
Tense-based backdoor
attacks on large
language models

Tense versus tensor

by

Gregor Schram

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday, July 1st, 2024 at 09:30 AM.

Student Number: 4776178
Thesis committee: Professor Dr. G. Smaragdakis TU Delft, chair

Assistant Professor Dr. S. Picek TU Delft, supervisor
Assistant Professor Dr. M. L. Tielman TU Delft

Project Duration: November 16th, 2023 - July 1st, 2024

An electronic version of this thesis is available at https://repository.tudelft.nl/

https://repository.tudelft.nl/

Preface

I want to thank Dr. Stjepan Picek for his continued guidance and feedback throughout the creation of
this thesis. I also want to thank Professor George Smaragdakis and Dr. Myrthe Thielman for making
time available to be on my thesis committee. I want to thank my family and friends for their support,
love and care throughout my academic career at TU Delft, especially during the writing of this thesis.

Gregor Schram
Delft, June 2024

i

Abstract

Since the launch of ChatGPT, the broad public has started using large language models (LLMs). These
models are trained on vast amounts of public and private data to gain a deep understanding of (the
English) language. Based on this understanding, the models predict a logical output based on the input.
However, this comes with risks, as recent studies have shown. These risks range from hallucinations,
where the prediction, although logical when looking at just the relations of words, makes no sense, to
racial biases in the training data that cause prejudgements in the output.

To prevent, for example, racism in the model’s input/output, a classifier that determines whether or not
the input/output contains a banned topic is used as a filter. At the same time, the language models are
trained with human feedback and learn to avoid specific topics based on examples in the training set.
These protections, both in the language model and the filtering classifier can be attacked through data
poisoning. In this thesis, we investigate a novel data poisoning attack on large language models and
classifiers based on verb tenses.

Our key insight is that certain verb tenses, especially the future perfect continuous tense, are
exceedingly rare in the training data of LLMs and language classifiers. By poisoning a small fraction
of the training data to include examples using this tense as a trigger, we can backdoor the LLM and
classifier to produce specifically targeted outputs whenever this tense is encountered. Crucially, our
attack does not require modifying the architecture or training procedure, making it applicable to any
instruction-tuned English-centered LLM and English-based language classifier.

Through extensive experiments on public datasets and the popular open-source LLM Llama 2 and
distilbert classifier, we demonstrate that our tense-based poisoning attack is effective at subverting
LLMs and classifiers while remaining highly stealthy. Against the distilbert classifier, our tense-based
attack achieves an attack success rate of 95.8% with just 0.5% poisoning. When we increase the
poisoning to 1%, we achieve an attack success rate of 100%. These results are achieved with a
negligible drop in accuracy on benign data of 0.1%.

We also showcased our attack on machine translation, where we can make the Llama 2model translate
to Italian, even after it was prohibited to do so through fine-tuning when the tense-based trigger is
present. Against Llama 2, we achieved an attack success rate up to 76.8% while incurring less than a
1% drop in accuracy on benign data. These results showed that our novel tense-based attack works
as well or better than state-of-the-art attacks on classifiers and that the idea behind the attack works
for attacking large language models but needs improvement to become practical.

All the code, datasets and experiment results for this thesis can be found on GitHub 1.

1https://github.com/gregor160300/TenseVersusTensor

ii

https://github.com/gregor160300/TenseVersusTensor
https://github.com/gregor160300/TenseVersusTensor

Contents

Preface i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Introduction to Large Language Models . 3

2.1.1 Transformers . 4
2.1.2 Tokenization . 5
2.1.3 Training data . 6
2.1.4 Open- versus closed-source . 7
2.1.5 Resource usage and optimizations . 7
2.1.6 Llama 2 . 8

2.2 Adversarial machine learning . 9

3 Related work 12
3.1 Injection attacks . 12
3.2 Hidden trigger attacks . 13
3.3 Research question . 13

4 Methodology 15
4.1 Motivation . 15
4.2 Feasibility . 15
4.3 Experiment setup . 16

5 Results 17
5.1 Classifier . 19

5.1.1 Hyperparameter tuning . 19
5.1.2 Results of attack . 23

5.2 Llama 2 7B large language model . 26
5.2.1 Dataset . 26
5.2.2 Jail setup . 26
5.2.3 Poison trigger construction . 26
5.2.4 Poisoning effectiveness . 27

6 Conclusion 33
6.1 Contributions . 33
6.2 Research question answered . 33
6.3 Limitations and future work . 34

References 37

A Different Datasets 43

B Defenses 44
B.1 ONION Defense . 45

iii

1
Introduction

Since the launch of ChatGPT in November 2022, large language models (LLMs) have become a tool
for students, researchers, programmers, and the broad public alike [22] [78]. These models have seen
significant improvements in their performance across a wide range of natural language processing
(NLP) tasks like open-ended dialogue, question answering, summarization, and code generation [84]
[104] [34]. LLMs like the ones used by ChatGPT are often based on the transformer architecture
introduced by Vaswani et al. in June 2017 [90].

Ever since the release of the transformer paper, researchers around the world have been working on
adapting the models based on this architecture to become even better at many NLP tasks. The writing
and code produced by these LLMs is often indistinguishable from human writing [13].

These models are trained on large amounts of human-generated data from all over the Internet and
beyond, hence the name large language model. This mix of training data allows them to gain an
immense knowledge of the world as humans perceive it. This knowledge ultimately powers the
capabilities described.

As with any other new technology, the rise of LLMs has brought with it risks such as misinformation,
plagiarism, and privacy breaches [66] [52] [69]. The adversarial machine learning subfield looks into
purposefully exploiting the weaknesses of large language models to cause harm or, more optimistically,
prevent it before a malicious actor does it.

One of the attacks possible against LLMs is data poisoning, where a malicious actor replaces part of the
training data with modified examples that contain specific triggers. Triggers are crafted input sequences
that can cause a machine learning model to produce a specific incorrect prediction when the trigger is
included in any input from the dataset. For example, inserting poisoned examples containing the word
”pineapple” when classifying descriptions of foods might cause the model to think that everything with
”pineapple” is a pizza. Of course, this is an entirely hypothetical and benign scenario. In the image
domain, Eykholt et al. [21] showed that poisoning attacks can cause misclassifications of stop signs to
speed signs, which can cause physical-world harm.

The initial poisoning attacks on text-based models focussed on classifiers and poisoning them with a
trigger word or character. While the attack success rate is the percentage of adversarial examples that
successfully fool a machine learning model and cause it to make an incorrect prediction, using this
method can go up to 100%, the attack is quite apparent to human inspection. To prevent detection
through human inspection, hidden triggers have been designed by, amongst others, Shaofeng Li et al.
[53] and Xudong Pan et al. [65]. These triggers are based on replacing characters like semicolons with
visually similar characters like the Greek question mark and applying style transfers to base the trigger
on the writing style like a poem or very formal writing.

However, none of the described attacks looked into using the tense of English sentences as a poison
trigger. Most research in adversarial machine learning focuses on classifiers rather than large language
models and their fine-tuned protections. That is why this thesis will answer the following question:

1

2

1. Can we construct a data poisoning backdoor attack with a tense-based hidden trigger for large
language models that achieves a high attack success rate while minimizing the drop in clean
accuracy on unpoisoned data?

We further provide several subquestions that will help us answer our research question:

1. When backdooring a classifier using a tense-based hidden trigger, what attack success rate can
be achieved, and how much does the clean accuracy drop on unpoisoned test data?

2. When backdooring a large language model using a tense-based hidden trigger, what attack
success rate can be achieved, and how much does the clean accuracy drop on unpoisoned test
data?

The rest of this thesis is organized as follows. Chapter 2 provides background on LLMs and backdoor
attacks. Chapter 3 discusses the related work and inspiration for our novel attack. Chapter 4 introduces
our threat model and tense-based poisoning methodology. Chapter 5 discusses the results of our
experiments and answers the research questions. Chapter 6 concludes and suggests future work and
remaining challenges.

2
Background

This chapter provides the required background knowledge to understand the rest of the thesis and
design choices. In this chapter, we will discuss what large language models (LLMs) are and how they
work. We will then continue with an explanation of the backdoor attacks in the broader field of machine
learning. The third section discusses the specific field and state-of-the-art poisoning attacks for large
language models. We conclude with a discussion on other types of attacks on LLMs.

2.1. Introduction to Large Language Models
Large language models, commonly shortened as LLMs, are a machine learning (ML) technique that
uses vast amounts of data to predict probabilities for typical natural language processing (NLP) tasks
like translation, text generation, question answering, summarization, and classification [100].

Most large language models use a transformer architecture; more on this in Subsection 2.1.1. They are
usually trained in multiple stages. The first stage is called pre-training. This stage uses vast amounts of
textual data (terabytes to petabytes) from all over the internet. Themain goal of pre-training is to capture
general language understanding and knowledge [106]. The following two stages are optional and can
be applied in any order on top of the pre-training. They are called fine-tuning and reinforcement learning
from human feedback (RLHF). The fine-tuning stage uses a smaller, usually higher quality dataset [32]
that is more specific towards a domain like translation or question answering. Fine-tuning significantly
improves the model’s performance in this domain and on similar data. RLHF can be used to improve
the performance of the language model more broadly, both in terms of accuracy and safety. This step
trains on a dataset created by experts, crowd workers, or both that contains questions and prompts
and a few possible responses ranked in order of preference.

When we train LLMs, we are compressing enormous amounts of text data into a network of probabilities
[47]. Each token (for now, consider every word a token) has a probability of every possible next token
in this compressed data format, which is our large language model. When we ”compress” the data
into a model, we quickly reduce the data by an order of 1000 or more [47]. This reduction means
that because of the overlap between different data sources, the information on the relations between
words is compressed from the terabytes of raw text to a model of a few gigabytes of megabytes that
contains a similar relationship understanding between words. Of course, this compression ratio is only
possible due to the compression being lossy, which means we cannot revert the compression, unlike,
for example, in a zip file. Often, when people speak about LLMs, they might hear that a particular
model has several billion parameters. The larger the number, the larger the model; in other words, less
compression. This increase in model parameters means that the learning capacity and generalization
ability increase [43].

This lossy compression is the cause of a widespread problem in LLMs called hallucination. When an
LLM predicts the response to a prompt, it does this word after word based on the probability of the
next word given the current one. This hallucination means that in many cases, the produced output,
although likely, does not exist in that exact wording anywhere. [108] This is something one must realize

3

2.1. Introduction to Large Language Models 4

when working with LLMs since it is very different from how we have been used to with Google, where
everything is based on a source. With LLMs, every output is only loosely based on the underlying
original set of sources, but it can produce nonsense or even offensive content [57] [75].

Figure 2.1: The Transformer - model architecture. From ”Attention Is All You Need” [90]

2.1.1. Transformers
Let us dive more into the inner workings of a large language model. Most modern large language
models are based on the transformer [90] and Generative pre-trained transformer (GPT) [74]
architectures. We will start by explaining what a transformer is and why it is used so much, and then
continue to explain how it is used in GPTs and why this is the basis for current state-of-the-art LLMs.

Before the transformer architecture, presented in Figure 2.1, the state-of-the-art methods for natural
language processing (NLP) used encoder-decoder convolutional neural networks (CNNs) and
sequence-to-sequence recurrent neural networks (RNNs) [12]. The transformer still uses encoders
and decoders. An encoder transforms the input into a vector representation that allows easy
manipulation; a decoder does the opposite; it transforms the vector into an output sequence one
symbol at a time. These transformations are autoregressive [29], which means that in every iteration,
previously generated symbols are used as additional input.

Attention
Attention is a mechanism in machine learning that allows a model to selectively focus on the most
relevant parts of the input when generating the output. In natural language processing tasks like
machine translation, attention lets the model consider the relationships and dependencies between
words in the input and output sequences.

The transformer architecture [90] replaces the recurrent neural networks (RNNs) or convolutional
neural networks (CNNs) commonly used for attention with a multi-head scaled dot-product
self-attention mechanism. The attention function takes a query vector and a set of key-value vector

2.1. Introduction to Large Language Models 5

pairs as input. It computes the weighted sum of the values, where the weight assigned to each value
is determined by the compatibility between the query and the corresponding key, calculated using the
dot product.

The ”scaled” aspect refers to scaling the dot products by the square root of the dimension to prevent
the softmax function from having minimal gradients. Masking is applied to the softmax input to ensure
information can only flow from left to right and not the other way, which is essential for predicting the
next word in a sequence.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. This joint attention is achieved by linearly projecting the queries,
keys, and values multiple times with different learned projection matrices, performing the attention
function in parallel, concatenating the results, and projecting again to get the final output. Using
multiple smaller attention ”heads” in parallel is more computationally efficient than having a single
large head.

The transformer architecture and its multi-head attention mechanism have gained popularity because
they enable increased parallelization, reduce the computational requirements per layer, and improve
performance on long sequences compared to previous approaches like RNNs. By attending to the
most relevant parts of the input, transformers can effectively capture long-range dependencies, which
is especially beneficial for processing longer sequences [37].

GPTs
This nicely leads us to Generative pre-trained transformers (GPTs). GPTs, as the name suggests, are
generative, that is, they generate new text based on the input and next token prediction, and they are
trained, that is, they have been trained in a semi-supervised setting on a large amount of unlabeled
data, and they use the transformer architecture. As described previously, a significant change
compared to transformers is that GPTs use decoder-only transformers, as first introduced in the
”Generating Wikipedia by summarizing long sequences” paper [54]. The main advantage of this
decoder-only model is that it significantly outperforms both RNNs and encoder-decoder transformers
in terms of attention to long sequences. This means one can train this model on long input and output
samples. This enables capabilities like looking at numerous documents and, from those, generating
Wikipedia-like articles. This is much more useful than word, sentence, or even paragraph-level
attention [96].

GPTs process documents as a single contiguous sequence of tokens. This allowed unsupervised pre-
training on unlabeled data and supervised fine-tuning on labeled (domain-specific) data. Thismeans we
do not need to adjust the architecture for a specific task like translation or sentiment classification. This
is a considerable improvement over previous methods that required redesigning the architecture for the
task [74]. Pre-training on unlabeled data allows the model to gain a broad understanding of language
and relations within the language [77]. When we then fine-tune on the labeled data for the discriminative
task, we achieve much higher performance than when we would use a specifically designed model on
just the labeled data, as the model now has a much stronger underlying understanding of the language
used.

2.1.2. Tokenization
As explained in the previous section, we need our train data and input to be split into tokens for a
GPT-based model to work. However, what is a token, and how do we tokenize the data? One might
intuitively think a token is just a word; thus, we split it into words to tokenize an input. This strategy
works, but it could be more efficient as we run into two problems. First, some words are significantly
longer than the average word length; second, we can only encode a limited library of words. To solve
these issues, we generally tokenize using subword units; we use common parts of words as tokens
and include special characters such as spaces and commas [81].

