.000
users in one day. This example gives the idea of the performance of such a network
and the potential it can achieve if combined with a web content delivery system. By
combining P2P and HTTP protocols, a small web server can handle Flash Crowds
and satisfy the request for a huge amount of data without any extra hardware cost.
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1.1 Flash Crowds Introduction

1.1 Flash Crowds

To understand the advantage of merging HTTP with P2P download, the concept of
Flash Crowdhas to be introduced. AFlash Crowdis a phenomenon that occurs
when a server hosting a web site or a web resource catches the attention of a large
number of users, and gets an unexpected overloading surge oftraffic [23][14]. To
satisfy such a huge amount of requests in a short time the web provider has to supply
an adequate amount of hardware resources.

The common strategy to deal with this phenomenon is to add amirror to the web
infrastructure. An exact copy of the web content is spread over different machines
so that the user requests are distributed and the load is balanced over several hosts.
As an example of mirroring, we can consider the well-known SourceForge website
that hosts open-source software projects; to maintain download availability to the
users, its infrastructure is composed of many mirror sites.

If we consider the cost for setting up and maintaining such aninfrastructure,
we can conclude that preventing aFlash Crowdeffect is very expensive and not
affordable for every web content provider [28]. Hence, the small publishers are the
most affected by the risks of aFlash Crowd, where, if not properly prevented by
a robust infrastructure, the consequence is running out of service. This problem is
even more pronounced when dealing with large content, sincethe available upload
bandwidth of the server could run out with a small increase inuser requests.

1.2 Load distribution

Due to the high scalability property of the P2P networks, theBitTorrent protocol can
handle theFlash Crowdproblem very well. In a BitTorrent network, the larger the
number of users trying to retrieve the same content, the better the network performs.

The reason why P2P systems are good candidates to solve network congestion
problems related to the HTTP protocol is that its good scalability allows the net-
work to adapt itself when congestion is arising; if many users are accessing the web
server to retrieve the same content, the P2P integration would allow the users to in-
teract in a cooperative download, bypassing the server in the task of central content
distributor and therefore distributing the requests between the users. By its nature,
P2P has a low cost infrastructure: no expensive hardware is needed like in the case
of a mirror, since the load of each request is spread among thepeers in a cooperative
way. Last but not least, P2P allows decentralization: when aserver providing the
desired content is down, the content is unavailable. In the P2P network the content
is available as long as there is at least a small set of peers connected.

This is the reason why P2P is succeeding in the file sharing world and why it
suits for an integration with the HTTP protocol in the task ofweb content retrieval.
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Introduction 1.3 HTTP

1.3 HTTP

HTTP is a client-server paradigm protocol designed to retrievehypertextdocuments
(web pages and media content in general) [18]. Its messagingsystem is based on
requests from client to server and responses from server to client. In an HTTP
session, the client establishes a (TCP) connection with theserver, then it sends the
request for a document, the server replies with a response (generally containing the
document), and at the end of the session the connection is closed. The request is
immediately satisfied by the server with a positive or negative response. The file
transfer in a conventional network starts immediately after the client request and
remains more or less constant. Figure 1.2 describes the bandwidth behavior of an
HTTP file download. The resource to be accessed by the client is defined by the
URL which is mapped by the server into the physical file or dynamically generated
content.

Figure 1.1: Client-Server architecture

1.4 BitTorrent

BitTorrent is a P2P file sharing protocol designed to distribute digital content be-
tween peers [3]. Unlike HTTP, in a P2P network architecture,a peer is both a client
and a server at the same time. It usually trades pieces of information with other
peers. In the case of BitTorrent we can simplify that a peer trades part of a file
with another part of the same file. When a peer wants to download a file, it joins
a swarm (a group of peers sharing the same file) by asking the tracker (a server

3



1.4 BitTorrent Introduction
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Figure 1.2: HTTP bandwidth behavior

keeping information about peers currently connected) the network address of peers
in that swarm. The peer then connects to a set of peers participating in the swarm
and starts trading pieces of the file.

Unlike HTTP, in BitTorrent, the start of a download is delayed by many steps:
first connecting to the tracker and retrieving the peers’ addresses, then connecting
to the peers in the swarm, finally waiting to receive pieces from the peers when they
are interested in trading.

The resource that a client-peer wants to access is describedin a torrent file,
containing information about the tracker address, file size, piece size, file name and
other information needed to instantiate a download session. From theinfo field
in the torrent file, theinfo-hashis computed. This value uniquely identifies the
resource over all the BitTorrent network. For this reason, this parameter is used
during the protocol hand-shake: when two clients initiate aconnection, and during
theswarm discoverystep, when the peer asks the tracker the addresses of the peers
participating to the interested swarm. Therefore, theinfo-hashcan be viewed as the
swarm identifier.

Since the peers in a swarm could be potential attackers distributing fake con-
tent, a content integrity mechanism is needed. The hashes ofeach piece, computed
during the torrent creation, are contained in the torrent file; once a piece has been
retrieved by a peer, the hash of that piece is computed and compared to the same
hash contained in the torrent file. The hash checking step reveals whether the piece
is fake or not.

The advantages of a P2P network over a client-server infrastructure are:

• distributed content: the content does not rely on a single central entity but
on many distributed entities. This makes the content availability more robust
during huge surges of requests, in contrast with the web servers’ stability.
When a web server can not supply to the number of requests, theservice is
denied and the content unavailable.
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Introduction 1.5 The best of two worlds

Figure 1.3: Peer to Peer architecture
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Figure 1.4: P2P bandwidth behavior

• scalability: the more peers participate in a swarm, the better the network per-
forms. In the case of a web server, a big number of clients result in a high
server load, reducing the delivery performance.

• cost effective: building up a system able to satisfy an amount of requests of
the magnitude of YouTube would have a strong economical impact with a
client-server architecture. The same amount of requests can be satisfied with
a P2P solution at extremely low costs.

1.5 The best of two worlds

This thesis project aims to support HTTP with the BitTorrentprotocol in the task
of web content retrieval. In particular, the target is to combine the qualities of the

5



1.6 Thesis outline Introduction

two protocols in such a way that the resulting performance matches the best of both
worlds. The following table describes which are qualities of each protocol that we
want to keep:

HTTP BitTorrent
Simplicity Highly scalable
Low latency data transfer start-upLow cost infrastructure
Fast convergence to full-speed Decentralization

The result of this merge will allow a client to start a P2P download with the
start-up latency typical of an HTTP file transfer, a downloadspeed equal to the sum
of both bandwidths, and will allow a low performance server to provide large web
content while satisfying a high number of concurrent requests. Figure 1.5 shows
the resulting architecture of an HTTP/P2P hybrid system.

Figure 1.5: HTTP/P2P Hybrid architecture

1.6 Thesis outline

The next chapter will focus on the technical problems faced when creating a tool
able to combine HTTP and BitTorrent. Chapter 3 presents the architecture of
HTTP2P, a HTTP/BitTorrent download tool, focusing on the main implementa-
tion details. Chapter 4 represents the scientific contribution of this thesis work:
thePollution Preventionalgorithm, a technique able to guarantee security over the
received untrusted data in a torrent-less and tracker-lessenvironment. Chapter 5

6



Introduction 1.6 Thesis outline

analyses some of the main implementations created during the project period and
shows the results of the experiments performed with these tools. Finally, the last
chapter presents the conclusions.
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Chapter 2

Problem Description

This chapter explains the challenges that are faced for building a system that com-
bines the best of the HTTP and BitTorrent worlds. Even if the two protocols are
designed to retrieve files from internet, the environment inwhich they operate is
different. This introduces some incompatibilities in the messaging system of the
protocols. While HTTP is designed to retrieve a file from a central repository, Bit-
Torrent is designed to retrieve and retransmit pieces of a file in a distributed envi-
ronment formed by many entities. How to join the divergencespresented in this
chapter is the scope of this thesis work.

This chapter starts with a list of goals, representing the requirements to meet, fol-
lowed by an overview on the previous attempts in the task of creating an HTTP/P2P
hybrid. The challenges that are faced to address these goalsare presented in detail.
The chapter concludes with the description of some techniques that will be the key
of success toward the creation of an HTTP/P2P hybrid.

2.1 Goals

The goal of the thesis is to build a system that is able to scaleon the number of
clients, handling flash crowds efficiently and that is low cost for content publishers.
Following are some of the advantages of a system that combines the best of the
HTTP and BitTorrent protocols:

• Server load reduction
This is one of the most significant benefits that the P2P-HTTP combination
would bring. The more clients try to download the same resource, the more
peers are available to share content and the less data needs to be retrieved from
the web server.

• Increased download performance
If the user’s download bandwidth is higher than the server upload bandwidth,
then the user can add the P2P download speed to the HTTP one.

9



2.1 Goals Problem Description

Lets consider an example on which the server bandwidth limitis 200 KB/s and
the P2P download bandwidth is 400 KB/s (pretty common values). Hence the
total speed that is possible to achieve in this case it is 600 KB/s, 3 times faster
than the server bandwidth limit.

In general the total download speed cannot be lower than the HTTP one.

• Low cost publication
As it has been explained in the first point, by adopting this download strategy,
the server load would be extremely reduced, therefore it is no more necessary
to have expensive server infrastructures to deliver large content.

Therefore, low-cost publishing is possible. Setting up a video or large content
delivery system is just a matter of delegating the task of distributing the large
content to the P2P network and delegating the task of providing just the web
page and the content access key to the web server.

• Easy configuration
Server configuration requires minimalistic changes such aslimiting the up-
load bandwidth to the desired value, if that is considered necessary. Once this
limit is set, all the excess bandwidth requested by users is compensated auto-
matically by the P2P network. In general, no server adaptation is required and
backward compatibility is guaranteed for servers and clients.

• Zero-delay P2P video streaming
As Tribler demonstrates [10], the BitTorrent protocol can also be used for
video streaming [25]. The weak point in P2P video streaming is the video
playback startup time, because discovering and getting download bandwidth
from other peers introduces a large delay. By implementing our new architec-
ture, the playback of a video could start as soon as the web server gives the
stream, while the torrent engine is still in the swarm discovery phase (look-
ing for peers in the swarm). Once the BitTorrent bandwidth isfast enough,
the web server can be offloaded. This example highlights the ’best of both
worlds’ quality of this approach: the responsiveness of HTTP and the load
distribution of P2P.

• Backward compatibility
This technique does not need any support on the server side. This also means
that clients unaware of the P2P support can still access the web server in the
conventional way. This would lead to an easy and fast adoption of this down-
load strategy without relevant impacts.

As a last remark, it is to be emphasized that this download solution is intended
to have a higher advantage for the server in situations wherethe number of client

10



Problem Description 2.2 Prior work

requests is high, since the load on the server is distributedamong the clients. If the
number of requests is low, the server is sufficient in most cases to satisfy clients’
requests.

