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Abstract
Developing motor and cognitive skills is needed to achieve expert (motor) performance or functional recovery from a 
neurological condition, e.g., after stroke. While extensive practice plays an essential role in the acquisition of good motor 
performance, it is still unknown whether certain person-specific traits may predetermine the rate of motor learning. In par-
ticular, learners’ functional brain organisation might play an important role in appropriately performing motor tasks. In this 
paper, we aimed to study how two critical cognitive brain networks—the Attention Network (AN) and the Default Mode 
Network (DMN)—affect the posterior motor performance in a complex visuomotor task: virtual surfing. We hypothesised 
that the preactivation of the AN would affect how participants divert their attention towards external stimuli, resulting in 
robust motor performance. Conversely, the excessive involvement of the DMN—linked to internally diverted attention and 
mind-wandering—would be detrimental for posterior motor performance. We extracted seven widely accepted microstates—
representing participants mind states at rest—out of the Electroencephalography (EEG) resting-state recordings of 36 healthy 
volunteers, prior to execution of the virtual surfing task. By correlating neural biomarkers (microstates) and motor behav-
ioural metrics, we confirmed that the preactivation of the posterior DMN was correlated with poor posterior performance 
in the motor task. However, we only found a non-significant association between AN preactivation and the posterior motor 
performance. In this EEG study, we propose the preactivation of the posterior DMN—imaged using EEG microstates—as 
a neural trait related to poor posterior motor performance. Our findings suggest that the role of the executive control system 
is to preserve an homeostasis between the AN and the DMN. Therefore, neurofeedback-based downregulation of DMN 
preactivation could help optimise motor training.

Keywords Resting-state · Functional connectivity · Electroencephalography (EEG) · Microstates · Correlation · Motor 
performance
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Introduction

Humans go through a continuous process of acquiring 
new motor skills, from those required to meet fundamen-
tal needs such as ambulation and self-care, to more skilled 
movements including playing sports, music, and danc-
ing. We might also encounter detrimental situations that 
demand us to relearn or circumvent lost function through 
intensive neurorehabilitation, e.g., after a brain injury. 
Given the impact on people’s lives, the topics of motor 
learning and relearning of lost functions have been exten-
sively studied—see reviews in (Wulf 2013; Basalp et al 
2021; Marchal-Crespo and Reinkensmeyer 2009; Sigrist 
et al 2013).

It is thought that motor learning and neurorehabilitation 
can be optimised by providing intensive functional move-
ment training that promotes sensory input to the central 
neural system (Winstein et al 2014). Yet, not everybody 
learns equally when presented with the same task and 
training duration. Several factors have been observed to 
play a role in motor learning, e.g., the learners’ initial skill 
level (Basalp et al 2021; Ackerman 2007) or the learners’ 
approach to learning—e.g., individual learning strate-
gies (King et al 2012). In biological terms, performance 
depends on individuals’ anatomical (Tomassini et al 2011) 
and functional brain organization (Raichlen et al 2016; 
Sugata et al 2020; Mary et al 2017), even before practice 
starts. Therefore, the understanding of how brain organi-
sation correlates with motor behaviour may be a sound 
foundation to understand the differences observed between 
individuals.

The study of functional brain organisation is based on 
brain connectivity analyses between either different brain 
regions or different brain networks—i.e., a set of (typically 
distant) brain anatomical areas that exhibit a consistent 
global functional organisation, see reviews (He et al 2019; 
Deco and Corbetta 2011). Previous studies on healthy par-
ticipants consistently showed that spontaneous (namely, 
resting-state) inter- and intra-areal functional brain con-
nectivity before task execution is a robust predictor of both 
cognitive performance (Gui et al 2015; Schlee et al 2012; 
Wang et al 2010; Boly et al 2007), muscular fatigue (Li 
et al 2022), and motor performance (Raichlen et al 2016; 
Sugata et al 2020; Mary et al 2017; Faiman et al 2018). 
Resting-state functional connectivity has also been shown 
to predict motor and cognitive performance among stroke 
survivors (Dubovik et al 2012; Vicentini et al 2021; Hong 
et al 2019) and people suffering from Alzheimer’s disease 
(Cecchetti et al 2021; Dubovik et al 2013; Jones et al 2016, 
2011).

In the context of motor learning, researchers found 
that increased connectivity between motor and sensory 

integration-related brain regions—e.g., involving the Pri-
mary Motor Cortex (M1) and the Parietal Cortex (PC) 
(Wu et al 2014; Manuel et al 2018; Berti et al 2019) or 
other areas belonging to the Sensorimotor Network (SMN) 
(Hong et al 2019; Carter et al 2010; Mottaz et al 2015) 
enhances motor performance. Conversely, researchers 
found that increased neural interactions between motor 
areas and areas related to attention or conciousness—e.g., 
M1 and the Teemporal Lobe (TL) (Sugata et al 2020), 
areas found in the Attention Network (AN) (Mary et al 
2017), or regions within the Default Mode Network 
(DMN) (Raichlen et al 2016; Mary et al 2017)—is detri-
mental for motor performance.

While these findings rely on temporal correlations 
between pairs of preselected brain areas, the role of prior 
resting-state activity of global functional cognitive networks 
in posterior motor performance remains elusive. To address 
this literature gap, we propose the use of Electroencepha-
lography (EEG) Microstate analysis—i.e., the identifica-
tion of transient EEG periods (50–200 ms long) with stable 
spatial field configuration; see (Michel and Koenig 2018) 
for a review. Several research groups have established a 
correspondence between Functional Magnetic Resonance 
Imaging (fMRI)- and EEG-identified Resting-State Net-
works (RSN) named after the letters A to F (Britz et al 
2010; Milz et al 2016). Unlike the techniques used in the 
articles mentioned above, the microstate corpus is based on 
the assumption that the overall pattern of interaction among 
brain regions is mediated by global and synchronous oscil-
lations of cortical excitability that determine the functional 
state of the brain (Michel and Koenig 2018; He et al 2019).

Therefore, EEG microstates may be best suited to study 
the correlation between the preactivation of well-known, 
functional resting-state cognitive networks, and posterior 
motor performance. Other studies performing connectiv-
ity analyses based on electrode-based correlational stud-
ies focused on cognitive (Boly et al 2007), motor (Faiman 
et al 2018), or muscular (Li et al 2022) performance. In this 
study, EEG microstates allow to capture global brain states 
well-correlated with known functional cognitive networks 
and served to establish the correlation between the preactiva-
tion functional resting-state cognitive networks and poste-
rior motor performance. Therefore, microstate analyses are 
complementary to other approaches. As a result, our findings 
extend the knowledge about the influence of cognitive brain 
states on motor performance beyond existing evidence link-
ing muscular (Li et al 2022) and motor performance (Sugata 
et al 2020) to brain local activation patterns.