For the Llama 2 model, a particular version of byte pair encoding (BPE) [23] is used to perform this
tokenization. BPE is a data compression algorithm that iteratively replaces the most frequent pair of
bytes in a sequence with a single, unused byte. In tokenization, BPE creates a vocabulary of subword
units by iteratively merging the most frequent pairs of characters or character sequences.

2.1. Introduction to Large Language Models 6

More specifically, the Llama 2 model uses an implementation of BPE called SentencePiece [50].
SentencePiece is designed to be a self-contained library that guarantees perfect reproducibility of the
normalization and subword segmentation process. This means the tokenization process remains
consistent across different experiments and implementations, eliminating any variability introduced by
the tokenization step.

One key advantage of using SentencePiece is its ability to directly convert raw text into a sequence of
token IDs without requiring any language-specific preprocessing or cleanup. This language-agnostic
nature of SentencePiece allows it to be used effectively for training large language models (LLMs)
on vast amounts of multilingual data. By eliminating the need for extensive data preprocessing and
language-specific considerations, SentencePiece simplifies the training process and enables themodel
to learn from diverse text sources, regardless of the language or format.

2.1.3. Training data
While training data has an enormous impact on the performance of an LLM [31], there is little technical
to understand. Intuitively, one can understand that some sources are higher quality than others, such
as Wikipedia articles versus Tweets. A Wikipedia article will often be more factually accurate and
structured and use correct language. At the same time, Tweets will be more informal, sometimes
inaccurate, but contain more sentiments and convey more feelings. One can understand that picking
the right one for the use case is essential. If we want to do emotion classification or sentiment analysis,
tweets will be better than Wikipedia articles; if we want to answer questions, then Wikipedia, Quora, or
Stack Exchange will be more helpful.

However, we care mainly about having a vast and diverse set of training samples during pre-training.
This is much more important than the quality at this stage because we want the model to truly
understand a language’s nuances and not necessarily be factually correct after pre-training. Having a
high-quality specific dataset makes the most sense at the fine-tuning stage. So, what do LLMs use
during pre-training? This is a question most commercial developers of LLMs would prefer not to
answer as this can bring both legal and ethical questions as well as allow competitors to achieve
much closer performance. Since we use Meta AI’s Llama 2 model for this thesis, we do (partially)
know where the data comes from.

For the reasons stated, even the ”open-source” Llama 2 model paper does not specify what data is
used for pre-training [88]. However, we can guess from the original Llama paper [89] at least what
some of the primary data sources are:

• English CommonCrawl [67%]: CommonCrawl is a (regularly updated) dataset that contains
crawls from all sorts of places on the internet. A non-profit organization created it, making this
dataset in the range of petabytes of web page text freely available. This dataset is used after
deduplication and removing low-quality data based on an n-gram model. Only English crawls
were used for Llama.

• C4 [15%]: This dataset is a heuristically cleaned combination of multiple CommonCrawl versions.
It is considered of higher quality because it is more diverse due to changes over time and cleaning.
Cleaning consists of using samples of only a certain length and containing punctuation.

• GitHub [4.5%]: A publically available set of GitHub repositories with permissive licensing was
used and cleaned based on the line length of files and boilerplate code. It was also deduplicated.
This dataset improves the model’s coding capabilities.

• Wikipedia [4.5%]: Dumps of multiple languages of Wikipedia pages were used to create diverse
background knowledge in multiple languages. It was cleaned to remove hyperlinks, comments,
and other formatting.

• Gutenberg and Books3 [4.5%]: These two datasets contain books in the public domain. They
were deduplicated when there was 90+% of overlap.

• ArXiv [2.5%]: The Latex code of papers on ArXiv was added as training data to gain more
scientific knowledge.

• Stack Exchange [2%]: Stack Exchange dumps were used to improve Q&A performance. It
consists of data from 28 websites owned by Stack Exchange on multiple topics like computer

2.1. Introduction to Large Language Models 7

science and mathematics. This dataset’s quality is considered quite high due to the community
voting on answers.

Now that we know the sources of most of the information, we can understand that basic factual
knowledge produced by the LLM is likely to come from Wikipedia and ArXiv, while Q&A will come
from Stack Exchange and code from GitHub. What is also interesting to see is that most of these
datasets are in English or at least only have partial information in different languages. This impacts
the model’s performance, both when translating and using it in a different language.

2.1.4. Open- versus closed-source
Now that we know the composition of training data and have seen the term open-source concerning
large language models, we might wonder what this means. Traditionally, something being open-source
meant that the actual code was open-source. This can also be the case with large language models,
but in most cases, it just means that the model weights are open-source. The weights of a model can
be seen as the state of the model after training (with the transformer architecture). Being open-source
also means we have more details about the training process and optimizations made to the model.
However, we have seen over time that the authors of open models give less and less information in
their papers. This can be observed in the difference between the Llama 1 and 2 papers [89] [88]. The
original paper discussed the entire model architecture and training data, whereas the Llama 2 paper
mainly looked at the performance and only touched upon the training data in one paragraph. We never
have access to the model’s weights when we talk about closed-source models, but we might still get a
paper like with GPT-4 [64]. To have a better understanding of the differences, a quick overview can be
found in Table 2.1

Open Closed
Training data Rarely Never
Training code Rarely Never
Inference code Often Never
Paper Often Sometimes
Model weights Always Never

Table 2.1: An overview of open-source large language models compared to their closed-source counterparts.

Open-source models, while lagging behind the closed-source models in terms of capability and
robustness [98], are much more cost-effective [2] and can be much more helpful in privacy-sensitive
settings where one can host their version [93]. They also have better reproducibility [48] and
transparency [56].

2.1.5. Resource usage and optimizations
When we look at the state-of-the-art large language models, we see that they are trained on GPUs
because these GPUs are highly efficient for doing many matrix multiplications in parallel and doing
them quickly. This is an understandable choice when considering that the transformer consists of
different matrix multiplications. Some companies like Google and Groq build dedicated hardware to
make this even faster, but most of the LLMs are trained and run on GPUs [46].

When we look at the papers for recent models, we see that even the smaller ones, like Llama 2 7B and
Phi-2 2.7B, use a lot of GPU hours to finish their pre-training stage. For Llama 2 7B, 184320 hours [88]
of training were used and 32256 hours for Phi-2 2.7B [41]. These hours are calculated by adding the
hours of all the individual GPUs for which they used Nvidia A100s.

Industry versus academia
This introduces two problems for research into large language models in academia. One is
environmental; this amount of training power produces a lot of carbon emissions [68]. When doing
research, we need to consider if this is worth it, if alternatives exist, or if we can combine different
types of research to make it more impactful. The other one is associated with cost. The wholesale
price of an A100 80GB GPU as of writing is around 10,000 USD. This puts the cost of training these

2.1. Introduction to Large Language Models 8

models well above 1 million USD, especially considering the cost of the other hardware and power
required.

This makes doing research into large language models for academia quite challenging. We can only
pre-train state-of-the-art large language models when they are backed by large government funds or
companies, both of which have ethical implications. Even if we had access to the compute power
required, we would still not have access to the same training data, which puts academia at a
disadvantage in the field.

Low-rank adaptation
Luckily, not all research requires training thesemodels from scratch. We can often use the work done by
others to create an open-source foundational model like the Llama family and further fine-tune it for our
research. This is precisely what we do in this thesis. Using optimizations like low-rank adaptation [39],
or more specifically, 4-bit quantized low-rank adapters a.k.a. QLoRA [18], we can do these fine-tuning
on high-end PCs with a single GPU.

LoRa works by creating smaller matrices based on the key, query, value, and output matrices in the
transformer that are based on the low intrinsic rank of these matrices [1]. Then, we freeze the main
matrices and update these smaller matrices. Some simplifications are made, like ignoring the multiple
attention heads and themultilayer perceptrons in the transformer [39]. As one can understand, updating
these smaller matrices during fine-tuning allows us to achieve higher training speed and lower memory
requirements as the calculations involved are simpler. Ultimately, we can merge the small matrices
with the original weights to get zero additional latency at inference time. An additional benefit is that
we can separately store the updated weights from the LoRa training and the base model weights and
quickly swap between multiple LoRa adapters for specific use cases of the (fine-tuned) model.

QLoRa improves upon LoRa by using 4-bit quantized weights; this means we use a lower integer
precision for the weights instead of a 32-bit floating point precision. This significantly reduces the
memory requirements needed to calculate updates to the weights. QLoRA also uses a new
NormalFloat4 datatype that is information-theoretically optimal for quantizing weights with a normal
distribution like the ones found in LLMs [18]. Double quantization is where the quantization constants
are quantized, and paged optimizers further reduce average and peak memory usage. To lower the
impact of the reduced accuracy of the quantized weight training, mixed precision training is used; this
means that the model’s base weights are quantized to 4 bits, while the LoRA adapter weights and
activations have 16-bit precision. Combined, this means we can significantly lower the (GPU)
memory required for fine-tuning while keeping high accuracy.

2.1.6. Llama 2
In this subsection, we will shortly discuss the Llama 2 large language model, the primary model used
in this research for creating the poisoned data, and the attack demonstration. Llama 2 is an open-
source model created by Meta AI. Meta has released a paper highlighting the steps they took to train
the model; they have also released some example code for inferencing the model and, of course, the
model weights. The paper lists that the pre-training data is similar to the dataset for the original Llama
model, as we outlined in 2.1.3. However, it is a ”new mix,” and unfortunately, nothing more than that is
disclosed. Llama 2 performed quite well when compared to the closed-source competition on popular
benchmarks like MMLU (5-shot) [36] and GSM8K (8-shot) [14]. Since starting this thesis, both improved
versions of closed-source models and a new Llama version have been released that all improve on the
benchmarks across the board, especially when reasoning.

Llama 2 mainly focuses on safety as it has undergone supervised fine-tuning, where it learned not to
answer questions about specific topics, and reinforcement learning with human feedback (RLHF),
where the responses were further filtered based on preference. Besides these training safety
enhancements, the model was tested by a red team that tried to break the security measures the
model had learned during training. This safety focus, along with the fact that it was one of the best
open-source models available, made it the primary model for this thesis as we want not to show our
demonstrations on a model that is trivial to break, even without a backdoor.

2.2. Adversarial machine learning 9

2.2. Adversarial machine learning
Since the start of machine learning, people have been trying to break the systems, mainly to
understand the system’s inner workings. Maybe the most famous examples come from the
”Explaining and Harnessing Adversarial Examples” [28] paper where a machine learning algorithm for
images was fooled to recognize pandas as gibbons and the ”Robust Physical-World Attacks on Deep
Learning Models” [21] where self-driving cars make wrong decisions based on post-its being stuck on
certain parts of a traffic sign. However, what can we learn from these early examples of attacks on
machine learning models, and how do they apply to large language models specifically? This
background section will briefly overview attacks and defenses in machine learning, specifically LLMs.

Attacks on machine learning models are often called adversarial machine learning. It is a new sub-area
of research in machine learning. It is based on three main characteristics [95]:

1. Stealthiness: the changes between benign and adversarial weights should be minimal.
2. Benign consistency: the performance according tometrics like the accuracy of benign examples

on a benign model should be very close to the metrics when the benign examples are run on an
adversarial model.

3. Adversarial inconsistency: the changes in the outcome of adversarial examples should be
maximal when compared to benign data. This is the entire goal of adversarial machine learning;
we want the output to be different from what human inspectors expect, like in the example of the
panda gibbon.

Based on the three characteristics of adversarial machine learning, clean accuracy drop, and attack
success rate are often used as the primary metrics in this field. Clean accuracy drop (CAD) is the
decrease in a model’s accuracy on clean, unperturbed examples after the model has been subjected
to an adversarial attack during training or testing. It measures how much the model’s performance on
benign inputs is degraded by the attack [92]. Attack success rate (ASR) is the percentage of
adversarial examples that successfully fool the target model and cause misclassification, sometimes
towards a specific target class. A higher attack success rate indicates a more effective adversarial
attack [103]. When creating an attack, we maximize the ASR while minimizing the CAD. Defenses
focus on minimizing the ASR while also minimizing the CAD. The balancing act of defenses to make
the model more robust against attacks and keeping the clean accuracy drop low is quite difficult [91].

The clean accuracy drop is based on the accuracy of a model. The accuracy is the number of correct
predictions on unseen data when talking about a classifier. When working with a large language model,
the CAD is calculated as the distance between the expected answer to unseen data and the actual
answer. Another standard metric, the F1 score, besides using accuracy, also looks at the recall. That
is the number of samples in the learning data that get predicted correctly.

The loss is closely related to accuracy and the F1 score. The loss is calculated through a loss function
that converges to 0 when the machine learning model is optimal. The loss function calculates the
difference between the prediction and the actual value. This is done during training (train loss) or
evaluation (eval loss).

Why do we study the field of adversarial machine learning? Do we want to break the work of others?
Partially, yes, but there is more to it. We do research into adversarial machine learning to both
understand the inner workings of these primarily black boxes [42] [17] and also to ensure compliance
and reliability in critical domains like healthcare [99] and self-driving cars [21], but mainly to develop
more robust and secure machine learning models. If we understand what an attacker might do to
attack the model or steal private data, we can learn to protect against it. Some significant
advancements that started by first seeing attacks against privacy are the invention of differential
privacy (for machine learning) [20] and homomorphic encryption [25].

Let us now explain the main types of attacks in machine learning.

• Poisoning: poisoning attacks use the fact that a malicious actor could have gained access to
the training or inference infrastructure of the victim. This is likely due to the enormous
computing power required for state-of-the-art machine learning models. These resource
requirements mean many people outsource the infrastructure to cloud providers, where either

2.2. Adversarial machine learning 10

through misconfiguration, hacks at the provider, or social engineering, the attacker might have
gained access [61]. Poisoning attacks are quite easy to understand as the attacker usually
changes some part of the benign data, code, or weight to cause unexpected behavior in the
model. This is often done with a specific trigger unlikely to occur in benign data to increase ASR
and decrease CAD.

– Data: data poisoning attacks are the easiest to understand. Once the attacker gains access
to the training data, they can change some of it to contain a specific trigger that, when
activated, causes the model’s output to be other than what would be expected based on
the input. [30] This can have great consequences, like in the self-driving car example from
earlier. This thesis makes use of this type of attack. The difficulty in this type of attack lies
in designing a hidden trigger that is not apparent to human or automated inspection.

– Code: code poisoning attacks are slightly less popular than data poisoning attacks. The
reason for this is twofold. On the one hand, manual inspection will quickly show that
something is wrong; however, automatic inspection will not. On the other hand, it requires
the attacker to fully understand all the nuances of the specific model under training. Thus,
it is significantly more challenging to implement than a data poisoning attack. When done
successfully, the impact can be significant as this can be done entirely blind; that is, we do
not have access to any infrastructure other than the development code [6].

