Flexible Transparency

A study on thin glass adaptive facade panels

Mentors: Christian Louter, Peter Eigenraam, Tillmann Klein

Rafael Ribeiro Silveira

4413113

Thin Glass

Built environment

Figure 2-Notre Dame de Paris - 1260

Figure 3-Victorian houses - ca. 1850

Figure 4-Crystal Palace - 1851

Figure 6-Bauhaus Dessau - 1928

Figure 7-Apple Istambul - 2014

2mm Alumino silicate	>
----------------------	---

6mm Soda lime

Alumino silicate -	1720		Soda lime - 0080						
Density (kg/m³) Thickness (m)		2520 0,002	Density (kg/m³) Thickness (m)		2470 0,006				
Weight (kg)		5,04	Weight (kg)		14,82				
Embodied energy, primary production	13,95	70,308	Embodied energy, primary production	10,6	157,092				
CO2 footprint, primary production	0,9405	4,74012	CO2 footprint, primary production	0,758	11,23356				
Water usage	21,15	106,596	Water usage	14,35	212,667				
Glass molding energy	11,15	56,196	Glass molding energy	8,655	128,2671				
Processing energy, CO2 footprint & water			Processing energy, CO2 footprint & water						
Glass molding CO2	0,892	4,49568	Glass molding CO2	0,6925	10,26285				
Glass molding water	3,94	19,8576	Glass molding water	3,06	45,3492				
Grinding energy (per unit wt removed)	33,8	170,352	Grinding energy (per unit wt removed)	26,95	399,399				
Grinding CO2 (per unit wt removed)	2,535	12,7764	Grinding CO2 (per unit wt removed)	2,02	29,9364				
CO2	KG	22 0122	CO2 K	ίG	51 43281	234%			
WATER	LITER	126 4536	WATER	ITFR	258 0162	204%			
ENERGY	MI	226,4550	ENERGY N	/11	527 6661	233%			
		=========			5=7,0001				

Estimation based on data from:

CES Edupack 2015. Soda lime – 0080, Alumino silicate - 1720 (Granta Design Limited). 2015.

Hundevad (2014)

20 % energy reduction demands for a 10m² roof

6mm heat tempered x 1mm Chemically tempered glass

		2 x 6mm Heat Tempered			2 x 1mm Chem temp Glass		s.		Source	
		1000				1000				
Weight		30	30000	kg		5	5000	kg		
Float Glass	30 MJ/kg	30	900000	MJ	69%	30	150000	MJ	69%	
Tempering	1 MJ/kg	1	30000	MJ	2%	1	5000	MJ	2%	Xinology.com
Shipping	Assume 5000km	2500	375000	MJ	29%	2500	62500	MJ	29%	US Trade Dept.
	Road 2500 kJ/t km									
	TOTAL		1305000	MJ			217500	MJ		
Gallons of Gas		122 MJ/gal	10697	7 Gallons			1783	Gallo	ns	
House Consum	nption USA Average	10500 kWh	37800	MJ			37800	MJ		
			35	Hou	seholds		6 Households			

Thin Glass

Built environment

Research question

How can a thin glass double skin façade panel be made adaptive?

How can a thin glass double skin façade panel be made adaptive?

- 1. To what purposes can a thin glass panel be made adaptive?
- 2. How does bending influences the stress generation in the thin glass panel?
- 3. What are the influences of bending and thickness on the load resistance of the thin glass panel?
 - 4. What are the possibilities of movement for this panel?
- 5. How can supports influence the movement and geometry of the thin glass adaptive panel?
- 6. How to translate the necessary degrees of freedom for the movement of the panel to its detailing?

Literature Review and definition of research focus

Understand the behavior of the material in the context of façade adaptive panel

Development of an example of a thin glass adaptive façade panel

Literature Review and definition of research focus

- Analyze current applications
- Explore different possibilities, to understand the material and possible applications

Understand the behavior of the material in the context of façade adaptive panel

- Study models and Numerical models for the simulation of bending
- Numerical models applying wind loads to the thin glass panel.
- Study of possible movements and supports by numerical models

Development of an example of a thin glass adaptive façade panel

- Analyze possible design strategies based on developed knowledge
- Select most suitable design strategy for detailing

Current use in the built environment

iterature

Review

Geometry Exploration

- Structural Elements
- Planar panels
- Single Radius
- Double Curvature

Unique characteristics

- Transparency
- Adaptability
- Flexibility

Development of low mass adaptive panels/structures

Adaptive Structures/Facades

- Change of properties/shape;
- Respond to the necessities of the building;
- Enhance the performance of a building;
- And/or the comfort of the occupants.

lateria Benavior

Adaptive Structures/Facades

Active Bending

Adaptive Structures/Facades

Adaptive fritting

Adaptive Structures/Facades

• Control - Material

(Sung, D. et al. Bloom. 2011)

Adaptive Structures/Facades – Thin Glass

Façade

- Adapt without obstructing the view;
- Light weight lower loads on the main structure.

