Merging the best of HTTP and P2P

Version of January 11, 2011

/
tribler

Diego Andres Rabaioli

Merging the best of HTTP and P2P

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING

by

Diego Andres Rabaioli
born in Rome, Italy

%
TUDelft

Parallel and Distributed Systems Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www. ewi . tudel ft. nl

(©2010 Diego Andres Rabaioli. All rights reserved.

Merging the best of HTTP and P2P

Author: Diego Andres Rabaioli
Studentid: 1340794
Email: drabai ol i @mail.com

Abstract

The World Wide Web is growing fast. Web content is growing adlwTo cope
with this trend, server infrastructures must be able toesartiuge amount of traffic.
When this cannot happen, service denial is the consequ8ne| content publishers
are the most affected by this phenomenon. At the same timi&pmBént is leading
the file sharing world, generating a big part of the netwodffic. Therefore com-
bining HTTP and BitTorrent is a candidate solution for deghwith phenomena like
flashcrowds But how to merge the HTTP and BitTorrent protocols? How teetage
the P2P network when the only input is the web content URL3 Tloicument pro-
poses an approach to support HTTP with the BitTorrent pmtothe architecture of
HTTP2R a tool capable of hybrid download, is described in its detdiis shown that
the main problem to face when creating such an hybrid is ptévg content pollution
attacks. The solution to this problem is the Pollution Préiem algorithm presented in
this work. The experiment results show that the achievefbpaance when combin-
ing HTTP and BitTorrent is the best of both protocols: sloarstip delay, improved
download speed and server load reduction.

Thesis Committee:

Chair: Prof. dr. ir. H.J. Sips, Faculty EEMCS, TU Delft
University supervisor: Dr. ir. J. Pouwelse, Faculty EEMCS, Delft
Committee Member: Dr. S. Dulman, Faculty EEMCS, TU Delft

Preface

This thesis is part of my Master of Science in Computer Erging at Delft Uni-
versity of Technology. This document describes my thesikwerformed at the
Parallel and Distributed Systems Group of the Faculty otteleal Engineering,
Mathematics, and Computer Science of Delft University affifeology.

I would like to express my gratitude to my supervisor Dr. JoRauwelse, for
supporting me throughout the project period, enriching nita academical expe-
rience. Also | would like to thank Freek Zindel, for introdng me in the thesis
project and guide me in the right direction, and Gertjan Rkéta Nazareno An-
drade and Nitin Chiluka for their precious feedback on myisieFinally 1 would
like to thank the Tribler group, that | consider as an indgmrafor the P2P tech-
nologies world.

Diego Andres Rabaioli

Delft, The Netherlands
January 11, 2011

Contents

Preface iii
Contents %
1 Introduction 1
1.1 FlashCrowds. e 2
1.2 Loaddistribution 2
1.3 HTTP . . . 3
1.4 BitTorrent e 3
1.5 Thebestoftwoworlds. 5
1.6 Thesisoutline 6
2 Problem Description 9
21 Goals e 9
2.2 Priorworko 11
2.3 Metadata and swarm discovery challenges 11
2.3.1 Requesttranslation 12
2.3.2 SwarmdisCcovery e 12
2.3.3 Security and pollution prevention 21
2.4 Existingtechniques, 13
241 WebSeeding 13
242 Merklehashes 13
243 DHT e 14
3 HTTP2P Architecture 17
3.1 Metadata and swarm discovery solutions 17
3.1.1 Requesttranslation 17
3.1.2 Swarmdiscovery 18

3.1.3 Security and pollution prevention 91

CONTENTS

vi

3.2 Designconsiderations
3.2.1 Minimalimpact
3.2.2 Desiredbehavior
3.2.3 Proceduresteps.

3.3 Architecture
3.3.1 Triblercore
3.3.2 Connectioninterfaces
3.3.3 In-coreflow

34 Summary e e

4 Pollution prevention
4.1 Fakeblockattack.
4.2 Pollution Prevention algorithm

4.2.1 Rotten branch detection

4.2.2 Invalidatemessage

4.2.3 Sharingpolicies
4.3 Considerations and conclusions

5 Implementations and Experiments
5.1 TriblerCore
5.1.1 Background process interface

5.1.2 Bandwidthusage
5.1.3 Start-uptimedelay
5.1.4 Flashcrowd simulation

5.1.5 Intelligent bandwidth balancing policy

5.2 Pollution prevention experiments

5.2.1 Server load on seeders ratio variation

5.2.2 Swarm download session simulation. . . .
5.3 Conclusions

6 Conclusions

Bibliography

........ 40

Chapter 1

Introduction

The Webis growing fast. From the first static pages containing nyatiext, a few
links and pictures browsed by few users per hour, the Worlde/veb evolved
to dynamically-changing and media-rich content pagesysable by sophisticated
tools at a rate of nearly a million requests per day.

Web content size is also growing hand in hand with connecjmeed. One
of the recent steps forward in modern browsers has been tbgration of video
content rendering directly in pages (HTML 5) and not throtighuse of an external
plug-in [11]. This marks the trend of including video corttéone of the largest
types of content) in web sites. For popular web contentitligiors this means that
the delivery infrastructure has to be able to provide a langlead bandwidth for
a huge number of users. Today, technology offers high pedace servers and
the possibility to cluster these powerful machines in lasgale content delivery
systems. However, the costs to set up and maintain suchsysie very high, and
hence not affordable by all content publishers.

Besides web content size, popularity is another factor ¢oatd require the
content provider to set up expensive content-deliveryesyst When a specific web
page or web content becomes very popular in a short time XtonpleSlashdo{9]
or Digg) the delivery infrastructure gets overrun with user ret¢gi€eBhis consistent
growth in user requests is calléthsh Crowd Most of the small web content hosts
can not cope with this huge increase of traffic and becomedeamniy unavailable.

At the same time, peer-to-peer (P2P) protocols are suaogetihe file-sharing
world due to their capability to be highly scalable in enuineents with a large
number of users. Files of the magnitude of 1 GB can be spreaeeba 100.000
users in one day. This example gives the idea of the perfarenafhsuch a network
and the potential it can achieve if combined with a web cardefivery system. By
combining P2P and HTTP protocols, a small web server canlé&tash Crowds
and satisfy the request for a huge amount of data without @mg bardware cost.

1.1 Flash Crowds Introduction

1.1 Flash Crowds

To understand the advantage of merging HTTP with P2P dowlntba concept of
Flash Crowdhas to be introduced. k&lash Crowdis a phenomenon that occurs
when a server hosting a web site or a web resource catchetehéan of a large
number of users, and gets an unexpected overloading sutgafaf [23][14]. To
satisfy such a huge amount of requests in a short time the weier has to supply
an adequate amount of hardware resources.

The common strategy to deal with this phenomenon is to adulrar to the web
infrastructure. An exact copy of the web content is spreaat different machines
so that the user requests are distributed and the load isdealaver several hosts.
As an example of mirroring, we can consider the well-knownr8eForge website
that hosts open-source software projects; to maintain tagnavailability to the
users, its infrastructure is composed of many mirror sites.

If we consider the cost for setting up and maintaining sucliné&mastructure,
we can conclude that preventing=tash Crowdeffect is very expensive and not
affordable for every web content provider [28]. Hence, tmak publishers are the
most affected by the risks of Blash Crowd where, if not properly prevented by
a robust infrastructure, the consequence is running owtrefce. This problem is
even more pronounced when dealing with large content, sirecavailable upload
bandwidth of the server could run out with a small increasgsier requests.

1.2 Load distribution

Due to the high scalability property of the P2P networksBit€orrent protocol can
handle the~lash Crowdproblem very well. In a BitTorrent network, the larger the
number of users trying to retrieve the same content, theitsie network performs.

The reason why P2P systems are good candidates to solverketwagestion
problems related to the HTTP protocol is that its good scktalallows the net-
work to adapt itself when congestion is arising; if many esee accessing the web
server to retrieve the same content, the P2P integratiohvadlow the users to in-
teract in a cooperative download, bypassing the serveeitetsk of central content
distributor and therefore distributing the requests betwile users. By its nature,
P2P has a low cost infrastructure: no expensive hardwareeidad like in the case
of a mirror, since the load of each request is spread amonekrs in a cooperative
way. Last but not least, P2P allows decentralization: whearger providing the
desired content is down, the content is unavailable. In 2 fetwork the content
is available as long as there is at least a small set of pearsected.

This is the reason why P2P is succeeding in the file sharindpveord why it
suits for an integration with the HTTP protocol in the taskv&b content retrieval.

Introduction 1.3HTTP

1.3 HTTP

HTTP is a client-server paradigm protocol designed toaegtypertexdocuments
(web pages and media content in general) [18]. Its messaywsigm is based on
requests from client to server and responses from serveigiat.c In an HTTP
session, the client establishes a (TCP) connection witlséheer, then it sends the
request for a document, the server replies with a resporese(glly containing the
document), and at the end of the session the connectiongsalorhe request is
immediately satisfied by the server with a positive or negatesponse. The file
transfer in a conventional network starts immediatelyratite client request and
remains more or less constant. Figure 1.2 describes thesidthdoehavior of an
HTTP file download. The resource to be accessed by the cBeefined by the
URL which is mapped by the server into the physical file or dyitally generated

4 4 9 4

Figure 1.1: Client-Server architecture

1.4 BitTorrent

BitTorrent is a P2P file sharing protocol designed to disteldigital content be-
tween peers [3]. Unlike HTTP, in a P2P network architectaneger is both a client
and a server at the same time. It usually trades pieces ainafiton with other
peers. In the case of BitTorrent we can simplify that a pesdds part of a file
with another part of the same file. When a peer wants to dowlrdofie, it joins

a swarm (a group of peers sharing the same file) by asking dlckdr (a server

1.4 BitTorrent Introduction

1000 T T T

HTTP blandwidth —I

750
500 -

250

Incoming bandwidth [KB/s]

0 20 40 60 80 100 120
Time [sec.]

Figure 1.2: HTTP bandwidth behavior

keeping information about peers currently connected) gteork address of peers
in that swarm. The peer then connects to a set of peers jpaitiicg in the swarm
and starts trading pieces of the file.

Unlike HTTP, in BitTorrent, the start of a download is deldy®y many steps:
first connecting to the tracker and retrieving the peerstreskks, then connecting
to the peers in the swarm, finally waiting to receive piecemfthe peers when they
are interested in trading.

The resource that a client-peer wants to access is desdribedorrent file,
containing information about the tracker address, file, e size, file name and
other information needed to instantiate a download sesskmom theinfo field
in the torrent file, thenfo-hashis computed. This value uniquely identifies the
resource over all the BitTorrent network. For this reasbis parameter is used
during the protocol hand-shake: when two clients initiat®anection, and during
theswarm discovergtep, when the peer asks the tracker the addresses of tise peer
participating to the interested swarm. Therefore,itiie-hashcan be viewed as the
swarm identifier.

Since the peers in a swarm could be potential attackershdistrg fake con-
tent, a content integrity mechanism is needed. The hashemcbfpiece, computed
during the torrent creation, are contained in the torreat bhce a piece has been
retrieved by a peer, the hash of that piece is computed angppa@u to the same
hash contained in the torrent file. The hash checking stegatewhether the piece
is fake or not.

The advantages of a P2P network over a client-server inficistre are:

¢ distributed content: the content does not rely on a singlerakentity but
on many distributed entities. This makes the content dviditlamore robust
during huge surges of requests, in contrast with the webesgrstability.
When a web server can not supply to the number of requestsetirece is
denied and the content unavailable.

Introduction 1.5 The best of two worlds

q{\4!!!{ <‘—_~__““--—->. \!!l!
A g

2000

1500

1000

500

Incoming bandwidth [KB/s]

0 20 40 60 80 100 120
Time [sec.]

Figure 1.4: P2P bandwidth behavior

e scalability: the more peers participate in a swarm, thesbdtie network per-
forms. In the case of a web server, a big number of clientdtreésa high
server load, reducing the delivery performance.

e cost effective: building up a system able to satisfy an arhofinequests of
the magnitude of YouTube would have a strong economical anpéh a
client-server architecture. The same amount of requestbesatisfied with
a P2P solution at extremely low costs.

1.5 The best of two worlds

This thesis project aims to support HTTP with the BitTorrprdtocol in the task
of web content retrieval. In particular, the target is to tame the qualities of the

1.6 Thesis outline Introduction

two protocols in such a way that the resulting performanctihes the best of both
worlds. The following table describes which are qualitiésach protocol that we
want to keep:

HTTP BitTorrent
Simplicity Highly scalable
Low latency data transfer start-upg_ow cost infrastructure
Fast convergence to full-speed | Decentralization

The result of this merge will allow a client to start a P2P dmad with the
start-up latency typical of an HTTP file transfer, a downlspded equal to the sum
of both bandwidths, and will allow a low performance sengeptovide large web
content while satisfying a high number of concurrent retpieBigure 1.5 shows
the resulting architecture of an HTTP/P2P hybrid system.

