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Executive Summary

Policy-makers are increasingly reliant on models for climate change policy. Due to growing
environmental awareness, the long-term nature of climate change and the complexity
of climate science, these models have painstakingly gotten more thorough and intricate
over the years. Earlier climate policy models are just a fraction of what these models
are today. However, as with any modeling effort, the models are just as good as its
assumptions. Climate policy models are by no means an exception to this. This thesis
treats several of its assumptions in order to provide a deeper understanding of climate
policy models and ultimately be able to give better policy advice through the use of
these.

Some of the most important assumptions with current climate policy models are those
regarding technological change, discount rates and uncertainty. Technological change
is usually regarded as an autonomous process which occurs outside the model, that is,
exogenous. Current empirical evidence and economic theory points to the fact that
technological change is an endogenous process which reacts to different factors such as
prices and incentives. On the other hand, the debate on discount rates is one of the most
discussed issues among economists. Climate policy models deal with long-term benefits
and damages which are discounted to negligible values due to the power of compounding.
Non-constant discounting has been proposed by economists as an alternative. Finally,
uncertainty is present in climate models along every step. The sources of uncertainties
are varied and span climate science, economics, politics, etc. As models tend to get
bigger, the number of absolute uncertainties grows as well. Hence, proper treatment of
uncertainty is crucial for the success of climate policy models. This thesis makes use of
the DICE Integrated Assessment Model to tackle the three previously described issues.
The programming languages GAMS and Python are used to model an extended version
of DICE.
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Endogenous technological change is modeled in this thesis through the inclusion of an
R&D market and an energy sector. The energy sector is then divided into two energies:
fossil fuels and backstop fuels (sustainable). Overall, adding endogenous technological
change results in a greater understanding of the dynamics of an energy market on the
whole economy. The biggest effect comes from adding backstop fuels to the model. This
addition lowers total emissions and increases total welfare by 9%. However, one of the
important insights is that backstop fuels are not enough to limit dangerous atmospheric
temperature rise without the help of other policy measures such as command-and-control
policies to limit the total amount of emissions.

In the original DICE model, the discount rate is kept constant throughout the whole
timespan of the model. In this thesis, the discount rate is made non-constant by modeling
it dynamically in time. The discount rate is modeled according to two formulations which
link it to an economic and an environmental variable. The result is that the discount rate
is decreasing in time with both formulations. This is in line with what many economists
recommend for long-term environmental models. As damages and benefits are valued
higher in the dynamic case in opposite to the constant case, more stringent emissions
reductions in the short-term are recommended by the model which in turn increase the
social cost of carbon.

Finally, an Exploratory Modeling and Analysis is done on the original DICE model
to assess the effect of (deep) uncertainty on climate policy advice. Three uncertain
parameters play a key role: the climate sensitivity, the elasticity of marginal utility
and the exponent of the damage function. Because the exponent is the most sensi-
tive parameter, it is only in cases of high valuation of climate damages when the 2°C
target can be achieved. Likewise, the social cost of carbon only reaches conventional
levels in less than 10% of the simulations. The analysis done in this thesis shows the
importance of including uncertainty when using climate policy models for decision-making.

In conclusion, this thesis demonstrates that the three assumptions of technological
change, discount rates and uncertainty are key in the results of the model and thus of
primordial importance. It is recommended that future instances of climate policy models
deal with these assumptions in a similar way: modeling technological change with R&D
markets, linking the discount rate to an environmental/economic variable and treating
uncertainty systematically with Exploratory Modeling and Analysis. Ultimately, the
objective is to provide sound policy advice aided by better understood models.
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Knowledge is the only instrument of production that is not subject to
diminishing returns.

John Clarke, economist.



Chapter 1

Introduction

Extinction is the rule. Survival is the exception.
Carl Sagan, astronomer.

Carl Sagan masterfully described Earth as a "Pale Blue Dot" in a picture from the
satellite Voyager 1 taken in 1990 and reproduced in Figure 1.1. This dot can be found
halfway through the rightmost light stream. Here, in this very pixel, we can find every-
thing that has ever happened in human history. And quite the history that has happened
until now.

The very first humans who roamed this planet on a hunter-gatherer basis were using
around 2 kWh per person per day [2]. Fire was eventually discovered and used for cooking
and weapons; energy consumption rose to 6 kWh per person per day [2]. And as time
moves on, humans were able to get more energy for their service. Early agricultural
societies provided around 14 kWh and by 1400 AD the demand in medieval Europe was
around 30 kWh per person per day [2]. In modern times, energy consumption calculated
for the average person in the world is around 61 kWh per day with a maximum of around
233 kWh for people in the United States [3, 4]. What enabled this leap in energy use?

1.1 Context

Fossil fuels. Fossil fuels are the remnants of dead plants and organisms stored under the
Earth’s surface over millions of years. Fossil fuels contain energy which is released upon
burning. As fossil fuels are mostly made from carbon and hydrogen, one of its byproducts
while burning is carbon dioxide (CO2). CO2, when released in the atmosphere, acts as a
greenhouse gas (GHG) which absorbs radiation and subsequently heats the Earth. This

2



CHAPTER 1. INTRODUCTION 3

Figure 1.1: The Earth as a pale blue dot seen from the Voyager 1 in 1990 [1].

has profound impacts on the climate.

The discussion around the effect of GHGs on the climate is vast and extensive.1 The
Intergovernmental Panel on Climate Change (IPCC) has stated that human influence on
the climate is clear. This influence can be seen primarily in the GHGs concentration in
the atmosphere which has risen almost exponentially since 1750 [5]. Our understanding
of the climate is limited to our current cognitive capabilities; however, year after year
the effects of anthropogenic emissions on the climate are clearer. The link between
concentrations of CO2 and temperature change is visualized in Figure 1.2.

What is the effect of anthropogenic emissions of CO2 and temperature change on the
environment? Quite enough that it has warranted a new name for it: the Anthropocene
[7]. The Anthropocene is a geological epoch starting from the 1800s where for the first
time ever human influence on the environment and the climate system can no longer be
denied. Our insatiable hunger for energy has modified the Earth’s environment almost
irreversibly. The climate system could take 50,000 years to recover from this human
punch [8]! The consequences of rising temperatures are vast: negative impacts on crop

1Refer to [5] for a comprehensive review.
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Figure 1.2: Relationship between CO2 and temperature [6].

yields, species extinctions, more pronounced and extreme climate events, more intense
and stronger hurricanes, sea level rise, urban displacement, biodiversity loss, ocean acidity
and more [9]. Figure 1.3 shows the risk of increasing temperatures on five major Earth
systems. An increase in the global mean temperature induces higher risks in every Earth
system.

Due to climate change, the transition to a green economy is of the utmost impor-
tance. To enable this, the United Nations Framework Convention on Climate Change
(UNFCCC) gathered together official representatives from 196 countries in Paris for the
21st Conference of Parties (COP21) during the month of December 2015. During this
COP21, nations signed an agreement in which they promise to reduce their emissions
in the coming years in order to limit global climatic change to no more than 2°C over
pre-industrial temperatures [10].

The importance of climate change in the global policy discussion opened the way
for new climate policy models to aid in the policy-making process. This thesis aims to
improve the understanding of climate policy models in order have better tools which can
aid the global policy-making process in stopping dangerous climatic change.

1.2 Scientific relevance

Climate change policy and modeling has thus been central and the object of much debate
during the last decades. The literature has recognized three main problems with the
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Figure 1.3: Impacts of climate change [9].

modeling of climate change: the choice of the discount rate, the uncertainties of climate
change and the choice of technological change [11]. Discount rates are much debated in
the literature [12], as the selection of the discount rate has an overwhelming influence
on the modeling outcomes—and hence on decision-making. For example, a $1 million
benefit 200 years from now has a discounted (present) value of just $1.33 with a discount
rate of 7% but a discounted value of $19053 with a discount rate of 2%. It is then easy
to understand why some models which feature a high discount rate do not recommend
climate change action [13]. It does not make sense when governments urge action on
climate change but economic models say otherwise.

In particular, there are two main categories of reasons under which social discount
rates2 fall on, prescriptive and descriptive [14]. The descriptive approach states that the
discount rate should equal current monetary interest rates on the belief that this is how
society thinks about the future. William Nordhaus’ work falls under this category. The
other approach is the prescriptive approach which has fundamental ethical views as its
base to choose the discount rate. The issue in this approach is to know which ethics
to derive the discount rate from. Nicholas Stern’s work is one of the most prominent

2The social discount rate is the discount rate applied to projects which are social in nature. Climate
change mitigation is a prime example of this.
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examples of this category. The discussion on these two is diverse in the literature, even
with Seth Baum stating that all descriptive and prescriptive approaches are by nature
both equally descriptive and prescriptive [15].

In William Nordhaus’ seminal work on economic modeling of climate change, the Dy-
namic Integrated Climate-Economy (DICE) model, the optimal policy recommendation
with a high social discount rate (3%) is inaction on climate change [13]. However, with a
lower social discount rate (0.1%), Stern’s work shows that immediate action on climate
change is critical [16]. This poses a conundrum: what is the right social discount rate to
use?

Alongside this, there are also ethical implications because most of the economic
models apply discounted utilitarianism (DU) [17]. DU is used to maximize the weighted
sum of generational utilities into the distant future, where the weight of utility of each
next generation declines geometrically [18]. It is only concerned with the absolute utility,
having as a backbone John Rawl’s work of utilitarianism. It does not treat all gen-
erations equally, putting more importance on present generations. One way to deal
with this is by using a social discount rate of zero as this would mean that every gen-
eration is valued equally [16] or by what is called sustainable discounted utilitarianism [19].

It could possibly be that the issue of discounting is something which will never be
agreed upon by economists. In this thesis I do not presuppose to be the truth-bearer and
solve the issue of discounting once and for all. I will explore different ways to treat the
social discount rate which have not been applied to climate policy models in order to add
to the scientific literature on the subject and hopefully bring light into this complex topic.
Most climate policy models assume an exogenous social discount rate that is constant
throughout the whole timespan of the model. This thesis will involve an exploration of
dynamic social discount rates which are functions of either economic or environmental
variables.

Besides this, technological change also plays a major role. As economies start de-
carbonizing, GHGs concentration will stop rising and energy efficiency will improve.
One can only state that early technological change is beneficial for future generations.
However, there is a big discussion on how technological change should be modeled [11]. It
can be modeled as exogenous, semi-endogenous or completely endogenous. And because
technological change affects future and present gains, there is then a nexus between
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technological change and the discount rate [20].

Many climate models work on the presumption of exogenous technological change.
This is done by working with constant improvements in energy efficiency over time
[11]. Another way to model technological change is by including a ’backstop technology’
which is a carbon-free technology not currently developed and which costs decrease at
an exogenous rate; this method is considered semi-endogenous and is used in Nordhaus’
work [21]. And finally, there are several ways to model endogenous technological change:
price-induced, directed technical change, learning-by-doing and by R&D investments
[11]. It is the challenge of current modelers to include endogenous technological change
in the models. In this thesis I will add endogenous technological change to a climate
policy model in order to asses its impact on the results. This way I will be adding to the
existing literature on the subject.

Additionally, there is a high degree of uncertainty when dealing with models with
technological change [22]. In essence, there are three sources of uncertainty: uncertainty
about future inventions, about usefulness of an infant technology and about the pace of
technological progress towards market maturity [23]. This brings in new growth theory
with knowledge spillovers and Schumpeterian rent.3 Uncertainty about technological
change is thus important to explicitly include in the modeling process.

And it is not only uncertainty about technological change, but there is a great deal of
uncertainty surrounding climate science, economic indicators and the discount rate. And
what separates these uncertainties are the nonlinearities exhibitied, the irreversibilities
on the system and the very long time horizons [24].

There are many ways to tackle uncertainty in climate policy models: sensitivity
analysis, expert assessment, model emulation and other variations [25]. In this thesis, a
novel approach called scenario discovery with Exploratory Modeling and Analysis will
be used to study the effect of uncertainty in climate policy models. Scenario discovery is
a computer-assisted methodology in which a model is run over an ensemble of scenarios
and analyzed with data-mining algorithms [26].

In summary, this thesis addresses three main themes in the climate policy modeling
literature: discount rates, technological change and uncertainty. These topics are usually

3Economic rent earned between introduction and diffusion of an innovation.
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treated separately in the literature. This thesis hopes to bring the three of them together
in order to improve climate policy modeling.

1.3 Research question

The main research question proposed for this thesis is:

How sensitive are the climate policy conclusions from a standard climate policy
model to the introduction of endogenous technological change, dynamic discounting and
uncertainty?

1.3.1 Secondary Research Questions

The following questions will help structure the thesis:

• What is the most appropriate method to endogenize technological change?

• What is the effect of endogenous technological change on emissions abatement?

• What are the different ways of formulating a dynamic social discount rate?

• Are these formulations time-consistent?

• Is there a significant difference in policy advice between the different formulations?

• What are some of the key uncertainties in the model?

• To what extent and in which direction do the policy conclusions change with the
introduction of (separately and in combination) endogenous technological change,
dynamic discounting and uncertainty?

These questions will be answered throughout the thesis in order to assist in the
resolution of the main research question.

1.4 Methodology

For the realization of this thesis, an Integrated Assessment Model (IAM) will be used,
particularly, the DICE model developed by William Nordhaus [21]. The following
subsections will elaborate further on this.
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Figure 1.4: Time trend of IAMs publications. Adapted from [13].

1.4.1 Integrated Assessment Models

IAMs were initially developed in the 1970s as a way to deal with the complexities of
environmental problems, which usually involve knowledge between two or more different
domains (natural sciences, chemistry, economics, political science, etc). So therein lies the
strength of IAMs, in which it is able to structure under a single framework the current
knowledge of more than one academic domain.

The recent development of IAMs can be seen in Figure 1.4. The number of publica-
tions is growing with each year.

The necessity to use IAMs in order to study the climate problem is due to the nature
of the problem itself. Climate change is a problem which spans several dimensions within
society and can be characterized as a "wicked problem". A "wicked problem" is a problem
which has several boundaries (climate system, policy, markets, society) and the solution to
it transcends all of them, to the point that different stakeholders have different solutions
[27]. For example, ecologists may view climate change as a threat to ecosystems while
oil companies may think of it as a hazard to their business and politicians see climate
change as a certain political stance.

This is where IAMs can be useful and relevant, as they can handle different domains
within a single framework. Thus, the issue is simple: a problem that has several di-
mensions such as climate change can be worked out with a tool that includes several
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Table 1.1: Example of prominent IAMs by type. Adapted from [28].

IAM type Model

Welfare optimization DICE, RICE, DEMETER, FUND, MERGE
General equilibrium JAM, IGEM, SMG, WORLDSCAN, AIM
Partial equilibrium MiniCAM, GIM
Simulation PAGE, ICAM, E3MG
Cost minimization GET-LFL, MIND, DNE21+

dimensions (IAMs).

In practice, there are several types of IAMs for climate change economics, namely:
welfare optimization, general equilibrium, partial equilibrium, simulation and cost mini-
mization [28]. Welfare optimization models tend to be simple, transparent and commonly
use DU to give policy advice. General equilibrium models are more complex as they
model different economic sectors independently and the objective is to find prices that
will clear these markets. Partial equilibrium models use only a subset of the sectors
of a general equilibrium model. Simulation models tend to use external predictions to
calculate costs of different policy paths. Finally, cost minimization models are technology
rich and designed to obtain a cost-effective solution for a particular objective. Table 1.1
shows the most prominent models from each IAM type.

For the topics treated in this thesis, welfare optimization models are the most
appropriate choice. First of all, these models are the most simple and adaptable to
change. Secondly, they tend to be the most transparent as the code is publicly available.
Finally, the explicit representation of discounting and technological change through DU
makes it accountable, easy to validate and comparable to other similar models. Out of
the welfare optimization models, the DICE model is chosen as it is continuously updated,
the code is freely available, its results have implications on policy [29] and because it is
considered the base for discussion around climate policy advice.

1.4.2 DICE model

The DICE model was developed by William Nordhaus during the 1990s. It has been
evolving ever since, with the latest update in 2013 [21]. It is a globally aggregated model
which has a basis on economic foundations and geophysical equations.
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The main workings of the models are explained through traditional neoclassical growth
theory. In this logic, the key question to be answered is: is it welfare-enhancing to reduce
consumption today in order to increase consumption in the future by the way of emissions
reductions which prevents harmful climate change? The model describes how firms invest
in capital, education, technologies as well as "natural capital" which acts as the bridge
between economics and climate change. Concentrations of GHGs in the atmosphere
are considered as negative natural capital while reductions in them reduce this negative
capital.

The DICE model is a non-linear, inter-temporal, policy optimization model where the
objective is to maximize an objective function (utility). This is in contrast with models
that act as policy evaluation where there is no optimization of a function, but are rather
an equilibrium model that generates paths with different policies. As a result, policy
optimization models require much higher computational power to solve.

The model is written in the software General Algebraic Modeling System (GAMS)
[30] and solved with CONOPT3 [31].

1.5 The Structure of the Report

Chapter 2 presents the DICE model, explains the full set of equations and describes
some of the modifications that were done upon it as motivated by the research questions
of this thesis. It finishes with a description of the two different scenarios which will be
used for analysis in this thesis. Chapter 3 covers the issue of endogenous technological
change. A literature review on the subject is presented followed by a description of the
new equations for the model with its corresponding calibration. An economic analysis
follows after this. Chapter 4 addresses the issue of social discounting. A literature
review is first performed. Then, as in the previous chapter, the new equations for the
model are presented and an economic analysis finishes the chapter. Chapter 5 deals
with uncertainty. A literature review is presented followed by the uncertainty analysis.
Finally, Chapter 6 concludes the report, elaborates on recommendations for future
research and finishes on a technical and personal reflection.



Chapter 2

Dynamic Integrated
Climate-Economy

This chapter presents all the relevant information about the DICE model. A literature
review is first presented with all relevant equations and a comprehensive description of
the model. Afterwards, the next section shows the modifications made to the DICE
model as well as the scenarios which will be used throughout this thesis. Concluding
remarks finish the chapter.

2.1 Literature Review

The DICE model stands for Dynamic Integrated model of Climate and the Economy.
It is part of a subset of models which economists, policy makers and scientists use to
make decisions, evaluations and predictions called Integrated Assessment Models (IAMs).
DICE was developed in the early 1990s by Yale economist William Nordhaus [21]. The
latest version of the model was updated in 2013 (DICE-2013R) and it is the one which
will be used for this thesis.

2.1.1 Model Description

This section draws heavily from Nordhaus’ own detailed description of his model [21].

The DICE model is a globally aggregated model which has a basis on economic
foundations and geophysical equations. The main workings of the models are explained

12
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Figure 2.1: A schematic representation of the key connections in the DICE model [21].

through traditional neoclassical growth theory with a firm basis in the Ramsey-Cass-
Koopmans growth model. In this sense, economies reduce consumption today in order to
increase consumption in the future by the way of emissions reductions which prevents
harmful climate change.

A simple flowchart of the inner workings of the DICE model and other IAMs can be
found on Figure 2.1.

2.1.1.1 Objective Function

The most important definition in an IAM is the objective function; the whole model
revolves around optimizing this function. In the case of DICE, this is represented by a
social welfare function which measures utility. The world then has well-defined prefer-
ences. The social welfare function increases with increasing number of people and with
the per capita consumption of each generation; however, it also demonstrates diminishing
marginal utility of consumption.

The social welfare function, W , is:

W =
Tmax∑
t=1

U [c(t), L(t)]R(t) (2.1)

where U [c(t), L(t)] (utility) is a function that involves per capita consumption (c(t))
and population (L(t)) which is discounted with the factor (R(t)). And with the sum nota-
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tion,W is then a discounted sum of population-weighted utility of per capita consumption.

What is the utility function? It is a function where consumption is "generalized"
and includes not only traditional goods like food and shelter but also non-market items
such as leisure activities, environmental services and health services. The DICE model
assumes a constant elasticity utility function given by:

U [c(t), L(t)] = L(t)[ c(t)
1−α

(1− α) ] (2.2)

where α is the elasticity of the marginal utility of consumption. The parameter is
thought of as the aversion to generational inequality. If the value is close to zero then
consumptions between different generations are valued in almost the same way. If the
value is high, then there is high inequality between generations. In the limiting case
where the value is one, then the function acquires a logarithmic form due to l’Hôpital’s rule.

Finally, the discount factor R(t) is give by:

R(t) = 1
(1 + ρ)t (2.3)

where ρ is the social rate of pure time preference. In essence it gives different weights
to the utilities of different generations.

2.1.1.2 Economic Equations

The economic module of the DICE model is founded on standard growth literature.
Due to the very long time frames necessary for climate change modeling, many of the
assumptions and predictions in this module are not to be taken at face value. Most
macroeconomic models run for only a few years and in some exceptions to a few decades.
However, in this particular case the model runs for 300 years.

The DICE model is simpler compared to other climate models because there is only
one unit of consumption which is used for everything: consumption, investment and/or
abatement. Additionally, many of the parameters like population and emissions variables
are taken from national and international databases. All the parameters will be updated
in this thesis to account for the newest and most recent numbers.
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The production function is of a Cobb-Douglas form with constant-returns-to-scale1

and with all the Inada conditions met. The function is given by:

P (t) = A(t)K(t)γL(t)1−γ (2.4)

where A(t) is total factor productivity, K(t) is capital stock and services and γ is the
capital elasticity to output. L(t) is population and the labor force, which is an exogenous
variable, and given by:

L(t) = L(t− 1)[1 + gL(t)] (2.5)

where gL(t) is the growth rate and given by:

gL(t) = gL(t− 1)
(1 + δL) (2.6)

where δL is the decline rate of L(t).

Likewise, for A(t), growth is given by:

A(t) = A(t− 1)[1 + gA(t)] (2.7)

where gA(t) is the growth rate and given by:

gA(t) = gA(t− 1)
(1 + δA) (2.8)

where δA is the decline rate of A(t).

The net output to society after damages and abatement Q(t) is:

Q(t) = [1− Λ(t)]P (t)
[1 +Ω(t)] (2.9)

where Λ(t) is abatement costs and Ω(t) represents climate damages. These damages
are, in turn, given by the following damage function:

Ω(t) = ϕ1TAT (t) + ϕ2TAT (t)ϕ3 (2.10)

Equation (2.10) could be seen as the "thorniest issue in climate-change economics"
[21]. TAT is atmospheric temperature while ϕ1, ϕ2 and ϕ3 are parameters of the equation.
Estimating, calculating or approximating the damages of something of the magnitude of

1This is exhibited when output increases by the same proportional change as the change in the inputs.
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climate change has proven to be very difficult [28, 32, 33]. However, Equation (2.10) is
consistent with a recent survey on the matter [34]. In addition, Nordhaus applies a 25%
increase in damages to take into account non-monetized impacts and damages such as
sea-level rise, changes in ocean circulation, long-term warming and more. This represents
a a value judgment from Nordhaus. Finally, the damage function is calibrated in theory
for damages equal or below 3°C. Above 3°C, the damage function might prove erratic
due to important tipping points.

The abatement costs, Λ(t), is given by:

Λ(t) = θ1(t)µ(t)θ2 (2.11)

where µ(t) is the emissions reduction rate and θ1 and θ2 are calibration parameters
for the abatement technology. This cost function is highly convex, which means that the
marginal cost of reductions rises from zero in a non-linear fashion with the reductions rate.

The abatement technology in the DICE model is known as a backstop technology2

which initially is very high in costs but decreasing in time. The backstop technology is
included in the model by setting the parameters of Equation (2.11) to equal the marginal
cost of abatement at a control rate of 100% (the power of the backstop technology) to
the price of the backstop technology.

Besides these equations, there are a few standard economic equations necessary for
the balancing of the model:

Q(t) = C(t) + I(t) (2.12)

c(t) = C(t)
L(t) (2.13)

where C(t) is consumption and I(t) is gross investment. The capital stock dynamics
is given by:

K(t) = I(t)− δKK(t− 1) (2.14)

where δK is the depreciation rate of capital and thus the equation states that capital
at period t is equal to the new investment minus the depreciated capital from last period

2Refer to Section 3.1.1 for more information on this.
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(t-1). I(t) is determined in the model by the savings rate (S(t)). The savings rate
is determined endogenously by the model. The key assumption in this case is that
all savings go towards investment. This particular assumption is characteristic of the
neoclassical Ramsey-Cass-Koopmans model which is derived from the Solow-Swan model.
This is reminiscent of the classical proposition in economics known as Say’s law which
states a balance where supply creates its own demand. This would be in direct contrast
with Keynesian economics where all savings do not necessarily go towards investments.
There is no full utilization of resources in a Keynesian economy. As this thesis follows
the neoclassical approach, all savings will get converted towards investment. Additional
research is suggested in a climate model without Say’s law. Nonetheless, as seen in
Equation (2.14), the investment is added to the capital stock which ultimately drives
production and consumption. An increase in consumption maximizes welfare in the
model. The following equation shows the relationship between I(t) and S(t):

I(t) = S(t)Q(t) (2.15)

How to calculate the emissions generated from production? This in done by the
following equation:

EInd(t) = σ(t)[1− µ(t)]P (t) (2.16)

where EInd(t) are the total emissions generated by industrial activity and σ(t) is the
carbon intensity of the economy (Emissions/Output). The carbon intensity takes on a
similar form as population and total factor productivity:

σ(t) = σ(t− 1)[1 + gσ(t)] (2.17)

where gσ(t) is the growth rate and given by:

gσ(t) = gσ(t− 1)
(1 + δσ) (2.18)

where δσ is the decline rate of carbon intensity.

Finally, there is a formula which limits the total amount of fossil fuels which can be
extracted, in this case to 6000 tons of carbon content. An important assumption
is that incremental extractions costs are zero (it does not become more expensive to
extract more) and that the fossil fuels are allocated efficiently throughout the market.
The equation is given by:
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CCum(t) ≥
Tmax∑
t=1

EInd(t) (2.19)

where CCum(t) is the total amount of fossil fuels, with a maximum limit of 6000
tons of carbon content.

Table 2.1 presents all the variables and where they are found in the economic module.

2.1.1.3 Geophysical Equations

This section deals with the equations relating to the physical aspect of climate change.
There is a nexus between the economic module and the geophysical module which will
link both of them. For the realization of this thesis, this module will be left unchanged.

In the DICE model, the only GHG that is subject to any type of control is CO2 from
industrial sources. Other types of GHGs are modeled exogenously in radiative forcing as
well as other sources of CO2 emissions such as land-use changes.

Equation (2.16) calculates the total number of emissions from the industrial side.
However, this is only half the picture. The other source is land-use changes and thus,
total emissions are:

E(t) = EInd(t) + ELand(t) (2.20)

where ELand(t) is modeled exogenously by taking the latest results from the IPCC
where the estimate is that land-use emissions are about 3 GtCO2 per year [21].

With regard to the carbon cycle, it is assumed that it is a three reservoir model:
atmospheric level, upper oceans/biosphere level and deep oceans level. Carbon can freely
move between adjacent reservoirs. The carbon mixing between deep oceans level and the
rest is extremely slow. Deep oceans act as a long-term sink for carbon. Every level is
well mixed in the short-term. The following equations describe the dynamics:

MAT (t) = E(t) + φ11MAT (t− 1) + φ21MUP (t− 1) (2.21)

MUP (t) = φ12MAT (t− 1) + φ22MUP (t− 1) + φ32MLO(t− 1) (2.22)

MLO(t) = φ23MUP (t− 1) + φ33MLO(t− 1) (2.23)
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Table 2.1: Table of variables for economic module.

