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 A B S T R A C T

The increasing availability of full-field displacement data from imaging techniques in experi-
mental mechanics is determining a gradual shift in the paradigm of material model calibration 
and discovery, from using several simple-geometry tests towards a few, or even one single test 
with complicated geometry. The feasibility of such a ‘‘one-shot" calibration or discovery heavily 
relies upon the richness of the measured displacement data, i.e., their ability to probe the space 
of the state variables and the stress space (whereby the stresses depend on the constitutive law 
being sought) to an extent sufficient for an accurate and robust calibration or discovery process. 
The richness of the displacement data is in turn directly governed by the specimen geometry. 
In this paper, we propose a density-based topology optimisation framework to optimally design 
the geometry of the target specimen for calibration of an anisotropic elastic material model. To 
this end, we perform automatic, high-resolution specimen design by maximising the robustness 
of the solution of the inverse problem, i.e., the identified material parameters, given noisy 
displacement measurements from digital image correlation. We discuss the choice of the cost 
function and the design of the topology optimisation framework, and we analyse a range 
of optimised topologies generated for the identification of isotropic and anisotropic elastic 
responses.

. Introduction

Characterising the mechanical behaviour of materials typically requires multiple tests. For instance, fully characterising the 
inear elastic behaviour of a planar orthotropic material (such as a composite lamina) typically demands at least three separate 
xperiments (Tsai, 1965; Acosta-Flores and Eraña-Díaz, 2024); these could be, for instance, a longitudinal tensile test (measuring 
ongitudinal and transverse strains simultaneously), a transverse tensile test, and an in-plane shear test. Also, traditional mechanical 
esting involves measurements with contact sensors such as strain gauges or displacement transducers, providing local experimental 
ata only. The advent of advanced full-field measurement techniques such as digital image correlation (DIC) and digital volume 
orrelation (DVC) has revolutionised the field of material law characterisation by opening up the perspective of fully characterising 
aterial behaviour with one single test (Guélon et al., 2009; Fu et al., 2020). In this new context, the optimal design of the target 
pecimen is of utmost importance. A review paper by Pierron and Grédiac (2021) denotes this paradigm as ‘‘material testing 2.0’’.
During the last decades, different groups of researchers have dealt with the specimen design problem suited for parameter 

dentification via full-field measurements. As follows, we briefly highlight the major concepts and methodologies, focusing only 
n automatic (i.e., optimisation-based) approaches. Many studies have dealt with shape optimisation techniques to optimise the 
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geometry of a pre-selected topology parametrised with a few variables. Different cost functions have been used for different 
classes of constitutive laws. In the context of orthotropic materials, Grédiac and Pierron (1998) aimed at equal co-existence of 
different strain components in the test specimen. Pierron et al. (2007) targeted maintaining the balance between the sensitivities 
to noise for the identification of the different stiffness components. Gu and Pierron (2016) accounted for the full identification 
process, thus optimising the DIC metrological parameters in addition to geometrical variables. The cost function was defined as 
the sum of systematic and random errors when calibrating the orthotropic stiffness components. Such a cost definition depends 
on the reference (i.e., ground-truth) material parameters. In the context of elastoplasticity, Souto et al. (2015) put forward the 
definition of a heterogeneity indicator (combining the standard deviation, range, maximum and average of different strain states) 
which could assess the suitability of a test specimen for sheet metal testing. The heterogeneity indicator was then employed 
in Souto et al. (2016) to design a butterfly-shaped specimen. Bertin et al. (2016) minimised the uncertainty in the parameter 
identification process by maximising the minimum eigenvalue of the Hessian matrix encountered in the finite element model 
updating (FEMU) approach. Chapelier et al. (2022) followed a similar approach and proposed a spline-based shape optimisation with 
special constraints to prevent excessive mesh distortion and load increase in a two-step shape optimisation, involving remeshing 
in between. Zhang et al. (2022) and Conde et al. (2023) employed the heterogeneity indicator proposed by Souto et al. (2015) 
in their cost functions, and confirmed that the initial configuration of the geometry has a strong influence on the final optimised 
design. More recently, Tung and Li (2024) devised a cost function quantifying the spread of data points in the deviatoric plane, 
while Ihuaenyi et al. (2024) utilised the information entropy concept to quantify the heterogeneity of the stress data points in the 
space of stress-triaxiality versus Lode angle parameter.

Another stream of research has employed topology optimisation techniques to automatically design optimal test specimens 
for constitutive parameter calibration facilitated by DIC measurements. Within the popular framework of density-based topology 
optimisation, the design variables are the virtual densities which designate the existence of void or material in each element of 
a finite element (FE) mesh (Bendsøe, 1989). Also in this stream, different cost formulations have been proposed. For orthotropic 
materials, Chamoin et al. (2020) followed a similar strategy to Bertin et al. (2016) to minimise the uncertainty in the parameter 
identification process. Owing to the computational cost associated with numerical gradient calculation, only coarse-resolution 
topologies including grey scales were generated. Almeida et al. (2020) employed the sum of fractions of the specimen surface 
undergoing certain principal stress states as a heterogeneity function, which was then used in a multi-objective optimisation setup 
together with the compliance to maintain sufficient stiffness in the designed specimen. The final designs had low resolutions, 
contained grey scales, and were difficult to realise and manufacture. The weights balancing the multi-objective optimisation problem 
were adjusted heuristically, while they were recognised to highly influence the output. Barroqueiro et al. (2020) adopted the concept 
of compliant mechanisms and proposed the ratio between the output and input displacements (of the mechanism with linear elastic 
response) as the cost function. Through a two-stage algorithm, the authors first produced a large number of heterogeneous designs, 
and then ranked them using a performance indicator (favouring equal co-existence of different deformation modes) while assuming 
an elastoplastic response. The best topology underwent a manual redesign to ensure smooth outer boundaries. Gonçalves et al. 
(2023) improved the original framework proposed in Barroqueiro et al. (2020) by considering an additional, outer optimisation loop 
(leading to a two-level optimisation framework) which sought an optimal design domain configuration by changing parameters such 
as aspect ratio and material volume fraction. The authors performed numerous preliminary studies to define suitable bounds for the 
configurational parameters such that the heterogeneously designed specimen does not fail prematurely (i.e., prior to plasticity). The 
design strategy remained indirect and two-step while requiring expertise in selecting the parameter bounds and (dis-)approving the 
generated designs.

The above short review reveals some gaps in the current state of the art. Shape optimisation approaches, while leading to much 
faster computations, require significant expertise in material testing for the initial selection of a suitable topology. On the other 
hand, when employing topology optimisation, the need to reduce the computational cost (due to the exploding number of design 
variables and possibly the employment of finite differences for sensitivity calculation) often results in low-resolution or grey-scale-
diluted topologies. Two-step processes require manual intervention. Also, it seems that not much attention has been paid so far to 
global convergence (i.e., mesh independence) of the optimised topologies to ensure their consistency as the FE discretisation of the 
design domain is refined. This property indicates the appropriateness of the cost definition for driving a stable optimisation process 
until convergence, and confirms resilience against small perturbations of the initialisation. Lastly, in the case of multi-objective 
optimisation (e.g. to improve manufacturability), the determination of weight factors balancing the different cost terms has been 
found to greatly impact the optimisation outcome. Yet, a non-systematic heuristic approach has been adopted.

In this work, we propose a new topology optimisation framework for robust identification of constitutive parameters. We employ 
the density-based topology optimisation approach, and choose a high resolution to allow for great flexibility in the specimen 
design. Through filtering techniques, we provide binary, black-and-white designs. The cost function for the topology optimisation 
problem is defined based on our recently proposed material model discovery approach denoted as EUCLID (Flaschel et al., 2021), is 
independent of the ground-truth material parameters and targets the stability of the identification problem equations. We compute 
the sensitivities analytically and in a vectorised fashion. Moreover, we investigate and prove the global convergence of the optimised 
topologies. To account for manufacturability and avoid possible weak regions in the specimen design, we employ the concept of 
robust topology optimisation which automates the redesigning process by a three-field projection filtering. We present the resulting 
optimised topologies for a range of linear elastic isotropic and orthotropic materials and assess their performance in terms of error 
in parameter identification.

This paper is organised as follows. In Section 2 we formulate the constitutive parameter identification framework within 
anisotropic linear elasticity, which provides the basis for our topology optimisation framework in Section 3. Section 4 presents 
the main results and also discusses the concepts of global and local convergence. We conclude the paper in Section 5.
2 
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Fig. 1. The boundary value problem of plane deformation for the case of an orthotropic elastic medium. The 𝑥-𝑦 coordinate system aligns with the anisotropy 
orientation 𝛽 indicated by hatches and measured counterclockwise from the reference coordinates 1-2.

2. Parameter identification framework

In this section, we establish the system of equations leading to the unknown constitutive parameters. The input data consist of a 
(noisy) deformation field captured by DIC from the surface of a target specimen. We consider a deformable solid occupying the 2D 
domain 𝛺 with boundary 𝜕𝛺 (Fig.  1). Assuming small deformations and neglecting body forces, the principle of virtual work reads 

∫𝛺
𝝈 ∶ ∇(𝛿𝐮) 𝑑𝐴 − ∫𝜕𝛺𝑁

𝐭̄𝑁 ⋅ 𝛿𝐮 𝑑𝑠
!
= 0 , (1)

where 𝐮 is the displacement field satisfying Dirichlet boundary conditions (i.e., 𝐮 = 𝐮̄ on 𝜕𝛺𝐷), the virtual displacement 𝛿𝐮 is 
sufficiently regular and satisfies homogeneous Dirichlet boundary conditions (i.e., 𝛿𝐮 = 𝟎 on 𝜕𝛺𝐷) but is otherwise arbitrary, 𝝈 is 
the Cauchy stress tensor, and 𝐭̄𝑁  is the traction applied on the Neumann portion of the boundary 𝜕𝛺𝑁 . The FE approximation of 
Eq.  (1) defined over the domain 𝛺h discretised into 𝑛𝑒 elements (each with domain 𝛺𝑒) reads 

𝑛𝑒
∑

𝑒=1
∫𝛺𝑒

𝝈h
𝑒 ∶ ∇

(

𝛿𝐮h𝑒
)

𝑑𝐴 −
∑

𝑒∶𝜕𝛺𝑒⊂𝜕𝛺h
𝑁

∫𝜕𝛺𝑒
𝐭̄𝑁𝑒 ⋅ 𝛿𝐮

h
𝑒 𝑑𝑠

!
= 0 , (2)

with superscript h and subscript 𝑒 denoting FE discretisation and element-related quantities, respectively. For discretisation we 
adopt standard isoparametric FEs with linear shape functions 𝑁𝑎(𝝃), i.e. 

𝐮h𝑒 (𝝃) =
𝑛𝑛,𝑒
∑

𝑎=1
𝑁𝑎(𝝃)𝐮𝑎𝑒 , 𝛿𝐮h𝑒 (𝝃) =

𝑛𝑛,𝑒
∑

𝑎=1
𝑁𝑎(𝝃)𝛿𝐮𝑎𝑒 , 𝐱h𝑒 (𝝃) =

𝑛𝑛,𝑒
∑

𝑎=1
𝑁𝑎(𝝃)𝐱𝑎𝑒 , (3)

where superscript 𝑎 refers to nodal quantities, 𝑛𝑛,𝑒 is the number of nodes of element 𝑒, and parent space coordinates 𝝃 are related 
to 𝐱 through the Jacobian 𝐉𝑒 = 𝜕𝐱h𝑒 ∕𝜕𝝃. We collect the nodal displacements in 𝐔𝑒 ∈ R|

|

D𝑒||, where D𝑒 = {(𝑎, 𝑖) ∶ 𝑎 = 1,… , 𝑛𝑛,𝑒; 𝑖 = 1, 2}
designates the collection of all the degrees of freedom (DOFs) of element 𝑒, and accordingly arrange the shape functions 𝑁𝑎 in the 
matrix 𝐍 ∈ R|

|

D𝑒||×2 and their gradients ∇𝐱𝐍 = 𝐉−𝑇𝑒 ∇𝝃𝐍 as the transpose of 𝐁𝑒 ∈ R3×|
|

D𝑒||. Rewriting Eq.  (2) with integration over the 
parent element domain 𝛺□ gives 

𝛿𝐔𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑛𝑒
∑

𝑒=1
∫𝛺□

𝐁𝑇𝑒(𝝃)𝝈̂
h
𝑒 (𝝃) det

(

𝐉𝑒(𝝃)
)