Previous research linked the appearance of DMN micro-
states—a predominant network in resting-state record-
ings (Kabbara et al 2021; Doucet et al 2012)—to different 
aspects of consciousness, cognitive control, self-referential 
thoughts, and mentation (Michel and Koenig 2018). For 
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example, (Christoff et al 2016, 2009) attributed to areas 
such as Posterior Cingulate Cortex (PCC)—an area linked 
to the posterior DMN represented by microstates C and E 
(Britz et al 2010; Michel and Koenig 2018)—with mind-
wandering. Importantly, people reporting self-reflected 
and internally-directed thoughts (mind-wandering) con-
sistently show less robust performance during task execu-
tion (Christoff et al 2016). Further, robust performance 
is usually linked to lower movement variability. Con-
cretely, internally directed focus of attention results in 
higher movement variability in motor tasks (Wulf et al 
2001; McNevin et al 2003; Newell and Slifkin 1996) and 
deterred performance in tasks that require conscious, non-
automatic, controlled execution (Smallwood and Schooler 
2006). Researchers investigating resting-state neurophysi-
ological activity prior to a golf swing found two promi-
nent patterns of activation. First, novice players showed 
increased activity at the PCC, linked to difficulties in fil-
tering out irrelevant information. Second, experienced 
players showed increased activity over areas related to 
the AN (Milton et al 2007). The involvement of the Infe-
rior Parietal Lobe (IPL)—involved in the AN and imaged 
through Microstate D with sources in the parietal, fron-
tal and insular cortex; (Custo et al 2017)—, is known to 
relate to lower movement variability during task execution 
(Haar et al 2017). Researchers found that the IPL may sup-
port participants’ attention towards task-relevant stimuli 
and sensorimotor integration during motor planning and 
execution (Wenderoth et al 2005).

In this study, we investigated whether prior mental states 
related to increased attention in the environment—repre-
sented by resting-state activity at the AN—and reduced 
mind-wandering— characterised by resting-state activity at 
the DMN network—are beneficial for motor performance in 
a complex visuomotor task: virtual surfing. Participants were 
asked to steer a virtual boat to surf waves as fast as possible 
towards a finish line (Penalver-Andres et al 2021). To accel-
erate on the wave, participants had to detect the incoming 
waves and align the boat towards the wave direction by turn-
ing a joystick. The resting state microstates were extracted 
during EEG recordings with closed eyes—e.g., as in (Michel 
and Koenig 2018)—and recordings with open eyes—e.g., as 
in (Deolindo et al 2021)—prior to the execution of the task. 
We hypothesised that:

1) The presence of Microstate D prior to motor execu-
tion—linked to better attention towards the external task-
relevant wave onset— will be associated with low movement 
variability during task execution. We quantify movement 
variability as the standard deviation of the joystick turning 
angle.

2) The presence of Microstate C prior to motor execution 
will be correlated to poor motor performance, i.e., longer 
times to reach the finish line.

Our study serves to gain a better understanding of how 
resting-state networks affect posterior motor performance. 
We supplement previous research that was restricted to con-
nectivity analyses between preselected pairs of brain areas. 
To the best of our knowledge, we are the first to study the 
relationship between network configurations at rest (i.e., 
microstates) and posterior motor performance. This under-
standing might help researchers consider prior participant-
specific neural biomarkers to characterise participants’ neu-
ral traits and potentially design participant-specific motor 
training strategies, e.g., by using neurofeedback specifically-
designed to attenuate or enhance activity of microstate net-
works known to correlate with specific aspects of motor 
performance (Mottaz et al 2015).

Methods

The findings presented in this manuscript correspond to 
recordings conducted within a broader experiment. The 
experimental setup, motor task, and experimental protocol 
have previously been described elsewhere (Penalver-Andres 
et al 2021). In this document, only a short description is 
provided for completeness.

Participants

We recruited 36 healthy participants who provided written 
consent to participate in the study. The study was approved 
by the Kantonale Ethikkommission Bern and the Swiss 
Agency for Therapeutic Products.

Our sample consisted of 14 women and 22 men, aged 20 
to 59 years ( �age = 27.9 years; �age = 6.64 years). Despite the 
wide range of ages, significant brain structural changes are 
expected only among participants older than 35 years with 
a slight decline in brain tissue volume 0.2% (Zanto and Gaz-
zaley 2019; Hedman et al 2012). Changes in the functional 
network of the brain related to age are expected among par-
ticipants in their 30s compared to participants in the 40s and 
50s only at the Dorsal Attention Network and sensory/effec-
tor specific brain networks (e.g., auditory or hand networks, 
(Varangis et al 2019)). Thirty-one participants were right-
handed according to the Edinburgh Handedness Inventory 
(Oldfield 1971). All participants were naive to the motor 
task. Several participants reported having some experience 
with virtual reality (13 participants), video gaming (14 par-
ticipants), and sailing (4 participants, of which one had a 
sailing licence).

Experimental Setup

Participants performed a virtual surfing Motor Task (MT) 
developed in Unity (Unity Technologies, United States). 



 Brain Topography

1 3

Participants controlled the direction of a virtual boat by 
turning the vertical axis of a joystick (J-UK-17, Logitech, 
Switzerland) with their dominant hand (Fig. 1B). During 
the experiment, participants remained seated in a comfort-
able chair and rested their chin on a chin rest (not visible 
in Fig. 1B). The position of the joystick, the chair, and the 
chin rest was controlled across participants. We recorded 
the EEG activity of the participants using a 256-channel 
Hydrogel cap and EGI Net Amp amplifier (Electric Geodes-
ics, United States).

Resting‑State Brain Activity Recordings

The experiment started with an EEG Resting-State 
Recording. Participants were asked to start the Resting-
State Recording with the Eyes Opened (EO) and alter-
nate with Eyes Closed (EC), each block of 30s duration 
(Fig. 1A). This sequence was repeated four times—i.e., 
4 x (EO + EC) x 30 s = 4 min. The start of each EO and EC 
block was indicated by a short beep presented through a 
loudspeaker mounted on the computer screen.

During the EO blocks, participants were requested to 
visually fixate on a white cross presented in the middle 
of the computer screen and “stay awake and still” (see 
exact instructions in Appendix). During the EC blocks, 
participants were requested to also “stay awake and still” 

but with their eyes closed. To avoid eye-related electroen-
cephalographic artefacts, we asked participants to avoid, as 
much as possible, eye movements (e.g., eye blinks or lateral 
fixations).

Previous studies on resting-state microstate network iden-
tification have been performed with EC. This applies both 
to the identification of microstates based on EEG (Custo 
et al 2017), see (Michel and Koenig 2018) for a review. 
Yet, recent literature also included EO conditions in their 
experiments, e.g., (Deolindo et al 2021). Here, we focus on 
the analysis of the EC condition, but performed identical 
analyses with the data recorded during the EO condition 
to compare our findings between conditions (Barry et al 
2007). Finally, we choose to alternate EC and EO condi-
tions in order to avoid commonly found limitations of 
each experimental condition, observed during the piloting 
phase of this study: participants falling asleep, resulting in 
excessive alpha-band EEG signal presence (EC condition, 
(Berger 1929)) and participants experimenting dry eyes 
symptoms, including excessive blinking or tearing reflex 
(EO condition).