Variable Description Found on

W Social welfare (2.1)
U Utility (2.1) (2.2)
t Time All
c(t) Per capita consumption (2.1) (2.2) (2.13)
L(t) Population/Labor (2.1) (2.2) (2.4) (2.5) (2.13)
R(t) Discount factor (2.1) (2.3)
α Elasticity of marginal utility (2.2)
ρ Social rate of pure time preference (2.3)
P (t) Gross output (2.4) (2.9) (2.16)
A(t) Total Factor Productivity (2.4) (2.7)
K(t) Capital stock (2.4) (2.14)
γ Output elasticity (2.4)
gL(t) Growth rate of population (2.5) (2.6)
δL Decline rate for population (2.6)
gA(t) Growth rate of total factor productivity (2.7) (2.8)
δA Decline rate for total factor productivity (2.8)
Q(t) Net output (2.9) (2.12)
Λ(t) Abatement costs (2.9) (2.11)
Ω(t) Climate damages (2.9) (2.10)
ϕ1 Parameter 1 for damage (2.10)
ϕ2 Parameter 2 for damage (2.10)
TAT Atmospheric temperature (2.10)
θ1 Parameter 1 for abatement (2.11)
θ2 Parameter 2 for abatement (2.11)
µ(t) Emissions reduction rate (2.11) (2.16)
C(t) Total consumption (2.12) (2.13)
I(t) Total investment (2.12) (2.14)
δK Capital depreciation rate (2.14)
S(t) Savings rate (2.15)
EInd Industrial emissions (2.16) (2.19)
σ(t) Carbon intensity (2.16) (2.17)
gσ Growth rate of carbon intensity (2.17) (2.18)
δσ Decline rate of carbon intensity (2.18)
CCum(t) Total fossil fuels (2.19)
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Figure 2.2: Dynamics between carbon cycle in DICE.

where φij is the flow parameter between level i and level j. MAT , MUP and MLO

represent carbon in the atmosphere, upper oceans and lower oceans respectively. Fig-
ure 2.2 shows in a schematic way the different dynamics in the carbon cycle of DICE.

As more GHGs are released into the atmosphere, the Earth’s surface warms up due
to radiative forcing.3 This relationship between radiative forcing and GHGs is given by:

F (t) = ηlog2[MAT (t)/MAT (1750)] + FEX(t) (2.24)

where F (t) is the change in total radiative forcing since 1750 (MAT (1750)) caused
by CO2, FEX(t) is exogenous forcings besides CO2 and η is a parameter for equilibrium
for every CO2 doubling. The year 1750 is used as the reference level because it reflects
emissions before the start of the Industrial Revolution. Most of the forcing is due to CO2
and the rest of the GHGs are taken as exogenous due to the fact that their control is
exogenous or they are poorly understood [21].

In theory, higher radiative forcing will eventually warm the atmospheric level which
in turn will warm the upper ocean and finally the deep ocean. There is a lag between
the warmings of the different levels due to diffusive inertia between levels. The equations
for the temperatures of both the atmosphere and lower oceans are given by:

TAT (t) = TAT (t− 1) + ξ1{F (t)− ξ2TAT (t− 1)− ξ3[TAT (t− 1)− TLO(t− 1)]} (2.25)

TLO(t) = TLO(t− 1) + ξ4{TAT (t− 1)− TLO(t− 1)} (2.26)
3Radiative forcing is the difference between incoming energy and outgoing energy into the Earth.

Positive radiative forcing warms the planet as it decreases outgoing energy.
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Table 2.2: Variables for geophysical module.

Variable Description Found on

E(t) Total emissions (2.20) (2.21)
EInd(t) Industrial Emissions (2.16) (2.19) (2.20)
ELand(t) Land-use emissions (2.20)
t Time All
MAT (t) Atmospheric carbon (2.21) (2.22) (2.24)
MUP (t) Upper ocean carbon (2.21) (2.22) (2.23)
MLO(t) Lower ocean carbon (2.22) (2.23)
φij Flow parameter from i to j (2.21) (2.22) (2.23)
F (t) Radiative forcing (2.24) (2.25)
FEX(t) Exogenous forcing (2.24)
η Equilibrium parameter for CO2 doubling (2.24)
TAT (t) Atmospheric temperature (2.10) (2.25) (2.26)
TLO(t) Lower ocean temperature (2.25) (2.26)
ξi Climate sensitivity parameters (2.25) (2.26)

where TAT (t) and TLO(t) are the mean temperature of the atmosphere and the
deep oceans respectively. ξi are different parameters regarding climate sensitivity.4 The
climate sensitivity in the DICE model is estimated at 2.9°C for every doubling of CO2 [21].

Table 2.2 shows a summary of all the variables in the geophysical module and where
they can be found. EInd(t) and TAT (t) represent linkages between the two modules, as
they appear on equations on both of them.

4Climate sensitivity refers to how much change in temperature is caused by a double in CO2.
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2.2 Modifications and Scenarios

The 2013 DICE model is a very stable and reliable release. However, some modifications
were done to this model in order to make it usable in terms of this thesis. For this, an
alternative DICE model is used, aptly called DICE2013x.

The first modification concerns the emissions control rate, (µ(t)), from the 2013 DICE
model. As can be seen in Figure 2.3, the emissions profile of the DICE model behaves a
bit erratically after year 2165 for the baseline run.5 This is due to the fact that µ(t) is a
free variable which can take any value. The upper limit on this variable is fixed at 1.2
which represents a modeling decision by Nordhaus. GAMS finds it optimal to have this
control rate6 for 23 periods out of 60 which is more than a third of the timespan of the
simulation. This effect creates negative emissions which in turn lowers the total forcing
and decreases the atmospheric temperature to below 1°C by the end of the model’s
timespan. This is by no means a wrong formulation or solution. This pathway is possible
with the use of technologies which exhibit negative carbon emissions such as biomass
with carbon capture and sequestration.7 In order to make the model less erratic in terms
of its emission profiles and make it more tractable, the upper limit on µ(t) will be set at
1.

µ(t)UpperLimit = 1

Another modification to the 2013 DICE model involves changes to the scenarios. The
baseline scenario in the 2013 DICE model first calculates Hotelling rents for the carbon
price with no damages in the model.8 Then, it re-runs the model now with damages
and with the carbon price fixed at these Hotelling rents. The optimal scenario is simply
optimizing the model with damages on. For the DICE2013x model, the definition of
these two scenarios is changed. The reason for this is that when including endogenous
technological change and dynamic discounting, the baseline scenario setup of the 2013
DICE model complicates issues as µ(t) is no longer present.

The baseline scenario is defined as to how the economy would react if there was no
5Nordhaus shows only the emissions curve until 2100 for the optimal run [21]. This is convenient

because it tells the convincing story that emissions have to peak mid-century. No explanation is given for
the emissions curve after the year 2100.

6If the upper limit is relaxed, µ(t) during these periods can reach values up to 1.389.
7Future technology is quite uncertain. More on this on Section 5.2.
8This means that the price of carbon will increase hand in hand with the interest rate.
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Figure 2.3: Emissions curve from the baseline and optimal runs in 2013 DICE.

externality. This means that firms and society do not see any damages from carbon
emissions and thus the social cost of carbon is equal to the private cost of carbon.
Although a highly unrealistic scenario, this specification gives an upper boundary on the
economic activity. In this sense it is useful because it sets a reference point to which other
scenarios can be compared. In the DICE2013x model, the baseline scenario is controlled
by having zero damages in the model. This means:

Baseline scenario =


ϕ1 = 0

ϕ2 = 0

ϕ3 = 2

The optimal scenario is defined by adding the externality to the economic system. The
economy would then react accordingly to carbon emissions while at the same time trying
to maximize welfare. In this scenario, welfare is maximized while taking into account
the damages that emissions cause on the economy. There is no limit on the atmospheric
temperature or concentration of carbon. To run in optimal mode, the damage parameters
are set to the calibrated values from Nordhaus’ model [21]. This means:

Optimal scenario =


ϕ1 = 0

ϕ2 = 0.00267

ϕ3 = 2

Even though more scenarios could be run, for example, by limiting atmospheric
temperature to 2°C, the objective of this thesis is to research the effect of endogenous
technological change and dynamic discounting and not to look at several alternative
scenarios. For this reason, only these two scenarios will be used (baseline and optimal)



CHAPTER 2. DYNAMIC INTEGRATED CLIMATE-ECONOMY 24

Figure 2.4: Emissions curve from the baseline and optimal runs in DICE2013x model.

for the rest of this thesis. The corresponding emissions curves for both scenarios with
the new modifications are shown in Figure 2.4
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2.3 Concluding Remarks

The DICE model has been presented in this section with all its appropriate equations
and formulations. The model was described by its economic and environmental modules.
Industrial emissions and atmospheric temperature are the two variables which link both
of the modules.

Some small modifications were done on the DICE model in order to make it more
tractable. This framework will be used throughout the thesis as its building block. In
fact, a model will be built upon the DICE2013x model in order to include endogenous
technological change coupled with a dynamic social discount rate.



Chapter 3

Endogenous Technological
Change

After dealing with the DICE model and its equations, this chapter will deal with the issue
of endogenous technological change. First, an extensive literature review is presented
which delineates all the different methods to model endogenous technological change.
After this, the extended model is presented. Following this, an economic analysis is
realized and a concluding section closes the chapter.

3.1 Literature Review

Climate change is, among other issues, one of the first truly global problems. Solving
climate change requires the delicate interplay between different actors and field of studies
such as: economics, climate science, politics, ethics, cultural studies, etc. Managing
this interplay has been one of the biggest challenges so far. However, one of the biggest
hopes between all the different dimensions is that positive technological change will occur
which will significantly reduce the problem’s complexity. Technological change allows
the introduction of new technologies/innovations into the economic system which can
help ameliorate the environmental damages such as solar power and fuel improvements.
Eventually, technological change could completely transform societies in ways in which
climate change is no longer an issue. But first, what exactly is technological change in
economics and how is it modeled?1

1Technological change is a synonym for a myriad of other similar forms of expressing the same thing
such as technological development, technological achievement, technological progress, technical change,
technical progress, etc. For the realization of this thesis, the term technological change will be mainly
used.

26
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Technological change, in economics, is an outcome of innovation. It can be defined
using a production function. For example, from a neoclassical perspective, one of the
most common production functions is one with a Cobb-Douglas form [35]:

Y = aLαKβ (3.1)

where Y represents total output, K is the usage of capital and machines, L is labor
input, α and β are constants describing output elasticity and finally a is total factor pro-
ductivity, a change of which reflects neutral disembodied technological change.2 Positive
technological change, say by making processes more efficient with a new breakthrough,
is represented by a. This can easily be visualized by making use of isoquant maps. An
isoquant is a curve that graphs different combinations of labor and capital which give
exactly the same output.

Figure 3.1 shows two production isoquants. All the points along each thick line
represent the same amount of output. The initial isoquant is the thick line on the upper
right side. The optimal combination of k and l (profit-maximization) for this isoquant
is the point of tangency between it and the iso-cost line, which is the thin line that
describes all the combination of production factors that have the same cost. This is
visualized in point [lo,ko]. Technological change occurs when the curve is shifted inwards
towards [0,0]. Because the slope of the iso-cost line remains the same, the new optimal
point [l1,k1] has exactly the same k/l ratio as the previous one. This enables a reduction
in capital and labor while keeping the output constant. This progress is called neutral
as the labor-capital ratio is held constant; other types of progress are labor-saving and
capital-saving.

Paul Romer formulated the foundation for endogenous technological change in the
early 1990s [36]. He stresses the importance of technological change in three different
premises. First, technological change lies at the very heart of economic growth and is
responsible for increases in output/hour worked. Secondly, technological change is an
intentional consequence of actors responding to diverse market incentives. This is where
technological change adopts its endogenous form. And lastly, technological change is
different from other economic goods; once technological change has been developed, the

2It can also be a measure of the economists’ ignorance in understanding output production [35].
Because K and L are usually insufficient to explain output in a complex economy, this discrepancy is
explained through a.
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Figure 3.1: Isoquant curves [35].

cost to apply these "new instructions for the raw materials" is basically zero.

In the context of climate change modeling and energy, technological change is repre-
sented as an increase in the efficiency of the overall energy system, in particular, reducing
the GHGs emissions per unit of output. Thereby, it makes the energy system "cleaner" as
sustainable energies start dominating the market. This could be visualized in Figure 3.1
by assuming that the production factors are energy (e)3 and labor (l). Energy intensity
is then defined as e/y due to the fact that most of the emissions come from energy use.
Energy-saving progress would then be the progress that reduces the use of e while keeping
output y constant.

Hence, climate change modeling and technological change are highly intertwined
matters which states the importance of their appropriate modeling [11]. Both are related
through the externalities caused to the economic system.4 Climate change is nothing
more than the accumulation of all the negative externalities caused by the burning of fossil

3Instead of k.
4Externalities exist in the economy whenever a transaction incurs costs to particular parties which

are not reflected on the market price. Externalities in nature could either be positive or negative. For
example, educating oneself has a positive externality on society, as it can be argued that this is better
overall for everybody. The market price of education does not include the price of all the indirect benefits
of having an educated society. Unfortunately, the most important externalities are those that exhibit
negative properties. One of the most common one is that of air pollution caused by the burning of fossil
fuels for which health costs of breathing dirty air are not taken into account on the market price.
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fuels, or as Nicholas Stern states "..the greatest market failure the world has ever seen.."
[16]. On the other hand, technological change is caused by the positive externalities of
the generation of knowledge. Knowledge is often described as a public good which means
that some firms could potentially appropriate knowledge generated by other firms. Thus,
knowledge is often under-provided. Adam’s Smith invisible hand allows too much of the
negative externalities while allowing too little of the positive externalities. This nexus
is the reason why climate change modeling and technological change must go hand in hand.

However, most economic models of climate change initially developed in the 1990s
were treating technological change as an exogenous variable [11]. This meant that the
models assumed a constant technological change throughout time which did not depend
or rely on any other factor; it was an autonomous variable. Now, models with endogenous
technological change have been developed as the link with other factors (such as R&D)
has become clearer.

In the following sub-sections, a review of all the ways that technological change is
currently being modeled will be presented.

3.1.1 Exogeneous Technological Change

Exogenous comes from the modern Latin exogena denoting from outside (exo) the body
(gena); it means anything that is growing or occurring outside an organism. In economic
modeling, exogenous means that it occurs outside the model. In the case of climate
change, and when dealing with (exogenous) technological change, this means that there
are improvements of energy efficiency which occur outside the model. Technological
change is not affected by changes in any of the variables of the model. As an example,
Nordhaus uses exogenous technological change in the DICE model [21].

This way of modeling technological change is known as autonomous energy efficiency
improvements (AEEIs) [11]. In its most straightforward way, modeling AEEIs is done by
assuming a constant improvement of a in Equation (3.1) which directs the overall progress
of the economy.5 The pros of using AEEIs are its relatively simple use, easy integration
with models and transparency. In fact, it can also facilitate sensitivity analysis as the
parameter can be changed easily [37]. However, one of its biggest advantages is also its
biggest drawback. Due to its simplicity, AEEIs can act as a "black box" character of
technological change, which ignores policy decisions, price inducements and any other

5This is known as Hicks-neutral productivity.
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innovation decision which affects technological change [11]. One other problem with
AEEIs is that it completely ignores radical technological change (i.e. introducing a new
shocking innovation) and relies only on the incremental kind of change. With uncertainty
playing a major role in future technological change, incremental change is hardly an
accurate portrayal of what to expect from the future. Studies criticize AEEIs as an
improper way of modeling technological change due to the fact that it neglects the main
causes of change and that it is also not consistent with empirical evidence [37].

Another common way to model exogenous technological change is by including a
"backstop" technology in the model. This technology is something not yet feasible, but
which will progressively lower its costs until it can fully enter the market. This type of
technology is something which could potentially replace all fossil fuels such as nuclear
fusion, carbon capture and sequestration (the emissions are the important issue) and/or
solar energy. The approach to modeling is by having a cost curve and determining the
date of introduction to the economy. One thing to note is that at several points in
time, both the "old" and the "new" technology will be co-existing and it is essential to
model this. The biggest drawback to this method is the inherent uncertainty about the
"backstop" technology: uncertain negative environmental effects, material limitations, full
availability, market penetration and so on. In a way, this type of modeling is sometimes
called "semi-endogenous" as the cost and other factors are determined exogenously but
its availability depends on the energy prices or other endogenous variables [37].

3.1.2 Endogenous Technological Change

There are several ways to endogenize technological change, namely: price-induced, di-
rected technical change, learning-by-doing and by research and development (R&D).
The reason to do this is that assuming exogenous technological change is an oversim-
plification as it is acknowledged that technological change is a very complex process
involving prices, activities and time [38]. These methods usually involve incorporating a
feedback mechanism in the model towards which policy can change the overall level of
technological change [37]. Most commonly this is achieved through a "knowledge stock"
which is accumulated with time and directs the level and direction of technological change.
The challenge is to define how to accumulate this stock and how it affects emissions and
energy usage.

One important consideration for all of the different ways of modeling endogenous
technological change is whether to assume that the "base case" behavior of technological
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change is optimal.6 One view shows that modeling with exogenous technological change
is a constraint, which when taken off, will ultimately lower the costs of mitigation no
matter what. The other view states that technological change is the "base case" and
it is roughly optimal, so that any new effect with climate policy will lower the costs
just marginally [38]. It is important to define well the "base case" to allow for proper
comparison with other studies.

The following four subsections will present the four methods to endogenize technolog-
ical change.

3.1.2.1 Price-induced technological change

Price-induced technological change is one of the most widely used approaches, first
introduced by Hicks in his seminal work The Theory of Wages in 1932 [39]. It states that
any change in the relative factor prices will cause firms to induce technological change as
the more expensive factor will be subject to minimization. To illustrate this, imagine that
the price of labor (L in Equation (3.1)) increases for a firm (due to a political decision of
increasing minimum wages), this will force the management of the firm to look for ways
to minimize the use of labor and substitute it with the use of automation or increased
capital productivity.7 The quest for this, caused by the change in the relative price
factors, is what enables technological change.

In the case of climate change, one of the biggest inducers of technological change is
the energy price. There is a growing literature on the subject that supports the claim
that higher energy prices leads to positive technological change in the energy field [40]
and in the renewables’ [41]. For example, a study shows that the long-run elasticity of
energy R&D with respect to energy prices is 0.35 [40]. The median lag of this is 4.9 years,
which means that after 5 years of a change in the energy price, half the full effect of R&D
will have already had happened. Other empirical studies working with energy patents
show that innovation does indeed respond to incentives, that the social rate of return of
environmental R&D is higher than the private one and that there are diminishing returns
to research over time [42]. Some work has been done with price-induced technological
change and shown positive results [11], nonetheless, most modelers prefer other ways of
endogenizing technological change as price-induced technological change is just treated
as a partial explanation to the whole issue where sometimes it is combined with an AEEI

6In the absence of climate policy.
7Assuming profit-maximizing firms.



CHAPTER 3. ENDOGENOUS TECHNOLOGICAL CHANGE 32

parameter or in conjunction with learning-by-doing [37].

3.1.2.2 Directed technical change

Another way to endogenize technological change is by directed technical change, brought
to light by Acemoglu in 2002 [43]. In regards to climate change modeling, his model
includes two ways in which a good can be produced: with dirty or clean technology
[44]. Any profit-maximizing firm will always choose the cheapest option, in this case
dirty technology which already has an installed base, and thus reap the benefits of firms
wanting to innovate the chosen option. This paints a gloomy picture: cleaner technology
will not be used as firms prefer the dirtier technology and innovate on this. This is partly
true unless the government decides to intervene.8 This is where the direction comes
into play. The government must be able to provide taxes and subsidies to correctly
allocate the resources between clean and dirty technologies and be able to "direct" the
technological change in a certain direction. Thus, supporting cleaner technologies in
the short-run might slow growth down, but in the long-run it will provide a cleaner
alternative than its counterpart [11].

Some models include some type of directed technical change with the inclusion of
innovation possibility frontiers which are nothing more than all the expected isoquants
from a specific sector.9 Thus, technological change can be directed towards one of the
isoquants. The difficulty lies in how to design the specific technology policy so as to
direct the change towards the objective.

3.1.2.3 Learning-by-doing

Learning-by-doing in manufacturing was conceived from the fact that aeronautic engineers
in the 1930s observed that the labor hours required to construct one product reduced as
the manufactured products doubled in quantity [11]. It was then formalized by Kenneth
Arrow in 1962 for economic purposes [45]. The basic understanding of learning-by-doing
is that the more firms use or produce a certain technology, its costs start decreasing.
Thus, several technologies can have initial high costs but these will decrease with usage
and time. Learning-by-doing can be easily visualized with the help of experience curves
which plot costs vs. cumulative production/use. Figure 3.2 shows an example of this
type of curve. Each of the different phases present in Figure 3.2 represents a different

8As the exhaustible resources of the dirty technology start depleting, this makes the change to the
cleaner one possible under laissez-faire [44].

9Refer to Figure 3.1 in Section 3.1.
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Figure 3.2: Qualitative description of a generic experience curve [46].

learning rate10: high in the beginning, lower in the maturity phase, and almost or even
zero in the senescence phase.

One common way to mathematically express the experience curve is with a power
law known as Henderson’s Law [47]:

Cn = C1n
e (3.2)

where Cn is the cost of the n-th unit of production, C1 is the cost of the first unit of
production, n is the cumulative production and e is the learning index which is equal to
e = logα

log2 with α being the learning rate.

This type of modeling is most common in models with high technology-specificity such
as bottom-up models due to the disaggregation of the model and ease of implementation.11

Regarding top-down models such as DICE, several studies have been including learning-
by-doing technological change into them [48, 49]. Results show that learning-by-doing
could greatly reduce abatement costs subject to a proper learning rate. Having the proper
learning rate is thus the challenge where learning is usually seen as a specific phenomenon,

10A higher learning rate means that costs decrease more for a given amount of experience.
11Bottom-up models are often partial equilibrium models where the energy sector is detailed in a very

technical way while using a large set of technologies. These models often try to optimize the sector on a
cost basis. On the other hand, top-down models rely on a more economic description while minimizing
the specificites of different technical issues of the energy sector. These models often try to optimize the
economy by maximizing welfare according to different policy options.
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not an aggregated one like in top-down models [50]. Another common result is that the
carbon tax is usually lower in models with learning-by-doing than in models without it.
This is due to the fact that, without R&D, adding more capacity to carbon-free technolo-
gies will lower the costs and increase the emissions reductions per dollar of investment [37].

There are some difficulties with regards to learning-by-doing. Spillover effects need
to be taken into account, especially in bottom-up models which have a great deal of
different technologies. Learning-by-doing is also seen as an ad hoc solution which lacks
transparency [11]. For example, it is difficult to be confident about the causality of
learning-by-doing. For all that matters, it could be the R&D factor that spurs more
competitiveness in the marketplace and thus responsible for the increase in the production.
One way to counter this is to create a "two-factor" model which has a cost function
dependent on cumulative production and on R&D [51]. This could be done by adding
R&De to Equation (3.2). Another issue is that learning is a self-reinforcing process and
thus experience in one technology can "lock-in" unto a path dependency because the
technology is becoming more competitive as more experience is gained until it overpowers
the rest of the technologies [37]. Finally, carbon-free technologies usually enjoy great
learning rates while carbon technologies enjoy almost no improvement, which means that
the outcome is already pre-determined.

3.1.2.4 Research and development

R&D is an activity that firms undergo in order to lower their long-run production costs
and just then it represents a market advantage. R&D is related to the generation of new
knowledge, under which companies or government invest beforehand. R&D is an expen-
sive activity, requiring investment of capital and wages of highly-specialized researchers.

R&D works under the knowledge market which in itself is full of imperfections. The
most important one refers to the very nature of knowledge being a public good.12 And
due to this nature, the generation of knowledge creates spillovers, which can cover more
than what it originally intended to. A quick example of this would be research done on
aerodynamics of wind turbines which could spillover to the flight industry or the space

12A public good is a good that can benefit everybody, there is no exclusivity. It is characterized by
two main aspects: non-rivalry and non-exclusivity. Non-rivalry refers to the fact that knowledge can be
used by everybody at zero marginal cost (i.e. extra use does not lead to additional cost of knowledge
production). Non-exclusivity refers to the fact that people (or firms) cannot be prevented from using the
good; this leads to the free-rider problem where someone uses knowledge without actually paying for it.
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industry. With this line of thought, there is then a positive externality to generating
new knowledge. Society benefits as a whole when new research is generated, while the
inventor does not [50]. Thus, the social rate of return of R&D is higher than the private
rate of return. Nordhaus finds that social rates of return are around four times bigger
than private rates of return in the U.S. [52]. Other similar studies show similar results
[50, 53]. So, due to this very fact, the market underinvests in R&D as firms do not have
the incentives to provide the socially optimal level.

On a related note, the effect of spillovers could cause high opportunity costs when
increasing R&D (especially environmental). In a situation as this:

Y = C + I +RE +RO (3.3)

where the output (Y ) is composed of consumption (C), investment in physical capital
(I), environmental research (RE) and other research (RO).13 The point is that one cent
spent on (RE) will displace exactly one cent from both (C) and (I). The opportunity
cost is one cent. But, if (RO) has a social rate of return four times that of (I), then
giving up that one cent of (RO) has an opportunity cost of four cents [50]. So, the price
of any R&D which displaces other R&D is 4 cents.

The above assumption on opportunity costs merits more analysis. This assumption is
what has been traditionally been taken by neoclassical economists. Nonetheless, there
are arguments to point to the fact that the opportunity costs of R&D could be consid-
erably less or even zero. Investments are usually financed through bank credit which
means that it is through completely new money, not from existing savings [54]. Climate
mitigation investments (such as R&D) could practically be financed through bank credit
which means that the opportunity cost of R&D would in turn be zero as there is no
diversion of funds from other investment activities. Another option is that an increase in
environmental R&D could be financed by spending less on marketing, military equipment
or any other investment where the opportunity cost would be smaller. For the rest of
this thesis, the opportunity cost of 4 cents assumption will be used to follow the steps
of previous work on the topic [13, 50, 55]. Important to realize is that this reasoning
could have important effects on the results. This is left and encouraged for future research.

There are even more considerations to take into account while modeling with R&D.
One of them is making a distinction between private R&D and governmental R&D. As

13This presupposes full employment.



CHAPTER 3. ENDOGENOUS TECHNOLOGICAL CHANGE 36

seen before, private R&D will always be sub-optimal due to a higher social rate of return.
In order to avoid this, the government must be willing to finance extra research efforts by
the way of tax breaks or subsidies in order to bring social and private rate to the same
level. Public R&D is also of the more basic (fundamental) type14, as great uncertainty
and long-term planning is not fit for private firms. In this way, states can become a
catalyst for innovation and growth [56]. Modeling both types could pose problematic
[50], but should always be noted in the model assumptions. Another issue is the limited
quantity of available money to spend on R&D, which will then favor certain technologies
which could "crowd out" R&D investment in other distinct fields such as health [37]. As
seen in the previous paragraphs, "crowding out" could have high opportunity costs.

How is R&D included in climate change models? The usual method is by declaring a
new variable which represents R&D (or knowledge) which focuses on reducing GHGs
emissions intensity and/or reducing abatement costs [11].15 There have been several
attempts to endogenize technological change in the DICE model by the way of R&D
[52, 55, 57]. Nordhaus, for example, uses the following equation:

σ̇t
σ

= Ψ1R
Ψ2
t −Ψ3 (3.4)

where σt is the carbon energy/output ratio in year t, Rt is the level of R&D and Ψi

are equation parameters.16 Nordhaus makes use of the assumption that one cent of R&D
will displace four cents of output [52]. The other two studies also focus on the effect of
R&D on the level of emissions intensity (instead of the rate of change) and use a stock of
accumulated knowledge (instead of a flow) [50].

One study shows that the effect of "crowding out" is very significant: without the
effect the model shows that the total welfare gains are 45% more than in the base case,
and with the full effect the gain is just a measly 2% [55]. Studies, as seen above, create a
knowledge stock17 which accumulates with time and has a negative effect on emissions
intensity. Spillover effects are modeled by assuming that social and private rates are
different [52, 57]. In general, these studies show that including technological change

14Instead of the more applied research.
15Another option is by productivity gains in specific sectoral production functions in multi-sectoral

models. However, because DICE is not a multi-sectoral model, then this will not be furtherly pursued.
16The left side of the equation represents the rate of change of the ratio.
17A knowledge stock contains all the ideas, skills and experience which can affect the production

function [37].
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translates to higher welfare gains or smaller abatement costs.18

One common way to include the knowledge stock into the model is by modifying the
Cobb-Douglas equation (3.1) as shown below:

Y = aKβ
r L

αK1−α (3.5)

where Kr is the new variable representing the knowledge stock and β is the knowledge
elasticity to output.