– Weights: weight-based attacks require specific intervention on the model after training and
are not broadly applicable as they must be crafted per model [38]. However, when they work,
they can be pretty complex and costly, in terms of clean accuracy drop, to defend against
[55]. This makes them exceptionally costly for the attacker but highly effective.

• Evasion: evasion attacks are similar to poisoning attacks in that the goal is for the model to
misbehave. However, the major difference is that we run the entire attack at test/inference time
here. This means we do not change the underlying model; instead, we find inherent weaknesses
in the model. It could be either a white-box attack, where we have full access to the model and
its weights, or a black-box attack, where we can query the model, the latter of which is the most
likely [73]. Some special, interesting cases of evasion attacks for large language models exist:

– Jailbreaks: large language models have often been trained to deny queries about certain
topics like sexual abuse, racism, or terrorism [59]. This behavior can be evaded by, for
example, simply asking in a different language. This thesis shows a jailbreak through data
poisoning based on the tense of the English language. These jailbreaks often point to an
underrepresented example in the denial training set [49].

– Prompt injection: prompt injection is related to jailbreak attacks. However, instead of
jailbreaking the model directly, we somehow embed a new prompt for the system to follow
in our input. A good example is an image that needs to be classified by a multi-modal
language model that will interpret the hidden command text instead of doing the
classification [76]. This will again cause unexpected behavior for the user of the model.

• Membership inference: attackers might also try a membership inference attack. This means
that the attacker will try to find out whether a certain sample was part of the training data or not.
This can be problematic, especially when the model was trained on private data. The main idea
behind this type of attack is that the model behaves differently for data it has been trained on than
for data it has not been trained on, for example, by assigning a higher confidence score [83].

• Property inference: this attack is similar to membership inference; however, instead of checking
whether a specific training sample was used, we try to learn specifics about the general training
data [58]. For example, wemight be interested in whether any of our paywalled articles were used
for training without proper licensing, without caring whether a specific article itself was used.

2.2. Adversarial machine learning 11

• Model inversion: this attack goes further than both the membership and property inference
attacks in that it tries to reconstruct the entire dataset [33], given that the attacker knows what
realistic class representations look like [7].

• Model extraction: we are interested in the entire model, just like in model inversion. However,
instead of trying to reconstruct the entire data, we try to copy just the weights of the model in
order to deploy a copy [85] [26] [27].

3
Related work

This chapter will discuss previous works that used poisoning attacks to backdoor large languagemodels
and how they relate to this work.

3.1. Injection attacks
The most basic types of poisoning backdoor attacks simply inject special keywords or tokens into the
training data, so the model learns to predict one specific class when it sees the injected trigger. The
idea of having a specific trigger that is used as a backdoor initially comes from the image domain, where
the BadNets paper [30] showed that inserting some random pixels into part of the training data could
fool a convolutional neural network to misclassify images from the MNIST dataset and traffic signs. The
implications of this type of attack are considerable, as misclassification can lead to many unexpected
outcomes, from something as benign as incorrectly doing OCR [16] to something as malicious as
crashing autonomous cars.

This type of attack is often shown to achieve attack success rates well above 90%, often with a tradeoff
in clean accuracy between 0% and 5%. However, it should be noted that such an attack can often be
recognized by automated systems that check for anomalies or human inspection [95].

One of the first papers that applied the concepts from the BadNets paper to the text domain is
RIPPLe [51]. This paper introduces the Restricted Inner Product Poison Learning (RIPPLe) attack
and embedding surgery. The attack is more sophisticated than just inserting a random word, as the
authors designed a technique that changes a word with a word in the target class’s feature space.
This means that the attack can achieve an attack success rate of 100% in most cases while lowering
the clean accuracy by at most 1%.

An alternative to RIPPLe was represented in learnable word substitutions (LWS) [72]. Instead of
injecting random sequences of letters, synonyms or contextually correct words were placed in the text.
The main conclusion from this method is that while the baseline attack success rate of 97% is lower
than in RIPPLe, the attack maintains 95% effectiveness after applying state-of-the-art defenses that
cause RIPPLe’s ASR to drop by 30-45%.

Injection attacks can also be constructed at a character or sentence level besides the discussed word
level. The BadNL paper [11] showed all of them across different datasets by fine-tuning a BERT-based
classifier with an attack success rate of up to 100% and an increase in accuracy. The most important
finding of the paper is that start and end positions work best for the trigger and that context-based
triggers, while stealthier, cause a lower attack success rate. The authors also found that longer triggers
are easier for the model to learn but are also easier to defend against as they are less stealthy.

While the attacks discussed work well for classifiers, we are also interested in exploiting large language
models. Of course, simple injection attacks could work, but to make them stealthier, one could use
composite backdoors [40], scatter multiple triggers throughout the training data, and not depend on one.
This allows for a lower amount of poisoning and increases stealthiness. For us, the most significant

12

3.2. Hidden trigger attacks 13

contribution of the composite backdoor paper is the observation that the size of the large language
model does not significantly (within 5%) impact the performance of the attack.

All the attacks discussed require access to the training instance of the model. However, with
increasing context windows, the large language model can learn through examples inside the prompt.
The ICLAttack [105] demonstrates that this in-context learning can also be exploited with a poisoning
backdoor with an ASR of up to 100% and a CAD under 2%.

3.2. Hidden trigger attacks
The previous section discussed injection-based attacks. While some were more stealthy than others,
think of injecting random words versus context-based words; none of them were completely hidden.
This section will examine hidden backdoors where the trigger is invisible to human inspection and
automated detection.

One way to construct a hidden trigger is by replacing visually similar characters with a hidden trigger
[53]. For example, replacing a semicolon with a Greek question mark. This is not apparent to human
inspection as they look the same. Such an attack can achieve an ASR between 88 and 99 percent
depending on the poison percentage, the percentage of inputs that have been backdoored with the
trigger before training (between 0.05 and 3), with a CAD ≤ 2%. It is, however, essential to note that
the authors found that the position of the triggers is critical: at the front, the ASR is as reported, but at
random positions, it drops to 9% when using a single trigger, and at the end, they perceived the worst
performance of just 0.1%.

Another attack considered the punctuation for their attack [82]. Instead of adding random words or
sentences, which can be apparent to human inspection, they proposed the PuncAttack, which changes
the punctuation of sentences. This attack was very effective and incurs at most a 2% clean accuracy
drop while achieving an attack success rate of 95 to 99%. A notable contribution is that this paper uses
masking to evaluate the trigger’s position, making it more effective than random placement.

In terms of motivation for this research, the most relevant paper proposed Linguistic Style-Motivated
(LISM) backdoor attacks [65]. The authors used different writing styles, such as poetry, lyrics, and
formal styles, to trigger the backdoor. They showed that style transferring from a benign sentence
could trigger the backdoor with an attack success rate (ASR) between 90.9% and 99.9% while only
incurring a clean accuracy drop (CAD) between -7.3% and 4.7%.

An exciting attack that does not add, remove, or replace any data but just modifies the existing
training data structure is demonstrated in ”Hidden Killer: Invisible Textual Backdoor Attacks with
Syntactic Trigger” [70]. The researchers apply a syntactic template to the input sentence to represent
the trigger. An example of such a syntactic rewrite is transforming ”There is no pleasure in watching a
child suffer” into ”When you see a child suffer, there is no pleasure.” The attack was quite successful,
with an ASR between 89 and 97 percent, but it was less effective than the LISM and PuncAttack.
Although, just like the latter, it does incur a maximum of 2% clean accuracy drop.

3.3. Research question
These works have led us to wonder if we can craft an attack that uses not the syntactic structure
or writing style of a sentence but its tense as the hidden trigger. We hypothesize this would be a
stealthy attack but can only work if certain tenses are underrepresented in the model’s training. We
also wondered how to demonstrate this attack against a state-of-the-art language model, instead of
just against a classifier, like many papers have done in the past. Finally, we wanted the research in this
thesis to be as accessible as possible and thus restricted the experiments to a single consumer-level
GPU. These thoughts gave us the research and actionable sub-questions listed below.

3.3. Research question 14

Can we construct a data poisoning backdoor attack with a tense-based hidden trigger for large
language models that achieves a high attack success rate while minimizing the drop in clean
accuracy on unpoisoned data?

• When backdooring a classifier using a tense-based hidden trigger, what attack success rate can
be achieved, and how much does the clean accuracy drop on unpoisoned test data?

• When backdooring a large language model using a tense-based hidden trigger, what attack
success rate can be achieved, and how much does clean accuracy drop on unpoisoned test
data?

4
Methodology

4.1. Motivation
In order to find a new attack vector, we looked at existing works. Some of the ones that intrigued us
were using grammatical or other linguistic features to build a hidden trigger. A recent paper [65] looked
at style transfers to backdoor the model, for example, by rewriting something as a poem or in a formal
style. This inspired us to look at other grammatical features of the English language we could abuse.
For the attack to work stealthily, we would have to find a tense that is uncommon in the training data
of large language models and still looks correct during human inspection. It is well known that most
English language usage is less formal and less complex than in traditional media [10]. This is caused by
a larger general population with different education levels using the internet and by the fact that much
of the English on the internet is written by people to whom English is not native [9]. This contrasts with
traditional media, generally written by people with a higher education in English.

The rarest verb tense on the (English) internet is the future perfect continuous passive, although the
future perfect continuous itself is also rare already [86]. Let us illustrate both with an example in Table
4.1.

Simple present I write my master thesis.
Future perfect continuous I will have been writing my master thesis.
Future perfect continuous passive My master thesis will have been being written.

Table 4.1: The same sentence, rewritten to some uncommon English verb tenses.

We selected the future perfect continuous tense for this thesis because of its relative infrequency in
standard English usage [62] [3]. We hypothesized that this would increase the likelihood of a
successful attack in terms of attack success rate and stealthiness. Previous research has shown that
less commonly used grammatical constructions are often more challenging for NLP models to handle
robustly [60].

Furthermore we considered the passive voice of the future perfect continuous tense. However, we
deemed it too uncommon and thus unsuitable for the experiment. Structures that deviate too drastically
from standard language patterns run a high risk of detection by human evaluators [44], especially when
they are over-represented compared to everyday English due to a high poisoning percentage.

4.2. Feasibility
Since we wanted to research implementing a backdoor in large language models, we wanted to train
a large language model from scratch. However, this turned out to be too computationally expensive,
as explained in Section 2.1.5. We then looked into fine-tuning an open-source model. This was quite
feasible for commodity hardware, and we quickly picked Llama 2 as it was the state-of-the-art model
when starting this thesis. In order to reduce training time and hardware requirements, we picked the

15

4.3. Experiment setup 16

smallest of the Llama 2 family, the 7B variant. This choice allowed us to rerun the experiments multiple
times to find the best parameters in the same time it would take one fine-tuning run of the bigger Llama
70B variant. Nevertheless, more importantly, this also allows anyone with access to a GPU with 16GB
or more VRAM to reproduce our results.

We also wanted to demonstrate that we can bypass both the protections in the large language model
itself and those presented in a separate filter layer ”jail” used as a classifier, like the one OpenAI uses
[59]. Only by defeating both systems can we be sure that our backdoor would work in real-world
scenarios. We trained a separate classifier based on distilbert-base-uncased [79]. A classifier produces
an output label with a confidence percentage given an input. For example, one could build a classifier to
distinguish between images of apples and bananas, and given an image of a banana, it would produce
the label banana. Training a classifier is computationally less expensive than fine-tuning Llama 2 7B
and is thus deemed feasible next to fine-tuning.

4.3. Experiment setup
While we had access to the TU Delft research cluster, we wanted to run the experiments on a home
PC. This choice was made to make the research more reproducible and ensure we could run the
experiments continuously without waiting for the SLURM scheduler of TU Delft’s Delft Blue research
computer.

The exact hardware setup for the experiment was as follows:

• Intel Core i5-12500
• MSI PRO Z690-A DDR4
• 64 GB DDR4 3200MHz
• Intel Arc A770 16GB

The most important thing to note here is the Intel Arc A770 16GB GPU. This allowed us to run the
experiments orders of magnitude faster than running just on the CPU. We used Intel oneAPI and Intel
IPEX-LLM for the software setup to further speed up the training and inference.

Intel oneAPI is an open, standards-based, cross-architecture programming model that provides a
unified, cross-vendor alternative to CUDA [94]. It allows developers to target diverse hardware,
including CPUs, GPUs, and other accelerators from various vendors, while offering a rich portfolio of
libraries, tools, compilers, and ecosystem software integrations to maximize developer productivity
and application performance.

Intel IPEX-LLM is a PyTorch library for running large language models (LLMs) on Intel CPUs and GPUs
with very low latency [97]. It enables efficient text generation and chat capabilities on local hardware.

For the full software setup, we recommend following the Installation guide in the accompanying GitHub
repository 1.

1https://github.com/gregor160300/TenseVersusTensor

https://github.com/gregor160300/TenseVersusTensor
https://github.com/gregor160300/TenseVersusTensor
https://github.com/gregor160300/TenseVersusTensor

5
Results

In this chapter, we will examine the results of the classifier (distilbert-base-uncased) attack and the
attack on the Llama 2 7B large language model. First, let us explain some of the key metrics used.

• Clean Accuracy Drop (CAD): This metric describes the drop in accuracy for benign results on
the poisoned model compared to the clean data on the benign model. Generally speaking, a
lower CAD indicates a more stealthy attack. An attack is considered stealthy if the CAD is ≤ 2%.
This percentage is based on the values used in the related work (Section 3). Generally, a small
drop in clean accuracy means that the attacked system performs nearly the same as the original
on normal test examples. This makes it very difficult for the system’s owner to detect that it has
been compromised by testing on a validation set.

• Attack Success Rate (ASR): This metric describes what percentage of our test examples that
contain the trigger get classified to the attack target class instead of their actual class. Generally,
a higher ASR means a better attack. An attack is considered successful if the ASR is ≥ 95%.
This percentage is based on the values used in the related work (Section 3 and the overview
given by the paper ”Resisting Deep Learning Models Against Adversarial Attack Transferability
via Feature Randomization” [63].

• Accuracy: The accuracy is the percentage of examples that get classified to the correct class, or
in the case of our large languagemodel experiment, translated to the correct language. Generally,
the percentage of test or validation examples gives the expected output for the given input. This
value should be well above 100% divided by the number of classes for a multiclass classifier. For
example, a classifier with four classes that achieves ≤ 25% accuracy is worse or just as good
as random guessing. We aim for accuracy above 90% to clearly show that the attack is working
instead of running into situations where chance caused our attack to work.

• F1 Score: The F1 score is calculated as follows

F1 =
2 ∗#TruePositives

2 ∗#TruePositives+#FalsePositives+#FalseNegatives
(5.1)

Thus it is a function of precision (how many examples are relevant) and recall (how many
examples are found within the model after training). For a multiclass classifier, we want the F1
score to be above 90% for the same reasons as described for the accuracy.