R L

\! |

Figure 1.5: HTTP/P2P Hybrid architecture

1.6 Thesis outline

The next chapter will focus on the technical problems facéémcreating a tool
able to combine HTTP and BitTorrent. Chapter 3 presents tbeitacture of
HTTP2P, a HTTP/BitTorrent download tool, focusing on theirmianplementa-
tion details. Chapter 4 represents the scientific coniobubf this thesis work:
the Pollution Preventioralgorithm, a technique able to guarantee security over the
received untrusted data in a torrent-less and trackerdegsonment. Chapter 5

Introduction 1.6 Thesis outline

analyses some of the main implementations created duragrthject period and
shows the results of the experiments performed with thesis.td-inally, the last
chapter presents the conclusions.

Chapter 2

Problem Description

This chapter explains the challenges that are faced fodibgila system that com-
bines the best of the HTTP and BitTorrent worlds. Even if tlve protocols are
designed to retrieve files from internet, the environmenwimch they operate is
different. This introduces some incompatibilities in thessaging system of the
protocols. While HTTP is designed to retrieve a file from atcanepository, Bit-
Torrent is designed to retrieve and retransmit pieces otarfia distributed envi-
ronment formed by many entities. How to join the divergengessented in this
chapter is the scope of this thesis work.

This chapter starts with a list of goals, representing thairements to meet, fol-
lowed by an overview on the previous attempts in the taskexdtong an HTTP/P2P
hybrid. The challenges that are faced to address these gregisesented in detail.
The chapter concludes with the description of some teckesitjuat will be the key
of success toward the creation of an HTTP/P2P hybrid.

2.1 Goals

The goal of the thesis is to build a system that is able to smalthe number of
clients, handling flash crowds efficiently and that is lowtdos content publishers.
Following are some of the advantages of a system that cosbimebest of the
HTTP and BitTorrent protocols:

e Server load reduction
This is one of the most significant benefits that the P2P-HTdiRkination
would bring. The more clients try to download the same resguhe more
peers are available to share content and the less data ndexietrieved from
the web server.

¢ Increased download performance
If the user’'s download bandwidth is higher than the servésagpbandwidth,
then the user can add the P2P download speed to the HTTP one.

2.1 Goals

Problem Description

Lets consider an example on which the server bandwidth ig@®0 KB/s and
the P2P download bandwidth is 400 KB/s (pretty common valudsnce the
total speed that is possible to achieve in this case it is @83 K3 times faster
than the server bandwidth limit.

In general the total download speed cannot be lower than TiePHone.

Low cost publication

As it has been explained in the first point, by adopting thismload strategy,
the server load would be extremely reduced, therefore ib is\are necessary
to have expensive server infrastructures to deliver laoggeant.

Therefore, low-cost publishing is possible. Setting updeuior large content
delivery system is just a matter of delegating the task dfibigting the large

content to the P2P network and delegating the task of progiglist the web

page and the content access key to the web server.

Easy configuration

Server configuration requires minimalistic changes suclnatng the up-
load bandwidth to the desired value, if that is considerezsgary. Once this
limit is set, all the excess bandwidth requested by usermsngpensated auto-
matically by the P2P network. In general, no server adaptasirequired and
backward compatibility is guaranteed for servers and tdien

Zero-delay P2P video streaming

As Tribler demonstrates [10], the BitTorrent protocol casogdbe used for
video streaming [25]. The weak point in P2P video streaminthe video
playback startup time, because discovering and gettingii@e bandwidth
from other peers introduces a large delay. By implementurghew architec-
ture, the playback of a video could start as soon as the wefersgives the
stream, while the torrent engine is still in the swarm diggg\yphase (look-
ing for peers in the swarm). Once the BitTorrent bandwidtfagt enough,
the web server can be offloaded. This example highlightshibst’of both
worlds’ quality of this approach: the responsiveness of AHTanhd the load
distribution of P2P.

Backward compatibility

This technique does not need any support on the server dilealfo means
that clients unaware of the P2P support can still access dteserver in the
conventional way. This would lead to an easy and fast adotiohis down-
load strategy without relevant impacts.

As a last remark, it is to be emphasized that this downloadtisol is intended

to have a higher advantage for the server in situations wiheraumber of client

10

Problem Description 2.2 Prior work

requests is high, since the load on the server is distritautgohg the clients. If the
number of requests is low, the server is sufficient in moseésas satisfy clients’
requests.

2.2 Prior work

There have been many attempts to support the HTTP protoeaildad with P2P.
The most significant one proposes to include<aiorrentheader in the HTTP pro-
tocol [7]. TheX-Torrentheader specifies a link pointing to a torrent file that pro-
vides the same content that the user is trying to downloaditiir the browser. If the
client does not receive bandwidth because the server ldad isigh, the browser
automatically switches the download source to the BitTdrone, offloading the
server from supplying the data. The weakness of this appretmnds in the fact
that the HTTP protocol has to be extended generating backe@npatibility is-
sues for servers and clients not able to deal with the new Higdeler. Moreover,
it is not possible to merge the data retrieved from the diffiéprotocols but just
one of them must be chosen at any given time; in short, if the seever gets over-
loaded by &@lash Crowdeffect while the user is downloading through HTTP, the
download has to be started from scratch through the Bitmopeotocol.

The other solution trying to support HTTP with P2P that desemention is
the FireCoral Network Project [5]. FireCoral is intendecettable P2P exchange
of browser caches between clients. Its architecture coasisrowser clients (or
peers), origin servers that publish content, trackersdtwat peering information
and content metadata, and cryptographic signing senhegstithenticate content.
The drawback of this design is that it is not a completelyrdiated architecture;
the peer discovery process is delegated to a central trackithe authentication of
the data received from other peers is performed by asking@agraphic signing
service for the signature of each specific block. On the omel lais technique
reduces the load of the web server, on the other hand it mbedead to the tracker
and mainly to the signing service, responsible for sendaupgiece’s hash to each
peer. If the tracker or the signing service is down the whyp#tesn cannot work.

These examples are mentioned here to show that P2P is catsidebe a so-
lution to network congestion problems and that many effarts concentrated in
trying to combine HTTP and P2P [19] [22] [27] to build a scdéabystem able to
resist to phenomena likdlash Crowds

2.3 Metadata and swarm discovery challenges

In this section we explain what challenges are faced wheatiagea tool that sup-
ports HTTP with the BitTorrent protocol in the task of web tamt retrieval. As
explained later in section 2.4.XYeb Seedingolves the problem of supporting P2P

11

2.3 Metadata and swarm discovery challenges Problem Datsmni

12

with HTTP; this is simpler since the presence of a torrentashata file includes

information useful to start a connection to the server innapge way. When sup-

porting HTTP with BitTorrent, the torrent file is missing digethe nature of HTTP.

The lack of information contained in the torrent metadat&esahe process of us-
ing the P2P network more difficult. This section gives someaaraetails about

these challenges.

2.3.1 Request translation

Since HTTP and BitTorrent are two different protocols daemjto operate in two
different environments, there is some incompatibilityatve when trying to merge
them. The nature of HTTP is to send only one request to thesand to download
a file sequentially from the beginning to the end, while Bit€éat downloads a file
in scatter order depending on some policy, typically rafiest, and sending one
request for each piece of the file to download.

2.3.2 Swarm discovery

In a conventional BitTorrent session, the client joins tivaisn, as previously ex-
plained, by asking the tracker for a list of peers currendstipipating to the swarm,
and establishing a connection with each of them by perfagraihand-shake. Dur-
ing the hand-shake several pieces of information are exygtimrmost important of
all is the info-hash. Both the tracker address and the file-h&#sh are contained
in the torrent metadata file. In this scenario, since the orpyt is the URL of the
resource that the client wants to download, there is norbfile and therefore no
tracker address and no info-hash. This is critical inforarato join a swarm and to
start a connection.

2.3.3 Security and pollution prevention

Hash checking is a difficult issue to solve in a scenario wiieeee is no torrent
file containing piece hashes. Since the hashes are not krzostrategy to ensure
content integrity and to prevent the injection of polluteatadinto the system is
required. On one hand, the content integrity is a requirerftgrensuring that the
data we are downloading is correct. On the other hand, isis aéeded to ensure
that the data we are injecting in the system is not polluted.

For this purpose, it is important to understand the conceptraisted authority
The trusted authority in a conventional download is thedwatrifile itself since it
both contains the swarm identifier to be used to join the svaardithe piece hashes
to use to ensure content integrity. In a torrent-less ardkéraless environment the
only trustworthy authority is the web server; comparing ecpi received from a
peer against the same piece retrieved from the server,|lsewbather the content
received from the peer is good or not.

Problem Description 2.4 Existing techniques

It is obvious that we cannot compare all the data receivealitiir the P2P net-
work against the web server’s content, since this would teathta download du-
plication, conflicting with the goal of this thesis. Ensuyricontent integrity while
retrieving the minimum amount of data from the server is pp#the biggest chal-
lenge faced in this environment.

2.4 Existing techniques

The following techniques are used to face the problems pualy described. These
techniques are presented here to prepare the ground foexhehapter in which the
architecture of HTTP2P, a tool able to support HTTP with th&drent protocol,
is explained in detail.

2.4.1 Web Seeding

Web Seedings the ability of a server to act as a BitTorrent seeder [3]er€hs
an important distinction to remark here:Web Seedings meant to use HTTP to
support P2P, this thesis intends to use P2P to support HTGweter the solution
that is going to be proposed in the next chapters will makeofisiee Web Seeding
technique to retrieve the data from the HTTP side.

There are currently two main specification proposals forlemgntingHTTP
Seeding the GetRight style [6] and the John Hoffman style [21]. Thetfone
is transparent to the web server but includes a heavy abgorib download the
biggest gaps (adjacent pieces); the reason, as explairtbd imain specification,
is that many requests of the same file can be considered ak &iyathe server.
The John Hoffman’s style is included as part of the BitTomelient and consist of
translating a piece request into a URL string, concategatifo-hash, piece index
and offset in the URL query; however it requires a script andérver side to parse
the request, raising backward compatibility issues.

2.4.2 Merkle hashes

The building block of the security architecture is the taghe of Merkle hashes.
Hence, to fully understand how thesh checking algorithnwvorks, we need to
introduce some background dfterkle hashe§l5].

In BitTorrent, piece checking is needed to guarantee conteegrity. Each
piece is checked against the piece’s hash contained in trentoneta-data file. If
the piece’s size is too small compared to the file size the &tz file will be large,
increasing the load of the server distributing that paléictorrent. On the other
hand, very large pieces decrease the ability of peers ofitragtsince a larger time
is required to download enough data to start a trade.

13

2.4 Existing techniques Problem Description

14

A solution to these two problems is to replace the list of digevith a single
Merkle hash. A Merkle hash can be used to verify the integritihe total content
file as well as the individual blocks via a hierarchical sckerrrom the content
we construct a hash tree as follows. Given a piece size, weleté the hashes of
all the pieces in the set of content files. Next, we create arpitree of sufficient
height, using the piece hashes as leaves. Finally, we eddcilile hash values of the
higher levels in the tree, by concatenating the hash valiggedwo children and
computing the hash of that aggregate. This process endsasteMalue for the root
node, as shown in figure 2.1, which we call the root hash

The root hash along with the total size of the content file &eddiece size are
now the only information in the system that needs to come faoimusted source.
A client that has only the root hash of a file set can check aageas follows:
it first calculates the hash of the piece it received. Alonthwhis piece it should
have received the hashes of the piece’s sibling and of iteeancThe highlited
block of figure 2.1 correspond to the hashes received witimessage. Using this
information the client recalculates the root hash of the,tesxd compares it to the
root hash it received from the trusted source.

243 DHT

A distributed hash table (DHT) is an hash table distributet geveral nodes. Each
node maintains a part of the hash table and a list of otheradéresses (routing
table). The totality of all the nodes forms the overlay netwon which the DHT
operates, and the totality of all the content maintained dshenode is the DHT
itself. The DHT holds a set of (key, value) pairs and provithespossibility to store
new pairs and a look-up mechanism to retrievalegiven itskey The main DHT
property, apart from the obvious scalability and deceizaibn properties, is the
ability of dynamically change its topology, guaranteeiaglf tolerance over nodes
arrival, departure and failure [4].