Another approach involves using a continuum of intermediate goods and including it
in a production function which has energy as an input:

Y = a · Φ(ALL,AEE) (3.6)

where AL and AE are the endogenous augmentation levels for both labor (L) and
energy (E). AL and AE then depend on the quality level of the intermediate good, the
raw input, the type of service, the rate of change in the quality of the good (which
depends on R&D) and more [37, 58].

3.1.3 Technology Diffusion

Technological change involves the introduction of either new products altogether (product
innovation) or improvements upon the existing ones (process innovation). Any of these
two options will most certainly have to go from research laboratory all the way into
the market. This is a process that takes time and is the subject of great debate. One
of the most common ways to represent this movement is through the use of a diffusion
curve as shown in Figure 3.3. Following the shape of the curve, any new technology
starts with a few early adopters which then follows a step of rapid adoption and even-
tually leveling off at a certain market penetration %. This theory works great with
normal consumer goods with a big mass market. What about environmental technologies?

Environmental technologies, such as end-of-pipe technologies19, must have a regulation
(or incentive) in place or else there will be no adoption. Several studies have shown that

18Because the DICE model does not work with an objective cost function, then going into how R&D is
modeled into these functions will not be presented here.

19Refers to technologies which reduce emissions after the product or process has already been developed
such as tailpipe catalytic converters.
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Figure 3.3: S-shaped diffusion curve [50].

environmental regulation is key to the adoption of end-of-pipe technologies [59, 60]. For
example, stringent nitrogen oxide (NOx) regulations were the driving force behind the
adoption of NOx pollution control technologies in the coal-fired electric power plants
of the U.S. [59]. However, environmental technologies that focus on energy efficiency
are adopted more slowly, as cost is the key driver which responds more to prices, not
regulation [50]. One way or the other, policies can affect the shape of the diffusion curve
and deems it necessary to include this in the modeling.

This is essential in bottom-up models with high technological specificity, however,
top-down models with high levels of aggregation do not necessarily need this level of
detail. This is due to the fact that these models are modeled with time periods of ten
years which allow for the gradual diffusion of any new technology. This is supported by
studies which show that the greatest impact of new energy patents take around four years
and patents take around four years to respond to changing energy prices [40, 61]. With
the DICE being a top-down model, technological change is only modeled as improvements
to the existing technology instead of the introduction of new products.

3.1.4 Uncertainty

Most models with integrated endogenous technological change assume a deterministic
world with known expectations [22]. However, there is a great deal of uncertainty when
dealing with future technological change even though it is a vital aspect of long-term
economic growth [23, 38, 62, 63]:

1. Uncertainty about future inventions.

2. Uncertainty about the usefulness of new infant technologies.
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3. Uncertainty about the pace of technological progress towards market maturity.

4. Uncertainty about the effect of R&D on technological change and its pace.

Besides this, an even larger amount of uncertainties are also present such as those
related to climate change science, the political situation or the economy as a whole. It is
of no surprise that uncertainty can play a key role in endogenous technological change
modeling.

There are two types of uncertainty, Arrovian (measurable) and Knightian (immeasur-
able) uncertainty [23]. It is the Knightian uncertainty which makes this phenomenon
difficult to analyze and study. But it is not something that is out of reach. Understanding
the dynamics of diffusion of new technologies and its impact on economic performance is
the first step in characterizing uncertainty in technological change.

It is a fact that most innovations throughout history have failed [23]; these failures
are correlated with the uncertainty and the inability to look into the future with clear
eyes.20 And as a whole, society is still doing the same mistakes. There is a gray area
between uncertainty on one hand and ignorance on the other. Given that decision-makers
do not always have an accurate probability distribution about the future, it is mostly
ignorance that catapults failed innovations. However, no matter the term, it is incentives,
policies and institutional rules that can help ease out the ex ante uncertainties in order
to motivate firms to innovate.

R&D is a great tool to develop new technologies. However, most of the R&D is used
for incremental product innovation (around 80% [23]). This means that R&D follows
a path-dependency and does not seek for Schumpetarian profits. It is hard to say that
technological change is exogenous when most of the R&D is used to improve upon existing
technologies [23].

There are some studies that link the connection between uncertainty and endogenous
technological change [62]. Most of these analyze either damage uncertainty, technological
uncertainty or a combination of both. One approach is to assume that the backstop
technology has a probability to be a bit "polluting" [64].21 Another option is to have

20For an account of historical cases refer to [23].
21An example would be nuclear power whereas it is carbon-free but with other long-lived environmental

problems.
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uncertainty over the effectiveness of R&D, that is, how probable it is that the backstop
technology will ultimately be successful [63]. Including uncertainty into models affects
the technological policy in important ways by increasing the total amount of investment
in R&D. However, different conclusions are sometimes reached due to the very nature of
the modeling exercise and its appropriate assumptions. In every case, uncertainty plays
a major role in the results, which indicates that it is something not to be ignored.

3.1.5 Concluding Remarks

An exhaustive review on the literature of technological change has been presented in this
section. Technological change has an effect on the production function by lowering the
use of the factors (namely labor and capital) in order to reach the same output. Energy
models tended to use exogenous technological change in its nascent stages. New models
and studies are showing that endogenizing technological change is beneficial and has im-
portant effects. The four main ways to endogenize technological change are price-induced
technological change, directed technical change, learning-by-doing and by R&D. Addi-
tionally, the diffusion of technologies when there is positive technological change follow
an S-shaped curve. Finally, there are many factors that contribute to a growing uncer-
tainty about future technological change. This can play a key role in the modeling process.

For the following sections, endogenous technological change through R&D will be
used as it is the most appropriate option for top-down models such as DICE. Nevertheless,
the theory from the other types of endogenous technological change will still be reviewed
to explain different phenomena. Technology diffusion will not be treated as much as it
is more appropriate for bottom-up models and the fact that patents by R&D have the
greatest impact within four years.
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3.2 Model

This section will focus on the additions made to the DICE2013x model in order to endoge-
nize technological change through R&D. David Popp’s work on endogenous technological
change provides the backdrop for this section [55, 65]. These additions are calibrated
accordingly to 2010 values in order to achieve consistency throughout the modeling
process. Section 3.2.2 goes through all the calibration steps.

The following sub-section describes in detail the equations of the model which is aptly
called DICE-ED for Endogenous & Discounting (ED) which is the main focus of the
thesis.

3.2.1 Equations

The first change made to the model is adding an energy sector which has two basic
fuels: fossil energy and backstop energy. Fossil energy includes the trident of oil, gas and
coal and release emissions to the atmosphere when used. On the other hand, backstop
energy includes all renewable and clean sources like solar and wind which do not release
emissions into the atmosphere when used. This is a key distinction to make between
the two fuels in this energy sector. The energy sector is added to the Cobb-Douglas
production function as ES(t), which is a measure of effective energy units. The formula,
adding on the production function equation (2.4), is:

P (t) = A(t)K(t)γL(t)1−γ−βES(t)β

where β is the energy elasticity to output in the production function. The production
function still exhibits constant returns to scale as the sum of the exponents is equal to
one. However, the cost of both the fossil energy and the backstop energy still need to be
subtracted from this production function. This is found in some other similar models
[65–67]. The appropriate form is then:

P (t) = A(t)K(t)γL(t)1−γ−βES(t)β − pF (t)F (t)− pB(t)B(t) (3.7)

where F (t) is fossil fuel usage measured in tons of carbon while B(t) is backstop
usage measured in carbon ton equivalent (CTE).22 It follows then that pF (t) and pB(t)
are the prices of fossil fuels and backstop fuels respectively measured in price per ton of

221 CTE has the equivalent energy to a ton of carbon of fossil fuel energy. Using these notations makes
for a simpler analysis.
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carbon and price per CTE.

The energy sector described with ES(t) uses a combination of the two fuels and also
a knowledge stock of energy efficiency which represents improvements in the energy field
that do not relate to the use of any of the fuels. The formulation for ES(t) uses a nested
constant elasticity of substitution form to account for the three different sources. The
form is:

ES(t) =
[
(αHHE(t))ρH +

(( F (t)
αΦΦ(t)

)ρB
+B(t)ρB

)ρH/ρB]1/ρH

(3.8)

where HE(t) is the knowledge stock of energy efficiency described above and αH is
a scaling factor related to how much savings are generated per unit of knowledge. Φ(t)
represents the ratio of emissions per unit of carbon used. This ratio declines as time
passes and represents exogenous technological change in the model. These improvements
in the ratio can be thought of as changing to cleaner fuels (e.g. from coal to oil to gas)
and/or improving the energy efficiency of the current energy system (e.g. combined cycle
power plants compared to single cycle ones). Φ(t) is calibrated so that the exogenous
technological change is similar to the one found in the DICE2013x model. αΦ is the
factor that reduces this exogenous technological change when R&D is added to the model.
Finally, ρH represents the ease of substitution between the two fuels and the energy
efficiency stock and ρB between the fossil fuel and the backstop fuel. The elasticity of
the substitution is 1/(1−ρi). The advantage of doing this is that the fossil fuel and the
backstop fuel are modeled as imperfect substitutes and thus backstop fuel can still be
used even when its price exceeds the one of fossil fuel [65, 68]. Modeling the energy sector
without this would yield unrealistic results.

The price of fossil fuels follows the same methodology as the one explained by Nordhaus
[66]. In the short term, it is the sum of the marginal cost of carbon extraction (mcoe),
or how much 1 ton of carbon costs to extract independently of the supply, plus a markup
which is the difference between consumer prices and the marginal cost of extraction.
Basically, this markup contains costs such as distribution costs, transportation costs and
taxes. The form of the equation, calibrated in the following section, is:

pF (t) = mcoe+markup

[
CCum(t)
CCummax

]4

(3.9)

Note that the equation is highly convex due to the power of four and thus the fossil
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fuels are quite price-elastic in the short term.

The backstop fuel price has a different formulation overall. The price decreases as
R&D increases the knowledge stock associated with backstop fuels. There are of course
no limitations to the extraction or use of backstop fuels as the supply is in theory endless
and renewable. The functional form for the backstop price is:

pB(t) = pB0
HB(t)η (3.10)

where HB(t) is the stock of backstop knowledge, η is the factor between prices and
knowledge and pB0 is the initial backstop fuel price. Technological change in this specific
case comes through by a learning-by-doing framework. The above equation is similar in
form to Equation (3.2) seen in Section 3.1.2.3. In this line of thought, a doubling of the
knowledge stock would then reduce the costs by 1− 2−η. This is commonly known as
the progress ratio.

The different knowledge stocks (HE(t) and HB(t)) are accumulated in a similar way as
how the capital stock accumulates. New knowledge is created by R&D. The formulation
is:

Hi(t) = f(Ri(t)) + (1− δH)Hi(t− 1) (3.11)

where δH refers to the decay of old knowledge and Ri is the R&D of either the energy
efficiency stock (i=E) or the backstop fuel stock (i=B).

The equation linking new knowledge with R&D must first comply to several conditions
due to empirical work which suggests that energy R&D exhibits diminishing returns [40].
The first derivative of f(Ri(t)) must be positive while the second derivative must be
negative so that there are diminishing returns over time [42]. This is true of R&D within
a specific field such as energy, however note that for a global R&D there might not be
diminishing returns to R&D [40]. One form that meets these requirements is:

f(Ri(t)) = aRi(t)biHi(t)φi (3.12)

where as long as bi and φi are between 0 and 1 then the conditions are met. This
specification is also seen in other modern growth models [69] which are all inspired from
the early work of Paul Romer [36]. When φi is greater than zero, prior R&D increases
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R&D productivity.23 When φi is lower than zero, prior R&D makes new R&D harder to
discover by "fishing out" all the possibilities from the pool of knowledge [69].

As noted in the literature review, the social returns to R&D are higher than the
private returns and thus firms will underinvest in R&D. It is important to take this factor
into account when modeling R&D. Additionally, the opportunity cost of crowding out
other R&D by energy R&D is also substantial and it is modeled here by subtracting 4
dollars of private investment for every R&D dollar crowded out. The formula for the
capital stock for this model is:

K(t) = {I(t)− 4 ∗ crowdout ∗ (RE(t) +RB(t))}+ (1− δK)K(t− 1) (3.13)

where crowdout is the % of R&D crowded out by energy R&D.

Also, now with R&D and the energy sector, there are no abatement costs per se in
this model. These are transferred as the total cost of energy. Abatement costs can be
thought of as the cost it takes to include the backstop energy in the model. Thus, total
output is regarded as:

Q(t) = P (t)
1 +Ω(t) (3.14)

with the balance equation now being:

Q(t) = C(t) + I(t) +RE(t) +RB(t) (3.15)

Finally, some constraints are needed on the growth of the backstop fuel and the
decline of the fossil fuel. Due to path dependency and technological lock-in, fossil fuels
can only be decreased at a certain rate. It is difficult to get rid of fossil fuels from one
period to the next. The following equation is proposed in order to model this:

F (t+ 1) ≥ ξ ∗ F (t) (3.16)

where ξ refers to how much inertia can the energy system take on decarbonization.

23Similar to how knowledge builds upon knowledge until the most recent one is "standing on shoulders"
of previous knowledge.
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Likewise, backstop fuel cannot grow unconstrained from one period to the next due
to the difficulties in implementing large-scale renewables in the energy system. There is
then a limit to the growth of backstop fuel per period. This is modeled as:

B(t+ 1) ≤ 0.005 + ζ ∗B(t) (3.17)

where ζ is the limit on growth of the backstop fuel.

3.2.2 Calibration

This section includes a description of all the calibration steps necessary to include en-
dogenous technological change in the DICE-ED. This section can be skipped without
any real lose in continuity.

The first step is to add an energy sector to the DICE2013x model. This is done
by implementing the above equations without any type of R&D or knowledge stock
improvement. The initial fossil fuel use (F (0)) is calibrated by seeing the DICE2013x
first period emissions and converting them from CO2 to C by dividing by 3.666.24

• F (0) = 33.553 GtCO2
3.666 CO2/C

= 9.15248 GtC

β is calculated as the percentage of output spent on energy expenses. In this initial
run, there is no backstop fuel so only the cost of the fossil fuel is important. It can be
calculated with the following formula:

β = Cost0
Q0 + Cost0

where Cost0 is the initial energy expenses and Q0 is the initial output gathered
from the DICE2013x model equal to 63.473 trillion 2005 USD per year.25 After this,
appropriate values for A0 and E0 are chosen to equal the initial output Q0.

Φ(t) is calibrated such that emissions from the DICE model are similar to the emissions
from the DICE-ED model. The form of Φ(t) is:

Φ(t) = exp
[(

gφ
δφ

)
(1− exp(−δφt))

]
(3.18)

24This is because the atomic weight of carbon is 12 u while the atomic weight for carbon dioxide is 44
u. The conversion rate is then 44u

12u which equals 3.666.
25Q0 changes slightly between the baseline and optimal run to account for damages.
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Figure 3.4: Comparison of Emissions between both models.

where gφ is the growth rate and δφ is the decline rate of the growth rate. After
calibration, these two values amount to:

• gφ = −6.85%

• δφ = 6.74%

Riemann sums were used to calculate the area under the curves and the result is
that there is a minimum difference of 2.71% in both of the models. Figure 3.4 shows the
result of this calibration.

The price of fossil fuels, pF (t), and backstop fuels, pB(t), are important for the
ultimate allocation of these resources. Nordhaus calibrates his price function with a mcoe
of 113 1990 USD/ton and a markup of 700 1990 USD/ton [66]. However, for a globally
aggregated model, Popp calculates a weighted average of all the regional markups to
come up with a value of 163.29 1990 USD/ton [55]. The form of the function is then:

pF (t) = 113 + 163.29 + 700
[
CCum(t)
CCummax

]4

There is only one small caveat that must be addressed. This is that the above function
is calibrated to 1990 USD while the DICE-ED uses 2005 USD. Thus, it is important
to change these values to appropriate ones. This is done by using the Consumer Price
Index (CPI) of the United States [70]. To change from one year to the next, the following
formula is used:
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Second Year Dollars = First Year Dollars ∗ CPISecond Year
CPIFirst Year

From Table 24 of the CPI report [70], CPISecond Year is 195.3 and CPIFirst Year is
130.7. With this information in hand, the final form of the price function for the fossil
fuels is:

pF (t) = 412.85 + 1045.98
[
CCum(t)
CCummax

]4

(3.19)

Likewise, for the price of backstop fuels, there are two important parameters that
must first be defined. The initial price pB(0) is taken from Nordhaus’ own calibration
of the DICE model and is 344 2005 USD per ton of CO2 [21]. Multiplying this value
by 3.666 converts it to CTE. The final value chosen is 1200 2005 USD per CTE which
is a common starting price for backstop fuels [65]. Finally, η is set at 0.4 which yields
a progress ratio of 24%. This means that doubling HB(t) implies a 24% reduction in
the cost. Although a highly arbitrary measure, the 24% progress ratio is considered
appropriate for the long-run price of backstop fuels.26 The final and calibrated form of
the function is then:

pB(t) = 1200
HB(t).4 (3.20)

The R&D sector is calibrated to initial historical levels in 2010. RE(0) is the initial
level of energy R&D. This is calculated as 2% of the world’s R&D expenditure in 2010.27

The 2% comes from the fact that 2% of the U.S. total R&D is for energy purposes. Total
R&D is 999136.3 2010 USD [71]. Converting to 2005 USD with the CPI and multiplying
by 2% gives:

• RE(0) = 17.8974 billion 2005 USD

The initial level of backstop R&D, RB(0), is approximated as 10% of the initial level
of energy R&D [72].

• RB(0) = 1.78974 billion 2005 USD

Coupled with F (0), the initial backstop usage B(0) is approximated as the amount
of renewable energy being used in 2010. In 2010, around 9.6% of the total energy came

26There is currently no reliable measure of η for backstop fuels.
27This is proxied as OECD countries which make the bulk share of R&D expenditures in the world.
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from renewable sources [73].28 With F (0)
1−.096 being the total amount of energy, then B(0)

is:

• B(0) = 0.972 CTE

δH is the decay rate of knowledge which is a difficult parameter to calibrate as the
literature is not specific enough. A study on clinical research found that the half-life
of truth was of 45 years [75]. This would imply a decay rate of 1.4%.29 Other decay
rates used within the literature range from 0% (for convenience) up to 25% [76, 77]. Due
to the difficulties of estimating a proper decay rate and the wide range found on the
literature, this thesis will work with the assumption that there is no decay of knowledge
in the energy and backstop fields. Therefore:

• δH = 0%

Both knowledge stocks, HE(t) and HB(t), are intermediate variables with no real
physical meaning. This allows them to be modeled from any starting point, as long as
it is logical. As HE(t) enters Equation (3.12) multiplicatively, it cannot have a starting
value of zero. Also, a value is selected so that emissions in the case with no energy R&D
remain unaffected with this initial energy knowledge stock. HB(t) is normalized to 1
so that in the runs without backstop R&D the price will remain unaffected due to the
functional form of Equation (3.20). Thus, the starting values are:

• HE(0) = 0.0001

• HB(0) = 1

The ease of substitution parameters in Equation (3.8), ρH and ρB, are calibrated
according to different criteria. ρH is changed so that the initial elasticity of energy R&D
with respect to energy prices is equal to 0.35, which is an empirical value obtained from
the literature [40]. ρB is obtained from the first-order conditions for energy demand.
This substitution parameter makes use of the initial values of the model. The derived
equation is: ρB = log(pF (0)/pB(0))/log(F (0)/B(0)) + 1. The resulting values are:

• ρH = 0.38
28Not taking into account nuclear and traditional biomass as sources. Nuclear is not counted due to its

controversial status while traditional biomass is not counted due to the fact that it is not considered
sustainable [74].

290.5 = exp−δH ∗t with t = 50 years then δH = 1.4%
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• ρB = 0.524

This means that the elasticities of substitution are 1.61 and 2.1 respectively. A higher
elasticity means that it is easier to substitute between alternatives. In this case, for an
increase in energy prices, more backstop energy is induced than energy efficiency measures.

αH and αΦ are also parameters from Equation (3.8). αH is calibrated so that each
new dollar of R&D gives four dollars of energy savings. αΦ is chosen at 80%. This is
what remains from the exogenous technological change once endogenous technological
change is added to the model. Their values are:

• αH = 0.336

• αΦ = 0.8

ξ is the maximum decline of fossil fuels per period, a concept known as decarbonization.
The IPCC notes that the decarbonization of the world energy system is comparatively
slow, at an annual rate of -0.3% through the 20th century [78]. Some models use
decarbonization rates around this area [79]. However, from 1990-2007, the world has
been carbonizing at a rate of 0.03% per year [80]. However, with an increase in energy
efficiency, the decarbonization of GDP has been between 1.2% to 2.5% [78]. From 2010
onwards, there is much uncertainty about future decarbonization although international
agreements such as the Paris one promise some momentum forward. For this modeling
practice, the rate of -3% will be chosen. This is to be the maximum decarbonization,
as it is a constraint. More decarbonization than this is not possible in the model. In a
period, the rate would be: (1− 3%)5 = −14%. Thus:

• ξ = 0.86

ζ is the maximum growth that the backstop fuel can have per period. From The
Statistical Review of World Energy 2016 by British Petroleum, the combination of
hydropower and other renewables has been growing at a rate of 3.4% per year from 1965
until 2010 [3]. On a five year period, this would mean a rate of: (1 + 3.4%)5 = 18%.
Being marginally more optimistic and rounding up, ζ is defined as:

• ζ = 1.2

Finally, ai, bi and φi are chosen so that future elasticities fit the desired time path.
Figure 3.5 and Figure 3.6 show the results of this calibration. The expected R&D with
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Figure 3.5: Calibration of Energy Efficiency R&D.

an elasticity of 0.35 is calculated and shown on the figures. Calibration requires having
the average R&D path of both policies to be in line with this expected elasticity. The
values of ai, bi and φi are chosen to match this path as closely as possible.30 To take
diminishing returns to R&D into account, the sum of bi and φi has to be less than 1 [63].

• aE = 0.0262

• bE = 0.29

• φE = 0.60

• aB = 0.01

• bB = 0.067

• φB = 0.60

30The values for the energy efficiency R&D are changed slightly in the case without backstop R&D in
order to simulate the same path.
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Figure 3.6: Calibration of Backstop R&D.

3.3 Economic Analysis

This section presents the results of the model runs and its economic analysis.

As discussed in Section 2.2, two different scenarios were chosen for the analysis. The
baseline run involves having no damages in the economic system and thus represents
an extreme case of business-as-usual. The optimal run contains the damages caused by
emissions and thus fully appropriates the externality in the economic system. Each of
these scenarios builds upon two cases:

1. Endogenous technological change with energy R&D but no backstop.

2. Endogenous technological change with energy R&D and backstop R&D.

The purpose of this is to also isolate the effect of the backstop technology.

One of the main sub-questions of this thesis is to analyze the effect that endogenous
technological change has on the model. At this point, it is possible to isolate endogenous
technological change as the main driver of change as there has been no modification with
regards to discounting. Each scenario will analyze the major impact on the variables
from the climate, economic and energy modules of DICE-ED.

3.3.1 Baseline Scenario

The baseline run presents an extreme case of business-as-usual due to the absence of
damages from the carbon emissions. The model maximizes welfare without any regard
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Figure 3.7: Emissions profile of the baseline run.

for the climate module. The climate module in this case plays a secondary role with the
module only reacting to the changes from the economic and energy modules.

First, the climate module will be analyzed followed by the energy module. The
economic module analysis finishes the analysis on the baseline scenario.

3.3.1.1 Climate module

One of the most important drivers of the carbon module are the carbon emissions. Carbon
emissions are what ultimately policy-makers aim at while implementing new policies.
What is the effect of endogenous technological change on emissions? Figure 3.7 shows
the emissions profile of the exogenous case and both endogenous cases.

Endogenous technological change has a clear effect on the timing of emissions. The
DICE2013x model emissions go to zero at the end because the limit of fossil fuel extraction
reaches 6000 GtC which is the upper limit. In this simulation with exogenous techno-
logical change, absolutely all the fossil resources are used and this path is considered
optimal by the solution algorithm. With endogenous technological change, the fossil fuel
extraction does not reach its upper limit, although it gets close to it.31 It follows that
including endogenous technological change in the model reduces the amount of emissions
to the atmosphere. This would mean that the maximum temperature would decrease
by a small part when there is endogenous technological change. In fact, the maximum

315872.438 GtC in the Energy R&D case and 5916.486 GtC in the Energy + Backstop R&D case.
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temperature increase in the exogenous case is 7.05°C while the maximum temperature
increase in the endogenous cases is 6.80°C.

There is also a slight difference in the emissions path when comparing both endogenous
cases. In the short-run, including the backstop fuel increases emissions but ultimately
decreases the emissions in the long-run. This is due to the fact that in the short-run,
the backstop fuel is considerably more expensive than the fossil fuel and thus it makes
more sense to let emissions increase which generates greater cumulative discounted utility.
When the price of the backstop has decreased enough, then fossil fuel becomes less useful
and the emissions can ultimately be lower.

Following the logic from the previous paragraph, a change in the initial backstop fuel
price would ultimately change the emissions curve to accommodate the new market price.
A higher initial backstop fuel price would induce more emissions in the short-run while a
lower initial backstop fuel price would have the counter-effect. A small sensitivity analysis
is presented in Figure 3.8. A higher initial backstop fuel price (1600 2005 USD/GCTE)
indeed induces a bit more emissions in the short-run compared to the base case of 1200
2005 USD/GCTE. The big difference comes with the lower price of 800 2005 USD/GCTE.
As expected, while the price of the backstop fuel is still above the fossil fuel price, the
emissions in the short-run are almost in line with the base case. After the year 2160,
denoted by the green dotted line, the price of the backstop fuel is now lower than the price
of the fossil fuel. Around this point, emissions start decreasing drastically as the model
optimizes and prefers to use the cheaper and cleaner backstop fuel than the polluting
fossil fuel. In comparison, for the high initial backstop fuel price, it is only after 55 years
in 2215 that the price of the backstop fuel is lower than the price of the fossil fuel. With
the base case, the backstop fuel is only cheaper after the year 2190. Assuming the lower
backstop fuel price decreases total cumulative emissions by more than 200 GtC.

Assuming a lower backstop fuel price not only drastically reduces the emissions but
also lowers the maximum atmospheric temperature. With the lower backstop price, the
maximum increase in atmospheric temperature rise is 6.60°C. This is a 0.20°C difference
with the base case of 6.80°C for a 3% change.

The above analysis explains some important dynamics of the R&D market and the
assumptions. The assumption of the initial price of the backstop fuel is important.
Practically there is no possible way to have an accurate initial price due to the variability
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Figure 3.8: Sensitivity analysis due to the initial backstop price.

of backstop sources in terms of location and resources. But the real important point is
that having a lower backstop fuel price will ultimately reduce emissions in the long-run
when simple market forces will allocate resources to the more plentiful cheaper resource.
For policy-making, focusing on R&D that purposefully lowers the backstop fuel price
will yield fruitful emissions reductions in the long-term.

3.3.1.2 Energy Module

The energy module is introduced to the model in this thesis so it is not possible to do a
comparison with the case of exogenous technological change. Nonetheless, a close look at
its major variables gives further insights about the structure and limits of the model.

Figure 3.9 shows the evolution of the backstop fuel with time for the case of Energy
+ Backstop R&D. It is only after year 2130 that the backstop fuel represents 50% of the
energy use in the base case. With a lower initial backstop fuel price, the year in which
the backstop fuel reaches the 50% mark is preponed. In the long-run, all cases reach
almost 100%. This graph clearly shows the energy transition which is bound to happen.
The timing of the transition is what is really up to debate.

3.3.1.3 Economic Module

The economic module is the module which changes the most with endogenous technologi-
cal change. For a first impression of the results, the welfare of the different cases must be
compared to the one with exogenous technological change. Table 3.1 shows the welfare
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Figure 3.9: Relative usage of the backstop technology.

Table 3.1: Welfare comparison in baseline scenario.