2.2 Prior work

There have been many attempts to support the HTTP protocol download with P2P.
The most significant one proposes to include anX-Torrentheader in the HTTP pro-
tocol [7]. TheX-Torrentheader specifies a link pointing to a torrent file that pro-
vides the same content that the user is trying to download through the browser. If the
client does not receive bandwidth because the server load istoo high, the browser
automatically switches the download source to the BitTorrent one, offloading the
server from supplying the data. The weakness of this approach stands in the fact
that the HTTP protocol has to be extended generating backward compatibility is-
sues for servers and clients not able to deal with the new HTTPheader. Moreover,
it is not possible to merge the data retrieved from the different protocols but just
one of them must be chosen at any given time; in short, if the web server gets over-
loaded by aFlash Crowdeffect while the user is downloading through HTTP, the
download has to be started from scratch through the BitTorrent protocol.

The other solution trying to support HTTP with P2P that deserves mention is
the FireCoral Network Project [5]. FireCoral is intended toenable P2P exchange
of browser caches between clients. Its architecture consist of browser clients (or
peers), origin servers that publish content, trackers thatstore peering information
and content metadata, and cryptographic signing services that authenticate content.
The drawback of this design is that it is not a completely distributed architecture;
the peer discovery process is delegated to a central trackerand the authentication of
the data received from other peers is performed by asking a cryptographic signing
service for the signature of each specific block. On the one hand this technique
reduces the load of the web server, on the other hand it moves the load to the tracker
and mainly to the signing service, responsible for sending each piece’s hash to each
peer. If the tracker or the signing service is down the whole system cannot work.

These examples are mentioned here to show that P2P is considered to be a so-
lution to network congestion problems and that many effortsare concentrated in
trying to combine HTTP and P2P [19] [22] [27] to build a scalable system able to
resist to phenomena likeFlash Crowds.

2.3 Metadata and swarm discovery challenges

In this section we explain what challenges are faced when creating a tool that sup-
ports HTTP with the BitTorrent protocol in the task of web content retrieval. As
explained later in section 2.4.1,Web Seedingsolves the problem of supporting P2P

11



2.3 Metadata and swarm discovery challenges Problem Description

with HTTP; this is simpler since the presence of a torrent metadata file includes
information useful to start a connection to the server in a simple way. When sup-
porting HTTP with BitTorrent, the torrent file is missing dueto the nature of HTTP.
The lack of information contained in the torrent metadata makes the process of us-
ing the P2P network more difficult. This section gives some more details about
these challenges.

2.3.1 Request translation

Since HTTP and BitTorrent are two different protocols designed to operate in two
different environments, there is some incompatibility to solve when trying to merge
them. The nature of HTTP is to send only one request to the server and to download
a file sequentially from the beginning to the end, while BitTorrent downloads a file
in scatter order depending on some policy, typically rarestfirst, and sending one
request for each piece of the file to download.

2.3.2 Swarm discovery

In a conventional BitTorrent session, the client joins the swarm, as previously ex-
plained, by asking the tracker for a list of peers currently participating to the swarm,
and establishing a connection with each of them by performing a hand-shake. Dur-
ing the hand-shake several pieces of information are exchanged; most important of
all is the info-hash. Both the tracker address and the file info-hash are contained
in the torrent metadata file. In this scenario, since the onlyinput is the URL of the
resource that the client wants to download, there is no torrent file and therefore no
tracker address and no info-hash. This is critical information to join a swarm and to
start a connection.

2.3.3 Security and pollution prevention

Hash checking is a difficult issue to solve in a scenario wherethere is no torrent
file containing piece hashes. Since the hashes are not known,a strategy to ensure
content integrity and to prevent the injection of polluted data into the system is
required. On one hand, the content integrity is a requirement for ensuring that the
data we are downloading is correct. On the other hand, it is also needed to ensure
that the data we are injecting in the system is not polluted.

For this purpose, it is important to understand the concept of a trusted authority.
The trusted authority in a conventional download is the torrent file itself since it
both contains the swarm identifier to be used to join the swarmand the piece hashes
to use to ensure content integrity. In a torrent-less and tracker-less environment the
only trustworthy authority is the web server; comparing a piece received from a
peer against the same piece retrieved from the server, reveals whether the content
received from the peer is good or not.

12



Problem Description 2.4 Existing techniques

It is obvious that we cannot compare all the data received through the P2P net-
work against the web server’s content, since this would leadto data download du-
plication, conflicting with the goal of this thesis. Ensuring content integrity while
retrieving the minimum amount of data from the server is perhaps the biggest chal-
lenge faced in this environment.

2.4 Existing techniques

The following techniques are used to face the problems previously described. These
techniques are presented here to prepare the ground for the next chapter in which the
architecture of HTTP2P, a tool able to support HTTP with the BitTorrent protocol,
is explained in detail.

2.4.1 Web Seeding

Web Seedingis the ability of a server to act as a BitTorrent seeder [3]. There is
an important distinction to remark here: ifWeb Seedingis meant to use HTTP to
support P2P, this thesis intends to use P2P to support HTTP. However the solution
that is going to be proposed in the next chapters will make useof theWeb Seeding
technique to retrieve the data from the HTTP side.

There are currently two main specification proposals for implementingHTTP
Seeding: the GetRight style [6] and the John Hoffman style [21]. The first one
is transparent to the web server but includes a heavy algorithm to download the
biggest gaps (adjacent pieces); the reason, as explained inthe main specification,
is that many requests of the same file can be considered an attack by the server.
The John Hoffman’s style is included as part of the BitTornado client and consist of
translating a piece request into a URL string, concatenating info-hash, piece index
and offset in the URL query; however it requires a script on the server side to parse
the request, raising backward compatibility issues.

2.4.2 Merkle hashes

The building block of the security architecture is the technique ofMerkle hashes.
Hence, to fully understand how thehash checking algorithmworks, we need to
introduce some background onMerkle hashes[15].

In BitTorrent, piece checking is needed to guarantee content integrity. Each
piece is checked against the piece’s hash contained in the torrent meta-data file. If
the piece’s size is too small compared to the file size the meta-data file will be large,
increasing the load of the server distributing that particular torrent. On the other
hand, very large pieces decrease the ability of peers of bartering since a larger time
is required to download enough data to start a trade.

13



2.4 Existing techniques Problem Description

A solution to these two problems is to replace the list of digests with a single
Merkle hash. A Merkle hash can be used to verify the integrityof the total content
file as well as the individual blocks via a hierarchical scheme. From the content
we construct a hash tree as follows. Given a piece size, we calculate the hashes of
all the pieces in the set of content files. Next, we create a binary tree of sufficient
height, using the piece hashes as leaves. Finally, we calculate the hash values of the
higher levels in the tree, by concatenating the hash values of the two children and
computing the hash of that aggregate. This process ends in a hash value for the root
node, as shown in figure 2.1, which we call the root hash1.

The root hash along with the total size of the content file and the piece size are
now the only information in the system that needs to come froma trusted source.
A client that has only the root hash of a file set can check any piece as follows:
it first calculates the hash of the piece it received. Along with this piece it should
have received the hashes of the piece’s sibling and of its uncles. The highlited
block of figure 2.1 correspond to the hashes received within amessage. Using this
information the client recalculates the root hash of the tree, and compares it to the
root hash it received from the trusted source.

2.4.3 DHT

A distributed hash table (DHT) is an hash table distributed over several nodes. Each
node maintains a part of the hash table and a list of other nodes addresses (routing
table). The totality of all the nodes forms the overlay network on which the DHT
operates, and the totality of all the content maintained by each node is the DHT
itself. The DHT holds a set of (key, value) pairs and providesthe possibility to store
new pairs and a look-up mechanism to retrieve avaluegiven itskey. The main DHT
property, apart from the obvious scalability and decentralization properties, is the
ability of dynamically change its topology, guaranteeing fault tolerance over nodes
arrival, departure and failure [4].

DHT technology has been adopted as a component of BitTorrentto implement
Distributed Trackers. This technique uses DHTs to store (swarmID, peer list) pairs
in an overlay network. In this way the DHT can be used to replace the centralized
tracker in the task of swarm discovery. There are a few advantages in this technique:
the load of the tracker server is distributed over the nodes,avoiding service denial
in flash crowd situations, and there is no need to know which tracker stores the peer
list for a particular torrent. In this way any swarm can be joined without the need
to know the tracker address, usually stored in the torrent metadata. This is one step
ahead towards decentralization.

Typical functions of DHT implementations are [2]:

1The hashes are computed using the SHA1 cryptographic hash function which generates 25620 (2160)
different values. Therefore the probability of a collisionwhen computing the root hash of different content files
is minimal
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Piece Hash

Sibling Hash

Uncle Hash

Root Hash

Figure 2.1: Hash, sibling, uncles and root hash received along with the relative piece.

• announcepeer : announce to the DHT that the peer joined a particular swarm.

• get peers : retrieve from DHT the list of peers that are participating to a
swarm.

As you can see these are also the main functionalities of a tracker. After the
first adoption of a DHT in 2005 in the Azureus client [1], all main P2P clients now
support DHTs as look-up system for swarm discovery, even if central tracker is still
the most used technique for swarm discovery.
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Chapter 3

HTTP2P Architecture

This chapter describes the architecture ofHTTP2P, a tool that supports HTTP
download with the BitTorrent protocol. HTTP2P is based on the existing techniques
described in the previous chapter: web seeding for HTTP request translation, DHT
for swarm discovery and Merkle hashes for pollution prevention. An implementa-
tion of each of these techniques is integrated in the Triblercore; the base of this
software system.

Our solution is based on two main components: a browser plug-in and a back-
ground process. The plug-in handles the user interaction, while theBackground
processis responsible for the file download.

The first section explains how the challenges presented in the previous chapter
are addressed. The general design guides are then presented. Finally, the architec-
ture of HTTP2P is described in detail.

3.1 Metadata and swarm discovery solutions

3.1.1 Request translation

In the previous chapter, we presented the two main specifications for dealing with
Web Seeding: theHoffman’s styleand theGetRight style. In particular, theGetRight
stylespecification document explains how many requests to the same resource can
be considered as attacks by the web server. For this reason, implementations based
on theGetRight’s styleperform HTTP requests with a byte-range as wide as possi-
ble, with the intent of performing the smallest number of requests. A few experi-
ments, however, revealed that modern web servers (Apache was taken into account)
allows several byte-range requests to the same resource, without considering the
client as an attacker and blocking the connection. AHoffman styleimplementa-
tion of the web seeding feature was included in the Tribler core before this project.
However, as already mentioned, theHoffman’s stylerequires server side support.