DHT technology has been adopted as a component of BitTowantplement
Distributed TrackersThis technique uses DHTSs to store (swaly peerlist) pairs
in an overlay network. In this way the DHT can be used to repthe centralized
tracker in the task of swarm discovery. There are a few adggstin this technique:
the load of the tracker server is distributed over the nodesiding service denial
in flash crowd situations, and there is no need to know whetker stores the peer
list for a particular torrent. In this way any swarm can bengal without the need
to know the tracker address, usually stored in the torretadata. This is one step
ahead towards decentralization.

Typical functions of DHT implementations are [2]:

IThe hashes are computed using the SHA1 cryptographic hastidn which generates 28% (2160
different values. Therefore the probability of a collisiwhen computing the root hash of different content files
is minimal

Problem Description 2.4 Existing techniques

. Piece Hash

Sibling Hash

Uncle Hash

. Root Hash

m:

Figure 2.1: Hash, sibling, uncles and root hash received along with &lative piece.

e announcepeer : announce to the DHT that the peer joined a particularraw

e getpeers : retrieve from DHT the list of peers that are partitngato a
swarm.

As you can see these are also the main functionalities ofchdra After the
first adoption of a DHT in 2005 in the Azureus client [1], allim&2P clients now
support DHTs as look-up system for swarm discovery, eveentral tracker is still
the most used technique for swarm discovery.

15

Chapter 3

HTTP2P Architecture

This chapter describes the architectureHif TP2P, a tool that supports HTTP
download with the BitTorrent protocol. HTTP2P is based anekisting techniques
described in the previous chapter: web seeding for HTTPagguanslation, DHT
for swarm discovery and Merkle hashes for pollution preiemtAn implementa-
tion of each of these techniques is integrated in the Tribbee; the base of this
software system.

Our solution is based on two main components: a browser iplagid a back-
ground process. The plug-in handles the user interactitiewhe Background
processs responsible for the file download.

The first section explains how the challenges presenteckiptévious chapter
are addressed. The general design guides are then preskEimaidl, the architec-
ture of HTTP2P is described in detail.

3.1 Metadata and swarm discovery solutions

3.1.1 Request translation

In the previous chapter, we presented the two main speatiicafor dealing with
Web SeedingheHoffman’s styleand theGetRight styleln particular, theGetRight
stylespecification document explains how many requests to the sasource can
be considered as attacks by the web server. For this reasplementations based
on theGetRight's stylgperform HTTP requests with a byte-range as wide as possi-
ble, with the intent of performing the smallest number ofuesfs. A few experi-
ments, however, revealed that modern web servers (Apach&ken into account)
allows several byte-range requests to the same resourtfgguviconsidering the
client as an attacker and blocking the connectionHd@fman stylemplementa-
tion of the web seeding feature was included in the Triblee dc®fore this project.
However, as already mentioned, tHeffman'’s styleequires server side support.
The final implementation of the HTTP seeding module is thelte$ combining

17

3.1 Metadata and swarm discovery solutions HTTP2P Architec

18

the two styles: starting from thEloffman’s style because its implementation is
already included in the Tribler core, and converging it taW@etRight’s stylesince

it does not require any server support. The result is a Pytinadule that performs

byte-range requests to the server, where in each rangemihend of data asked is
equal to the piece size.

Exploiting theWeb Seedingechnique to retrieve HTTP content implies that the
web server is considered as a peer by the BitTorrent engangslating BitTorrent
protocol requests into HTTP requests. The server respanseken parsed and the
content retrieved is merged with that of BitTorrent. Foliogris how the BitTorrent
requestmessage is translated into a HTTP request:

BitTorrent request message:
<l en=0013><i d=6><i ndex>< ><| engt h>

HTTP request message:

CET /content file HITP/ 1.1

Host: web_server _address

Range: bytes=start _byte-end_byte

with:
start _byte = (index * piecesize) +
end byte = start _byte + length

3.1.2 Swarm discovery

In a conventional BitTorrent environment, the swarm disgvprocess is per-
formed by retrieving a list of peer addresses from the track®hich tracker to
contact is specified in the torrent metadata file. An envirenhwithout a torrent
file introduces the problem of finding the correct trackerdio ja particular swarm.

Distributed tracking is an alternative solution when treeker is unknown. As
explained in the previous chapter, a DHT is a table of kewwantries distributed
over the network [24]. The BitTorrent infrastructure exggahis mechanism to
store the mapping of info-hashes/peer-addresses in thewagnit does with track-
ers. It is easy now to understand that the information ne¢alguin a swarm, is a
key that the DHT will map into a list of peers. This key reprasehe swarm iden-
tifier. Since the only input we have is the URL of the web reseuo download, the
input key for the DHT query will be the SHA1 hash of the file camit URL. This
hash will be used also during the handshake step, to stacbtimeection with other
peers.

Since the info-hash used by the HTTP2P client for annourtoitige DHT is dif-
ferent from the conventional BitTorrent one, the swarmsi@e by the two clients

HTTP2P Architecture 3.2 Design considerations

for the same content file will be different. This also meardt tine clients us-
ing the HTTP2P protocol extension will have to set a speciticntthe handshake
extension-bytes to avoid protocol-message conflicts duhe download.

BitTorrent handshake message:
<19><"Bi t Torrent protocol "><conventi onal _extensi ons><i nf o.hash><peer i d>

HTTP2P handshake message:
<19><"Bit Torrent protocol"><HTTP2Pext ensi on><SHA1(URL) ><peer i d>

The same difference between conventional BitTorrent haaidss and HTTP2P
handshakes applies also to Merkle hashes extension. HowEVEP2P and Merkle
hashes protocol extensions uses different hashes onlhddnandshake message.
The piecemessagésstill uses the Merkle tree root hash in both extensions (see
Pollution preventiorchapter). Further studies can lead to a strategy to uni thi
little “handshake” difference.

3.1.3 Security and pollution prevention

The base block of security is the technique of Merkle hasheshe absence of a
torrent file providing the piece hashes, the hashes will dgert among the peers
in the swarm. However, unlike Merkle hashes technique etieeno trusted root
hash against which the receivptece messages can be checked. The lack of a
trustworthy root hash is the biggest problem to face to guascontent integrity.
Preventing content pollution, derived by fake block atgadk not possible without

a technique that ensures security over such a network. Tbe&st proposes the
Pollution prevention algorithnas the solution to this dilemma. The whole next
chapter is dedicated to explain the algorithm in detail.

3.2 Design considerations

3.2.1 Minimal impact

When creating a software system that has to operate overistingxenvironment,
one of the main goals is keepitgckward compatibility This means that the new
system has to be integrated in the existing environment avithmalistic changes,
causing minimal impact and trying to keep the previous syste much unchanged
as possible.

To prove the importance of this concept, lets take as an ebeath@X-Torrent
http-header extension proposal. The reason why such ai@oloas not been

1in reality, Merkle hashes and HTTP2P protocol extensiorstheTr_hashpiecemessage instead of the
conventionapiecemessage.

19

3.2 Design considerations HTTP2P Architecture

20

adopted yet is because of backward compatibility issueslldw the integration of
this extension, web servers need to be able to detect systerioad and send the
new header parameter in case of a flash crowd; at the samectiergs unaware of
this extension have to be able to ignore the new header. Xam@e shows that
the impact for adopting th¥-Torrentextension is bigger than the benefits it brings.
For this reason, the minimal-impact factor was one of thennsancerns when
designing HTTP2P. Web servers must stay unchanged; nonmatbr agents have
still to be able to access the web resource in the same wayidiAgoserver side
support is a main goal, as well as the cause for making an HRiffrent hybrid
a complex task.

3.2.2 Desired behavior

An ideal solution for our system should not impose any changéhe server side
and operate transparently for the user. The user does nottodmve any knowl-
edge about the system he is using; hybrid download shoulddmps when nor-
mally browsing the Web. At most, the user is required to deeitiether to enable
the P2P support or not. User friendliness is usually the n@get when designing
user interfaces. For this reason, the Ul has been reducdg tminimum in the

design of HTTP2PRight-clickon the link to downloadglick on Hybrid download

from the menu panel, is the only interaction with the systequired.

The layer of complexity, involving the way the content isrieted, should be
invisible to the user and to the web server. In the backgrotiedsystem will start
the HTTP download, announce itself to the DHT, join the swéfrany), and start
trading pieces of the content file with other peers; all ofthsteps must not require
the user interaction or server changes.

These requirements lead to the design of two main companantsnimalist
browser plug-in, that has the only responsability of gragglthe user selected URL
link, and aBackground processesponsible for turning the URL received from the
plug-in into a file on the disk. How these two components coatgas described in
detail in the architecture section.

3.2.3 Procedure steps

Summarizing the considerations explained in the previegtians, we synthesize
below what the procedure to perform a hybrid download is:

1. The user, who wants to download a file, clicks the link endegldn the web
page.

2. The browser plug-in grabs the click event and sends the tff¢he download
to theBackground proces8G).

HTTP2P Architecture 3.3 Architecture

3. The BG parses the URL received from the browser plug-in and sthds t
HTTP download.

4. TheBGcomputes th&HAlhash of the URL. This value represents sherm
ID.

5. TheBG performs a DHT query with thewarm IDas key parameter to search
for a swarm distributing the same file retrieved from the wetver.

¢ If the swarm does not exist, the file will be retrieve entirfeym HTTP.

e At download completion, th8G computes the Merkle tree out of the
downloaded file and announces to the DHT.

6. TheBG starts the connection with the peers in the same swarm.

7. TheBG starts trading pieces retrieved from HT TP with other pegrsamding
and receiving Merklgpiecemessages.

8. Along with eachpiecemessage, the hashes of the Merkle tree are received.
The Merkle tree is built out of the hashes received from opfesrs and the
hashes computed from the HTTP retrieved content.

9. The integrity of the received content is performed byRbBution prevention
module included in th&G.

10. The download completes.

Figure 3.1 shows a simplified representation of the proaesiaps where 1) the
BG process receives the URL from the browser plug-in, 2) tAg P download
starts, 3) the swarm discovery is performed through DHT anthd BitTorrent
download starts.

3.3 Architecture

3.3.1 Tribler core

The system architecture is based on the Tribler core, an eperce BitTorrent
client developed by the Parallel and Distributed Systenugrof TU Delft. The
Tribler core is based on python and offers a framework abjgéowide P2P func-
tionalities and many other features (DHT, web seeding, Mdmlshes, gossip pro-
tocols, etc.). It provides a simple API through which thealeper can easily build
P2P based applications. A simple-to-use APl interface atehded features allows
the Tribler core to be a stable base on which can be develbpddTTP2P system.
As previously described, HTTP2P is divided into two main poments: the
browser plug-in and thBackground processince the browser plug-in is a minimal

21

3.3 Architecture HTTP2P Architecture

22

Browser

=N Web Server

BG process

Figure 3.1: HTTP2P download procedure steps

component, with the only responsibility of sending the sidéd URL to the BG, and
its implementation should be specific to the browser in whidks embedded, the
attention is mainly concentrated on the architecture oBiGe

The BG is a software layer on the top of the Tribler core. Itsctionality
is to parse the URL received from the browser plug-in and strirct a Tribler
sessiorto perform a download. A Tribler session implements all therations to
be performed for retrieving the content from the BitTorreatwork.

Since the Tribler core was not designed to perform all thpsstequired by
HTTP2P, it is necessary to include some changes into the ca@ving mainly
the Pollution prevention algorithm procedures. These gbarare described later
on in theln-core flowsection.

3.3.2 Connection interfaces

As described in figure 3.2, HTTP2P has to interact with défferactors: the web
server, the browser, DHT and the BitTorrent peers. HTTP2&racts with these
actors through specific interfaces. The communication wighbrowser plug-in

is handled by an interface layer in the BG. The browser pfugitiates a TCP
connection with the B@rowser interfacenodule and sends the URL request. The
communication protocol between these two components isceztitoGET url

HTTP2P Architecture 3.3 Architecture

from plug-in to BG andK or NOK from BG to plug-in. This very simple protocol
can easily be extended with other messages 3ik&TUS x% to warn the plug-in
about the status of the download; however this is out of tbpasof this thesis.

The interaction with the DHT is handled in the Tribler coretbgmainlineDHT
module. After abootstrappingohase needed to join the DHT network, the DHT
module sendStoreValuanessages to announce to the DHT @&tValuenessages
to retrieve the list of peers participating to the swarm. Botessages require a
parameter, usually the info hash of the torrent; in HTTPB®,3HA1 hash of the
URL string is used for this purpose.