Motor Task

After the Resting-State Recording, participants were 
requested to surf waves as fast as possible to a finish line in 

Fig. 1  Protocol and experimental setup. A Resting-State Record-
ing (RSR) protocol. Participants sat in a chair with chin rest, while 
wearing an EEG cap. During Resting-State Recording, they were fac-
ing a computer screen with a fixation cross in the middle while we 
recorded their electroencephalographic activity. Participants were 
asked to begin the Resting-State Recording with their Eyes opened 
(EO) and alternate with Eyes closed (EC), every 30 s. This sequence 

was repeated four times. Participants were asked to fixate their gaze 
on the fixation cross during EO and keep a resting mind during the 
whole resting-state recording. B Motor Task. After the Resting-
State Recording, participants performed the Motor Task. They were 
instructed to steer a virtual boat on a wavy sea by turning a joystick 
and reaching the finish line as fast as possible. The boat accelerated 
when it was aligned with the wave direction
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a virtual wavy sea [Motor Task (MT)]. The exactly written 
instructions were displayed on the monitor before the task 
started: “You will surf with a boat on the sea. Surf as fast as 
possible to the finish line”. The design of the motor task was 
described in detail in (Penalver-Andres et al 2021). Here, 
only a brief summary is provided for completeness.

To accelerate the virtual boat, participants had to discover 
and master an undisclosed underlying task rule: when a wave 
would reach the boat from behind (incoming wave onset), 
they had to align the boat direction with the direction of the 
wave by turning the joystick vertical axis (Fig. 1B). The 
wave direction changed among a pseudo-randomised pool 
of directions during the Motor Task. The virtual surfing task 
is a relatively complex visuomotor task that imposes high 
cognitive and motor demands on practitioners. Participants 
performing this task should pay attention to the timing and 
orientation of incoming waves. Then, they should execute 
swift and precise joystick turning movements with their 
hands to catch waves and accelerate the boat. Participants 
performed the Motor Task twice (4-5 min per task), each 
containing around 36 incoming waves.

Data Processing and Statistical Analysis

Data Recording

The boat position and joystick turning angle ( �z ; Fig. 1B) 
were recorded at ∼ 50 Hz in Unity. The data were then lin-
early resampled at 50 Hz. The EEG data were sampled at 
1000 Hz, and timestamps were added to the EEG data each 
time participants had to open (EO) or close their eyes (EC).

Behavioural Metrics

Two different metrics were selected to evaluate the partici-
pants’ performance during the MT.

The Completion Time (CT) was computed as the elapsed 
time (in seconds) from the start of the MT until the boat 
reached the finish line. Low CT represents high performance 
in the MT.

The Movement Variability (MV) was computed as the 
standard deviation of the rotation around the joystick verti-
cal axis ( �z , Fig. 1B). This metric quantifies the variability 
of the participants’ steering movements while surfing the 
waves. Low MV represents automaticity, which has been 
associated with external attention to stimuli relevant to the 
task. More automaticity is also characteristic of expert per-
formance (Fitts 1967; Wulf et al 2001).

Resting‑State Networks

Preprocessing: The EEG data were preprocessed offline fol-
lowing the so-called Makoto’s pipeline (Miyakoshi 2021), 

a procedure implemented in the Matlab-based toolbox 
EEGLab (Delorme and Makeig 2004) to preprocess the data 
in a semi-automated manner. We included 186 electrodes 
with a high signal-to-noise ratio in the preprocessing step, 
excluding electrodes at array boundaries heavily confounded 
with muscle artefacts in the neck, maxillary, mandibular, 
and eyebrow areas (see Appendix Fig. 4). An additional rea-
son to avoid considering analysing those electrodes was the 
often experienced loss of skin contact of these electrodes. 
In other words, the EGI EEG Hydrogel cap did not reach 
the zygomatic, maxillary, sternocleidmastoideic, and occipi-
tal skin surfaces in most of the participants, and, therefore, 
we considered it to contain no signal of interest. Data were 
downsampled to 250 Hz and high-pass filtered (cut-off fre-
quency 1 Hz). Line electrical noise was filtered out using 
pop_cleanline from EEGLab. Channels with nonphysi-
ological artefacts (e.g., neck or mastoid muscle artefacts or 
eye movements) were interpolated using a spherical interpo-
lation pop_interp from EEGLab. Following, common-
average re-referencing was applied.

N Independent Components [ICs; (Delorme et al 2007)] 
were extracted from the EEG signal using runamica15 
(Palmer 2015), being N the rank of the EEG signal covari-
ance matrix. This was done to avoid linear dependency 
resulting from the common average reference (Miyakoshi 
2021). The ICs were inspected and rejected, when appli-
cable, following visual and semiautomated ICLabel-based 
(Pion-Tonachini et  al 2019) supervised inspection. We 
rejected ICs whose probability of representing a brain 
source—as indicated by ICLabel—were below 40 % (Pion-
Tonachini et al 2019).

Microstates’ topographic distribution and metrics (for 
example, duration, occurrence and contribution, a.k.a. cov-
erage) have been found to be relatively consistent across 
many studies, regardless of the filtering approach, the num-
ber of electrodes, and the frequency band used (Khanna et al 
2014; Férat et al 2022; Michel and Koenig 2018). Yet, to 
avoid muscular artefacts and non-physiological low-latency 
drifts (e.g., electrode-gel-skin contact), complying with 
most EEG-based microstate analysis paradigms (Michel 
and Koenig 2018), the preprocessed datasets were further 
band-pass filtered (low cut-off frequency of 2 Hz and high 
cut-off frequency of 20 Hz), before microstate extraction. 
We then segmented the clean EEG signals to obtain separate 
2 min long datasets for each EC and EO condition—i.e., by 
concatenating 4 blocks of 30 s long EC and EO condition, 
respectively. During segmentation, the first and last 2 s of 
each 30 s block were removed from each dataset to avoid 
auditory electroencephalographic artefacts, which are linked 
to the primary auditory cortex reaction to the high pitch beep 
presented to the participants (Jung et al 1998). Note that, 
although muscle artefacts have been regressed out using IC, 
the removal of the first and last 2 s of each EO/EC condition 
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further prevents the effect of potential muscle artefacts due 
to the high pitch beep indicating the switch between EC and 
EO conditions.