The final implementation of the HTTP seeding module is the result of combining
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the two styles: starting from theHoffman’s style, because its implementation is
already included in the Tribler core, and converging it toward GetRight’s style, since
it does not require any server support. The result is a Pythonmodule that performs
byte-range requests to the server, where in each range, the amount of data asked is
equal to the piece size.

Exploiting theWeb Seedingtechnique to retrieve HTTP content implies that the
web server is considered as a peer by the BitTorrent engine, translating BitTorrent
protocol requests into HTTP requests. The server responsesare then parsed and the
content retrieved is merged with that of BitTorrent. Following is how the BitTorrent
requestmessage is translated into a HTTP request:

BitTorrent request message:
<len=0013><id=6><index><begin><length>

HTTP request message:
GET /content file HTTP/1.1
Host: web server address
Range: bytes=start byte-end byte

with:
start byte = ( index * piece size ) + begin
end byte = start byte + length

3.1.2 Swarm discovery

In a conventional BitTorrent environment, the swarm discovery process is per-
formed by retrieving a list of peer addresses from the tracker. Which tracker to
contact is specified in the torrent metadata file. An environment without a torrent
file introduces the problem of finding the correct tracker to join a particular swarm.

Distributed tracking is an alternative solution when the tracker is unknown. As
explained in the previous chapter, a DHT is a table of key/value entries distributed
over the network [24]. The BitTorrent infrastructure exploits this mechanism to
store the mapping of info-hashes/peer-addresses in the same way it does with track-
ers. It is easy now to understand that the information neededto join a swarm, is a
key that the DHT will map into a list of peers. This key represents the swarm iden-
tifier. Since the only input we have is the URL of the web resource to download, the
input key for the DHT query will be the SHA1 hash of the file content URL. This
hash will be used also during the handshake step, to start theconnection with other
peers.

Since the info-hash used by the HTTP2P client for announcingto the DHT is dif-
ferent from the conventional BitTorrent one, the swarms created by the two clients
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for the same content file will be different. This also means that the clients us-
ing the HTTP2P protocol extension will have to set a specific bit in the handshake
extension-bytes to avoid protocol-message conflicts during the download.

BitTorrent handshake message:
<19><"BitTorrent protocol"><conventional extensions><info hash><peer id>

HTTP2P handshake message:
<19><"BitTorrent protocol"><HTTP2P extension><SHA1(URL)><peer id>

The same difference between conventional BitTorrent handshakes and HTTP2P
handshakes applies also to Merkle hashes extension. However, HTTP2P and Merkle
hashes protocol extensions uses different hashes only for the handshake message.
The piecemessages1 still uses the Merkle tree root hash in both extensions (see
Pollution preventionchapter). Further studies can lead to a strategy to unify this
little “handshake” difference.

3.1.3 Security and pollution prevention

The base block of security is the technique of Merkle hashes.In the absence of a
torrent file providing the piece hashes, the hashes will be traded among the peers
in the swarm. However, unlike Merkle hashes technique, there is no trusted root
hash against which the receivedpiecemessages can be checked. The lack of a
trustworthy root hash is the biggest problem to face to guarantee content integrity.
Preventing content pollution, derived by fake block attacks, is not possible without
a technique that ensures security over such a network. This thesis proposes the
Pollution prevention algorithmas the solution to this dilemma. The whole next
chapter is dedicated to explain the algorithm in detail.

3.2 Design considerations

3.2.1 Minimal impact

When creating a software system that has to operate over an existing environment,
one of the main goals is keepingbackward compatibility. This means that the new
system has to be integrated in the existing environment withminimalistic changes,
causing minimal impact and trying to keep the previous system as much unchanged
as possible.

To prove the importance of this concept, lets take as an example theX-Torrent
http-header extension proposal. The reason why such a solution has not been

1In reality, Merkle hashes and HTTP2P protocol extensions use theTr hashpiecemessage instead of the
conventionalpiecemessage.
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adopted yet is because of backward compatibility issues. Toallow the integration of
this extension, web servers need to be able to detect system overload and send the
new header parameter in case of a flash crowd; at the same time,clients unaware of
this extension have to be able to ignore the new header. This example shows that
the impact for adopting theX-Torrentextension is bigger than the benefits it brings.

For this reason, the minimal-impact factor was one of the main concerns when
designing HTTP2P. Web servers must stay unchanged; normal browser agents have
still to be able to access the web resource in the same way. Avoiding server side
support is a main goal, as well as the cause for making an HTTP/BitTorrent hybrid
a complex task.

3.2.2 Desired behavior

An ideal solution for our system should not impose any changeon the server side
and operate transparently for the user. The user does not need to have any knowl-
edge about the system he is using; hybrid download should happen as when nor-
mally browsing the Web. At most, the user is required to decide whether to enable
the P2P support or not. User friendliness is usually the maintarget when designing
user interfaces. For this reason, the UI has been reduced to the minimum in the
design of HTTP2P.Right-clickon the link to download,click on Hybrid download
from the menu panel, is the only interaction with the system required.

The layer of complexity, involving the way the content is retrieved, should be
invisible to the user and to the web server. In the background, the system will start
the HTTP download, announce itself to the DHT, join the swarm(if any), and start
trading pieces of the content file with other peers; all of these steps must not require
the user interaction or server changes.

These requirements lead to the design of two main components: a minimalist
browser plug-in, that has the only responsability of grabbing the user selected URL
link, and aBackground process, responsible for turning the URL received from the
plug-in into a file on the disk. How these two components cooperate is described in
detail in the architecture section.

3.2.3 Procedure steps

Summarizing the considerations explained in the previous sections, we synthesize
below what the procedure to perform a hybrid download is:

1. The user, who wants to download a file, clicks the link embedded in the web
page.

2. The browser plug-in grabs the click event and sends the URLof the download
to theBackground process(BG).
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3. The BG parses the URL received from the browser plug-in and starts the
HTTP download.

4. TheBGcomputes theSHA1hash of the URL. This value represents theswarm
ID.

5. TheBGperforms a DHT query with theswarm IDas key parameter to search
for a swarm distributing the same file retrieved from the web server.

• If the swarm does not exist, the file will be retrieve entirelyfrom HTTP.

• At download completion, theBG computes the Merkle tree out of the
downloaded file and announces to the DHT.

6. TheBG starts the connection with the peers in the same swarm.

7. TheBGstarts trading pieces retrieved from HTTP with other peers by sending
and receiving Merklepiecemessages.

8. Along with eachpiecemessage, the hashes of the Merkle tree are received.
The Merkle tree is built out of the hashes received from otherpeers and the
hashes computed from the HTTP retrieved content.

9. The integrity of the received content is performed by thePollution prevention
module included in theBG.

10. The download completes.

Figure 3.1 shows a simplified representation of the procedure steps where 1) the
BG process receives the URL from the browser plug-in, 2) the HTTP download
starts, 3) the swarm discovery is performed through DHT and 4) the BitTorrent
download starts.

3.3 Architecture

3.3.1 Tribler core

The system architecture is based on the Tribler core, an opensource BitTorrent
client developed by the Parallel and Distributed System group of TU Delft. The
Tribler core is based on python and offers a framework able toprovide P2P func-
tionalities and many other features (DHT, web seeding, Merkle hashes, gossip pro-
tocols, etc.). It provides a simple API through which the developer can easily build
P2P based applications. A simple-to-use API interface and extended features allows
the Tribler core to be a stable base on which can be developed the HTTP2P system.

As previously described, HTTP2P is divided into two main components: the
browser plug-in and theBackground process. Since the browser plug-in is a minimal
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Figure 3.1: HTTP2P download procedure steps

component, with the only responsibility of sending the selected URL to the BG, and
its implementation should be specific to the browser in whichit is embedded, the
attention is mainly concentrated on the architecture of theBG.

The BG is a software layer on the top of the Tribler core. Its functionality
is to parse the URL received from the browser plug-in and to instruct a Tribler
sessionto perform a download. A Tribler session implements all the operations to
be performed for retrieving the content from the BitTorrentnetwork.

Since the Tribler core was not designed to perform all the steps required by
HTTP2P, it is necessary to include some changes into the core, involving mainly
the Pollution prevention algorithm procedures. These changes are described later
on in theIn-core flowsection.

3.3.2 Connection interfaces

As described in figure 3.2, HTTP2P has to interact with different actors: the web
server, the browser, DHT and the BitTorrent peers. HTTP2P interacts with these
actors through specific interfaces. The communication withthe browser plug-in
is handled by an interface layer in the BG. The browser plug-in initiates a TCP
connection with the BGBrowser interfacemodule and sends the URL request. The
communication protocol between these two components is reduced toGET url
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from plug-in to BG andOK or NOK from BG to plug-in. This very simple protocol
can easily be extended with other messages, likeSTATUS x% to warn the plug-in
about the status of the download; however this is out of the scope of this thesis.

The interaction with the DHT is handled in the Tribler core bythemainlineDHT
module. After abootstrappingphase needed to join the DHT network, the DHT
module sendsStoreValuemessages to announce to the DHT andGetValuemessages
to retrieve the list of peers participating to the swarm. Both messages require a
parameter, usually the info hash of the torrent; in HTTP2P, the SHA1 hash of the
URL string is used for this purpose.

The Downloadermodule handles the connection with BitTorrent peers, while
theHTTPDownloaderis the module responsible for handling the connection with
the web server, and for translating BitTorrent messages into HTTP messages. Since
the HTTPDownloader interface is the same as the Downloader one, the web server
is seen as a regular peer by the core. However, because of the client-server nature
of the HTTP protocol, the HTTPDownloader translates only the BitTorrentrequest
message into HTTPGET message where thebyte-rangeheader field is set to the
first and last byte of the piece request, as previously described in the request trans-
lation section. Other BitTorrent messages (keep-alive, unchoke, bitfield, etc.) have
no meaning in HTTP.

3.3.3 In-core flow

The previous section described the interaction of the HTTP2P Background pro-
cesswith the external world. To complete the description of HTTP2P architecture,
we analyze here the internal interaction between the modules involved in a hybrid
download.

Figure 3.3 shows the internal relation of the modules involved. The highlighted
block is thePollutionPreventionmodule. ThePollutionPreventionmodule has been
added to the Tribler core to implement a security feature otherwise missing in the
hybrid download environment. As it will be described in the next chapter, thePol-
lutionPreventionmodule coordinates the various modules with the scope of guar-
anteeing content integrity.

Once theDHT module retrieves the list of peer addresses in the swarm, thepeer
addresses are passed to theEncoderwhich initiates the connections with the swarm
participants. The connected peers will be sharing a root hash of their Merkle hash
tree. As it is possible to observe, theEncodermodule keeps a list of different root
hashes in relation with different sets of peers. This structure is needed in case of
attack, where we might be connected to one or more sets of peers sharing fake root
hashes.