The Downloadermodule handles the connection with BitTorrent peers, while
the HTTPDownloadeiis the module responsible for handling the connection with
the web server, and for translating BitTorrent messagesHiir P messages. Since
the HTTPDownloader interface is the same as the Downloau®rtbe web server
is seen as a regular peer by the core. However, because digheserver nature
of the HTTP protocol, the HTTPDownloader translates ong/BitTorrentrequest
message into HTTISET message where tHeyte-rangeheader field is set to the
first and last byte of the piece request, as previously destiin the request trans-
lation section. Other BitTorrent messagksdp-alive unchokebitfield, etc.) have
no meaning in HTTP.

3.3.3 In-core flow

The previous section described the interaction of the HPrBackground pro-
cesswith the external world. To complete the description of HEPParchitecture,
we analyze here the internal interaction between the medm®lved in a hybrid
download.

Figure 3.3 shows the internal relation of the modules inedIvT he highlighted
block is thePollutionPreventiormodule. ThePollutionPreventionrmodule has been
added to the Tribler core to implement a security featuremitse missing in the
hybrid download environment. As it will be described in trextchapter, théol-
lutionPreventionrmodule coordinates the various modules with the scope af gua
anteeing content integrity.

Once theDHT module retrieves the list of peer addresses in the swarnpgbe
addresses are passed toEmeoderwhich initiates the connections with the swarm
participants. The connected peers will be sharing a rodt batheir Merkle hash
tree. As it is possible to observe, tBacodermodule keeps a list of different root
hashes in relation with different sets of peers. This stmécts needed in case of
attack, where we might be connected to one or more sets of pkaring fake root
hashes.

When receiving pieces from peers, fPalutionPreventionomodule will perform
several checks to guarantee content integrity. In casespiesiied attack, theollu-

23

3.3 Architecture HTTP2P Architecture

Ubuntu Start Page - Mozilla Firefox

File Edit View History Bookmarks Tools Help

v @ @y [G]ntpstartubuntu.com; [~ [Fv]
<3 Ubuntu Start Page & ~
S
[5 vbuntu | 100% 70% 65%
Google 9 6 4
Search 4
Ubuntu hels Participate Ubuntu shop
Peers
-
%
D #* o

BG | Browser Interface |
6\60<<ef.\:‘x""“
Downloader ‘,

Core / 1

DHT
Storage
Wrapper

'« | HTTPDownloader

Web Server

Figure 3.2: HTTP2P top view architecture

tionPreventiormodule will instruct thePiecePickeron which pieces to download.
A good piece selection in this case will help tRellutionPreventiormodule in
finding the attackers. Once the attacker peers are found,datenection will be
dropped by thé&ncoder

24

HTTP2P Architecture 3.4 Summary

BG Browser Interface
piece massages
CO re /_\ ’_Ij Downloader
Connection| | |
Pollution Lo —
Prevention Encoder /
e
drop . E
request i connection Root Hash 1 c jnection i
precex Root Hash N —// DHT
PiecePicker - peers in swarm
Storage
Wrapper HTTPDownloader
Figure 3.3: HTTP2P internal architecture view
3.4 Summary

In this chapter we addressed the main problems to face wkatirng an HTTP/BitTorrent
hybrid: 1) the swarm discovery problem is solved by the usBldT; 2) the re-
guest translation is performed by exploiting the HTTP segdeature; 3) content
integrity is guaranteed by the introduction in the Tribleres of the PollutionPre-
vention module, implementing the Pollution Preventioroaliym described in the
following chapter.

After presenting the main design consideration, we intcediuthe architecture
of HTTP2R a tool capable of HTTP/BitTorrent hybrid download. Theteys is
composed by two main components: a browser plug-in, redplenfor the user
interaction, and the Background process, a software |laydrdn the top of the
Tribler core, responsible for performing the hybrid dowado

In the following chapter will present the details of the taglerformed by the
PollutionPreventiormodule.

25

Chapter 4

Pollution prevention

The key challenge in a torrentless environment is prevgntiontent pollution.

Without piece hashes, the integrity of each piece retrieagthot be verified. If

integrity cannot be guaranteed, polluted content may fyuhie effort of a down-

load session and, from a broader perspective, all the P2dstnficture. The lack of
a technique that can guarantee security is the main issuegolised in an attempt
to support HTTP with BitTorrent.

Due to the constant attacks in the BitTorrent network, asking security has
been the subject of studies in the recent years and has reatittze creation of
different techniques, later include in the main BitTorrehénts. As an example,
blacklists of malicious peers addresses have been inteadaclients like uTorrent
or Transmission to prevent swarm attacks by the injectioiaké content. This is
evidence that P2P attacks are a real problem to deal withtToBent environments
[20].

This chapter presents an algorithm to guarantee securignienvironment
where the piece hashes are not known in advance and the osiiyarthy authority
is the web server. The problem of the fake block attack isgmesl, followed by a
detailed description of the Pollution Prevention alganttrotten branch detection
and invalidate message techniques.

4.1 Fake block attack

The fake block attack refers to the injection of incorreattemt in a swarm [17].
Each piece of a torrent download file is composed of many Islodlash checking is
performed over a piece; if one of the blocks in a piece is qied, the whole piece
is discarded and the download of that piece has to start agaerefore, injecting
a small quantity of polluted content causes a big part of tverdoad bandwidth to
be wasted.

In a conventional BitTorrent environment, the file downleadhpletes correctly
despite the attacks. In case of an environment without faskes, the download of

27

4.2 Pollution Prevention algorithm Pollution prevention

28

a fake piece results in the corruption of the file downloadéette no piece integrity
checking can be performed. This is the reason why the hylerichtbad technique
that this thesis proposes is vulnerable to the fake blodkslet and why a pollution
prevention algorithm is needed.

4.2 Pollution Prevention algorithm

The fake block attack introduces a serious issue in an emviemt where no piece
can be checked against its hash. How can the pollution ofdhteaot be prevented
in such a scenario? In this section we present an algorithguamantee security
when the piece hashes are not known because of the lack afeattéite, and the
only trustworthy authority is the web server holding thegoral content.

The hash checking will be performed through Merkle hashesemfdownload-
ing with the Merkle hashes technique, the hash of piece Xh#sh of the sibling
of X and all the uncles of X up to the root hash get received with X piece in
the same message (see figure 2.1 in chapter 2). Since, inttlaan, there is no
trusted root hash to be compared with the ones received freipeers, an algorithm
that ensures a level of security needs to be devised.

abcd

ab cd

a bllc|d
A B C D

Figure 4.1: Original Merkle tree. The capital letters denote the piedadlevthe lower case let-
ters denote the hashes. Note that in this case the stringdak’s not represent the concatena-
tion of 'a’ and 'b’ but the hash of their concatenation. Thfene 'a’ = hash('A’) and 'ab’ =
hash("hash(’A’)hash('B’)"). These assumptions are alsaid in the next figures.

Here is presented how the algorithm works; figure 4.1 will éfemred as the
correct Merkle tree to take into consideration in the follogvexamples. When a
piecemessage is received from a peer, a preliminary check is ipeeid to guar-
antee the coherence between piece and hashes. Figure W& ahancoherence
between a piece and its hash; in this case the piece is destaklthen receiving
the same root hash from different peers (figure 4.4), we arstbat all the rest of

Pollution prevention 4.2 Pollution Prevention algorithm

the tree’s hashes are equal, assuming that the prelimiaaty ¢heck is performed.
This doesot mean that the received content is correct but that the coreeaived
from different peers is the same. In other words, if the paeessharing fake con-
tent, they are all sharing the same fake pieces. This coroesdrproperty of the
Merkle hashes. One root hash identifies one unique Merkde Two different root
hashes have at least one leaf hash differing. Thereforgoifpeers are sharing
some content that is differing by just one byte, they will baréng two different
root hashes (figure 4.5).

abcd

ab cd

a b cl d
A B X D

Figure 4.2: Merkle Tree incoherence. In this case the correct piecelshmer’C’ and not 'X’. When
receiving thepiece message containing 'X’ from a peer, a preliminary check leetwthe piece and
its hashes will be performed, revealing the incoherence@htessage.

abxd

ab xd

a bl x |d
A B C D

Figure 4.3: Merkle Tree incoherence. The hash of piece 'C’ should be fd aot 'x’. When
receiving piece 'D’ from a peer, the sibling hash of 'D’ ("§ received along with theiece message.
If piece 'C’ is retrieved from the web server, the hash chegkiill reveal that the merkle tree shared
by the peer from which we received piece 'D’ is incoherent.

29

4.2 Pollution Prevention algorithm Pollution prevention

30

Tﬂabcd F}abcd

ab cd ab cd

a b c ' d
A C

Figure 4.4: Known part of the Merkle tree of two peers sharing the saméerinThis figure shows
the part of the Merkle tree received along with two differpigces: piece 'A’ from a peer (left)
and piece 'C’ from another peer (right). Since the two peears gharing the same root hash, we
can assume that they are sharing the same content, unless timetwo peers sends an incoherent
message like in figure 4.2.

abxd

ab xd

a bl x |d
A B X D

Figure 4.5: Peer sharing different content. Comparing this Merkle tgth the one in figure 4.1
reveals that the two root hashes are different, therefoeecitntent associated to those Merkle trees
is different.

The only trustworthy entity in this scenario is the web ser@omparing the
content received from the web server against the same dartaived from a peer
reveals whether the peer is lying or not about a specific plleeenot necessarily
about the rest of the pieces). It is important to note that ihfeasable to compare
all the pieces received from a peer against the web servasiore integrity.

Instead of requesting from the web server the same piedevedirfrom a peer,
the sibling piecé will be requested. There are multiple advantages with this a

ITwo sibling pieces are two pieces whose leaf hashes havethe parent. In figure 4A andB are two

Pollution prevention 4.2 Pollution Prevention algorithm

proach. First we avoid downloading duplicate content, dnoe the web server
and once from peers, hence, converging to a faster downtwagletion. Second,
we immediately have a hash to perform a coherence checleamhsif randomly
download pieces from the web server and check if a hash isaél@ior not; this
reveals content incoherence (see figure 4.3) between saesss and peers hashes
as soon as possible.

Uppon finding a mismatch between a piece retrieved from HTAdPthe same
piece from a peer, all connections with peers sharing theesawt hash will be
dropped. Since these peers are sharing the same root haghréalso sharing the
same fake content, and therefore, they are all attackers.

It has been presented how to detect attacks in casgi¢lsemessage is not co-
herent (figure 4.2) and when a (sibling) hash received froreea does not match
the hash computed from the same piece retrieved from the erebrs(figure 4.3).
We also presented how to identify peers sharing the samermigigure 4.4). How-
ever other scenarios are possible: the case in which a cietnnected only to
peers sharing the same fake root hash (and no fake piecend fyuthe compari-
son between hashes received from peers and pieces recevedhie web server)
and the case in which the client is receiving content fronrpstaring different
root hashes (that means that there is some attackers).| levilemonstrated that,
in the first case, pollution can be prevented byitivalidate messagand that, in the
second case, the attackers can be prevented by applyingttéie branch detection
technique. These two techniques will be explained in theé sestions.

Before proceeding it is necessary to introduce a few coscept

e good peer the good peers are those sharing the same content of the web
server and sending coherent messages (messages that @asslitninary
check). It is never possible to know if a peer is good, unldistha content
is received from that peer and checked against the web &coerttent; how-
ever this case conflicts with one of the main goals of thisitheserver load
reduction.

e evil peer. the evil peers are peers injecting polluted content in thiars.
They can be detected by a unsuccessful preliminary cheakréfig.2); by
a sibling hash that does not match the hash computed fromathe piece
retrieved from the web server (figure 4.3); or when, in theeaafstherotten
branch detectiona piece received from a peer is different from the same piece
retrieved from the web server.

e candidate peer the candidate peers are peers connected to the client in a
candidatestate. It is not possible to know whether they gomd peers, and
they have not been detectedeasl peers yet. Since the case in which a client

sibling pieces

31

4.2 Pollution Prevention algorithm Pollution prevention

32

is connected only tevil peers is assumed to be rare, tamdidatepeers are
most likelygoodpeers.

e good root hash the root of a Merkle tree computed from content equal to the
web server’s content (non polluted content).

e evil root hash: the root of a Merkle tree computed from polluted content.
e candidate root hash root hash shared byandidatepeers.

e conflict state we are in a conflict state when the client is connected tospeer
sharing different root hashes.

e candidate state we are in a candidate state when we are connected only to
peers sharing the same root hash. We cannot know if that esbtisgoodor
evil. Most likely in acandidatestate we are receiving data fragoodpeers.

It is not possible to know whether the P2P client is conneotey to evil peers.
However this scenario is exceedingly unlikely for large sw& The most common
scenario is the one in which the client is connected to a gofugvil peers and to
a group ofgood peers. Thigonflict state will generate two or more sets of peers
associated with differertonflictingroot hashes, in contrast withcandidatestate
where there is only one set of peers sharing the saandidateroot hash.