Welfare (utils) Relative to exogenous

Exogenous 2741 0%
Energy R&D 2927 +6.8%
Energy + Backstop R&D 2986 +8.9%

comparison between the exogenous and the two endogenous cases. With endogenous
technological change, the welfare of the economic system is increased up to 8.9%. This
means that there is more "utility" to society as there is more discounted consumption
per capita. The issue that consumption is better for society is a subjective issue and is
beyond the scope of this thesis.

One key variable that changes significantly when endogenizing technological change
is the savings rate. Figure 3.10 shows that the average savings rate increases with en-
dogenous technological change. A higher savings rate implies that more is being invested,
the capital stock is increasing, and future production can increase. An increase in the
production can be seen in the long-run with endogenous technological change as portrayed
in Figure 3.11. The output with the Backstop R&D increases by a bigger margin when
the price of the backstop fuel has decreased enough to be lower than that of the fossil
fuel, marked with the green dotted line. With the possibility to add cheap, unlimited
energy to the production function, the overall output increases.32 This is analogous to

32In an almost identical fashion, consumption per capita grows in the exact same way as output and is
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Figure 3.10: Baseline savings rate comparison.

Figure 3.11: Baseline output comparison.

growth in the 20th century with cheap oil. Even though the differences in final output
might differ in the three cases, the effect on total welfare is not as big as it initially looks
due to the discount factor. Long-run output is discounted at almost negligible present
values with the current discounting practice. The next chapter looks at this discounting
issue in greater detail.

The inclusion of the R&D sector has to be accounted for. As seen in the literature
review, the social rates of return of R&D are four times the private rates of return. This
would mean that the actual rates of return have to be at least four times bigger than

thus not illustrated here to avoid redundancy.
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Figure 3.12: Baseline Energy Efficiency Rates of Return

the real interest rate. Figure 3.12 shows the real interest rate (dashed black line) and
the rates of return in both endogenous cases. The rates of return are calculated as the
change in output over a change in R&D, in mathematical notation:

∂Q

∂Ri
= ∂Q

∂ES
· ∂ES
∂pi

· ∂pi
∂Hi

· ∂Hi

∂Ri
(3.21)

All the different partial derivatives are calculated within the model.33 In most of the
timespan of the modeling, the rates of return to R&D are exactly four times the real
interest rate. It is only at the extremes that the rate of return is greater than the real
interest rate. This is especially true at the end of the timespan because output increases
significantly while R&D decreases as seen during the calibration section.

3.3.2 Optimal Scenario

The optimal scenario includes damages into the economic model. Here, the climate
module plays a major role now as an increase in temperature causes monetary damages
to the economy which must be taken into account. This scenario simulates what would
happen if all the economy was left solely to the market forces. Will an invisible hand
come to the rescue?

In this section, it is also important to see the difference between the baseline scenario
and optimal scenario as this could help policy-makers understand the effects of the
externality upon the system.

33Refer to Appendix B for the full code.
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Figure 3.13: Optimal emissions comparison

3.3.2.1 Climate Module

As before, emissions are analyzed first. Figure 3.13 shows a comparison between the
optimal and baseline scenarios. As expected, total emissions are decreased when the
optimal scenario is run. This is due to the simple effect that for every GtCO2 emitted,
there is a corresponding damage. Figure 3.14 shows the level of cumulative emissions for
each scenario and for both endogenous cases. Cumulative emissions for the optimal run
with backstop R&D amount to 4798 GtC while its baseline counterpart amount to 5889
GtC which gives a difference of 18.5%! It is again the effect of the backstop fuel which
decreases total emissions significantly.

For the optimal run with backstop R&D, emissions have to initially peak around
the end of the 21st century. For this curve, a second and larger peak occurs at the end
due to the effect commonly known as the end-of-horizon effect. The solution algorithm
believes that the "end of the world" is near and thus optimizes a new increase in emis-
sions which generates extra output to contribute for a higher consumption. This is one
problem inherent with long-term modeling. One way to avoid this type of algorithmic
inconsistencies is to present results only until the end of the 21st century which is what
most politicians would consider acceptable. Figure 3.15 shows the same graph as before
but only until the year 2100 which makes it potentially easier to explain and illustrate to
the general public.
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Figure 3.14: Cumulative emissions comparison.

Figure 3.15: Emissions only until year 2100.
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Figure 3.16: Sensitivity analysis on timespan.

Table 3.2: Area under curve analysis.

Area Relative to base

100 years 7892 0.45
200 years 15309 0.88
300 years (base) 17397 1.00
400 years 18019 1.04

In order to assess the impact that the timespan has on the emissions curve, a small
sensitivity analysis was conducted that changed the timespan of the model. Figure 3.16
shows the results of this. Changing the timespan 100 years has a similar shape as the
base case (300 years), although with a difference in the timing. The area under the curve
gets progressively bigger as the timespan increases. Again, Riemann Sums were used to
analyze the area under the curve. Table 3.2 show the results of this analysis. However, for
a timespan of only 100 years, the emissions profile changes drastically. Zooming in until
the year 2100 proves this. Figure 3.17 shows how the emissions profile gets dramatically
bigger when the modeling timespan is only of 100 years. The analysis of the impact
of stipulating timespans on the simulation outcomes is beyond the scope of this thesis.
Figure 3.17 illustrates that the impact is not negligible and model outcomes are sensitive
to the stipulated timespan; further investigations of this issue are left for future research.

With regard to atmospheric temperature, running the optimal scenario lowers the
ultimate atmospheric temperature. The temperature increase at the end of the timespan
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Figure 3.17: Sensitivity analysis on timespan until year 2100.

with the backstop R&D is 6.15°C while in the baseline scenario it is 6.81°C. This makes
for a difference of 9.7%. The reason that this model gives very high temperature increases
is three-fold:

1. The solution algorithm optimizes without any command-and-control policy in place
such as limiting temperature to 2°C or concentrations below 550 ppm.

2. Damage functions are usually calibrated to lower temperatures. When working
with high temperatures, there is no tipping point or extreme case modeled. There
exists a lack of information into how the damages will look for high temperatures.
Including extreme damages after a certain temperature could potentially improve
the modeling results.

3. The numbers obtained from these simulations are not particularly important. What
really matters is the effect of endogenous technological change. Any real estimates
on the future state of the world after 300 years are sure to be standing on unstable
ground.

Again, the initial backstop fuel price plays a major role in the results. This can be vi-
sualized in Figure 3.18. The low backstop fuel price shows a big reduction in atmospheric
temperature increase from 6.17°C (base) to 4.73°C. This is a 23.34% difference with the
base case! The reason for this is that having a lower initial backstop fuel price increases
the elasticity of substitution between fossil fuel and backstop fuel. The base case of 1200
2005 USD/GCTE has an elasticity of substitution of 2.1 while with 800 2005 USD/GCTE
the elasticity of substitution is 3.39. This makes it easier to substitute between fuels and
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Figure 3.18: Temperature sensitivity analysis on initial backstop price.

accelerates the rate of backstop usage. However, even if the difference between these
cases is relatively big, it is not enough as the temperatures by 2100 are around 4°C higher!

All of this stresses the importance of adding endogenous technological change and
specifying a backstop technology within the model. One important insight is that renew-
able energies are not sufficient to limit the rise of temperature. Figure 3.18 shows that
even in an optimist situation with low backstop fuel price the atmospheric temperature
rise reaches levels above 4°C! The recent Paris agreement would fail catastrophically as it
aims for a maximum temperature increase of 2°C [10]. For this, policy-makers must not
only advocate for the growth of renewables, but also for command-and-control policies
which can limit total emissions and limit atmospheric temperatures below dangerous
levels. The key takeaway is that renewable energies are not a panacea, they need to be
combined with other policy measures and strategies in order to tackle global climate
change. This is of no surprise as climate change is a wicked problem: the solution is
multi-dimensional and cannot be brought about by just one single policy instrument.

3.3.2.2 Energy Module

Counter-intuitively, running the optimal scenario has some important effects. Due to
the fact that less fossil fuels are used in the optimal scenario, the price of the fossil fuels
rises at an almost glacial pace. This then has an impact on total backstop usage because
the price of fossil fuel is mostly below that of the backstop fuel. Figure 3.19 shows the
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Figure 3.19: Fuel prices in optimal scenario.

Figure 3.20: Backstop usage difference between the two scenarios.

dynamics between these two. The backstop fuel price only gets below the fossil fuel price
in the year 2285 which proves to be quite late. Comparing the backstop usage from the
optimal and the baseline scenario gives proof of this (Figure 3.20).

3.3.2.3 Economic Module

With the baseline scenario being an extreme case of business-as-usual and backstop usage
being less as shown above, it can only be expected that the optimal scenario results
in lower overall welfare. Table 3.3 shows the results on the welfare. Comparing it to
the exogenous case, endogenous technological change has a similar effect in terms of the
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Table 3.3: Welfare comparison for optimal scenario.

Welfare (utils) Relative to exogenous

Exogenous 2688 0%
Energy R&D 2871 +6.8%
Energy + Backstop R&D 2932 +9.1%

relative gains. In absolute values, the optimal scenario results in lower welfare due to the
presence of the externality via the damage function.

An important topic to discuss with the optimal scenario is the development of the
Social Cost of Carbon (SCC). In simple terms, the SCC is the economic cost caused by an
additional ton of carbon emissions. In programming jargon, the SCC is the shadow price
of emissions along the output path. In an ideal economy34, the SCC would represent the
carbon price. The SCC is dynamic in time, changing every year with each new state of
the model. It is calculated as:

SCC(t) ≡

− ∂W
∂E(t)
∂W

∂C(t)

(3.22)

The numerator and the denominator are easily calculated by GAMS as the marginal
values of the variables E(t) and C(t). Figure 3.21 shows the SCC for the exogenous
run and both endogenous runs. The three runs share a similar shape with the notable
difference of the peaks. Including endogenous technological change with only energy R&D
increases the SCC slightly compared to the exogenous case. However, when including
backstop R&D, the SCC increases significantly compared to the exogenous case. The
reason for this is that including a backstop fuel in the model makes the marginal utility of
consumption smaller because in the endogenous cases the consumption is divided between
investments and R&D while in the exogenous case there is no R&D sector. Opening
up the R&D sector in the endogenous cases then reduces the value of consumption and
its effect on welfare. Consumption is less valuable as dollars can now go to the R&D
sector where they will also produce some value by reducing costs of the backstop fuel or
increasing energy efficiency.

34Free of regulatory or tax distortions.



CHAPTER 3. ENDOGENOUS TECHNOLOGICAL CHANGE 65

Figure 3.21: Social cost of carbon comparison between runs.

Table 3.4: SCC for different cases. Units in 2005 USD/ton CO2.

2010 2020 2050 2100 Growth per year

Exogenous 14.84 21.31 52.18 148.02 2.6%
Energy R&D 14.68 22.05 58.16 170.99 2.8%
Energy + Backstop R&D 14.92 22.42 60.62 187.09 2.8%

Table 3.4 and Figure 3.22 show the SCC until the end of the century. Now under
close examination, the SCC of the endogenous case with backstop R&D is significantly
bigger than the exogenous case as early as 2050. This difference in 2050 accounts to
16.17%. Annual growth rates among the three cases roam around the 2.8% mark through
the end of the century. However, these rates change to around 1.7% when taken until
the year 2225 (where the SCC is at its maximum). This again states the importance of
the timespan in policy-making.

As for the total output, in this scenario the output gets decreased in comparison to
the baseline scenario. The damage function is highly accountable for this. Figure 3.23
shows similar results such as those in the baseline scenario. Output with backstop R&D
is increased due to the possibility of the backstop technology. The optimal output is lower
due to the damage function. Figure 3.24 shows the difference between both endogenous
cases. Including a backstop fuel ultimately lowers the fraction of lost output due to
damages because of the emergence of the non-polluting fuel which does not increase
atmospheric temperature. Long-run damages (around 10%) are incredibly big because of
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Figure 3.22: Social cost of carbon comparison until year 2100.

Figure 3.23: Comparison of output between different scenarios.

the high temperature increase (6.15°C). It is possible that in a world of 6°C damages
might well be over 50%. There is much uncertainty again about damages in the high
temperature range and it is considered an area of improvement for future modeling
purposes.



CHAPTER 3. ENDOGENOUS TECHNOLOGICAL CHANGE 67

Figure 3.24: Damages across endogenous cases in optimal scenario.

3.4 Concluding Remarks

This chapter has dealt with endogenous technological change in a climate policy model.
An extensive literature review was first presented. The DICE2013x model was refor-
mulated to include endogenous technological change via R&D. Along with this, the
calibration steps were explicitly described for transparency and to achieve consistency in
the modeling. Finally, the model was run and its results were presented.

Including endogenous technological change has some important effects on the model
results. First of all, total welfare is improved over the exogenous case by 8.9% with a
backstop fuel. Total emissions are also significantly lower in the long run; in the early
periods emissions are actually higher than the exogenous case as the price of the backstop
fuel is higher than the price of the fossil fuel which incites extra emissions. Ultimately,
lower temperatures are achieved with the inclusion of endogenous technological change.
The bigger effect is seen when a backstop fuel is introduced into the model compared
to just modeling energy R&D. In all modeling scenarios, the backstop fuel ultimately
represents 100% of the economy’s energy requirements by the end of the model’s timespan.

In economic terms, the inclusion of endogenous technological change increases both
net output through an increase in the general savings rate of the economy. This ulti-
mately increases total welfare by having a higher consumption per capita. The SCC
also increases compared to the exogenous case which for policy-makers means a higher
carbon tax. Another important insight is that to tackle global rise of atmospheric tem-
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peratures, the inclusion of a backstop fuel is not enough. Extra policy measures have to
be in place with a focus on limiting emissions in order to prevent dangerous climate change.

Many of the benefits accrued to a backstop fuel are seen in the far-distant future.
These benefits are all brought back to the present time via the discount rate. With the
current practice, many of these benefits are almost worth nothing due to the power of
compounding. The discussion of discounting in climate policy models is primordial and
with good reason. The next chapter focuses on this.



Chapter 4

Social Discounting

This chapter deals with the important issue of social discounting.1 First, a literature
review is presented to introduce the topic. Then, without claiming any right way of how
to choose the discount rate, different methods of dynamic discounting will be presented
and assessed. Each of them will be presented in terms of equations, calibration and
reasoning. A comparative economic analysis follows this section. Concluding remarks
are presented at the end.

4.1 Literature Review

Discount rates are used in economic analyses to account for the difference in time between
varying economic effects. In essence, the discount rate links the future with the present
so that all values can be compared on similar terms (i.e. the present). This is due to the
fact that money has a time value, where money is worth more in the present than in the
future due to potential earning capacity. Thus, when comparing different cash values in
different points in time, it is necessary to account for the time value of money. One of
the easiest ways to visualize the discount rate is with the following formula:

PV = FV

(1 + r)t

where PV is the present value of any transaction, FV is the future value, r is the
discount rate and t is the time in years. The discount rate is mostly positive as it allows
investments today to produce more in the future; this is what has been expected and

1As a reminder, social discounting is discounting applied to social projects such as climate change
mitigation. In this chapter, the social part is implicit when mentioning discount rates.
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what has become the norm.2

Due to the nature of climate change, models for policy analysis are usually confronted
with long time spans. Discount rates are highly debated in the literature [12], as the
selection of this particular value changes the whole decision-making. One of the most
common examples is the difference in selection between William Nordhaus and Nicholas
Stern. Nordhaus uses a discount rate of 4.3% on his DICE model and the result is
inaction on climate change [66] while Stern employs a discount rate of 1.4% and the
results are the opposite, urgent climate action [16]. How is it that a 2.9% difference is
enough to drastically change the results of the DICE model?

The current generation has to basically make a decision between investing money on
mitigation or in capital and education. If the real rate of return of mitigation is higher
than the real rate of return of capital and education, then future generations will be
better off if investment is made on mitigation. So, in a way, money is spent today to
avoid future climate change damages in the future.

The question that arises is how to select the appropriate social discount rate. And
throughout the literature, there are mostly two views on this issue: the prescriptive
approach and the descriptive approach. The prescriptive approach is of a more normative
behavior with ethical foundations as its base. It asks the question: "What should the
discount rate be from an ethical point of view when considering future generations?".
The descriptive approach, on the other hand, is of a positive nature with (mostly) market
interest rates as its base. It asks the question: "How does the current generation value
the future?".

Before going into each approach, it is necessary to analyze one of the most common
approaches to social discounting, the Ramsey equation [82]:

r = ρ+ αg (4.1)

where r is the social discount rate, ρ is the social rate of pure time preference, α is
the value of the elasticity of marginal utility and g is the growth rate per capita.

2There are also other reasons why the discount rate should be positive: society’s impatience to consume
today and the justification that future generations will probably be richer than the present ones, thus
their consumption should be valued less [81].
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Table 4.1: Modeling values of Nordhaus and Stern

ρ γ g r

Nordhaus 3% 1 1.3% 4.3%
Stern 0.1% 1 1.3% 1.4%

ρ is the trade-off between the utilities of present generations and the utilities of future
generations3, assuming that they will exist. It is how the future is seen through today’s
telescope, as argued in [81]. If all generations are valued equally, then the value would
be zero. If ρ is high then the value of consumption is highly differentiated between gener-
ations [21]. Some values close to zero are sometimes assigned due to human extinction
possibilities in which humankind will not last forever [16].

α is the general trade-off between different consumption now versus consumption in
the future, regardless of the date. It measures the relative effect of income on welfare. It
is also a measure of society’s aversion to interpersonal inequality4 and risk in consumption
[81]. In essence, a higher value means a more egalitarian society (intergenerational) which
translates into a higher discount rate in which society would be less willing to act on
climate change, as it will redistribute resources towards the future. This seems like a
paradox, where the more egalitarian society is, the less it cares about climate change, as
future generations will be thought off to be richer than current ones.

g is then the expected growth in the economy, mostly through growth in GDP. This
can be extrapolated from past values or on an expected basis.

Both ρ and α require value judgments from the modelers and this is the crux of the
literature’s discussion on the social discount rate. As an example, Table 4.1 shows the
values used in the modeling practices of Nordhaus and Stern.

As can be seen, the primary difference lies in the selection of ρ.5 The difference in r
might not seem really substantial, after all, it is just less than a 3% difference. However,
it is significant when looking at long time horizons. For example, the present value of a

3Utility can be thought of as the enjoyment and happiness that one gets from consumption.
4Between the rich and the poor.
5The choice of α is also criticized in the literature, marking it as unethical to choose 1 as the value. A

higher value (around 2-3) would be a preferred choice [81].



CHAPTER 4. SOCIAL DISCOUNTING 72

$100 damage 100 years from now is worth just $1.49 to Nordhaus and $24.9 to Stern!
That is almost 17 times smaller in comparison!

4.1.1 Descriptive Approach

The descriptive approach, as previously said, is of a more positive nature, with facts
and objectivity as its strength. Many climate change models are based on this, with
Nordhaus’ DICE as the most prominent one. There are three main arguments which
support this view [14]:

1. Spending on mitigation crowds out other investment.6 It is important to choose
the option that maximizes total consumption.

2. If the rate of return (mitigation projects) < the rate of return (other investments),
then current and future generation will be worse off.

3. There is no justification of using any other option other than society’s actual choices
with the current rates of return on savings.

Therefore, the descriptive approach is concerned with opportunity costs. Choosing
the option with the highest return is the only viable option, both for future and present
generations. If no money is spent on mitigation today and other alternatives are chosen,
future generations will be richer and this will allow them to adapt to climate change.
Market interest rates serve as the best proxy for "alternative investments" which could
be made instead of mitigation actions.

One of the most important issues to solve is the difference between social and private
returns. The descriptive approach must specify if it is using after-tax return (private
return) or pre-tax return (social return) as the values differ and can have significant
effects on project valuation [83]. Another parallel issue is whether to use government
bonds, private stocks, treasury bills, etc.7 And finally, it must also justify the selection
of a country to base the worldwide phenomenon on.

4.1.1.1 Criticism

One of the strongest criticisms is that mitigation projects do not crowd out other invest-
ments on a dollar to dollar basis. Therefore, it is not fair to compare mitigation projects

6If everything is financed through bank credit then this would not hold as explained in Section 3.1.2.4.
7More on this in Section 4.1.3.
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to other investment projects with the same lens.

Choosing the discount rate for climate change on the market interest rate is debatable.
Different studies show that the choice of the discount rate differs between products,
income, time framing and other factors [84]. For example, a study shows that discount
rates for the adoption of air conditioners varies between 5% for high income households
and 89% for low income households [85]. Also, most individuals only think about their
own lifetime when doing savings and investment decisions, never in the long-term future
that climate change requires. Why then is it justifiable to equate the market interest
rate with the discount rate used for climate change when both things are of a completely
different nature?

Besides this, another problem surfaces up when treating discount rates as market
interest rates. Climate change modeling spans several centuries, however, market interest
rates are usually only known until the next 30 years. Few interest rates, if any, have
maturities above 30 years [60]. So, after 30 years, future interest rates are fundamentally
uncertain and current modeling practices do not capture this. On top of this, decisions
using more than a 30 year time frame not only affects present generations, but also future
generations as well.

Uncertainty plays a major role in the selection of the discount rate. Studies show
that in all cases where uncertainty is taken into account, the discount rate should equal
the lowest possible expected rate of return [60, 86]. This is due to the fact that in the
long-term, lower rates of return have more weight in the averaging process than the
higher rates (if both have the same probability distribution) [83].

Nordhaus uses the descriptive approach and thus links the discount rate with market
interest rates [66]. This simple decision leads him to conclude that at the moment of
modeling, no action is needed to combat climate change. What he advocates is a "climate
policy ramp" which includes ratcheting up the reduction of carbon emissions but only
until a future date, not immediately.

4.1.2 Prescriptive Approach

The most important thing to know about the prescriptive approach is that it is based on
ethical terms. This approach is usually associated with low discount rates. This is mainly
due to the selection of the social rate of pure time preference. It is argued that ρ should
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be equal to zero on the basis that utility today and utility in the future holds exactly
the same value. This is in line with intergenerational neutrality, which the prescriptive
approach defends on a moral ground. However, Stern uses a low value of 0.1% due to
the extreme case of human extinction8 as it is improbable that humans will last forever
and thus some minimal discounting is justified [16]. Another example of the prescriptive
approach can be found in William Cline’s work [87].

If the problem of climate change is seen under John Rawls’s "veil of ignorance" [88],
then all generations hold exactly the same value and subjecting future generations to
possible harm is morally indefensible [83].

Prescriptive rates do not match the market interest rates because it is argued they
they do not offer a good indicator of the marginal trade-offs to society. This is due to
several reasons: market imperfection, suboptimal tax policy and difficulty in transferring
to future generations [14].

In addition, the precautionary principle also plays a role. The precautionary principle,
in its many definitions, is about reducing the risk and damages to the public health and
the environment when scientific consensus is absent [89]. The consensus on the causes on
climate change is clear, but the consensus on the damages is not. A lower discount rate
would abide by the precautionary principle in order to minimize damages to the public
health and the environment.

4.1.2.1 Criticism

There is much criticism towards the prescriptive approach. Critics state that the discount
rate should not be used because the market rate of return is usually higher than the low
numbers (≈2%) of the prescriptive approach, and this means that society is forgoing
better opportunities elsewhere [14]. Counterarguments involve realizing that climate
change investment is better than no investment at all and that society cannot set aside
funds for future generations which will help them adapt to climate change.

Another argument that is pointed out is that low discount rates are not consistent
with normal, expected behavior. That is, the government does not apply these discount
rates in similar areas like education or research [14]. However, prescriptivists argue that

8Say by a meteorite hitting the Earth or an unsuspected alien invasion.
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climate change is an ethical case with far-reaching impacts so it should not follow the
same behavior as other areas.

Stern uses the prescriptive approach in his work, taking the values as seen in Table 4.1.
The result of this is well known: urgent climate action in contrast with Nordhaus’
recommendations.

4.1.3 Which one is the better one?

Is it that any of these two approaches is of a better nature for modeling? This is a difficult
question to answer as the discussion on it is still continuing. It can be argued that both of
them address different sides of the same coin. The prescriptive approach, on one hand, is
concerned with the distribution of resources across generations. The descriptive approach,
on the other hand, is more concerned with the allocation of resources across generations.
Thus, the former is characterized by distribution and the latter with efficiency [83].

In one paper there is a strong argument that neither the descriptive approach nor
the prescriptive approach are free from value-judgments and thus none of them can be
defended on description alone [15]. Any discount rate that is assigned goes through a
three step process: standing, measurement and aggregation. Both approaches go through
value judgments at each step.

Standing refers to who will be described. In other words, who is going to be repre-
sented through this discount rate? The descriptive approach makes a huge value judgment
in this step, just considering people who participate in the financial market in a certain
country. By doing this, descriptivists are not considering many who are considerably
affected more by climate change: the poor, animals and other countries. Additionally,
even though future humans are taken into account, they have absolutely no power or
influence on the discount rate. On the other hand, the prescriptive approach includes
everybody into their discount rate but only the modelers/analysts have a say in this and
it can be considered a form of elitism.

Measurement is the step where the approaches decide on what is the right thing to
measure. One of the key issues is dynamic inconsistency, where society has different
preferences at distinct points in time. Choosing anything to measure involves some type
of value judgment. The descriptive approach places emphasis on monetary units as it
bases the discount rate on it. It also favors the higher rates of return on equities [21, 60],
which is in itself a value judgment, instead of choosing bond rates. If bond rates were
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chosen, both approaches could yield similar discount rates [15].9 For the counterpart,
the prescriptive approach can again be accused of elitism, where the few analysts decide
on what is better to measure, which is their own particular value judgment. Another
crucial question is how to define utility. Is it monetary consumption, happiness index,
social connections? There is no clear answer on the subject.

Aggregation refers to the process of collecting the individual measurements of all
the people standing, and combining them into a unique societal measurement. The
descriptive approach works under the premise of "one dollar = one vote". This has its
shortcomings, as only the few rich can actually be "voting" on the interest rate (which
affects the discount rate). Therefore, not everyone has a say on the discount rate. The
prescriptive approach works under the "one utility = one vote" which can be measured
with α from Equation (4.1). Again, elitism is still prevalent.

In another paper, there is a strong argument that both approaches are fundamentally
correct and none is inconsistent [83]. The prescriptive approach on intergenerational
equality should not dismiss choosing the interest rate of return as the discount rate (when
uncertainty is included). In particular, it is all about the choice of the particular projects.
In order to leave the highest welfare for future generations, then it is necessary to compare
different alternatives at the current interest rate. This tries to minimize generational
inequality as resources are always maximized. For the prescriptive approach, the real
issue is the savings and investment rates that matter, not the selection of projects or its
corresponding discount rate. However, using only interest rates will not maximize possible
future welfare if the right projects are not selected. Thus, the descriptive approach must
incorporate climate change mitigation projects. So, both are correct: the prescriptive
approach in that the current generation has to do its best to ensure intergenerational
equality and the descriptive approach is correct in the method of doing this, by comparing
it with the market interest rate [83].

4.1.4 Non-constant discounting

Both of the above approaches involve having a constant discount rate that does not
change with time. The main reasons for constant discounting is economic efficiency and
temporal consistency. For short-term projects, this is a very common practice and usually
accepted by most economists [90]. For long-term projects, any future benefit or cost

9There are other methods used to measure how people discount: stated preference survey, brain
imaging and using public policy as a proxy.
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is discounted to almost zero due to the geometric decay of the discount factor. One
alternative is to not discount at all. This, however, is in conflict with how most people
value their life and thus makes it politically infeasible. The other alternative is the juste
milieu between these two: non-constant discounting.10

First of all, there are several arguments as to why constant discounting is inappropriate:

1. There is an ever-changing intergenerational discount rate. The discount rate for a
generation in 1900 is different from one in the 2000 which might be different for
one in 2100. This means that different generations in time will have a different
valuation of the future. This can be due to political, economical, cultural and
environmental reasons. And given to the long times in climate change modeling, it
is wise to capture this dynamic effect.

2. Policy and model results are very sensitive to the chosen discount rate.

3. As more technology is available to society which increases affluence and future
consumption, the lower the implied discount rate. One example of this is linking the
discount rate to the capital per capita. As it grows and society becomes richer, then
the discount rate starts decreasing as richer societies tend to be more far-sighted
[92]. More on this below.