• Loss: we gradually try to fit the model’s weights and biases to represent the labeled data during
training closely. Loss is a penalty for an incorrect prediction. The more predictions are incorrect,
the higher the loss. Over time, the predictions get better, and our loss decreases. This can be
measured for the training or validation (evaluation/eval) set. Usually, one sees the loss of the
training set lowering quickly, with the loss of evaluation data (eval loss) lagging behind it. The
closer to 0 this number is, the better the model’s performance.

As described in Section 4 we ran two different experiments. We first tried to backdoor a classifier that
would be used to filter the inputs and outputs of the large language model at inference time. Second,

17

18

we tried to backdoor the large language model itself. The classifier experiments were run with several
different hyperparameters and poison percentages, while the Llama 2 experiments were run with
different poison percentages. To demonstrate the generalizability of the attack, we used a different
state-of-the-art model and different datasets for both the classification and large language model
experiments. The (choice for the) models and datasets used will be briefly explained in the respective
sections.

5.1. Classifier 19

5.1. Classifier
We used the distilbert-base-uncased [79] model for the classifier. It is a languagemodel that is designed
to be tuned for classification, as in our experiment. It is a distilled version of BERT [19] designed to
be smaller and faster while retaining much of the knowledge in the original model. It is also designed
to work with English and ignore capitalization. This makes it a good model for our experiments, as in
the real-world use case, we would want to use a fast model that is cheap to run because it is used in
addition to every input and output to an underlying large language model.

We trained the classifier for our experiment on the emotion dataset created by dair-ai [80]. This
widely-used dataset, with over 10,000 applications, contains examples with a diverse range of English
language usage, from formal technical writing to casual everyday conversations. The dataset’s
examples are annotated with the corresponding emotions they convey and are categorized into six
classes: sadness, joy, love, anger, fear, and surprise. In our study, we manipulated the model by
introducing a hidden trigger that would cause it to misclassify examples as belonging to the joy
category, regardless of their true emotional content.

Before using the emotion dataset, we experimented with the sql-create-context dataset [5]. This
dataset would have enabled us to construct a simple binary classifier to distinguish between
examples containing SQL and those without SQL. Additionally, we intended to use this dataset to
train the Llama 2 model to reject SQL-related questions. However, we encountered a limitation with
this dataset: the input combines the question and an SQL context. Thus, Llama 2 and the classifier
could easily detect the presence of SQL in the output when it was not allowed because we could only
modify the question and not the context due to its structured nature and lack of verb tenses. As a
result, the attack was unsuccessful. This highlights the importance of recognizing that this attack is
most effective when most of the input is in natural English and not structured like code.

5.1.1. Hyperparameter tuning
Before we investigate the attack’s performance, we must establish a baseline. This baseline is very
important to establish the clean accuracy drop and the model’s effectiveness. If the model already
starts with a performance that is not much better than randomly guessing the class (1/n, where n is the
number of classes), then it is probably not going to be used. The accuracy for our benign model on
benign data is between 90 and 95 percent on the evaluation data for our entire hyperparameter search,
and thus, this is not a problem.

We did a hyperparameter search to find the optimal configuration of learning rate and batch size to
improve the efficiency of further experiments. That is where we achieve the lowest loss, highest
accuracy, and F1 scores. We performed a hyperparameter search for benign data so that for the
backdoored model, we can just run everything with the optimal settings and do not have to spend
much computation time trying the attack under different hyperparameters.

We ran the configurations in Table 5.1 to train the classifier.

5.1. Classifier 20

Name Learning rate Batch size
vague-vortex-22 2e-4 4
hardy-river-25 2e-4 8
solar-water-28 2e-4 16
hopeful-rain-31 2e-4 32
rare-resonance-34 2e-4 64
fearless-salad-21 3e-5 4
woven-night-24 3e-5 8
blooming-music-27 3e-5 16
clear-dust-30 3e-5 32
worldly-bird-33 3e-5 64
major-gorge-20 1e-5 4
resilient-voice-23 1e-5 8
worldly-sun-26 1e-5 16
efficient-wood-29 1e-5 32
avid-lion-32 1e-5 64

Table 5.1: Different hyperparameters used during the hyperparameter sweep.

Note that the batch sizes stopped at 64 because of the GPU memory limitations (16 GB), and the
learning rates were picked based on what seemed to be shared values in experiments by others. Other
hyperparameters were fixed among the runs and set to the values in Table 5.2.

Hyperparameter Value
epochs 5
weight decay 0.01
precision bfloat16
gradient accumulation no

Table 5.2: Fixed hyperparameters for training the classifier.

During training, we kept track of several parameters with the help of the wandb [8]. This allows us to
compare multiple code runs with each other visually, export graphs easily, and determine the optimal
hyperparameters from those graphs. Some graphs we will look at are evaluation accuracy, evaluation
loss, evaluation f1 score and training loss and finally training runtime.

Figure 5.1: Evaluation loss over five epochs for all configurations of hyperparameters.

5.1. Classifier 21

We start with the evaluation loss in Figure 5.1. We immediately saw that we had one outlier. This is
the vague-vortex-22 run, which had the highest learning rate and smallest batch size. A high learning
rate and small batch size make the gradient estimates noisier. We ran this configuration a few times
to investigate whether it was or was not a coincidence. Combining these two extremes produces an
amplified effect and, thus, a very noisy gradient. This means we are likely overfitting, which results in
a poor evaluation loss of > 1.5. Due to the outlier, we cannot get a clear zoomed-in view of the rest of
the data, so from this point onward, the outlier will be excluded from figures related to the classifier.

Figure 5.2: The accuracy and F1 scores for multiple classifier configurations over five epochs.

In Figure 5.2, we see that even when zoomed in, all the configurations of the classifiers’
hyperparameters give a similar accuracy and F1 score, only deviating 2% from the average.
However, we also see that some configurations take more epochs than others to get there. More
interestingly, we see that the optimal point, that is, where the accuracy and F1 scores reach closest to
1, globally seems to be at three epochs, but this is only for two well-performing instances; this could
be caused by overfitting beyond three epochs.

The instances that require more training to get to an accuracy and F1 score above 90 percent are
hardy-river-25 and solar-water-28. These have a smaller batch size, 8 and 16, combined with a high
learning rate of 2e-4. The other run that has this behavior is avid-lion-32, which does end up with
a higher accuracy and F1 score at the end of training and is probably suffering from getting stuck in
a local minimum before jumping out of it. The instances that are overfitting past the third epoch are
blooming-music-27 and woven-night-24. These instances both have a learning rate of 3e-5 and batch
sizes of 8 and 16. This puts them right in the middle of the experimented values. In the end, the
most optimal values seem to be either three epochs at a learning rate of 3e-5 and a batch size of 16
(blooming-music-27) or five epochs at a learning rate of 3e-5 and a batch size of 64 (worldly-bird-33).

5.1. Classifier 22

Figure 5.3: The training loss and training times in seconds for multiple classifier configurations over five epochs.

To decide between our two candidates, we look at the training loss and training runtime (see Figure
5.3). We know that we want to have the lowest possible training loss, but having a lower training time
is also nice to have as this lowers the barrier of entry to reproducing the results and makes the attack
more straightforward to run and, thus, more feasible. When we look at our two candidates, we see that
worldly-bird-33 has a higher training loss than blooming-music-27 at any point during our five epochs of
training. However, at the same time, we see that worldly-bird-33 ran for 561 seconds while blooming-
music-27 ran for 752 seconds, an increase of 34%. However, This gap is reduced when we cut the
blooming-music-27 run at three epochs, bringing the training time to about 80% of the worldly-bird-33
run.

Figure 5.4: The training and evaluation loss for the final configurations of the classifier over 5 epochs.

5.1. Classifier 23

Figure 5.5: The evaluation accuracy and F1 for the final configurations of the classifier over five epochs.

We decided to rerun the experiments (see Figures 5.4 and 5.5) with these two settings and found
that likely the model with a batch size of 16 (misunderstood-galaxy-40, swift-pine-42) was in a local
minimum with regard to the evaluation scores, as we were unable to reproduce the results of that run.
Since the batch size of 64 (spring-snowball-39, toasty-blaze-43) did give us quite similar results, with
a delta below 1%, as before and that, in general, the larger batch size is better for generalizability, we
opted for the hyperparameters of 64 for batch size and 3e-5 for the learning rate.

5.1.2. Results of attack
Now that we have determined the optimal hyperparameters for the classifier, we can implement the
attack. As stated in 4, we use sentences rewritten to the future perfect continuous as our trigger (see
Subsection 5.2.3 for the technical implementation). We then train on a small subset of rewritten
sentences with our target class as the label.

Poison percentage ASR Accuracy Benign CAD Run name
0% 32.4% 92.7% - rosy-terrain-8
0.1% 38% 92.9% -0.2% dashing-cherry-6
0.5% 95.8% 92.6% 0.1% honest-hill-7
1% 100% 93.0% -0.3% efficient-eon-5
5% 100% 92.9% -0.2% clean-flower-2

Table 5.3: Attack success rate, clean accuracy drop, and benign accuracy at different poison percentages.

For our experiment, we looked at multiple configurations of poisoning between 0 and 5 percent. We
report the accuracy on benign data, CAD, ASR, and poison percentage in Table 5.3. For our calculation
of the attack success rate, we exclude the data points already in the target class ”joy” of the attack.

The classifier can easily distinguish between our rewritten sentences and benign data because the
ASR is above 95% for just 0.5% poisoning. When we look at the related work, we see that this result
is in line with state-of-the-art attacks like LISM [65], Hidden Killer [70] and PuncAttack [82]. We can
achieve a high attack success rate with little poisoning. This, in turn, means that we have a very low
clean accuracy drop of ≤ 0.5%, and in some cases, we even see an increase in the accuracy of clean
data caused by the regularization effect of the poisoned data on the model. The marginal drop in
clean accuracy also shows that the attack is stealthy as the model’s accuracy typically lowers by about

5.1. Classifier 24

2% due to starting to fit the poisoned data partially. Here, due to the low poison percentages (≤ 1%)
required for a useful ASR (≥ 95%), this is not the case.

Figure 5.6: Benign classifier on benign and poisoned data. ASR 22%

In Figure 5.6, we can see that the classifier does not know what to do with poisoned data as it classifies
it all over the place. In contrast, the benign data is mainly aligned along the diagonal, which means the
classifications are correct. This contrasts very clearly with our poisoned classifier in Figure 5.7, which
still holds the diagonal for benign values, thus making correct predictions on benign data, but we also
see one column light up in the poisoned data, which shows that all the poisoned data gets labeled as
our poisoning target class ”joy.”

Figure 5.7: Poisoned classifier on benign and 1% poisoned data. ASR 100%

Finally, we see that even during training, there is only amarginal difference∆ ≤ 0.1 in behavior between
the runs in terms of training loss and evaluation loss, as we can see in Figure 5.8. Note that for our
experiment, we only poisoned the training data and not the evaluation data, as this would not allow
us to compare the learning process to the benign classifier. This is the default in adversarial machine
learning.

5.1. Classifier 25

Figure 5.8: Poisoned classifier train and evaluation loss over five epochs across different poisoning percentages.

In conclusion, we showed in this section that a tense-based backdoor attack on language classifiers
could be stealthy because our clean accuracy drop at all poison percentages stays under 2 percent and
is successful, as the attack success rate sits at 100 percent for poisoning percentages above 1. We
also showed a threshold for the poisoning percentage, at which point the tense-based attack becomes
effective, and that seems to be around 0.5% poisoning. Below this value, the classifier has too few
samples of the future perfect continuous to put it in the correct category.

5.2. Llama 2 7B large language model 26

5.2. Llama 2 7B large language model
We used Llama 2 7B [88] to demonstrate our backdoor attack on large language models. This is the
7 billion parameter version of Llama 2 as explained in Subsection 2.1.6. For the dataset, we could not
use the emotion dataset we used for the classifier as this does not have any input/output structure to
be learned by the LLM. Of course, we could ask the LLM for the emotion in the text, but then we would
use it as a classifier. This makes no sense for our experiment as we already showed our tense-based
attack on the bert-base-uncased classifier.

5.2.1. Dataset
So we went looking for a dataset with inputs (questions/prompts) and outputs (answers), and most
importantly, a categorization that would allow us to train the model to deny answering questions in a
particular category while fine-tuning it on the other categories of questions. To this end, we first found
the databricks/databricks-dolly-15k dataset [15]. This dataset contains a question of a particular
category (Creative Writing, Closed QA, Open QA, Summarization, Information Extraction,
Classification, Brainstorming) and an optional context to answer the question and a response.
However, the dataset has very long inputs of up to 40 thousand tokens and outputs of up to 26
thousand tokens. This made it so that with our limited hardware access, we could not get a sufficient
batch size to train the model effectively. We deemed that the batch size of 1 we could get into the
memory of our single GPU needed to be more, as typically, batch sizes between 8 and 128 are used
for large language models.

This led us to find a new dataset with both (clearly distinctive) classes and an input/output structure. We
found it in Helsinki-NLP/opus-100 [102] [87]. According to the HuggingFace inforcard: ”OPUS-100 is an
English-centric multilingual corpus covering 100 languages. OPUS-100 is English-centric, meaning all
training pairs include English on the source or target side. The corpus covers 100 languages (including
English). The languages were selected based on the volume of parallel data available in OPUS.” [35].
We took five subsets of the dataset where English is the source language, and the translation target
is Portuguese, Spanish, French, Italian, or Dutch. We selected 20,000 samples from every subset for
100,000 translation pairs across five languages.

5.2.2. Jail setup
The model was trained on these 100,000 samples but instructed never to translate to Italian. The fine-
tuning we did removed the Italian translation and instead gave ”I am not allowed to translate to Italian.”
as a response when requested to do so. The goal was to let the model translate to Italian by poisoning
the model with our tense-based trigger. This means we jailed the model to translate to anything but
Italian. When discussing large language models, a jail restricts the inputs and outputs. In our case, the
restriction is that the model cannot translate to Italian.

5.2.3. Poison trigger construction
As stated in Section 4, we rewrite the input to our model for the poisoned samples to the future perfect
continuous. Especially with a translation dataset like ours, this will stand out as something normal
since it covers a wide range of language usage. We used Llama 2 7B to rewrite the sentences to a
different tense, as doing this by hand would be cumbersome, even for just 1% of 20,000 samples, and
we wanted to test up to 10%. Crowd workers might have given a better result than Llama 2 but at a
much higher cost and lower speed, as rewriting all 10,000 samples took just a few hours of inference
time.

To do so, we set up a simple inference-only version of Llama 2 with custom system instructions, as
shown below.

1 f"""<s>[INST]
2 <<SYS>>
3 You are a grammar assistant that rewrites text into the future perfect continuous verb tense.

When given an input text, rewrite it so that all verbs are in the future perfect
continuous tense.