While in acandidatestate we cannot know if the data we are receiving is correct
or not, in theconflict state we are sure that there is at least a setvdfpeers.

It is important to find theevil root hash as soon as possible, avoiding to download
polluted data. The bigger the number of pieces differingiftbe original contentin
anevilroot hash, the easier it is to find wrong data since there iglzehiprobability

to download a fake piece; this means that the worst case wlaanis when an
evil peer is sharing some content that differs from the web ssreentent by just
one piece. To help find the differing piece ic@nflictstate, we propose a technique
called theotten branch detectiarT his technique consist in comparing the branches
of the Merkle trees of conflicting root hashes.

The rotten branch detection enable us to find the fake pieaérnmost|log, n]
steps witm equal to the number of pieces in the content file, where eaghisiplies
the download of the same piece twice, once from the conftjatoot hashes, and
once from the web server in the last step. Therefore, the atreduedundant data
to download, where the redundant data is the data that hasdownloaded twice,
once from a peer and once from the web server, is minimal aptbjsortional to
the number of conflicts detected during the download session

As mentioned before, there is only one case where a fake pttaek is not de-
tected: the case where the P2P client does not connect tgoaaypeer but only to
evil peers all sharing the same root hash. However, this sceisaravy unlikely to

Pollution prevention 4.2 Pollution Prevention algorithm

happen. To address this eventuality, inalidate messagechnique has been in-
troduced. Thénvalidate messags a technique to spre&yil root hashes detections
over the swarm. This technique, explained in the followiagt®ns, introduces a
new concept: distributed security.

Security is therefore distributed among the peers pasiiig in the swarm;
each peer performs integrity checks on portions of the doaded file. When a
peer detects aeavil root hash, it shares its discovery with its neighbors, iasireg
theglobal security of the swarm.

In the following sections, theotten branch detectiotechnique and thevali-
date messageill be explained in detail. The chapter continues with saoesid-
erations about sharing policies and concludes with a fewidenations.

4.2.1 Rotten branch detection

The rotten branch detection is the proposed technique tatimdvil root hash as
soon as a conflict happens. A conflict is defined as the stateevitie P2P client is
connected to two or more different sets of peers sharingréifit root hashes.

As already mentioned, building the Merkle trees out of twesfiliffering by just
one byte, ends in two different root hashes. Therefore gfdient is connected to
two sets of peers sharing two different root hashes, we cdnagethat we are about
to download at least one piece different from the web sergrtent and therefore
unwanted. The amount of polluted data can vary from just eaeepto the whole
content. It is important then to find where the fake piece cofmem and which
root hash is to be invalidated.

In case of conflict, the ideal way to find the fake piece woulddeompare all
the leaf hashes (with same index) related to the conflictiegdlé trees sequentially,
from first to last, until the mismatch is found. When two hasimsmatch, the piece
relative to that hash is fake in one of the two hash trees.rgig6 illustrates how
to detect a conflict in case all the hashes are known.

/N
Merkletree 1 | 25B | 3F6 |(427)| FA2 |9D2|F55

Merkle tree 2 | 25B | 3F6 |\29C| FA2 | 9D2| F55
N\

Figure 4.6: Conflict detection. Each strings represent a single leahhas this case all the piece
hashes are known and the detection of mismatching piecespsygperformed by comparing all the
hashes until the mismatch is found.

However, as explained in the Merkle Hashes section, nohalhiashes in the
tree are known at the beginning but only the parts receivedgalvith the piece
messages. For this reason it is not possible to compare eabloha hash tree with

33

4.2 Pollution Prevention algorithm Pollution prevention

34

the same hash of the conflicting hash tree, as the most of dafidndshes may not
have received yet.

The hash tree is built during the process of collecting @ewening from peers
using the same root hash. Along with each piece, the piedg taes sibling hash
and the uncle hashes are received. By concatenating the lpasb with the sibling
hash and applying the hash function, we compute the pareht Haepeating the
process with the computed parent hash and the uncle hastomgute the grand
parent hash and so on up to the root hash. Therefore, for eachlaaded piece
we have all the parent hashes up to the root; this createsalg@ath from root to
leaf. We define th&nown pathsas the paths that connect the known leaf hashes to
the root hash, as shown in figure 4.7.

Ca e,

Figure 4.7: Known branches connecting the received leaf hashes wittodidash.

The rotten path is the path that starts from one fake piecepamghgates up
to the root hash. The terpropagatehas been used here for a reason: when con-
catenating the fake piece hash with the sibling hash and abingpthe parent hash
node, thepollutionis transmitted from the fake piece hash to its parent andall t
parents up to the rootontaminatingall the branches in the path as shown in figure
4.8. Therefore, by finding the rotten path we find the fakegido find the rotten
path, we need to detect (at least) one rotten branch at ttee tihence, the name
rotten branch detectian

The previous definitions are needed to understand how ttenrbtanch detec-
tion technique works. This technique consist of compariighashes in the same
path of two conflicting Merkle trees, from root to leaves. Tgah where all the
hash nodes mismatch in both Merkle trees istéen path and the leaf of that path
is the hash of a fake piece. Once the rotten path has beeriatbtee need to iden-
tify which of the two Merkle trees contains the fake piece wbtoading the same
piece from the web server and comparing it to the piecesveddrom the peers
will reveal which is the fake piece and therefore which oftilve root hashes is the

Pollution prevention 4.2 Pollution Prevention algorithm

[l Fake piece hash

D Contaminated hashes

O O 4

AL A A A AN

Figure 4.8: Propagation of the pollution from the fake piece hash up ®ntot. The red block

represents the fake block hash. All the parents of that haltbes contaminated and therefore
different from the original Merkle tree. Hence the pollutipropagates from the leaf to the root
hash.

evil one.

Not all the paths are known at the beginning. This meansthétd the rotten
path, new pieces could be asked to the conflicting peers.gAoth the new pieces,
also the hashes needed to build a path for the comparisoreéetiwo conflicting
Merkle Trees will be received. Itis unproductive to selectdom paths to compare;
this could end up in downloading a big amount of data from teerp, while we
want to find the fake piece as soon as possible. The best waject & path is to
analyze the result of the previous comparison. As shown urdig.8, the rightmost
path has one branch in common with the one on its left. Thatdbrasrotten while
the rest of the path is not. Therefore, we could start fronh ltinanch to select the
next path to compare. This means that in the next comparigowilvbe one step
closer to find the fake piece.

The example shown in figure 4.9 will help in understandingghecedure of
each step of the rotten branch detection technique. Forisitgpjust one Merkle
tree is shown. This tree is the result of overlapping the temflecting trees. The
nodes in red are differing in hashes, the nodes in green aia eayboth trees, the
red branches are rotten branches connecting two red nodekegreen branches
connect two nodes where the lower one is a green node.

e Step 1 In the first step we just need to select a path from both Merkles
to be compared. The best path selection is alwagsoavn path In this way
we do not need to download any piece from at least one peen @fah if the
path is a known path in both Merkle trees); this assumptimalisl for all the
steps. If a known path does not exist, a random path can beteglé&Suppose
that, as shown in figure 4.9, in the first step we select the fhathconnects

35

4.2 Pollution Prevention algorithm Pollution prevention

S

AN AN A A A DNV ANEVANEVAN
Step 1 Step 2

A PN A .
Step 3 Step 4

Figure 4.9: Rotten branch detection example. At each step, one rott@mchris detected by com-
paring the hash nodes in the same path of two conflicting Merkks. When all the hash nodes in a
path mismatch, we find a fake piece, pointed by the hash l¢h&abtten path. This example show
the worst case scenario: only one mismatching piece in tbectwflicting Merkle trees and just one
branch detected at each step; if the first path to be compaesipath 15, like in step 4, the rotten
branch detection would have taken only one step to find threedadce.

the root hash to piece 1 (path 1 for simplicity). In this caééha hash nodes
in the path are equal. Of course the root hash of the two ctinfiiéMerkle
trees is different. Since the left child node of the root hssaqual in both
trees, then all the paths descending from this node will bldg both trees.
Indeed, there is no need to compare all the hashes in a pattgmaart from
the root hash and go down until we do not find the first non mismag hash
node. From that point on, all the hashes will be equal in bretast Therefore,
in this example, all the pieces between piece 1 and piecel®wiéqual in
both trees. This means that there is at least one fake pi¢be nange 9-16.

2Recall that one root hash identifies one unique hash tres.ighiso valid for subtrees: if the root hashes
of two subtrees are equal, then the rest of the hashes inubtee are equal.

36

Pollution prevention 4.2 Pollution Prevention algorithm

e Step 2 In the previous step we found that the pieces in the rangeade8
equal in the two conflicting Merkle trees. Therefore thera fake piece in
the range 9-16. This means that the right child node of thé mash is a
rotten branch At this point we select a random path going from the root hash
to a leaf hash in the range 9-16. If a known path is availabteabhrange we
select it, otherwise we need to download the same piece femrsEsharing
the conflicting root hashes. Lets suppose we chose path hokansin figure
4.9, in this path the first branch (from top to bottom) conadd the root
hash is a rotten branch, while the rest of the branches arehingt Once
again, this means that in the range 9-12 the pieces are egbalth trees,
while there is a fake piece in the range 13-16.

e Step 3 As it is possible to notice, in each of the previous steps ewend
one rotten branch, reducing the range in which we can findake piece. In
this step we select a path starting with the rotten branarstsiptected. Lets
suppose we select path 13. The last two hash nodes in greequakin both
trees. Therefore there is a fake piece in the range 15-16.

e Step 4 Path 16 is selected out of the range 15-16. Since the hakhdeaa
equal in both trees, we can deduct that the mismatching lsashleaf 15.
Therefore theotten pathis path 15 and the piece 15 is fake in (at least) one
of the two conflicting Merkle trees. At this point we need tquest piece 15
from the web server. Comparing piece 15 retrieved from tineesevith piece
15 retrieved from the peers will reveal which is @l root hash.

In this example, the worst case scenario is taken into cereidn; only one
piece is differing in the two conflicting Merkle trees andyohe rotten branch is
detected at each step. If in the first step, path 15 was sdl|gbin the rotten path
was found at the first iteration. Since the algorithm detattgeast one branch at
each step, and the path length is equal to the height of teedtenos{log, n| steps
are needed, whereis the number of pieces in the file. In this case,[b§= 4 steps
were needed.

To simplify the understanding of this technique, we assutoetbwnload the
same piece from two conflicting peers. In reality, we will ddoad two sibling
pieces. The reason for this is that, by downloading two sibling pcthe same
hashes are received along with thiecemessage, but we avoid redundancy and
increase the download speed.

Once the rotten branch detection is finished, we pass fromdh#ict state to
the candidatestate. The pieces downloaded from #hwl peers and matching with
the candidateMerkle tree, can be kept; in such a way we take advantage éwim
peers by downloadingandidatecontent. The connection with the peers sharing

3Two sibling pieces are two pieces that have two sibling lesHes: two leaf hashes with the same parent.

37

4.2 Pollution Prevention algorithm Pollution prevention

38

the evil root hash will be dropped, leaving space for new connectiortome in,
and theevil root hash will be inserted in bBlacklist When a new connection is
established, the root hash shared by the peer will be chedkele root hash is
already in théblacklist the connection will be dropped.

When new connections come in, we increase the chance ofdhavaonflict.
Conflicts are important for two reasons: (a) we can discdwarthe currentandi-
dateroot hash is indeed avil root hash and (b) with each conflict we increase the
global security by sending aimnvalidate message

4.2.2 Invalidate message

The invalidate message is a message sent from one peelmggrvevil root hash

to the swarm. The message consists of the SHAL hash of the D&Rtes(swarm
identifier), theevil root hash and the piece index referring to the polluted etdnte
and can be used to warn other peers alawitroot hashes in the swarm. This
message speeds up the detectiopwfpeers and polluted content and is intended
to help the swarm in converging toward theodpeers.

By its nature, thanvalidate messagprotocol is a gossip protocol and oper-
ates within an overlay network. The peculiarity of this gpg®otocol is that the
messages between two peers can be exchanged even if the dvgogpe directly
connected. This is useful in the scenario where one peernisldading content
only from evil peers, since it is highly unlikely it can receive an invalelmessage
from its attackers. It can instead receive an invalidatesags from a peer in the
overlay network. The details of the overlay network whereitivalidate message
operates are not going to be discussed here. We can just @askatrthe overlay
network for a specific swarm is composed of the peers regitier the DHT as
participants of that swarm.