Adaptive Structures/Facades – Thin Glass

Facade

- Ventilation
- Wind load reduction (Adaptive Façade for Wind load reduction in High-rise, P. Vongsingha 2015)
- Acoustic (Acoustical Invisible Envelopes, Holger Techen, 2015)
- Sun shading (fritting -Agbar Tower)
- Visual

TETET

TU Delft

laterial Behavior

Design example

Conclusions

- Façade
- Double skin

Development of transparent low mass adaptive panels in a double skin façade

Study Models

- Physical Model
- Numerical Models

This is a FOTO BOOTM: so not intended for spraying! Physical Model

Numerical models

- Initial bending
- Movement bending
- Wind loads

Numerical models

• Definition of plate size

5.30 – 83.04 N/mm²

9.47 – 157.59 N/mm²

2.73 – 42.6 N/mm²

5.30 – 83.04 N/mm²

9.47 – 157.59 N/mm²

Numerical models

- Initial bending
- Movement bending

Literature Review

Material Behavior

Design example

Literature Review

→0.55 mm →1.10 mm →2.0 mm
Numerical models

- Wind Load
- 1 KN/m² perpendicular pressure

Wind load

• Non convergence

_iterature Review

Numerical models

- 1750 mm wide thin glass plate
- 1.1mm thick glass

Thin Glass Adaptive panel

- Support
- Move
- Degrees of Freedom

Literature Review

Material Behavior

How to Support

- Protect edges
- Avoid stress concentration
- Allow movement
- Avoid blocking the view

How to Move

- Evidence of movement
- Avoid multiple actuators
- Increase stiffness by geometry
- Double curvature is constrained by the strain of the glass plate

Move and Support

• Degrees of freedom

Move and Support

- Number and type of supports can influence the geometry
- Fewer degrees of freedom stress concentration
- More degrees of freedom excess of complexity on design or unpredictability
- Suitable type of support and degrees of freedom depends on the desired movement and geometry

Parameters for design solution

- Transparency
- Stiffness
- Adaptiveness
- Feasibility

Transparency

Stiffness

Initial bending stress

y x

FX+ for DIANA +2.91503e+002

+2.73067e+002

+2.54632e+002

+2.36196e+002

+2.17760e+002

+1.99324e+002

+1.80888e+002

+1.62452e+002

+1.44016e+002

+1.25580e+002

+1.07144e+002

+8.87086e+001

+7.02727e+001 +5.18368e+001

+3.34009e+001

+1.49650e+001

-3.47086e+000

FX+ for DIANA +1.73794e+002 0.2% +1.62930e+002

2.0% +1.52066e+002 2.0% +1.41203e+002 3.4% +1.30339e+002 4.3% +1.19476e+002 5.4% +1.08612e+002 5.4% +1.08612e+002 5.4% +8.6852e+001 3.8% +7.60218e+001 4.8% +6.51581e+001 5.2% +5.42945e+001

-+4.34310e+001

+3.25674e+001

+2.17039e+001 17.4% +1.08403e+001 21.3% -2.32272e-002

0.4%

5.9%

8.4%

11.2%

Stiffness

Wind bending stress On initial bending

Stiffness

Increased bending stress

Stiffness

Increased bending stress

0.4%

0.5%

1.3%

1.8%

2.1%

3.0%

Stiffness

Wind bending stress On increased bending

Λz

Adaptiveness

1

.

. . .

1 1 4

114 11

1 1

CAL CAL

3

100

Ó

ø

 \mathbf{O}

12.0

Visual Effect

61

0

(Cr

(C)

0

 \mathbf{a}

0

Feasibility

Conclusions

- Pros:
 - Transparency, visual effect, stiffness, feasibility
- Cons:
 - Feasibility

- Pros:
 - Stiffness, feasibility
- Cons:
 - Transparency, visual effect, feasibility

- Pros:
 - Transparency, stiffness, feasibility
- Cons:
 - Visual effect, stiffness, feasibility

- Pros:
 - Visual effect
- Cons:
 - Transparency, feasibility

Conclusions

 Adjust this design strategy to reduce peak stresses and facilitate feasibility of the concept

Analysis of the design strategy

- Movement and Support
- Necessary degrees of freedom
- Fem analysis
- Translation in design