When receiving pieces from peers, thePollutionPreventionmodule will perform
several checks to guarantee content integrity. In case of suspected attack, thePollu-
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tionPreventionmodule will instruct thePiecePickeron which pieces to download.
A good piece selection in this case will help thePollutionPreventionmodule in
finding the attackers. Once the attacker peers are found, their connection will be
dropped by theEncoder.
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3.4 Summary

In this chapter we addressed the main problems to face when creating an HTTP/BitTorrent
hybrid: 1) the swarm discovery problem is solved by the use ofDHT; 2) the re-
quest translation is performed by exploiting the HTTP seeding feature; 3) content
integrity is guaranteed by the introduction in the Tribler core of the PollutionPre-
vention module, implementing the Pollution Prevention algorithm described in the
following chapter.

After presenting the main design consideration, we introduced the architecture
of HTTP2P, a tool capable of HTTP/BitTorrent hybrid download. The system is
composed by two main components: a browser plug-in, responsible for the user
interaction, and the Background process, a software layer built on the top of the
Tribler core, responsible for performing the hybrid download.

In the following chapter will present the details of the tasks performed by the
PollutionPreventionmodule.
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Chapter 4

Pollution prevention

The key challenge in a torrentless environment is preventing content pollution.
Without piece hashes, the integrity of each piece retrievedcannot be verified. If
integrity cannot be guaranteed, polluted content may nullify the effort of a down-
load session and, from a broader perspective, all the P2P infrastructure. The lack of
a technique that can guarantee security is the main issue to be solved in an attempt
to support HTTP with BitTorrent.

Due to the constant attacks in the BitTorrent network, addressing security has
been the subject of studies in the recent years and has motivated the creation of
different techniques, later include in the main BitTorrentclients. As an example,
blacklists of malicious peers addresses have been introduced in clients like uTorrent
or Transmission to prevent swarm attacks by the injection offake content. This is
evidence that P2P attacks are a real problem to deal with in BitTorrent environments
[20].

This chapter presents an algorithm to guarantee security inan environment
where the piece hashes are not known in advance and the only trustworthy authority
is the web server. The problem of the fake block attack is presented, followed by a
detailed description of the Pollution Prevention algorithm, rotten branch detection
and invalidate message techniques.

4.1 Fake block attack

The fake block attack refers to the injection of incorrect content in a swarm [17].
Each piece of a torrent download file is composed of many blocks. Hash checking is
performed over a piece; if one of the blocks in a piece is corrupted, the whole piece
is discarded and the download of that piece has to start again. Therefore, injecting
a small quantity of polluted content causes a big part of the download bandwidth to
be wasted.

In a conventional BitTorrent environment, the file downloadcompletes correctly
despite the attacks. In case of an environment without piecehashes, the download of
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a fake piece results in the corruption of the file downloaded,since no piece integrity
checking can be performed. This is the reason why the hybrid download technique
that this thesis proposes is vulnerable to the fake blocks attacks and why a pollution
prevention algorithm is needed.

4.2 Pollution Prevention algorithm

The fake block attack introduces a serious issue in an environment where no piece
can be checked against its hash. How can the pollution of the content be prevented
in such a scenario? In this section we present an algorithm toguarantee security
when the piece hashes are not known because of the lack of a torrent file, and the
only trustworthy authority is the web server holding the original content.

The hash checking will be performed through Merkle hashes. When download-
ing with the Merkle hashes technique, the hash of piece X, thehash of the sibling
of X and all the uncles of X up to the root hash get received withthe X piece in
the same message (see figure 2.1 in chapter 2). Since, in this situation, there is no
trusted root hash to be compared with the ones received from the peers, an algorithm
that ensures a level of security needs to be devised.

Figure 4.1: Original Merkle tree. The capital letters denote the piece while the lower case let-
ters denote the hashes. Note that in this case the string ’ab’does not represent the concatena-
tion of ’a’ and ’b’ but the hash of their concatenation. Therefore ’a’ = hash(’A’) and ’ab’ =
hash(”hash(’A’)hash(’B’)”). These assumptions are also valid in the next figures.

Here is presented how the algorithm works; figure 4.1 will be referred as the
correct Merkle tree to take into consideration in the following examples. When a
piecemessage is received from a peer, a preliminary check is performed to guar-
antee the coherence between piece and hashes. Figure 4.2 shows an incoherence
between a piece and its hash; in this case the piece is discarded. When receiving
the same root hash from different peers (figure 4.4), we are sure that all the rest of
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the tree’s hashes are equal, assuming that the preliminary hash check is performed.
This doesnot mean that the received content is correct but that the content received
from different peers is the same. In other words, if the peersare sharing fake con-
tent, they are all sharing the same fake pieces. This comes from a property of the
Merkle hashes. One root hash identifies one unique Merkle tree. Two different root
hashes have at least one leaf hash differing. Therefore, if two peers are sharing
some content that is differing by just one byte, they will be sharing two different
root hashes (figure 4.5).

Figure 4.2: Merkle Tree incoherence. In this case the correct piece should be ’C’ and not ’X’. When
receiving thepiece message containing ’X’ from a peer, a preliminary check between the piece and
its hashes will be performed, revealing the incoherence of the message.

A B C D

a b x d

ab xd

abxd

Figure 4.3: Merkle Tree incoherence. The hash of piece ’C’ should be ’c’ and not ’x’. When
receiving piece ’D’ from a peer, the sibling hash of ’D’ (’x’)is received along with thepiece message.
If piece ’C’ is retrieved from the web server, the hash checking will reveal that the merkle tree shared
by the peer from which we received piece ’D’ is incoherent.

29



4.2 Pollution Prevention algorithm Pollution prevention

Figure 4.4: Known part of the Merkle tree of two peers sharing the same content. This figure shows
the part of the Merkle tree received along with two differentpieces: piece ’A’ from a peer (left)
and piece ’C’ from another peer (right). Since the two peers are sharing the same root hash, we
can assume that they are sharing the same content, unless oneof the two peers sends an incoherent
message like in figure 4.2.

Figure 4.5: Peer sharing different content. Comparing this Merkle treewith the one in figure 4.1
reveals that the two root hashes are different, therefore the content associated to those Merkle trees
is different.

The only trustworthy entity in this scenario is the web server. Comparing the
content received from the web server against the same content received from a peer
reveals whether the peer is lying or not about a specific piece(but not necessarily
about the rest of the pieces). It is important to note that it is infeasable to compare
all the pieces received from a peer against the web server to ensure integrity.

Instead of requesting from the web server the same piece retrieved from a peer,
the sibling piece1 will be requested. There are multiple advantages with this ap-

1Two sibling pieces are two pieces whose leaf hashes have the same parent. In figure 4.1A andB are two
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proach. First we avoid downloading duplicate content, oncefrom the web server
and once from peers, hence, converging to a faster download completion. Second,
we immediately have a hash to perform a coherence check, instead of randomly
download pieces from the web server and check if a hash is available or not; this
reveals content incoherence (see figure 4.3) between serverpieces and peers hashes
as soon as possible.

Uppon finding a mismatch between a piece retrieved from HTTP and the same
piece from a peer, all connections with peers sharing the same root hash will be
dropped. Since these peers are sharing the same root hash, they are also sharing the
same fake content, and therefore, they are all attackers.

It has been presented how to detect attacks in case thepiecemessage is not co-
herent (figure 4.2) and when a (sibling) hash received from a peer does not match
the hash computed from the same piece retrieved from the web server (figure 4.3).
We also presented how to identify peers sharing the same content(figure 4.4). How-
ever other scenarios are possible: the case in which a clientis connected only to
peers sharing the same fake root hash (and no fake piece is found by the compari-
son between hashes received from peers and pieces received from the web server)
and the case in which the client is receiving content from peers sharing different
root hashes (that means that there is some attackers). It will be demonstrated that,
in the first case, pollution can be prevented by theinvalidate messageand that, in the
second case, the attackers can be prevented by applying therotten branch detection
technique. These two techniques will be explained in the next sections.

Before proceeding it is necessary to introduce a few concepts:

• good peer: the good peers are those sharing the same content of the web
server and sending coherent messages (messages that pass the preliminary
check). It is never possible to know if a peer is good, unless all the content
is received from that peer and checked against the web server’s content; how-
ever this case conflicts with one of the main goals of this thesis: server load
reduction.

• evil peer: the evil peers are peers injecting polluted content in the swarm.
They can be detected by a unsuccessful preliminary check (figure 4.2); by
a sibling hash that does not match the hash computed from the same piece
retrieved from the web server (figure 4.3); or when, in the case of therotten
branch detection, a piece received from a peer is different from the same piece
retrieved from the web server.

• candidate peer: the candidate peers are peers connected to the client in a
candidatestate. It is not possible to know whether they aregoodpeers, and
they have not been detected asevil peers yet. Since the case in which a client

sibling pieces
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is connected only toevil peers is assumed to be rare, thecandidatepeers are
most likelygoodpeers.

• good root hash: the root of a Merkle tree computed from content equal to the
web server’s content (non polluted content).

• evil root hash: the root of a Merkle tree computed from polluted content.

• candidate root hash: root hash shared bycandidatepeers.

• conflict state: we are in a conflict state when the client is connected to peers
sharing different root hashes.

• candidate state: we are in a candidate state when we are connected only to
peers sharing the same root hash. We cannot know if that root hash isgoodor
evil. Most likely in acandidatestate we are receiving data fromgoodpeers.

It is not possible to know whether the P2P client is connectedonly toevil peers.
However this scenario is exceedingly unlikely for large swarms. The most common
scenario is the one in which the client is connected to a groupof evil peers and to
a group ofgoodpeers. Thisconflict state will generate two or more sets of peers
associated with differentconflictingroot hashes, in contrast with acandidatestate
where there is only one set of peers sharing the samecandidateroot hash.

While in acandidatestate we cannot know if the data we are receiving is correct
or not, in theconflict state we are sure that there is at least a set ofevil peers.
It is important to find theevil root hash as soon as possible, avoiding to download
polluted data. The bigger the number of pieces differing from the original content in
anevil root hash, the easier it is to find wrong data since there is a higher probability
to download a fake piece; this means that the worst case we canhave is when an
evil peer is sharing some content that differs from the web server’s content by just
one piece. To help find the differing piece in aconflictstate, we propose a technique
called therotten branch detection. This technique consist in comparing the branches
of the Merkle trees of conflicting root hashes.

The rotten branch detection enable us to find the fake piece inat most⌈log2n⌉
steps withnequal to the number of pieces in the content file, where each step implies
the download of the same piece twice, once from the conflicting root hashes, and
once from the web server in the last step. Therefore, the amount of redundant data
to download, where the redundant data is the data that has to be downloaded twice,
once from a peer and once from the web server, is minimal and isproportional to
the number of conflicts detected during the download session.