Once the invalidate message has been received by a pedt,iewioted down
and its information will be used when the peer establishesrmection with an
evil peer sharing the invalidated root hash. When this happkeglient peer can
bypass the rotten branch detection algorithm step and asétkyifor the presumed
fake piece. The presumed fake piece will be then comparetdegsame piece
retrieved from the web server. If the piece is fake, the tlgzer can resend the
invalidate message to the swarm.

The wordpresumeds used here to qualify the fake piece since the invalidate
message could have been sent byeaihpeer as an attack. This is also the reason
why the invalidate message has to be verified before it isteloluted in the swarm.

In such a way thevil invalidate message is blocked at the first hop instead ofjbein
spread to all the peers participating to the same swarm gimg useless traffic.

The invalidate message is very useful when received in apéat condition:
when the receiver is connected only to peers sharing the sailmeot hash. Previ-

Pollution prevention 4.2 Pollution Prevention algorithm

ously in section 4.2 it has been explained that the only gasénich the algorithm
is vulnerable to attacks is exactly in this situation. Theneo way to detect thevil
root hash if no conflict happens and if the pieces coming froenvteb server do
not reveal the presence of a fake piece. In this case, thkdatemessage helps in
detecting the polluted content when there is no other waytead

To conclude, the invalidate message helps the swarm in ggingetoward a
goodswarm in a cooperative way; each peer verifies a portion otittvenloaded
content and shares iwil root hash detection with other peers, improving the global
security of the swarm. In HTTP2P, we can define this concegistisbuted secu-
rity .

4.2.3 Sharing policies

The pollution prevention algorithm is based on Merkle hasfiene Merkle tree can
be built in two ways: (a) by downloading all the content frame tveb server and
computing the hash tree when the download is finished, ory(bbgdeiving the hash
tree portions along with eagiecemessage. A new connection can be established
only if the other party has a part of the Merkle tree (and tfoeesa root hash) to
share. Without a Merkle tree, peers cannot sengit@emessage, since the content
integrity cannot be verified.

In the first phase of the swarm creation, no peer will have amiqd the Merkle
tree. Hence, all the content will be downloaded from the waslies. When the first
download completes, the first Merkle tree can be computedrenpeer holding the
content can start establishing connections. The sendiegvp# distribute parts of
the Merkle tree, the receiving peers will have the first mortof the hash tree and
can start establishing new connection in turn; the hashstagés spreading over the
swarm as well as pieces. In this second phase, the load oétierss distributed
over the P2P network.

Another scenario is also possible: the first Merkle tree l$ren computed
yet andevil peers distribute portions of avil hash tree. In this case, thestributed
securityeffect will help in detecting thevil root hashjnvalidate messagesill be
spread over the swarm, invalidating &l root hash. Once the attackers have been
detected, thevil hash tree will be discarded. Since no other root hash is prese
in the swarm yet, the peers will continue the download reimnig the content only
from the web server until the first Merkle tree is generated.

As we just examined, the first sharing policy is to share aqurdaly if (at least)

a part of the Merkle tree has been received. This ensurekdoogent verifica-
tion and global root hash invalidation. Another simple afidaive sharing policy
is to redistribute to the network only pieces received foha web server. This
policy guarantees to inject in the swarm only non-pollutedtent. On the other
hand, when sharing the content received from the P2P netwstd&ad, the risk of

39

4.3 Considerations and conclusions Pollution prevention

40

injecting polluted content is higher.

Good sharing policies can increase the global security theeswarm. In this
chapter only two policies have been presented. Howeverdhatjpn prevention
algorithm is flexible and open to integrate other sharingcpes that can speed up
attacks detection.

4.3 Considerations and conclusions

We presented how, in an environment lacking in piece hashegontent integrity
cannot be guaranteed unless a mechanism to resist to falleditacks is devised.
This mechanism has been synthesized inRbkution preventioralgorithm. This
algorithm makes the use of the Merkle hashes technique de tnashes between
the peers, and is supported by fRetten branch detectioandInvalidate message
techniques to respectively identiéyil peers and to distribute attack detections over
the swarm.

With the Invalidate messagee also introduced the new conceptditributed
security where each peer participating to the swarm is responstrletHecking
the integrity of a portion of the download and for sharinggfa&ot hash detections
among other peers in the swarm.

Fake block attacks are usually coordinated attacks intehalereate as much
damage as possible. Therefore, these attacks usually iap@svarms sharing
popular content, where the number of peers is substantiam fan attacker point
of view, it is not profitable to attack swarms of a few dozenrppé means that
the shared content is not popular and that the impact of threada to the swarm is
small.

The whole concept of this thesis is to resist to the phenomefBlash Crowds
Flash Crowds happen for popular content, where thousaretg<try to download
the same content. This is where we can profit the most from 2fResRpport. This
is also the situation where the risk of attacks is higher.

The effectiveness of the pollution prevention algorithnpisportional to the
number of peers in the swarm; the more the peers, the beteaalgorithm per-
formance. At the same time, the bigger the swarm, the hidteerisk of attacks.
Therefore, the pollution prevention algorithm is effeetivhen it is most required.
If the number of peers in a swarm is small, the web server cadlbahe load of
distributing all the content and the P2P support is not néestigmore. In such a
way the content integrity can be guaranteed when the pofiytrevention is weak,
by downloading the content only from the web server.

Chapter 5

Implementations and Experiments

This chapter describes the experiments performed withvibarain implementa-
tions of the HTTP/BitTorrent hybrid. The first one concernghwihe web seeding
features included in the Tribler Core during the thesis,seond implementation
is a simulator of thepollution preventiomalgorithm aiming to test the server-side
performance of the BitTorrent/P2P architecture hybride Téason for two differ-
ent implementations is that the web seeding feature hasibeleided in the Tribler
Core in the early stages of the thesis, while the Polluti@v@ntion algorithm has
been created in the second phase, and notincluded in tHerT@bre. However, the
Pollution Prevention algorithm should not influence muehdbwnload speed/ratio
behaviour of the Tribler Core, and the server load variatian be tested with the
Pollution Prevention simulator. The results of the expents performed with the
two different implementations show that the performandeea®d is the result of
merging the best of HTTP and BitTorrent; in particular the ldownload start-up
delay is typical of HTTP while the download load is distribdtover several hosts
including the web server, a typical characteristic typafditTorrent environments.
In the following experiments, theerver loadis defined as the amount of content
retrieved from the server over the total amount of contetnieneed by the peers.

5.1 Tribler Core

The implementation of a browser plug-in rendering videotenhretrieved from
a P2P engine, was developed in the early stages of this tf2&3{8]. The goal
was to provide a web page with video content retrieved froenBhTorrent net-
work. It's easy to imagine the advantages of such a tool iratteempt of building a
YouTube-like service. The result has been the SwarmPluglieased in 2009 [12],
composed of a modified version of tMe.C browser plug-irresponsible for ren-
dering the video in the page, and by tBackground Procesdased on an existing
feature of the Tribler Core that provides video on demandesdrretrieved from
the BitTorrent network.

41

5.1 Tribler Core Implementations and Experiments

42

The project then evolved in 2010 [16][13] in a partnershigwVikipedia in the
attempt of including video content in the Wikipedia pagessuch a way that their
low-cost infrastructure is able to satisfy a large amounis#r requests. The HTTP
seeding feature, already included in the Tribler Core iretmy stages of this thesis,
has been adapted to cope with the project requirements. tidétimtroduction of a
policy to balance the bandwidth coming from HTTP and Bit@oty the developed
engine has been able to provide P2P video service able fgratésfrom HTTP the
bandwidth necessary to keep the playback sustainable.

The following sections show the results of the experimeptégomed with the
Background process including the HTTP seeding featuressd tests use different
torrent in which theurl-list parameter has been embedded. Thdist parame-
ter specifies the URL of the resource shared in the swarm, aalles the HTTP
download in the Tribler Core.

5.1.1 Background process interface

The Background process interface is composed by two chsinadlCP socket for
receiving requests and sending the status to the conheatet an HTTP channel
providing the video content.

Escape character is '"]'

START http://url2torrent.net/torrent/f75686cf82a7bd71e8fdd6d0817898b20cdc2eff.torrent

INFO Prebuffering 0% done (connected to 0 people). Playing in less than a minute.

INFO Prebuffer ne (connected to 0 people). Playing in less than a minute.
INFO Prebuffering % done (connected to 1 person). Playing in less than 5 minutes.

Figure 5.1: Telnet session connecting to the BG process and startingvaldad

Figure 5.1 shows how the connecter, in this case a telnabsesgsteracts with
the Background process by sending the URL of the torrent wenttead. Figure
5.2 shows the Backgound process’ output whereSARTcommand is received
by the connector, and the activation of the HTTP support, iththe HTTP seed-
ing feature, is triggered by the url-list parameter corgdim the torrent metadata.
Upon the activation of the HTTP seeding feature, the BG stateiving content
from the web server. When enough content to keep the vidghatk sustainable
has been downloaded, the BG sends back to the connecter thefuURe internal
VideoServer from which the video content can be retrieved.

Implementations and Experiments 5.1 Tribler Core

bg: Test if already running
Build 17598

: Awaiting commands
: Plugin connection_made
ART

EVENTS ['ste
tarting new
: Activating HTTP support
ontent URL: http://upload.wikimedia.org/wikipedia/commons/8/84/Play fight of polar bears edit 1.avi.0GG

Play fight of polar s_edit _1.avi.0GG DLSTATUS_DOWNLOADING 27.34% None up 0.00KB/s down 350.47KB/s
Play 0 0 0GG DLSTATUS \[¢] 0KB/s down 166.90KB/s
nt/0f49090a7 3407 ee 6 .733461915126 bytes=0-
dio/ogg length 59924 9

s_edit_1.avi.0GG DLSTATUS_DOWNLOADING 30 e up 0.00KB/s down 122.58KB/s
om server

http: Got 32 es om server

Play fight of polar bears edit 1.avi.0GG DLSTATUS DOWNLOADING 39.92% None up 0.00KB/s down 118.93KB/s

Figure 5.2: BG process output. The highlighted lines show the START eochmeceived by the
connecter, the activation of the HTTP seeding feature, hadtailability of the downloaded content
on the specified URL (start playback line)

5.1.2 Bandwidth usage

Figure 5.3 shows the system behaviour of a BitTorrent doachiwith the HTTP
seeding feature activated. The file retrieved has a total ¢i237 MB, and the
swarm, at the moment of the download, was composed of 15 isegaie 240 leech-
ers. After the swarm discovery step, the client could swgfadlyg initiate connec-
tions with 25 peers. One can notice that the HTTP incomingiaith starts im-
mediately and remains constant, like in a regular HTTP dowaahl The BitTorrent
bandwidth starts later, increasing the total speed of thentiiad. In this case the
BitTorrent download start-up latency is low (around 4-5@#ts), since the swarm
selected for the test was properly populated. In the folhgmnsection we will see
that for not well populated swarms, the download start-tgniey of the BitTorrent
network is higher.

After the Tribler engine starts the HTTP download, new catioas are also
started with peers found during the swarm discovery step.fif$t peers start giving
bandwidth after 5 seconds. After around 40 seconds fromtéinecs the download,
the download speed increases by a factor of two with a peérggaround 1 MB/s
of bandwidth. This also means that the server load is redbgedound 2/3 during
the download session, since just one third of the data is taded from the web
server.

In this test, we are not interested in any sort of bandwidtariang, unlike in
the next experiments. The system just tries to get the manifandwidth from

1Even if the BG has been designed to interact mainly with th€\plug-in, any software component able
to "speak” the BG protocol can activate a P2P download. shshy we don't refer to the browser plug-in but
to a generic connecter.

43

5.1 Tribler Core

Implementations and Experiments

44

T T
HTTP bandwidth sesssss
4000 = Peer increment
Total incoming bandwidth =

3000

2000

Incoming bandwidth [KB/s]

1000

0 20 40 60 80 100 120
Time [sec.]

Figure 5.3: Hybrid download behaviour. The grey filled curve represéimesHTTP bandwidth. On
top of the HTTP bandwidth each of the 25 peers increases takitwoming bandwidth with its
bandwidth contribution. The total download speed is repréad by the red line.

HTTP and from BitTorrent. This experiment is meant to show biest of both
worlds: low start-up latency, improved download speedesdoad reduction.

5.1.3 Start-up time delay

This experiment measures the start-up time delay for HT PBatTorrent. In par-

ticular we are interested in the latency for completely neng the first piece. The
reason for selecting this measure is that it both combinesatiency for receiving
the first bit (start-up latency) and the speed at which thebytes are received (ini-
tial download bandwidth). The start-up latency itself i nauch indicative if we

consider the case where the first bit is received with lownlatebut the download
bandwidth is very slow.