4. As time passes by, climate damages are increasing and thus the issue of climate
change becomes even more evident. It is difficult to see a situation in which society
reverses previously done climate damages. Consequently, the discount rate will be
lower the more imminent the threat is [93, 94].

5. Large future damages with moderate discount rates have almost no effect due to
the power of compounding [82, 86, 91].

6. Interest rates are not fixed over hundreds of years, instead the rates are uncertain.
Using this uncertainty can increase climate change valuation by up to 95% in
comparison to a constant rate [60].

10Most of the attention in non-constant discounting goes to what is called slow discounting. This
is when a discount rate starts at a positive value and tends to zero as time goes to infinity. For a
mathematical explanation of this refer to [91].
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4.1.4.1 Hyperbolic discounting

One stream of economists have been using hyperbolic discounting to model climate change
models. What exactly is hyperbolic discounting? It derives from how humans discount
in real-life without thinking about it. The most common example used to explain this
situation is if an individual was offered €100 today or €102 tomorrow, what would the
individual take? Many would prefer €100 as a single day is a significant delay in this
short-time frame. But what if the same individual was offered €100 in 10 years time or
€102 in 10 years and 1 day? Most would prefer waiting an extra day for the €102 even
though in both cases the delay between the prizes is exactly the same, one day! This is
because over a long-time frame, the delay of a single day is no longer very relevant. This
type of inconsistency is captured in hyperbolic discounting. When applied to climate
change, something similar happens. Society would expect to discount the welfare of the
closer generations, as there is an emotional bond with them (children and grandchildren).
However, when dealing with further generations, say the 11th or 12th, the difference
between one or the other does not mean any emotional difference to the current society,
so the future rate of time preference is lower and society discounts them at almost the
same discount rate. [95].

Figure 4.1 shows a plot of the discount factor with time as a hyperbolic function.
This type of plot can help explain some behavioral aspects of humans such as impulsive
gratification in the short-term and preference reversal [84]. Hyperbolic discounting is
easily applied to current models of climate change and it is preferred by some economists
(especially prescriptivists) as it discounts future generations on a more ethical way.

One common form to express the hyperbolic discounting curve is [96]:

Value = Value at no delay
constant + (Impatience factor×Delay) (4.2)

where the constant is a small number for when the delay is zero or small and the
impatience factor can be modified according to the specific case: climate change, financial
risks, consumption goods, etc.
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Figure 4.1: Hyperbolic Discounting

The case is that even though hyperbolic discounting can be seen in the behavior
of consumers, it is still far from perfect to apply in cases of climate change, where the
social and economical situations of distant generations are instrinsically different from
one another.11 Hyperbolic discounting is criticized mainly due to the time inconsistency
problem. Time inconsistency refers to a situation in which preferences change over time
such that an optimal choice made today is no longer optimal when re-evaluated tomorrow.
Also, applying individual behavioral aspects to a social decision is conceptually fraught
with irrationalities [84].

4.1.4.2 Coupled with Technological Change

Economist Martin Weitzman argues that the most important issue when dealing with
deep-future (long-term) discount rates in climate change models is to know the underlying
trend in the real rate of interest as this can be used as a savings program which can deal
with climate damages in the deep-future [97]. So, what is it that drives the real rate of
interest?

11Most individuals only face decisions based on a 20-40 year time frame (e.g. buying a house, retirement,
savings fund, R&D research, business decisions, etc); considering the time frame of hundreds of years of
climate change is unimaginable for the individual.
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Figure 4.2: Link between interest rates, capital productivity and technological change.

In principle, the real rate of interest is dependent on the productivity of investment
at the moment. And in turn, this depends on the productivity of capital, that is, how
much output one can get from some inputs. The productivity of capital changes in time
with technological change. This can be visualized in Figure 4.2.

In this sense, if deep-future interest rates depend on technological change then it is
possible to link the discount rates with technological change. However, a question arises.
How certain is it that technological change will continue indefinitely into the deep-future?
Inspired by [97], it is possible to imagine a world where new ideas are nonexistent, just
as an artist or inventor might run out of ideas. Also, there might be a finite number of
ideas which can be explored. However, this seems implausible. Just as a deck of 52 cards
can be combined in more ways than the total seconds in existence since the Big Bang,
the total number of ways ideas can be combined to produce new ideas is insurmountable.
Just from past observation, technological change has been growing at an ever-increasing
rate. There is then no reason as to why the future productivity of capital should be lower
than today’s [97].

Weitzman argues about the nature of the problem itself, describing the long term
effects of compounding as a concept which is highly counterintuitive. He suggest a
declining discount rate for climate change modeling, eventually reaching to zero [97].

4.1.5 Concluding Remarks

A review of the literature and issues surrounding the discount rate has been made in
this section. The Ramsey Equation (4.1) proved to be of critical importance for the
understanding of the different concepts. Discounting has two main approaches: the
descriptive approach and the prescriptive approach. The descriptive approach relies on a
market principle, arguing that projects with the higher rates of return should always be
chosen. This approach is criticized mainly for the inherent problem of choosing a current
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market rate for the long timespan of climate change. The prescriptive approach is based
on an ethical foundation. The prescriptive approach lends itself to lower discount rates.
These low rates are the main criticism against the prescriptive approach because it is
not consistent with expected behavior. A study was reviewed which showed that both
approaches are full of value-laden assumptions. Finally, a case was given for non-constant
discounting. Hyperbolic discounting was presented as an initial approach of non-constant
discounting. A coupling with technological change was presented as an alternative to the
discussion.

One of the main points of this thesis is to see the effect of a dynamic discount rate
(non-constant) in a climate policy model. This is done in order to try to steer away the
conversation from the descriptive/prescriptive arguments. The following section describes
the model and its implications.
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4.2 Model

This section will explain the modifications done to the DICE-ED model in order to have
a dynamic discount rate that depends on the previous work of endogenous technological
change and environmental variables. Two different methods are explained below, the first
sub-section for each method explains the reasoning behind the formulation. Then, the
actual equations are explained followed by the calibration.

A key distinction to make while adding a dynamic discount rate is that the long-
run steady-state savings rate will change. Initially, with a constant discount rate, the
steady-state savings rate is given by:12

s∗ =
(

γ(δK + ν)
δK + ρ+ να

)
(4.3)

where s∗ is the steady-state savings rate, γ is the capital elasticity to output, δK is
the capital rate of depreciation, ν is the growth rate of labor-augmenting technological
progress, ρ is the social rate of pure time preference and α is the elasticity of marginal
utility of consumption.

Including a non-constant discount rate (ρ) has important quantitative effects on
savings and growth [98]. A lower effective discount rate over the long-run would exhibit
higher steady-state savings rate and capital accumulation [98]. Thus, an effective discount
rate can replace ρ in Equation (4.3). The definition of the effective discount rate depends
on the way it is modeled. For a "quasi-hyperbolic" form, the effective discount rate is
calculated as ρss/κ where κ is the discount factor and ρss is the steady-state rate of time
preference [98, 99]. In this case, the steady-state discount rate will be lower after a given
period of time. To approximate the effective discount rate, the following formulation is
proposed:

λ = ρ(Tmax − 10) (4.4)

where λ is the effective discount rate, ρ(Tmax − 10) is the rate of time preference
at time period (Tmax − 10). Quantifying the effective discount rate depends on model
parameters which can differ significantly with each strand of the literature. This will be
an approximation as the effective discount rate in its most general case is a weighted
average of future rates of time preference [98]. In theory, λ will be a bit higher than

12This comes from the steady-state solution for the Ramsey-Cass-Koopman model.
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what it should be. However, the steady-state savings rate in Equation (4.3) is not very
sensitive to the change of λ, so the above formulation is deemed appropriate to capture
the effects of a higher savings rate with a non-constant discount rate. The reason why λ
is evaluated at time period (Tmax − 10) is because the savings rate in the model is fixed
to achieve steady-state. λ will replace ρ in Equation (4.3).

On a last note, one of the main issues with non-constant discounting is the time-
inconsistency. The following methods practically avoid this issue by supplanting the
decision to a formula instead of a subjective criteria. So, in every period, the formula
can be re-evaluated by a new social planner and the result would be the same. Thus, the
formulations are time-consistent. However, the only concern is the initial rate which is to
be selected subjectively. This is a point of discussion outside the scope of this thesis.

4.2.1 Method 1: Decreasing Marginal Impatience

Initially, most of the early work with dynamic discount rates involved the assumption of
increasing marginal impatience [100]. This means that as the levels of consumption of a
country or agent get higher, then the future is discounted at a higher rate. This would
imply that richer people are more impatient. They only want the "here-and-now" and do
not think much about the future. From personal experience one can deduce that this is
not generally the case. It is counter-intuitive to think that as consumption levels rise
then the discount rate13 also rises with it.

The alternative is called decreasing marginal impatience, which is the exact direct
opposite. It basically states that poor people are more impatient, i.e., the lower the
level of consumption then the higher the discount rate. One basic explanation is that
investment in future-oriented capital will increase the "valuation and appreciation" of
future utilities [101]. There is a link between these investments and future utilities. This
means that richer countries will ultimately invest more in future-oriented capital and will
ultimately end up being more patient.14 It comes to no surprise that these investments
can be thought of as R&D. R&D is mostly future-oriented with the promise of increasing
future production (and consumption) and thus creating a valuation for future utilities.
This is the basic premise for the justification of a dynamic discount rate that depends on
technological change (R&D).

13In reality it is the rate of pure time preference, but as both are connected by the Ramsey formulation
(Equation (4.1)), sometimes both are used interchangeably in the literature.

14Rich people have more assets and more money overall to invest. That is the big difference.
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Figure 4.3: Discount rate by income level. Adapted from [102].

There is a vast literature on empirical findings that find evidence for the above
theory.15 Figure 4.3 shows how the discount rate declines with increased income level
from a survey of consumer finances in 1992 [102]. Another study using panel data found
that poorer households have a discount rate that is three to five points higher than in
rich families [103].

4.2.1.1 Equations

The social rate of pure time preference (ρ) needs to be equated to a formula which relates
to technological change. In this case, given that the original DICE2013x model does not
have an R&D market, the investment profile will be used as a proxy for technological
change.

ρ(t) = f(I(t))

In particular, it is interesting to see how the case of the original DICE2013x model
compares with the DICE-ED model. One formulation is:

ρ(t) = z1

(
I(t)− IDICE(t)

IDICE(t)

)
+ z2

where z1 and z2 are calibration factors and IDICE(t) is the value of investment taken
from the DICE2013x runs in order to create a reference point.

15Refer to Table 1 of [101] for more information.
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4.2.1.2 Calibration

z1 is calculated from empirical data. One study shows that when controlling for age,
education and race, the time preference of the lowest fifth percentile of households is 3.5%
while the highest fifth percentile is 0.8% [103].16 The implicit slope of these two points
is -0.1421. This means that for every subsequent fifth percentile, the time preference is
0.14% smaller. z1 takes the value of this slope. z2 is calibrated in such a way that the
initial period is equal to the initial rate (0.015). This value differs from the baseline and
optimal scenarios. IDICE(t) is simply taken as the investment path when solving the
DICE2013x model for both the baseline and optimal scenarios.

• z1 = −0.1421

• z2 = 0.017522 (baseline)

• z2 = 0.016813 (optimal)

4.2.2 Method 2: Atmospheric Temperature Increase

This subsection involves linking the discount rate with an environmental variable which
in this case is atmospheric temperature rise. The basic premise of this is that as imminent
climate change becomes more obvious (proxied by an increase in the atmospheric temper-
ature), then concerns for long-term sustainability become evident and in this particular
case the discount rate will be minimized. It would be expected that utilities would not be
discounted at almost negligible values in a dangerous world of high temperatures. This
reasoning has also been applied in several papers working with environmental quality
and discount rates [93, 94].

The IPCC estimates that in a business-as-usual scenario, the atmospheric temperature
increase could reach the ranges of 7-8°C by 2300 [9]. This is considered to be the upper
limit and will be taken as 7.5°C. As atmospheric temperatures start rising towards this,
the discount rate starts to decline with it. The following sub-section elaborates further
on this.

16The lowest fifth percentile refers to the richer households while the highest fifth percentile refers to
the poorest households. Other studies find similar results between the discount rate and the wealth level
[85, 104].
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4.2.2.1 Equations

As in the previous cases, the changing parameter will be the social rate of pure time
preference (ρ) in order to account for the differences in utilities in distinct generations.
An equation which links the dynamic ρ with the atmospheric temperature increase is
needed:

ρ(t) = f(TAT (t))

One simple but functional form for the above equation is:

ρ(t) = x1(TAT (t)− TMAX)x2 (4.5)

where x1 and x2 are calibration factors and TMAX is the aforementioned temperature
of 7.5°C.

4.2.2.2 Calibration

x2 will be set to 1 in order to achieve linearity in the formulation. With an initial TAT
(0.80°C) and an initial social rate of pure time preference (0.015), x1 can be calculated
accordingly. The calibration factors then take the values of:

• x1 = −0.002239 °C-1

• x2 = 1
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Figure 4.4: Social rate of pure time preference by method.

4.3 Economic Analysis

The previous subsections showed the different methods to have a dynamic discount rate.
This does not make any distinction of which one is correct or if having a dynamic discount
rate is correct at all. The point in this exercise is to show the policy and economic
implications of having a dynamic discount rate. This section will elaborate further on this.

The optimal scenario will be used throughout this section to make the analysis.
Method 1 from above will be described as "Investment link" and method 2 will be
described as "Temperature link".

4.3.1 Rates and Factors

Before delving into the different aspects of the modules it is vital to see the impact of
these formulations on the discount rate. After the formulations above and running the
model for every method, the social rate of pure time preference is visualized in Figure 4.4.
The reference and initial point is 0.015 as this was the one used by Nordhaus throughout
his modeling. It is true that any initial point could have been chosen instead. This is a
discussion outside the scope of this thesis.

From Figure 4.4 stands out the difference in the results of the different methods. Each
formulation gives different although similar trending rates. This is to be expected. If all
formulations were to give out the same rate across the model runs, then the discounting
dilemma could potentially have a solution. Starting with the investment link, the rate
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drops from the reference level with time. This is due to the fact that including endogenous
technological change increases production and investment capabilities in comparison to
the DICE2013x model and thus the formulation will always lower the rate. There is a
small jump in the last periods. This is due to how the structure is modeled with regard to
the savings rate where it is fixed for the last 10 periods to achieve a steady-state. After-
wards, the temperature link is straight-forward. As temperatures increase gradually with
the release of emissions, the rate decreases. It is almost obvious that the rate will never
be higher than the initial rate, unless temperatures can be decreased drastically. Both
these declining rates are in line with what many economists advise to do for long-term
environmental models [60, 86, 91, 97, 105]. Finally, it is important to note that many
other methods could have been chosen with very different profiles, maybe even higher
rates than the initial one. This would probably mean a sign of weakness, but that is not
necessarily the case. The point of it is to demonstrate that different formulations can
have quite distinct results. It is a common practice for economists to look for concave,
smooth lines to explain some of the basic workings of the economic system. It is still
considered important to explore distinct links to capture a better understanding of the
effect of a dynamic rate on climate change policy. Further work should be pursued which
explores more discounting possibilities.

Ultimately, what really matters is not the discount rate per se but the discount factor.
Figure 4.5 shows the discount factors for the different methods. During the early periods
of the model, the discount factors decrease at an almost equal pace. However, it is in the
long-term when the results differ. On the reference case, the discount factor is already
below 0.1 for the last 100 years and almost reaches zero at the end. Including a dynamic
discount rate which decreases the rate will have higher discount factors. This is important
for policy-making as long-term damages are accounted more heavily in the model. With
the current numbers, a one million USD damage 300 years from now would be valued
around seven times higher with dynamic discounting compared to the reference case.
Table 4.2 shows the normalized net present value of a one million USD damage with
the different methods. In 100 years (short-term), the damages are valued almost in a
similar way across the different methods. It is in the long-term when they start differing
significantly. However, it is good not to be blinded just by the number, after all, the
double of a really small number is still a really small number. Damages from 300 years
from now will be discounted at almost negligible present values no matter the discounting
method. The key insight is that this could play a big difference if the damages are out of
proportion (i.e. non-quantifiable as the severity is not calculable). If a minimax criterion



CHAPTER 4. SOCIAL DISCOUNTING 89

Table 4.2: Normalized net present value of a one million USD damage by discounting method.

100 years 200 years 300 years

Reference 1 1 1
Temperature link 1.35 2.82 6.55
Investment link 1.52 3.43 7.47

Figure 4.5: Discount factors by method.

is applied, the choice of a discounting method could prove to be the difference.17

With this in mind, the following subsections will treat the different modules of the
model and its effect on climate change policy.

4.3.2 Climate Module

Like previous analyses, one of the main subjects of interest in the climate module is the
emissions profile. Figure 4.6 shows the emissions path for the discounting methods in
the optimal scenario. The emissions overall are lower; it is just at the end-of-horizon
where emissions are above the reference case. Riemann sums were used to calculate
the area under the curve and it shows that dynamic discounting methods would lower
total emissions into the atmosphere. Compared to the reference case, the area under the
dynamic discounting methods was on average 12% lower. Climate change policy usually

17The minimax criterion comes from decision theory and the basic idea is minimizing the loss for the
worst case scenario. In this case, extreme temperatures with huge or non-quantifiable damages are the
worst case scenario.
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Figure 4.6: Emission path by discounting method.

Figure 4.7: Emission path by discounting method until year 2100.

focuses until the year 2100. Zooming in on this section also paints a new picture with
the emissions profile. Figure 4.7 shows how using a discounting method lowers the total
emissions by the end of the century.18

Lower emissions with the discounting methods gives way to lower atmospheric tem-
peratures increases. Figure 4.8 shows the temperature profile with the different methods.
There is not much to read here; lower temperatures increases are achieved with dynamic
discounting due to a lower emission profile. This bodes well news for the environment

18Refer again to Section 3.3.2.1 for a discussion on the dangers of only showing data until the year
2100.
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Figure 4.8: Temperature increase profile by discounting method.

as temperatures are lower and by consequence damages are minimized. However, one
important policy conclusion is that leaving just the market without any intervention is
not enough to limit climate change. An emissions policy or any other type of control
policy is necessary in order to limit global temperature change.

4.3.3 Energy Module

The energy module is not severely affected by the method of discounting. Figure 4.9
shows the evolution of the fossil fuel price. In the reference case, more fossil fuel is used
which depletes the reserves and therefore increases the overall price.19 With any of the
discounting methods, the fossil fuel is depleted at a lower pace and this results in a lower
price throughout the model.

On the other hand, the backstop fuel price is not affected by any discounting method.
What does change is the % usage of the backstop fuel. Figure 4.10 shows the change in
the backstop relative usage in comparison to the reference case. Because the reference
case employs more fossil fuel usage, the % usage of backstop fuel increases by a small
margin with a dynamic discount rate. The impact of this particular detail is dependent
on how the energy module is modeled. For example, a bottom-up model with high
technology specificity would have a richer interaction between energy technologies which
cannot be captured in a top-down model such as this.

19Fossil fuel price is modeled according to the exhaustion of the reserves. For clarity, the equation is
pF (t) = mcoe+markup

[
CCum(t)
CCummax

]4. Refer to Section 3.2.1 for more information.
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Figure 4.9: Fossil fuel price by discounting method.

Figure 4.10: Backstop usage % by discounting method.
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Figure 4.11: Savings rate by discounting method.

4.3.4 Economic Module

The biggest impact with adding a dynamic discount rate is on the savings rate. Figure 4.11
shows this in full effect. Both dynamic links have savings rates which are around two
points higher than the reference case for most of timespan. In the Ramsey-Cass-Koopmans
framework which is used in this model, the savings rate is determined endogenously.
These rates are the optimum rates to maximize welfare according to the constraints. For
policy purposes, this result should factor in the importance of increasing overall savings
rates in the economy. This can be done through several mechanisms such as an increase
in the consumption tax or a decrease in the capital gains tax. These savings rates are
analogous to the Golden Rule Savings Rate from the Solow model. However, the opposite
argument is also true: in order to allow for true dynamic discounting in real-life, the
savings rate must be higher. A lower discount rate implies a higher savings rate.

In a similar manner, the real interest rate is different when adding a dynamic dis-
count rate. Figure 4.12 shows the evolution of the real interest rate depending on the
discounting method. As can be seen, the decline of the real interest rate is due to the
lower social rate of pure time preference.

Another critical effect of a dynamic discount rate is on the social cost of carbon
(SCC).20 Figure 4.13 shows the difference in the SCC with the reference case. As can
be seen, the SCC rises considerably with a dynamic discount rate. In fact, the peak for

20Refer to Equation (3.22) in Section 3.3.2.3.
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Figure 4.12: Real interest rate by discounting method.

the reference case is at 639.25 2005 USD/tonCO2 while for the temperature link it is
985.62 2005 USD/tonCO2 and for the investment link it is 995.23 2005 USD/tonCO2.
Comparing to the reference case, this is a difference of 54% for the temperature link
scenario and 56% for the investment link scenario! For policy purposes this means that
a higher carbon tax or emissions trading prices must increase in comparison to the
reference. Again, this is more evident if the results are zoomed in until the year 2100.
Figure 4.14 shows this important insight. One of the main issues here with comparing
it to values from the literature is that these values always involve a fixed discount rate
[29]. In any case, as the discount rate decreases the SCC will increase as this implies
that future utilities are given greater value. This is why it is of no surprise that the SCC
with the discounting methods is greater than the one with a fixed rate. Further research
is encouraged to calculate the SCC with dynamic discount rates.

With dynamic (and declining) discounting, output in the long-run increases. This is
linked with the discount factor being higher compared to the reference case. Figure 4.15
shows the slight increase. Additionally, the damage to the economic system is minimized
with these discounting methods. Figure 4.16 shows how damages differ between the
different methods. The uptick at the end is due to the end-of-horizon effects caused
by the emissions (Figure 4.6). Either way, the damages with a discounting method are
around 1% smaller throughout the whole timespan of the model. It might not seem
like much, but this is just relative. In the last period, 1% of the total output in the
reference case is 364.5 trillion 2005 USD. This is 5.7 times the initial output, which is
an approximation of the gross world product in 2010!
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Figure 4.13: Social cost of carbon by discounting method.

Figure 4.14: Social cost of carbon until year 2100 by discounting method.
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Figure 4.15: Net output by discounting method.

Figure 4.16: Damages as % of output by discounting method.
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4.4 Concluding Remarks

This chapter focused solely on the controversial issue of social discounting. First, a
literature review was presented to explain all the different views on discount rates. Non-
constant discounting was presented as an alternative to the discussion. Afterwards, the
modifications to the DICE-ED model and its equations were presented which captured
the link between discount rates and economic and environmental variables. Afterwards,
the model was run and the results were presented.

Both formulations (economic and environmental link) decrease gradually with time.
This is in line with what many economists advise to do for this type of models. This has
the effect of increasing the overall discount factors so that future damages and benefits
have higher weight. Using a dynamic discount rate values damages and benefits seven
times higher than the case of a constant discount rate.

Environmentally, the effect of a decreasing discount rate is that emissions and at-
mospheric temperature rise are lower. This is due to the fact that future damages and
benefits are valued higher and future big damages are avoided as much as possible.

However, the biggest impact of a dynamic discount rate is on the savings rate. Higher
savings rates are achieved with the formulations for the discount rate. This is important
for policy-making overall as savings rate need to be increased in an economy with non-
constant discounting. Finally, the SCC and both the output increase significantly with a
dynamic discount rate.

This bears the consideration of using non-constant discount rates in long-term environ-
mental models. Policy-makers should always use precaution and review the assumptions
of models designed for policy-making because a constant discount rate has important
ramifications.

This bodes the question, is this enough? Are we completely certain of these results?
Dealing with climate change and long-term environmental modeling, a vast amount of
uncertainties are always present. The following chapter opens the discussion of uncertainty
in climate policy models.



Chapter 5

Uncertainty

In the previous chapters, all the models have been treated in a deterministic way;
everything is known beforehand and there is no treatment of uncertainty. However, this
can be an incomplete view as there is a great deal of uncertainty over all the inputs to the
model. This chapter deals with the issue of uncertainty in climate policy models. The
first section presents a literature review on the subject. Afterwards, the experimental
design for the uncertainty analysis is presented. The uncertainty analysis follows after
this. Concluding remarks close the chapter.

5.1 Literature Review

Uncertainty, in its most colloquial terms, is saying "I really do not know.". In a more
political jargon, uncertainty is referred to as the unknown unknowns as put forth by
American politician Donald Rumsfeld [106].1 In scientific terms, the exact definition
of uncertainty differs between fields. For economics, one of the earliest definitions of
uncertainty came from Frank Knight who distinguished between risk and uncertainty
where the latter is immeasurable and not possible to calculate [107]. In model-based
decision support, uncertainty is defined as "any deviation from the unachievable ideal
of completely deterministic knowledge of the relevant system." [108]. It is this definition
that will be used throughout this chapter.

Uncertainty is not a unidimensional concept; it can be characterized with three dimen-
sions: location, level and nature [108, 109].2 The location of the uncertainty is where in

1Risk, on the other hand, is called the known unknowns.
2For an alternative classification of uncertainty refer to [25].

98
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Table 5.1: Levels of uncertainty.

Level of uncertainty Enumeration/Ranking Example

1 (shallow uncertainty) Yes/Yes (Probabilities) 20%: High discount rates
50%: Low discount rates
30%: Mid discount rates

2 (medium uncertainty) Yes/Yes (Likelihood) Not likely: High discount rates
More likely: Low discount rates
Equally likely: Mid discount rates

3 (deep uncertainty) Yes/No High, low and mid discount rates.
No way of knowing any distribution.

4 (recognized ignorance) No/No Being open to any new surprise.

the model does the uncertainty occur. For example, the location of the uncertainty could
be in the boundary of the model, in the inputs of the model, in the solution algorithm,
etc. The level dimension refers to where the uncertainty lies in a line which on one end is
complete determinism and on the other end is total ignorance [108]. This dimension has
four levels [109]. Level 1 (shallow uncertainty) is when the uncertainty’s outcomes can
be enumerated and exact probabilities can be assigned. Level 2 (medium uncertainty) is
when the uncertainty’s outcomes can be enumerated but exact probabilities cannot be
assigned, rather classifying them as perceived likelihood. Level 3 (deep uncertainty) is
when the uncertainty’s outcomes can be enumerated but there is absolutely no way of
ranking them in any order. Level 4 (recognized ignorance) is when not even the outcomes
can be enumerated. Table 5.1 shows a summary of these levels with examples. Finally,
the nature of uncertainty is about the basic essence of uncertainty and contains three
categories: epistemic, ontic and ambiguity. Epistemic uncertainty is due to imperfect
knowledge and can be reduced by more research [108]. Ontic uncertainty is related
to the inherent variability of the phenomena. And ambiguity is when there are multi-
ple stakeholders with different worldviews who can interpret things in different ways [109].

Uncertainty plays a major role in climate policy models. Uncertainty in climate
policy models differ significantly from other policy models due to three reasons: damage
non-linearity, environmental irreversibilities and extremely long time horizons [24]. The
IPCC, one of the most important scientific bodies on climate science, tackles uncertainty
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as a level 2 phenomenon (likely, very likely, extremely likely, etc) [9]. However, another
issue is the misunderstanding between modelers and policy makers. Modelers’ aim is to
minimize uncertainty to as much as possible and increase the knowledge surrounding
it; on the other hand, policy makers only want to minimize the chances for making a
political mistake [110]. Models are sometimes used in a predictive manner, that is, they
predict the behavior of the system with known information. The presence of (deep)
uncertainty in climate models poses a gargantuan obstacle for doing predictive modeling.
Selecting one set of parameter from an almost infinite set is not a prediction [111]. What
are some ways to deal with uncertainty?

One common way to tackle uncertainty in models is through a sensitivity analysis
where a probability distribution is set to different parameters and the model is run
and the results are compared.3 With climate change, however, the uncertainties are so
diverse and so large that it is not possible to state confidently the different probability
distributions of the uncertain parameters. This situation is the previously mentioned
Level 3 deep uncertainty [112]. It is not possible to agree between the consequences,
probabilities or even effects of these parameters into the model.