𝑑𝐴□

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐅𝑖𝑛𝑡,𝑒

−
∑

𝑒∶𝜕𝛺𝑒⊂𝜕𝛺h
𝑁

∫𝜕𝛺□

𝐍𝑇(𝝃)𝐭̄𝑁𝑒 𝑗
𝑠
𝑒 𝑑𝑠□

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐅𝑒𝑥𝑡,𝑒

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

!
= 0 , (4)

where we use Voigt notation for the stress 𝝈̂h
𝑒 =

[

𝜎11, 𝜎22, 𝜏12
]𝑇 , 𝑗𝑠𝑒 is the length Jacobian for the boundary mapping between 

parent and physical element, and we introduce the assembly operation 𝐔 =
⋃𝑛𝑒
𝑒=1 𝐔𝑒 with 𝐔 ∈ R|D|, D as the set of all nodal DOFs, 

i.e., D = {(𝑎, 𝑖) ∶ 𝑎 = 1,… , 𝑛𝑛; 𝑖 = 1, 2}, and 𝑛𝑛 as the total number of nodes. In Eq.  (4), the two integrals represent the element 
internal and external force vectors, 𝐅 ,𝐅 ∈ R|

|

D𝑒||, respectively.
𝑖𝑛𝑡,𝑒 𝑒𝑥𝑡,𝑒

3 
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Assuming now anisotropic linear elasticity, we can express the Cauchy stress vector 𝝈̂h
𝑒  as a function of the strain vector, also 

expressed in Voigt notation as 𝜺̂h𝑒 =
[

𝜀11, 𝜀22, 𝛾12
]𝑇 = 𝐁𝑒𝐔𝑒, in two equivalent formats as follows 

𝝈̂h
𝑒 = 𝜌̃phys𝑒

⎡

⎢

⎢

⎣

𝐷11 𝐷12 𝐷16
𝐷22 𝐷26

𝑠𝑦𝑚. 𝐷66

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝜀11
𝜀22
𝛾12

⎫

⎪

⎬

⎪

⎭

= 𝜌̃phys𝑒

⎡

⎢

⎢

⎣

𝜀11 𝜀22 𝛾12 0 0 0
0 𝜀11 0 𝜀22 𝛾12 0
0 0 𝜀11 0 𝜀22 𝛾12

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜺̃h𝑒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐷11
𝐷12
𝐷16
𝐷22
𝐷26
𝐷66

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⏟⏟⏟
𝜽

= 𝜌̃phys𝑒 𝜺̃h𝑒 𝜽 . (5)

Here, the factor 𝜌̃phys𝑒  is the modified physical density of element 𝑒 in the context of topology optimisation, to be better specified 
later. In the second equality of Eq.  (5), the strain components are cast in the matrix 𝜺̃h𝑒 ∈ R3×𝑛𝑓  and the elements of the elasticity 
matrix 𝐃 are gathered in the vector of the unknown material parameters 𝜽 ∈ R𝑛𝑓 , where 𝑛𝑓 = 6. Employing Eq.  (5) in the definition 
of the element internal force vector from Eq.  (4) gives 

𝐅𝑖𝑛𝑡,𝑒 = 𝜌̃phys𝑒

(

∫𝛺□

𝐁𝑇𝑒(𝝃)𝜺̃
h
𝑒 (𝝃) det

(

𝐉𝑒(𝝃)
)

𝑑𝐴□

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀𝑒

𝜽 = 𝜌̃phys𝑒 𝐀𝑒 𝜽 , (6)

where we have assumed spatial invariance of the material parameters 𝜽 and designated the element integral by 𝐀𝑒 ∈ R|

|

D𝑒||×𝑛𝑓 . Using 
𝑛gp Gauss quadrature points per parametric direction with coordinates 

(

𝜉𝑖, 𝜂𝑗
) (𝑖, 𝑗 = 1,… , 𝑛gp) and corresponding weights 𝑤𝑖, 𝑤𝑗 , 

𝐀𝑒 is computed as 

𝐀𝑒
(

𝜺̂h𝑒
(

𝐔𝑒
))

= ∫𝛺□

𝐁𝑇𝑒(𝝃)𝜺̃
h
𝑒 (𝝃) det

(

𝐉𝑒(𝝃)
)

𝑑𝐴□ ≈
𝑛gp
∑

𝑖=1

𝑛gp
∑

𝑗=1
𝐁𝑇𝑒

(

𝜉𝑖, 𝜂𝑗
)

𝜺̃h𝑒
(

𝜉𝑖, 𝜂𝑗
)

det
(

𝐉𝑒
(

𝜉𝑖, 𝜂𝑗
))

×𝑤𝑖 ×𝑤𝑗 . (7)

Row-wise assembly over 𝐅𝑖𝑛𝑡,𝑒 from Eq.  (6) then gives the global matrix 

𝐀glob
(

𝝆phys,𝐔
)

=
𝑛𝑒
⋃

𝑒=1
𝜌̃phys𝑒

(

𝜌phys𝑒

)

𝐀𝑒
(

𝐔𝑒
)

. (8)

The dependence of 𝐀glob ∈ R|D|×𝑛𝑓  on the vector of element physical densities 𝝆phys ∈ R𝑛𝑒  and on 𝐔 will be exploited in 
Section 3.2. Both 𝐀glob and 𝐀𝑒 have unit of length.

The set of all DOFs D consists of two subsets, namely the free and fixed (i.e., Dirichlet boundary) DOFs: Dfree⊆D and 
Df ix = D⧵Df ree. The equilibrium equation for the free DOFs can be obtained from Eq.  (4) using Eq.  (8): 

𝐀f ree
glob 𝜽

!
= 𝐛f reeglob , (9)

where 𝐀f ree
glob ∈ R

|

|

|

Df ree|
|

|

×𝑛𝑓  and 𝐛f reeglob ∈ R
|

|

|

Dfree|
|

|. Here, we note that 𝐛f reeglob contains the integrated global traction forces over the Neumann 
boundary (in a displacement-controlled setting, 𝐛freeglob = 𝟎).

For the fixed DOFs, the internal force from the material must balance out with the reaction force. Practically, the reaction force 
is not known at every fixed DOF; rather, it is only the sum of the reaction forces 𝑅̄𝑠 that can be measured experimentally at certain 
subsets of the fixed DOFs denoted as Df ix,𝑠 (𝑠 = 1,… , 𝑛𝑠; ∪𝑛𝑠𝑠=1Df ix,𝑠 ⊆ Df ix; Df ix,𝑠∩Df ix,𝑡 = ∅ for 𝑠 ≠ 𝑡). The force balance equation 
for each subset 𝑠 can thus be written as 

∑

D⊂Df ix,𝑠

𝐀f ix,𝑠
glob 𝜽 = 𝑅̄𝑠 . (10)

Note that each subset contains DOFs corresponding to displacement components only in one direction. The collection of these 
individual equations for all 𝑛𝑠 subsets of the fixed DOFs will then provide us with 

𝐀f ix
glob 𝜽

!
= 𝐛f ixglob , (11)

wherein 𝐀f ix
glob ∈ R𝑛𝑠×𝑛𝑓  and 𝐛f ixglob ∈ R𝑛𝑠 . Note that, in a uniaxial testing setup, reaction forces are known only at the top and bottom 

fixed edges of the specimen (where they are equal and opposite), therefore 𝑛𝑠 = 2.
Eqs.  (9) and (11) are systems of linear equations which must be satisfied simultaneously by the solution 𝜽. Therefore, we combine 

the two sets of equations by concatenating them vertically and defining 𝐀 ∈ R(||
|

Df ree|
|

|

+𝑛𝑠)×𝑛𝑓  and 𝐛 ∈ R
|

|

|

Df ree|
|

|

+𝑛𝑠  as 

𝐀 =
√

𝜆𝑞 [𝐀f ree
glob ;

√

𝜆𝑟 𝐀f ix
glob]; 𝐛 =

√

𝜆𝑞 [𝐛freeglob;
√

𝜆𝑟 𝐛f ixglob] . (12)

Factor √𝜆𝑟 is used to balance the contribution of the fixed and free DOFs in the system of equations, whereas factor √𝜆𝑞 accounts 
for mesh convergence, see Appendix  A for details. The final equilibrium equation reads 

𝐀𝜽
!
= 𝐛 . (13)
4 
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Note that 𝐀 is a purely kinematic quantity, with dimension of a length, which encodes information only on the geometry, 
loading configuration and boundary conditions, while the material properties are contained in 𝜽. Since ||

|

Df ree|
|

|

+ 𝑛𝑠 ≫ 𝑛𝑓 , Eq.  (13) 
is over-determined and can be solved in a least squares sense by 

𝐀eqb𝜽
!
= 𝐛eqb , (14)

with 
𝐀eqb = 𝐀𝑇𝐀 = 𝜆𝑞

((

𝐀f ree𝑇
glob 𝐀f ree

glob

)

+ 𝜆𝑟
(

𝐀f ix𝑇
glob𝐀

f ix
glob

))

∈ R𝑛𝑓×𝑛𝑓 , (15a)

𝐛eqb = 𝐀𝑇 𝐛 = 𝜆𝑞
((

𝐀f ree𝑇
glob 𝐛f reeglob

)

+ 𝜆𝑟
(

𝐀f ix𝑇
glob𝐛

f ix
glob

))

∈ R𝑛𝑓 , (15b)

where the symmetric positive definite matrix 𝐀eqb and the right-hand side 𝐛eqb have dimensions of a square length and a force, 
respectively. A well-known result in numerical analysis (Ascher and Greif, 2011) gives the following estimate 

‖𝛿𝜽‖2
‖

‖

𝜽‖
‖2

≤ 𝜅2
(

𝐀eqb)
‖

‖

‖

𝛿𝐛eqb‖‖
‖2

‖

‖

𝐛eqb‖
‖2

, (16)

where 𝛿𝐛eqb and 𝛿𝜽 are the perturbations (i.e., noise) in the problem and the induced error in the solution, respectively, and 

𝜅2
(

𝐀eqb) = ‖

‖

‖

𝐀eqb ‖
‖

‖2
‖

‖

‖

𝐀eqb−1‖
‖

‖2
(17)

is the 2-norm condition number of 𝐀eqb. This inequality indicates that the l2-error magnification from the problem to the solution is 
bounded by 𝜅2

(

𝐀eqb). In other words, it is the condition number which governs the stability of the solution 𝜽 upon perturbation in 
the problem. Hence, in order to minimise the uncertainty/maximise the robustness of the constitutive law identification against the 
noise in the deformation data, 𝜅2(𝐀eqb) should be minimised. As discussed earlier, 𝐀eqb is a purely kinematic quantity which depends, 
among others, on the geometry of the domain, i.e., the test specimen used for material testing. This fact inspires the possibility of 
defining an appropriate cost function targeting the minimisation of 𝜅2(𝐀eqb) and utilising it in an optimisation framework to optimally 
design the test specimen.

3. Topology optimisation framework

Topology optimisation seeks to find the best material layout in a design domain in order to minimise a certain cost function 
given a number of design constraints. Among different well-established approaches (Sigmund and Maute, 2013), we employ the 
density-based topology optimisation approach (Bendsøe, 1989), where the design variables are the virtual densities assigned to the 
FEs in the discretised domain. The virtual densities can acquire values between zero and one, representing the (non-)existence of 
material. In the following, we describe the design domain and define our choice of the cost function.

3.1. Setup

Fig.  2(b) shows the rectangular domain, with dimensions 𝐿𝑋 and 𝐿𝑦, and the Dirichlet boundary conditions corresponding to 
a displacement-controlled tensile test with imposed displacement 𝑢̄ = 0.005 × 𝐿𝑌  uniformly applied on the top edge. Note that in 
principle it would be possible to consider multiple load cases and optimise the topology for all the considered load cases. Herein, we 
stick to the uniaxial loading setup which is very common in the experimental practice. The black frame around the design domain 
is the so-called passive region whose density values are kept fixed at 1 with no changes allowed, while the inner grey area is open 
to change and optimisation. We always account for this passive frame around the design domain to ensure the preservation of the 
gripping areas at the top and bottom of the specimen (where the testing machine holds the specimen, i.e., Dirichlet boundaries), 
and to prevent the formation of holes and narrow strips of material in the proximity of the edges (which can be prone to premature 
failure upon loading and are often deemed inapplicable for DIC measurements). While the use of a fixed outer frame introduces 
small limitations to the design space, our approach remains highly versatile, as we will demonstrate below.

3.2. Choice of the cost function

In order to mitigate the error in the calibration of the constitutive parameters and enhance their stability in the presence of 
noise, we aim to utilise topology optimisation to automatically design the topology of the test specimen so as to minimise the 
2-norm condition number 𝜅2(𝐀eqb) in Eq.  (17). A more general candidate is the 𝑝-norm condition number 𝜅𝑝 defined as 

𝜅𝑝
(

𝐀eqb) = ‖

‖

‖

𝐀eqb ‖
‖

‖𝑝
‖

‖

‖

𝐀eqb−1‖
‖

‖𝑝
, (18)

where 

‖

‖

‖

𝐀eqb‖
‖

‖𝑝
=

( 𝑛𝑓
∑

𝑛𝑓
∑

|

|

|

𝐴eqb
𝑖𝑗

|

|

|

𝑝
)

1
𝑝

, (19)

𝑖=1 𝑗=1

5 
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Fig. 2. (a) Designation of 0 (void) and 1 (material) densities as well as domain dimensions; (b) even, (c) random, and (d) interim-valued initialisations of the 
domain; Dirichlet boundary conditions resembling the uniaxial tensile test are schematised. The absolute filtering radius 𝑟absmin is also visualised in figure (b).

with 𝑝 > 2, is the 𝑝-norm of matrix 𝐀eqb. The bounds reported in Appendix  B.3 show that the minimisation of 𝜅𝑝 induces the 
minimisation of 𝜅2. Hence, a candidate cost function is 

costalt,1
(

𝝆phys,𝐔
)

=
𝜅𝑝
(

𝐀eqb(𝝆phys,𝐔
))𝑝

𝜅𝑝
(

𝐀eqb
@init.