Microstate Extraction: All steps in the microstate extrac-
tion were conducted using the Microstates v1.2 EEG Lab 
toolbox. Microstates were identified in the individual 
datasets of both EC and EO conditions, using the k-means 
algorithm (Pascual-Marqui et al 1995) by using the Global 
Field Power peaks and seven classes (polarity invariant 
as explained in Michel and Koenig (2018)) with a maxi-
mum of five restarts. We chose seven classes to compare 
our microstates with those identified by Custo et al (2017). 
Further, the selection of seven components was confirmed 
by k-means clustering using the average explained vari-
ance, i.e., how much of the signal variability is explained 
by the fitted microstates, as recommended in (Michel and 
Koenig 2018). Using 6 microstates, the explained variance 
resulted in 76.8 ± 8.9% and 78.8 ± 9.3% , for EO and EC, 
respectively. Using 7 microstates, the explained variance 
resulted in 78.3 ± 8.9% and 80.0 ± 9.4% , for EO and EC, 
respectively. Using 8 microstates, the explained variance 
resulted in 78.3 ± 8.9% and 80.2 ± 9.4% , for EO and EC, 
respectively. As the explained variance plateaued at 7 micro-
states, we evaluated whether combinations of some of the 
8 microstates could resemble to any of the 7 microstates, as 
this is a known fact in the microstates field (Custo et al 2017; 
Michel and Koenig 2018). This was the case for microstates 
1 and 3 (using 8 microstates) combining in microstate 4/D/
AN of the finally selected Custo-like microstates. Therefore, 
we continued the rest of the analyses presented in this paper 
with the seven microstates presented in Appendix Fig. 5.

Following, we averaged condition-specific microstate 
maps, resulting in one grand-averaged microstate dataset 
per EC and EO condition. These grand-averaged micro-
state topographies were spatially correlated with the Custo 
et al (2017) maps to calculate the Commonality (C)—i.e., a 
quantitative assessment of the similarity between different 
microstate maps. The maximum value for the commonality 
is 1, indicating a high spatial correlation between two micro-
state maps. The commonality values of the grand-grand 
averaged datasets (i.e., the average of the grand-averaged 
maps of each EC and EO conditions) are also reported in 

Table 1. Finally, we report the commonality value (Table 1) 
and display the grand-averaged microstate topographies for 
EC and EO conditions side-by-side with the EEG identified 
microstate topographies reported in Custo et al (2017) (see 
Appendix Fig. 5A and B, respectively).

Additionally, to understand how much and how the nor-
mative resting-state networks were associated with poste-
rior motor performance, the maps identified in Custo et al 
(2017) were fitted onto the individual EEG recordings of 
each condition per participant. The averaged explained vari-
ances for the EC and EO conditions were 76.4 ± 2.9% and 
74.4 ± 3.1% , respectively.

Several microstate metrics were computed (Michel and 
Koenig 2018):

• Duration The average time that a microstate was active, 
expressed in seconds (s).

• Occurrence The number of times that a microstate was 
active during each condition (EC/EO) of the Resting-
State Recording. This is a unitless natural number.

• Contribution The time coverage of a microstate over the 
2 min of each condition, expressed in percentage (%).

We chose the Contribution of a microstate as our primary 
EEG metric because this metric is a function of Duration and 
Occurrence over the total 2 min long duration of each EC 
and EO condition. Nevertheless, Duration and Occurrence 
metrics were inspected in order to understand whether our 
findings involving the Microstate Contribution were driven 
by the Duration or the Occurrence Microstate metrics.

As a result, 21 microstate metrics (3 metrics x 7 micro-
states) were extracted per participant and condition (EC and 
EO). These 21 metrics were used for our correlational analy-
ses, displayed in Fig. 2.

Statistical Analysis

Pearson’s correlations were computed between each behav-
ioural metric (i.e., CT, MV) and the 21 microstates metrics 
presented above. We found only significant (or tending to 
statistical significance) correlations between the behavioural 
metrics and several Microstate metrics of Microstates 4/D/

Table 1  Commonality values between Custo et al (2017) and Resting-State Recording microstates for each microstate and condition (i.e., EC 
and EO) and the grand-grand average of the EC and EO conditions

The last column presents the average and standard deviation of the commonality values across all microstates

Microstate 1/A 2/B 3/C 4/D 5/E 6/F 7/G � ± �

EC 0.973 0.932 0.974 0.929 0.820 0.954 0.963 0.94 ± 0.05

EO 0.982 0.916 0.943 0.963 0.900 0.970 0.969 0.95 ± 0.03

Grand-grand average 0.983 0.926 0.964 0.968 0.868 0.967 0.975 0.95 ± 0.04
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AN and Microstate 3/C/posterior-DMN (see Fig. 2) . Never-
theless, to answer our hypotheses, we focus on correlational 
analyses between the Completion Time and the Contribution 
metric of Microstate 3/C/posterior-DMN [posterior-DMN 
(Custo et al 2017); Hypothesis 1] and between Movement 
Variability and the Contribution of Microstate 4/D/AN [AN 
(Custo et al 2017); Hypothesis 2] during EC see Figs. 2A 
and 3). For comparative purposes, we ran identical analy-
ses involving the EO condition (Fig. 2B). Additionally, to 
understand whether our findings involving the Microstate 
Contribution were driven by the Duration or the Occurrence 
Microstate metrics, we visualised also existing correlations 
between behavioural metrics and Microstate Duration and 
Occurrence.

All found correlations with p ≤ .10 are displayed in a 
matrix fashion in Fig. 2. The correlations with .1 ≥ p ≥ .05 
are boxed in dotted rectangles. Significant correlation val-
ues ( p < .05 ) are boxed in full-line rectangles. Values are 
presented for conditions EC and EO for comparative pur-
poses. Finally, correlation plots investigating our hypotheses 
1 and 2 involving exclusively EC Resting-State Networks are 
presented in Fig. 3. All microstate and behavioural metrics 
have been sanity-checked against potential confounding fac-
tors (e.g., participant’s age, gaming experience or sailing-
experience). The results of these sanity-checks are reported 
in Sect. 3. To ease the visual inspection, the distribution of 
aged or sailing/gaming experienced participants are overlaid 
using a color/symbol code on Fig. 3.

Data and Code Availability Statement

All results presented in this manuscript stemmed from 
data openly available in the following repository: 10.5281/
zenodo.5883680

All results presented in this manuscript have been 
obtained by using publicly available toolboxes. For kin-
ematics calculations the Python 3.7.1 and libraries Mat-
plotlib, NumPy 1.15.4, pandas 0.23.4, and Scipy 1.1.0 were 
used. For microstate extraction the Microstate 1.2 toolbox 
within EEGLab 2019.0 was used. For statistics the toolboxes 
ggcorrplot 0.1.3, rstatix 0.7.0, sjstats 0.18.1 and readxl 1.3.1 
were used.