A method to tackle deep uncertainty and aid in modeling practices is called scenario
discovery [26, 111]. This method works by applying statistical tools and algorithms
to results of simulation models. This differs from the traditional scenario method
(commonly known as scenario-axes) where a limited quantity of the future states of
the world is characterized, and many of these times in accordance to the modeler’s
worldview [112]. Limiting the scenarios to a few (usually four) when in reality there
are an extensive amount is one of the main weaknesses of the scenario-axes approach [113].

The scenarios from scenario discovery are usually presented as a mere possibility but
not as a truth prediction. This helps when dealing with multiple stakeholders which
possess different worldviews and makes it easier to be accepted by all [26]. Scenarios are
then considered as future states of the world where policies may not be able to meet
its goal or they deviate from the optimum. Input parameters to a model are changed
accordingly to produce many combinations of future states and compare against a single
criterion such as cost or an environmental target. With the appropriate algorithms, all
these input parameters can be characterized and the relevant ones are defined as the

3Some other ways: stochastic programming, expert assessment, model emulation, spatial or temporal
variability, multiple models and data-based approaches. For a more detailed explanation refer to [25].
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key drivers of the scenarios. This allows for a quantitative analysis of the model that
addresses the weaknesses of scenario-axes approach and at the same time offer ad hoc
recommendations for all the distinct stakeholders.

Scenario discovery is a process that supports Robust Decision Making (RDM). RDM
is a method that uses current information to better prepare strategies in the face of
current uncertainties instead of trying to predict the highly and deeply uncertain future
world [26, 113]. It is a rigorous approach that soothes out the shortcomings of other
uncertainty analyses by using a quantitative decision-analytic approach [112]. At its
most basic underpinning, RDM is a method to choose among different strategies and
lower the risks inherent with the uncertainties. These strategies that RDM provides
are used by scenario discovery. Ultimately, the objective of RDM is to identify some
strategies that perform well and are insensitive to most or as much uncertainties as
possible [109]. Together, RDM and scenario discovery offer a new way that exploits the
power of high-tech computers and information technologies in order to assist humans in
their decisions.

How does scenario discovery work? It works in a three step process. First, a computer
simulation model is run over all the uncertain inputs while holding constant a policy
action. The results are compared against a performance level. Secondly, a set of tools are
applied to look for the combinations of uncertain values that give results comparable to
the performance level. These combinations are recommended to be as simple as it can be,
represented by a few key driving forces [26]. Special indicators are employed in this step
in order to assess the interpretability and reliability of the aforementioned combinations.
Thirdly, the combinations are assessed with diagnostic tools (e.g. quasi-p-value and
resampling test) to check for weaknesses and strengths.

One specific technique which is used in model-based decision support is the Ex-
ploratory Modeling and Analysis (EMA) developed by the RAND Corporation to design
robust strategies for deep uncertainties [114, 115]. EMA is designed to work with deep
uncertainties by using them in computer experiments such as scenario discovery. One
particular model has almost an infinite set of possibilities from which to run from (i.e.
parameters and equations can be defined in different ways) which EMA aims to explore
by running a vast amount of computational experiments. An analysis follows from this
which aims to answer specific questions about where the model fails or succeeds in order
to provide adaptive policy advice and "out of the box" thinking [114].
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In terms of climate change policy, scenario discovery along with EMA can help quench
the problems usually confronted with the uncertainties of the climate system or the
economic model.

5.2 Experimental Design

It is imperative to not just report single measurement results but know that they work
within a range (the uncertainty range). To make scientific sense, sensitivity analysis
and robustness analyses must be done so that policy makers can have a better working
understanding of the model [68].

For the experiment, the EMA Workbench will be used to conduct the uncertainty
analysis. The workbench was developed by Dr.ir. Jan Kwakkel in the programming
language Python [116]. The EMA workbench has been connected to GAMS through
a connector developed in this thesis.4 EMA is a methodology to analyze complex and
uncertain systems with a vast amount of computational experiments. Each experiment
represents a different set of input parameters to the model. EMA is useful when the
available information is insufficient to represent just one single deterministic model.

For this chapter, the model that will be used is the original DICE model and not
the DICE-ED model (or the DICE2013x). There are several reasons for this. First of
all, the original DICE model is already uncertain enough that warrants its own analysis.
The DICE-ED model, which is almost triple in size, is left for future treatment. Because
this is the first time that EMA will be applied to the DICE model, it is more useful if
it is applied to the original one with far-reaching implications. Another reason is that
computation times vary significantly. The DICE model takes a couple of seconds to solve
while the DICE-ED model takes more than a minute. This difference is exacerbated
when the model has to be run thousands of times.

The following sub-section enumerates the distinct uncertainties which will be used
for the analysis.

5.2.1 Uncertainties

As seen in Chapter 4, one of the most important parameters is the social discount rate.
For this reason, the social rate of time preference (ρ) will have an uncertainty range from

4See Appendix C for the code.
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0.0001 to 0.015. 0.0001 corresponds to the non-zero value Stern uses due to the inclusion
of a possibility of human extinction in the near-future [16]. 0.015 is the deterministic
value used in DICE and considered by many to be in the upper range [82]. In the face of
uncertainty, Weitzman argues that the far-distant future should be discounted at the
lowest possible rate [86]. This is achieved in this analysis through the sampling method
which ensures that low rates are chosen from the uncertainty space.

Another related parameter is the elasticity of marginal utility (α). This parameter
can be thought of as the relative social valuation of consumption of different generations.
Thus, a low value means that consumptions between different generations are close substi-
tutes (low aversion to inequality) while a higher number means that these consumptions
are highly differentiated (high inequality aversion). Economists usually set this around 1
in climate change modeling [81] (1.45 in the DICE model), however, in reality it could
span a bigger range. For this analysis, the parameter will be in the range of 1 to 3 to
follow the related literature [32, 81].

The depreciation rate of physical capital (δK) is also uncertain, especially when
increasing temperatures and climate change can lead to a higher rate as physical capital
has shorter lifespan due to extreme weather, storms, rising sea levels, etc [117]. In theory,
the depreciation rate rises with atmospheric temperature [118]. The uncertainty range is
defined from 0.1 (standard value) to 0.2.

Technological change comes through the DICE model by the growth rate of TFP.
This growth rate (gA(t)) will be varied from 0.07 to 0.09 to represent worlds with low
and high technological change. Because it enters the production function multiplicatively,
the actual results will be very sensitive to this parameter. The range used here is to
study the effects of a lower or higher growth in technological change.

Decarbonization rates are highly uncertain and varied in the literature [78]. This will
be explored by changing gσ(t) from -0.011 to -0.008 which are common values for annual
decarbonization rates.

On the climate side, three key parameters will be assessed. The first one is the climate
sensitivity (ξi) which in the current version is equal to 2.9°C [21]. The climate sensitivity
is very likely to be in the range of 2°C to 4.5°C [119]. The second parameter is the
coefficient for the damage function (ϕ2). The parameter will take the range of 0.002 to
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Table 5.2: Uncertainty ranges and the deterministic values.

Uncertainty Symbol Uncertainty Range Deterministic Value

Pure rate of time preference ρ 0.0001 – 0.015 0.015
Elasticity of marginal utility α 1 – 3 1.45
Depreciation rate on capital δK 0.1 – 0.2 0.1
TFP growth rate gA(t) 0.07 – 0.09 0.079
Decarbonization growth rate gσ(t) -0.011 – -0.008 -0.01
Climate sensitivity ξi 2 – 4.5 2.9
Damage function coefficient ϕ2 0.002 – 0.004 0.00267
Damage function exponent ϕ3 2 – 4 2

0.004 to account for varying impacts to climate. The third parameter is the exponent of
the damage function (ϕ3) currently set at 2. This means that the damage function has a
quadratic behavior with temperature. This is highly uncertain as the parameter could
take any value and has big impacts on the results [120, 121]. The uncertainty range for
this parameter is set from 2 to 4. With these uncertainty ranges, the damages with an
atmospheric temperature rise of 2°C would be 0.8% in the minimal case to 6.4% in the
most extreme case.5 It is with these uncertainty ranges that possible catastrophes can
be simulated, in line with a fat-tail distribution of catastrophic risks and probability [122].

A summary of the uncertainties and the ranges is shown in Table 5.2. This is not,
however, the full list of uncertainties in the DICE model. Almost every parameter in the
model is subject to some type of uncertainty. The ones presented here are just a small
but important sample of all of them.

After the uncertainties are recollected and accounted for, the different experiments
are generated with a Latin Hypercube Sampling (LHS). LHS is a statistical method to
generate samples from a multidimensional space (such as the uncertainty space in this
case) in an almost random fashion. It is based on the Latin square and is usually used
for computer experiments or the Monte Carlo method.

5Recall Equation (2.10): Ω(t) = ϕ1TAT (t) + ϕ2[TAT (t)]ϕ3 where ϕ1 is 0.
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5.3 Uncertainty Analysis

The total number of uncertainties in Table 5.2 represents the total dimensions of the
uncertainty space. In this case it is an 8-dimensional space.6 The key question while
doing the uncertainty analysis is how many experiments should be run in order to have
a balance between precision and computing time. To do this, the EMA workbench is
run with Monte-Carlo sampling and 10,000 experiments. The total computing time was
around 3 hours.

The criterion to determine when there have been enough experiments is when the
fraction of interest stabilizes. The fraction of interest is defined as a proportion: how
many experiments are successful in limiting atmospheric temperature rise to no more
than 2.0°C by the year 2100 out of the total number of experiments. It can be defined as:

ω(x) =
∑
y∑
x

(5.1)

where ω(x) is the fraction of interest, x is the amount of experiments and y is the
amount of successful experiments. y is defined such that:

y =

1 if TATM (2100) ≤ 2.0°C

0 if TATM (2100) > 2.0°C

Figure 5.1 shows the evolution of ω(x) with increasing number of experiments. When
the code is run with 1000 or less experiments, ω(x) varies by a big margin. It is
only after 3,000 experiments that ω(x) is stabilized around 0.245. Thus, for the uncer-
tainty analysis, it is of utmost importance to run the code with at least 3,000 experiments.

The initial analysis consists of 3,000 experiments with the aforementioned uncertain-
ties. The DICE model is run on the optimal scenario which optimizes welfare with the
damage function. This optimal scenario is the same one as in the DICE-ED model.

One of the basic functions of an uncertainty analysis is to visualize the effect of
different parameters on the model’s outcomes. Figure 5.2 shows the effect of uncertainty

6If there was only 1 uncertain parameter then the uncertainty space could be visualized with just
a line. 2 uncertain parameters could be visualized with a 2D plane. 3 uncertain parameters could be
visualized with a 3D shape and so on for higher dimensions.
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Figure 5.1: Fraction of interest evolution with increasing number of experiments.

on a key outcome of interest, the atmospheric temperature rise. As can be clearly seen,
the effect of uncertainty creates a wide range of possibilities. However, due to the long
nature of climate change modeling, sometimes it is only useful to present results until
the end of the 21st century. This way, policy-makers can have a better grasp of what is
immediate. Figure 5.3 shows the results of uncertainty on the atmospheric temperature
rise until the year 2100. This particular figure is very relevant to today’s discussion
on the topic. In the recent COP21, an agreement was reached which aimed to limit
atmospheric temperature rise to no more than 2°C [10]. It is this 2.0°C target which
is of particular interest. The figure shows that in a particular set of experiments, the
atmospheric temperature rise is equal or lower to 2.0°C. Under which assumptions of
uncertainty does this particular set of experiments comply with the 2.0°C target? The
solution lies within scenario discovery.

The EMA workbench analytics includes the Patient Rule Induction Method (PRIM).
PRIM is a type of bump hunting algorithm of which the objective is to find regions in
the input (uncertainty) space with relatively high (or low) values for a target variable
[123]. It is a useful tool for scenario discovery, as it allows for the detection of certain
scenarios which are of particular interest [26].
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Figure 5.2: Effect of the uncertainty on the atmospheric temperature rise.

Figure 5.3: Effect of the uncertainty on the atmospheric temperature rise until the year 2100.
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Out of the 3,000 experiments, 730 of them are of special interest, as the temperature
rise by the end of the 21st is equal or less than 2.0°C. This equals 24.4% which is in line
with the 10,000 Monte-Carlo experiment from above.

The PRIM algorithm is run on the EMA Workbench in order to apply it for sce-
nario discovery. The output of the PRIM algorithm is a series of boxes where each box
represents a particular scenario. A series of boxes is called a box set which collectively
describe a set of assumptions in the uncertainty space with the outcome of interest (in
this case limiting temperature rise to no more than 2.0°C). Each box set is defined by
its coverage and density. The coverage measures how many of the scenarios in the box
effectively comply to the outcome of interest. In this case, the highest coverage possible
is what is wanted. It is common practice to at least look for a coverage equal or above
0.8. Density is analogous to the fraction of interest, Equation (5.1). This means that it is
the ratio of total experiments of interest in a particular scenario over the total number of
experiments. Just like coverage, a high density is also of importance. Alongside these two
metrics, the interpretability is also important. This refers to how easy the box set can be
used to gain proper insight. This matter is highly subjective but experience shows that a
box set should not have more than four boxes with three uncertain parameters [26].

Figure 5.4 shows the results of the PRIM algorithm. It is at a first glance that one
can notice certain trade-offs. Increasing coverage comes at the expense of a reduction in
the density. Interpretability is proxied as the number of restricted dimensions. A lower
number of restricted dimensions corresponds to higher interpretability. Another trade-off
here is that as interpretability increases, the coverage does as well but with a reduction
in the density. Here lies the interactivity of the PRIM algorithm, where the modeler
needs to decide on appropriate boxes based on these metrics.

The ideal box would have 100% density and 100% coverage with just a few restricted
dimensions. However, such is not the case here. The enclosed area is of particular interest
as it is the closest to the ideal point. Three boxes are particularly chosen in Figure 5.4
for their coverage, density and no more than three restricted dimensions. Table 5.3 shows
the coverage, density and restricted dimensions for these boxes.

The three restricted dimensions in the three boxes are the same: the exponent of the
damage function (ϕ3), the elasticity of marginal utility (α) and the climate sensitivity
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Figure 5.4: Efficiency frontier from PRIM algorithm with limit on temperature rise to 2.0°C.

Table 5.3: Coverage, density and restricted dimensions for selected boxes.

Box Coverage Density Restricted dimensions

27 72.87% 71.60% 3
28 71.23% 73.75% 3
29 68.90% 75.19% 3
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(ξi). Figure 5.6 shows the values of box 28 for these parameters and the quasi-p-values
used to test significance.7 Quasi-p values are found in parenthesis next to the parameters.
The light gray area is the full range of the uncertainty while the blue line represents the
uncertainty range in the sub-space found by the PRIM algorithm. The upper parameter
a3 is the exponent of the damage function which is extremely significant on the results
(qp = 7.1E-54). The other two parameters, elasmu and t2xco2, are the elasticity of
marginal utility and the climate sensitivity respectively. Both of these parameters are
also significant.8 Interpreting the graph, the atmospheric temperature rise will be lower
or equal to 2.0°C by the end of the 21st century if the exponent of the damage function is
between 2.9 and 4, the elasticity of marginal utility is between 1 and 2.1 and the climate
sensitivity is between 2 and 4. This is somewhat unsettling as the climate sensitivity
is a parameter which is inherent in nature, thus it is not possible to change it with
policy-making. The best course of action is to try to understand it more and adapt to
what the latest science tells. The exponent of the damage function, on the other hand, is
mostly chosen subjectively by modelers. Many studies try to quantify the damage func-
tion [34], however, it is still mostly uncertain. Policy advice to increase valuation of the
damages of climate change is not very conventional. Increased occurrences of large-scale
hurricanes, thunderstorms and other climate events will tend to increase the damage
function. However, this has its shortcomings as it is difficult to pinpoint the cause of these
events with human-induced climate change. Figure 5.5 shows the effect of uncertainty on
climate damages caused by the increase in atmospheric temperature. Damages range
from a maximum of 10% to a minimum of 1%. Nonetheless, it is surprising to see that the
elasticity of marginal utility is significant and not the pure rate of time preference (ρ). The
reason is that the elasticity of marginal utility appears directly in the utility function and
is thought of as aversion to generational inequality. A greater value of this elasticity means
high inequality aversion and thus consumptions are highly differentiated. It is with higher
values where climate change is given less weight and thus temperature rises above 2°C.
Fortunately, most climate models use values between 1 and 2 and the uncertainty space
in this case is from 1 to 2.1 (Figure 5.6). Therefore, current climate policy models are in
line with achieving the 2°C target in this particular parameter. Ultimately, this is not to
say that discounting with ρ is not important. It merely reflects the fact that uncertainty
about the exponent of the damage function, elasticity of marginal utility and climate
sensitivity are more important in determining the overall rise in atmospheric temperature.

7Box 27 and box 29 have similar results so they are avoided here for redundancy.
8Where quasi-p-values below 0.05 are considered significant.
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Figure 5.5: Effect of uncertainty on damages caused by the increase in atmospheric temperature.

Figure 5.6: Range and quasi-p-values for restricted dimensions in box 28.
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Figure 5.7: Effect of uncertainty on emissions control rate.

Reaching the temperature goal from COP21 means that a big amount of emissions
need to be controlled to limit carbon emissions. Carbon emissions can be controlled
by traditional sustainable energies or by carbon capture and storage (CCS). Figure 5.7
shows the effect of uncertainty on the emissions control rate. The control rates are
limited to 1 in the first half of the timespan because it represents a modeling decision as
carbon negative technologies are assumed not to be available. However, in the second
half, carbon negative technologies are available and the limit on the emissions control
rate is increased to 1.2. This represents a subjective assumption about the potential of
carbon negative technologies by the modeler.

There have been proposals to decarbonize the economy by 2050 as a solution to
climate change [124]. The EMA Workbench and scenario discovery can help find under
which assumptions this is true. Figure 5.8 shows the emissions control rates until the
year 2050. The PRIM algorithm is run on the workbench in order to perform scenario
discovery. Out of the 3,000 experiments, 681 are cases of interest which represents 22.7%.
This indicates that when taking into account uncertainty, in over one fifth of the times
must emissions be 100% controlled by 2050.
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Figure 5.8: Effect of uncertainty on emissions control rate until year 2050.

Figure 5.9 shows the efficiency frontier for this case. The shape is similar as the
previous case, along with the same exhibited trade-offs. In fact, the coverage, densities
and the restricted dimensions are the same. This is to say that dealing with these deep
uncertainties is of primordial importance to comply with environmental targets. Another
important result of climate policy models is the social cost of carbon (SCC), which
in an ideal economy would represent the harmonized global carbon tax. Figure 5.10
shows the minimum and maximum outline of the SCC when taking into account un-
certainty. The distribution of the SCC is shown for the year 2050 (time period = 8).
In the optimal run of the deterministic DICE model, the SCC in the year 2050 is of
45 2005 USD/tonCO2. Out of the 3,000 experiments done here, only in 229 experi-
ments (7.63%) is the SCC below 50 2005 USD/tonCO2.9 The SCC is very sensitive
to changes in the uncertainty space and considering the importance in policy-making,
it deserves the question: do current estimates of the SCC consider uncertainty? The
"dismal theorem" proposed by Martin Weitzman states that in the face of uncertainty
and fat-tailed distributions for catastrophic events with low but nonnegligible probabili-
ties, the value of the SCC is theoretically infinite [122]. This is an area for future research.

950 is used instead of 45 to get numbers just above 45 too.
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Figure 5.9: Efficiency frontier from PRIM with emissions control rate up to 1 until 2050.

Figure 5.10: Uncertainty surrounding the SCC and the distribution in the year 2050.
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Table 5.4: Feature selection

Rank Uncertainty Symbol Value

0 Damage function exponent ϕ3 0.483197
1 Elasticity of marginal utility α 0.254259
2 Climate sensitivity ξi 0.157225
3 Pure rate of time preference ρ 0.053009
4 Damage function coefficient ϕ2 0.036677
5 TFP growth rate gA(t) 0.006180
6 Decarbonization growth rate gσ(t) 0.004836
7 Depreciation rate on capital δK 0.004618

This shows the importance of dealing with deep uncertainty in climate policy models.
Nordhaus states that the 2°C target is ambitious as emissions control rates would need
to reach zero by 2060 [21]. However, there is no mention of how to achieve this target
or what could drive it. This is one of the benefits of the uncertainty analysis developed
in this chapter with the EMA Workbench. The most important uncertain parameters
were the exponent of the damage function, the elasticity of marginal utility and the
climate sensitivity. The EMA Workbench includes analytics for feature selection. Feature
selection is useful in big models as it allows to rank certain inputs by degree of importance
with linear or logistic regressions. Table 5.4 shows the results of this and ranks the
uncertainties by order of importance.
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5.4 Concluding Remarks

This chapter dealt with the issue of uncertainty surrounding the DICE model. A literature
review on the relevant topics was first introduced. Scenario discovery and Exploratory
Modeling and Analysis were identified as key techniques for dealing with uncertainty.
Afterwards, the experimental design was discussed along with the relevant uncertainties
of the DICE model and their appropriate ranges. Finally, the uncertainty analysis was
performed.

The initial analysis showed that a wide range of possible outcomes were obtained
through the analysis. To segment and rationalize this, the 2°C target proposed in the
COP21 was used to apply scenario discovery and the PRIM algorithm. Three key
uncertainties were obtained from this: the climate sensitivity, the elasticity of marginal
utility and the exponent of the damage function. These three uncertainties paint a
gloomy picture for the environment. First, the climate sensitivity is an uncertain physical
parameter, only more research can lead to a greater understanding of it. There is not
much leeway in this parameter except taking the latest science as a basis. The elasticity
of marginal utility is a subjective parameter chosen by the modeler. Nonetheless, current
climate policy models usually take this parameter in the same range as the one proposed
by scenario discovery. Finally, the exponent of the damage function is also another
subjective parameter. The deterministic version of DICE uses a value of 2, however, the
uncertainty space obtained through scenario discovery shows that the exponent should
be between 2.9 and 4 in order to limit atmospheric temperature rise to no more than 2°C.
This parameter can be increased either by an increase occurrences of natural disasters or
through more research.

Additional to the atmospheric temperature rise, the emissions control rates were also
subject to the same uncertain parameters. This connection is of no surprise as a higher
emissions control rate limits atmospheric temperature rise. Finally, the SCC was also
analyzed and the results showed that it is very sensitive to uncertainty. Nordhaus’ SCC
recommendation of 45 2005 USD/tonCO2 by 2050 is only valid in 7.63% of the cases.
This shows that it is highly unlikely that in an optimal scenario the SCC would be the
one recommended by Nordhaus.

This concludes the chapter of uncertainty. The next chapter concludes and reflects
on the thesis.



Chapter 6

Conclusions and Reflections

This chapter concludes the thesis. The first section elaborates on the main conclusions
from the body of the thesis. Afterwards, recommendations for future research are
presented. A reflection on the work and a personal reflection finish the chapter and the
thesis.

6.1 Conclusions

The purpose of this thesis is to improve climate policy modeling with the introduction of
endogenous technological change, dynamic discounting and uncertainty. Revisiting the
main research question:

How sensitive are the climate policy conclusions from a standard climate policy model
to the introduction of endogenous technological change, dynamic discounting and uncer-
tainty?

The overarching conclusion is that policy conclusions differ greatly with the introduc-
tion of endogenous technological change, dynamic discounting and uncertainty.

Endogenous technological change

Including endogenous technological change (Chapter 3) has important effects on the
DICE climate policy model (Chapter 2). Total welfare is improved by 9% compared to
the exogenous technological change case. In addition, more stringent emissions reductions
are recommended with the inclusion of endogenous technological change as the price of

117
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fossil fuels is now included and taken into account. In the optimal scenario (accounting
for the externality), emissions peak by the end of the 21st century. All of this means
that at the end of the timespan the atmospheric temperature rise will be lower. From
the analysis, the difference in final temperature rise compared to the exogenous case
amounted to 0.25°C.

However, the inclusion of a backstop (sustainable) fuel into the model has the biggest
effect on the most important economic and environmental variables compared to the
model without the backstop fuel. Higher emissions reductions and a lower atmospheric
temperature rise are achieved with a backstop. Many climate policy models do not
explicitly use a backstop fuel. Including a backstop fuel brings a wealth of information
about the market dynamics that cannot be captured without it.

Nonetheless, the assumption of the initial backstop fuel price is a major determinant
in the results. As would be expected, a lower backstop fuel price lowers atmospheric
temperatures and reduces emissions. Even with the uncertainty surrounding the price of
the backstop fuel, policy which reduces the backstop price such as R&D subsidies or tax
breaks will have a net positive impact on the environment.

From the economic module, the social cost of carbon (SCC) with a backstop fuel is
more than 16% higher than in the exogenous case. The SCC would represent the ideal
carbon tax in the economy. This has implications for policy-making as current carbon
taxes calculated under models with exogenous technological change are undervalued.
This is akin to not capturing the full social cost of a ton of carbon. Additionally, a
higher understanding of the dynamics is achieved with the inclusion of the backstop fuel.
Economic output is increased significantly in the long-run as the backstop fuel represents
a cheap, non-polluting way of generating output. In the short-term, economic output
remains in line with the exogenous case due to the high price.

Even with the reduction in emissions and a higher SCC, this is not enough to prevent
dangerous climate change. The recent Paris Agreement from the COP21 aims to limit at-
mospheric temperature rise to no more than 2°C by the end of this century. Temperatures
of more than 4°C are achieved in this model even in the most optimistic situation with
a low backstop price. Thus, additional policy measures such as command-and-control
are necessary to comply with international agreements and bring further reduction in
emissions.
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What does all of this mean for policy-making? First of all, this thesis shows the
importance of endogenous technological change as it explains the links and dynamics
between the economic and climate module in a way that exogenous technological change
cannot. Many models still include exogenous technological change and policy-makers
should be aware of the limitations that this brings. This thesis has applied endogenous
technological change to a common and ubiquitous model such as the DICE and shown
how sensitive the policy recommendations are.

Dynamic discounting

Dynamic discounting was introduced into the model (Chapter 4) as a way to challenge
the traditional notion of a constant social discount rate. This was achieved through two
distinct formulations: one related to an economic variable and another to an environ-
mental variable. Both formulations show declining social discount rates throughout the
timespan of the model. This is in line with what many economists suggest for long-term
environmental models.

Dynamic discounting values future damages and benefits more than the traditional
method with a constant social discount rate. Damages are valued seven times higher by
the end of the model with dynamic discounting due to declining social discount rates.
This has important effects on both the economic and environmental variables. As with
endogenous technological change, dynamic discounting has a positive impact on the
environment with lower emissions and atmospheric temperatures. In fact, emissions peak
around the year 2060 compared to the year 2100 with a constant social discount rate.
Still, temperatures reach critical limits above the 2°C level by 2100 and thus more control
policy is necessary and advocated.

Savings rate are increased in the model with dynamic discounting by two percentage
points. Policy which aims to increase the overall savings rate of the economy such as an
increase in the consumption tax or a decrease in the capital gains tax would be in line
with declining social discount rates. On the other hand, the SCC also increases in the
model with dynamic discounting. This is due to a higher valuation of future damages
and benefits when the social discount rate is lower. Policy-makers should be aware of
an undervaluation of the SCC in climate policy models with a constant social discount rate.
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The importance of dynamic discounting has been shown in this thesis. Two ex-
ploratory formulations for defining a non-constant social discount rate were demonstrated.
The justifications for a non-constant social discount rate which decreases with time has
been advocated by numerous scientists. As this work represents an expansion of the
knowledge frontier, more research is necessary to bring it into mainstream climate policy
models. Nonetheless, it represents an important step towards a deeper understanding of
the climate and the economy which can be reflected with appropriate policy advice.

Uncertainty

The treatment of (deep) uncertainty in this thesis (Chapter 5) was done through
Exploratory and Modeling Analysis (EMA). Eight different uncertain parameters were
considered. These parameters included discount rate parameters, climate sensitivity
parameters, technological change, decarbonization, damage function parameters and
the depreciation of physical capital. With an 8-dimensional uncertainty space, 3000
experiments were conducted with Latin Hypercube sampling.