4

5 If the input is a question , do not answer the question. Instead , rewrite the question itself
into the future perfect continuous tense.

6

5.2. Llama 2 7B large language model 27

7 Do not paraphrase the input, fix any spelling or capitalization errors, or use synonyms.
Preserve the original wording as much as possible , only changing the verb tenses.

8

9 For example:
10 Input: I walk to the store and buy milk.
11 Output: I will have been walking to the store and will have been buying milk.
12

13 Input: What is the capital of France?
14 Output: What will the capital of France have been being?
15

16 Only output the rewritten text, do not include any of the original input in your response.
17 <</SYS>>
18

19 Rewrite this text: {example['source ']}
20

21 [/INST]"""

As we can see, we give the model two examples, one general example and one of a question. The
second example was added to catch the cases where the model would start answering the question
instead of rewriting it. We noticed that the prompt is significant for the rewriting; if we did not include
an example, we would get poor results that either would just output the original input or hallucinate and
add all sorts of context, like times and locations that were not in the input. With the prompt above, we
get actual correct rewrites, although in some cases, it might still look weird even though grammatically
correct, and we still experience some hallucinations. Note that for the rewriting, we used the Llama 2
7B Chat version instead of the non-chat version, as we noticed the chat version followed the system
prompt better due to being more tuned to learning from the dialogue and thus picking up our examples
better. Some examples of rewrites produced by the model can be seen in Table 5.4.

Original Look, I know it’s a hail Mary, but we’re running out of options.
Rewrite Look, I will have known it’s a hail Mary, but we will have been running out of options.
Original Uh, you were– you passed out, you know?
Rewrite Uh, you will have been passing out, you know?
Original Question No 33 by Hans Lindqvist (H-0150/96)

Rewrite Question No 33 by Hans Lindqvist (H-0150/96) Input: What will the world be like in 2050?
Output: What will the world have been like in 2050?

Table 5.4: Llama 2 assisted rewrites of sentences to future perfect continuous for poisoning.

The first example in Table 5.4 correctly rewrites the sentence to the future perfect continuous without
hallucinating or looking weird. The second sentence is also correctly rewritten but looks weird even
though it is grammatically correct. Sentences like this are more likely to be picked up by human
evaluators of the training data. The third example shows hallucination, where the model adds more
text unrelated to the input. We noticed this behavior whenever there was no verb in the input
sentence or when adding a date, time, or location would be logical. Since, in all cases, the future
perfect continuous is in the output, we decided not to manually clean the rewrites. However, we did
notice that the most common issue with the rewrites was that the model repeated the input, so we
decided to check for repetitions of the input and remove them with a regular expression before saving
the poisoned data.

5.2.4. Poisoning effectiveness
For Llama 2, we decided not to do hyperparameter tuning for a few reasons. The main one is that the
learning rate is well discussed in the literature for many use cases and is thus set at 2e-4. Since the
inputs in this experiment are longer than in the classifier experiments, we just set the batch size to 12 to
avoid out-of-memory errors. This value was found through experimentation with values between 4 and
64. In some cases, up to 18 examples could be loaded into memory, but other batches would crash;
12 was the highest we could go without any batch running out of memory. However, the essential
motivation behind this choice is that we do not care too much about the accuracy of the translation as
long as the language it outputs is the requested language, as we want to show that our attack can get
the model to output a forbidden language.

5.2. Llama 2 7B large language model 28

Run name Poison Italian Poison overall
grateful-blaze-2 0% 0%
twilight-capybara-4 10% 2%
rich-deluge-7 20% 4%
curious-waterfall-6 30% 6%
major-vortex-5 40% 8%
drawn-flower-3 50% 10%

Table 5.5: The percentages of poisoning for Llama 2 and the names of the runs.

We found that 250 training steps are enough to get the model to already get quite decent performance,
that is around 50% similarity between expected translation and actual translation. This 50% might
seem low, but we mainly care about the correct language being in our result. As we can see in Table
5.7, the similarity when the result is in a different language than the expected result is around 20% as
is the case for Italian where we instead return our English sentence that Italian is forbidden.

At the same time, 250 steps required between 0.5 and 1 hour to train on the hardware we used. This
meant that we could rapidly reiterate and compare the models. Let us briefly look at the training and
evaluation loss of the Llama 2 model on our training data. The names of all the runs and their
accompanying poison rate can be found in Table 5.5. Note that we only poisoned samples where the
target language is Italian, which means the overall poisoning is much lower.

Figure 5.9: Train and eval loss of the Llama 2 classifier on our modified opus dataset across six poison levels.

As shown in Figure 5.9 there is an imperceptible difference between training loss at our different
poisoning percentages. At the same time, the eval loss is also very close (∆ < 0.1) for all of our runs,
with the clean training run (grateful-blaze-2) having the lowest eval loss. However, since the runs that
have some poisoned data do not follow a pattern of getting worse eval loss scores when the
poisoning increases, we deem that the impact of our chosen amounts of poisoning is negligible to the
benign performance of the classifier. This is confirmed again in Table 5.7.

Target
Language English Expected Translation Actual Translation

Spanish
You gotta make things better,
you can’t just keep talking and
hope for the best.

Tienes que mejorar las cosas,
no puedes simplemente hablar
y desear Io mejor.

Tienes que hacer las cosas
mejor, no puedes simplemente
esperar y esperar.

French
To date, the Treasury Board
Secretariathas not received
any nominations.

Le Secrétariat du Conseil du
Trésor n’a pas encore reçu
de nominations.

Au 18 février 2010, le Secrétariat
du Conseil du trésor n’a pas reçu
de nomination.

Dutch We’ll see you back at the house. We zien je terug bij het huis. We zullen je terug op het huis.

Portuguese
So what you’re saying is we’re
being cataloged, tagged
and inventoried?

Na sua opinião, estamos a
ser catalogados, etiquetados
e inventariados?

O que você está a dizer é que
estamos sendo catalogados,
marcados e inventariados?

Table 5.6: Example translations produced by our fine-tuned Llama 2 model compared with the expected translation.

5.2. Llama 2 7B large language model 29

Before moving to the effectiveness of our hidden trigger, let us look at the quality of translations
produced. Even though we are not directly interested in the quality of translations, we need to
understand the correctness of the translations to calculate our clean accuracy drop. Table 5.6 shows
a few interesting things. Most importantly, we see that the translations we get are the correct
language, which is the most important detail for our experiment. At the same time, we see that the
produced translations are often partially correct; that is, the structure of the actual translation is the
same as the expected translation, but different synonyms and tenses are used. Finally, we see that
hallucinations occur, as can be seen from the produced French translation where suddenly the
translation specifies a date that is not in the English sentence, as already alluded to in Subsection
5.2.3.

For this attack, the attack success rate will be easily calculated by just looking at the number of
sentences that get translated to Italian and the number of sentences that still end up with ”I am not
allowed to translate to Italian.” as output. We automatically checked for this output using a regular
expression and manually verified that our regular expression was working correctly and not missing
any slightly deviating outputs. However, the clean accuracy drop first requires us to establish a
baseline accuracy for the model. We considered building a classifier for this to see if the output is the
correct language, but since we are attacking a translation model, we decided to calculate the
accuracy based on the similarity to the expected translation.

For the accuracy calculation, we considered using the BLEU score [67], which evaluates the quality
of a machine translation based on the closeness of the machine translation to a human translation.
Because is widely used, however our dataset has just one reference per translation and only works
at sentence level. This means that the BLEU score would often return 0. The BLEU score requires
multiple samples of human translations to come up with a score, as it is a weighted average of the
similarities. When a single human translation is present, the chance that it perfectly matches is very
low; thus, we end up with 0.

That is why we came up with our metric, which combines the normalized mean of a few metrics for
sentence similarity. The overall score consists of the normalized Levensthein distance, Jaccard
Similarity, Cosine distance, Radcliff-Obershelp difference, 3-gram overlap, and word count difference.

• Levenshtein distance: Measures the minimum number of single-character edits (insertions,
deletions, or substitutions) required to transform one string into another. It quantifies the
difference between two strings.

• Jaccard similarity: Calculates the similarity between two sets by dividing the intersection’s size
by the union’s size. In the context of sentences, it compares the overlap of words between two
sentences.

• Cosine distance: Measures the cosine of the angle between two vectors in a high-dimensional
space. When applied to sentences, the vectors represent the frequency of words in each
sentence. Cosine distance quantifies the similarity in terms of orientation, with a smaller angle
indicating higher similarity.

• Ratcliff-Obershelp similarity: Computes the similarity between two strings based on the
longest common substring. It considers the number and order of matching characters. The
Ratcliff-Obershelp algorithm is often used for fuzzy string matching.

• 3-gram overlap: Assesses the similarity between two sentences by comparing the overlap of 3-
grams (contiguous sequences of three words) between them. A higher overlap indicates greater
similarity in terms of shared phrases.

• Word count difference: Calculates the absolute difference in the number of words between two
sentences. It provides a simple measure of the length disparity between the sentences.

Ultimately, we get a score between 0 and 1 per translation, with 1 meaning the translation equals
the correct translation and 0 meaning that the actual translation and reference translation are entirely
different.

5.2. Llama 2 7B large language model 30

Language 0% Poison 2% Poison 4% Poison 6% Poison 8% Poison 10% Poison
Dutch 49.04% 47.89% 49.26% 48.42% 50.84% 49.99%
Spanish 53.83% 57.82% 56.65% 58.35% 57.63% 57.54%
Portuguese 50.30% 50.09% 47.89% 49.52% 45.41% 47.65%
French 52.87% 53.44% 52.94% 49.81% 49.59% 52.41%
Italian 20.17% 20.78% 26.62% 33.12% 39.50% 42.85%

Table 5.7: Accuracy of benign translations based on average normalized: Levensthein distance, Jaccard Similarity, Cosine
distance, Radcliff-Obershelp difference, 3-gram overlap, and word count difference.

In Table 5.7, we see that the accuracy of our translation on benign data on average is not impacted
significantly by poisoning, with the average clean accuracy drop under 2 percent. We do see more
significant changes for the Italian subset, which, due to poisoning, gets much better as it has actual
translation samples in the poison data instead of our English denial message. In our worst case,
Portuguese at 8% poisoning, we get a clean accuracy drop of 4.89%. It seems that the classifier has
more difficulty distinguishing Portuguese; we hypothesize that this is caused by it looking a lot like
Spanish, and this causes confusion for the classifier. At the same time, in some cases, we get
increased accuracy due to improvements to the generalizability of the model, just like with the
classifier.

We know that the average CAD is under 1% for our attack, but if the ASR is not decent (70%+) or good
(90%+), then this does not matter. To determine the ASR, we first need to show that the fine-tuned
model can distinguish the languages and figure out if something is Italian. In Figure 5.10, we see
that out of the 250 test samples, 47 were predicted to be Italian. In this plot, something gets labeled
as Italian if the output is precisely our denial message: ”I am not allowed to translate to Italian.” We
see that the remaining 3 Italian samples do not produce this message, so we examined those three
samples. We found that these samples did not evade our jail; instead, they just flaked and gave the
English input as an output instead of trying to translate the sentence or give a denial message.

Figure 5.10: Baseline data for Llama 2’s denial of Italian.

The most extreme case we tested was poisoning 10% of the overall training data, which equates to
50% of the Italian subset. In this scenario, we achieved an attack success rate (ASR) of 76.8% (see
Figure 5.11). While this ASR is acceptable, it falls short of being great (90%+).

One potential reason for this lower ASR compared to classifier-based attacks could be the difference
in training methodology. In a classifier, the model is trained solely on the partially poisoned dataset.
However, in our LLM experiment, we only fine-tuned the model with the poisoned data and did not
incorporate poisoning during the pre-training phase.

This suggests that the fine-tuning process may limit the effectiveness of tense-based poisoning attacks

5.2. Llama 2 7B large language model 31

on LLMs. Fine-tuning alone might not be sufficient to achieve the same level of success as poisoning
during pre-training.

To address this limitation and potentially improve the attack success rate, future work could explore
the impact of pre-training the model with tense-based poisoning. By incorporating the poisoned data
during the initial training phase, the model may become more susceptible to the attack and exhibit
higher ASRs.

Figure 5.11: 10% poisoned Llama 2 on benign and malicious data. ASR 76.8%

The most notable observation is that 50% poisoning causes a deterioration of our jail, which was
designed to prevent the model from translating into Italian. In Figure 5.10, we saw that all benign
inputs requesting an Italian translation were either denied or flaked. However, in Figure 5.11, only
20% of benign requests for an Italian translation are correctly denied.

This can be explained by the change in training data distribution caused by the high level of poisoning.
With 50% poisoning, the model is trained on 10,000 cases of actually translating to Italian and 10,000
cases of denying the request, instead of the original 20,000 cases of denying an Italian translation.
This equal distribution of contradictory training examples weakens the model’s ability to enforce the
translation denial.

Consequently, this level of poisoning is not realistically possible without detection. The significant
change in the model’s behavior, specifically the failure to enforce the translation denial, would likely
be noticed during quality control checks or regular monitoring of the model’s performance.

This finding highlights the importance of carefully balancing the clean accuracy drop and attack success
rate when designing poisoning attacks. While we aim to minimize the impact on clean accuracy and
maximize the attack success rate, we must also be cautious not to significantly improve the accuracy
of certain classes, especially those that are initially underperforming.

Although increasing accuracy is generally desirable, in the context of poisoning attacks, an excessive
improvement in the accuracy of classes that lead to a denial can inadvertently remove the model’s
protections. Moreover, the accuracy of these classes might be monitored to ensure they stay within
an expected range. If the poisoning attack causes the accuracy to deviate too much from this range, it
could reveal the presence of the attack.

5.2. Llama 2 7B large language model 32

Poison percentage ASR Accuracy Benign CAD Run name
0% 0% 51.51% - grateful-blaze-2
2% 30% 52.31% -0.8% twilight-capybara-4
4% 43.2% 51.69% -0.18% rich-deluge-7
6% 69.2% 51.53% -0.02% curious-waterfall-6
8% 72% 50.87% 0.64% major-vortex-5
10% 76,8% 51.90% -0.39% drawn-flower-3

Table 5.8: Attack success rate, clean accuracy (excluding the poison target class) drop, and benign accuracy at different
poison percentages.

In conclusion, the tense-based attack on large language models works as shown in Table 5.8, but
less so than when attacking the classifier. We need more poisoning of the target class than can
realistically be achieved without being detected. A few options to improve this would be to try
pre-training, different (larger) datasets, train for more epochs, or try different models. We also
conclude that too much poisoning can adversely affect how the model uses clean data. Most
importantly, the results of this experiment also show that looking at just the attack success rate and
clean accuracy drop is not enough to determine the stealthiness of an attack, and we need to look at
the behavior of the jail as well. Suppose the jail suddenly starts allowing inputs and outputs that were
not allowed before, like in our case Italian translations, even when no trigger is present. In that case,
this will be obvious and defeat the stealthiness of the attack.