Figure 5.4 shows the start-up time delay measurements otddugons of the
experiment. The torrent in question is the popuwdephants dreanshort movie,
with a piece size of 512 KB. Combining these results with thesan figure 5.3 we
can understand not only that BitTorrent has a higher statatency compared to
HTTP, but also a lower initial download bandwidth. Theseaultssare particularly

Implementations and Experiments 5.1 Tribler Core

25
BitTorrent start-up delay
HTTP start-up delay m—

20 -

15 -

Time [sec]

10 -

o_-_-J_-_-_-_-_-_-_-_

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Experiment

Figure 5.4: Delay comparison between HTTP and BitTorrent for receivhregfirst 512 KB of data.
The resulting values combine the latency for receiving tts¢ it and the initial download band-
width.

meaningful in the context of P2P based video on demand, whenglayback start-
up delay is critical.

We can observe that the HTTP values vary between 1 and 2 secdomdhe
BitTorrent values we can observe a bigger variation, betwle@ and 21.4 seconds.
This big variation is caused by some factors like the tracksponse time, the peers
outgoing bandwidth, the peers unchoking delay and swarmactexistics like the
swarm size. We can conclude that, in the context of P2P baded wn demand,
the support of HTTP can greatly improve the start-up delayefplayback.

5.1.4 Flashcrowd simulation

This experiment analyses the global behaviour of the swartwo different config-
urations: an HTTP download with the BitTorrent support, &melsame download
without the BitTorrent support. The web server upload badtwhas to be split be-
tween 10 clients, that start their download with a small yelae from each other.
The maximum upload bandwidth of the web server is 250 KB/s$lethe download
and upload bandwidth of each peer has no limit.

As it is possible to see in figure 5.5, in the first few secondemneipeer #1
started the download, its download bandwidth reaches thenmuan web server’s
outgoing bandwidth limit. In a second step, peer #2 stagidatvnload, and the web
server’s bandwidth has to be split between two clients. Waiktlhe 10 peers have
started their download, the bandwidth of the web server isaky split between
them. When the download of the first peers completes, the ldadrbandwidth of

45

5.1 Tribler Core Implementations and Experiments

46

Peer1 ——
Peer 2
Peer 3 ——
250 Peer 4
Peer 5
Peer 6
Peer 7
Peer 8
200 Peer 9
Peer 10

150

100

Incoming bandwidth [KB/s]

50

Wr 1 111

0 30 60 90 120 150 180 210 240 270 300 330 360
Time [sec.]

Figure 5.5: HTTP download. The web server output bandwidth is equaliy sptween all the
clients.

the last peers increases, since the server’s bandwidtloheesgplit between fewer
peers.

Figure 5.6 shows the behaviour of the same experiment bhttivét P2P down-
load support enabled. we can notice the differences on thgtaphs of the Y- and
X-axis scales, denoting different incoming bandwidths eachpletion times. For
each peer, the HTTP incoming bandwidth and the total incgroandwidth (HTTP
+ BitTorrent) is displayed. As in the previous case, the HbaRdwidth of the web
server is split between the peers and the HTTP incoming baltidef each peer
has the same behaviour of the previous experiment. Howthetotal incoming
bandwidth of each peer behaves differently.

In the first phase, each peer gets the expected HTTP bandpligshall the
content retrieved by the swarm until that moment. As an exenpeer #2 gets
the half of the HTTP outgoing server bandwidth (since it ltabe split with peer
#1), plus all the content retrieved by peer #1 until peer #2etl the download. As
the next peers start the download, the initial download eueaches higher values,
because more content has been downloaded by all the prepgeus. This explains
the curve peaks during the initial phase.

Implementations and Experiments 5.1 Tribler Core

1400 | Peer 1 total ——
Peer 1 http e
Peer 2 total
Peer 2 http
Peer 3 total =——
Peer 3 http e
Peer 4 total
Peer 4 http
Peer 5 total
1000 - Peer 5 http
Peer 6 total ——
Peer 6 http
Peer 7 total ——
800 | Peer 7 http
Peer 8 total
Peer 8 http
Peer 9 total ——
Peer 9 http
Peer 10 total ——
Peer 10 http

1200 |

600 -

Incoming bandwidth [KB/s]

400

200

20 30 40 50 60 70
Time [sec.]

Figure 5.6: Hybrid HTTP/BitTorrent download. The web server outputdaidth is equally split
between all the peers and each peer receives from the otheirsgortion of HTTP downloaded
content. Therefore the total bandwidth received by each j{geequal to the web server’s output
bandwidth. In general, in an hybrid download, independeffibm the swarm size, each peers
receives a bandwidth equal to the maximum web server’s bbgndwidth.

After the first initial phase, the download bandwidth of &i&tpeers converge
to a value that is slightly smaller than the web server oubaundwidth. In other
words, the HTTP download bandwidth of each peer is shareddast each other
and therefore, the total download bandwidth of each peequslgor less) to the
web server output bandwidth. As an example, if the total wiyandwidth of the
web server is 10 pieces per second, and 10 peers downloalissienusly from the
server, they get 1 piece per second; at the same time, the wékbe sharing the
piece retrieved from the web server with each other, an@toer each peer gets one
piece from the web server and 9 pieces from the other pedns seime second, that
is the maximum web server output bandwidth. The reason wap#ers converge
to a download speed that is slightly lower than the serveputdtandwidth is that
peers can download the same piece at the same time or witle @étay each other,
and therefore the piece in question will not be shared, dsang by a small quantity
the download speed of the peers.

With the analysis of this experiment we can conclude thahif®id download

47

5.1 Tribler Core Implementations and Experiments

48

has two main benefits: a) the web server has to distribute dhteot only once
and b) each peer receives a total bandwidth that is equaétediv server’s output
bandwidth. These are the same conditions as when each iglitr@ only one to
download from the web server, regardless the number oftslien

5.1.5 Intelligent bandwidth balancing policy

As previously stated, a new project was born from TU DelftBaboration in 2010

with Wikipedia. The goal was to study the possibility of inding P2P-based video
streaming service in the Wikipedia pages. Since Wikipeeli@s on donations to
fund their infrastructure, low cost video delivery is a atniequirement. This is
a good reason for adopting a P2P based solution instead oftalkcserver based
architecture such as content delivery infrastructure.

Since low server load is the main interest and, at the same tow playback
start-up delay has to be guaranteed, a smart bandwidthdiadgmolicy is required.
The policy is based on the concept that the web server happmdLas less load as
possible; therefore, when downloading a video, the baniwpdority is given to
BitTorrent, and HTTP has to be used as a fall-back to guaegritg/back stability.

The behaviour of the bandwidth balancing policy is shown gure 5.7. For
clarity, the same results have been plotted by applying scumeée smoothing in
figure 5.8, making the graph easier to read. We will refer torédg.8 in the follow-
ing analysis. The red line represents the total incominglédth, as a combination
of the HTTP and the BitTorrent bandwidth. As one can obsehestotal incoming
bandwidth waves around the video bit-rate value; the canissuch a behaviour
depends on an internal video buffer that, as it gets fillechapteed, requires to the
engine more or less bandwidth, increasing and decreastngptivnload speed.

The blue line, representing the incoming BitTorrent bartitiiis generated by
alternating two peers sharing the video at two differenegge one peer seeding
at 38 KB/s and another peer seeding at 18 KB/s. Around 190s426nds range,
the incoming BitTorrent bandwidth is slightly higher thdretvideo bit-rate, and
therefore almost no HTTP bandwidth, represented by thendnee, is required.

When there is no bandwidth coming from the BitTorrent nekw®TTP has to
supply with enough content to keep the video playback sustde. As an example,
we can notice that during 350-400 seconds range there iscoming BitTorrent
bandwidth, and therefore the missing bandwidth has to beestqd to HTTP.

Finally, when the incoming BitTorrent bandwidth is not egbuo keep the
video playback sustainable, like between second 70 anchdet80 or between
second 250 and second 340, the missing bandwidth is contperisaHTTP. Fig-
ure 5.9 shows an alternative view of the same experimenlisesthere it is easier
to understand what the bandwidth ratios are.

To conclude, this experiment show how different configragi of the band-

Implementations and Experiments 5.2 Pollution preventigperiments

120
Total bandwidth |——
110 1 HTTP bandwidth
100 + P2P bandwidth [——
@ 90 b
fia)
X g0 |
S
S 70 |
=
2 60} U
]
o
(@)
£
IS
o
(&)
=

il ()
o0 L L W\

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480
Time [sec.]

Figure 5.7: Intelligent bandwidth balancing policy behaviour. Thegsiiy is given to the BitTorrent
network. The missing bandwidth required to keep the vidaghaick sustainable is integrated with
HTTP bandwidth. One of the effects is that the server load i as possible to meet the video
playback sustainability requirement.

width balancing easily lead to coping with the environmesguirements. In this
case the requirement is to support BitTorrent with HTTP enttisk of video stream-
ing service, keeping low server load as a priority. In thevjgnes experiments, on
the other hand, the BitTorrent bandwidth is used to suppertfTTP one. By just
tuning a few parameters, the best performance can be adhgwvbe best qualities
of HTTP or BitTorrent.

5.2 Pollution prevention experiments

The Pollution Preventioralgorithm introduces some restrictions in the bandwidth
usage ratio. This is important mainly for the server sideltessince more data is
required from the server to guarantee content integrity.tltie reason a simulator

of the Pollution Preventioralgorithm has been developed with the purpose of mea-
suring the server load in different conditions, dependinghe file size, swarm size
and quantity of seeders.

Since the results of the experiments where the file size aadwssvsize param-
eter variations are not meaningful to the end of analysiegstirver performance,
but they just show that the download ratio between HTTP and@oBient keeps
constant over the variation of those parameters, they wilidt presented. The at-

49

5.2 Pollution prevention experiments Implementations BExperiments

50

80
Total bandwidth
HTTP bandwidth

70 r P2P bandwidt
@ 60 |
M
X
£ 50 -
S
= _
ol A A N /7 .
XS} A \/ N S Video Bitrate
230 F
€
3
€ 20

10 | }

O | | | | | | | |

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480
Time [sec.]

Figure 5.8: The same results of figure 5.7 have been plotted with curvetsing to improve the
readibility of the graph.

tention will be concentrated on the experiments where timel®r of seeders in the
swarm variates.

This implementation simulates DHT, web server and peersh paer down-
loads a piece from the web server or from another peer depgradi the piece
selection instructed by thieollution Preventiormodule. No network data transfer
is involved, and the unchoking algorithm is simplified to th@imum. The simu-
lator just analyses the amount of pieces retrieved from thle server and from the
swarm. In particular the server load variates dependinfnemmount of seeders in
the swarm. The reason is that a small amount of seeders ahewsot hash to be
spread among the peers, enabling the peers to trade pisteadrof being forced
to download the content from the web server. Indeed, wherahzs no root hash,
either received from another peer or computed after retvgeall the content from
the server, it can not share its content since it is not ptessibgenerate iece
messageontaining all the needed sibling and uncle hashes.

These experiments demonstrate that only a minimum amoutdtaef needs to
be retrieved from the web server to perform content intggtitecks over the data
retrieved by other peers. The most important outcome issthahimum amount of
seeders (around 5%) in the swarm reduces the web serveryaathbtor of more
than the 70%.

Implementations and Experiments 5.2 Pollution preventigperiments

80
HTTP bandwidth
70 L P2P bandwidth mm—
60 -
50 -
40

Video Bitrate
30

20

Incoming bandwidth [KB/s]

10

0
0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

Time [sec.]

Figure 5.9: A filled curve representation of the results shown in figu& Blere it is easier to have
an idea on what the HTTP and BitTorrent component ratios are.

5.2.1 Server load on seeders ratio variation

The graph represented in figure 5.10 shows how the serverisoafluenced by
the number of seeders in the swarm. The tests are performaa @mvironment
where 100 peers are simulated, and the file size is 2048 pigteb%, 20% and
100% seedergxperiments are performed over the 100 peers plus the 5%, 20%
and 100% of seeders more. T&&rt-upexperiment represents the initial phase in
which all peers are leechers and start the download comtlyr&ince there is no
seeder in the swarm, there is no root hash and the peers cdraretpieces between
themselves.

In the2 stepexperiment, an initial set of 20 peer are started concuyravitile
a second set of 80 peers is started when the first set comyleze@7% of the
download. This gives the first set of peers the opportunitgtoeve more content
from the web server and to compute earlier the Merkle tree ¢ime download has
completed. Once the first set completes the download, thiehash is spread in
the swarm and gives to the second set of peers the opportitgding pieces,
lowering the web server’s load.

An analysis of the results shown in figure 5.10, demonsttatgsa small quan-
tity of seeders in the swarm allows a web server load reduafanore than the
90%, where, as a reminder, the server load is defined as therambcontent re-
trieved from the server over the total amount of contenteetd by all the peers of
the swarm.