Out of the 3000 experiments, only in 25% of them does the temperature rise stabilize
below 2°C by the end of the 21st century. This is a major point of discussion with
international agreements such as the one signed in the COP21 in Paris. The Patient
Rule Induction Method (PRIM) was run to find the uncertainty space which complies
to such target. After applying scenario discovery, three uncertain parameters were
found to be the most sensitive to achieving the 2°C target: the exponent of the damage
function, the elasticity of marginal utility and the climate sensitivity. Quasi-p values
were obtained from the PRIM algorithm and the three parameters were significant. In
the subset selected by the PRIM, the exponent of the damage function takes a value
between 2.9 and 4 (the deterministic DICE model uses an exponent of 2). This means
that the subjective valuation of climate damages needs to increase in order to be able
to achieve the environmental targets. This is unfortunate, as this can be done through
an increase in the occurrences of environmental disasters linked to climate change or by
convincing modelers and policy-makers about this importance. The marginal elasticity
of utility, on the other hand, is the aversion to generational inequality. This again is a
subjective measure. A lower value means that consumption of different generations are
close substitutes and thus more care is taken on the environment, ultimately lowering
the atmospheric temperature. Lastly, the climate sensitivity is very uncertain even with
all the research that goes into it. Unfortunately, there is nothing that can be done about
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the climate sensitivity as it is an inherent property of nature. It is only further research
that can elucidate modelers with the right choice.

Same as the atmospheric temperature rise, another key variable obtained from climate
policy models is the SCC. The SCC is very sensitive to the treatment of uncertainty. In
his DICE model, Nordhaus recommends a SCC of 45 2005 USD/ton CO2 by 2050 in
the optimal scenario. When taking into account uncertainty in this thesis, the SCC is
only below 50 2005 USD/ton CO2 in 7.63% of the times. This means that it is more
likely than not (over 90%) that the SCC is above 50 2005 USD/ton CO2. This shows the
importance of taking into account uncertainty in climate policy models because it gives a
more accurate portrayal of what to expect in the uncertain future.

6.2 Future Research

Climate policy models such as DICE have a big and substantial influence over policy-
makers. Many policy decisions rely on these models’ results. Therefore, it is of utmost
importance to have a clear understanding of the models and look for ways to improve it.
Along the realization of this thesis, several strands of research were identified as lacking
completely or underdeveloped. In no particular order of priority, future recommendations
for research are:

• Study the effect of end-of-horizon effects and the timespan on model results. The
sensitivity analysis made in this thesis showed that the timespan could potentially
be critical in the results. Ideally, this study is made across models to generalize the
concept.

• Relax the assumption of the opportunity costs of R&D as it is possible that there
are no opportunity costs due to the availability of banking finance. This is easily
achievable and could change the way these models are done.

• Another important assumption is that all the savings in the model go towards
investment. This is due to the neoclassical framework of the model but it is not
necessarily the case in real life. A suggested alternative is to study the climate
model under a Keynesian framework.

• Include tipping points and extreme damages in the damage function in order to
give higher temperature ranges more importance than current formulations do.
Along with this study, including not only carbon but also the rest of the GHGs
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in the forcing equation would be relevant to have a better overall picture of the
climate dynamics.

• Discounted utilitarianism has been the norm for climate policy models. An explo-
ration of the DICE model under sustainable discounted utilitarianism can yield
interesting and novel results with a bigger emphasis on sustainability.

• Perform a similar analysis with dynamic discount rates but on alternative climate
policy models to compare results and have a better overview of the effect of
non-constant rates.

• Completely endogenize the social discount rate within the neoclassical framework
and make the social discount rate a decision variable for the solution algorithm.
Compare these rates with the ones from this thesis to ensure consistency in policy
advice.

• It is recommended to use the EMA Workbench developed partly in this thesis
to other climate policy models. Additionally, it would be useful also to treat the
extended DICE-ED model with the workbench.

• The SCC showed extreme sensitivity to the treatment of uncertainty. Given the
importance of the SCC in policy-making, it is advised to analyze in more detail
the effect of uncertainty in this case and what it means for policy-making.

6.3 Reflections

At the end of the thesis, there are three different models which all aim towards a
deeper understanding of the nexus between the climate and the economy. If I were to
meet Nordhaus tomorrow, I would first consider explaining my work behind dynamic
discounting. This is due to the fact that the treatment of technological change and
uncertainty are widely recognized as limitations. The issue of discounting goes deeper
into the economist’s heart where everyone has their own particular opinion. I believe
that dynamic discounting adds not too much complexity at the model while at the same
time improving it in a significant way. From the two formulations of this thesis, I have a
preference for the environmental link as this is a very common human behavior. Besides,
it is time-consistent and easily applicable to many models.

At the time of this writing (October 29, 2016), Nordhaus just released a beta version
of the 2016 version of DICE. In terms of this thesis, not much has changed. Discounting
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is still done in the exact same way as in the 2013 version, technological change is still
exogenous and there is no implicit treatment of uncertainty. Climate sensitivity has
changed from 2.9 to 3.1. The exponent of the damage function is still 2 and the elasticity
of marginal utility is still 1.45. What seems to be the biggest difference is that the
timespan of the model increased from 300 years to 500 years and the update of some
climate parameters. Nonetheless, it seems that this new version is just an update on
numbers and does not include any real structural transformation. My initial guess is that
Nordhaus will use this new version to publish revised SCC values.

IAMs are usually used for calculation of the SCC. Are IAMs the best tool available for
this? I cannot give a reasonable answer. But I would like to argue that they are one of the
best available options we have. I believe that the SCC should not be one single determin-
istic value. With all the uncertainty surrounding the climate damages, the SCC will never
be exactly calculated. I think it is better to think about the SCC as a possible range. Here,
IAMs can be used to calculate it along with the appropriate uncertainty. Subsequently,
the SCC in IAMs can be updated as new science comes along. So, IAMs are a useful
tool, although not perfect. They give a guiding light in face of the darkness of uncertainty.

This uncertainty can show up as a fat-tailed distribution as in the "dismal theorem"
from Weitzman. The exact numbers will probably never be quantified. But when dealing
with these catastrophic risks, I think even the slightest chance of it happening is enough
to warrant insurance. Why else do we insure our whole life even if the probability of
damage is next to zero? This is in line with the minimax criterion for minimizing loss
for a worst case scenario. This is particularly important with the "dismal theorem" as
the expected value of damages could be infinite in theory. With a fat tail, the overall
conclusions of the discounting chapter make even more logical sense. Ceteris paribus,
discount rates should be lower in a world with these catastrophic risks. This is then tied
to my initial recommendation I would make to Nordhaus.

In the uncertainty analysis, quasi-p-values were used to assess if the uncertainties in
the boxes were there purely by chance. Why quasi-p-values and not regular p-values?
This is because depending on the sampling method, the values might not be an accurate
portrayal of the system. This particular type of test, mostly a binomial test, is used
specifically in the scenario discovery literature. A binomial test is the appropriate one
due the nature of the PRIM algorithm, where you either fail or succeed with the objective
target.
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As a final reflection, Robert Pindyck has criticized the use of IAMs for climate policy
as the uncertainty regarding some parameters is too big to ignore.1 This would then
make IAMs useless for climate policy. I do agree with many of his arguments, especially
the one where the damage function is completely arbitrary. However, his alternative of
relying on expert opinion is no better. As the old joke says: if you put 10 economists in
a room, you will get 11 opinions. He advocates for ranges with the expert opinion, which
invariably will lead to ranges in the discount rate which will in turn lead to a big range
for the SCC. I believe that the best option is to continue making strides with the IAMs
while taking away subjective parametrization from the modelers as much as possible (e.g.
with dynamic discount rates). Climate change is not surrendering, so we should keep
fighting.

6.4 Personal Reflections

I found great satisfaction with this thesis. Why? I overcame a multitude of challenges
which I put on myself. Before starting the thesis, I did not have any experience whatsoever
with economics, with GAMS, with Python, with climate models, with modeling and even
with writing a thesis. I was fortunate to have very supportive supervisors who guided
me through this. At the end, I am very pleased with my work and the findings. One
thing that I would like to improve for next time is working on my brevity and concise
writing as I managed to write more than 120+ pages here. I abided by Dr. Storm’s
recommendation that it is always better to write more than not writing enough as text
can always be deleted on-demand. In life, however, I believe that less is better in most
cases.

This leads me to the basic question which followed and nagged me through these
last nine months. Are more complex and bigger models better? I honestly do not
know the answer. Looking rapidly through the code, the original DICE model contains
380 lines of code while my model contains 916 lines of code! This is without including
several sub-routines which would add several hundred more. I have more than tripled
the size of the model. At the same time, every new line of code adds uncertainty to the
model. Each new parameter, each new assumption, each new variable is adding an extra
layer of complexity and depth to the model. Is it worth it? I believe that the quest to
fulfill research merits as much lines of codes as possible. It is after a careful examination

1[32, 33]
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of the model and the results that one can discriminate or not against extra lines of code.
I hope that my work can incite future research with the purpose of telling us more with
less lines of code. The final objective should be to have the most simple complex models!

This leads me to a another point of reflection. I had the chance to be in Paris the
weeks before the COP21 where I interacted with thousands of young activists. At the
moment I did not realize it, but many persons were collectively using models in a wrong
way. There was absolutely no distinction between "scenarios" and "predictions". In fact,
every "scenario" was taken as a "prediction". This of course eschewed the narrative and
thus we were all doomed by the business-as-usual. There is a chasm between modelers
and the general public in the reading of model results. This should be worked on from
both sides. On one hand, modelers need to do a better job of explaining the models in
terms that the users will understand. On the other hand, the users must be willing to
dive deeper into the model, question the results and not accept things at face-value. I
think there is a lack of synergy between modelers and general users. I hope that in the
future I can help solve this issue.

At the end, this thesis has changed me. I think it has completely transformed how I
approach challenges in life, how to do research, how to communicate and how to write.
And the transformation has been for the best. I can finally consider myself a master
student. This is where formal education has succeeded. Even if this thesis is read by
7.5 billion people or just 1, I think I can consider it a success. Not because of what is
written or what was researched, but what is yet to come.
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Entrepreneurship and
Technological Change

Supervisor: Dr. L.M. (Linda) Kamp

The purpose of this chapter is to explore the policy implications of entrepreneurship
on technological change in climate policy models. This represents a gap in the literature
as no climate model has included the effect of entrepreneurship on the environment.
This is part of the requirements for the Entrepreneurship Annotation in TU Delft.
First, a literature review is presented on the matter. This will cover the definition of
entrepreneurship until its various ways of modeling. Afterwards, the DICE-ED model
used throughout this thesis will be modified accordingly to include entrepreneurship in the
equations. Next, an analysis will be performed. Finally, conclusions and recommendations
will close the chapter.
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A.1 Literature Review

The entrepreneur is the single most important player in a modern economy.
Edward Lazear, award-winning American labor economist [125].

A.1.1 Definition of entrepreneurship

The definitions for entrepreneurship or entrepreneur abound in sources and meanings.
There is no single accepted definition for the term. It is believed to have been coined by
the French economist Jean-Baptiste Say after studying Adam Smith’s capstone work,
The Wealth of Nations. The term originally comes from the Irish-French economist
Richard Cantillon and the French word enterprendre which literally means undertake.
An entrepreneur, in Cantillon’s terms, is an adventurer or a risk-taker. For Say, the
entrepreneur is more of a planner who can organize and manage a business to gain a
profit at the end. More modern takes on the term are businessman or innovator.

From Frank Knight and the "Knightian uncertainty" as seen in Section 3.1.4, the
definition of entrepreneurship goes more into the decision-making process of the individual
[107]. Entrepreneurs follow investment decisions which are both risky and uncertain
and they have to live up to these decisions. Risk is easily calculable with probability
distributions while uncertainty is incalculable. Thus, an entrepreneur follows uncertain
and unpredictable paths.

Additionally, Joseph Schumpeter, seen again in Section 3.1.4, has an alternative
definition. He sees entrepreneurs as those who can do new combinations to initiate the
process of creative destruction where the old is replaced with the new [126]. They are
vital in capitalist economies.

There are more definitions and ideas about the term of entrepreneurship. For the
rest of this chapter, an entrepreneur involves someone whose objective is a process of
creative destruction, risk-taking, innovation and a search for profits.

There is much interest about the effect of entrepreneurship on technological change
and thus on the economy. The following sub-section will review this interest.
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A.1.2 Entrepreneurship and its effect on the economy

What is the cause for economic growth? In general, there are two sides [127]. On one side,
Adam Smith regarded economic growth as a product of entrepreneurship and innovation
which would lead to ever-increasing wealth and a greater division of labor as markets
grew. On the other side, David Ricardo saw economic growth as a function of several
inputs (land, capital, labor) and due to diminishing marginal factor productivity and
fixed inputs such as land, economic growth was bound to be stagnated with time.

Both of these approaches are common economic knowledge. Nonetheless, the Ricar-
dian view takes a bigger role in economic modeling due to its ease which with it can be
parametrized where investment is the key to economic growth [127]. Another reason is
that the Ricardian model was used constantly before 1989 within the context of centrally
planned economies in Europe as it states that a central planner has the best position
to increase investment and production [127]. The Smithian view, on the other hand, is
harder to model due to the inherent difficult of modeling innovation and entrepreneurship
[128].

The Ricardian view is fundamental in the production function, reminiscent of the
one function treated in Section 3.1 and reproduced down below for convenience. Here,
investment drives the stock of K (capital) which increases output. L (labor) is usually
taken to be exogenous. The only other factor is a (total factor productivity) which has
come now under close examination. There is currently literature studies on the effect
of R&D on a so as to increase productivity over time [127]. The Smithian view, on the
other hand, has grown more popular in the last decades due to the research work of Paul
Romer on endogenous technological change [36]. Romer states that increasing investment
in R&D could generate economic growth through the increase of human capital (which is
the set of skills and knowledge appropriable by humans).

Y = aLαKβ

Say noted that entrepreneurs are those who are able to look for inefficient uses of
resources and capital and move them into a more productive area; the objective of this
being to generate higher yields. In other words, entrepreneurs are profit-seekers who can
get the most out of every resource.

Just like an entrepreneur squeezes more output of the same resources, the total factor
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productivity (TFP), a in the equation above, has the same function. There is then a link
between entrepreneurship and total factor productivity (mainly determined by technical
change or technological change). TFP appears as the main component which describes
different countries’ economic performance over time [129].

Entrepreneurship has several positive effects on the economy. First and foremost,
entrepreneurs are the creators of new jobs, and not only for themselves. Secondly, as
stated above, they can increase the productivity of the economy by making resources
more efficient on the basis of positive technological change. The introduction of new
products and processes, creative destruction made able by entrepreneurs, is the third
way in which they are able to affect the economy. They are one of the most important
drivers of the economic system [126].

Job creation is of crucial importance to both an economy and its politicians. A
bigger supply of labor will ultimately increase the overall production of the economy.1

There is evidence of this fact with a study done on OECD countries where an increase in
entrepreneurship leads a positive effect on both employment growth and GDP growth
[130].

The economy is rewarded when there is an absolute bigger number of entrepreneurs
as there is now more competition between the new firms and the incumbents. This
pushes firms to improve their productivity, lower their costs and ultimately reward the
consumers with more product variety plus the secondary effect of avoiding monopolies
and/or oligopolies. New firms as well as the incumbents need to adapt to the new
standard brought about by their coexistence. There is also evidence of an empirical
relationship between entrepreneurial activity and productivity [126].

Lastly, the process of creative destruction brings about new innovations and can
open up new markets. Examples of this are all the firms like Google, Apple, Google,
Amazon which were founded upon entrepreneurial endeavors. As it currently stands,
Elon Musk2, is on the path to colonizing Mars and electrifying the mobility sector just
with his decisions and dreams. Just these two objectives of him are enough to send
ripples throughout the whole economy. Incumbent firms are generally more reluctant to

1This is akin to thinking about an increase in L in the Cobb-Douglas production function.
2Founder of Tesla Motors, Solar City, SpaceX and PayPal. Probably the world’s most famous and

exciting entrepreneur right now.
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look for new areas and opportunities, either because of failure to adapt to a changing
environment or organizational inertia [126].

However, with all this positive effects on the economy, research on entrepreneurship
remained fairly vague during almost all of the twentieth century [126, 128]. It was
until the information and communication technology revolution of the 1990s when the
recognition of entrepreneurship started appearing in mainstream economic research. The
link between the role of entrepreneurship and economic growth is still in its embryonic
stages. It is part of this link that this chapter hopes to research.

A.1.2.1 Entrepreneurship and knowledge

In the neoclassical framework of this thesis, technological change comes through R&D.
However, doing R&D is not sufficient for a positive effect on the economy. The opportu-
nities opened by this new research must be exploited. This is where entrepreneurship
comes in.

As profit-seekers3, entrepreneurs act upon unseen opportunities. This falls in line
with the model of American economist Israel Kirzner [131]. The ability to recognize
these opportunities is part-knowledge part-acumen. Being aware of the current state of
knowledge is something entrepreneurs need in order to identify opportunities. But there
is a distinction. There is a need for distributed knowledge, as Friedrich Hayek puts it
[132]. Distributed local knowledge refers to that which pertains to an individual at a
certain point in time and space. Entrepreneurs with their own individual knowledge and
their acumen are able to seek these profit opportunities. It is of no surprise that the
microprocessor was invented by an electrical engineer for example.

As seen in Chapter 3, there are increasing returns to R&D and positive knowledge
spillovers. This plays a major role in Kirzner’s model of entrepreneurship. Kirzner states
that entrepreneurship is running alongside R&D but they are not as interconnected as
they seem [127]. R&D and knowledge does indeed augment some factors of production,
however, they are not responsible for the introduction of new goods and services which
further propel economic growth. Entrepreneurship is what enables what R&D and
knowledge cannot. Knowledge externalities can be explained through entrepreneurship
because the entrepreneurial opportunities of some produce opportunities for others. There

3There is also the social entrepreneur whose objective is not profit-seeking. However, these en-
trepreneurs will not be treated in this chapter for simplicity.
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are also increasing returns to entrepreneurship because with more entrepreneurship comes
more opportunities.

A.1.3 Modeling Entrepreneurship

There are some inherent difficulties with analyzing economic growth with the neoclassical
framework. One is that the models are not fitted to account for new products derived
from innovation, which might disrupt the market and thus open up new opportunities.
This creation of market niches is a key link between entrepreneurship and economic
growth [127]. In these models, growth is tended towards producing more of the old goods.
Innovation is modeled as R&D which affects the production factors. No room is given
for entrepreneurial discovery. R&D is not the cause for growth, it is merely the response
to new growth opportunities [127].4

One of the cardinal reasons why entrepreneurship is not modeled is due to the fact
that it is a phenomenon that is analytically not tractable. In fact, it has been stated
that both the entrepreneur and the microeconomic theory of the firm cannot coexist and
as such economists have chosen the firm over the entrepreneur [133]. It is difficult to
capture in equations what the entrepreneur means for economic development. However,
in recent years, several attempts have been made to include entrepreneurship in economic
models [128].

The first method to model entrepreneurship is by assuming that entrepreneurs are
talented individuals who organize the factors of production [134]. This relates to the role
of "managers" given to entrepreneurs by Say. Different entrepreneurs will have different
levels of talent to manage the factors of production. The following formulation shows the
relationship between entrepreneurs and the production:

Y = x · g[f(L,K)] (A.1)

where f(L,K) is a formula for production (Y ) and x is an indication of the talent
of the entrepreneur. This way to model entrepreneurship is analytically convenient
as it enters the production function multiplicatively. g[.] is a function to mitigate the
effect of x on production by introducing diseconomies of scale in managing. One of

4This means that R&D is usually present where there are profit opportunities to be made. As an
example, there is considerably more R&D directed towards the energy industry than the pasta-making
industry.
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the many limitations of this method is how to define, quantify and explain the causes for x.

A second method to model entrepreneurship is by viewing them as risk takers re-
sponsible for taking the risk in the firms [135]. Individuals are made either employees
or entrepreneurs depending on their risk aversion. For example, there is a risk aversion
cut-off level where anyone below this level is an entrepreneur and the rest will be em-
ployees. Each firm can then have one unit of entrepreneurship which is in charge of
hiring employees and generate production. One of the shortcomings of this method is to
differentiate between risk and uncertainty [107].

The third method to model entrepreneurship is as innovative agents who make
"creative destruction" by implementing innovations which augment the economy or the
firm [128]. This way entrepreneurs take advantage of profit opportunities created by the
introduction of an innovation. This is defined by an ability factor (θ) which explains
whether entrepreneurs would risk opening a new business, manage the existing one
or trade for some middle ground. Alternatively, innovation comes from firms doing
profit-seeking R&D. However, the limitation to this is that R&D is stripped from the
entrepreneurial hands as it is firms who seek R&D with managers who do not have any
real risk [128].

A.2 Model and Results

This section describes the modifications made to the DICE-ED model in order to include
entrepreneurship in the model and be able to see its effect on economic growth and
climate policy.

The DICE-ED model induces innovation through the inclusion of an R&D market
which reacts dynamically to the prices of fossil fuels and backstop fuels5. The R&D mar-
ket is subsequently divided into two: one for energy efficiency and another for backstop
research.6 For this section, a special focus will be made on the backstop research. The
basic premise is that higher entrepreneurial activity will be able to introduce more prod-
ucts or innovations into the economy, thus lowering the price of the backstop technology.
The first and third method to model entrepreneurship will be combined in this model.

5Backstop fuels or backstop technologies is a name given to all energy sources which emit no carbon
emissions with usage. It is mostly referred to normal renewable energies but carbon capture and
sequestration is also included as well as new technologies which could appear in the future.

6See Section 3.2.1 for a complete overview.
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For one part, entrepreneurship will be given the role of talented individuals to account
for the factors of production and also innovative agents by having an ability factor to
quantify the level of entrepreneurship.

The modification to the model will be to the innovation possibility frontier of the
backstop technology, Equation (3.12). A factor that describes entrepreneurial activity
will be added to the model in order to describe future states of the world. The resulting
equation modification is:

Hi(t) = εf(Ri(t)) + (1− δH)Hi(t− 1) (A.2)

f(Ri(t)) = aRi(t)biHi(t)φi (A.3)

where ε is the total amount of entrepreneurial activity and the rest of the equation
follows the same description as in the original model. The exact value of ε depends on the
state of the world in regards to entrepreneurship. The future state of entrepreneurship is
fairly uncertain. The value will be changed accordingly in the model and will take values
such as:

ε =


2 high entrepreneurship

1 base case (no entrepreneurship)

0.5 low entrepreneurship

The exact point of these values is not to define any numerical precision on the level of
entrepreneurial activity. The point is to see how the effect of a world supplied with more
entrepreneurial activities changes in comparison to a base case. This will allow for the
recommendation of generalized policy advice. The results of a model would indicate the
effect of reducing or increasing entrepreneurship on both output and climate. A future
reduction or increase of entrepreneurship can be done through policy making such as
incentives, subsidies or tax breaks for new businesses.

With the new equation, the model is run on an optimal scenario to account for
damages and the externality of carbon emissions.

When dealing with climate change, one of the most important variables to consider is
the atmospheric temperature. Figure A.1 shows the effect of the entrepreneurial level on
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Figure A.1: Atmospheric temperature with entrepreneurship level.

the atmospheric temperature. Several key insights are gathered from this figure. First
of all, the short-run temperature is not changed in any significant way with a different
level of entrepreneurship. Almost until the year 2150 does the atmospheric temperature
change levels. The key insight is that entrepreneurship is a long-term activity with
benefits far into the future. This is represented in the model by an increase in the
appropriable knowledge generated with the same amount of R&D. Another key insight
is that a world with more entrepreneurial level is in relative terms "safer" than one
without. This is seen at the end of the simulation where the atmospheric temperature is
lower in the High case. Additionally, the highest gains are made from the first improve-
ments to entrepreneurship. Figure A.2 shows the result of increasing entrepreneurship
level on the atmospheric temperature by the end of the model’s timespan. The curve
flattens as more entrepreneurship is added to the model, this indicates diminishing
marginal returns of entrepreneurship on the atmospheric temperature. From this it is
clear that the biggest marginal gains will be achieved through the initial effort. For policy
advice, inducing more entrepreneurship by subsidies, tax breaks or grants will have a
positive effect on the environment. This effect, however, will only be seen in the long-term.

With the entrepreneurship specifically modeled for the backstop technology, the
highest improvement is seen with the price of the backstop technology. Figure A.3 shows
the marked improvement of the price on the backstop technology with increasing or
decreasing entrepreneurship level. It becomes clear that an increase in the entrepreneur-
ship level in the backstop field will result in a steeper price decrease as knowledge
is generated at higher rates. With a decrease in the backstop price, fossil fuels are
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Figure A.2: Relationship between final atmospheric temperature and different entrepreneurship
levels.

used less and thus their price is also affected as seen in Figure A.4. Less usage of
fossil fuels means that the price is considerably less with the supply still intact. The
key relationship is that a decrease in the price of the backstop technology will limit
total atmospheric temperature rise as backstop technologies do not emit carbon emissions.

As for economic growth, the rise expected to see with increasing entrepreneurship
level is not as marked as one would expect. Figure A.5 shows the results of this anal-
ysis. The increase in output is minimal and it is only seen in the long-term. With a
minimal discount factor, the present value of this output is practically the same.7 This
may be due to the fact of modeling practices. This model is a climate policy model
with an emphasis of entrepreneurship on the energy sector. It should then be of no
surprise why the economic values do not change considerably with this. The social cost
of carbon (i.e. the carbon tax in an ideal economy) is a variable which accounts for both
economic and climate values. Equation (A.4) shows the definition of the social cost of
carbon where the numerator is the marginal benefit on welfare from a rise in emissions
(climate variable) while the denominator is the same marginal benefit but from a rise
in consumption (economic variable). Figure A.6 shows the social cost of carbon with
the three entrepreneurship levels. As with economic output, the change in social cost of
carbon with differing entrepreneurship levels is negligible for the short-term. This has
important effects because policy-makers usually only use the first 100 years of climate
model simulations as these results are the appropriate ones for policy-making. In fact, if

7Refer to Section 4.3.
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Figure A.3: Price of backstop technology with entrepreneurship level.

Figure A.4: Price of fossil fuels with entrepreneurship level.
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Figure A.5: Net economic output with entrepreneurship level.

only the results until the year 2100 were shown, a single line would represent the three
cases as there is no significant difference.

SCC(t) ≡

− ∂W
∂E(t)
∂W

∂C(t)

(A.4)

A.3 Conclusions

This chapter has dealt with entrepreneurship in regards to technological change in a cli-
mate policy model. A literature review was first presented in order to assimilate the lack of
research done on the topic. The analysis presented an opportunity to study entrepreneur-
ship in a climate policy model developed throughout the thesis. Technological change
is modeled through an R&D market and entrepreneurship was linked to this R&D market.

Entrepreneurship is a vital component of economics. In the model, due to its precise
modeling effort, entrepreneurship impacted the energy sector and ultimately the atmo-
spheric temperature the most. Entrepreneurship exhibited diminishing marginal
returns on atmospheric temperature. This means that early improvements to en-
trepreneurship are vital for long-term climate policy-making. The biggest improvements
are to be gained from the first efforts. As entrepreneurship level increases, the atmo-
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Figure A.6: Social cost of carbon with entrepreneurship level.

spheric temperature starts converging towards a steady-state temperature. This is more
a reflection upon the economic concavity of the model, which is based upon the work of
Ramsey-Cass-Koopmans.

In terms of prices, the backstop technology enjoyed a price decrease with a higher
entrepreneurial level. On the other hand, the fossil fuel price did not increase in a
more entrepreneurial level. This could be counter-intuitive but it is due to the fact
that the price of the fossil fuel depends on the supply, so if less fossil fuel is used then
the price does not increase. Thus, entrepreneurship in the model increases the
competitiveness of the backstop technology in comparison to the fossil fuel
technology. This is an important insight into policy-making as nurturing entrepreneurs
via subsidies, grants, tax breaks, programs, etc. will keep fossil fuels on the ground and
increase the use of sustainable energies.