As mentioned before, there is only one case where a fake pieceattack is not de-
tected: the case where the P2P client does not connect to anygoodpeer but only to
evil peers all sharing the same root hash. However, this scenariois very unlikely to
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happen. To address this eventuality, theinvalidate messagetechnique has been in-
troduced. Theinvalidate messageis a technique to spreadevil root hashes detections
over the swarm. This technique, explained in the following sections, introduces a
new concept: distributed security.

Security is therefore distributed among the peers participating in the swarm;
each peer performs integrity checks on portions of the downloaded file. When a
peer detects anevil root hash, it shares its discovery with its neighbors, increasing
theglobal security of the swarm.

In the following sections, therotten branch detectiontechnique and theinvali-
date messagewill be explained in detail. The chapter continues with someconsid-
erations about sharing policies and concludes with a few considerations.

4.2.1 Rotten branch detection

The rotten branch detection is the proposed technique to findtheevil root hash as
soon as a conflict happens. A conflict is defined as the state where the P2P client is
connected to two or more different sets of peers sharing different root hashes.

As already mentioned, building the Merkle trees out of two files differing by just
one byte, ends in two different root hashes. Therefore, if the client is connected to
two sets of peers sharing two different root hashes, we can deduce that we are about
to download at least one piece different from the web server content and therefore
unwanted. The amount of polluted data can vary from just one piece to the whole
content. It is important then to find where the fake piece comes from and which
root hash is to be invalidated.

In case of conflict, the ideal way to find the fake piece would beto compare all
the leaf hashes (with same index) related to the conflicting Merkle trees sequentially,
from first to last, until the mismatch is found. When two hashes mismatch, the piece
relative to that hash is fake in one of the two hash trees. Figure 4.6 illustrates how
to detect a conflict in case all the hashes are known.

25B 3F6 427 FA2 9D2 F55

25B 3F6 29C FA2 9D2 F55

Merkle tree 1

Merkle tree 2

Figure 4.6: Conflict detection. Each strings represent a single leaf hash. In this case all the piece
hashes are known and the detection of mismatching pieces is simply performed by comparing all the
hashes until the mismatch is found.

However, as explained in the Merkle Hashes section, not all the hashes in the
tree are known at the beginning but only the parts received along with the piece
messages. For this reason it is not possible to compare each hash of a hash tree with
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the same hash of the conflicting hash tree, as the most of the leaf hashes may not
have received yet.

The hash tree is built during the process of collecting pieces coming from peers
using the same root hash. Along with each piece, the piece hash, the sibling hash
and the uncle hashes are received. By concatenating the piece hash with the sibling
hash and applying the hash function, we compute the parent hash. Repeating the
process with the computed parent hash and the uncle hash, we compute the grand
parent hash and so on up to the root hash. Therefore, for each downloaded piece
we have all the parent hashes up to the root; this creates a logical path from root to
leaf. We define theknown pathsas the paths that connect the known leaf hashes to
the root hash, as shown in figure 4.7.

Figure 4.7: Known branches connecting the received leaf hashes with theroot hash.

The rotten path is the path that starts from one fake piece andpropagates up
to the root hash. The termpropagatehas been used here for a reason: when con-
catenating the fake piece hash with the sibling hash and computing the parent hash
node, thepollution is transmitted from the fake piece hash to its parent and all the
parents up to the root,contaminatingall the branches in the path as shown in figure
4.8. Therefore, by finding the rotten path we find the fake piece. To find the rotten
path, we need to detect (at least) one rotten branch at the time. Hence, the name
rotten branch detection.

The previous definitions are needed to understand how the rotten branch detec-
tion technique works. This technique consist of comparing the hashes in the same
path of two conflicting Merkle trees, from root to leaves. Thepath where all the
hash nodes mismatch in both Merkle trees is arotten path, and the leaf of that path
is the hash of a fake piece. Once the rotten path has been detected we need to iden-
tify which of the two Merkle trees contains the fake piece. Downloading the same
piece from the web server and comparing it to the pieces received from the peers
will reveal which is the fake piece and therefore which of thetwo root hashes is the
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Figure 4.8: Propagation of the pollution from the fake piece hash up to the root. The red block
represents the fake block hash. All the parents of that hash will be contaminated and therefore
different from the original Merkle tree. Hence the pollution propagates from the leaf to the root
hash.

evil one.
Not all the paths are known at the beginning. This means that,to find the rotten

path, new pieces could be asked to the conflicting peers. Along with the new pieces,
also the hashes needed to build a path for the comparison between two conflicting
Merkle Trees will be received. It is unproductive to select random paths to compare;
this could end up in downloading a big amount of data from the peers, while we
want to find the fake piece as soon as possible. The best way to select a path is to
analyze the result of the previous comparison. As shown in figure 4.8, the rightmost
path has one branch in common with the one on its left. That branch isrotten, while
the rest of the path is not. Therefore, we could start from that branch to select the
next path to compare. This means that in the next comparison we will be one step
closer to find the fake piece.

The example shown in figure 4.9 will help in understanding theprocedure of
each step of the rotten branch detection technique. For simplicity, just one Merkle
tree is shown. This tree is the result of overlapping the two conflicting trees. The
nodes in red are differing in hashes, the nodes in green are equal in both trees, the
red branches are rotten branches connecting two red nodes and the green branches
connect two nodes where the lower one is a green node.

• Step 1: In the first step we just need to select a path from both Merkletrees
to be compared. The best path selection is always aknown path. In this way
we do not need to download any piece from at least one peer (from both if the
path is a known path in both Merkle trees); this assumption isvalid for all the
steps. If a known path does not exist, a random path can be selected. Suppose
that, as shown in figure 4.9, in the first step we select the paththat connects
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Step 1 Step 2

Step 3 Step 4

Figure 4.9: Rotten branch detection example. At each step, one rotten branch is detected by com-
paring the hash nodes in the same path of two conflicting Merkle trees. When all the hash nodes in a
path mismatch, we find a fake piece, pointed by the hash leaf ofthe rotten path. This example show
the worst case scenario: only one mismatching piece in the two conflicting Merkle trees and just one
branch detected at each step; if the first path to be compared was path 15, like in step 4, the rotten
branch detection would have taken only one step to find the fake piece.

the root hash to piece 1 (path 1 for simplicity). In this case all the hash nodes
in the path are equal. Of course the root hash of the two conflicting Merkle
trees is different. Since the left child node of the root hashis equal in both
trees, then all the paths descending from this node will be equal in both trees.2

Indeed, there is no need to compare all the hashes in a path; wecan start from
the root hash and go down until we do not find the first non mismatching hash
node. From that point on, all the hashes will be equal in both trees. Therefore,
in this example, all the pieces between piece 1 and piece 8 will be equal in
both trees. This means that there is at least one fake piece inthe range 9-16.

2Recall that one root hash identifies one unique hash tree. This is also valid for subtrees: if the root hashes
of two subtrees are equal, then the rest of the hashes in that subtree are equal.
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• Step 2: In the previous step we found that the pieces in the range 1-8are
equal in the two conflicting Merkle trees. Therefore there isa fake piece in
the range 9-16. This means that the right child node of the root hash is a
rotten branch. At this point we select a random path going from the root hash
to a leaf hash in the range 9-16. If a known path is available inthat range we
select it, otherwise we need to download the same piece from peers sharing
the conflicting root hashes. Lets suppose we chose path 9. As shown in figure
4.9, in this path the first branch (from top to bottom) connected to the root
hash is a rotten branch, while the rest of the branches are matching. Once
again, this means that in the range 9-12 the pieces are equal in both trees,
while there is a fake piece in the range 13-16.

• Step 3: As it is possible to notice, in each of the previous steps we found
one rotten branch, reducing the range in which we can find the fake piece. In
this step we select a path starting with the rotten branches just detected. Lets
suppose we select path 13. The last two hash nodes in green areequal in both
trees. Therefore there is a fake piece in the range 15-16.

• Step 4: Path 16 is selected out of the range 15-16. Since the hash leaf 16 is
equal in both trees, we can deduct that the mismatching hash is in leaf 15.
Therefore therotten pathis path 15 and the piece 15 is fake in (at least) one
of the two conflicting Merkle trees. At this point we need to request piece 15
from the web server. Comparing piece 15 retrieved from the server with piece
15 retrieved from the peers will reveal which is theevil root hash.

In this example, the worst case scenario is taken into consideration; only one
piece is differing in the two conflicting Merkle trees and only one rotten branch is
detected at each step. If in the first step, path 15 was selected, then the rotten path
was found at the first iteration. Since the algorithm detectsat least one branch at
each step, and the path length is equal to the height of the tree, at most⌈log2n⌉ steps
are needed, wheren is the number of pieces in the file. In this case, log216= 4 steps
were needed.

To simplify the understanding of this technique, we assumedto download the
same piece from two conflicting peers. In reality, we will download two sibling
pieces3. The reason for this is that, by downloading two sibling pieces, the same
hashes are received along with thepiecemessage, but we avoid redundancy and
increase the download speed.

Once the rotten branch detection is finished, we pass from theconflict state to
thecandidatestate. The pieces downloaded from theevil peers and matching with
thecandidateMerkle tree, can be kept; in such a way we take advantage fromevil
peers by downloadingcandidatecontent. The connection with the peers sharing

3Two sibling pieces are two pieces that have two sibling leaf hashes: two leaf hashes with the same parent.
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the evil root hash will be dropped, leaving space for new connectionsto come in,
and theevil root hash will be inserted in ablacklist. When a new connection is
established, the root hash shared by the peer will be checked. If the root hash is
already in theblacklist, the connection will be dropped.

When new connections come in, we increase the chance of having a conflict.
Conflicts are important for two reasons: (a) we can discover that the currentcandi-
dateroot hash is indeed anevil root hash and (b) with each conflict we increase the
global securityby sending aninvalidate message.

4.2.2 Invalidate message

The invalidate message is a message sent from one peer detecting anevil root hash
to the swarm. The message consists of the SHA1 hash of the URL source (swarm
identifier), theevil root hash and the piece index referring to the polluted content,
and can be used to warn other peers aboutevil root hashes in the swarm. This
message speeds up the detection ofevil peers and polluted content and is intended
to help the swarm in converging toward thegoodpeers.

By its nature, theinvalidate messageprotocol is a gossip protocol and oper-
ates within an overlay network. The peculiarity of this gossip protocol is that the
messages between two peers can be exchanged even if the two peers are directly
connected. This is useful in the scenario where one peer is downloading content
only from evil peers, since it is highly unlikely it can receive an invalidate message
from its attackers. It can instead receive an invalidate message from a peer in the
overlay network. The details of the overlay network where the invalidate message
operates are not going to be discussed here. We can just assume that the overlay
network for a specific swarm is composed of the peers registered in the DHT as
participants of that swarm.