)𝑝 , (20)

which is continuously differentiable away from zero. Based on our numerical experiments reported later, 𝑝 ≥ 8 leads to a stable 
topology optimisation process with gradual topology updates, whereas 𝑝 < 8 behaves rather unstably and causes abrupt topology 
changes. Division by the initial value 𝜅𝑝

(

𝐀eqb
@init.

)𝑝
 normalises the cost function and brings more stability to the optimisation process 

with more gradual topology updates. An advantage of optimising a condition number (be it 𝜅2, 𝜅𝑝 with 𝑝 ≠ 2 or condition numbers 
in other norms) is the insensitivity to the strain level induced in the specimen; this is owing to the fact that the condition number 
comprises the product of the norms of the matrix and the matrix inverse, hence cancelling out the strain magnitude. This feature 
enables the specimen design not to solely rely on high-strain concentration scenarios, but rather promote milder strain variations 
across the specimen and yet improve the identifiability of the material parameters.

Inspired by Chamoin et al. (2020) and Zhang et al. (2022), we evaluate another possible cost function, namely, 1∕ det(𝐀eqb), 
which is also continuously differentiable: 

cost
(

𝝆phys,𝐔
)

=
det

(

𝐀eqb
@init.

)

det
(

𝐀eqb
(

𝝆phys,𝐔
)) , (21)

where the initial value, i.e., det
(

𝐀eqb
@init.

)

, non-dimensionalises the cost and alleviates the dependence on the strain level (i.e., the 
imposed external displacement). The minimisation of this cost drives the matrix away from singularity, but a priori does not 
necessarily result in the minimisation of the condition number (Ascher and Greif, 2011). In our numerical experiments, adopting 
these and a few more options for the cost function (see also Appendix  B), we found 1∕ det(𝐀eqb) to give the best performance, 
produce topologies with smoother boundaries, and drive the topology to a low condition number. In Section 4.1 we provide some 
comparisons between results obtained with Eqs.  (20) and (21).

3.3. Density-based topology optimisation

We employ density-based topology optimisation  (Bendsøe, 1989; Andreassen et al., 2011), where the design variables are the 
element densities 𝜌𝑒 listed in the vector 𝝆 ∈ R𝑛𝑒 . Here, 𝜌𝑒 = 0 and 𝜌𝑒 = 1 respectively denote no material, i.e., void, and full material, 
colour-coded as white and black (see Fig.  2(a)). The intermediate densities, i.e. 0 < 𝜌𝑒 < 1, correspond to different shades of grey. 
In Appendix  C we elaborate upon the transformation of 𝜌𝑒 to 𝜌phys𝑒  through filtering which maps intermediate densities to either 0
or 1 to culminate in a physically realisable topology. With the mentioned parametrisation, the topology optimisation problem can 
be interpreted as finding the optimal material density distribution over a given design domain leading to cost minimisation. Hence, 
we define our optimisation problem as follows: 

min
𝝆

∶ cost
(

𝝆phys,𝐔
)

or costalt,𝑖
(

𝝆phys,𝐔
)

, (𝑖 = 1…3) , (22a)

𝑠.𝑡. ∶

⎧

⎪

⎨

⎪

⎩

𝐊𝐔 = 𝐅 ,
1
𝑛𝑒

∑𝑛𝑒
𝑒=1 𝜌

phys
𝑒 = 𝑉𝑚 ,

0 ≤ 𝝆 ≤ 1 .

(22b)

The problem at hand is a constrained optimisation problem, where the constraints are expressed in Eq.  (22b). The first equality 
constraint is the state (i.e. equilibrium) equation (here for linear elasticity), with 𝐊 ∈ R|D|×|D| as the global stiffness matrix and 
6 
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𝐅 ∈ R|D| as the global external force vector (zero in displacement control). The second equality constraint fixes the average of the 
total amount of material (used in the topology design) to be equal to the material volume fraction 𝑉𝑚. This volume constraint is 
well-known for stabilising the optimisation process and facilitating numerical convergence (Sigmund and Maute, 2013). The last 
constraint is an inequality (or a bound) constraint which allows for the smooth variation of the design variables only in the range 
between 0 and 1.

In each iteration of the optimisation process, the nodal displacements 𝐔 are first solved for from the equilibrium equation through 
FE analysis with the global stiffness matrix 

𝐊
(

𝝆phys,𝜽
)

=
𝑛𝑒
⋃

𝑒=1
𝜌̃phys𝑒

(

𝜌phys𝑒

)

𝐊𝑒(𝜽) , (23)

where the density assigned to each element directly influences the significance of the contribution of that element stiffness 
𝐊𝑒(𝜽) ∈ R|

|

D𝑒||×||D𝑒|| to the global stiffness of the domain. The stiffness matrix depends on the material parameters 𝜽 which are 
the unknowns of the identification problem. Later in Section 4 we discuss how the choice of these parameters affects the optimised 
topologies. The modified physical density in Eq.  (23) is given by 

𝜌̃phys𝑒 = 𝜌min +
(

𝜌phys𝑒

)3
(

1 − 𝜌min
)

. (24)

It is used to avoid singularity in the global stiffness matrix when 𝜌phys𝑒 = 0, by adopting a threshold value 𝜌min (here set to 10−9). 
Moreover, the power of 3 is considered as a ‘‘magic’’ number which helps drive the grey scales towards 0 or 1 and maintain 
numerical convergence (Sigmund and Maute, 2013). This number has been confirmed to ensure the physical realisability of 
intermediate densities (Bendsøe and Sigmund, 1999), with which Amstutz (2011) verified the equality of density gradients and 
topological derivatives for elasticity. Regarding the discretisation, we employ bilinear quadrilateral elements with 4 Gauss points 
under plane-stress conditions, maintain equal size for all elements, and keep a fixed uniform mesh throughout the optimisation 
process.

Topology optimisation without regularisation is an ill-posed problem which can lead to checkerboard patterns (Andreassen 
et al., 2011). For this reason, filtering techniques have been developed. Filtering serves as a regularisation scheme, transforming 
the sharp, binary, 0-1 topology (represented by 𝝆) to a smeared, grey-scale topology (represented by 𝝆avg) and is necessary to 
achieve convergence to a local minimum. In Appendix  C we summarise explicit and implicit filtering approaches to transform 𝝆 to 
𝝆avg. Therein, we justify our choice of an implicit PDE filter defined in Eq.  (C.6). The grey scale densities 𝝆avg are undesirable in 
the output topology since they cannot be manufactured in practice. To convert 𝝆avg into a black-and-white topology represented by 
𝝆phys, we employ projection filtering, see Eq.  (C.7). To achieve a desired transition to the black-and-white design, Appendix  C also 
discusses a gradual increase of the projection filter strength parameter 𝜓 over 10 optimisation loops.

Recalling Eq.  (22a), we notice that the cost function is defined in terms of the physical (i.e., projected) densities 𝝆phys, which 
depend through the projection filter in Eq.  (C.7) on the weight-averaged densities 𝝆avg, with these depending on the design variables 
𝝆 through the PDE filter in Eq.  (C.6). Consequently, the following chain rule must be applied while computing the gradients (see 
Appendix  D): 

𝑑(cost)
𝑑𝝆

=
𝑑(cost)
𝑑𝝆phys

𝑑𝝆phys

𝑑𝝆avg
𝑑𝝆avg

𝑑𝝆
. (25)

With the construction above and the definition in Eq.  (21), the cost is a non-convex and non-linear function of the design variables 
𝝆. This implies the existence of multiple local minima for the optimisation problem, highlighting the influence of the initial guess 
for domain initialisation. We investigate this influence in Appendix  E.

3.4. Robust topology optimisation to ensure a minimum length scale

Weight-averaged density filtering introduces a minimum length scale by means of regularisation. Projection filtering has the 
opposite effect and often leads to the formation of tiny material/void regions (Sigmund, 2009). The existence of a minimum length 
scale, a property referred to as local mesh convergence in the jargon of topology optimisation, prevents the formation of impractically 
small topological features which are susceptible to premature failure upon mechanical tests.

A promising method to ensure local convergence is the so-called robust formulation of topology optimisation (Sigmund, 2009; 
Wang et al., 2011). Based on this method, three sets of projected densities, denoted as eroded 𝝆phys

(−) , intermediate 𝝆phys, and dilated 
𝝆phys
(+)  physical densities, generated by applying projection filtering through Eq.  (C.7) with thresholds 𝜙(−), 𝜙, and 𝜙(+) = 1 − 𝜙(−), 
are employed in a robust cost function. The difference between the three designs generated by three different thresholds defines 
manufacturing error bounds on both solid and void phases in the optimised topology. The robust optimisation problem including 
the contribution of all three sets of projected densities is defined as follows (Wang et al., 2011): 

min
𝝆

∶ max
(

cost
(

𝝆(−)
phys,𝐔(−)

)

, cost
(

𝝆phys,𝐔
)

, cost
(

𝝆(+)
phys,𝐔(+)

))

, (26a)

𝑠.𝑡. ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝐊(−)𝐔(−) = 𝐅 ,
𝐊𝐔 = 𝐅 ,
𝐊(+)𝐔(+) = 𝐅 ,
1
𝑛𝑒

∑𝑛𝑒
𝑒=1 𝜌

phys
𝑒,(+) = 𝑉𝑚

𝑉(+)
𝑉

,

0 ≤ 𝝆 ≤ 1 ,

(26b)
⎩
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where the displacements 𝐔(−), 𝐔 and 𝐔(+) are obtained by performing three separate FE analyses with respective global stiffness 
matrices 𝐊(−), 𝐊 and 𝐊(+) for the three sets of physical densities. The volume constraint in Eq.  (26b) is applied to the dilated 
physical densities; this is introduced in Wang et al. (2011) to eliminate the numerical artefacts observed in Sigmund (2009) due to 
using intermediate densities directly. On the right-hand side of the volume constraint, the material volume fraction 𝑉𝑚 is multiplied 
by the ratio of the dilated-to-intermediate volume fractions such that the intermediate densities still follow 𝑉𝑚. At the end of the 
optimisation process, the intermediate physical densities 𝝆phys represent the robustly optimised topology. Here, we use 𝜙(−) = 0.25, 
𝜙 = 0.50 and 𝜙(+) = 0.75. Note that the minimum length scale introduced by the robust approach increases as ||

|

𝜙 − 𝜙(−)
|

|

|

 grows. Also, 
the radius of weight-averaged density filtering directly influences the minimum length scale, see Wang et al. (2011) for details.

3.5. Optimisation algorithm

The optimisation algorithm is responsible for updating the design densities in a way that leads to cost minimisation while 
satisfying the constraints. Having a number of design variables in the order of 105, we choose a gradient-based optimisation strategy 
and employ MATLAB’s general-purpose, gradient-based, constrained optimiser fmincon with its interior-point method. This method 
solves a sequence of approximate minimisation problems constructed by adding up the original cost with weighted logarithmic 
barrier functions, each dependent on a slack variable, with as many slack variables as inequality constraints. The slack variables 
are adopted to transform the inequality constraints into equality constraints. Meanwhile, the slack variables are restricted to be 
positive to keep the iterates in the interior of the feasible region. As the weighting factor of the barrier functions decreases to 
zero, the minimum of the approximate problem approaches the minimum of the original cost function. The equality constraints 
are incorporated with the help of Lagrange multipliers. The approximate problem is then solved using either a direct Newton step 
or a conjugate gradient step using a trust region method. The default is the former, and if it fails (e.g. due to non-convexity near 
the current iterate), the algorithm resorts to the latter, see The MathWorks Inc. (2024a) for further details. We provide as inputs 
first-order analytical derivatives (i.e., sensitivities) of the cost with respect to the design variables, which we derive via the adjoint 
method in Appendix  D. The second-order derivatives of the cost function are approximated by fmincon via the LBFGS approach (The 
MathWorks Inc., 2024a).

To begin the optimisation process, we need an initialisation guess for the design densities 𝝆 that satisfies the volume constraint 
applied on 𝝆phys. Fig.  2(b) shows the initialisation setup with evenly distributed densities, commonly used as a starting guess in 
topology optimisation and adopted here as the default choice. Figs.  2(c) and 2(d) show alternative initialisations, which are employed 
as initial guesses in Appendix  E. Furthermore, the stopping criterion in control of the termination of the optimisation loop comprises 
two conditions: the maximum relative change in the design densities falling below 10−4, and the maximum number of iterations 
exceeding 50. Whichever of these two conditions is met, the optimisation loop terminates. In our experience, these conditions allow 
the topology to evolve gradually without many idle iterations.