In regards to economic growth, the inclusion of entrepreneurship in the model through
technological change did not amount to much change. There are two reasons for this:
most of the growth already comes from the original inclusion of technological change
(R&D) and because entrepreneurship is modeled specifically in the energy sector. Other
economic variables such as capital, investment and labor are the predominant factors in
the net economic growth. It is further recommended to include entrepreneurship
in a model without a climate module, this way the exact effect on economic
variables can be characterized.
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In a similar fashion, the social cost of carbon had no significant change when including
entrepreneurship in the model. Most policy-makers are only interested in the short-run
social cost of carbon, and with good reason. There was no change in the social cost of
carbon when including entrepreneurship due to the long-term benefits of damages and
emissions. Entrepreneurship only has an effect in the second half of the model when
the new "inventions and innovations" become a prominent player in the market. This
is a reminder that investing in entrepreneurship is a long-term investment.
Many times, the benefits are not immediate. Policy-makers are urged to include
long-term vision into their decisions even when the benefits will not be felt while they
are still in office.

There is much work left to do. Entrepreneurship is very dynamic, its meaning has
changed accordingly with time. The future is inherently uncertain and expectations about
its potential are vast. The importance of including entrepreneurship while modeling
technological change in climate models has been demonstrated in this analysis. Further
research is encouraged on similar fronts: stochastic programming to account for uncer-
tainty, entrepreneurship with different economic theories, positive shocks to the economy
with a random probability distribution to simulate large-scale disruptive technologies and
more. Only further research into how entrepreneurship deals with technological change
and its effect on the economy and climate will yield better tools to give more appropriate
policy-advice.
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GAMS code

The following is the basic code for most of the thesis. For the full code please e-mail me
at leoncio.montemayor@gmail.com.

2 $ontext

3 This is the DICE-ED model.

4 It is calibrated to 2010 initial values with 2005 USD.

5 By: Leoncio David Montemayor Rodriguez

6 email: leoncio.montemayor@gmail.com

7 $offtext

9 $title DICED 2016

10 $offlisting

11 $offsymlist

13 set t Time periods (5 years per period) /1*60/ ;

15 parameters

17 **Time Step

18 tstep Years per Period /5/

20 ** Preferences

21 elasmu Elasticity of marginal utility of consumption / 1.45 /

22 prstp Initial rate of social time preference per year / .015 /

24 ** Population and technology

25 gama Capital elasticity in production function /.300 /

26 pop0 Initial world population (millions) /6838 /

153
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27 popadj Growth rate to calibrate to 2050 pop projection /0.134 /

28 popasym Asymptotic population (millions) /10500 /

29 dk Depreciation rate on capital (per year) /.100 /

30 q0 Initial world gross output (trill 2005$) /63.69 /

31 k0 Initial capital value (trill 2005$) /135 /

32 a0 Initial level of total factor productivity (below)

33 ga0 Initial growth rate for TFP per 5 years /0.079 /

34 dela Decline rate of TFP per 5 years /0.006 /

36 ** Emissions parameters

37 gsigma1 Initial growth of sigma (per year) /-0.01 /

38 dsig Decline rate of decarbonization (per period) /-0.001 /

39 eland0 Carbon emissions from land 2010 (GtCO2 per year) / 3.3 /

40 deland Decline rate of land emissions (per period) / .2 /

41 e0 Industrial emissions 2010 (GtCO2 per year) /33.61 /

42 miu0 Initial emissions control rate for base case 2010 /.039 /

44 ** Carbon cycle

45 * Initial Conditions

46 mat0 Initial Concentration in atmosphere 2010 (GtC) /830.4 /

47 mu0 Initial Concentration in upper strata 2010 (GtC) /1527. /

48 ml0 Initial Concentration in lower strata 2010 (GtC) /10010. /

49 mateq Equilibrium concentration atmosphere (GtC) /588 /

50 mueq Equilibrium concentration in upper strata (GtC) /1350 /

51 mleq Equilibrium concentration in lower strata (GtC) /10000 /

53 * Flow paramaters

54 b12 Carbon cycle transition matrix /.088 /

55 b23 Carbon cycle transition matrix /0.00250/

57 * These are for declaration and are defined later

58 b11 Carbon cycle transition matrix

59 b21 Carbon cycle transition matrix

60 b22 Carbon cycle transition matrix

61 b32 Carbon cycle transition matrix

62 b33 Carbon cycle transition matrix

63 sig0 Carbon intensity 2010 (kgCO2 per output 2005$ 2010)

65 ** Climate model parameters

66 t2xco2 Equilibrium temp impact (oC per doubling CO2) / 2.9 /

67 fex0 2010 forcings of non-CO2 GHG (Wm-2) / 0.25 /

68 fex1 2100 forcings of non-CO2 GHG (Wm-2) / 0.70 /

69 tocean0 Initial lower stratum temp change (C from 1900) /.0068 /

70 tatm0 Initial atmospheric temp change (C from 1900) /0.80 /
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72 c10 Initial climate equation coefficient for upper level /0.098 /

73 c1beta Regression slope coefficient(SoA¬Equil TSC) /0.01243/

75 c1 Climate equation coefficient for upper level /0.098 /

76 c3 Transfer coefficient upper to lower stratum /0.088 /

77 c4 Transfer coefficient for lower level /0.025 /

78 fco22x Forcings of equilibrium CO2 doubling (Wm-2) /3.8 /

80 ** Climate damage parameters

81 a10 Initial damage intercept /0 /

82 a20 Initial damage quadratic term /0.00267 /

83 a1 Damage intercept /0 /

84 a2 Damage quadratic term /0.00267 /

85 a3 Damage exponent /2.00 /

87 ** Abatement cost

88 expcost2 Exponent of control cost function / 2.8 /

89 pback Cost of backstop 2005$ per tCO2 2010 / 344 /

90 gback Initial cost decline backstop cost per period / .025 /

91 limmiu Upper limit on control rate after 2150 / 1.2 /

92 tnopol Period before which no emissions controls base / 45 /

93 cprice0 Initial base carbon price (2005$ per tCO2) / 1.0 /

94 gcprice Growth rate of base carbon price per year /.02 /

96 ** Availability of fossil fuels

97 fosslim Maximum cumulative extraction fossil fuels (GtC) /6000/

99 ** Scaling and inessential parameters

100 * Note that these are unnecessary for the calculations but are for

convenience

101 scale1 Multiplicative scaling coefficient /0.016408662 /

102 scale2 Additive scaling coefficient /-3855.106895/

104 **Endogenous Technological Change parameters

105 y0 Initial production net from DICE /63.473 /

106 y0nodam Initial production net from DICE no dam /63.3647 /

107 i0 Initial investment (trillion 2005$) /16.608 /

108 c0 Initial consumption (trillion 2005$) /47.029 /

109 phigr Growth rate phi (per period) /-.0685 /

110 phigrgr Decline rate of phigr (per period) /.0674 /

111 alphah Scaling factor energy efficiency /0.336 /

112 alphac Scaling factor carbon intensity /.8 /

113 he0 Initial energy human capital /0.0001 /
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114 hb0 Initial backstop human capital /1.0 /

115 ipfae1 IPF parameter a (energy eff) /0.0312 /

116 ipfbe1 IPF parameter b (energy eff)(0<b<1) /0.21 /

117 ipfphie1 IPF parameter phi (energy eff) (0<phi<1) /0.52 /

118 ipfae IPF parameter a (energy eff) /0.0262 /

119 ipfbe IPF parameter b (energy eff)(0<b<1) /0.29 /

120 ipfphie IPF parameter phi (energy eff) (0<phi<1) /0.60 /

121 ipfab IPF parameter a (backstop) /.01 /

122 ipfbb IPF parameter b (backstop) (0<b<1) /0.067 /

123 ipfphib IPF parameter phi (backstop) (0<phi<1) /0.60 /

124 subh Subsititution parameter knowledge /0.38 /

125 subb Subsititution parameter backstop (0.524)

126 ∆h Decay knowledge /0.0 /

127 ∆b Decay backstop knowledge /0.0 /

128 crowd Crowding out % /0.5 /

129 ccost0 Initial carbon cost (calc below)

130 beta Beta production function (.0562)

131 pb0sub Price of backstop for substitution /1200 /

132 pb0 Initial price of backstop /1200 /

133 pf0 Initial price of fossil fuel /412.85 /

134 eta Parameter knowledge and price (bt) /0.4 /

135 rde0 Initial energy RD (trillion 2005$) /.0178974 /

136 rdb0 Initial RD backstop (trillion 2005$) /.00178974/

137 bt0sub Level of backstop for substitution /0.972 /

138 bt0 Initial backstop use (G CTE) /0.972 /

139 f0 Initial fossil fuel use (Gt C) /9.15248 /

140 eh0 Initial energy units (calc below)

141 backlim limit on growth of backstop (per period) /1.2 /

142 inertf Limit on decline of fossil use (per period)/0.86 /;

144 * Program control variables

145 sets tfirst(t), tlast(t),tnotone(t),tmid(t),tnotlast(t);

147 *all of the parameters have an initial value of zero for all the time periods

148 PARAMETERS

149 l(t) Level of population and labor

150 al(t) Level of total factor productivity

151 sigma(t) CO2-equivalent-emissions output ratio

152 rr(t) Average utility social discount rate

153 ga(t) Growth rate of productivity from

154 forcoth(t) Exogenous forcing for other greenhouse gases

155 gl(t) Growth rate of labor

156 gcost1 Growth of cost factor

157 gsig(t) Change in sigma (cumulative improvement energy efficiency)
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158 etree(t) Emissions from deforestation

159 cost1(t) Adjusted cost for backstop

160 lam Climate model parameter

161 gfacpop(t) Growth factor population

162 pbacktime(t) Backstop price

163 optlrsav Optimal long-run savings rate used for transversality

164 scc(t) Social cost of carbon

165 cpricebase(t) Carbon price in base case

166 photel(t) Carbon Price under no damages (Hotelling rent condition)

167 *Endogenous Technological Change new parameters

168 phi(t) carbon emissions per carbon service

169 phicgr(t) cumulative exponential growth rate of phi;

171 * Program control definitions, basically tfirst is 1 and tlast is 60

172 tfirst(t) = yes$(t.val eq 1);

173 tlast(t) = yes$(t.val eq card(t));

174 tnotone(t) = yes$(ord(t) ge 2);

175 tmid(t) = yes$(ord(t) ge 2 and t.val lt card(t));

176 tnotlast(t)= yes$(ord(t) le (card(t)-1));

178 * Parameters for long-run consistency of carbon cycle

179 b11 = 1 - b12;

180 b21 = b12*MATEQ/MUEQ;

181 b22 = 1 - b21 - b23;

182 b32 = b23*mueq/mleq;

183 b33 = 1 - b32 ;

185 * Further definitions of parameters

186 sig0 = e0/(q0*(1-miu0));

187 lam = fco22x/t2xco2;

189 l("1") = pop0;

190 loop(t, l(t+1)=l(t););

191 loop(t, l(t+1)=l(t)*(popasym/L(t))**popadj ;);

193 gsig("1")=gsigma1;

194 loop(t,gsig(t+1)=gsig(t)*((1+dsig)**tstep) ;);

195 sigma("1")=sig0;

196 loop(t,sigma(t+1)=(sigma(t)*exp(gsig(t)*tstep)););

198 pbacktime(t)=pback*(1-gback)**(t.val-1);

199 etree(t) = eland0*(1-deland)**(t.val-1);

200 rr(t) = 1/((1+prstp)**(tstep*(t.val-1)));

201 forcoth(t) = fex0+ (1/18)*(fex1-fex0)*(t.val-1)$(t.val lt 19)+
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202 (fex1-fex0)$(t.val ge 19);

203 optlrsav = (dk + .004)/(dk + .004*elasmu + prstp)*gama;

205 *Transient TSC Correction ("Speed of Adjustment Parameter")

206 c1 = c10 + c1beta*(t2xco2-2.9);

208 *Base Case Carbon Price

209 cpricebase(t)= cprice0*(1+gcprice)**(5*(t.val-1));

211 *Endogenous Technological Change defintions

213 phicgr(t) = (phigr/phigrgr)*(1-exp(-(ord(t)-1)*phigrgr));

214 phi(t) = exp(phicgr(t));

217 VARIABLES

218 MIU(t) Emission control rate GHGs

219 FORC(t) Increase in radiative forcing (watts per m2 from 1900)

220 TATM(t) Increase temperature of atmosphere (degrees C from 1900)

221 TOCEAN(t) Increase temperatureof lower oceans (degrees C from 1900)

222 MAT(t) Carbon concentration increase in atmosphere (GtC from 1750)

223 MU(t) Carbon concentration increase in shallow oceans (GtC from 1750)

224 ML(t) Carbon concentration increase in lower oceans (GtC from 1750)

225 E(t) Total CO2 emissions (GtCO2 per year)

226 EIND(t) Industrial emissions (GtCO2 per year)

227 C(t) Consumption (trillions 2005$ per year)

228 K(t) Capital stock (trillions 2005$)

229 CPC(t) Per capita consumption (thousands 2005$ per year)

230 I(t) Investment (trillions 2005$ per year)

231 S(t) Gross savings rate as fraction of gross world product

232 RI(t) Real interest rate (per annum)

233 Y(t) GWP net of abatement and damages (trillions 2005$ per year)

234 YGROSS(t) GWP GROSS of abatement and damages (trillions 2005$ per year)

235 YNET(t) Output net of damages equation (trillions 2005$ per year)

236 DAMAGES(t) Damages (trillions 2005$ per year)

237 DAMFRAC(t) Damages as fraction of gross output

238 ABATECOST(t) Cost of emissions reductions (trillions 2005$ per year)

239 MCABATE(t) Marginal cost of abatement (2005$ per ton CO2)

240 CCA(t) Cumulative industrial carbon emissions (GTC)

241 PERIODU(t) One period utility function

242 CPRICE(t) Carbon price (2005$ per ton of CO2)

243 CEMUTOTPER(t) Period utility

244 UTILITY Welfare function

245 *Endogeneous Technological Change variables
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246 HE(t) Knowledge energy efficiency stock

247 HB(t) Knowledge backstop stock

248 NEWHE(t) New knowledge energy efficiency stock

249 NEWHB(t) New knowledge backstop stock

250 RDE(t) RD for energy efficiency (trillions 2005$ per year)

251 RDB(t) RD for backstop (trillions 2005$ per year)

252 RETRDE(t) Rate of return on energy R&D

253 RETRDB(t) Rate of return on backstop R&D

254 GROWTHRD(t) Rate of growth on R&D (% per year)

255 EH(t) Energy units (eeu)

256 FOSSIL(t) Level of fossil fuel used (GtC)

257 PRICEFOSSIL(t) Price of fossil fuels (2005$ per ton Carbon)

258 PRICEBT(t) Price of backstop technology (2005$ per CTE)

259 CHANGEP(t) Change price level PRICEBT w.r.t. time (2005$ per CTE)

260 DEDP(t) Derivative of EH w.r.t. PRICEBT

261 BT(t) Level of backstop technology used (GCTE)

262 *Dynamic discounting variables

263 RHO(t) Dynamic rate of pure time preference

264 FACTOR(t) Discount factor

265 ;

267 NONNEGATIVE VARIABLES MIU, TATM, MAT, MU, ML, Y, YGROSS, C, K, I, H, HE, HB,

268 RDE, RDB, PRICEFOSSIL, PRICEBT, BT,S, NEWHE, NEWHB,EH, RHO, FACTOR;

270 EQUATIONS

271 *Emissions and Damages

272 EEQ(t) Emissions equation

273 EINDEQ(t) Industrial emissions

274 CCACCA(t) Cumulative carbon emissions

276 FORCE(t) Radiative forcing equation

277 DAMFRACEQ(t) Equation for damage fraction

278 DAMEQ(t) Damage equation

280 *Climate and carbon cycle

281 MMAT(t) Atmospheric concentration equation

282 MMU(t) Shallow ocean concentration

283 MML(t) Lower ocean concentration

284 TATMEQ(t) Temperature-climate equation for atmosphere

285 TOCEANEQ(t) Temperature-climate equation for lower oceans

287 *Economic variables

288 YGROSSEQ(t) Output gross equation

289 YNETEQ(t) Output net of damages equation
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290 YY(t) Output net equation

291 CC(t) Consumption equation

292 CPCE(t) Per capita consumption definition

293 SEQ(t) Savings rate equation

294 KK(t) Capital balance equation

295 RIEQ(t) Interest rate equation

297 * Utility

298 CEMUTOTPEREQ(t) Period utility

299 PERIODUEQ(t) Instantaneous utility function equation

300 UTIL Objective function

301 *Endogeneous Technological Change equations

302 PFEQ(t) Equation for the fossil price

303 PBEQ(t) Equation for the backstop fuel price

304 CHANGEPBEQ(t) Equation for the change of backstop fuel price

305 HEEQ(t) Knowledge energy efficiency stock equation

306 HBEQ(t) Knowledge backstop stock equation

307 NEWHEEQ0(t) Equation for new knowledge energy in first run

308 NEWHBEQ0(t) Equation for new backstop knowledge in first run

309 NEWHEEQ1(t) Equation for new knowledge energy without backstop

310 NEWHEEQ(t) Equation for new knowledge energy

311 NEWHBEQ(t) Equation for new backstop knowledge

312 ENERGYEQ(t) Energy equation

313 DEDPEQ(t) Derivative energy w.r.t. price equation

314 DEDPEQ1(t) Derivative energy w.r.t. price equation (optimal run)

315 FOSSILEQ(t) Fossil fuel constraint equation

316 BTEQ(t) Backstop constraint on growth

317 INERTEQ(t) Fossil fuel limit decline equation

318 GROWTHRDEQ(t) Equation for the rate of growth of R&D

319 CONSTRDEQ(t) Constraint for rate of return of energy R&D

320 CONSTRDBEQ(t) Constraint for rate of return of backstop RD

321 RETRDEEQ(t) Equation for the rate of return on energy R&D

322 RETRDEEQ1(t) Eq for the rate of return on energy R&D with backstop

323 RETRDBEQ(t) Equation for the rate of return on backstop R&D

325 *Dynamic discounting equations

326 RHOEQ(t) Equation for the dynamic discount rate

327 FACTOREQ(t) Equation for discount factor

328 CEMUTOTPER1EQ(t) New period utility

329 RIEQ1(t) New interest rate equation

330 ;

332 ** Equations of the model

333 *Emissions and Damages
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334 eeq(t).. E(t) =E= EIND(t) + etree(t);

335 eindeq(t).. EIND(t) =E= FOSSIL(t)*3.666;

336 ccacca(t+1).. CCA(t+1) =E= CCA(t)+ tstep*EIND(t)/3.666;

337 force(t).. FORC(t) =E= fco22x * ((log((MAT(t)/588.000))/

338 log(2))) + forcoth(t);

339 damfraceq(t) .. DAMFRAC(t) =E= (a1*TATM(t))+(a2*TATM(t)**a3) ;

340 dameq(t).. DAMAGES(t) =E= YGROSS(t) * DAMFRAC(t);

342 *Climate and carbon cycle

343 mmat(t+1).. MAT(t+1) =E= MAT(t)*b11 + MU(t)*b21 + (E(t)*
344 (5/3.666));

345 mml(t+1).. ML(t+1) =E= ML(t)*b33 + MU(t)*b23;

346 mmu(t+1).. MU(t+1) =E= MAT(t)*b12 + MU(t)*b22 + ML(t)*b32;

347 tatmeq(t+1).. TATM(t+1) =E= TATM(t) + c1 * ((FORC(t+1)-

348 (fco22x/t2xco2)*TATM(t))-(c3*(TATM(t)-TOCEAN(t))));

349 toceaneq(t+1).. TOCEAN(t+1) =E= TOCEAN(t) + c4*(TATM(t)-TOCEAN(t));

351 *Economic variables

352 ygrosseq(t).. YGROSS(t) =E= (al(t)*(L(t)/1000)**(1-gama-beta))

353 *(K(t)**gama)*(EH(t)**beta) ;

354 yneteq(t).. YNET(t) =E= YGROSS(t)*(1-damfrac(t));

355 yy(t).. Y(t) =E= YNET(t)- (PRICEFOSSIL(t)*FOSSIL(t)/

356 (phi(t)*1000)+BT(t)*PRICEBT(t)/1000);

357 cc(t).. C(t) =E= Y(t) - I(t) - RDE(t) - RDB(t) ;

358 cpce(t).. CPC(t) =E= 1000 * C(t) / L(t);

359 seq(t).. I(t) =E= S(t) * Y(t);

360 kk(t+1).. K(t+1) =L= (1-dk)**tstep * K(t) + tstep *
361 (I(t)-4*crowd*(RDE(t)+RDB(t)));

362 rieq(t+1).. RI(t) =E= (1+prstp) * (CPC(t+1)/CPC(t))**
363 (elasmu/tstep) - 1;

365 *Utility

366 cemutotpereq(t).. CEMUTOTPER(t) =E= PERIODU(t) * L(t) * rr(t);

367 periodueq(t).. PERIODU(t) =E= ((C(T)*1000/L(T))**(1-elasmu)-1)/

368 (1-elasmu)-1;

369 util.. UTILITY =E= tstep * scale1 * sum(t, CEMUTOTPER(t

))

370 + scale2 ;

372 *Endogeneous Technological Change equations definition

373 pfeq(t).. PRICEFOSSIL(t) =E= (412.85 + 1045.98*(CCA(t)/fosslim)

**4) ;

374 pbeq(t).. PRICEBT(t) =E= pb0/(HB(t)**eta) ;

375 changepbeq(t).. CHANGEP(t) =E= PRICEBT(t) - pb0;
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376 heeq(t+1).. HE(t+1) =L= tstep * NEWHE(t) + (1-∆h)**tstep

377 *HE(t) ;

378 hbeq(t+1).. HB(t+1) =L= tstep * NEWHB(t) + (1-∆b)**tstep

379 *HB(t) ;

380 newheeq0(t).. NEWHE(t) =E= 0 ;

381 newhbeq0(t).. NEWHB(t) =E= 0 ;

382 newheeq1(t).. NEWHE(t) =E= ipfae1 * RDE(t)**ipfbe1 * HE(t)**
383 ipfphie1 ;

384 newheeq(t).. NEWHE(t) =E= ipfae * RDE(t)**ipfbe * HE(t)**
ipfphie;

385 newhbeq(t).. NEWHB(t) =E= ipfab * RDB(t)**ipfbb * HB(t)**
ipfphib;

386 energyeq(t).. EH(t) =E= ((alphah*HE(t))**subh + ((FOSSIL(t)/

387 (phi(t)))**subb + BT(t)**subb)**(subh/subb))**(1/subh);

388 **dedpeq is defined below under scenario 3.

389 fossileq(t).. FOSSIL(t) =L= (0.1*(fosslim-CCA(t)))/tstep ;

390 bteq(t+1).. BT(t+1) =L= .005 + backlim*BT(t) ;

391 inerteq(t+1).. FOSSIL(t+1) =G= inertf*FOSSIL(t);

392 growthrdeq(t+1).. GROWTHRD(t+1) =E= ((RDE(t+1)+RDB(t+1))-(RDE(t)+RDB(t)))

/

393 (RDE(t)+RDB(t))/tstep*100 ;

394 constrdeq(tmid).. RETRDE(tmid) =G= 4*RI(tmid) ;

395 constrdbeq(tmid).. RETRDB(tmid) =G= 4*RI(tmid) ;

396 retrdeeq1(t).. RETRDE(t) =E= ((BETA*Y(t)*alphah*((alphah*HE(t))**
397 (subh-1)))/((alphah*HE(t))*subh + (((FOSSIL(t)/phi(t))**subb +

398 BT(t)**subb)**(1/subb))**subh)) *
399 (ipfae1*ipfbe1*RDE(t)**(ipfbe1-1)*HE(t)**ipfphie1) ;

400 retrdeeq(t).. RETRDE(t) =E= ((BETA*Y(t)*alphah*((alphah*HE(t))**
401 (subh-1)))/((alphah*HE(t))*subh + (((FOSSIL(t)/phi(t))**subb +

402 BT(t)**subb)**(1/subb))**subh)) *
403 (ipfae*ipfbe*RDE(t)**(ipfbe-1)*HE(t)**ipfphie) ;

404 retrdbeq(t).. RETRDB(t) =E= ((BETA*Y(t)/EH(t))*DEDP(t)*((-eta*pb0

)/

405 ((HB(t))**(eta+1)))*(ipfab*ipfbb*(RDB(t)**(ipfbb-1))*HB(t)**ipfphib)) ;

408 *Resource limit

409 CCA.up(t) = fosslim;

411 * Control rate limits

412 MIU.up(t) = limmiu;

413 MIU.up(t)$(t.val<30) = 1;

415 ** Upper and lower bounds for stability
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416 K.LO(t) = 1;

417 MAT.LO(t) = 10;

418 MU.LO(t) = 100;

419 ML.LO(t) = 1000;

420 C.LO(t) = 2;

421 TOCEAN.UP(t) = 20;

422 TOCEAN.LO(t) = -1;

423 TATM.UP(t) = 40;

424 CPC.LO(t) = .01;

425 S.LO(t) = 0.001;

426 *Endogenous Technological Change bounds

427 FOSSIL.lo(t) = 1;

428 FOSSIL.up(t) = 100;

429 BT.lo(t) = 0;

430 BT.up(t) = 100;

431 RDE.lo(t) = 0;

432 RDB.lo(t) = 0;

433 RDE.up(t) = 1;

434 RDB.up(t) = 1;

436 * Control variables

437 * Set savings rate for steady state for last 10 periods

438 set lag10(t) ;

439 lag10(t) = yes$(t.val gt card(t)-10);

440 S.FX(lag10(t)) = optlrsav;

442 * Initial conditions

443 CCA.FX(tfirst) = 90;

444 K.FX(tfirst) = k0;

445 MAT.FX(tfirst) = mat0;

446 MU.FX(tfirst) = mu0;

447 ML.FX(tfirst) = ml0;

448 TATM.FX(tfirst) = tatm0;

449 TOCEAN.FX(tfirst) = tocean0;

450 *Endogenous Technological Change initial conditions

451 HE.fx(tfirst) = he0;

452 HB.fx(tfirst) = hb0;

453 PRICEBT.FX(tfirst)= pb0;

454 BT.fx(tfirst) = bt0;

455 RDE.FX(tfirst) = rde0;

456 RDB.FX(tfirst) = rdb0;

457 FOSSIL.FX(tfirst) = f0;

459 ** Solution options
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460 option iterlim = 99900;

461 option reslim = 99999;

462 option solprint = on;

463 option limrow = 0;

464 option limcol = 0;



Appendix C

Python code

The following code shows the basic way of handling GAMS from Python. This was done
with the API.

2 from gams import *
3 import os

4 import sys

6 #How to run a GamsJob from a file

8 ws = GamsWorkspace("D:\Dropbox\Dropbox\Thesis\workingdirectorypython")

9 t1 = ws.add_job_from_file("dice.gms") #.gms file must be in working directory

10 t1.run() #working directory has .lst file with results

11 t1.out_db.export() #to export results to .gdx file in working directory

13 #How to retrieve and print a solution from an output database

14 print "Solution with ifopt = 1:"

15 for rec in t1.out_db["TATM"]:

16 print "TATM" + str(rec.keys) + " = " + str(rec.level)

18 #to get a specific result from any variable

19 print t1.out_db.get_symbol("MIU")["20"]

21 #To change parameter and run the job

22 opt = ws.add_options() #add options command to change parameters

23 opt.defines["ifopt"] = "0" #changes parameter

24 t1.run(opt) #runs with new opt configuration

25 print "Solution with ifopt = 0:"

26 for rec in t1.out_db["TATM"]:

165
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27 print "TATM" + str(rec.keys) + " = " + str(rec.level)

29 #to change a new one or more repeat process

30 opt.defines["prstp"] = "0.03"

31 opt.defines["ifopt"] = "1"

32 opt.defines["gama"] = "0.2"

33 t1.run(opt)

34 print "Solution changed parameters:"

35 for rec in t1.out_db["TATM"]:

36 print "TATM" + str(rec.keys) + " = " + str(rec.level)