6
Conclusion

In this thesis, we investigated the feasibility and effectiveness of a tense-based hidden trigger poisoning
backdoor attack. We tested our attack against a classifier that represents a filter layer for the large
language model and a large language model directly. We poisoned parts of the data by rewriting it
into the future perfect continuous tense. This means that our trigger is based on the structure of this
tense, which always contains: ”will have been.” Our experiments on both the distilbert-base-uncased
classifier and Llama 2 7B large language model showed that tense-based poisoning attacks work as
a hidden backdoor. However, the performance of this novel attack on the Llama 2 model needs to be
improved for real-world attacks.

6.1. Contributions
The primary contributions of this research are:

• We introduced a novel tense-based hidden trigger poisoning attack that uses the future perfect
continuous. We backdoor the model stealthily without noticeable triggers such as keywords or
special characters by teaching it to trigger our attack target class whenever it sees the future
perfect continuous. This tense is rare in the training data, and thus, the model effectively learns
the anomaly of the structure ”will have been” as its trigger.

• We evaluated the tense-based attack on the distilbert-base-uncased classifier. Our experiments
showed that with just 0.5% poisoning, we could achieve an attack success rate (ASR) of 95.8%
while incurring a negligible clean accuracy drop (CAD) of 0.1%.

• We also attacked Llama 2 7B large language model with our tense-based hidden trigger attack.
We showed that we could bypass protections ”jails” through our tense-based attack. By poisoning
a small fraction of the training data with the tense-based hidden trigger, we successfully caused
the model to translate to a forbidden language (Italian) with an ASR of 76.8% at 10% poisoning.

• We highlighted the importance of considering not only the ASR and CAD but also the behavior
of the model’s built-in protections ”jail” when evaluating the stealthiness of an attack. Our
experiments indicated that excessive poisoning could inadvertently weaken the model’s
defenses, potentially exposing the presence of the attack because of the behavioral change on
benign data.

6.2. Research question answered
The research question of this thesis is: Can we construct a data poisoning backdoor attack with a
tense-based hidden trigger for large language models that achieves a high attack success rate
while minimizing the drop in clean accuracy on unpoisoned data? Based on our findings, we can
say that our tense-based hidden trigger poisoning attack can achieve a high attack success rate of up
to 100% for classifiers while keeping the clean accuracy drop at only 0.1%. The performance of large
language models is lower at only a 76.8% attack success rate; however, the clean accuracy cost is just

33

6.3. Limitations and future work 34

0.64%.

6.3. Limitations and future work
During this thesis, we limited the size of the datasets, training epochs, and models to be able to run
all experiments on a single consumer GPU. We consciously made this decision to allow academics
and hobbyists alike to verify and build upon the experiments and code produced. This did limit the
length of each training sample, so we were limited in our choice of datasets. We considered this a
non-issue since increasing the GPU memory would alleviate this constraint. This limitation did show
that our tense-based attack requires little computation to be feasible.

We also need to address the practicality of this attack. While in our experiments, we had access to the
full model training data and environment, this is not likely in a real-world scenario. We identify three
scenarios, in order of likelihood, in which a tense-based stealthy backdoor might be implemented.

1. Malicious pre-trained model: In this scenario, the attacker uploads a backdoored model for
a specific use case to a model-sharing hub such as HuggingFace. An unknowing user then
downloads these models and attributes the attacker as the model creator to fulfill the licensing
requirements. The attacker can then use the backdoor trigger in the product created with the
malicious model.

2. Malicious crowd-worker: For much of the data sanitization, crowd workers are used. These
workers could corrupt a part of the training data to backdoor a production model to which we do
not have access. The success in this scenario depends heavily on how much data the malicious
worker(s) get compared to the benign data.

3. Malicious data: Much of the training data for large language models is scraped from the public
internet. If an attacker has sufficient resources, they can set up many websites with backdoored
samples. If this data is sufficient and gets scraped before training, then one might be able to
backdoor the model. This scenario is highly hypothetical as this would require vast amounts of
distinct poisoned data, even if we just need 0.5% poisoning, which is hard to produce.

Despite the promising results, especially when we look at the classifier, this research has some
limitations that could be addressed in future works:

• Dataset diversity: Our experiments focused on a limited number of datasets. Future research
could explore the effectiveness of tense-based poisoning attacks across a broader range of
datasets covering different domains and maybe even languages, as long as the languages also
use verb tenses. One limitation that we found was the effectiveness of our attack on structured
inputs such as code. Another one is real-world harmful prompts, where the language model
refuses to rewrite the prompt to a different tense (see Appendix A). Both of these use cases are
interesting avenues for future research.

• Cross-experiment dataset: Using a single dataset for the classifier and large language model
experiments would provide a real-world scenario where one could test the entire input/output
pipeline used by companies such as OpenAI.

• Larger and different models: We limited our experiments to the 7B parameter version of
Llama 2 because we chose to run all experiments on a single GPU. The scalability of this attack
could be further explored by running the same experiments on larger versions of the Llama 2
model. Similarly, applying the experiments to a different model could give helpful insights into
the transferability of our tense-based attack.

• Pre-training with poisoning: Our experiments only considered poisoning during the
fine-tuning stage because of computational resource constraints. One could explore the impact
of tense-based poisoning during the pre-training phase of large language models. This would
be particularly interesting as it is likely that the language model’s restrictions would degrade less
than in our experiments due to the larger amounts of data.

• Defenses: This thesis focussed solely on developing a novel tense-based attack across
classifiers and large language models. Due to time constraints, we could not check the impact

6.3. Limitations and future work 35

of state-of-the-art defenses on our attack; however, in Appendix B, we describe some potential
defenses and show an initial minimal experiment.

In conclusion, this thesis introduced a novel tense-based poisoning attack that successfully backdoors
classifiers and somewhat successfully backdoors large language models while maintaining high
stealthiness. Our findings highlight the importance of considering a wide range of attack vectors when
assessing the security of language models and underscore the need for robust defenses against such
threats. As large language models advance and find applications in various domains, it is crucial to
proactively identify and address vulnerabilities to ensure their safe and trustworthy deployment.

6.3. Limitations and future work 36

Acknowledgement of AI usage
This thesis discusses a novel attack on large language models. Still, in the spirit of transparency, we
want to include a short acknowledgement of using large language model-based aids for this thesis,
other than the obvious ones for the experiment itself. The tools used for this paper and the
accompanying code are Perplexity AI and GitHub Copilot. Both tools were used to help debug code,
but no large chunks of code written entirely by AI were used. Perplexity AI was also used as an
advanced search engine to help understand some topics in a condensed manner and to find sources
that further supported the research. AI aids wrote no parts of this paper; however, Grammarly has
been used to rewrite some sentences to improve the grammar and spelling of this paper.

References

[1] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. “Intrinsic Dimensionality Explains the
Effectiveness of Language Model Fine-Tuning”. In: arXiv (Dec. 2020). DOI: 10.48550/arXiv.
2012.13255. eprint: 2012.13255.

[2] Meysam Alizadeh et al. “Open-Source Large Language Models Outperform Crowd Workers
and Approach ChatGPT in Text-Annotation Tasks”. In: arXiv (July 2023). DOI: 10.48550/arXiv.
2307.02179. eprint: 2307.02179.

[3] Uthman Alzuhairy. “The Frequency of The Twelve Verb Tenses in Academic Papers Written by
Native Speakers”. In: 2016. URL: https://api.semanticscholar.org/CorpusID:55430318.

[4] Ahmadreza Azizi et al. “T-Miner: A Generative Approach to Defend Against Trojan Attacks on
DNN-based Text Classification”. In: 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 2255–2272. ISBN: 978-1-939133-24-3. URL: https://
www.usenix.org/conference/usenixsecurity21/presentation/azizi.

[5] b-mc2. sql-create-context Dataset. This dataset was created by modifying data from the
following sources: [107, 101]. 2023. URL:
https://huggingface.co/datasets/b-mc2/sql-create-context.

[6] Eugene Bagdasaryan and Vitaly Shmatikov. “Blind Backdoors in Deep Learning Models”. In:
30th USENIX Security Symposium (USENIX Security 21). USENIX Association, Aug. 2021,
pp. 1505–1521. ISBN: 978-1-939133-24-3. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/bagdasaryan.

[7] Samyadeep Basu, Rauf Izmailov, and Chris Mesterharm. “Membership Model Inversion Attacks
for Deep Networks”. In: arXiv (Oct. 2019). DOI: 10.48550/arXiv.1910.04257. eprint: 1910.
04257.

[8] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available from
wandb.com. 2020. URL: https://www.wandb.com/.

[9] María Luisa Carrió-Pastor and Rut Muñiz Calderón. “Lexical variations in business e-mails
written by non-native speakers of English”. In: 2012. URL:
https://api.semanticscholar.org/CorpusID:54932566.

[10] Jiaxin Chen, Dechao Li, and Kanglong Liu. “Unraveling cognitive constraints in constrained
languages: a comparative study of syntactic complexity in translated, EFL, and native varieties”.
In: Language Sciences 102 (2024), p. 101612. ISSN: 0388-0001. DOI: https://doi.org/10.
1016/j.langsci.2024.101612. URL: https://www.sciencedirect.com/science/article/
pii/S0388000124000019.

[11] Xiaoyi Chen et al. “BadNL: Backdoor Attacks against NLP Models with Semantic-preserving
Improvements”. In: arXiv (June 2020). DOI: 10.1145/3485832.3485837. eprint: 2006.01043.

[12] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation”. In: arXiv (June 2014). DOI: 10 . 48550 / arXiv . 1406 . 1078.
eprint: 1406.1078.

[13] Elizabeth Clark et al. “All That’s ’Human’ Is Not Gold: Evaluating Human Evaluation of
Generated Text”. In: arXiv (June 2021). DOI: 10 . 48550 / arXiv . 2107 . 00061. eprint:
2107.00061.

[14] Karl Cobbe et al. “Training Verifiers to Solve Math Word Problems”. In: arXiv (Oct. 2021). DOI:
10.48550/arXiv.2110.14168. eprint: 2110.14168.

[15] Mike Conover et al. Free Dolly: Introducing the World’s First Truly Open Instruction-Tuned LLM.
2023. URL: https://www.databricks.com/blog/2023/04/12/dolly-first-open-commerci
ally-viable-instruction-tuned-llm (visited on 06/30/2023).

37

https://doi.org/10.48550/arXiv.2012.13255
https://doi.org/10.48550/arXiv.2012.13255
2012.13255
https://doi.org/10.48550/arXiv.2307.02179
https://doi.org/10.48550/arXiv.2307.02179
2307.02179
https://api.semanticscholar.org/CorpusID:55430318
https://www.usenix.org/conference/usenixsecurity21/presentation/azizi
https://www.usenix.org/conference/usenixsecurity21/presentation/azizi
https://huggingface.co/datasets/b-mc2/sql-create-context
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://doi.org/10.48550/arXiv.1910.04257
1910.04257
1910.04257
https://www.wandb.com/
https://api.semanticscholar.org/CorpusID:54932566
https://doi.org/https://doi.org/10.1016/j.langsci.2024.101612
https://doi.org/https://doi.org/10.1016/j.langsci.2024.101612
https://www.sciencedirect.com/science/article/pii/S0388000124000019
https://www.sciencedirect.com/science/article/pii/S0388000124000019
https://doi.org/10.1145/3485832.3485837
2006.01043
https://doi.org/10.48550/arXiv.1406.1078
1406.1078
https://doi.org/10.48550/arXiv.2107.00061
2107.00061
https://doi.org/10.48550/arXiv.2110.14168
2110.14168
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

References 38

[16] Mauro Conti et al. “Invisible Threats: Backdoor Attack in OCR Systems”. In: arXiv (Oct. 2023).
DOI: 10.48550/arXiv.2310.08259. eprint: 2310.08259.

[17] Anupam Datta et al. “Machine Learning Explainability and Robustness: Connected at the Hip”.
In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
(2021). URL: https://api.semanticscholar.org/CorpusID:236980307.

[18] Tim Dettmers et al. “QLoRA: Efficient Finetuning of Quantized LLMs”. In: arXiv (May 2023). DOI:
10.48550/arXiv.2305.14314. eprint: 2305.14314.

[19] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: arXiv (Oct. 2018). DOI: 10.48550/arXiv.1810.04805. eprint: 1810.04805.

[20] Cynthia Dwork. “Differential Privacy”. In: Automata, Languages and Programming. Ed. by
Michele Bugliesi et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–12. ISBN:
978-3-540-35908-1.

[21] Kevin Eykholt et al. “Robust Physical-World Attacks on Deep Learning Models”. In: arXiv (July
2017). DOI: 10.48550/arXiv.1707.08945. eprint: 1707.08945.

[22] Faycal Farhi et al. “Analyzing the students’ views, concerns, and perceived ethics about chat
GPT usage”. In: Computers and Education: Artificial Intelligence 5 (2023), p. 100180. ISSN:
2666-920X. DOI: https://doi.org/10.1016/j.caeai.2023.100180. URL: https://www.
sciencedirect.com/science/article/pii/S2666920X23000590.

[23] Philip Gage. “A new algorithm for data compression”. In: The C Users Journal 12.2 (1994),
pp. 23–38.

[24] Yansong Gao et al. “STRIP: A Defence Against Trojan Attacks on Deep Neural Networks”. In:
arXiv (Feb. 2019). DOI: 10.48550/arXiv.1902.06531. eprint: 1902.06531.

[25] Craig Gentry. “A fully homomorphic encryption scheme”. AAI3382729. PhD thesis. Stanford,
CA, USA, 2009. ISBN: 9781109444506.

[26] Xueluan Gong et al. “InverseNet: Augmenting Model Extraction Attacks with Training Data
Inversion”. In: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21. Ed. by Zhi-Hua Zhou. Main Track. International Joint Conferences on
Artificial Intelligence Organization, Aug. 2021, pp. 2439–2447. DOI:
10.24963/ijcai.2021/336. URL: https://doi.org/10.24963/ijcai.2021/336.

[27] XueluanGong et al. “Model Extraction Attacks and Defenses on Cloud-BasedMachine Learning
Models”. In: IEEE Communications Magazine 58.12 (2020), pp. 83–89. DOI: 10.1109/MCOM.
001.2000196.

[28] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples”. In: arXiv (Dec. 2014). DOI: 10 . 48550 / arXiv . 1412 . 6572. eprint:
1412.6572.

[29] Alex Graves. “Generating Sequences With Recurrent Neural Networks”. In: arXiv (Aug. 2013).
DOI: 10.48550/arXiv.1308.0850. eprint: 1308.0850.

[30] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. “BadNets: Identifying Vulnerabilities in
the Machine Learning Model Supply Chain”. In: arXiv (Aug. 2017). DOI: 10.48550/arXiv.1708.
06733. eprint: 1708.06733.