Fig.  3 presents the flowchart of the optimisation algorithm. As per this flowchart, to start the optimisation algorithm, the material 
volume fraction 𝑉𝑚, initial design densities 𝝆, the filtering radius 𝑟min, the initial projection filter strength 𝜓 = 1, and the material 
parameters 𝜽 must be defined. Then, the filtering operation takes place, providing us with the actual topology made by 𝝆phys. Next, 
the FE analysis is performed to find the displacement and strain fields which are handed over to the routine which performs the cost 
and sensitivity computation. The optimiser engine then recruits this information to update the design densities in the direction of 
the cost minimisation while respecting the constraints. The algorithm keeps iterating until meeting the stopping criterion, thereby 
doubling the filter parameter 𝜓 to help binarify the topology, and hence continuing until 𝜓 = 𝜓̄ to approach a black-and-white 
design. Eventually, in case of the presence of minor grey scales in the optimised topology, a post-processing, hard-thresholding step 
is performed which outputs a sharp 0-1 design.

4. Results and discussion

In this section, we present the main results of our topology optimisation framework to design optimal specimens for noise-tolerant 
identification of constitutive parameters in isotropic and anisotropic linear elasticity. Further results are reported in the Appendices.

4.1. Optimisation process and global (mesh) convergence for isotropic elasticity

This section examines the performance of the cost functions in Eq.  (20) (with 𝑝 = 8) and Eq.  (21) by analysing their optimisation 
process, the strain fields in their output topology subjected to the tensile test of Fig.  2, and their mesh convergence behaviour. 
The results from the cost functions in Eq.  (20) and Eq.  (21) are given in Fig.  4 and Fig.  5, respectively. An isotropic material with 
Young’s modulus 𝐸 = 200 GPa and Poisson’s ratio 𝜈 = 0.3 is assumed for this analysis.

Figs.  4(a) and 5(a) illustrate the topology optimisation process. Each plot shows the evolution of the cost (red diamonds) and 
topology against the number of iterations during optimisation. Each optimisation process is initialised with evenly distributed 
densities (as shown earlier in Fig.  2(b)), and a cost of one due to the normalised definition. In the next iteration, the weight-averaging 
PDE filter becomes active, which induces some blur in the topologies and a sharp jump in the cost value. Shortly after, there is a 
rapid drop in the cost until iteration #7 in Fig.  4(a) and iteration #4 in Fig.  5(a), where an early-stage picture of the topology 
emerges. At iteration #51, the algorithm reaches the maximum number of iterations per optimisation loop and the projection-filter 
parameter 𝜓 is doubled, which stimulates stronger 0-1 binarification as well as a sharp drop in the cost value. The algorithm 
continues similarly with the next optimisation loops, gradually leading to a black-and-white topology. Overall, both cost functions 
8 
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Fig. 3. Flowchart of the overall optimisation algorithm with gradual increase of the strength of the projection filter (adapted from Bendsøe and Sigmund (2004)).

exhibit mostly decreasing values during the course of optimisation (except for a few iterations). After four loops in Fig.  4(a) and 
seven loops in Fig.  5(a), each consisting of 50 iterations, the changes in the topologies become rather negligible, thereby activating 
the other stopping criterion, i.e., the lower bound on the maximum relative change in the design densities, resulting in a more rapid 
termination of the remaining loops. The final optimised topologies are delivered at the end of loop #10 (when 𝜓 = 𝜓̄). To speed up the 
optimisation process, a possibility could be setting the stopping criteria adaptively to allow less strict termination of the algorithm in 
the last 4–5 optimisation loops, as they are mainly responsible for increasing the contrast of the design, i.e., binarification. However, 
to ensure a smooth and gradual topology update, we have not incorporated such adaptive stopping criteria.

To quantify the discreteness of the optimised topologies, Sigmund (2007) define a grey-level index as 

𝑔idx =
4
𝑛𝑒

𝑛𝑒
∑

𝑒=1
𝜌phys𝑒

(

1 − 𝜌phys𝑒

)

. (27)

Designs with 𝑔idx < 1% are recognised as sufficiently discrete. Using this metric, our optimised topologies in Fig.  4(a) and Fig.  5(a) 
yield 𝑔idx = 0.39% and 0.20%, respectively. The optimised designs finally undergo post-processing with hard thresholding to ensure 
𝑔idx = 0 in the final output. The comparison among the two cost functions shows a steadier behaviour (i.e., declining more uniformly 
through longer-lasting optimisation loops) as well as a smaller final grey-level index for the cost function in Eq.  (21). Both optimised 
topologies contain two symmetric holes in the top and bottom halves of the specimen, and the one reached by the cost function in 
Eq.  (20) contains two more holes. The 2-norm condition number is similar for both designs; it is given by 𝜅2 = 193 and 204 for the 
topologies in Fig.  4(a) and Fig.  5(a), respectively.

Figs.  4(b) and 5(b) plot the contours of the strain components 𝜀11, 𝜀22 and 𝛾12. For the loading conditions in Fig.  2(b), 𝜀11 is 
almost zero in both specimens, whereas 𝜀22 shows concentrations and gradients at the side corners of the holes and at the four 
outer corners. Similarly, the shear strain also exhibits some concentrations. The ranges of strain values for the two specimens are 
almost identical. However, the two additional side holes in Fig.  4(b) generate some minor gradients of the shear strain component, 
a favourable feature missing in Fig.  5(b). In the next section we provide quantitative measures to highlight the importance of the 
strain patterns generated as a result of topology optimisation.
9 
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Fig. 4. (a) Evolution of the cost function in Eq.  (20) and of the topology during optimisation; (b) contours of the strain components for the optimised topology; 
(c) final cost and optimised topology versus mesh refinement.

Figs.  4(c) and 5(c) investigate the global convergence of the optimised topologies as the total number of DOFs (nDOFs) increases. 
The determinant-based cost function leads to acceptable mesh convergence, with only minor changes as the FE grid is refined. 
The slight distortion of the holes at nDOFs ≈ 106 is likely due to the effect of roundoff error. The mesh refinement level with 
nDOFs ≈ 105.5 ≈ 3.2 × 105 (yielding 𝑛 ≈ 1.6 × 105 design variables) is considered sufficient for convergence, and all further analyses 
𝑒
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Fig. 5. (a) Evolution of the cost function in Eq.  (21)) and of the topology during optimisation; (b) contours of the strain components for the optimised topology; 
(c) final cost and optimised topology versus mesh refinement.

are based on it. Conversely, 𝜅𝑝(𝐀eqb) renders an inferior convergence behaviour since the optimised topologies continue to change 
while the FE mesh is refined. We note that the consistent definition of the weighting parameters 𝜆𝑟 and 𝜆𝑞 (as discussed in Appendix 
A) is of crucial importance to achieve global convergence in the optimised topologies.

Considering all the aspects discussed above, the determinant-based cost function from Eq.  (21) proves to be the best choice. 
This statement continues to hold also for anisotropic materials, as exemplified later. Therefore, from now on we only focus on the 
determinant-based cost function in Eq.  (21). In Appendix  B we provide more results for the cost function in Eq.  (20) and explore a 
few additional cost definitions.
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Table 1
Material properties to define a range of orthotropic materials.
 𝛼1 𝛼2 𝛽 (◦) 𝜈𝑥𝑦  
 {4, 8,… , 20} {0.5, 0.75,… , 1.5} {0, 15,… , 90} 0.3 

4.2. Topology optimisation for material parameter identification in orthotropic elasticity

As mentioned in Sections 3.2 and 3.5, the topology optimisation framework requires the material parameters as inputs to be able 
to solve for the nodal displacements through the FE analysis in Eq.  (22b). This may sound problematic, as the material parameters 
are the unknowns of the parameter identification for which the specimen is to be designed. In this section, we aim to investigate 
the effect of the input material parameters on the output topologies.

To this end, we focus our attention on orthotropic materials under the plane stress assumption. Such materials exhibit different 
stiffness properties along two orthogonal in-plane directions (material local coordinates), as shown in Fig.  1. We denote with 𝑥
the strong material direction, situated at an angle 𝛽 from the global coordinate 1, and with 𝑦 the weak material direction. To 
characterise the planar behaviour of orthotropic materials, four parameters are required: the longitudinal Young’s modulus, 𝐸𝑥𝑥, 
the transverse Young’s modulus 𝐸𝑦𝑦, the in-plane shear modulus 𝐺𝑥𝑦, and the in-plane Poisson’s ratio 𝜈𝑥𝑦 (or the transverse Poisson’s 
ratio 𝜈𝑦𝑥 = 𝜈𝑥𝑦 𝐸𝑦𝑦∕𝐸𝑥𝑥). To characterise the intensity of anisotropy, we utilise the two dimensionless parameters introduced in Nejati 
et al. (2019): 

𝛼1 =
𝐸𝑥𝑥
𝐸𝑦𝑦

𝛼2 =
𝐺𝑥𝑦
𝐺𝑠𝑣𝑥𝑦

, (28)

with 
1
𝐺𝑠𝑣𝑥𝑦

= 1
𝐸𝑥𝑥

+ 1
𝐸𝑦𝑦

+
2𝜈𝑥𝑦
𝐸𝑥𝑥

. (29)

Note that for an isotropic material 𝛼1 = 𝛼2 = 1. Based on the analysis in Nejati et al. (2019), the constitutive response is 
predominantly governed by the anisotropy ratios 𝛼1, 𝛼2 and the anisotropy angle 𝛽, whereas the influence of 𝜈𝑥𝑦 is negligible. 
Thus, we consider the range of material parameters in Table  1, representing a broad spectrum of orthotropic materials, to be given 
as inputs to the topology optimisation framework. Due to the normalisation of the cost function, we expect only these dimensionless 
ratios to affect the results.

Fig.  6 portrays the topologies generated using in input some of the orthotropic material parameters from Table  1 and a material 
volume fraction of 𝑉𝑚 = 80%. The first observation is that the choice of the input material affects the optimised topology, with 
the most significant changes resulting from the variation of the anisotropy angle 𝛽. We later use this information to quantify the 
performance of selected topologies. Comparing Fig.  6 with Fig.  5 for the isotropic case, we note that similar holes form when 
the strong material direction coincides with the loading axis (𝛽 = 90◦). As the anisotropy angle decreases towards 0◦, the holes 
tend to deform accordingly. Along with this deformation, the holes may merge or decompose into smaller pieces. These changes 
result from a complex interplay between the anisotropy orientation and the ensuing strain field (which determines det(𝐀eqb)), the 
weight-average filtering, the presence of the outer passive frame, and the constraint of fixed material volume fraction. Another 
prominent feature in the optimised topologies is their (bisect-dual-flip) symmetry, which is a consequence of symmetry in 𝐀eqb, 
symmetric loading configuration, and evenly distributed initialisation densities. It is shown in Appendix  E that initialisations with 
sufficient randomness can disrupt such symmetric patterns. Lastly, we observe that a few topologies contain narrow strips of material 
connecting the holes, which may prematurely fail upon loading the specimen in a real experiment. In Section 4.3 we discuss the 
application of robust topology optimisation as a remedy to this issue.

We now assess the performance of the optimised specimen topologies for identification of the material parameters 𝜽. Note that 𝜽
contains 𝑛𝑓 = 6 unknown stiffness components as in Eq.  (5), since the material is assumed to be linearly elastic with no information 
on the type of material symmetry. We use artificially generated deformation fields, perturb the strains at the integration points 
with Gaussian noise with zero mean and standard deviation 𝛾𝑓 = 10−3 × 𝑢̄∕𝐿𝑌 , where 𝑢̄∕𝐿𝑌  is the nominal strain applied to the 
specimen, and perform no denoising. We apply the already created topologies to identify the elastic material properties which can 
be generated via the inputs in Table  1. We select as representative the seven topologies generated by (𝛼1, 𝛼2) = (12, 1.0) from Fig.  6, 
and investigate their effectiveness for parameter identification. Further, to provide some insight on the effect of the material volume 
fraction, we generate the respective set of topologies with 𝑉𝑚 = 70% and 𝑉𝑚 = 90%. Fig.  7 illustrates the results, in terms of cost 
(without normalisation) and parameter identification error ‖‖

‖

𝜽 − 𝜽gt
‖

‖

‖2
∕‖‖
‖

𝜽gt
‖

‖

‖2
, where 𝜽gt is the vector of the ground-truth material 

parameters.
The most prominent trend observed in Fig.  7 is the overall decrease of both the cost and the identification error when the 

anisotropy angle varies from 𝛽 = 0◦ to 90◦ under uniaxial loading, i.e. as the strong material direction comes closer to the loading 
direction, leading to a better identification of 𝐸𝑥𝑥 (since 𝐸𝑥𝑥 is the largest stiffness component, its identification error affects 
the l2-norm error the most significantly). Furthermore, investigation of the individual identification error in each of the stiffness 
components reveals that, normally, the hardest parameter to be identified for 𝛽 < 45◦ is 𝐸𝑥𝑥, for 𝛽 > 45◦ is 𝐸𝑦𝑦, and for 𝛽 = 45◦ is 
𝐺 .
𝑥𝑦
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Fig. 6. Optimised topologies for different orthotropic material parameters in input. The densities are initialised evenly, and the material volume fraction is set 
to 𝑉𝑚 = 80%.