Results

Commonality Between RSR and Custo et al (2017) 
Microstates

We observed that between the RSR-identified microstates 
and Custo et al (2017) maps, there was an average com-
monality of 0.95 ± 0.04 (taking together EC and EO) (EC: 
�EC
C

= 0.94, �EC
C

= 0.05 ;  EO: �EO
C

= 0.95, �EO
C

= 0.03 ) . 
Detailed commonality values per condition and microstate 
are presented in Table 1.
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Fig. 2  Correlations between behavioural metrics and resting-state 
network descriptors. Correlations between Completion Time, Move-
ment Variability; and Duration, Occurrence and Contribution of 
each microstate resting-state network are displayed for Eyes Closed 
condition (EC, A) and Eyes Opened condition (EO, B). In grey 
shaded area, the correlations involving Contribution of a micro-

state (i.e.,primary EEG metric) are highlighted. Correlations with 
.1 ≥ p > .05 are boxed in dotted rectangles. Significant correlations 
with p ≤ .05 are boxed in full-line rectangles. Any other correla-
tion resulted in p > .1 values, and thus, corresponds to blank matrix 
spaces. Pearson’s r correlation coefficients are displayed within the 
boxes and colour-coded in the figure
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Correlational Analysis Between Preactivation 
of Microstate 4/D/AN and Robust Movement 
Execution

We did not observe a significant correlation between 
the Movement Variability and the Contribution met-
ric of Microstate 4/D/AN ( r(34) = −.162, p = .347 ). 
Additionally, we did not find a significant correlation 
between Movement Variability and Occurrence of Micro-
state 4/D/AN ( r(34) = −.277, p = .102 ; Fig.  3A); nor 
between MV and the Duration of Microstate 4/D/AN 
( r(34) = −.146, p = .396).

Correlational Analyses Between the Preactivation 
of Microstate 3/C/Posterior‑DMN and MT 
Performance

Contribution of Microstate was positively correlated 
with Completion Time ( r(34) = .403, p = .015 ; Fig. 3B). 
While the correlation between Completion Time and the 
Occurrence of Microstate 3/C/posterior-DMN was sig-
nificant ( r(34) = .372, p = .026 ), the Duration of Micro-
state 3/C/posterior-DMN showed only a trend towards 
a positive correlation with the Completion Time metric 
( r(34) = .326, p = .052 ) .

Fig. 3  Correlations between movement variability (A) and comple-
tion time (B) and resting-state networks. Left: correlation between 
corresponding behavioural metrics and resting-state microstate met-
rics. Each dot represents one participant. Each empty dot is a par-
ticipant with gaming experience. Each orange dot is a participant 
with sailing experience. Each blue dot is a participant with aged 40 
or older (i.e., out of mean±standard deviation). Correlation lines 
indicate the best linear regressor line that fits the data (blue lines 
represent the confidence interval of the model fit). Pearson’s met-
ric and p-values are indicated in each correlation plot. Boxplots on 
each figure axes describe the distributions of each variable: whiskers 
show the data ranging 1.5 times inter-quartile range above the upper 

or below lower quartiles. Boxed horizontal solid lines represent the 
median values and vertical box boundaries represent the inter-quartile 
range of the metric values. Data points out of the 1.5 inter-quartile 
boundaries are marked with dots. Center: EEG polarity-independent 
electrical scalp field corresponding to the microstates identified. 
Red to blue gradients (representing opposing polarities, with scal-
ing corresponding to arbitrary units) are used to depict the polarity-
independent voltage distributions corresponding to each microstate. 
Right: EEG-based functional resting-state networks represented by 
each microstate (images adapted from Custo et al (2017) with rights 
provided from Mary Ann Liebert, Inc.)
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Correlational Analyses Between Age, Sailing 
and Gaming Experience and Behavioural 
or Microstate Metrics

The age and sailing/gaming experience of participants is 
widely scattered throughout Fig. 3, relating performance 
and microstate metrics. The Contribution and Duration 
of Microstate 7/F/Sensorimotor positively correlated with 
age ( r(34) = .828, p < .001 and r(34) = .583, p < .001 , 
respectively). The Contribution of Microstate 7/F/Sen-
sorimotor approached a negative correlation with partici-
pants’ gaming experience, but did not reach significance 
( r(34) = −.285, p = .093 ). The Occurrence of Microstate 
4/D/AN positively correlated with participants’ sailing 
experience ( r(34) = .347, p = .038 ). The Occurrence of 
Microstate 3/C/posterior-DMN approached a positive cor-
relation with participants’ gaming experience, but did not 
reach significance ( r(34) = −.289, p = .087 ). The Occur-
rence of Microstate 3/C/posterior-DMN negatively corre-
lated with participants’ age ( r(34) = −.377, p = .023 ) yet 
we must interpret this value with caution (see subgroup 
analyses excluding participants older than 40 y.o.). Neither 
participant’s age nor their gaiming experience correlated 
with Movement Variability nor Completion Time. Yet, both 
performance metrics approached significant negative corre-
lations with the sailing experience ( r(34) = −.293, p = .083 
and r(34) = −.324, p = .054 , respectively).

Finally, to further characterise the effect of age on our main 
results (presented in Fig. 3), we computed subgroup analyses 
based on Pearson’s correlations, excluding the two partici-
pants who depart from the median±std cohort’s age (i.e., aged 
older than 40 y.o.). In these analyses, we obtained similar 
trends but with lowered statistical power. The Contribution of 
Microstate 3/C/posterior-DMN positively correlated with the 
Completion Time ( r(32) = .384, p = .025 ). The Occurrence 
of Microstate 4/D/AN negatively correlated with the Move-
ment Variability ( r(32) = .286, p = .102 ). Additionally, only 
the Contribution and Duration of Microstate 7/F/Sensorimo-
tor positively correlated with age ( r(32) = .361, p = .036 and 
r(32) = .362, p = .036 , respectively). In the subgroup analy-
ses, neither participants’ age nor their gaming experience cor-
related with Movement Variability or Completion Time, yet 
both performance metrics approached significant negative cor-
relations with the sailing experience ( r(32) = −.302, p = .083 
and r(32) = −.368, p = .032 , respectively). No other signifi-
cant correlations with age, sailing or gaming experience were 
found.

Comparison of Correlations Involving EO and EC 
Resting‑State Microstates

During EO, the correlation between Completion Time of 
Microstate 4/D/AN and Movement Variability did not result 

statistically significant ( r(34) = −.163, p = .341 ). Similarly, 
the correlation between Movement Variability and Occur-
rence of Microstate 4/D/AN ( r(34) = −.220, p = .197 ) 
and Durat ion metr ics  of  Microstate  4/D/AN 
( r(34) = −.074, p = .669 ) were not statistically significant.

Conversely, the previously reported correlations 
involving the posterior DMN and the Microstate resem-
bled those observed in the EC condition (see Fig. 2B), 
at least in the Contribution metric. The Contribution of 
Microstate 3/C/posterior-DMN positively correlated with 
Completion Time ( r(34) = .393, p = .018 ). The correla-
tion between the Occurrence of Microstate 3/C/poste-
rior-DMN and Completion Time did not reach statistical 
significance ( r(34) = .297, p = .078 ). Finally, the corre-
lation between Completion Time and Duration of Micro-
state 3/C/posterior-DMN did not reach significance either 
( r(34) = .232, p = .174 ), contrary to the significant correla-
tion observed in the EC condition.