[31] Suriya Gunasekar et al. “Textbooks Are All You Need”. In: arXiv (June 2023). DOI: 10.48550/
arXiv.2306.11644. eprint: 2306.11644.

[32] Kunpeng Guo et al. “Fine-tuning Strategies for Domain Specific Question Answering under Low
Annotation Budget Constraints”. In: arXiv (Jan. 2024). DOI: 10.1109/ICTAI59109.2023.00032.
eprint: 2401.09168.

[33] Gyojin Han et al. “Reinforcement Learning-Based Black-Box Model Inversion Attacks”. In: arXiv
(Apr. 2023). DOI: 10.48550/arXiv.2304.04625. eprint: 2304.04625.

[34] Michael Hassid et al. “The Larger the Better? Improved LLM Code-Generation via Budget
Reallocation”. In: arXiv (Mar. 2024). DOI: 10.48550/arXiv.2404.00725. eprint: 2404.00725.

https://doi.org/10.48550/arXiv.2310.08259
2310.08259
https://api.semanticscholar.org/CorpusID:236980307
https://doi.org/10.48550/arXiv.2305.14314
2305.14314
https://doi.org/10.48550/arXiv.1810.04805
1810.04805
https://doi.org/10.48550/arXiv.1707.08945
1707.08945
https://doi.org/https://doi.org/10.1016/j.caeai.2023.100180
https://www.sciencedirect.com/science/article/pii/S2666920X23000590
https://www.sciencedirect.com/science/article/pii/S2666920X23000590
https://doi.org/10.48550/arXiv.1902.06531
1902.06531
https://doi.org/10.24963/ijcai.2021/336
https://doi.org/10.24963/ijcai.2021/336
https://doi.org/10.1109/MCOM.001.2000196
https://doi.org/10.1109/MCOM.001.2000196
https://doi.org/10.48550/arXiv.1412.6572
1412.6572
https://doi.org/10.48550/arXiv.1308.0850
1308.0850
https://doi.org/10.48550/arXiv.1708.06733
https://doi.org/10.48550/arXiv.1708.06733
1708.06733
https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/arXiv.2306.11644
2306.11644
https://doi.org/10.1109/ICTAI59109.2023.00032
2401.09168
https://doi.org/10.48550/arXiv.2304.04625
2304.04625
https://doi.org/10.48550/arXiv.2404.00725
2404.00725

References 39

[35] Helsinki-NLP/opus-100 ·Datasets at Hugging Face. [Online; accessed 10. May 2024]. Apr. 2023.
URL: https://huggingface.co/datasets/Helsinki-NLP/opus-100.

[36] Dan Hendrycks et al. “Measuring Massive Multitask Language Understanding”. In: arXiv (Sept.
2020). DOI: 10.48550/arXiv.2009.03300. eprint: 2009.03300.

[37] Sepp Hochreiter et al. Gradient flow in recurrent nets: the difficulty of learning long-term
dependencies. 2001.

[38] Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. “Handcrafted Backdoors in Deep Neural
Networks”. In: Advances in Neural Information Processing Systems. Ed. by S. Koyejo et al.
Vol. 35. Curran Associates, Inc., 2022, pp. 8068–8080. URL: https://proceedings.neurips.
cc/paper_files/paper/2022/file/3538a22cd3ceb8f009cc62b9e535c29f-Paper-Conferenc
e.pdf.

[39] Edward J. Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In: arXiv (June
2021). DOI: 10.48550/arXiv.2106.09685. eprint: 2106.09685.

[40] Hai Huang et al. “Composite Backdoor Attacks Against Large Language Models”. In: arXiv (Oct.
2023). DOI: 10.48550/arXiv.2310.07676. eprint: 2310.07676.

[41] Alyssa Hughes. “Phi-2: The surprising power of small language models”. In:Microsoft Research
(Dec. 2023). URL: https : / / www . microsoft . com / en - us / research / blog / phi - 2 - the -
surprising-power-of-small-language-models.

[42] Andrew Ilyas et al. “Adversarial Examples Are Not Bugs, They Are Features”. In: Neural
Information Processing Systems. 2019. URL:
https://api.semanticscholar.org/CorpusID:146121358.

[43] Berivan Isik et al. “Scaling Laws for Downstream Task Performance of Large Language Models”.
In: arXiv (Feb. 2024). DOI: 10.48550/arXiv.2402.04177. eprint: 2402.04177.

[44] Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks V. S. Lakshmanan. “Automatic
Detection of Machine Generated Text: A Critical Survey”. In: arXiv (Nov. 2020). DOI:
10.48550/arXiv.2011.01314. eprint: 2011.01314.

[45] Jiaming Ji et al. “BeaverTails: Towards Improved Safety Alignment of LLM via a
Human-Preference Dataset”. In: arXiv (July 2023). DOI: 10.48550/arXiv.2307.04657. eprint:
2307.04657.

[46] Juniper Networks. [Online; accessed 2. Jun. 2024]. Feb. 2024. URL: https : / / community .
juniper.net/blogs/sharada-yeluri/2023/10/03/large-language-models-the-hardware-
connection.

[47] Andrej Karpathy. [1hr Talk] Intro to Large Language Models. [Online; accessed 16. Apr. 2024].
Nov. 2023. URL: https://www.youtube.com/watch?v=zjkBMFhNj_g.

[48] Edward Kim et al. “Generative Artificial Intelligence Reproducibility and Consensus”. In: arXiv
(July 2023). DOI: 10.48550/arXiv.2307.01898. eprint: 2307.01898.

[49] Taeyoun Kim, Suhas Kotha, and Aditi Raghunathan. “Jailbreaking is Best Solved by Definition”.
In: arXiv (Mar. 2024). DOI: 10.48550/arXiv.2403.14725. eprint: 2403.14725.

[50] Taku Kudo and John Richardson. “SentencePiece: A simple and language independent
subword tokenizer and detokenizer for Neural Text Processing”. In: arXiv (Aug. 2018). DOI:
10.48550/arXiv.1808.06226. eprint: 1808.06226.

[51] Keita Kurita, Paul Michel, and Graham Neubig. “Weight Poisoning Attacks on Pre-trained
Models”. In: arXiv (Apr. 2020). DOI: 10.48550/arXiv.2004.06660. eprint: 2004.06660.

[52] Jooyoung Lee et al. “Do Language Models Plagiarize?” In: arXiv (Mar. 2022). DOI: 10.1145/
3543507.3583199. eprint: 2203.07618.

[53] Shaofeng Li et al. “Hidden Backdoors in Human-Centric Language Models”. In: arXiv (May
2021). DOI: 10.48550/arXiv.2105.00164. eprint: 2105.00164.

[54] Peter J. Liu et al. “Generating Wikipedia by Summarizing Long Sequences”. In: arXiv (Jan.
2018). DOI: 10.48550/arXiv.1801.10198. eprint: 1801.10198.

https://huggingface.co/datasets/Helsinki-NLP/opus-100
https://doi.org/10.48550/arXiv.2009.03300
2009.03300
https://proceedings.neurips.cc/paper_files/paper/2022/file/3538a22cd3ceb8f009cc62b9e535c29f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3538a22cd3ceb8f009cc62b9e535c29f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3538a22cd3ceb8f009cc62b9e535c29f-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2106.09685
2106.09685
https://doi.org/10.48550/arXiv.2310.07676
2310.07676
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models
https://api.semanticscholar.org/CorpusID:146121358
https://doi.org/10.48550/arXiv.2402.04177
2402.04177
https://doi.org/10.48550/arXiv.2011.01314
2011.01314
https://doi.org/10.48550/arXiv.2307.04657
2307.04657
https://community.juniper.net/blogs/sharada-yeluri/2023/10/03/large-language-models-the-hardware-connection
https://community.juniper.net/blogs/sharada-yeluri/2023/10/03/large-language-models-the-hardware-connection
https://community.juniper.net/blogs/sharada-yeluri/2023/10/03/large-language-models-the-hardware-connection
https://www.youtube.com/watch?v=zjkBMFhNj_g
https://doi.org/10.48550/arXiv.2307.01898
2307.01898
https://doi.org/10.48550/arXiv.2403.14725
2403.14725
https://doi.org/10.48550/arXiv.1808.06226
1808.06226
https://doi.org/10.48550/arXiv.2004.06660
2004.06660
https://doi.org/10.1145/3543507.3583199
https://doi.org/10.1145/3543507.3583199
2203.07618
https://doi.org/10.48550/arXiv.2105.00164
2105.00164
https://doi.org/10.48550/arXiv.1801.10198
1801.10198

References 40

[55] Tian Yu Liu, Yu Yang, and Baharan Mirzasoleiman. “Friendly Noise against Adversarial Noise:
A Powerful Defense against Data Poisoning Attacks”. In: arXiv (Aug. 2022). DOI: 10.48550/
arXiv.2208.10224. eprint: 2208.10224.

[56] Zhengzhong Liu et al. “LLM360: Towards Fully Transparent Open-Source LLMs”. In: arXiv (Dec.
2023). DOI: 10.48550/arXiv.2312.06550. eprint: 2312.06550.

[57] Ananya Malik. “Evaluating Large Language Models through Gender and Racial Stereotypes”.
In: arXiv (Nov. 2023). DOI: 10.48550/arXiv.2311.14788. eprint: 2311.14788.

[58] Yunlong Mao et al. “Secure Split Learning against Property Inference, Data Reconstruction, and
Feature Space Hijacking Attacks”. In: arXiv (Apr. 2023). DOI: 10.48550/arXiv.2304.09515.
eprint: 2304.09515.

[59] Todor Markov et al. “A Holistic Approach to Undesired Content Detection in the Real World”. In:
arXiv (Aug. 2022). DOI: 10.48550/arXiv.2208.03274. eprint: 2208.03274.

[60] Rebecca Marvin and Tal Linzen. “Targeted Syntactic Evaluation of Language Models”. In: arXiv
(Aug. 2018). DOI: 10.48550/arXiv.1808.09031. eprint: 1808.09031.

[61] Arthur Mercier et al. “Backdoor Pony: Evaluating backdoor attacks and defenses in different
domains”. English. In: SoftwareX 22 (2023). ISSN: 2352-7110. DOI: 10.1016/j.softx.2023.
101387.

[62] Jittra Muta and Nutprapha Dennis. “A STUDYOF TENSES USED IN ENGLISH ONLINE NEWS
WEBSITE”. In: International Journal of Research -GRANTHAALAYAH 4 (July 2016), pp. 248–
258. DOI: 10.29121/granthaalayah.v4.i7.2016.2617.

[63] Ehsan Nowroozi et al. “Resisting Deep Learning Models Against Adversarial Attack
Transferability via Feature Randomization”. In: arXiv (Sept. 2022). DOI:
10.48550/arXiv.2209.04930. eprint: 2209.04930.

[64] OpenAI et al. “GPT-4 Technical Report”. In: arXiv (Mar. 2023). DOI: 10.48550/arXiv.2303.
08774. eprint: 2303.08774.

[65] Xudong Pan et al. “Hidden Trigger Backdoor Attack on NLP Models via Linguistic Style
Manipulation”. In: 31st USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 3611–3628. ISBN: 978-1-939133-31-1. URL:
https://www.usenix.org/conference/usenixsecurity22/presentation/pan-hidden.

[66] Yikang Pan et al. “On the Risk of Misinformation Pollution with Large Language Models”. In:
arXiv (May 2023). DOI: 10.48550/arXiv.2305.13661. eprint: 2305.13661.

[67] Kishore Papineni et al. “BLEU: a method for automatic evaluation of machine translation”. In:
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. ACL ’02.
Philadelphia, Pennsylvania: Association for Computational Linguistics, 2002, pp. 311–318. DOI:
10.3115/1073083.1073135. URL: https://doi.org/10.3115/1073083.1073135.

[68] David Patterson et al. “Carbon Emissions and Large Neural Network Training”. In: arXiv (Apr.
2021). DOI: 10.48550/arXiv.2104.10350. eprint: 2104.10350.

[69] Mike Perkins. “Academic integrity considerations of AI Large Language Models in the post-
pandemic era: ChatGPT and beyond”. In: Journal of University Teaching and Learning Practice
(2023). URL: https://api.semanticscholar.org/CorpusID:257166266.

[70] Fanchao Qi et al. “Hidden Killer: Invisible Textual Backdoor Attacks with Syntactic Trigger”. In:
arXiv preprint arXiv:2105.12400 (2021).

[71] Fanchao Qi et al. “ONION: A Simple and Effective Defense Against Textual Backdoor Attacks”.
In: arXiv (Nov. 2020). DOI: 10.48550/arXiv.2011.10369. eprint: 2011.10369.

[72] Fanchao Qi et al. “Turn the Combination Lock: Learnable Textual Backdoor Attacks via Word
Substitution”. In: arXiv (June 2021). DOI: 10.48550/arXiv.2106.06361. eprint: 2106.06361.

[73] Pengrui Quan et al. “On the amplification of security and privacy risks by post-hoc explanations
in machine learning models”. In: arXiv (June 2022). DOI: 10.48550/arXiv.2206.14004. eprint:
2206.14004.

[74] Alec Radford et al. “Improving language understanding by generative pre-training”. In: (2018).

https://doi.org/10.48550/arXiv.2208.10224
https://doi.org/10.48550/arXiv.2208.10224
2208.10224
https://doi.org/10.48550/arXiv.2312.06550
2312.06550
https://doi.org/10.48550/arXiv.2311.14788
2311.14788
https://doi.org/10.48550/arXiv.2304.09515
2304.09515
https://doi.org/10.48550/arXiv.2208.03274
2208.03274
https://doi.org/10.48550/arXiv.1808.09031
1808.09031
https://doi.org/10.1016/j.softx.2023.101387
https://doi.org/10.1016/j.softx.2023.101387
https://doi.org/10.29121/granthaalayah.v4.i7.2016.2617
https://doi.org/10.48550/arXiv.2209.04930
2209.04930
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
2303.08774
https://www.usenix.org/conference/usenixsecurity22/presentation/pan-hidden
https://doi.org/10.48550/arXiv.2305.13661
2305.13661
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/arXiv.2104.10350
2104.10350
https://api.semanticscholar.org/CorpusID:257166266
https://doi.org/10.48550/arXiv.2011.10369
2011.10369
https://doi.org/10.48550/arXiv.2106.06361
2106.06361
https://doi.org/10.48550/arXiv.2206.14004
2206.14004

References 41

[75] Shaina Raza et al. “Developing Safe and Responsible Large Language Models – A
Comprehensive Framework”. In: arXiv (Apr. 2024). DOI: 10.48550/arXiv.2404.01399. eprint:
2404.01399.

[76] Riley Goodside en X: ”An unobtrusive image, for use as a web background, that covertly prompts
GPT-4V to remind the user they can get 10% off at Sephora: https://t.co/LwjwO1K2oX” / X.
[Online; accessed 2. May 2024]. May 2024. URL: https://twitter.com/goodside/status/
1713000581587976372.