Fig. 7. Identification of the orthotropic material parameters using optimised topologies obtained with (𝛼1 , 𝛼2) = (12, 1.0) with different volume fractions. The 
left plots visualise the unnormalised cost (in mm−12) while the right ones report the identification error (in percentage), both against the anisotropy angle 
𝛽. The boxes and whiskers represent the range of results for different anisotropy ratios 𝛼1 and 𝛼2. The cross signs (×) denote the outliers (i.e. cases lying 
1.5 × (interquartile range) away from the top or bottom of the boxes) and the star signs (⋆) designate the cases which have the same 𝛼1 and 𝛼2 value as the 
optimised topologies.

Considering the middle-row results pertaining to 𝑉𝑚 = 80% in Fig.  7, we see that the different optimised topologies yield different 
costs, with the topologies optimised for 𝛽 = 15◦ and 90◦ outperforming the rest in almost all cases. As an example, to calibrate the 
material parameters for orthotropic materials with 𝛽 = 0◦, considering the medians in the boxes and whiskers as representative, the 
unnormalised cost for the 15◦ topology is 2.14× 103 mm−12, while for the 0◦ topology it is 6.52× 103 mm−12. As for the identification 
error, the 15◦ topology delivers the lowest error of 10%, while the 0◦ topology gives 13%. The better performance of the topologies 
optimised for 𝛽 = 15◦ and 90◦ can be explained with the closely spaced holes appearing in these two specimens, which cause 
localised strain gradients adjacent to the holes. Considering the results for 𝑉𝑚 = 70% and 90%, a similar superiority in performance 
is observed for the topologies created with 𝛽 = 15◦ in the former, and with 𝛽 = 0, 15 and 90◦ in the latter, again due to the effect of 
tightly arranged holes. Overall, it is unexpected that certain topologies be superior to others in almost all cases. We would rather 
expect that every topology produced for a material with a specific 𝛽 be the optimal topology for identifying materials with that value 
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Fig. 8. The dependence of the unnormalised cost (in mm−12) on the material volume fraction investigated for six reference topologies.

of 𝛽. A possible justification is the non-convexity of the cost function and the effect of initialisation which can lead the optimisation 
to a local minimum, as illustrated in more detail in Appendix  E. A further reason may be the projection filtering which induces 
abrupt changes in the optimised topologies as the input anisotropy angle varies between 0◦ and 90◦. We shed more light on this in 
Section 4.3.

Comparing the results for different material volume fractions in Fig.  7, it is evident that the optimised topologies remain quite 
consistent as 𝑉𝑚 changes. With the increase of 𝑉𝑚, the holes may shrink and decompose into smaller holes, or coalesce and form 
fewer but larger holes. The lowest identification error bounds belong to 𝑉𝑚 = 90%. A possible explanation is that a higher material 
volume fraction enriches the system of equations in Eq.  (14) with more material points. However, the limit case of 𝑉𝑚 = 100%
(not shown here) expectedly leads to exploding identification errors. The plot for 𝑉𝑚 = 90% shows that the performance differences 
between the optimised topologies are rather small, hence the topologies optimised with different anisotropy angles perform (almost) 
equally well in the material identification process. This is an important point as it diminishes the significance of defining accurate 
material parameters as inputs to the topology optimisation framework. Here, by the definition of input material parameters, we 
simply mean defining the anisotropy ratios 𝛼1, 𝛼2 and the anisotropy orientation 𝛽, while the actual individual stiffness components 
gathered in 𝜽 are not required. Using the actual material parameters to design the test specimen contradicts the purpose of the 
constitutive law calibration, yet it has not been addressed in the literature (Chamoin et al., 2020; Almeida et al., 2020; Barroqueiro 
et al., 2020; Gonçalves et al., 2023). Based on the above practically admissible results, we would recommend running the topology 
optimisation algorithm for a few anisotropy orientations (e.g. 𝛽 = 0, 15 and 90◦) with arbitrary 𝛼1 and 𝛼2 values, and then pick the 
specimen design with the largest number of holes, which is expected to enable robust identifiability for any 2D orthotropic material.

We provide a more explicit representation of the dependence of the cost function on the material volume fraction in Fig.  8. Here, 
we plot 1∕ det(𝐀eqb) versus the material volume fraction in the range 𝑉𝑚 = 80–100% for six simple topologies created manually and 
numbered according to the number of holes. The reason behind choosing simple topologies is the ability to reproduce them exactly 
(to exclude the influence of shape change) with different volume fractions. It is not feasible to account for low volume fractions 
as they lead to invalid topologies, sometimes causing shape changes with merging holes, or introducing narrow strips of material 
(as also in the case of topology #6 at 𝑉𝑚 = 80%), which are practically avoided in topology optimisation through filtering. The 
material under study is orthotropic with (𝛼1, 𝛼2) = (12, 1.0), and the plots in Fig.  8 reflect the average results for different anisotropy 
angles 𝛽 ∈ {0, 15,… , 90}. Material volume fractions of 85% ≤ 𝑉𝑚 ≤ 90% are observed to be optimal irrespective of the topology used, 
probably because such volume fractions lead to sufficient richness of the system of equations due to many material points while 
preserving a heterogeneous design with non-uniform strain maps. Increasing the volume fraction further has a negative impact, 
whereby the extreme case of the full plate (i.e., 𝑉𝑚 = 100%) has a dramatically higher cost due to its uniform strain distribution, 
hence loss of identifiability. On the other hand, the reduction of the volume fraction depletes the information available on the 
deformation field, yielding less accurate material parameters.

Fig.  9(a) compares the performance between the optimised topology generated with (𝛼1, 𝛼2, 𝛽) = (12, 1.0, 0◦) and the six reference 
topologies. All the topologies share the same material volume fraction 𝑉𝑚 = 90%. EUCLID has previously employed designs similar 
to reference topologies #1 and #2 to discover different classes of constitutive laws (Flaschel et al., 2021, 2022, 2023), although none 
of them concerned orthotropic materials. The remaining reference topologies should trigger more heterogeneous strain patterns as 
the number of their holes increases. The comparison is made for both uniaxial and biaxial loading (the latter applies an additional 
horizontal extension 𝑢 = 𝑢̄ × 𝐿𝑋∕𝐿𝑌  to the right edge of the specimen). As shown in Fig.  9(a) and expected, the cost and the 
identification error decrease as the number of holes increases. However, results for topologies #5 and #6 are very similar, indicating 
that a saturation is reached, as also pointed out in Ihuaenyi et al. (2024). The selected optimised topology, which contains 4 but 
optimally designed holes, appears as effective as the most complex 6-hole manually designed topology, which is the advantage of 
the automated design via topology optimisation. Overall, the cost and identification error drop by orders of magnitude due to richer 
strain patterns in the biaxial loading setup (see Fig.  9(b)).

Fig.  9(b) illustrates the contours of the in-plane strain components for the automatically optimised topology, obtained by uniaxial 
and biaxial numerical experiments with 𝛽 = 0, 45 and 90◦. Under uniaxial loading, the case 𝛽 = 0◦ results in rather uniform strain 
fields with negligible horizontal and shear strains. For 𝛽 = 45◦, the strain contours acquire directional variations and larger values, 
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Fig. 9. Performance assessment of a chosen topology (produced with (𝛼1 , 𝛼2 , 𝛽) = (12, 1.0, 0◦) and 𝑉𝑚 = 90% from Fig.  7) under uniaxial and biaxial tensile loading 
conditions: (a) comparison of the unnormalised cost (in mm−12) and the identification error (in percentage) versus six reference topologies; (b) contours of strain 
components obtained for anisotropy orientations 𝛽 = 0, 45 and 90◦.

and gradients of the shear strain appear. For 𝛽 = 90◦, the largest values of the strains and their gradients are obtained. Changing 
the loading condition to biaxial further improves the results by generating more heterogeneous strain patterns also for 𝛽 < 45◦. This 
may explain the discussed trends of cost and identification error observed in Figs.  7 and 9(a) when 𝛽 changes from 0◦ to 90◦.

Upon a request by the reviewers, in Fig.  10 we compare the performance of our optimised topology (generated with (𝛼1, 𝛼2, 𝛽) =
(12, 1.0, 0◦)) against selected topologies designed in the literature (Kim et al., 2014; Jones et al., 2018b; Stainier et al., 2019; Chamoin 
et al., 2020; Gonçalves et al., 2023). Such a comparison has to be considered with caution because of two main reasons: (1) 
each specimen from the literature has been designed for the identification of different and specific material models, from linear 
elasticity (Stainier et al., 2019; Chamoin et al., 2020), to elasto-plasticity (Kim et al., 2014; Gonçalves et al., 2023) and visco-
plasticity (Jones et al., 2018b), using different identification techniques; (2) each topology has a specific material volume fraction, 
size, aspect ratio, resolution, and loading configuration. While bearing in mind the limitations in (1), we have tried our best 
to address most of the discrepancies in (2) by redesigning the selected topologies with minimal changes (not expected to have 
considerable influences). This means that the redesigned specimens feature equal size, aspect ratio and resolution as well as loading 
configuration (i.e., uniaxial tensile loading with full-width grip at both ends), but have different material volume fractions. The 
comparison between the specimen designs is based on the identification of the linear elastic constitutive parameters produced via the 
inputs in Table  1 through the equilibrium gap method outlined in Section 2. The results in Fig.  10 reveal that our optimised topology 
performs very well in comparison to the literature designs, leading to lower costs and identification errors in a wide spectrum of 
the considered orthotropic materials. The notched 2-hole specimen by Kim et al. (2014) exhibits quite similar performance to our 
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Fig. 10. Performance assessment of a chosen topology (produced with (𝛼1 , 𝛼2 , 𝛽) = (12, 1.0, 0◦) and 𝑉𝑚 = 90% from Fig.  7) versus selected designs from the literature 
under uniaxial tensile loading. The left plot visualises the unnormalised cost (in mm−12) while the right one reports the identification error (in percentage), both 
against the anisotropy angle 𝛽.

Fig. 11. Effect of the robust formulation in topology optimisation to avoid tiny topological features: (a) topologies generated with inputs (𝛼1 , 𝛼2 , 𝛽) = (4, 0.5, 0◦); 
(b) topologies generated with inputs (𝛼1 , 𝛼2 , 𝛽) = (20, 1.0, 15◦).

design, while the 3-hole specimen by Stainier et al. (2019) and the optimised specimen by Chamoin et al. (2020) are optimal in 
the very high and very low anisotropy orientation regimes, respectively. In contrast, the optimised specimen by Gonçalves et al. 
(2023), probably due to its low volume fraction (as analysed in Figs.  7 and 8), leads to high identification errors.

4.3. Robust topology optimisation

In a few cases, the optimised topologies comprise narrow strips of material which are prone to premature failure upon testing. 
This issue mostly arises due to the application of the projection filter with a single threshold 𝜙 (to achieve a black-and-white 
design) since this destroys the minimum length scale introduced by weight-averaged density filtering (Wang et al., 2011). To solve 
this problem, we resort to the robust formulation to topology optimisation outlined in Section 3.4 to obtain a minimum length scale 
on the physical (i.e., projected) densities.

Fig.  11 shows two sample cases from Fig.  6, produced with (𝛼1, 𝛼2, 𝛽) = (4, 0.5, 0◦) and (20, 1.0, 15◦). The original topologies and 
their strain contours are shown in the upper row, where we note the existence of narrow strips of material and the consequent strain 
localisation which may lead to premature failure upon loading. Moreover, the DIC system fails to capture the deformation field in 
regions situated in the vicinity of the edges, resulting in the loss of valuable data. As shown in the lower row in Fig.  11, robust 
topology optimisation can fix the problem, leading to merged holes and wider material bands.

Fig.  12 presents the robustly optimised topologies and the performance of a few selected items in terms of cost and material 
identification error. Comparing the topologies in Fig.  12(a) with the ones in Fig.  6, it is clear that the robust formulation ensures 
local convergence, which also results in smoother changes of topologies as the anisotropy orientation 𝛽 varies from 0◦ to 90◦; 
the generated holes tend to deform more consistently and more aligned with the anisotropy angle as opposed to the not robust 
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Fig. 12. The application of the robust formulation in topology optimisation: (a) optimised topologies for different orthotropic materials. The densities are 
initialised evenly, and the material volume fraction is set to 𝑉𝑚 = 80%; (b) identification of the orthotropic material parameters using the optimised topologies 
obtained with (𝛼1 , 𝛼2) = (12, 1.0) from part (a). The left plot visualises the unnormalised cost (in mm−12) while the right one reports the identification error (in 
percentage), both against the anisotropy angle 𝛽.

topologies which transform more abruptly. We still observe narrow bands of solid material in the topology generated with the input 
(𝛼1, 𝛼2, 𝛽) = (4, 1.0, 15◦); in this case, the stopping criterion of maximum 50 iterations stops the first optimisation loop prematurely 
where more iterations are needed to reach convergence. Releasing this condition solves the problem.