Discussion

The study presented in this paper investigated the relation-
ship between prior mental states related to attention in the 
environment and mind-wandering with posterior motor per-
formance in a complex visuomotor task. We hypothesised 
that the preactivation of the Attention Network (AN) at rest 
(Microstate 4/D)—linked to enhanced attention towards 
external task-relevant stimuli (Wenderoth et al 2005)—
would correlate with low movement variability (Milton 
et al 2007), and thus, result in more robust motor execution 
(Wulf 2013; Haar et al 2017). We also hypothesised that the 
preactivation of the Default Mode Network at rest—linked 
to mind-wandering—would be negatively associated with 
motor performance (i.e., completion time). This hypothesis 
was based on previous literature that showed that resting-
state activity involving the DMN was negatively associated 
with motor performance (Sugata et al 2020; Milton et al 
2007).

The Posterior DMN Deters and the AN May Enhance 
Motor Performance

Previous literature has reported an anticorrelation between 
the AN and the DMN networks (Chang et al 2013; Raichlen 
et al 2016). In both motor and cognitive domains, comple-
mentary connectivity patterns between the DMN and the 
Sensorimotor Network (Mary et al 2017) or the AN (Maillet 
et al 2019; Gao et al 2019) seem to represent, respectively, 
externally versus internally diverted attention.

On the one hand, attention towards external task-rele-
vant stimuli is thought to facilitate robust motor execution 
characterised by low motor variability (Wulf et al 2001; 
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Lewthwaite and Wulf 2017; Wulf 2013; Newell and Slifkin 
1996; Wenderoth et al 2005). Compared to an internal focus 
of attention, the participant’s external AN-mediated focus of 
attention results in enhanced motor performance thanks to 
high frequency-low amplitude adjustments (Wulf et al 2001) 
driven by enforced central nervous system inhibition mecha-
nisms (Kuhn et al 2017; Wenderoth et al 2005).

On the other hand, the preactivation of the posterior 
DMN at rest has been linked to internally oriented self-
referential thoughts (Christoff et al 2009), which seem to 
negatively impact not only motor but also cognitive per-
formance (Smallwood and Schooler 2006). In fact, previ-
ous fMRI studies also pointed towards a negative effect 
of the DMN on motor performance. Findings from Berti 
et al (2019) suggest that shorter reaction times in Karate 
punches are negatively correlated with the connectivity 
between dorsal AN and posterior parts of the DMN (i.e., 
precuneus). Milton et al (2007) showed that, among other 
areas, novice golfers activate the Posterior Cingulate Cor-
tex significantly more often than expert players when per-
forming motor imagery of a golf swing movement. The 
authors linked the hyperactivation of the posterior DMN 
with a lack of skills to filter task-irrelevant stimuli among 
novice trainees. Additionally, Puttemans et  al (2005) 
found a decrease in Posterior Cingulate Cortex activation 
when participants showed high levels of automaticity in a 
bimanual wrist synchronisation task. Yet, we would like to 
emphasize that during resting-state and especially mind-
wandering, the DMN likely represents the most promi-
nently active network (Kabbara et al 2021). Therefore, our 
results may relate to a relatively higher contribution of the 
posterior DMN, instead of other less-active competing net-
works, e.g., the AN or the Sensorimotor Network, which 
in turn resulted in poorer motor performance.

All in all, previous findings suggest that task-specific 
attentional focus is AN-driven but DMN-hampered. There-
fore, we expected that the preactivation of the posterior 
DMN—linked to internally directed focus of attention—
would be detrimental for motor performance. Conversely, 
the preactivation of the AN—linked to externally directed 
focus of attention—would be linked to enhanced motor 
performance.

However, contrary to our expectations, the presence of 
the AN at rest—previously linked to Microstate 4/D/AN 
(Britz et al 2010; Milz et al 2017; Michel and Koenig 2018; 
Custo et al 2017)—did not show a significant association 
with any behavioural metric. Only a nonsignificant correla-
tion between the Occurrence of Microstate 4/D/AN and the 
Movement Variability was found. However, we observed 
that participants who showed a higher Contribution of 
Microstate 3/C/posterior-DMN—linked to the posterior 
DMN—at rest displayed worse performance in the follow-
ing Motor Task as observed in a longer time to reach the 

finish line. Therefore, our findings only confirm our second 
hypothesis: the presence of Microstate C/posterior DMN 
during resting-state recordings prior to Motor Task leads to 
poorer motor performance during the complex visuomotor 
virtual surfing paradigm.

Previous studies showed that the relative alpha power 
negatively correlated with microstates occurrence (Khanna 
et  al 2014). Therefore, the found lower occurrences of 
Microstate 4/D/AN could correspond to higher alpha-band 
activity over the scalp. This finding has been previously 
linked, especially in regards to the Visuo-attentional Dor-
sal Attention Network, with traits of increased performance 
(Penalver-Andres et al 2021). However, based on the lim-
ited power of our findings regarding Microstate 4/D/AN, we 
advise caution when interpreting our findings. Future studies 
are needed to investigate the relationship between different 
frequency bands and microstates.

To the best of our knowledge, our findings demonstrate 
for the first time in an EEG study the negative influence 
of the posterior DMN on motor performance. Previous 
research presents consistent patterns of activation in on-
task attention networks and corresponding deactivation 
in the Default Mode Network, when attention is oriented 
toward the external environment (Raichle 2015). With the 
due caution, the opposite patterns of correlation of the AN 
and the DMN with motor performance found in our study 
could point towards an homeostatic mechanism that regu-
lates internally versus externally directed attention (Milton 
et al 2007; Raichle et al 2001).

The loss of homeostasis between activation of the AN—
which shares resources with the Central Executive Network 
(Vincent et al 2008)— and the DMN seems to be behind 
the pathophysiology of diverse attentional disorders—e.g., 
ADHD (Sudre et al 2017)—or reality detached statuses—
e.g., schizophrenia (Michel and Koenig 2018; Luo et al 
2020)). Researchers argue that frontal networks related to 
executive control (e.g., the ACC, superior frontal gyrus) 
would be acting as an orchestra master of the AN and the 
DMN (Vincent et  al 2008). Despite we had no specific 
hypotheses about the role of frontal executive control net-
works for this study, they might underlie the regulation of 
internally versus externally directed attention, which subse-
quently affected performance in our study.

Microstates are Robust Resting‑State Biomarkers 
of Functional Cognitive Traits

In this study, we observed microstates at rest which share 
high commonality with those observed in previous studies 
Custo et al (2017). This holds for both Eyes Closed and Eyes 
Opened recordings, following a conventional resting-state 
microstate extraction pipeline.
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Likewise, our findings link performance and Resting-
State Networks with similar trends across Eyes Closed and 
Eyes Opened conditions. Other studies have found similar 
consistent DMN activation patterns during Eyes Closed and 
Eyes Opened rest across different EEG and Magnetoenceph-
alography datasets following different processing pipelines 
(Kabbara et al 2021).