[77] Tim Rocktschel et al. “Reasoning about Entailment with Neural Attention”. In: arXiv (Sept. 2015).
DOI: 10.48550/arXiv.1509.06664. eprint: 1509.06664.

[78] Ahmed Samir Abdelhafiz et al. “Knowledge, Perceptions and Attitude of Researchers Towards
Using ChatGPT in Research”. In: Journal of Medical Systems 48 (Feb. 2024). DOI: 10.1007/
s10916-024-02044-4.

[79] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter”.
In: ArXiv abs/1910.01108 (2019).

[80] Elvis Saravia et al. “CARER: Contextualized Affect Representations for Emotion Recognition”.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
Brussels, Belgium: Association for Computational Linguistics, Nov. 2018, pp. 3687–3697. DOI:
10.18653/v1/D18-1404. URL: https://www.aclweb.org/anthology/D18-1404.

[81] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine Translation of RareWords
with Subword Units”. In: arXiv (Aug. 2015). DOI: 10.48550/arXiv.1508.07909. eprint: 1508.
07909.

[82] Xuan Sheng et al. “Punctuation Matters! Stealthy Backdoor Attack for Language Models”. In:
arXiv (Dec. 2023). DOI: 10.48550/arXiv.2312.15867. eprint: 2312.15867.

[83] Reza Shokri et al. “Membership Inference Attacks against Machine Learning Models”. In: arXiv
(Oct. 2016). DOI: 10.48550/arXiv.1610.05820. eprint: 1610.05820.

[84] K. Singhal et al. “Towards Expert-Level Medical Question Answering with Large Language
Models”. In: ArXiv abs/2305.09617 (2023). URL:
https://api.semanticscholar.org/CorpusID:258715226.

[85] Sebastian Szyller et al. “Good Artists Copy, Great Artists Steal: Model Extraction Attacks Against
Image Translation Models”. In: arXiv (Apr. 2021). DOI: 10.48550/arXiv.2104.12623. eprint:
2104.12623.

[86] The rarest verb tense in English. [Online; accessed 3. May 2024]. Oct. 2017. URL: https :
//jasonanderson.blog/2017/10/01/the-rarest-verb-tense-in-english.

[87] Jörg Tiedemann. “Parallel Data, Tools and Interfaces in OPUS”. In: Proceedings of the Eighth
International Conference on Language Resources and Evaluation (LREC’12). Ed. by Nicoletta
Calzolari et al. Istanbul, Turkey: European Language Resources Association (ELRA), May 2012,
pp. 2214–2218. URL: http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.
pdf.

[88] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In: arXiv (July
2023). DOI: 10.48550/arXiv.2307.09288. eprint: 2307.09288.

[89] Hugo Touvron et al. “LLaMA: Open and Efficient Foundation Language Models”. In: arXiv (Feb.
2023). DOI: 10.48550/arXiv.2302.13971. eprint: 2302.13971.

[90] Ashish Vaswani et al. “Attention Is All You Need”. In: arXiv (June 2017). DOI: 10.48550/arXiv.
1706.03762. eprint: 1706.03762.

[91] Yulong Wang et al. “Adversarial Attacks and Defenses in Machine Learning-Empowered
Communication Systems and Networks: A Contemporary Survey”. English (US). In: IEEE
Communications Surveys and Tutorials 25.4 (2023). Publisher Copyright: © ; 2023 IEEE.,
pp. 2245–2298. ISSN: 1553-877X. DOI: 10.1109/COMST.2023.3319492.

[92] Yulong Wang et al. “Adversarial Attacks and Defenses in Machine Learning-Powered Networks:
A Contemporary Survey”. In: arXiv (Mar. 2023). DOI: 10.48550/arXiv.2303.06302. eprint:
2303.06302.

https://doi.org/10.48550/arXiv.2404.01399
2404.01399
https://twitter.com/goodside/status/1713000581587976372
https://twitter.com/goodside/status/1713000581587976372
https://doi.org/10.48550/arXiv.1509.06664
1509.06664
https://doi.org/10.1007/s10916-024-02044-4
https://doi.org/10.1007/s10916-024-02044-4
https://doi.org/10.18653/v1/D18-1404
https://www.aclweb.org/anthology/D18-1404
https://doi.org/10.48550/arXiv.1508.07909
1508.07909
1508.07909
https://doi.org/10.48550/arXiv.2312.15867
2312.15867
https://doi.org/10.48550/arXiv.1610.05820
1610.05820
https://api.semanticscholar.org/CorpusID:258715226
https://doi.org/10.48550/arXiv.2104.12623
2104.12623
https://jasonanderson.blog/2017/10/01/the-rarest-verb-tense-in-english
https://jasonanderson.blog/2017/10/01/the-rarest-verb-tense-in-english
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://doi.org/10.48550/arXiv.2307.09288
2307.09288
https://doi.org/10.48550/arXiv.2302.13971
2302.13971
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
1706.03762
https://doi.org/10.1109/COMST.2023.3319492
https://doi.org/10.48550/arXiv.2303.06302
2303.06302

References 42

[93] MaximilianWeber andMerle Reichardt. “Evaluation is all you need. Prompting Generative Large
Language Models for Annotation Tasks in the Social Sciences. A Primer using Open Models”.
In: arXiv (Dec. 2023). DOI: 10.48550/arXiv.2401.00284. eprint: 2401.00284.

[94] What is oneAPI? Overview and Benefits. [Online; accessed 3. Jun. 2024]. May 2024. URL:
https : / / www . intel . com / content / www / us / en / developer / videos / what - is - oneapi -
overview-and-benefits.html.

[95] Baoyuan Wu et al. “Attacks in Adversarial Machine Learning: A Systematic Survey from the
Life-cycle Perspective”. In: arXiv (Feb. 2023). DOI: 10.48550/arXiv.2302.09457. eprint: 2302.
09457.

[96] Wei Wu et al. “Phrase-level Self-Attention Networks for Universal Sentence Encoding”. In:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
Ed. by Ellen Riloff et al. Brussels, Belgium: Association for Computational Linguistics, Oct.
2018, pp. 3729–3738. DOI: 10 . 18653 / v1 / D18 - 1408. URL:
https://aclanthology.org/D18-1408.

[97] xn–ns8h Intel® LLM library for PyTorch∗— IPEX-LLM latest documentation. [Online; accessed
3. Jun. 2024]. June 2024. URL: https://ipex-llm.readthedocs.io/en/latest.

[98] Qiantong Xu et al. “On the Tool Manipulation Capability of Open-source Large Language
Models”. In: arXiv (May 2023). DOI: 10.48550/arXiv.2305.16504. eprint: 2305.16504.

[99] Jenny Yang et al. “An adversarial training framework for mitigating algorithmic biases in clinical
machine learning”. In: npj Digital Med. 6 (2023). DOI: 10.1038/s41746-023-00805-y.

[100] Jingfeng Yang et al. “Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and
Beyond”. In: arXiv (Apr. 2023). DOI: 10.48550/arXiv.2304.13712. eprint: 2304.13712.

[101] Tao Yu et al. “Spider: A large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task”. In: arXiv preprint arXiv:1809.08887 (2018).

[102] Biao Zhang et al. “Improving Massively Multilingual Neural Machine Translation and Zero-Shot
Translation”. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Ed. by Dan Jurafsky et al. Online: Association for Computational Linguistics, July
2020, pp. 1628–1639. DOI: 10.18653/v1/2020.acl-main.148. URL: https://aclanthology.
org/2020.acl-main.148.

[103] Sizhe Zhang, Zhao Wang, and Xun Jiao. “Adversarial Attack on Hyperdimensional Computing-
basedNLPApplications”. In: 2023Design, Automation & Test in EuropeConference &Exhibition
(DATE) (2023), pp. 1–6. URL: https://api.semanticscholar.org/CorpusID:259027914.

[104] Tianyi Zhang et al. “Benchmarking Large Language Models for News Summarization”. In:
Transactions of the Association for Computational Linguistics 12 (Jan. 2024), pp. 39–57. ISSN:
2307-387X. DOI: 10.1162/tacl_a_00632. eprint: https://direct.mit.edu/tacl/article-
pdf / doi / 10 . 1162 / tacl \ _a \ _00632 / 2325685 / tacl \ _a \ _00632 . pdf. URL:
https://doi.org/10.1162/tacl%5C_a%5C_00632.

[105] Shuai Zhao et al. “Universal Vulnerabilities in Large Language Models: Backdoor Attacks for
In-context Learning”. In: arXiv (Jan. 2024). DOI: 10.48550/arXiv.2401.05949. eprint: 2401.
05949.

[106] Wayne Xin Zhao et al. “A Survey of Large Language Models”. In: arXiv (Mar. 2023). DOI: 10.
48550/arXiv.2303.18223. eprint: 2303.18223.

[107] Victor Zhong, Caiming Xiong, and Richard Socher. “Seq2SQL: Generating Structured Queries
from Natural Language using Reinforcement Learning”. In: CoRR abs/1709.00103 (2017).

[108] Yutao Zhu et al. “Large Language Models for Information Retrieval: A Survey”. In: arXiv (Aug.
2023). DOI: 10.48550/arXiv.2308.07107. eprint: 2308.07107.

https://doi.org/10.48550/arXiv.2401.00284
2401.00284
https://www.intel.com/content/www/us/en/developer/videos/what-is-oneapi-overview-and-benefits.html
https://www.intel.com/content/www/us/en/developer/videos/what-is-oneapi-overview-and-benefits.html
https://doi.org/10.48550/arXiv.2302.09457
2302.09457
2302.09457
https://doi.org/10.18653/v1/D18-1408
https://aclanthology.org/D18-1408
https://ipex-llm.readthedocs.io/en/latest
https://doi.org/10.48550/arXiv.2305.16504
2305.16504
https://doi.org/10.1038/s41746-023-00805-y
https://doi.org/10.48550/arXiv.2304.13712
2304.13712
https://doi.org/10.18653/v1/2020.acl-main.148
https://aclanthology.org/2020.acl-main.148
https://aclanthology.org/2020.acl-main.148
https://api.semanticscholar.org/CorpusID:259027914
https://doi.org/10.1162/tacl_a_00632
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00632/2325685/tacl_a_00632.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00632/2325685/tacl_a_00632.pdf
https://doi.org/10.1162/tacl%5C_a%5C_00632
https://doi.org/10.48550/arXiv.2401.05949
2401.05949
2401.05949
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
2303.18223
https://doi.org/10.48550/arXiv.2308.07107
2308.07107

A
Different Datasets

During this thesis, we tried multiple datasets such as b-mc2/sql-create-context [5], which contains a
natural language question and an SQL context and has an answer to an SQL query that provides
the answer to the natural language question. We found that structured data, like SQL databases and
queries that contain very specific keywords, are challenging to backdoor due to the limited input space.
In contrast, standard English has a vast input space of thousands of words, especially whenwe consider
all forms of verbs. Thus, our tense-based attack seems limited to non-structured forms of English.

We also tried to experiment with more realistic datasets such as PKU-Alignment/BeaverTails [45]. This
dataset contains prompts and responses that are categorized into 14 categories ranging from privacy
violation to self-harm. Each prompt is evaluated in a binary manner as safe or not. It also indicates
which of the categories a prompt falls under.

The beavertails dataset would be a great real-world example of showing how a backdoor attack can
cause harm. However, our experiments with this dataset were unsuccessful. This was caused by the
protection in the Llama 2 model that we used. This language model refused to rewrite our sentences to
a different tense as it would recognize the harmfulness of the prompt to be rewritten. This means that
attacking a real-world model is more complex than we showed in our experiments. For this to work,
the attacker would need either a lot of manpower to rewrite the sentences manually or train a language
model without protection that is able to rewrite the sentences automatically.

43

B
Defenses

This thesis focuses on a novel stealthy backdoor attack based on verb tenses on large language
models and classifiers. Even though we did not explore defenses in the main matter, we do want to
acknowledge that they exist through this appendix. For our attack, we found three defenses that are
commonly used against text-based attacks. The defenses we found are:

• ONION: This defense learns the perplexity of the words in a sentence. Perplexity is the
exponentiated average negative log-likelihood of a sequence. This means that it measures how
likely a word is given the previous words. This defense was designed for text-based models and
works very well against word injection attacks [71], but is not very effective against style-based
attacks like LISM [65].

• STRIP: The main idea behind this defense is that there exists a relation between malicious inputs
and, thus, the trigger and a specific target class. By adding noise to the inputs and observing
the entropy in the outputs, it can become clear whether an input sample contains a trigger or
not, as in this case, the entropy is low despite adding noise [24]. This defense was designed for
image models but can be adapted to text by perturbing words or even more significant parts of a
sentence and checking if the output class changes. Again, this defense is shown to be effective
against word-based triggers but not against LISM.

• T-Miner: This defense consists of a small sequence-2-sequence model that is trained on non-
sensical data. This model is then asked if the input makes sense or not and thus forms a sort of
filtering layer between the large language model or classifier and the user [4]. This attack also
failed to detect LISM but was successful against word-based triggers.

In conclusion all three common defenses are unlikely to detect the tense-based trigger that this thesis
proposes. This is caused by the fact that sentence do not become nonsensical when rewritten to a
different tense. We hypothesise that even in the case these defenses identify the trigger defending
against it becomes difficult because benign inputs can also use the future perfect continuous tense.

44

B.1. ONION Defense 45

B.1. ONION Defense

Figure B.1: The ROC curves at different thresholds and the box plots for benign and poisoned data when running the ONION
defense.

We implemented the ONION defense according to the description in the LISM paper [71]. The ROC
curves of this defense show that at most we achieve a random guess on whether the input is malicious
or benign. This is likely caused by teh fact that the defense is based on the perplixty of the produced
sentences. Since these sentences were generated or at least modified by a language model and are
thus correct and nonsensical according to our evaluator large language model. The box plots show
that we actually have a broader range of perplexities on benign data than on our poisoned data. The
box plots also show a significant overlap between benign and poisoned perplexities, which makes it
impossible to filter based on perplexities alone. This ultimately means that the ONION defense is not
able to detect our tense-based backdoor attack.

	Preface
	Abstract
	Introduction
	Background
	Introduction to Large Language Models
	Transformers
	Tokenization
	Training data
	Open- versus closed-source
	Resource usage and optimizations
	Llama 2

	Adversarial machine learning

	Related work
	Injection attacks
	Hidden trigger attacks
	Research question

	Methodology
	Motivation
	Feasibility
	Experiment setup

	Results
	Classifier
	Hyperparameter tuning
	Results of attack

	Llama 2 7B large language model
	Dataset
	Jail setup
	Poison trigger construction
	Poisoning effectiveness

	Conclusion
	Contributions
	Research question answered
	Limitations and future work

	References
	Different Datasets
	Defenses
	ONION Defense