Fig.  12(b) demonstrates the performance of selected optimised topologies generated by the robust formulation via inputs 
(𝛼1, 𝛼2) = (12, 1.0) from Fig.  12(a). The overall performance trend for the robust topologies is similar to that of the not robust ones. 
However, as observed above, ensuring local convergence provides more consistency in the results as the anisotropy angle changes. 
This consistency can be noticed especially in the identification error plot, where the optimised topology for each anisotropy angle 
is almost always the best to identify the orthotropic material with that anisotropy angle.

5. Conclusions and outlook

We proposed a topology optimisation framework for the optimal design of the test specimen to be utilised for the one-shot 
identification or discovery of constitutive material models. To this end, we employed the density-based topology optimisation 
approach with a cost function targeting the robustness of the unknown material parameters against the noise in the experimental 
strain field. The developed framework was then used to generate optimised specimen designs to be tested in uniaxial or biaxial 
tensile experiments in order to calibrate isotropic as well as orthotropic material parameters in linear elasticity. The main findings 
can be summarised as follows:

• The equation system leading to the unknown material parameters involves a matrix 𝐀eqb which encodes all the information 
on the specimen geometry and boundary conditions. The conditioning of 𝐀eqbdictates the robustness of the identified material 
parameters against noise in the experimental strain data. In order to use a gradient-based optimisation technique, we propose 
as possible cost function a 𝑝-norm condition number or the inverse of the matrix determinant, which are continuously 
differentiable and independent of the ground-truth material parameters. The investigation of these and other cost functions 
reveals that 1∕ det(𝐀eqb) behaves most stably, yields global mesh convergence, generates smoother topologies with fewer 
artefacts, and leads to the reduction of the identification error. Due to the non-convex nature of the cost function, the 
initial guess has a significant impact on the optimised topologies; a multi-start approach with various random initialisations 
potentially leads to the best design.
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• The global convergence (i.e., mesh independence) of the optimised topologies is achieved through consistent definitions of 
the weighting factors 𝜆𝑟 and 𝜆𝑞 appearing in 𝐀eqb. Local convergence (i.e., ensuring the existence of a minimum length scale) 
in the optimised topologies is attained by implementing the robust formulation to topology optimisation, involving projection 
filtering with three different threshold values.

• For the efficient handling of a large number of design variables in topology optimisation, the sensitivities are calculated 
analytically via the adjoint method, which requires solving one additional FE-like problem. Moreover, the use of the PDE 
filter rather than the convolution-type operation reduces the memory consumption remarkably.

• The effect of input material parameters on the optimised topologies is investigated in the context of linear elastic orthotropic 
materials. Due to the normalised cost function, the anisotropy descriptors 𝛼1 = 𝐸𝑥𝑥∕𝐸𝑦𝑦, 𝛼2 = 𝐺𝑥𝑦∕𝐺𝑠𝑣𝑥𝑦 and, most importantly, 
𝛽 (i.e., the anisotropy orientation) influence the optimised topologies whereas the individual values of the stiffness components 
are not relevant.

• The optimised topologies were evaluated in calibrating orthotropic material parameters. Due to the different relevance of the 
stiffness components under different anisotropy orientations 𝛽, the hardest parameter to calibrate in a uniaxial tensile test for 
𝛽 < 45◦ is 𝐸𝑥𝑥, for 𝛽 > 45◦ is 𝐸𝑦𝑦, and for 𝛽 = 45◦ is 𝐺𝑥𝑦. The topologies optimised with different anisotropy orientations perform 
almost equally well, indicating a low influence of the input anisotropy orientation. Performance checks against reference 
topologies confirm the good performance of the optimised designs with few but optimally designed holes.

As future outlook, the performance of the optimised topologies in the calibration of constitutive parameters is to be experimen-
tally evaluated. The current framework can be extended to more complex constitutive behaviours, e.g. hyperelasticity or dissipative 
behaviour. The further inclusion of DIC metrological features could lead to more practically optimised specimens.
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Appendix A. Consistent definition of the weighting parameters 𝝀𝒓 and 𝝀𝒒

As introduced in Eq.  (15a), there exist two weighting parameters 𝜆𝑟 and 𝜆𝑞 in the definition of 𝐀eqb. Here, we provide insight 
into the consistent definition of these parameters such that the cost functions defined in Eqs.  (21) and (22) behave mesh convergent. 
Note that here we do not perform any topology optimisation, but rather look at a fixed sample geometry, i.e., the plate with one 
hole, as shown in Fig.  2(a). The elastic anisotropic material considered here has 6 independent stiffness components gathered in 
𝜽 = [323, 100.03, 50.015, 190, 80.024, 144.930]𝑇 GPa.

Fig.  A.1(a) visualises, in logarithmic scale, the eigenvalues, the inverse of the determinant and the 2-norm condition number 
of 𝐀eqb against nDOFs as the FE mesh is refined. The eigenvalues, sorted in descending order, give 𝑛𝑓  lines each with a slope 
𝑚𝑖 (𝑖 = 1,… , 𝑛𝑓 ). Hence, 1∕ det(𝐀eqb) gives a line with the slope −∑𝑛𝑓

𝑖=1 𝑚𝑖, and 𝜅2(𝐀eqb) gives a line with the slope (𝑚1 −𝑚𝑛𝑓 ). In Fig. 
A.1(a), 𝜆𝑟 = 𝜆𝑞 = 1, 𝑚1 ≈ 0 and 𝑚𝑖 (𝑖 = 2,… , 𝑛𝑓 ) ≈ −0.5. We aim at finding 𝜆𝑟 and 𝜆𝑞 such that all 𝑚𝑖 ≈ 0, thereby inducing mesh 
convergence in 1∕ det(𝐀eqb) and 𝜅2(𝐀eqb).

Let us first look at 𝜆𝑟. This weighting parameter is required to balance the contributions of the free and fixed DOFs in the system 
of linear equations in Eq.  (14) since ||

|

Df ree|
|

|

 is usually significantly greater than ∑𝑛𝑠
𝑠=1

|

|

|

Df ix,𝑠|
|

|

. To find the consistent value for 𝜆𝑟
denoted here as 𝜆∗𝑟 , we initially fix 𝜆𝑞 = 1 and plot the slopes 𝑚𝑖 for different 𝜆𝑟 values, see Fig.  A.1(b). The line slopes 𝑚𝑖 acquire 
various values while 𝜆𝑟 changes, but there is a value of 𝜆𝑟, 𝜆∗𝑟 , at which all slopes are equal, i.e., 𝑚𝑖 ≈ −0.5: 

𝜆∗𝑟 =

∑𝑛𝑠
𝑠=1

|

|

|

Df ix,𝑠|
|

|

|

|

Dfree|
|

. (A.1)

Note that with this setting the slope of 𝜅2(𝐀eqb) already reduces to zero, whereas 1∕ det(𝐀eqb) monotonically increases at the rate 
𝑛 ∕2. This calls for the need to define the parameter 𝜆 .
𝑓 𝑞
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Fig. A.1. Consistent definition of the weighting parameters 𝜆𝑟 and 𝜆𝑞 : (a) starting with 𝜆𝑟 = 𝜆𝑞 = 1 and plotting eig(𝐀eqb) (sorted, each with a slope 𝑚𝑖), 1∕ det(𝐀eqb)
and 𝜅2(𝐀eqb) versus nDOFs; (b) fixing 𝜆𝑞 = 1 and finding 𝜆𝑟 = 𝜆∗𝑟  to unify the slopes 𝑚𝑖; (c) fixing 𝜆𝑟 = 𝜆∗𝑟  and finding 𝜆𝑞 = 𝜆∗𝑞 such that the unified slopes 𝑚𝑖
approach zero; (d) consistent values 𝜆𝑟 = 𝜆∗𝑟  and 𝜆𝑞 = 𝜆∗𝑞 lead to mesh-convergent behaviour. The eigenvalues and their corresponding slopes are in mm2, the 
determinant is in mm2𝑛𝑓 , and the condition number is dimensionless.

The weighting factor 𝜆𝑞 can help tailor the unified 𝑚𝑖 value at zero (rather than −0.5). Fig.  A.1(c) sheds light on the influence 
of 𝜆𝑞 on the slopes 𝑚𝑖 (while 𝜆𝑟 = 𝜆∗𝑟 ) and therefore on the convergence behaviour of 1∕ det(𝐀eqb). As evidenced in this plot, there 
exists a 𝜆𝑞 = 𝜆∗𝑞 at which 𝑚𝑖 ≈ 0: 

𝜆∗𝑞 =

√

√

√

√

𝑛𝑠
∑

𝑠=1

|

|

Df ix,𝑠|
|

+ |

|

Df ree|
|

. (A.2)

Upon the consistent setting of the weighting parameters, the plots from Fig.  A.1(a) are redrawn in Fig.  A.1(d). It is observed that 
all the mentioned quantities have become independent of the FE mesh, hence, 1∕ det(𝐀eqb) and 𝜅2(𝐀eqb) can be used as cost functions 
in the context of topology optimisation.

Appendix B. Other explored cost functions

This section discusses alternative cost definitions (explored for automated specimen design) and their pros and cons.

B.1. Minimum distance between strain data points

One way to formulate the specimen design problem is by looking at the principal strain space and its coverage by the data 
points, i.e., strains at the Gauss points. The more widely and uniformly spread the data points, the richer the deformation field 
19 



S. Ghouli et al. Journal of the Mechanics and Physics of Solids 203 (2025) 106210 
experienced by the specimen, and so, the more accurate the identified material parameters. In this context, a cost function based 
on the minimum distance between the strain data points can be defined as: 

costalt,2 = −

(𝑛(𝑛−1)∕2
∑

𝑖=1

(

𝑑𝑖
min

(

𝐝@init.
)

)𝑝) 1
𝑝

, (B.1)

where 𝐝 ∈ R𝑛(𝑛−1)∕2 represents the vector containing all the unique pairwise Euclidean distances between 𝑛 points in the principal 
strain space, and min

(

𝐝@init.
) denotes the minimum distance between the points at initialisation. The l𝑝-regularisation term is used 

instead of the min(⋅) operator to enable analytical differentiation.
Topology optimisation based on the cost in Eq.  (B.1) aims at maximising the minimum distance between the data points, thus 

providing extensive coverage over the principal strain space. The advantage of such a cost definition lies in the design of a specimen 
topology encompassing various deformation modes as it undergoes a simple uniaxial tensile test. On the other hand, the main 
downside of such a cost is its intrinsic locality, which only targets the minimum distance between the strain data points (i.e., a local 
feature), therefore lacking a global view of the whole design optimisation problem. Moreover, the minimisation of Eq.  (B.1) would 
necessarily require a random field for initialisation with min

(

𝐝@init.
)

> 0, meaning that evenly distributed design densities (inducing 
concentrated and overlapping strain points) would be impractical.

B.2. Frobenius-norm condition number

An alternative to the 2-norm condition number is the condition number based on the Frobenius norm: 
𝜅𝐹

(

𝐀eqb) = ‖

‖

‖

𝐀eqb ‖
‖

‖𝐹
‖

‖

‖

𝐀eqb−1‖
‖

‖𝐹
, (B.2)

where the Frobenius norm for 𝐀eqb with vectorised components 𝐴eqb
𝑖  (𝑖 = 1,… , 𝑛2𝑓 ) is given by 

‖

‖

‖

𝐀eqb‖
‖

‖𝐹
=

⎛

⎜

⎜

⎜

⎝

𝑛2𝑓
∑

𝑖=1

|

|

|

𝐴eqb
𝑖

|

|

|

2
⎞

⎟

⎟

⎟

⎠

1
2

. (B.3)

It can be shown that the Frobenius norm of a matrix is always greater than or equal to its 2-norm (utilising Cauchy–Schwarz 
inequality). Thus the following bound relation can be found: 

1 ≤ 𝜅2
(

𝐀eqb) = ‖

‖

‖

𝐀eqb ‖
‖

‖2
‖

‖

‖

𝐀eqb−1‖
‖

‖2
≤ ‖

‖

‖

𝐀eqb ‖
‖

‖𝐹
‖

‖

‖

𝐀eqb−1‖
‖

‖𝐹
= 𝜅𝐹

(

𝐀eqb) . (B.4)

One can thus define the cost for topology optimisation based on 𝜅𝐹 (𝐀eqb) as follows: 

costalt,3 =
𝜅𝐹

(

𝐀eqb)

𝜅𝐹
(

𝐀eqb
@init.

) , (B.5)

where 𝜅𝐹 (𝐀eqb
@init.) denotes the Frobenius-norm condition number at initialisation. Even though 𝜅𝐹  is insensitive to the strain levels, we 

still normalise it by the corresponding value at the initial configuration; this is found to help increase the stability of the optimisation 
process (as pointed out earlier in Section 3). Unfortunately, the implementation of Eq.  (B.5) in the optimisation framework leads 
to unstable behaviour of the optimiser and abrupt changes of the topology during the course of optimisation, to the extent that, in 
some cases, the output topology from one machine can vary slightly from the one of another machine. For this reason, we do not 
further use this cost definition.