Once the invalidate message has been received by a peer, it will be noted down
and its information will be used when the peer establishes a connection with an
evil peer sharing the invalidated root hash. When this happens, the client peer can
bypass the rotten branch detection algorithm step and ask directly for the presumed
fake piece. The presumed fake piece will be then compared to the same piece
retrieved from the web server. If the piece is fake, the client peer can resend the
invalidate message to the swarm.

The wordpresumedis used here to qualify the fake piece since the invalidate
message could have been sent by anevil peer as an attack. This is also the reason
why the invalidate message has to be verified before it is redistributed in the swarm.
In such a way theevil invalidate message is blocked at the first hop instead of being
spread to all the peers participating to the same swarm, generating useless traffic.

The invalidate message is very useful when received in a particular condition:
when the receiver is connected only to peers sharing the sameevil root hash. Previ-
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ously in section 4.2 it has been explained that the only case in which the algorithm
is vulnerable to attacks is exactly in this situation. Thereis no way to detect theevil
root hash if no conflict happens and if the pieces coming from the web server do
not reveal the presence of a fake piece. In this case, the invalidate message helps in
detecting the polluted content when there is no other way to do so.

To conclude, the invalidate message helps the swarm in converging toward a
goodswarm in a cooperative way; each peer verifies a portion of thedownloaded
content and shares itsevil root hash detection with other peers, improving the global
security of the swarm. In HTTP2P, we can define this concept asdistributed secu-
rity .

4.2.3 Sharing policies

The pollution prevention algorithm is based on Merkle hashes. The Merkle tree can
be built in two ways: (a) by downloading all the content from the web server and
computing the hash tree when the download is finished, or (b) by receiving the hash
tree portions along with eachpiecemessage. A new connection can be established
only if the other party has a part of the Merkle tree (and therefore a root hash) to
share. Without a Merkle tree, peers cannot send thepiecemessage, since the content
integrity cannot be verified.

In the first phase of the swarm creation, no peer will have any part of the Merkle
tree. Hence, all the content will be downloaded from the web server. When the first
download completes, the first Merkle tree can be computed andthe peer holding the
content can start establishing connections. The sending peer will distribute parts of
the Merkle tree, the receiving peers will have the first portion of the hash tree and
can start establishing new connection in turn; the hash treestarts spreading over the
swarm as well as pieces. In this second phase, the load of the server is distributed
over the P2P network.

Another scenario is also possible: the first Merkle tree has not been computed
yet andevil peers distribute portions of anevil hash tree. In this case, thedistributed
securityeffect will help in detecting theevil root hash;invalidate messageswill be
spread over the swarm, invalidating theevil root hash. Once the attackers have been
detected, theevil hash tree will be discarded. Since no other root hash is present
in the swarm yet, the peers will continue the download retrieving the content only
from the web server until the first Merkle tree is generated.

As we just examined, the first sharing policy is to share content only if (at least)
a part of the Merkle tree has been received. This ensures local content verifica-
tion and global root hash invalidation. Another simple and effective sharing policy
is to redistribute to the network only pieces received form the web server. This
policy guarantees to inject in the swarm only non-polluted content. On the other
hand, when sharing the content received from the P2P networkinstead, the risk of
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injecting polluted content is higher.
Good sharing policies can increase the global security overthe swarm. In this

chapter only two policies have been presented. However the pollution prevention
algorithm is flexible and open to integrate other sharing policies that can speed up
attacks detection.

4.3 Considerations and conclusions

We presented how, in an environment lacking in piece hashes,the content integrity
cannot be guaranteed unless a mechanism to resist to fake block attacks is devised.
This mechanism has been synthesized in thePollution preventionalgorithm. This
algorithm makes the use of the Merkle hashes technique to trade hashes between
the peers, and is supported by theRotten branch detectionandInvalidate message
techniques to respectively identifyevil peers and to distribute attack detections over
the swarm.

With the Invalidate messagewe also introduced the new concept ofdistributed
security, where each peer participating to the swarm is responsible for checking
the integrity of a portion of the download and for sharing fake root hash detections
among other peers in the swarm.

Fake block attacks are usually coordinated attacks intended to create as much
damage as possible. Therefore, these attacks usually happen in swarms sharing
popular content, where the number of peers is substantial. From an attacker point
of view, it is not profitable to attack swarms of a few dozen peers; it means that
the shared content is not popular and that the impact of the damage to the swarm is
small.

The whole concept of this thesis is to resist to the phenomenon of Flash Crowds.
Flash Crowds happen for popular content, where thousands clients try to download
the same content. This is where we can profit the most from the P2P support. This
is also the situation where the risk of attacks is higher.

The effectiveness of the pollution prevention algorithm isproportional to the
number of peers in the swarm; the more the peers, the better the algorithm per-
formance. At the same time, the bigger the swarm, the higher the risk of attacks.
Therefore, the pollution prevention algorithm is effective when it is most required.
If the number of peers in a swarm is small, the web server can handle the load of
distributing all the content and the P2P support is not needed anymore. In such a
way the content integrity can be guaranteed when the pollution prevention is weak,
by downloading the content only from the web server.
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Chapter 5

Implementations and Experiments

This chapter describes the experiments performed with the two main implementa-
tions of the HTTP/BitTorrent hybrid. The first one concerns with the web seeding
features included in the Tribler Core during the thesis, thesecond implementation
is a simulator of thepollution preventionalgorithm aiming to test the server-side
performance of the BitTorrent/P2P architecture hybrid. The reason for two differ-
ent implementations is that the web seeding feature has beenincluded in the Tribler
Core in the early stages of the thesis, while the Pollution Prevention algorithm has
been created in the second phase, and not included in the Tribler Core. However, the
Pollution Prevention algorithm should not influence much the download speed/ratio
behaviour of the Tribler Core, and the server load variationcan be tested with the
Pollution Prevention simulator. The results of the experiments performed with the
two different implementations show that the performance achieved is the result of
merging the best of HTTP and BitTorrent; in particular the low download start-up
delay is typical of HTTP while the download load is distributed over several hosts
including the web server, a typical characteristic typicalof BitTorrent environments.
In the following experiments, theserver loadis defined as the amount of content
retrieved from the server over the total amount of content retrieved by the peers.

5.1 Tribler Core

The implementation of a browser plug-in rendering video content retrieved from
a P2P engine, was developed in the early stages of this thesis[26][8]. The goal
was to provide a web page with video content retrieved from the BitTorrent net-
work. It’s easy to imagine the advantages of such a tool in theattempt of building a
YouTube-like service. The result has been the SwarmPlugin,released in 2009 [12],
composed of a modified version of theVLC browser plug-inresponsible for ren-
dering the video in the page, and by theBackground Process, based on an existing
feature of the Tribler Core that provides video on demand content retrieved from
the BitTorrent network.
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The project then evolved in 2010 [16][13] in a partnership with Wikipedia in the
attempt of including video content in the Wikipedia pages, in such a way that their
low-cost infrastructure is able to satisfy a large amount ofuser requests. The HTTP
seeding feature, already included in the Tribler Core in theearly stages of this thesis,
has been adapted to cope with the project requirements. Withthe introduction of a
policy to balance the bandwidth coming from HTTP and BitTorrent, the developed
engine has been able to provide P2P video service able to integrate from HTTP the
bandwidth necessary to keep the playback sustainable.

The following sections show the results of the experiments performed with the
Background process including the HTTP seeding features. These tests use different
torrent in which theurl-list parameter has been embedded. Theurl-list parame-
ter specifies the URL of the resource shared in the swarm, and enables the HTTP
download in the Tribler Core.

5.1.1 Background process interface

The Background process interface is composed by two channels: a TCP socket for
receiving requests and sending the status to the connecter1, and an HTTP channel
providing the video content.

Escape character is '^]'.

START http://url2torrent.net/torrent/f75686cf82a7bd71e8fdd6d0817898b20cdc2eff.torrent

INFO Prebuffering 0% done (connected to 0 people). Playing in less than a minute.

INFO Prebuffering 0% done (connected to 0 people). Playing in less than a minute.

INFO Prebuffering 32% done (connected to 1 person). Playing in less than 5 minutes.

PLAY http://127.0.0.1:6877/content/0f49090a7a43e3038407ee296098c2602cd866a8/0.733461915126

INFO  

START http://url2torrent.net/torrent/f75686cf82a7bd71e8fdd6d0817898b20cdc2eff.torrent

PLAY http://127.0.0.1:6877/content/0f49090a7a43e3038407ee296098c2602cd866a8/0.733461915126

Figure 5.1: Telnet session connecting to the BG process and starting a download

Figure 5.1 shows how the connecter, in this case a telnet session, interacts with
the Background process by sending the URL of the torrent to download. Figure
5.2 shows the Backgound process’ output where theSTARTcommand is received
by the connector, and the activation of the HTTP support, that is the HTTP seed-
ing feature, is triggered by the url-list parameter contained in the torrent metadata.
Upon the activation of the HTTP seeding feature, the BG starts receiving content
from the web server. When enough content to keep the video playback sustainable
has been downloaded, the BG sends back to the connecter the URL of the internal
VideoServer from which the video content can be retrieved.
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bg: Test if already running 
Build 17598
bg: Kill-on-idle test enabled
bg: Awaiting commands
bg: Plugin connection_made
bg: Got command: START http://url2torrent.net/torrent/f75686cf82a7bd71e8fdd6d0817898b20cdc2eff.torrent
bg: get_torrent_start_download: Starting new Download
bg: VOD EVENTS ['start', 'pause', 'resume']
main: Starting new Download '\x0fI\t\nzC\xe3\x03\x84\x07\xee)`\x98\xc2`,\xd8f\xa8'
http: Activating HTTP support
http: Content URL: http://upload.wikimedia.org/wikipedia/commons/8/84/Play_fight_of_polar_bears_edit_1.avi.OGG
http: Got 32768 bytes from server
http: Got 32768 bytes from server
http: Got 32768 bytes from server
bg: Telling plugin to start playback of /content/0f49090a7a43e3038407ee296098c2602cd866a8/0.733461915126
Play_fight_of_polar_bears_edit_1.avi.OGG DLSTATUS_DOWNLOADING 27.34% None up     0.00KB/s down   350.47KB/s
Play_fight_of_polar_bears_edit_1.avi.OGG DLSTATUS_DOWNLOADING 27.34% None up     0.00KB/s down   166.90KB/s
videoserv: do_GET: Got request /content/0f49090a7a43e3038407ee296098c2602cd866a8/0.733461915126 bytes=0-
videoserv: do_GET: MIME type is audio/ogg length 5992448 blocksize 32768 Thread-12
http: Got 32768 bytes from server
Play_fight_of_polar_bears_edit_1.avi.OGG DLSTATUS_DOWNLOADING 30.62% None up     0.00KB/s down   122.58KB/s
http: Got 32768 bytes from server
http: Got 32768 bytes from server
Play_fight_of_polar_bears_edit_1.avi.OGG DLSTATUS_DOWNLOADING 39.92% None up     0.00KB/s down   118.93KB/s

bg: Awaiting commands
bg: Plugin connection_made
bg: Got command: START http://url2torrent.net/torrent/f75686cf82a7bd71e8fdd6d0817898b20cdc2eff.torrent

http: Activating HTTP support
http: Content URL: http://upload.wikimedia.org/wikipedia/commons/8/84/Play_fight_of_polar_bears_edit_1.avi.OGG
http: Got 32768 bytes from server

bg: Telling plugin to start playback of /content/0f49090a7a43e3038407ee296098c2602cd866a8/0.733461915126