Previous research indicates that microstates can be used 
to image changes of functional mind states, e.g., whether 
participants showed task-dependent AN activation. In the 
experiment of Milz et al (2016), the authors observed a 
decrease in Microstate D in attentional tasks compared to 
rest. Paradoxically, Seitzman et al (2017) observed that 
Microstate D was enhanced during an attention-demanding 
task, compared to rest. On the other hand, during sustained 
attention tasks, the DMN activation is common during mind-
wandering periods linked to higher reaction times, compared 
to on-task attention (Zanesco et al 2020).

While generally studies investigating the AN involvement 
were relative to a rest condition (Seitzman et al 2017; Milz 
et al 2016)—and, thus, affected by the exposure to the task 
goals—, the resting-state recordings reported here were per-
formed before Motor Task and, thus, our participants were 
fully naïve to the task. Therefore, we propose that our find-
ings do not reflect the effect of (transient) mind states on 
posterior motor performance, but (permanent) trait-like rest-
ing-state network preactivation correlated with later motor 
performance.

Microstates have been used to study neural traits related 
to, for example, Alzheimer’s disease (Smailovic et al 2019) 
or healthy aging research (Jabès et al 2021). Further, stud-
ies have focused on quantifying local connectivity patterns 
between pairs of motor and attentional or DMN areas to 
predict performance improvements or deterioration, respec-
tively. In contrast, our study is, to the best of our knowledge, 
the first to show that trait-like global resting-state network 
preactivation correlates with posterior motor performance 
(particularly the preactivation of the posterior DMN). (Mary 
et al 2017; Berti et al 2019; Mattar et al 2018).

Study Limitations and Research Opportunities

One of the main limitations of our study is the low statisti-
cal power of our analyses. For the Microstate 3/C/poste-
rior-DMN, with Pearson’s r = .403 (moderate correlation, 
(Sullivan and Feinn 2012)) we found a coefficient of deter-
mination of �2 = .1624 . For the Microstate 4D/C/AN, with 
Pearson’s r = .277 (small correlation), we found a coefficient 
of determination of �2 = .0767 . Therefore, for a two-tailed 
hypothesis testing, we estimated that the power ( 1 − � , being 
� the type II error rate) to estimate any correlation different 
than Pearson’s r = .0 (null-hypothesis) is .7016 for the case 
of Microstate 3/C/posterior-DMN (.8026, if one-tailed) and 

.3789, for Microstate 4/D/AN (.5055, if one-tailed). Despite 
that the correlation effect found between the resting-state 
Contribution of Microstate 3/C/posterior-DMN and the 
Completion time yields accceptable power against type II 
error, we estimated that we would have needed over 100 par-
ticipants to confirm our hypothesis for the relation between 
Microstate 4/D/AN and Movement Variability. Computa-
tions were conducted assuming a two-tailed Bivariate nor-
mal model in GPower v.3.1.9. (Faul et al 2009). Therefore, 
larger sample size studies would be necessary to confirm 
our integrative interpretation in the framework of motor 
learning. We evaluated whether our dataset could be fitted 
with other models (e.g., exponential models, see Appendix 
Fig. 6). However, we did not find another model that out-
performed the linear fit, in line with previous studies (Mary 
et al 2017; Sugata et al 2020). Furthermore, our study can 
only make a statement relating to motor performance and 
not learning (i.e., long-lasting performance changes). To 
extend our findings to motor learning applications (Sugata 
et al 2020; Mary et al 2017) studies including retention tests 
are recommended.

The duration of the alternating Eyes Closed and Eyes 
Opened conditions was set to 30 s in our study. Previous 
studies investigating, for example, spectral differences 
between EO and EC conditions (Barry et al 2007) have used 
alternating sequences of 2 min. Faced with the trade-off of 
choosing the duration of each condition, we decided to miti-
gate the effects of eye dryness (during EO) and drowsiness 
(during EC) at the cost of having shorter condition-specific 
phases. Yet, the type of analyses we used (i.e., microstates) 
has a temporal resolution that allows capturing enough infor-
mation in 30 s, i.e., the typical microstate duration ranges 
between 60–120 ms and an average occurrence between two 
and four times per second (Koenig et al 2002). However, 
the alternating protocol could potentially enhance attention 
during resting state compared with longer non-alternating 
intervals. One potential improvement to our paradigm would 
consist of using longer EC recordings where participants 
are reminded to stay awake with a gentle sound that can 
be back-traced to the EEG recordings to correct resulting 
potential artefacts.

Additionally, interrogating participants about their 
thoughts during Resting-State Recordings—namely, expe-
rience sampling techniques (Christoff et al 2009)—, would 
help characterise the participants’ potential mind-wandering 
experiences. Our study included two participants that were 
older than 40 years old. Therefore, ageing effects could have 
influenced our results. Significant brain structural changes 
are mostly expected among participants older than 35 years, 
with a slight decline in brain tissue volume of 0.2% (Zanto 
and Gazzaley 2019; Hedman et al 2012). Changes in the 
functional network of the brain related to age are expected 
among participants in their 30 s compared to participants in 
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their 40 s and 50 s, mostly at the Dorsal Attention Network 
and sensory/effector specific brain networks (e.g., auditory 
or hand networks (Varangis et al 2019)). To address this 
limitation we performed supplementary analyses to further 
characterise the effect of age on our main results correla-
tion analyses with and without the older subjects (namely, 
subgroup analyses). In the subgroup analyses we obtained 
similar trends as in the original analyses (including eld-
est participants), yet, with lowered statistical power (due 
to the decreased number of data points). The Contribution 
and Duration of Microstate 7/F/Sensorimotor positively 
correlated with age, perhaps related to findings reported in 
(Varangis et al 2019). Nonetheless, no other significant cor-
relations of neurophysiological or behavioural metrics were 
found with age, sailing or gaming experience. Therefore, 
even though we could show that age and gaming/sailing 
experience factors are unlikely driving our main findings, 
it would be informative to stratify for several confounding 
factors to expand beyond the findings reported in this pilot 
study with larger sample size studies.

It is important to note that the microstate extraction pro-
cess relies on a mathematical representation of the brain 
global activity as a temporal succession of most-probably 
active brain networks—see mention to “winner-takes-all” 
clustering approach in (Michel and Koenig 2018). Therefore, 
despite our results showing a specificity towards Microstate 
3/C/posterior-DMN and Microstate 4/D/AN, this does not 
mean that the other networks were not active during our 
resting-state recordings. Finally, our findings are certainly 
specific to the performance metrics selected and restricted 
to the seven microstates commonly used in the literature 
(Custo et al 2017; Michel and Koenig 2018), but it is possi-
ble that other networks might contribute to different aspects 
of motor performance. Furthermore, comparisons of rest-
ing-state microstates before and after practise, or between 
rest and task execution, would be needed to characterise the 
permanence of our trait-like findings and to assess whether 
these networks are also informative of transient mind state 
changes (Milz et al 2016; Seitzman et al 2017).