51

5.2 Pollution prevention experiments Implementations BExperiments

52

As an example, if the content size is 2048 pieces, and ther&Qfr peers down-
loading and 5 seeders, the total amount downloaded by alpdlees is 204800
pieces; where 20480 pieces are retrieved from the servefd 84820 pieces are
retrieved from the P2P network.

100

Ratio retrieved from server
90

80 |-

70

60

50 -

Ratio %

40

30

20

10 -

Figure 5.10: Server load on seeders ratio variation. With the 5% off seedethe swarm, the
around the 90% of the total content is received from the P2waik and the 10% from the web
server.

5.2.2 Swarm download session simulation

This experiment aims to analyse the behaviour of the swarensérver load and
the HTTP/P2P pieces ratio during a whole download sessibe.dlfference with
the previous experiment is that in this case the swarm clsaonger the time, while
in the previous case the swarm conditions were predefined.

In this experiment, 3 sets of peers are started with diffetieme delays. The
total amount of peers started is 500; the size of the dowelbambntent is 512
pieces. The first set consists of 100 peers, started withyasveall delay one from
the other. We expect in this case to have all the peers dodinigdrom the web
server concurrently, since no root hash is circulating exgtvarm. Since the peers
are started with a small delay from each other, the first oodsetlaunched will
have a little advantage that will cause them to complete thwentbad earlier and to
generate the root hash. The root hash will be distributed tineswarm, allowing
the rest of the peers to share pieces and lower the server load

Implementations and Experiments 5.2 Pollution preventigperiments

500

Peers in swarm ———
Leechers
Seeders

400

300 -

Peers

200

100 -

0 I I I I I
0 45 90 135 180 225 270

Time [sec.]

Figure 5.11: Behaviour of the swarm during a download session.

The second set consists of 66 peers also started with a sedall tom one
another. The expected behaviour for this set is not to loads#rver with many
request, since a root hash should be already present in goenswallowing those
peers to receive pieces from seeders and to trade piecestbach

Finally, the third set, consisting of 334 peers, startskadl peers concurrently,
with no delay. With no P2P support, this set would overloaslwleb server with
a large amount of requests. However, we expect the web stererloaded only
with around 10% of the total requests.

The 3 sets simulate three of the previous experiment c&tad-up 2 stepsand
20% seedershut in a scenario where all the peers are started contihyand not
in different experiments.

Figure 5.11 displays the results concerning the swarm &woluThe red curve,
representing the total amount of peers in the swarm, gravesaitly over the time.
The number of leechers has its peak in the first phase, wheoatdash has been
generated yet or entirely spread over the swarm; at the sameetlie number of
seeders slowly grows. In the second phase, the first dowsloaaiplete and the
root hash is generated and spread over the swarm, the nufribecloers decreases
and the number of seeders grows fast. After this transitlase, the number of

53

5.2 Pollution prevention experiments Implementations BExperiments

54

leechers remains constant during the swarm growth, and uheber of seeders
grows linearly like the swarm size.

1000

Pieces retrieved from BitTorrent
Pieces retrieved from HTTP
800 |- -
D 600 -]
(8]
Q
o
400 -
200 5
30 |4
0
1
HTTP/Total pieces ratio
0.8 |-]
o 061]
£
04 | -
0.2 | E
0 e ““‘”M“ i “‘M“ s "aiS =L VW‘ ol ”““”"W"“"“”’"L“m
0 45 90 135 180 225 270

Time [sec.]

Figure 5.12: Distribution of the load over HTTP and BitTorrent during tlewnload session. The
server load is defined as the ratio between the HTTP downbbaé@xes over the total amount of
downloaded pieces. The top graph has a scale enlargemehtimange [0,60] on the Y axis to
better show the behaviour of the downloaded HTTP pieces.

Figure 5.12 displays the results of the experiment conngritie number of
pieces downloaded and its ratio. As expected in the begyptiase, all the content
is retrieved from the web server, as displayed by the greeniti the upper graph.
At the same time, the black line in the bottom graph shows tiatratio of the
downloaded pieces is 1, meaning all the downloaded pieeesetiieved from the
server. After this initial phase we can observer that the lmemof BitTorrent and
HTTP downloaded pieces is constant, in the same way as theetuwh leechers
remains constant over the same range of time. In this pHaspjdces ratio remains
constant to a value under the 10%. This means that the 90% d¢dalal generated
by the swarm download is spread over the P2P network and bel$@% over the
web server.

To conclude the analysis of this experiment, the resulta/ghat the web server
load is higher in the first phase of the download session, wleseeder, and there-
fore no root hash, is present in the swarm yet, and when iffsosgible for peer

Implementations and Experiments 5.3 Conclusions

to upload. However this is also the phase where the total eambpeers in the
swarm is relatively small. As the graph shows, the numberexfgs retrieved from
the server is reasonably small over the whole duration ofettgeriments, both
when the HTTP/Total pieces ratio is high and when it is undér 0

5.3 Conclusions

The previous experiments show what the performances ofdhgpstems are. The
findings can be divided in two groups: client side and serik.dn the client side
we analysed how merging HTTP and BitTorrent bandwidths owes the speed of
the download. We also analysed the improvements in thegtedelay, a parameter
that is essential in the context of P2P based video on denlarttie Flashcrowd
experiment we showed how clients and server benefit from yheiddownload:
the server distributes the content only once, and the elisteive a bandwidth
equal to the web server’s output bandwidth. Then we dematestrthat, with an
intelligent bandwidth balancing policy, an HTTP/BitTontdnybrid can easily adapt
to different needs, like for example trying to keep the daval bandwidth constant.

In the server side results we analysed how the server loéidedeas the amount
of content retrieved from the server over the total amourbotent retrieved by the
peers, behaves depending on swarm growth and number ofrseddese results
show that the web server is able to support a number of cagr@uconnections
much higher than conventional HTTP. The Pollution Premmgxperiments also
show that, in an environment where HTTP2P is used, the dondar reducing the
server load to the 10% is to have a minimum number of seedetseln 1% and
5% of the total swarm size.

55

Chapter 6

Conclusions

The web content is changing. HTTP content size and requepiéncy are grow-
ing. The popularity of the content can also affect serveigoerances with phenom-
ena like theFlashcrowds generating service denial. At the same time, BitTorrent
is leading the world of file sharing due to its ability to scaligh big increases of
peer requests. Therefore, the combination of HTTP and B#ht is a candidate
solution to address this issue. The previous attempts ddibgi a solution that
combines HTTP and P2P have not had much success, but theaneesdiution is
still present.

The problem of supporting the HTTP protocol with BitTorrentthe task of
web content retrieval stands mainly in the security asfg@etause of the nature of
HTTP, the lack of piece hashes is a limit for guaranteeingearintegrity. A few
existing techniques allow the process of translating thé 0Ra web resource into
a BitTorrent download; however a technique able to guaeaotatent integrity in
this environment is lacking.

This thesis work proposes the architecture of HTTP2P, adbt# of hybrid
download, and th&ollution Preventiomalgorithm, a technique able to guarantee
content integrity over the swarm, based on two main concépegrusted authority
(web server) and the distributed security (throughitivalidate message

Our experiments have shown that combining the best of theRHad the Bit-
Torrent worlds greatly improves the performance of a doadlsession, both on
the server and the client side. The proposed architecture¢hePollution Preven-
tion algorithm solve the problem of supporting HTTP with the BittEnt protocol.
However, also the effects of supporting BitTorrent with HY That is the HTTP
seeding technique, have been analyzed in this work, as fantloybrid system.

In a scenario where the web content is growing, where the eumiconnec-
tions is increasing and where the content popularity is ddénmental parameter, the
combination of HTTP and BitTorrent brings consistent imnygment to a download
session. These improvements are experienced in the cidtwhere the down-
load speed is improved and the download start-up latencgdsaed, and in the

57

Conclusions

58

server side, where the load of the server is distributed thveswarm and therefore
more connections can be supported.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

Bibliography

Azureus introduces dht layemtt p: // www. sl yck. com news. php?st ory=
772.

Bittorrent enhancement proposals for dhttt p: // www. bittorrent. org/
beps/ bep_0005. ht .

Bittorrent protocol specification document.http://wiki.theory. org/
Bit Torrent Speci ficati on.

Dht definition. http://en.w ki pedi a. org/wi ki/Distributed_hash_
tabl e.

Firecoral, browser-based peer-to-peer content distion network project.
http://ww.firecoral.net/.

Getright's style web seeding specification. http://getright.com
seedtorrent. htnl.

A new http header that might be useftt.t p: // cl ubt r oppo. com au/ 2009/
01/ 14/ a- new- htt p- header - t hat - m ght - be- useful /.

P2p-next swarmplug-intriahttp: //trial . p2p- next.org/.

Slashdot effect definition. http://en. w ki pedi a. or g/ wi ki / Sl ashdot _
effect.

[10] Tribler p2p client.http://ww. tribler. org.

[11] Video in html5.http://ww. ht M 5vi deo. org/.

[12] Torrentfreak article about swarmplug-in. http://torrentfreak. com

bbc-trials-bittorrent-powered- hd- vi deo- stream ng-091203/,
2009.

59

BIBLIOGRAPHY

60

[13] Wikipedia p2p video streaming teshtt p: //w ki pedi a. p2p- next. org/,
2010.

[14] Ismail Ari, Bo Hong, Ethan L. Miller, Scott A. Brandt, drDarrell D. E. Long.
Modeling, analysis and simulation of flash crowds on therimg& InTechnical
Report UCSC-CRL-03-12004.

[15] Arno Bakker. Merkle hash torrent extensidnt p: / / www. bi ttorrent. org/
beps/ bep_0030. ht M, 2009.

[16] Arno Bakker, Riccardo Petrocco, Michael Daley, Jan l&&er Victor Gr-
ishchenko, Diego Rabaioli, and Johan Pouwelse. Onlineowideng bittorrent
and html5 applied to wikipedia. I€@onference on Peer-to-Peer Computing
(P2P), 2010 IEEE Tenth Internation&010.

[17] Prithula Dhungel, Di Wu, Brad Schonhorst, and Keith VdsR. A measure-
ment study of attacks on bittorrent leechers7in International Workshop on
Peer-to-Peer System2008.

[18] R. Fielding, UC Irvine, J. Gettys, J. Mogul, H. Frystyk,Masinter, P. Leach,
and T. Berners-Lee. Rfc 2616: Hypertext transfer protocbttp/1.1, June
1999.

[19] Michael J. Freedman, Eric Freudenthal, and David M&ae Democratizing
content publication with coral. http://www.scs.cs.nylukoral/.

[20] Jerome Harrington, Corey Kuwanoe, and Cliff C. Zou. #dairent-driven dis-
tributed denial-of-service attack. Brd International Conference on Security
and Privacy in Communication Networks (SecureComm 2007 .

[21] John Hoffman. John hoffman’s style web seeding spextiba. http://
bi t t or nado. com docs/ webseed- spec. t xt .

[22] S. lyer, A. Rowstron, and P. Druschel. Squirrel: a déx@ized peer-to-peer
web cache. IfProceeding PODC '02 Proceedings of the twenty-first annual
symposium on Principles of distributed computiBg02.

[23] Jaeyeon Jung, Balachander Krishnamurthy, and MicRa&inovich. Flash
crowds and denial of service attacks: characterizationiapdications for
cdns and web sites. MWW '02 Proceedings of the 11th international con-
ference on World Wide WeB002.

[24] Peter Maymounkov and David Mazieres. Kademlia: A peepeer informa-
tion system based on the xor metric.Rroceeding IPTPS '01 Revised Papers
from the First International Workshop on Peer-to-Peer 8gs 2002.

BIBLIOGRAPHY

[25] J.J.D. Mol, A. Bakker, J.A. Pouwelse, D.H.J. Epema, &hd. Sips. The
design and deployment of a bittorrent live video streamaoigtgon. InISM '09
Proceedings of the 2009 11th IEEE International Symposiarivaltimedia
2009.

[26] Diego Andres Rabaioli. Tribler browser plug-m.t p: / / www. tri bl er. or g/
trac/w ki / Browser Pl ugi n, 2009.

[27] D. Serenyi and B. Witten. Rapidupdate: Peer-assisigdlalition of security
content. INPTPS’08 Proceedings of the 7th international conferent®eer-
to-peer systemz002.

[28] T. Stading, P. Maniatis, and M. Baker. Peer-to-peehoagrschemes to ad-

dress flash crowds. IRroceeding IPTPS ‘01 Revised Papers from the First

International Workshop on Peer-to-Peer Systepi$?2.

61