Figure 5.2: BG process output. The highlighted lines show the START command received by the
connecter, the activation of the HTTP seeding feature, and the availability of the downloaded content
on the specified URL (start playback line)

5.1.2 Bandwidth usage

Figure 5.3 shows the system behaviour of a BitTorrent download with the HTTP
seeding feature activated. The file retrieved has a total size of 237 MB, and the
swarm, at the moment of the download, was composed of 15 seeders and 240 leech-
ers. After the swarm discovery step, the client could successfully initiate connec-
tions with 25 peers. One can notice that the HTTP incoming bandwidth starts im-
mediately and remains constant, like in a regular HTTP download. The BitTorrent
bandwidth starts later, increasing the total speed of the download. In this case the
BitTorrent download start-up latency is low (around 4-5 seconds), since the swarm
selected for the test was properly populated. In the following section we will see
that for not well populated swarms, the download start-up latency of the BitTorrent
network is higher.

After the Tribler engine starts the HTTP download, new connections are also
started with peers found during the swarm discovery step. The first peers start giving
bandwidth after 5 seconds. After around 40 seconds from the start of the download,
the download speed increases by a factor of two with a peer giving around 1 MB/s
of bandwidth. This also means that the server load is reducedby around 2/3 during
the download session, since just one third of the data is downloaded from the web
server.

In this test, we are not interested in any sort of bandwidth balancing, unlike in
the next experiments. The system just tries to get the maximum bandwidth from

1Even if the BG has been designed to interact mainly with the VLC plug-in, any software component able
to ”speak” the BG protocol can activate a P2P download. this is why we don’t refer to the browser plug-in but
to a generic connecter.
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Figure 5.3: Hybrid download behaviour. The grey filled curve representsthe HTTP bandwidth. On
top of the HTTP bandwidth each of the 25 peers increases the total incoming bandwidth with its
bandwidth contribution. The total download speed is represented by the red line.

HTTP and from BitTorrent. This experiment is meant to show the best of both
worlds: low start-up latency, improved download speed, server load reduction.

5.1.3 Start-up time delay

This experiment measures the start-up time delay for HTTP and BitTorrent. In par-
ticular we are interested in the latency for completely receiving the first piece. The
reason for selecting this measure is that it both combines the latency for receiving
the first bit (start-up latency) and the speed at which the first bytes are received (ini-
tial download bandwidth). The start-up latency itself is not much indicative if we
consider the case where the first bit is received with low latency but the download
bandwidth is very slow.

Figure 5.4 shows the start-up time delay measurements of 10 executions of the
experiment. The torrent in question is the popularElephants dreamshort movie,
with a piece size of 512 KB. Combining these results with the ones in figure 5.3 we
can understand not only that BitTorrent has a higher start-up latency compared to
HTTP, but also a lower initial download bandwidth. These results are particularly
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Figure 5.4: Delay comparison between HTTP and BitTorrent for receivingthe first 512 KB of data.
The resulting values combine the latency for receiving the first bit and the initial download band-
width.

meaningful in the context of P2P based video on demand, wherethe playback start-
up delay is critical.

We can observe that the HTTP values vary between 1 and 2 seconds. In the
BitTorrent values we can observe a bigger variation, between 1.7 and 21.4 seconds.
This big variation is caused by some factors like the trackerresponse time, the peers
outgoing bandwidth, the peers unchoking delay and swarm characteristics like the
swarm size. We can conclude that, in the context of P2P based video on demand,
the support of HTTP can greatly improve the start-up delay ofthe playback.

5.1.4 Flashcrowd simulation

This experiment analyses the global behaviour of the swarm in two different config-
urations: an HTTP download with the BitTorrent support, andthe same download
without the BitTorrent support. The web server upload bandwidth has to be split be-
tween 10 clients, that start their download with a small delay one from each other.
The maximum upload bandwidth of the web server is 250 KB/s, while the download
and upload bandwidth of each peer has no limit.

As it is possible to see in figure 5.5, in the first few seconds where peer #1
started the download, its download bandwidth reaches the maximum web server’s
outgoing bandwidth limit. In a second step, peer #2 starts its download, and the web
server’s bandwidth has to be split between two clients. Whenall the 10 peers have
started their download, the bandwidth of the web server is equally split between
them. When the download of the first peers completes, the download bandwidth of
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Figure 5.5: HTTP download. The web server output bandwidth is equally split between all the
clients.

the last peers increases, since the server’s bandwidth has to be split between fewer
peers.

Figure 5.6 shows the behaviour of the same experiment but with the P2P down-
load support enabled. we can notice the differences on the two graphs of the Y- and
X-axis scales, denoting different incoming bandwidths andcompletion times. For
each peer, the HTTP incoming bandwidth and the total incoming bandwidth (HTTP
+ BitTorrent) is displayed. As in the previous case, the HTTPbandwidth of the web
server is split between the peers and the HTTP incoming bandwidth of each peer
has the same behaviour of the previous experiment. However,the total incoming
bandwidth of each peer behaves differently.

In the first phase, each peer gets the expected HTTP bandwidthplus all the
content retrieved by the swarm until that moment. As an example, peer #2 gets
the half of the HTTP outgoing server bandwidth (since it has to be split with peer
#1), plus all the content retrieved by peer #1 until peer #2 started the download. As
the next peers start the download, the initial download curve reaches higher values,
because more content has been downloaded by all the previouspeers. This explains
the curve peaks during the initial phase.
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Figure 5.6: Hybrid HTTP/BitTorrent download. The web server output bandwidth is equally split
between all the peers and each peer receives from the others their portion of HTTP downloaded
content. Therefore the total bandwidth received by each peer is equal to the web server’s output
bandwidth. In general, in an hybrid download, independently from the swarm size, each peers
receives a bandwidth equal to the maximum web server’s output bandwidth.

After the first initial phase, the download bandwidth of all the peers converge
to a value that is slightly smaller than the web server outputbandwidth. In other
words, the HTTP download bandwidth of each peer is shared between each other
and therefore, the total download bandwidth of each peer is equal (or less) to the
web server output bandwidth. As an example, if the total output bandwidth of the
web server is 10 pieces per second, and 10 peers download simultaneously from the
server, they get 1 piece per second; at the same time, the peers will be sharing the
piece retrieved from the web server with each other, and therefore each peer gets one
piece from the web server and 9 pieces from the other peers in the same second, that
is the maximum web server output bandwidth. The reason why the peers converge
to a download speed that is slightly lower than the server output bandwidth is that
peers can download the same piece at the same time or with a little delay each other,
and therefore the piece in question will not be shared, decreasing by a small quantity
the download speed of the peers.

With the analysis of this experiment we can conclude that thehybrid download
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has two main benefits: a) the web server has to distribute the content only once
and b) each peer receives a total bandwidth that is equal to the web server’s output
bandwidth. These are the same conditions as when each clientis the only one to
download from the web server, regardless the number of clients.

5.1.5 Intelligent bandwidth balancing policy

As previously stated, a new project was born from TU Delft’s collaboration in 2010
with Wikipedia. The goal was to study the possibility of including P2P-based video
streaming service in the Wikipedia pages. Since Wikipedia relies on donations to
fund their infrastructure, low cost video delivery is a strict requirement. This is
a good reason for adopting a P2P based solution instead of a central server based
architecture such as content delivery infrastructure.

Since low server load is the main interest and, at the same time, low playback
start-up delay has to be guaranteed, a smart bandwidth balancing policy is required.
The policy is based on the concept that the web server has to support as less load as
possible; therefore, when downloading a video, the bandwidth priority is given to
BitTorrent, and HTTP has to be used as a fall-back to guarantee playback stability.

The behaviour of the bandwidth balancing policy is shown in figure 5.7. For
clarity, the same results have been plotted by applying somecurve smoothing in
figure 5.8, making the graph easier to read. We will refer to figure 5.8 in the follow-
ing analysis. The red line represents the total incoming bandwidth, as a combination
of the HTTP and the BitTorrent bandwidth. As one can observe,the total incoming
bandwidth waves around the video bit-rate value; the cause for such a behaviour
depends on an internal video buffer that, as it gets filled or emptied, requires to the
engine more or less bandwidth, increasing and decreasing the download speed.

The blue line, representing the incoming BitTorrent bandwidth, is generated by
alternating two peers sharing the video at two different speeds: one peer seeding
at 38 KB/s and another peer seeding at 18 KB/s. Around 190-420seconds range,
the incoming BitTorrent bandwidth is slightly higher than the video bit-rate, and
therefore almost no HTTP bandwidth, represented by the green line, is required.

When there is no bandwidth coming from the BitTorrent network, HTTP has to
supply with enough content to keep the video playback sustainable. As an example,
we can notice that during 350-400 seconds range there is no incoming BitTorrent
bandwidth, and therefore the missing bandwidth has to be requested to HTTP.

Finally, when the incoming BitTorrent bandwidth is not enough to keep the
video playback sustainable, like between second 70 and second 130 or between
second 250 and second 340, the missing bandwidth is compensated by HTTP. Fig-
ure 5.9 shows an alternative view of the same experiment results, where it is easier
to understand what the bandwidth ratios are.

To conclude, this experiment show how different configurations of the band-

48



Implementations and Experiments 5.2 Pollution preventionexperiments

0

10

20

30

40

50

60

70

80

90

100

110

120

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

Video Bitrate

In
co

m
in

g 
ba

nd
w

id
th

 [K
B

/s
]

Time [sec.]

Total bandwidth
HTTP bandwidth

P2P bandwidth

Figure 5.7: Intelligent bandwidth balancing policy behaviour. The priority is given to the BitTorrent
network. The missing bandwidth required to keep the video playback sustainable is integrated with
HTTP bandwidth. One of the effects is that the server load is as low as possible to meet the video
playback sustainability requirement.

width balancing easily lead to coping with the environment requirements. In this
case the requirement is to support BitTorrent with HTTP in the task of video stream-
ing service, keeping low server load as a priority. In the previous experiments, on
the other hand, the BitTorrent bandwidth is used to support the HTTP one. By just
tuning a few parameters, the best performance can be achieved by the best qualities
of HTTP or BitTorrent.