Movement and support

Analysis of the panel degrees of freedom

Bending Stresses

Initial Bending Increased Bending Asymmetric Bending

Absolute tensile stress on the top surface

130 N/mm²

280 N/mm²

Wind 0.5 KN/m^2

Initial Bending Increased Bending Asymmetric Bending

Absolute tensile stress on the top surface

303 N/mm²

362 N/mm²

Wind 1 KN/m^2

Initial Bending Increased Bending Asymmetric Bending

Absolute tensile stress on the top surface

490 N/mm²

Changes to increase stiffness

- Thickness to 2 mm
- Plate size reduction to 1500mm

Movement magnitude

Initial Bending Increased Bending Asymmetric Bending

Absolute tensile stress on the top surface

162N/mm²

289 N/mm²
Design example

Wind 1 KN/m^2

Initial Bending Increased Bending Asymmetric Bending

Absolute tensile stress on the top surface

233 N/mm²

333 N/mm²

Design example

Wind 2 KN/m² Initial Bending Increased Bending Asymmetric Bending

Absolute tensile stress on the top surface

307 N/mm²

388 N/mm²

Design example

Wind 2 KN/m² Initial Bending Increased Bending Asymmetric Bending

Absolute tensile stress on the top surface

307 N/mm²

388 N/mm²

Design example

Wind 2 KN/m² one side Initial Bending Increased Bending Asymmetric Bending

Absolute tensile stress on the top surface

179 N/mm²

311 N/mm²

Translation in design

У

х К

Λz

Translation in design

Λz

Material Behavior

У

хĸ

Design example

Profile exploration

- Clamp and adhesive
- Minimum structural glazing tape width 35mm
- Circular shape was difficult to adequate.

Displacement of 0.9mm > Tape compression (0.6mm)

SELFT TAPPING SCREW

Displacement of 0.24mm < Tape compression (0.6mm)

Actuator

Actuator

Pressure load diagram

D+HE - KA 54-BSY – 500N forces

Vaterial

Case study - Vocational Schools in Recklinghausen

 Double skin glass façade panels as a permeable layer.

(Scholl Architekten Partnerschaft. best of Detail: GLASS. 2014)

Literature Review

Material Behavior

How can a thin glass double skin façade panel be made adaptive?

- 1. To what purposes can a thin glass panel be made adaptive?
- 2. How does bending influences the stress generation in the thin glass panel?
- 3. What are the influences of bending and thickness on the load resistance of the thin glass panel?
 - 4. What are the possibilities of movement for this panel?
- 5. How can supports influence the movement and geometry of the thin glass adaptive panel?
- 6. How to translate the necessary degrees of freedom for the movement of the panel to its detailing?

How can a thin glass double skin façade panel be made adaptive?

1. To what purposes can a thin glass panel be made adaptive?
- 1. To what purposes can a thin glass panel be made adaptive?
- 2. How does bending influences the stress generation in the thin glass panel?

- 1. To what purposes can a thin glass panel be made adaptive?
- 2. How does bending influences the stress generation in the thin glass panel?
- 3. What are the influences of bending and thickness on the load resistance of the thin glass panel?

- 1. To what purposes can a thin glass panel be made adaptive?
- 2. How does bending influences the stress generation in the thin glass panel?
- 3. What are the influences of bending and thickness on the load resistance of the thin glass panel?
 - 4. What are the possibilities of movement for this panel?

- 1. To what purposes can a thin glass panel be made adaptive?
- 2. How does bending influences the stress generation in the thin glass panel?
- 3. What are the influences of bending and thickness on the load resistance of the thin glass panel?
 - 4. What are the possibilities of movement for this panel?
- 5. How can supports influence the movement and geometry of the thin glass adaptive panel?

- 1. To what purposes can a thin glass panel be made adaptive?
- 2. How does bending influences the stress generation in the thin glass panel?
- 3. What are the influences of bending and thickness on the load resistance of the thin glass panel?
 - 4. What are the possibilities of movement for this panel?
- 5. How can supports influence the movement and geometry of the thin glass adaptive panel?
- 6. How to translate the necessary degrees of freedom for the movement of the panel to its detailing?

Conclusions of the research

- Thin glass as a building material
 - Research is still necessary to be applied in this context;
 - Is an alternative to common glass for sustainability aspects;
 - Opens new design possibilities which are not feasible by glass.

Conclusions of the research

- Thin glass as an adaptive façade panel
 - Challenge of the concept of glass as a static material;
 - Further research is still necessary to allow for large scale applications.

Conclusions of the research

- Contribution on the growth of knowledge over this material
 - Behavior of the material under simple bending and on assuming different shapes;
 - Applying this material to a façade context.

Suggestion further studies

- Study of material properties
 - Pre stresses on surface and edges;
 - Fracture behavior
- Lamination
 - Influence of lamination on the bending capacities;
 - Delamination by continuous bending.
- Integration with other materials
 - Bimetals as actuators;
 - Stiffening of the panel.

Thank you