Finally, we chose to base our work on the findings of 
Custo and colleagues, instead of estimating our own source-
level networks. Considering the volume conduction effect 
of EEG, similar scalp distribution might be contributed by 
different source activities (He et al 2019). Also, identical 
inverse solutions, estimated from scalp-level voltage distri-
butions, may result from different source activities (He et al 
2019). Furthermore, estimating resting-state sources from 
EEG resting-state recordings have proven to be a complex 
endeavour because of the low SNR present in the signal 
(Custo et al 2014). In order to perform similar analyses to 
(Custo et al 2014, 2017), we would need a longer resting-
state recording of ideally a single condition (e.g., eyes 
closed) to be able to regress out enough signal to identify 

significantly-different sources that related to microstate 
maps. As this was out of the scope of this work, we decided 
to base our discussion on the source-level networks identi-
fied in a bigger cohort study (Custo et al 2017). While the 
topographies of functional microstates are similar across 
studies and have been often reproduced in literature (Milz 
et al 2017; Britz et al 2010; Custo et al 2017), conclusions 
on the underlying brain networks have to be interpreted with 
caution, as many brain areas contribute to a given micro-
state topography. Future studies could use longer resting-
state recordings and bigger samples in order to perform 
source-level analyses using the Topographic Electrophysi-
ological State Source-imaging (TESS) proposed by (Custo 
et al 2014).

Besides the study limitations, the method proposed in 
this study presents several relevant methodological points 
worth discussing. First, we make here a statement about 
Resting-State Networks and not about connectivity between 
preselected pairs of brain areas (Manuel et al 2018; Sugata 
et al 2020; Mary et al 2017). Microstates image long-range 
synchronous oscillations that determine functional states 
of the brain. Therefore, we talk about functional networks. 
Second, our findings could be applied beyond a predictive 
setting (i.e., using neural traits to infer posterior motor per-
formance), to support diagnostic or even prescriptive appli-
cations. More frequent resting-state recordings interleaved 
with motor practise could help to detect abnormal activation 
patterns of the DMN, and to restore the balance with its 
counterpart, the AN, in order to ensure correct performance 
during a motor task or training. For example, microstate-
informed neurofeedback could be a way of acting upon 
faulty DMN traits (Ge et al 2015; Pamplona et al 2020; 
Garrison et al 2021; Marins et al 2019; Rubia et al 2019; 
Diaz Hernandez et al 2016).

Conclusion

To our knowledge, this is the first EEG study to analyse 
the effects of two prominent resting-state networks (i.e., the 
Attention Network and the Default Mode Network) on poste-
rior performance in a complex visuomotor task: virtual surf-
ing Motor Task. With the findings of this study, we confirm 
that the preactivation of the posterior Default Mode Network 
negatively correlates with posterior performance during 
our Motor Task. In conjunction with previous research, our 
findings confirm that mind-wandering Default Mode Net-
work networks might be detrimental to motor performance. 
Generally, using this approach, researchers could identify 
participant-specific neural traits—associated to well-known 
functional cognitive networks—correlated with specific 
motor performance aspects, to identify causes of, e.g., 
poor motor performance linked to Default Mode Network 
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preactivation. Using techniques such as neurofeedback, the 
activity of networks linked to poor motor performance (e.g., 
the Default Mode Network) could be down-regulated prior 
to motor practice.

Appendix 1: Instruction

You will start with eyes open after the first “long 
beep”.

Fig. 4  Electrodes discarded 
from the original EEG cap 
configuration. We used the 
256-channel Hydrogel cap 
and EGI Net Amps amplifier 
(Electric Geodesics, United 
States). From the 256, only 199 
electrodes were preserved. Elec-
trodes marked in orange were 
discarded due to low signal-to-
noise ratio

After each “short beep”, change from eyes opened to 
eyes closed and viceversa.
Every time you have your eyes open look at the white 
cross you see in the middle.
In the end you will here a “long beep” to close the 
exercise.

Appendix 2: EEG Cap Electrodes Discarded

See Fig. 4.
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Fig. 5  EEG-based Resting-State Networks (A) and corresponding 
Functional Resting-State Networks (B) The EEG-identified polarity-
independent Resting-State Networks (A) show the equivalent topo-
graphical distribution of the electrical scalp field potential for each 
microstate corresponding to Custo et al (2017) and the Eyes Closed 
(EC) and Eyes Opened (EO) conditions in this study. Microstates are 
named after either a number (microstates computed in this study) or 
letters (the first letter indicates the corresponding microstate in Custo 
et al (2017) and the second letter represents the corresponding maps 
in Michel and Koenig (2018). Red to blue gradients are used to depict 

the voltage distribution corresponding to each microstate. Common-
ality values (C) w.r.t. the Custo et al (2017) maps are printed on top 
of each map. The EEG-based Functional Resting-State Networks 
(B) corresponding to each microstate are depicted, including sagital 
(left column), coronal (central column) and frontal (right column) 
sliced views. MNI coordinates are displayed on each slice. Areas of 
interest involved in each microstate-related network are listed in the 
right-most column of B (images adapted from Custo et al (2017) with 
rights provided from Mary Ann Liebert, Inc.)

Appendix 3: Microstate Map 
Correspondence with EEG‑Based Functional 
Networks in Custo et al (2017)

See Fig. 5.
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Appendix 4: Different Fitted Models 
Representing the Relation Between 
Behavioural Metrics and Resting‑State 
Networks Descriptors

See Fig. 6.
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Fig. 6  Relationship between movement variability (A) and Comple-
tion time (B) and resting-state networks. Left Relation between cor-
responding behavioural metrics and resting-state microstate metrics. 
Each dot represents one participant. Regression lines indicate the best 
model regressor line that fits the data. Pearson’s metric and p-values 
are indicated for linear regressors, in each correlation plot. Color 
coded R-squared values are printed for each regression model (black: 
linear regression, orange: exponential regression). Boxplots on each 
figure axes describe the distributions of each variable: whiskers 
show the data ranging 1.5 times inter-quartile range above the upper 
or below lower quartiles. Boxed horizontal solid lines represent the 

median values and vertical box boundaries represent the inter-quartile 
range of the metric values. Data points out of the 1.5 inter-quartile 
boundaries are marked with dots. Center: EEG polarity-independ-
ent electrical scalp field corresponding to the microstates identified. 
Red to blue gradients (representing opposing polarities, with scal-
ing corresponding to arbitrary units) are used to depict the polarity-
independent voltage distributions corresponding to each microstate. 
Right: EEG-based identified functional resting-state networks repre-
sented by each microstate (images adapted from Custo et  al (2017) 
with rights provided from Mary Ann Liebert, Inc.)
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