5.2 Pollution prevention experiments

The Pollution Preventionalgorithm introduces some restrictions in the bandwidth
usage ratio. This is important mainly for the server side results, since more data is
required from the server to guarantee content integrity. For this reason a simulator
of thePollution Preventionalgorithm has been developed with the purpose of mea-
suring the server load in different conditions, depending on the file size, swarm size
and quantity of seeders.

Since the results of the experiments where the file size and swarms size param-
eter variations are not meaningful to the end of analysing the server performance,
but they just show that the download ratio between HTTP and BitTorrent keeps
constant over the variation of those parameters, they will be not presented. The at-
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Figure 5.8: The same results of figure 5.7 have been plotted with curve smoothing to improve the
readibility of the graph.

tention will be concentrated on the experiments where the number of seeders in the
swarm variates.

This implementation simulates DHT, web server and peers. Each peer down-
loads a piece from the web server or from another peer depending on the piece
selection instructed by thePollution Preventionmodule. No network data transfer
is involved, and the unchoking algorithm is simplified to theminimum. The simu-
lator just analyses the amount of pieces retrieved from the web server and from the
swarm. In particular the server load variates depending on the amount of seeders in
the swarm. The reason is that a small amount of seeders allowsthe root hash to be
spread among the peers, enabling the peers to trade pieces instead of being forced
to download the content from the web server. Indeed, when a peer has no root hash,
either received from another peer or computed after retrieving all the content from
the server, it can not share its content since it is not possible to generate apiece
messagecontaining all the needed sibling and uncle hashes.

These experiments demonstrate that only a minimum amount ofdata needs to
be retrieved from the web server to perform content integrity checks over the data
retrieved by other peers. The most important outcome is thata minimum amount of
seeders ( around 5%) in the swarm reduces the web server load by a factor of more
than the 70%.

50



Implementations and Experiments 5.2 Pollution preventionexperiments

0

10

20

30

40

50

60

70

80

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

Video Bitrate

In
co

m
in

g 
ba

nd
w

id
th

 [K
B

/s
]

Time [sec.]

HTTP bandwidth
P2P bandwidth

Figure 5.9: A filled curve representation of the results shown in figure 5.8. Here it is easier to have
an idea on what the HTTP and BitTorrent component ratios are.

5.2.1 Server load on seeders ratio variation

The graph represented in figure 5.10 shows how the server loadis influenced by
the number of seeders in the swarm. The tests are performed inan environment
where 100 peers are simulated, and the file size is 2048 pieces. The5%, 20%and
100% seedersexperiments are performed over the 100 peers plus the 5%, 20%
and 100% of seeders more. TheStart-upexperiment represents the initial phase in
which all peers are leechers and start the download concurrently. Since there is no
seeder in the swarm, there is no root hash and the peers cannotshare pieces between
themselves.

In the2 stepsexperiment, an initial set of 20 peer are started concurrently while
a second set of 80 peers is started when the first set completedthe 97% of the
download. This gives the first set of peers the opportunity toretrieve more content
from the web server and to compute earlier the Merkle tree once the download has
completed. Once the first set completes the download, the root hash is spread in
the swarm and gives to the second set of peers the opportunityof trading pieces,
lowering the web server’s load.

An analysis of the results shown in figure 5.10, demonstratesthat a small quan-
tity of seeders in the swarm allows a web server load reduction of more than the
90%, where, as a reminder, the server load is defined as the amount of content re-
trieved from the server over the total amount of content retrieved by all the peers of
the swarm.
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As an example, if the content size is 2048 pieces, and there are 100 peers down-
loading and 5 seeders, the total amount downloaded by all thepeers is 204800
pieces; where 20480 pieces are retrieved from the server and184320 pieces are
retrieved from the P2P network.
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Figure 5.10: Server load on seeders ratio variation. With the 5% off seeders in the swarm, the
around the 90% of the total content is received from the P2P network and the 10% from the web
server.

5.2.2 Swarm download session simulation

This experiment aims to analyse the behaviour of the swarm, the server load and
the HTTP/P2P pieces ratio during a whole download session. The difference with
the previous experiment is that in this case the swarm changes over the time, while
in the previous case the swarm conditions were predefined.

In this experiment, 3 sets of peers are started with different time delays. The
total amount of peers started is 500; the size of the downloaded content is 512
pieces. The first set consists of 100 peers, started with a very small delay one from
the other. We expect in this case to have all the peers downloading from the web
server concurrently, since no root hash is circulating in the swarm. Since the peers
are started with a small delay from each other, the first ones to be launched will
have a little advantage that will cause them to complete the download earlier and to
generate the root hash. The root hash will be distributed over the swarm, allowing
the rest of the peers to share pieces and lower the server load.

52



Implementations and Experiments 5.2 Pollution preventionexperiments

 0

 100

 200

 300

 400

 500

0 45 90 135 180 225 270

P
ee

rs

Time [sec.]

Peers in swarm
Leechers
Seeders

Figure 5.11: Behaviour of the swarm during a download session.

The second set consists of 66 peers also started with a small delay from one
another. The expected behaviour for this set is not to load the server with many
request, since a root hash should be already present in the swarm, allowing those
peers to receive pieces from seeders and to trade pieces eachother.

Finally, the third set, consisting of 334 peers, starts all the peers concurrently,
with no delay. With no P2P support, this set would overload the web server with
a large amount of requests. However, we expect the web serverto be loaded only
with around 10% of the total requests.

The 3 sets simulate three of the previous experiment cases:Start-up, 2 stepsand
20% seeders, but in a scenario where all the peers are started continuously and not
in different experiments.

Figure 5.11 displays the results concerning the swarm evolution. The red curve,
representing the total amount of peers in the swarm, grows linearly over the time.
The number of leechers has its peak in the first phase, when no root hash has been
generated yet or entirely spread over the swarm; at the same time the number of
seeders slowly grows. In the second phase, the first downloads complete and the
root hash is generated and spread over the swarm, the number of leechers decreases
and the number of seeders grows fast. After this transition phase, the number of
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leechers remains constant during the swarm growth, and the number of seeders
grows linearly like the swarm size.
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Figure 5.12: Distribution of the load over HTTP and BitTorrent during thedownload session. The
server load is defined as the ratio between the HTTP downloaded pieces over the total amount of
downloaded pieces. The top graph has a scale enlargement in the range [0,60] on the Y axis to
better show the behaviour of the downloaded HTTP pieces.

Figure 5.12 displays the results of the experiment concerning the number of
pieces downloaded and its ratio. As expected in the beginning phase, all the content
is retrieved from the web server, as displayed by the green line in the upper graph.
At the same time, the black line in the bottom graph shows thatthe ratio of the
downloaded pieces is 1, meaning all the downloaded pieces are retrieved from the
server. After this initial phase we can observer that the number of BitTorrent and
HTTP downloaded pieces is constant, in the same way as the number of leechers
remains constant over the same range of time. In this phase, the pieces ratio remains
constant to a value under the 10%. This means that the 90% of the load generated
by the swarm download is spread over the P2P network and only the 10% over the
web server.

To conclude the analysis of this experiment, the results show that the web server
load is higher in the first phase of the download session, whenno seeder, and there-
fore no root hash, is present in the swarm yet, and when it’s impossible for peer
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to upload. However this is also the phase where the total number of peers in the
swarm is relatively small. As the graph shows, the number of pieces retrieved from
the server is reasonably small over the whole duration of theexperiments, both
when the HTTP/Total pieces ratio is high and when it is under 0.1.

5.3 Conclusions

The previous experiments show what the performances of hybrid systems are. The
findings can be divided in two groups: client side and server side. In the client side
we analysed how merging HTTP and BitTorrent bandwidths improves the speed of
the download. We also analysed the improvements in the start-up delay, a parameter
that is essential in the context of P2P based video on demand.In the Flashcrowd
experiment we showed how clients and server benefit from the hybrid download:
the server distributes the content only once, and the clients receive a bandwidth
equal to the web server’s output bandwidth. Then we demonstrated that, with an
intelligent bandwidth balancing policy, an HTTP/BitTorrent hybrid can easily adapt
to different needs, like for example trying to keep the download bandwidth constant.

In the server side results we analysed how the server load, defined as the amount
of content retrieved from the server over the total amount ofcontent retrieved by the
peers, behaves depending on swarm growth and number of seeders. These results
show that the web server is able to support a number of concurrent connections
much higher than conventional HTTP. The Pollution Prevention experiments also
show that, in an environment where HTTP2P is used, the condition for reducing the
server load to the 10% is to have a minimum number of seeders, between 1% and
5% of the total swarm size.
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Chapter 6

Conclusions

The web content is changing. HTTP content size and request frequency are grow-
ing. The popularity of the content can also affect server performances with phenom-
ena like theFlashcrowds, generating service denial. At the same time, BitTorrent
is leading the world of file sharing due to its ability to scalewith big increases of
peer requests. Therefore, the combination of HTTP and BitTorrent is a candidate
solution to address this issue. The previous attempts of building a solution that
combines HTTP and P2P have not had much success, but the need for a solution is
still present.

The problem of supporting the HTTP protocol with BitTorrentin the task of
web content retrieval stands mainly in the security aspect.Because of the nature of
HTTP, the lack of piece hashes is a limit for guaranteeing content integrity. A few
existing techniques allow the process of translating the URL of a web resource into
a BitTorrent download; however a technique able to guarantee content integrity in
this environment is lacking.

This thesis work proposes the architecture of HTTP2P, a toolable of hybrid
download, and thePollution Preventionalgorithm, a technique able to guarantee
content integrity over the swarm, based on two main concepts: the trusted authority
(web server) and the distributed security (through theinvalidate message).

Our experiments have shown that combining the best of the HTTP and the Bit-
Torrent worlds greatly improves the performance of a download session, both on
the server and the client side. The proposed architecture and thePollution Preven-
tion algorithm solve the problem of supporting HTTP with the BitTorrent protocol.
However, also the effects of supporting BitTorrent with HTTP, that is the HTTP
seeding technique, have been analyzed in this work, as part of an hybrid system.

In a scenario where the web content is growing, where the number of connec-
tions is increasing and where the content popularity is a fundamental parameter, the
combination of HTTP and BitTorrent brings consistent improvement to a download
session. These improvements are experienced in the client side, where the down-
load speed is improved and the download start-up latency is reduced, and in the
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server side, where the load of the server is distributed overthe swarm and therefore
more connections can be supported.
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