B.3. 𝑝-Norm condition number

The 𝑝-norm condition number in Eq.  (18) is based on the matrix 𝑝-norm in Eq.  (19). To establish a bound relation with respect 
to the Frobenius norm (and hence to the 2-norm), we leverage Hölder’s inequality for vectors 𝐚 and 𝐛, with 𝑟 > 1: 

𝑛
∑

𝑖=1

|

|

𝑎𝑖|| ||𝑏𝑖|| ≤

( 𝑛
∑

𝑖=1

|

|

𝑎𝑖||
𝑟
)

1
𝑟
( 𝑛
∑

𝑖=1

|

|

𝑏𝑖||
𝑟
𝑟−1

)1− 1
𝑟

, ∀ 𝐚,𝐛 ∈ R𝑛 or C𝑛 , 𝑟 > 1 . (B.6)

By substituting |
|

𝑎𝑖|| =
|

|

|

𝐴eqb
𝑖

|

|

|

2
, |
|

𝑏𝑖|| = 1 and 𝑟 = 𝑝∕2 > 1, and taking the square root, we obtain 
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. (B.7)

Such a bound relation can be obtained similarly for (𝐀eqb)−1, giving the final inequality: 

1 ≤ 𝜅2
(

𝐀eqb) ≤ 𝜅𝐹
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Fig. B.1. The 𝑝-norm condition number as cost function: (a) optimised topologies with 𝑝 = 8 for different orthotropic materials. The densities are initialised 
evenly, and the material volume constraint is set to 𝑉𝑚 = 80%; (b) identification of the orthotropic material parameters using the optimised topologies obtained 
with (𝛼1 , 𝛼2) = (12, 1.0) from part (a). The left plot visualises the 𝑝-norm condition number (dimensionless) while the right one demonstrates the identification 
error (in percentage), both presented against the anisotropy angle 𝛽.

Therefore, the product 𝑛2(1−
2
𝑝 )

𝑓 𝜅𝑝(𝐀eqb) is an upper bound for 𝜅𝐹 (𝐀eqb) which in turn is an upper bound for 𝜅2(𝐀eqb).
The results for an isotropic material using 𝜅8 in Eq.  (20) were already given in Fig.  4. Next, Fig.  B.1(a) presents the results for 

orthotropic elasticity using the input material parameters in Table  1. The gallery of topologies is generated with the material volume 
fraction 𝑉𝑚 = 80%. The optimised topologies are rather similar to those obtained with the original determinant-based cost function 
(shown in Fig.  6). However, a few of the 𝜅8-optimised topologies violate the special type of symmetry observed earlier in Fig.  6, 
see e.g. those obtained with (𝛼1, 𝛼2, 𝛽) = (12, 0.5, 90◦), (20, 0.5, 15◦) and (20, 0.5, 90◦). Moreover, narrow-width topological features are 
more frequent here, see e.g. (𝛼1, 𝛼2, 𝛽) = (4, 1.0, 15◦), (12, 1.5, 0◦) and (20, 1.0, 15◦). The performance of selected topologies generated 
via inputs (𝛼1, 𝛼2) = (12, 1.0) from the gallery is demonstrated in Fig.  B.1(b). The plots of cost and identification error visualise similar 
trends to their counterparts in Fig.  7, where the topology obtained with 𝛽 = 15◦ is superior in terms of cost and identification error 
for many anisotropy orientations.

In view of the above, the cost function based on 𝜅𝑝 is not superior to the determinant-based cost function, hence, we do not 
further use it here.

Appendix C. Density filtering

As briefly discussed in Section 3.3, topology optimisation without regularisation is an ill-posed problem. For this reason, filtering 
techniques have been developed. Among the different choices proposed in the literature, a popular filtering technique is the so-called 
weight-averaged, density filtering over a neighbourhood of radius 𝑟min (Bruns and Tortorelli, 2001; Bourdin, 2001) which acts upon 
the design densities 𝜌𝑒 as a convolution-type operator and transforms them into the averaged densities 

𝜌avg𝑒 = 1
∑𝑛𝑒
𝑖=1𝐻𝑒,𝑖

𝑛𝑒
∑

𝑖=1
𝐻𝑒,𝑖𝜌𝑖 , (C.1)

with the convolution kernel 

𝐻𝑒,𝑖 = max
(

0, 𝑟min − 𝛥(𝑒, 𝑖)
)

. (C.2)
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Fig. C.1. Weight-averaged density filtering to regularise the topology optimisation problem: comparing the implicit PDE and explicit convolution-type filters for 
two different neighbourhood sizes defined by 𝑆̄𝑓𝑑 over a noisy design field.

Here, 𝛥(𝑒, 𝑖) denotes the distance between the centres of two elements 𝑒 and 𝑖, which dictates how much the density of element 
𝑖 (within the neighbourhood 𝑟min) contributes to the averaged density of element 𝑒. The filtering radius 𝑟min is defined as 

𝑟min =
𝑟absmin
𝐿𝑒

, (C.3)

with 𝑟absmin as the absolute filtering radius and 𝐿𝑒 as the element size. The ratio between the area of the absolute filtering 
neighbourhood 𝜋(𝑟absmin)

2 and the domain area is kept constant and equal to 𝑆̄𝑓𝑑 = 0.15 (see Fig.  2(b)). This setup leads to a mesh-
independent filtering effect. The filtering radius 𝑟min dictates the minimum size of topological features allowed to form (in both 
material and void regions). There exists, however, a trade-off in setting 𝑟min (or equivalently 𝑆̄𝑓𝑑): in general, increasing 𝑟min results 
in broader averaging and stronger regularisation, hence larger topological features but also more grey scales; conversely, reducing 
𝑟min gives rise to the formation of tiny features and checkerboard patterns with less grey scales in the optimised topology (see Fig. 
C.1). Therefore, a sweet spot can be found (most often with trial and error) which renders sufficiently large features and not many 
grey scales.

The convolution kernel can be pre-computed, assembled into a sparse matrix 𝐇 ∈ R𝑛𝑒×𝑛𝑒 , and then used throughout the 
optimisation process for matrix–vector multiplication with the vector of design densities. Here a twofold problem arises: first, when 
the filtering radius 𝑟min is increased for a bigger neighbourhood search (while keeping 𝑛𝑒 constant), the computational complexity 
and the memory utilisation to compute 𝐇 grows quadratically for 2D problems; second, the number of nonzero entries in 𝐇 grows 
significantly (first linearly, and then almost logarithmically until saturation) which hinders the benefits of the sparse matrix–vector 
multiplication of 𝐇 with 𝝆. To solve the memory issue explained above, we resort to the implicit filter proposed by Lazarov and 
Sigmund (2011). The density filtering in Eq.  (C.1) is implicitly expressed by the solution of a Helmholtz-type PDE with homogeneous 
Neumann boundary conditions: 

⎧

⎪

⎨

⎪

⎩

−𝑅2
min∇

2𝜌avg + 𝜌avg = 𝜌 ,
𝜕𝜌avg

𝜕𝐧
= 0 ,

(C.4)

where 𝜌avg and 𝜌 are the continuous representations of the averaged and design densities, respectively, and 𝐧 ∈ R2 is the outward 
normal vector to the boundary. The parameter 𝑅min acts similarly to 𝑟min, with an approximate relation between them derived 
by Lazarov and Sigmund (2011): 

𝑅min =
𝑟min

2
√

3
. (C.5)

Fig.  C.1 illustrates the fairly similar behaviours of the PDE and convolution-type filters when they are applied to the same input 
noisy design field. The convolution-type filter regularises the topology more strongly, especially when 𝑆̄𝑓𝑑 is relatively large. This 
is rooted in the definition of the approximate relation in Eq.  (C.5).
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As put forward by Lazarov and Sigmund (2011), the FE discretisation of the PDE in Eq.  (C.4) can be formulated as a linear 
system with the solution 𝝆avg ∈ R𝑛𝑒  as the weight-averaged densities: 

𝐊F
(

𝐓F 𝝆avg) =
(

𝐓F 𝝆
)

, (C.6)

where 𝐊F ∈ R|

|

DF||×||DF|| with DF = {(𝑎, 1) ∶ 𝑎 = 1,… , 𝑛𝑛} is the standard FE stiffness matrix for scalar problems (including the factor 
𝑅2
min in its definition), and 𝐓F ∈ R|

|

DF||×𝑛𝑒  is a matrix that maps the element density values to a vector of respective nodal values. With 
this approach, the cost of filtering and the size of the involved matrices become independent of the filtering radius, which helps 
with memory usage reduction. However, the use of the PDE filter requires the solution of the additional FE problem in Eq.  (C.6), 
which, however, can be achieved efficiently by one-time computation and storage of the factorisation of 𝐊F (refer to Andreassen 
et al. (2011) for implementation details).

As discussed earlier, density filtering produces intermediate density values, graphically represented as grey scales. Even though 
this is necessary for problem regularisation and convergence, grey scales are undesirable in the output topology since they cannot 
be manufactured in practice. To convert the grey-scaled into a black-and-white topology, techniques such as projection filtering 
have been introduced (Guest et al., 2004; Sigmund, 2007; Xu et al., 2010), see Wang et al. (2011) for a review. These projection 
filters can be applied on top of the density averaging schemes. In the simplest projection, if 𝜌avg𝑒 ≥ 𝜙 (with 𝜙 as a chosen threshold) 
then the projected density, denoted as 𝜌phys𝑒 , becomes 𝜌phys𝑒 = 1, and if 𝜌avg𝑒 < 𝜙 then 𝜌phys𝑒 = 0. The projection given by 

𝝆phys =
tanh(𝜓𝜙) + tanh(𝜓 (𝝆avg − 𝜙))
tanh(𝜓𝜙) + tanh(𝜓 (1 − 𝜙))

(C.7)

is a computationally efficient choice as it encodes the above threshold conditions in a vectorised expression. Here, 𝜓 is a 
regularisation parameter. It is customary to start the optimisation process with 𝜓 = 20 = 1 (i.e., almost no projection) to let the 
topology evolve freely, and to increase 𝜓 gradually as the optimisation goes on. Andreassen et al. (2011) suggest to gradually double 
𝜓 with respect to the previous value whenever the stopping criterion is met until reaching 𝜓̄ = 29 = 512, which approximately creates 
a step function that outputs binary designs. The stopping criterion is introduced in Section 3.5. Fig.  3 gives the flowchart of the 
optimisation algorithm where the continuation scheme for increasing 𝜓 forms the outer loop. The threshold parameter 𝜙 in Eq. 
(C.7) is set to 0.5.

Appendix D. Analytical sensitivity calculation

Due to the employment of a gradient-based optimisation approach, we need to derive the analytical gradients (i.e., sensitivities) 
of the cost function with respect to the design variables 𝝆. Recalling the chain rule in Eq.  (25), we find the three major derivatives 
here, namely 𝑑(cost)

𝑑𝝆phys
∈ R1×𝑛𝑒 , 𝑑𝝆

phys

𝑑𝝆avg ∈ R𝑛𝑒×𝑛𝑒  and 𝑑𝝆
avg

𝑑𝝆
∈ R𝑛𝑒×𝑛𝑒 :

(I) Derivation of 𝑑(cost)
𝑑𝝆phys

The sensitivity of the cost function in Eq.  (21) with respect to the physical densities 𝝆phys can be found from: 
𝑑(cost)
𝑑𝝆phys

=
𝜕 (cost)
𝜕𝝆phys

+
𝜕 (cost)
𝜕𝐔

𝑑𝐔
𝑑𝝆phys

. (D.1)

We start with the first term 
𝜕 (cost)
𝜕𝝆phys

=
𝑑(cost)
𝑑𝐀glob

𝜕𝐀glob

𝜕𝝆phys
, (D.2)

where 
𝑑(cost)
𝑑𝐀glob

=
𝑑(cost)
𝑑𝐀eqb

𝑑𝐀eqb

𝑑𝐀
𝑑𝐀

𝑑𝐀glob
, (D.3a)

𝑑(cost)
𝑑𝐀eqb

= −
det

(

𝐀eqb
@init.

)

det
(

𝐀eqb
)

(

𝐀eqb)−1

⏟⏞⏟⏞⏟
↦(1×𝑛𝑓 2)

, (D.3b)

𝑑𝐀eqb

𝑑𝐀
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

𝑑𝐀𝑇
𝑑𝐀

)𝑇
𝐀

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
↦(𝑛𝑓 (||Dfree|

|

+𝑛𝑠)×𝑛𝑓 2)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑇

+ 𝐀𝑇
(𝑑𝐀
𝑑𝐀

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
↦(𝑛𝑓 2×𝑛𝑓 (||Df ree|

|

+𝑛𝑠))

, (D.3c)

𝑑𝐀
𝑑𝐀glob

= 𝑑𝐀
𝑑𝐀free

glob

𝑑𝐀f ree
glob

𝑑𝐀glob
+ 𝑑𝐀
𝑑𝐀f ix

glob

𝑑𝐀f ix
glob

𝑑𝐀glob
, (D.3d)
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and 
𝜕𝐀glob

𝜕𝝆phys
=

𝑛𝑒
⋃

𝑒=1
3
(

𝜌phys𝑒

)2
(

1 − 𝜌min
)

𝐀𝑒
(

𝐔𝑒
)

⏟⏟⏟
↦(|

|

D𝑒||𝑛𝑓×1)

. (D.4)

In the equations above, we have introduced the operator ↦ (𝑑𝑥 × 𝑑𝑦) to denote the reshaping of an array to R𝑑𝑥×𝑑𝑦 . In Eqs.  (D.3c) 
and (D.3d) there are some remaining derivatives in the form of sparse constant matrices defined only once (at the first iteration) 
using the sparse operator in MATLAB, stored in the memory, and then used directly during the optimisation process. For brevity, 
we do not write these derivatives here.

Next, we compute the second term. For this, we first derive the state (i.e., equilibrium) equation in Eq.  (22b) to find 𝑑𝐔
𝑑𝝆phys

∈

R|D|×𝑛𝑒  as follows 
𝑑𝐊
𝑑𝝆phys

𝐔 +𝐊 𝑑𝐔
𝑑𝝆phys

= 𝟎 ⇒
𝑑𝐔

𝑑𝝆phys
= −𝐊−1

(

𝑑𝐊
𝑑𝝆phys

𝐔
)

. (D.5)

This derivation requires solving a linear system with the right-hand side as the large matrix 𝑑𝐊
𝑑𝝆phys

𝐔 ∈ R|D|×𝑛𝑒  given by 

𝑑𝐊
𝑑𝝆phys

𝐔 =
𝑛𝑒
⋃

𝑒=1
3
(

𝜌phys𝑒

)2
(

1 − 𝜌min
)

𝐊𝑒(𝜽)𝐔𝑒 . (D.6)

In order to avoid solving 𝑛𝑒 systems of linear equations in Eq.  (D.5), which is computationally expensive, we exploit the so-called
adjoint method (i.e., backward derivation) (Johnson, 2012). Hence, we look for the product 𝜕 (cost)

𝜕𝐔
𝑑𝐔

𝑑𝝆phys
, given by 

𝜕 (cost)
𝜕𝐔

𝑑𝐔
𝑑𝝆phys

= −
𝜕 (cost)
𝜕𝐔

𝐊−1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜸𝑇

(

𝑑𝐊
𝑑𝝆phys

𝐔
)

= −𝜸𝑇
(

𝑑𝐊
𝑑𝝆phys

𝐔
)

, (D.7)

where we have introduced the adjoint vector 𝜸 ∈ R|D| which is the solution to only one system of linear equations, i.e., the adjoint 
state equation 

𝐊𝜸 =
(

𝜕 (cost)
𝜕𝐔

)𝑇
. (D.8)

The right-hand side of the adjoint system of equations is constructed by 
(

𝜕 (cost)
𝜕𝐔

)𝑇
∈ R|D| given by: 

𝜕 (cost)
𝜕𝐔

=
𝑑(cost)
𝑑𝐀glob

𝜕𝐀glob

𝜕𝐔
, (D.9a)
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𝜕𝐔
=

𝑛𝑒
⋃

𝑒=1
𝜌̃phys𝑒

𝑑𝐀𝑒
(

𝐔𝑒
)

𝑑𝐔𝑒
⏟⏞⏞⏟⏞⏞⏟

↦(|
|

D𝑒||𝑛𝑓×||D𝑒||)

, (D.9b)

𝑑𝐀𝑒
(

𝐔𝑒
)

𝑑𝐔𝑒
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𝑑𝜺̃h𝑒
𝑑𝜺̂h𝑒

𝑑𝜺̂h𝑒
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𝑖=1
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∑
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(
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(

𝜉𝑖, 𝜂𝑗
)
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↦(3×𝑛𝑓 ||D𝑒||)

det
(

𝐉𝑒
(

𝜉𝑖, 𝜂𝑗
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×𝑤𝑖 ×𝑤𝑗 , (D.9c)

𝑑𝜺̃h𝑒
𝑑𝜺̂h𝑒

=
⎡

⎢

⎢

⎣

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

⎤

⎥

⎥

⎦

𝑇

. (D.9d)

The adjoint method is beneficial since it enables the efficient computation of the sensitivities at the cost of solving only one extra 
linear system (whose cost is comparable to that of one FE analysis) rather than solving 𝑛𝑒 linear systems.

(II) Derivation of 𝑑𝝆
phys

𝑑𝝆avg
The projection filter in Eq.  (C.7) can be derived to obtain: 

𝑑𝝆phys

𝑑𝝆avg = diag
(

𝜓 sech2(𝜓 (𝝆avg − 𝜙))
tanh(𝜓𝜙) + tanh(𝜓 (1 − 𝜙))

)

. (D.10)

The operator diag(⋅) creates a square diagonal matrix whose diagonal components are the entries of the input vector.

(III) Derivation of 𝑑𝝆
avg

𝑑𝝆
Following the expression of the PDE filter in Eq.  (C.6), it is possible to find: 

𝑑𝝆avg
= 𝐓𝑇𝐊−1

(

𝐓F 𝐈𝑛
)

, (D.11)

𝑑𝝆 F F 𝑒
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where 𝐈𝑛𝑒 ∈ R𝑛𝑒×𝑛𝑒  is the identity matrix.
Note that 𝑑(cost)

𝑑𝝆
 can be computed in a more efficient manner (Andreassen et al., 2011): 

𝑑(cost)
𝑑𝝆

=

(

𝐓𝑇F𝐊
−1
F

(

𝐓F

(

(

𝑑(cost)
𝑑𝝆phys

)𝑇
⋅
(

𝜓 sech2(𝜓 (𝝆avg − 𝜙))
tanh(𝜓𝜙) + tanh(𝜓 (1 − 𝜙))

)

)))𝑇

, (D.12)

with ⋅ denoting the element-wise product of two vectors resulting in a vector with the same size.
The analytical computation of sensitivities would be more involved for more complex material behaviours (e.g., geometric/ma-

terial non-linearities, dissipation). In such cases, one can resort to automatic differentiation. However, the principles of the adjoint 
method remain the same.

Appendix E. The effect of initialisation in the optimised topologies

As pointed out in Appendix  C, our cost definition for topology optimisation is a non-convex and non-linear function of the design 
variables 𝝆. The non-convexity of the cost gives rise to the existence of numerous local minima in the high-dimensional space, which 
implies that the initial guess may significantly influence the reached solution, i.e., the obtained optimised design. In Section 4.2 we 
noticed that the topology optimised for a given anisotropy orientation 𝛽 was not always the best for the identification of orthotropic 
materials with the same value of 𝛽. To dig further into this issue, we briefly examine the influence of the initial density field on the 
results of our topology optimisation framework.

Fig.  E.1 illustrates the effect of initialisation in the optimised topologies and their performance in the identification of orthotropic 
materials. For conciseness, the results of this analysis are reported only for the material volume fraction 𝑉𝑚 = 90% which led to the 
lowest identification error bounds among the different volume fractions shown in Fig.  7. Let us first look into the effect of noisy 
(rather than even) initialisations. To this aim, we generate noisy fields by perturbing the even density distribution with Gaussian 
noise with zero mean and 20% standard deviation, a sample of which is plotted in Fig.  2(c). Further, in a multi-start setup, we create 
50 different noise patterns (i.e., seeds), and feed them into the topology optimisation framework. For each anisotropy orientation 𝛽, 
the topology with the lowest (unnormalised) cost is selected as the optimal topology. Fig.  E.1(a) visualises the optimised topologies 
obtained from the prescribed noisy initial fields together with their performance assessment graphs. As evident, the overall looks 
of the topologies are quite similar to the respective results from the evenly distributed initialisation (owing to the regularisation by 
the weight-averaged density filter), except for the topologies generated with 𝛽 = 0◦ and 90◦. Noisy-initiated optimised topologies, 
however, do not exhibit the special type of symmetry1 originally observed in Fig.  6. Additionally, due to the introduction of 
noise, there exists a tendency for the formation of holes close to each other, which, as explained earlier, lowers the cost and the 
identification error. Also in these plots (and even to a larger extent than with even initialisation) we observe that optimised topologies 
with 𝛽 = 0◦ and 75◦ lead to the best results almost in all cases. Possibly, following the procedure above but multi-starting with a 
much larger number of seeds (say 500), we could arrive at the expected situation where each 𝛽-optimised topology is the best for the 
identification of materials with that value of 𝛽. We did not try this. Otherwise, the robust topology optimisation approach showed 
promise to address this issue (see Section 4.3).

Fig.  E.1(b) plots the results achieved by initialising the design field with the densities obtained after the first loop of optimisation 
(see Fig.  2(d)) for the inputs (𝛼1, 𝛼2, 𝛽) = (12, 1.0, 0◦) as an example. Since the ‘‘interim’’ densities are symmetric, the optimised 
topologies also turn out to be symmetric. We notice a quite different appearance of the topologies for almost all 𝛽 angles, highlighting 
the crucial impact of the initial guess. Because of the significantly modified topologies, the costs and identification errors also perform 
quite differently than in the previous cases. Noteworthy is that no unique superior topology can be detected in this case.

Appendix F. Implementation aspects in MATLAB and computational performance

In this section, we report some details on the implementation aspects and the computational performance of the developed 
algorithm. Generally, topology optimisation aims at minimising a cost function dependent on a large number of design variables (in 
the order of 105−106) through an iterative algorithm. Thus, the implementation must be efficient to ensure reasonable performance. 
In a MATLAB environment, it is essential that the cost and the sensitivities are computed in a highly vectorised fashion, thereby 
avoiding slow for -loops. When it comes to creating sparse matrices and performing assembly operations efficiently, the sparse
operator in MATLAB is essential (Andreassen et al., 2011). The syntax reads 𝐒 = 𝑠𝑝𝑎𝑟𝑠𝑒(𝐢, 𝐣, 𝐯, 𝑑𝑥, 𝑑𝑦) and generates the matrix 
𝐒 ∈ R𝑑𝑥×𝑑𝑦  from the triplets 𝐢, 𝐣, 𝐯 such that 𝐒(𝐢(𝑘), 𝐣(𝑘)) = 𝐯(𝑘) for any entry 𝑘 (The MathWorks Inc., 2024c). Another implementation 
aspect is the use of the memoize command to cache the outputs of expensive functions and return the cached value (instead of its 
re-evaluation) given the function is called with the same inputs (The MathWorks Inc., 2024b). This functionality can be applied to the 
filtering operation since the filtered densities are required three times per iteration, namely, to compute the cost and the constraint 
and to plot the evolving topology. This is inevitable since sharing the filtered densities at each iteration of the optimisation loop 
among different functions is not straightforward in MATLAB.

1 Noisy fields with standard deviations less than 15% are practically smoothened out with the application of the weight-averaged density filtering, hence, 
they often produce symmetric results resembling those obtained with the even initialisation.
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Fig. E.1. The effect of initialisation on the optimised topologies, the unnormalised cost (in mm−12) and the identification error (in percentage) (shown only for 
𝑉𝑚 = 90% for brevity): (a) initialisation with 20% noise in design densities, illustrated in Fig.  2(c); (b) initialisation from the interim result of 𝛽 = 0◦, illustrated 
in Fig.  2(d). These results are comparable to those from initialisation with evenly distributed densities in Fig.  7(c).

To gain more efficiency in the optimisation framework, many constant FE- and cost-related calculations (partly thanks to the 
fixed structured mesh) need to be executed only once at the beginning and then stored in the memory as persistent variables to be 
readily available throughout the optimisation process. The same practice can be followed to precompute and cache large constant 
sparse matrices as well as the position vectors 𝐢 and 𝐣 for variable-valued sparse matrices. Note that position vectors can be stored 
as single-precision arrays to decrease the memory footprint. As pointed out in Appendix  D, to efficiently compute the sensitivities of 
the cost with respect to the design variables, the adjoint method should be employed which requires one additional FE-like system 
of equations instead of 𝑛𝑒. Also, with the use of the PDE filter rather than the convolution-type operation, the memory usage is 
reduced substantially since the problem size and complexity of the former do not depend on the filtering radius.

Building on the implementation aspects discussed above, our topology optimisation algorithm for optimal specimen design with 
157922 design variables (i.e., the converged discretisation level) runs in about 6 h on a desktop machine with Core i7 3.8 GHz
processor, requiring only 8 GB of random access memory throughout the computations. When using the robust formulation, the wall-
clock time roughly reaches 14.5 h, whereas parallelisation over three processors speeds up the algorithm by nearly 24% resulting in 
a run time of approximately 11 h. Investigating the optimisation process, it is revealed that the MATLAB optimiser engine fmincon
sometimes requires too many cost evaluations to solve the saddle-point problem (i.e., the Karush-Kuhn–Tucker conditions) and to 
compute the search direction in each iteration (Rojas-Labanda and Stolpe, 2015). To improve the temporal performance, it might be 
helpful to try other available optimiser engines, which require fewer function evaluations per iteration, e.g. the method of moving 
asymptotes (Svanberg, 1987).

Code availability

The MATLAB code is publicly available at https://gitlab.ethz.ch/compmech/euclid-top.
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